btrfs: subpage: do more sanity checks on metadata page dirtying
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
eb60ceac 46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
8896a08d 113 struct inode *inode;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
1941b64b
QW
117
118 /* Optional parameter for submit_bio_start used by direct io */
119 u64 dio_file_offset;
8b712842 120 struct btrfs_work work;
4e4cbee9 121 blk_status_t status;
44b8bd7e
CM
122};
123
85d4e461
CM
124/*
125 * Lockdep class keys for extent_buffer->lock's in this root. For a given
126 * eb, the lockdep key is determined by the btrfs_root it belongs to and
127 * the level the eb occupies in the tree.
128 *
129 * Different roots are used for different purposes and may nest inside each
130 * other and they require separate keysets. As lockdep keys should be
131 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
132 * by btrfs_root->root_key.objectid. This ensures that all special purpose
133 * roots have separate keysets.
4008c04a 134 *
85d4e461
CM
135 * Lock-nesting across peer nodes is always done with the immediate parent
136 * node locked thus preventing deadlock. As lockdep doesn't know this, use
137 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 138 *
85d4e461
CM
139 * The key is set by the readpage_end_io_hook after the buffer has passed
140 * csum validation but before the pages are unlocked. It is also set by
141 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 142 *
85d4e461
CM
143 * We also add a check to make sure the highest level of the tree is the
144 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
145 * needs update as well.
4008c04a
CM
146 */
147#ifdef CONFIG_DEBUG_LOCK_ALLOC
148# if BTRFS_MAX_LEVEL != 8
149# error
150# endif
85d4e461 151
ab1405aa
DS
152#define DEFINE_LEVEL(stem, level) \
153 .names[level] = "btrfs-" stem "-0" #level,
154
155#define DEFINE_NAME(stem) \
156 DEFINE_LEVEL(stem, 0) \
157 DEFINE_LEVEL(stem, 1) \
158 DEFINE_LEVEL(stem, 2) \
159 DEFINE_LEVEL(stem, 3) \
160 DEFINE_LEVEL(stem, 4) \
161 DEFINE_LEVEL(stem, 5) \
162 DEFINE_LEVEL(stem, 6) \
163 DEFINE_LEVEL(stem, 7)
164
85d4e461
CM
165static struct btrfs_lockdep_keyset {
166 u64 id; /* root objectid */
ab1405aa 167 /* Longest entry: btrfs-free-space-00 */
387824af
DS
168 char names[BTRFS_MAX_LEVEL][20];
169 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 170} btrfs_lockdep_keysets[] = {
ab1405aa
DS
171 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
172 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
173 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
174 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
ab1405aa
DS
175 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
176 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
177 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
178 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
179 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
180 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
181 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
182 { .id = 0, DEFINE_NAME("tree") },
4008c04a 183};
85d4e461 184
ab1405aa
DS
185#undef DEFINE_LEVEL
186#undef DEFINE_NAME
85d4e461
CM
187
188void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 int level)
190{
191 struct btrfs_lockdep_keyset *ks;
192
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
198 break;
199
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
202}
203
4008c04a
CM
204#endif
205
d352ac68 206/*
2996e1f8 207 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 208 */
c67b3892 209static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 210{
d5178578 211 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 212 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
a26663e7 213 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 214 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 215 char *kaddr;
e9be5a30 216 int i;
d5178578
JT
217
218 shash->tfm = fs_info->csum_shash;
219 crypto_shash_init(shash);
a26663e7 220 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 221 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 222 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 223
e9be5a30
DS
224 for (i = 1; i < num_pages; i++) {
225 kaddr = page_address(buf->pages[i]);
226 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 227 }
71a63551 228 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 229 crypto_shash_final(shash, result);
19c00ddc
CM
230}
231
d352ac68
CM
232/*
233 * we can't consider a given block up to date unless the transid of the
234 * block matches the transid in the parent node's pointer. This is how we
235 * detect blocks that either didn't get written at all or got written
236 * in the wrong place.
237 */
1259ab75 238static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
239 struct extent_buffer *eb, u64 parent_transid,
240 int atomic)
1259ab75 241{
2ac55d41 242 struct extent_state *cached_state = NULL;
1259ab75 243 int ret;
2755a0de 244 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
245
246 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
247 return 0;
248
b9fab919
CM
249 if (atomic)
250 return -EAGAIN;
251
ac5887c8 252 if (need_lock)
a26e8c9f 253 btrfs_tree_read_lock(eb);
a26e8c9f 254
2ac55d41 255 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 256 &cached_state);
0b32f4bb 257 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
258 btrfs_header_generation(eb) == parent_transid) {
259 ret = 0;
260 goto out;
261 }
94647322
DS
262 btrfs_err_rl(eb->fs_info,
263 "parent transid verify failed on %llu wanted %llu found %llu",
264 eb->start,
29549aec 265 parent_transid, btrfs_header_generation(eb));
1259ab75 266 ret = 1;
a26e8c9f
JB
267
268 /*
269 * Things reading via commit roots that don't have normal protection,
270 * like send, can have a really old block in cache that may point at a
01327610 271 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
272 * if we find an eb that is under IO (dirty/writeback) because we could
273 * end up reading in the stale data and then writing it back out and
274 * making everybody very sad.
275 */
276 if (!extent_buffer_under_io(eb))
277 clear_extent_buffer_uptodate(eb);
33958dc6 278out:
2ac55d41 279 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 280 &cached_state);
472b909f 281 if (need_lock)
ac5887c8 282 btrfs_tree_read_unlock(eb);
1259ab75 283 return ret;
1259ab75
CM
284}
285
e7e16f48
JT
286static bool btrfs_supported_super_csum(u16 csum_type)
287{
288 switch (csum_type) {
289 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 290 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 291 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 292 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
293 return true;
294 default:
295 return false;
296 }
297}
298
1104a885
DS
299/*
300 * Return 0 if the superblock checksum type matches the checksum value of that
301 * algorithm. Pass the raw disk superblock data.
302 */
ab8d0fc4
JM
303static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
304 char *raw_disk_sb)
1104a885
DS
305{
306 struct btrfs_super_block *disk_sb =
307 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 308 char result[BTRFS_CSUM_SIZE];
d5178578
JT
309 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
310
311 shash->tfm = fs_info->csum_shash;
1104a885 312
51bce6c9
JT
313 /*
314 * The super_block structure does not span the whole
315 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
316 * filled with zeros and is included in the checksum.
317 */
fd08001f
EB
318 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
319 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 320
55fc29be 321 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 322 return 1;
1104a885 323
e7e16f48 324 return 0;
1104a885
DS
325}
326
e064d5e9 327int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 328 struct btrfs_key *first_key, u64 parent_transid)
581c1760 329{
e064d5e9 330 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
331 int found_level;
332 struct btrfs_key found_key;
333 int ret;
334
335 found_level = btrfs_header_level(eb);
336 if (found_level != level) {
63489055
QW
337 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
338 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
339 btrfs_err(fs_info,
340"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
341 eb->start, level, found_level);
581c1760
QW
342 return -EIO;
343 }
344
345 if (!first_key)
346 return 0;
347
5d41be6f
QW
348 /*
349 * For live tree block (new tree blocks in current transaction),
350 * we need proper lock context to avoid race, which is impossible here.
351 * So we only checks tree blocks which is read from disk, whose
352 * generation <= fs_info->last_trans_committed.
353 */
354 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
355 return 0;
62fdaa52
QW
356
357 /* We have @first_key, so this @eb must have at least one item */
358 if (btrfs_header_nritems(eb) == 0) {
359 btrfs_err(fs_info,
360 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
361 eb->start);
362 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
363 return -EUCLEAN;
364 }
365
581c1760
QW
366 if (found_level)
367 btrfs_node_key_to_cpu(eb, &found_key, 0);
368 else
369 btrfs_item_key_to_cpu(eb, &found_key, 0);
370 ret = btrfs_comp_cpu_keys(first_key, &found_key);
371
581c1760 372 if (ret) {
63489055
QW
373 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
374 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 375 btrfs_err(fs_info,
ff76a864
LB
376"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
377 eb->start, parent_transid, first_key->objectid,
378 first_key->type, first_key->offset,
379 found_key.objectid, found_key.type,
380 found_key.offset);
581c1760 381 }
581c1760
QW
382 return ret;
383}
384
d352ac68
CM
385/*
386 * helper to read a given tree block, doing retries as required when
387 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
388 *
389 * @parent_transid: expected transid, skip check if 0
390 * @level: expected level, mandatory check
391 * @first_key: expected key of first slot, skip check if NULL
d352ac68 392 */
5ab12d1f 393static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
394 u64 parent_transid, int level,
395 struct btrfs_key *first_key)
f188591e 396{
5ab12d1f 397 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 398 struct extent_io_tree *io_tree;
ea466794 399 int failed = 0;
f188591e
CM
400 int ret;
401 int num_copies = 0;
402 int mirror_num = 0;
ea466794 403 int failed_mirror = 0;
f188591e 404
0b246afa 405 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 406 while (1) {
f8397d69 407 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 408 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 409 if (!ret) {
581c1760 410 if (verify_parent_transid(io_tree, eb,
b9fab919 411 parent_transid, 0))
256dd1bb 412 ret = -EIO;
e064d5e9 413 else if (btrfs_verify_level_key(eb, level,
448de471 414 first_key, parent_transid))
581c1760
QW
415 ret = -EUCLEAN;
416 else
417 break;
256dd1bb 418 }
d397712b 419
0b246afa 420 num_copies = btrfs_num_copies(fs_info,
f188591e 421 eb->start, eb->len);
4235298e 422 if (num_copies == 1)
ea466794 423 break;
4235298e 424
5cf1ab56
JB
425 if (!failed_mirror) {
426 failed = 1;
427 failed_mirror = eb->read_mirror;
428 }
429
f188591e 430 mirror_num++;
ea466794
JB
431 if (mirror_num == failed_mirror)
432 mirror_num++;
433
4235298e 434 if (mirror_num > num_copies)
ea466794 435 break;
f188591e 436 }
ea466794 437
c0901581 438 if (failed && !ret && failed_mirror)
20a1fbf9 439 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
440
441 return ret;
f188591e 442}
19c00ddc 443
d352ac68 444/*
ac303b69
QW
445 * Checksum a dirty tree block before IO. This has extra checks to make sure
446 * we only fill in the checksum field in the first page of a multi-page block.
447 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 448 */
ac303b69 449static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 450{
ac303b69 451 struct page *page = bvec->bv_page;
4eee4fa4 452 u64 start = page_offset(page);
19c00ddc 453 u64 found_start;
2996e1f8 454 u8 result[BTRFS_CSUM_SIZE];
19c00ddc 455 struct extent_buffer *eb;
8d47a0d8 456 int ret;
f188591e 457
4f2de97a
JB
458 eb = (struct extent_buffer *)page->private;
459 if (page != eb->pages[0])
460 return 0;
0f805531 461
19c00ddc 462 found_start = btrfs_header_bytenr(eb);
d3575156
NA
463
464 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
465 WARN_ON(found_start != 0);
466 return 0;
467 }
468
0f805531
AL
469 /*
470 * Please do not consolidate these warnings into a single if.
471 * It is useful to know what went wrong.
472 */
473 if (WARN_ON(found_start != start))
474 return -EUCLEAN;
475 if (WARN_ON(!PageUptodate(page)))
476 return -EUCLEAN;
477
de37aa51 478 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
479 offsetof(struct btrfs_header, fsid),
480 BTRFS_FSID_SIZE) == 0);
0f805531 481
c67b3892 482 csum_tree_block(eb, result);
2996e1f8 483
8d47a0d8
QW
484 if (btrfs_header_level(eb))
485 ret = btrfs_check_node(eb);
486 else
487 ret = btrfs_check_leaf_full(eb);
488
489 if (ret < 0) {
c06631b0 490 btrfs_print_tree(eb, 0);
8d47a0d8
QW
491 btrfs_err(fs_info,
492 "block=%llu write time tree block corruption detected",
493 eb->start);
c06631b0 494 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
495 return ret;
496 }
713cebfb 497 write_extent_buffer(eb, result, 0, fs_info->csum_size);
8d47a0d8 498
2996e1f8 499 return 0;
19c00ddc
CM
500}
501
b0c9b3b0 502static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 503{
b0c9b3b0 504 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 505 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 506 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 507 u8 *metadata_uuid;
2b82032c 508
9a8658e3
DS
509 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
510 BTRFS_FSID_SIZE);
944d3f9f
NB
511 /*
512 * Checking the incompat flag is only valid for the current fs. For
513 * seed devices it's forbidden to have their uuid changed so reading
514 * ->fsid in this case is fine
515 */
516 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
517 metadata_uuid = fs_devices->metadata_uuid;
518 else
519 metadata_uuid = fs_devices->fsid;
520
521 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
522 return 0;
523
524 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
525 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
526 return 0;
527
528 return 1;
2b82032c
YZ
529}
530
77bf40a2
QW
531/* Do basic extent buffer checks at read time */
532static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 533{
77bf40a2 534 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 535 u64 found_start;
77bf40a2
QW
536 const u32 csum_size = fs_info->csum_size;
537 u8 found_level;
2996e1f8 538 u8 result[BTRFS_CSUM_SIZE];
77bf40a2 539 int ret = 0;
ea466794 540
ce9adaa5 541 found_start = btrfs_header_bytenr(eb);
727011e0 542 if (found_start != eb->start) {
893bf4b1
SY
543 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
544 eb->start, found_start);
f188591e 545 ret = -EIO;
77bf40a2 546 goto out;
ce9adaa5 547 }
b0c9b3b0 548 if (check_tree_block_fsid(eb)) {
02873e43
ZL
549 btrfs_err_rl(fs_info, "bad fsid on block %llu",
550 eb->start);
1259ab75 551 ret = -EIO;
77bf40a2 552 goto out;
1259ab75 553 }
ce9adaa5 554 found_level = btrfs_header_level(eb);
1c24c3ce 555 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
556 btrfs_err(fs_info, "bad tree block level %d on %llu",
557 (int)btrfs_header_level(eb), eb->start);
1c24c3ce 558 ret = -EIO;
77bf40a2 559 goto out;
1c24c3ce 560 }
ce9adaa5 561
c67b3892 562 csum_tree_block(eb, result);
a826d6dc 563
2996e1f8 564 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
35be8851 565 u8 val[BTRFS_CSUM_SIZE] = { 0 };
2996e1f8
JT
566
567 read_extent_buffer(eb, &val, 0, csum_size);
568 btrfs_warn_rl(fs_info,
35be8851 569 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
2996e1f8 570 fs_info->sb->s_id, eb->start,
35be8851
JT
571 CSUM_FMT_VALUE(csum_size, val),
572 CSUM_FMT_VALUE(csum_size, result),
573 btrfs_header_level(eb));
2996e1f8 574 ret = -EUCLEAN;
77bf40a2 575 goto out;
2996e1f8
JT
576 }
577
a826d6dc
JB
578 /*
579 * If this is a leaf block and it is corrupt, set the corrupt bit so
580 * that we don't try and read the other copies of this block, just
581 * return -EIO.
582 */
1c4360ee 583 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
584 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
585 ret = -EIO;
586 }
ce9adaa5 587
813fd1dc 588 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
589 ret = -EIO;
590
0b32f4bb
JB
591 if (!ret)
592 set_extent_buffer_uptodate(eb);
75391f0d
QW
593 else
594 btrfs_err(fs_info,
595 "block=%llu read time tree block corruption detected",
596 eb->start);
77bf40a2
QW
597out:
598 return ret;
599}
600
371cdc07
QW
601static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
602 int mirror)
603{
604 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
605 struct extent_buffer *eb;
606 bool reads_done;
607 int ret = 0;
608
609 /*
610 * We don't allow bio merge for subpage metadata read, so we should
611 * only get one eb for each endio hook.
612 */
613 ASSERT(end == start + fs_info->nodesize - 1);
614 ASSERT(PagePrivate(page));
615
616 eb = find_extent_buffer(fs_info, start);
617 /*
618 * When we are reading one tree block, eb must have been inserted into
619 * the radix tree. If not, something is wrong.
620 */
621 ASSERT(eb);
622
623 reads_done = atomic_dec_and_test(&eb->io_pages);
624 /* Subpage read must finish in page read */
625 ASSERT(reads_done);
626
627 eb->read_mirror = mirror;
628 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
629 ret = -EIO;
630 goto err;
631 }
632 ret = validate_extent_buffer(eb);
633 if (ret < 0)
634 goto err;
635
636 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
637 btree_readahead_hook(eb, ret);
638
639 set_extent_buffer_uptodate(eb);
640
641 free_extent_buffer(eb);
642 return ret;
643err:
644 /*
645 * end_bio_extent_readpage decrements io_pages in case of error,
646 * make sure it has something to decrement.
647 */
648 atomic_inc(&eb->io_pages);
649 clear_extent_buffer_uptodate(eb);
650 free_extent_buffer(eb);
651 return ret;
652}
653
8e1dc982 654int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
77bf40a2
QW
655 struct page *page, u64 start, u64 end,
656 int mirror)
657{
658 struct extent_buffer *eb;
659 int ret = 0;
660 int reads_done;
661
662 ASSERT(page->private);
371cdc07
QW
663
664 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
665 return validate_subpage_buffer(page, start, end, mirror);
666
77bf40a2
QW
667 eb = (struct extent_buffer *)page->private;
668
669 /*
670 * The pending IO might have been the only thing that kept this buffer
671 * in memory. Make sure we have a ref for all this other checks
672 */
673 atomic_inc(&eb->refs);
674
675 reads_done = atomic_dec_and_test(&eb->io_pages);
676 if (!reads_done)
677 goto err;
678
679 eb->read_mirror = mirror;
680 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
681 ret = -EIO;
682 goto err;
683 }
684 ret = validate_extent_buffer(eb);
ce9adaa5 685err:
79fb65a1
JB
686 if (reads_done &&
687 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 688 btree_readahead_hook(eb, ret);
4bb31e92 689
53b381b3
DW
690 if (ret) {
691 /*
692 * our io error hook is going to dec the io pages
693 * again, we have to make sure it has something
694 * to decrement
695 */
696 atomic_inc(&eb->io_pages);
0b32f4bb 697 clear_extent_buffer_uptodate(eb);
53b381b3 698 }
0b32f4bb 699 free_extent_buffer(eb);
77bf40a2 700
f188591e 701 return ret;
ce9adaa5
CM
702}
703
4246a0b6 704static void end_workqueue_bio(struct bio *bio)
ce9adaa5 705{
97eb6b69 706 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 707 struct btrfs_fs_info *fs_info;
9e0af237 708 struct btrfs_workqueue *wq;
ce9adaa5 709
ce9adaa5 710 fs_info = end_io_wq->info;
4e4cbee9 711 end_io_wq->status = bio->bi_status;
d20f7043 712
cfe94440 713 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
a0cac0ec 714 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 715 wq = fs_info->endio_meta_write_workers;
a0cac0ec 716 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 717 wq = fs_info->endio_freespace_worker;
a0cac0ec 718 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 719 wq = fs_info->endio_raid56_workers;
a0cac0ec 720 else
9e0af237 721 wq = fs_info->endio_write_workers;
d20f7043 722 } else {
5c047a69 723 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 724 wq = fs_info->endio_raid56_workers;
a0cac0ec 725 else if (end_io_wq->metadata)
9e0af237 726 wq = fs_info->endio_meta_workers;
a0cac0ec 727 else
9e0af237 728 wq = fs_info->endio_workers;
d20f7043 729 }
9e0af237 730
a0cac0ec 731 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 732 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
733}
734
4e4cbee9 735blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 736 enum btrfs_wq_endio_type metadata)
0b86a832 737{
97eb6b69 738 struct btrfs_end_io_wq *end_io_wq;
8b110e39 739
97eb6b69 740 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 741 if (!end_io_wq)
4e4cbee9 742 return BLK_STS_RESOURCE;
ce9adaa5
CM
743
744 end_io_wq->private = bio->bi_private;
745 end_io_wq->end_io = bio->bi_end_io;
22c59948 746 end_io_wq->info = info;
4e4cbee9 747 end_io_wq->status = 0;
ce9adaa5 748 end_io_wq->bio = bio;
22c59948 749 end_io_wq->metadata = metadata;
ce9adaa5
CM
750
751 bio->bi_private = end_io_wq;
752 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
753 return 0;
754}
755
4a69a410
CM
756static void run_one_async_start(struct btrfs_work *work)
757{
4a69a410 758 struct async_submit_bio *async;
4e4cbee9 759 blk_status_t ret;
4a69a410
CM
760
761 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
762 ret = async->submit_bio_start(async->inode, async->bio,
763 async->dio_file_offset);
79787eaa 764 if (ret)
4e4cbee9 765 async->status = ret;
4a69a410
CM
766}
767
06ea01b1
DS
768/*
769 * In order to insert checksums into the metadata in large chunks, we wait
770 * until bio submission time. All the pages in the bio are checksummed and
771 * sums are attached onto the ordered extent record.
772 *
773 * At IO completion time the csums attached on the ordered extent record are
774 * inserted into the tree.
775 */
4a69a410 776static void run_one_async_done(struct btrfs_work *work)
8b712842 777{
8b712842 778 struct async_submit_bio *async;
06ea01b1
DS
779 struct inode *inode;
780 blk_status_t ret;
8b712842
CM
781
782 async = container_of(work, struct async_submit_bio, work);
8896a08d 783 inode = async->inode;
4854ddd0 784
bb7ab3b9 785 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
786 if (async->status) {
787 async->bio->bi_status = async->status;
4246a0b6 788 bio_endio(async->bio);
79787eaa
JM
789 return;
790 }
791
ec39f769
CM
792 /*
793 * All of the bios that pass through here are from async helpers.
794 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
795 * This changes nothing when cgroups aren't in use.
796 */
797 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 798 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
799 if (ret) {
800 async->bio->bi_status = ret;
801 bio_endio(async->bio);
802 }
4a69a410
CM
803}
804
805static void run_one_async_free(struct btrfs_work *work)
806{
807 struct async_submit_bio *async;
808
809 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
810 kfree(async);
811}
812
8896a08d 813blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
8c27cb35 814 int mirror_num, unsigned long bio_flags,
1941b64b 815 u64 dio_file_offset,
e288c080 816 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 817{
8896a08d 818 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
819 struct async_submit_bio *async;
820
821 async = kmalloc(sizeof(*async), GFP_NOFS);
822 if (!async)
4e4cbee9 823 return BLK_STS_RESOURCE;
44b8bd7e 824
8896a08d 825 async->inode = inode;
44b8bd7e
CM
826 async->bio = bio;
827 async->mirror_num = mirror_num;
4a69a410 828 async->submit_bio_start = submit_bio_start;
4a69a410 829
a0cac0ec
OS
830 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
831 run_one_async_free);
4a69a410 832
1941b64b 833 async->dio_file_offset = dio_file_offset;
8c8bee1d 834
4e4cbee9 835 async->status = 0;
79787eaa 836
67f055c7 837 if (op_is_sync(bio->bi_opf))
5cdc7ad3 838 btrfs_set_work_high_priority(&async->work);
d313d7a3 839
5cdc7ad3 840 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
841 return 0;
842}
843
4e4cbee9 844static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 845{
2c30c71b 846 struct bio_vec *bvec;
ce3ed71a 847 struct btrfs_root *root;
2b070cfe 848 int ret = 0;
6dc4f100 849 struct bvec_iter_all iter_all;
ce3ed71a 850
c09abff8 851 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 852 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 853 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 854 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
855 if (ret)
856 break;
ce3ed71a 857 }
2c30c71b 858
4e4cbee9 859 return errno_to_blk_status(ret);
ce3ed71a
CM
860}
861
8896a08d 862static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 863 u64 dio_file_offset)
22c59948 864{
8b712842
CM
865 /*
866 * when we're called for a write, we're already in the async
5443be45 867 * submission context. Just jump into btrfs_map_bio
8b712842 868 */
79787eaa 869 return btree_csum_one_bio(bio);
4a69a410 870}
22c59948 871
9b4e675a
DS
872static int check_async_write(struct btrfs_fs_info *fs_info,
873 struct btrfs_inode *bi)
de0022b9 874{
4eef29ef
NA
875 if (btrfs_is_zoned(fs_info))
876 return 0;
6300463b
LB
877 if (atomic_read(&bi->sync_writers))
878 return 0;
9b4e675a 879 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 880 return 0;
de0022b9
JB
881 return 1;
882}
883
1b36294a
NB
884blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
885 int mirror_num, unsigned long bio_flags)
44b8bd7e 886{
0b246afa 887 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 888 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 889 blk_status_t ret;
cad321ad 890
cfe94440 891 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
4a69a410
CM
892 /*
893 * called for a read, do the setup so that checksum validation
894 * can happen in the async kernel threads
895 */
0b246afa
JM
896 ret = btrfs_bio_wq_end_io(fs_info, bio,
897 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 898 if (ret)
61891923 899 goto out_w_error;
08635bae 900 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
901 } else if (!async) {
902 ret = btree_csum_one_bio(bio);
903 if (ret)
61891923 904 goto out_w_error;
08635bae 905 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
906 } else {
907 /*
908 * kthread helpers are used to submit writes so that
909 * checksumming can happen in parallel across all CPUs
910 */
8896a08d
QW
911 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
912 0, btree_submit_bio_start);
44b8bd7e 913 }
d313d7a3 914
4246a0b6
CH
915 if (ret)
916 goto out_w_error;
917 return 0;
918
61891923 919out_w_error:
4e4cbee9 920 bio->bi_status = ret;
4246a0b6 921 bio_endio(bio);
61891923 922 return ret;
44b8bd7e
CM
923}
924
3dd1462e 925#ifdef CONFIG_MIGRATION
784b4e29 926static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
927 struct page *newpage, struct page *page,
928 enum migrate_mode mode)
784b4e29
CM
929{
930 /*
931 * we can't safely write a btree page from here,
932 * we haven't done the locking hook
933 */
934 if (PageDirty(page))
935 return -EAGAIN;
936 /*
937 * Buffers may be managed in a filesystem specific way.
938 * We must have no buffers or drop them.
939 */
940 if (page_has_private(page) &&
941 !try_to_release_page(page, GFP_KERNEL))
942 return -EAGAIN;
a6bc32b8 943 return migrate_page(mapping, newpage, page, mode);
784b4e29 944}
3dd1462e 945#endif
784b4e29 946
0da5468f
CM
947
948static int btree_writepages(struct address_space *mapping,
949 struct writeback_control *wbc)
950{
e2d84521
MX
951 struct btrfs_fs_info *fs_info;
952 int ret;
953
d8d5f3e1 954 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
955
956 if (wbc->for_kupdate)
957 return 0;
958
e2d84521 959 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 960 /* this is a bit racy, but that's ok */
d814a491
EL
961 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
962 BTRFS_DIRTY_METADATA_THRESH,
963 fs_info->dirty_metadata_batch);
e2d84521 964 if (ret < 0)
793955bc 965 return 0;
793955bc 966 }
0b32f4bb 967 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
968}
969
70dec807 970static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 971{
98509cfc 972 if (PageWriteback(page) || PageDirty(page))
d397712b 973 return 0;
0c4e538b 974
f7a52a40 975 return try_release_extent_buffer(page);
d98237b3
CM
976}
977
d47992f8
LC
978static void btree_invalidatepage(struct page *page, unsigned int offset,
979 unsigned int length)
d98237b3 980{
d1310b2e
CM
981 struct extent_io_tree *tree;
982 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
983 extent_invalidatepage(tree, page, offset);
984 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 985 if (PagePrivate(page)) {
efe120a0
FH
986 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
987 "page private not zero on page %llu",
988 (unsigned long long)page_offset(page));
d1b89bc0 989 detach_page_private(page);
9ad6b7bc 990 }
d98237b3
CM
991}
992
0b32f4bb
JB
993static int btree_set_page_dirty(struct page *page)
994{
bb146eb2 995#ifdef DEBUG
139e8cd3
QW
996 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
997 struct btrfs_subpage *subpage;
0b32f4bb 998 struct extent_buffer *eb;
139e8cd3
QW
999 int cur_bit = 0;
1000 u64 page_start = page_offset(page);
1001
1002 if (fs_info->sectorsize == PAGE_SIZE) {
1003 BUG_ON(!PagePrivate(page));
1004 eb = (struct extent_buffer *)page->private;
1005 BUG_ON(!eb);
1006 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1007 BUG_ON(!atomic_read(&eb->refs));
1008 btrfs_assert_tree_locked(eb);
1009 return __set_page_dirty_nobuffers(page);
1010 }
1011 ASSERT(PagePrivate(page) && page->private);
1012 subpage = (struct btrfs_subpage *)page->private;
1013
1014 ASSERT(subpage->dirty_bitmap);
1015 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1016 unsigned long flags;
1017 u64 cur;
1018 u16 tmp = (1 << cur_bit);
1019
1020 spin_lock_irqsave(&subpage->lock, flags);
1021 if (!(tmp & subpage->dirty_bitmap)) {
1022 spin_unlock_irqrestore(&subpage->lock, flags);
1023 cur_bit++;
1024 continue;
1025 }
1026 spin_unlock_irqrestore(&subpage->lock, flags);
1027 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 1028
139e8cd3
QW
1029 eb = find_extent_buffer(fs_info, cur);
1030 ASSERT(eb);
1031 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1032 ASSERT(atomic_read(&eb->refs));
1033 btrfs_assert_tree_locked(eb);
1034 free_extent_buffer(eb);
1035
1036 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1037 }
bb146eb2 1038#endif
0b32f4bb
JB
1039 return __set_page_dirty_nobuffers(page);
1040}
1041
7f09410b 1042static const struct address_space_operations btree_aops = {
0da5468f 1043 .writepages = btree_writepages,
5f39d397
CM
1044 .releasepage = btree_releasepage,
1045 .invalidatepage = btree_invalidatepage,
5a92bc88 1046#ifdef CONFIG_MIGRATION
784b4e29 1047 .migratepage = btree_migratepage,
5a92bc88 1048#endif
0b32f4bb 1049 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1050};
1051
2ff7e61e
JM
1052struct extent_buffer *btrfs_find_create_tree_block(
1053 struct btrfs_fs_info *fs_info,
3fbaf258
JB
1054 u64 bytenr, u64 owner_root,
1055 int level)
0999df54 1056{
0b246afa
JM
1057 if (btrfs_is_testing(fs_info))
1058 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 1059 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
1060}
1061
581c1760
QW
1062/*
1063 * Read tree block at logical address @bytenr and do variant basic but critical
1064 * verification.
1065 *
1b7ec85e 1066 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
1067 * @parent_transid: expected transid of this tree block, skip check if 0
1068 * @level: expected level, mandatory check
1069 * @first_key: expected key in slot 0, skip check if NULL
1070 */
2ff7e61e 1071struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
1072 u64 owner_root, u64 parent_transid,
1073 int level, struct btrfs_key *first_key)
0999df54
CM
1074{
1075 struct extent_buffer *buf = NULL;
0999df54
CM
1076 int ret;
1077
3fbaf258 1078 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
1079 if (IS_ERR(buf))
1080 return buf;
0999df54 1081
5ab12d1f 1082 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1083 level, first_key);
0f0fe8f7 1084 if (ret) {
537f38f0 1085 free_extent_buffer_stale(buf);
64c043de 1086 return ERR_PTR(ret);
0f0fe8f7 1087 }
5f39d397 1088 return buf;
ce9adaa5 1089
eb60ceac
CM
1090}
1091
6a884d7d 1092void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1093{
6a884d7d 1094 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1095 if (btrfs_header_generation(buf) ==
e2d84521 1096 fs_info->running_transaction->transid) {
b9447ef8 1097 btrfs_assert_tree_locked(buf);
b4ce94de 1098
b9473439 1099 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1100 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1101 -buf->len,
1102 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1103 clear_extent_buffer_dirty(buf);
1104 }
925baedd 1105 }
5f39d397
CM
1106}
1107
da17066c 1108static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1109 u64 objectid)
d97e63b6 1110{
7c0260ee 1111 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1112 root->fs_info = fs_info;
cfaa7295 1113 root->node = NULL;
a28ec197 1114 root->commit_root = NULL;
27cdeb70 1115 root->state = 0;
d68fc57b 1116 root->orphan_cleanup_state = 0;
0b86a832 1117
0f7d52f4 1118 root->last_trans = 0;
6b8fad57 1119 root->free_objectid = 0;
eb73c1b7 1120 root->nr_delalloc_inodes = 0;
199c2a9c 1121 root->nr_ordered_extents = 0;
6bef4d31 1122 root->inode_tree = RB_ROOT;
16cdcec7 1123 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1124 root->block_rsv = NULL;
0b86a832
CM
1125
1126 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1127 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1128 INIT_LIST_HEAD(&root->delalloc_inodes);
1129 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1130 INIT_LIST_HEAD(&root->ordered_extents);
1131 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1132 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1133 INIT_LIST_HEAD(&root->logged_list[0]);
1134 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1135 spin_lock_init(&root->inode_lock);
eb73c1b7 1136 spin_lock_init(&root->delalloc_lock);
199c2a9c 1137 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1138 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1139 spin_lock_init(&root->log_extents_lock[0]);
1140 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1141 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1142 mutex_init(&root->objectid_mutex);
e02119d5 1143 mutex_init(&root->log_mutex);
31f3d255 1144 mutex_init(&root->ordered_extent_mutex);
573bfb72 1145 mutex_init(&root->delalloc_mutex);
c53e9653 1146 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1147 init_waitqueue_head(&root->log_writer_wait);
1148 init_waitqueue_head(&root->log_commit_wait[0]);
1149 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1150 INIT_LIST_HEAD(&root->log_ctxs[0]);
1151 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1152 atomic_set(&root->log_commit[0], 0);
1153 atomic_set(&root->log_commit[1], 0);
1154 atomic_set(&root->log_writers, 0);
2ecb7923 1155 atomic_set(&root->log_batch, 0);
0700cea7 1156 refcount_set(&root->refs, 1);
8ecebf4d 1157 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1158 atomic_set(&root->nr_swapfiles, 0);
7237f183 1159 root->log_transid = 0;
d1433deb 1160 root->log_transid_committed = -1;
257c62e1 1161 root->last_log_commit = 0;
e289f03e 1162 if (!dummy) {
43eb5f29
QW
1163 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1164 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1165 extent_io_tree_init(fs_info, &root->log_csum_range,
1166 IO_TREE_LOG_CSUM_RANGE, NULL);
1167 }
017e5369 1168
3768f368
CM
1169 memset(&root->root_key, 0, sizeof(root->root_key));
1170 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1171 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1172 root->root_key.objectid = objectid;
0ee5dc67 1173 root->anon_dev = 0;
8ea05e3a 1174
5f3ab90a 1175 spin_lock_init(&root->root_item_lock);
370a11b8 1176 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1177#ifdef CONFIG_BTRFS_DEBUG
1178 INIT_LIST_HEAD(&root->leak_list);
1179 spin_lock(&fs_info->fs_roots_radix_lock);
1180 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1181 spin_unlock(&fs_info->fs_roots_radix_lock);
1182#endif
3768f368
CM
1183}
1184
74e4d827 1185static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1186 u64 objectid, gfp_t flags)
6f07e42e 1187{
74e4d827 1188 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1189 if (root)
96dfcb46 1190 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1191 return root;
1192}
1193
06ea65a3
JB
1194#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1195/* Should only be used by the testing infrastructure */
da17066c 1196struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1197{
1198 struct btrfs_root *root;
1199
7c0260ee
JM
1200 if (!fs_info)
1201 return ERR_PTR(-EINVAL);
1202
96dfcb46 1203 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1204 if (!root)
1205 return ERR_PTR(-ENOMEM);
da17066c 1206
b9ef22de 1207 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1208 root->alloc_bytenr = 0;
06ea65a3
JB
1209
1210 return root;
1211}
1212#endif
1213
20897f5c 1214struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1215 u64 objectid)
1216{
9b7a2440 1217 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1218 struct extent_buffer *leaf;
1219 struct btrfs_root *tree_root = fs_info->tree_root;
1220 struct btrfs_root *root;
1221 struct btrfs_key key;
b89f6d1f 1222 unsigned int nofs_flag;
20897f5c 1223 int ret = 0;
20897f5c 1224
b89f6d1f
FM
1225 /*
1226 * We're holding a transaction handle, so use a NOFS memory allocation
1227 * context to avoid deadlock if reclaim happens.
1228 */
1229 nofs_flag = memalloc_nofs_save();
96dfcb46 1230 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1231 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1232 if (!root)
1233 return ERR_PTR(-ENOMEM);
1234
20897f5c
AJ
1235 root->root_key.objectid = objectid;
1236 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1237 root->root_key.offset = 0;
1238
9631e4cc
JB
1239 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1240 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1241 if (IS_ERR(leaf)) {
1242 ret = PTR_ERR(leaf);
1dd05682 1243 leaf = NULL;
8a6a87cd 1244 goto fail_unlock;
20897f5c
AJ
1245 }
1246
20897f5c 1247 root->node = leaf;
20897f5c
AJ
1248 btrfs_mark_buffer_dirty(leaf);
1249
1250 root->commit_root = btrfs_root_node(root);
27cdeb70 1251 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1252
f944d2cb
DS
1253 btrfs_set_root_flags(&root->root_item, 0);
1254 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1255 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1256 btrfs_set_root_generation(&root->root_item, trans->transid);
1257 btrfs_set_root_level(&root->root_item, 0);
1258 btrfs_set_root_refs(&root->root_item, 1);
1259 btrfs_set_root_used(&root->root_item, leaf->len);
1260 btrfs_set_root_last_snapshot(&root->root_item, 0);
1261 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1262 if (is_fstree(objectid))
807fc790
AS
1263 generate_random_guid(root->root_item.uuid);
1264 else
1265 export_guid(root->root_item.uuid, &guid_null);
c8422684 1266 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1267
8a6a87cd
BB
1268 btrfs_tree_unlock(leaf);
1269
20897f5c
AJ
1270 key.objectid = objectid;
1271 key.type = BTRFS_ROOT_ITEM_KEY;
1272 key.offset = 0;
1273 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1274 if (ret)
1275 goto fail;
1276
1dd05682
TI
1277 return root;
1278
8a6a87cd 1279fail_unlock:
8c38938c 1280 if (leaf)
1dd05682 1281 btrfs_tree_unlock(leaf);
8a6a87cd 1282fail:
00246528 1283 btrfs_put_root(root);
20897f5c 1284
1dd05682 1285 return ERR_PTR(ret);
20897f5c
AJ
1286}
1287
7237f183
YZ
1288static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1289 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1290{
1291 struct btrfs_root *root;
e02119d5 1292
96dfcb46 1293 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1294 if (!root)
7237f183 1295 return ERR_PTR(-ENOMEM);
e02119d5 1296
e02119d5
CM
1297 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1298 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1299 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1300
6ab6ebb7
NA
1301 return root;
1302}
1303
1304int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1305 struct btrfs_root *root)
1306{
1307 struct extent_buffer *leaf;
1308
7237f183 1309 /*
92a7cc42 1310 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1311 *
92a7cc42
QW
1312 * Log trees are not exposed to user space thus can't be snapshotted,
1313 * and they go away before a real commit is actually done.
1314 *
1315 * They do store pointers to file data extents, and those reference
1316 * counts still get updated (along with back refs to the log tree).
7237f183 1317 */
e02119d5 1318
4d75f8a9 1319 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1320 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1321 if (IS_ERR(leaf))
1322 return PTR_ERR(leaf);
e02119d5 1323
7237f183 1324 root->node = leaf;
e02119d5 1325
e02119d5
CM
1326 btrfs_mark_buffer_dirty(root->node);
1327 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1328
1329 return 0;
7237f183
YZ
1330}
1331
1332int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1333 struct btrfs_fs_info *fs_info)
1334{
1335 struct btrfs_root *log_root;
1336
1337 log_root = alloc_log_tree(trans, fs_info);
1338 if (IS_ERR(log_root))
1339 return PTR_ERR(log_root);
6ab6ebb7 1340
3ddebf27
NA
1341 if (!btrfs_is_zoned(fs_info)) {
1342 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1343
1344 if (ret) {
1345 btrfs_put_root(log_root);
1346 return ret;
1347 }
6ab6ebb7
NA
1348 }
1349
7237f183
YZ
1350 WARN_ON(fs_info->log_root_tree);
1351 fs_info->log_root_tree = log_root;
1352 return 0;
1353}
1354
1355int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1356 struct btrfs_root *root)
1357{
0b246afa 1358 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1359 struct btrfs_root *log_root;
1360 struct btrfs_inode_item *inode_item;
6ab6ebb7 1361 int ret;
7237f183 1362
0b246afa 1363 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1364 if (IS_ERR(log_root))
1365 return PTR_ERR(log_root);
1366
6ab6ebb7
NA
1367 ret = btrfs_alloc_log_tree_node(trans, log_root);
1368 if (ret) {
1369 btrfs_put_root(log_root);
1370 return ret;
1371 }
1372
7237f183
YZ
1373 log_root->last_trans = trans->transid;
1374 log_root->root_key.offset = root->root_key.objectid;
1375
1376 inode_item = &log_root->root_item.inode;
3cae210f
QW
1377 btrfs_set_stack_inode_generation(inode_item, 1);
1378 btrfs_set_stack_inode_size(inode_item, 3);
1379 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1380 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1381 fs_info->nodesize);
3cae210f 1382 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1383
5d4f98a2 1384 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1385
1386 WARN_ON(root->log_root);
1387 root->log_root = log_root;
1388 root->log_transid = 0;
d1433deb 1389 root->log_transid_committed = -1;
257c62e1 1390 root->last_log_commit = 0;
e02119d5
CM
1391 return 0;
1392}
1393
49d11bea
JB
1394static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1395 struct btrfs_path *path,
1396 struct btrfs_key *key)
e02119d5
CM
1397{
1398 struct btrfs_root *root;
1399 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1400 u64 generation;
cb517eab 1401 int ret;
581c1760 1402 int level;
0f7d52f4 1403
96dfcb46 1404 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1405 if (!root)
1406 return ERR_PTR(-ENOMEM);
0f7d52f4 1407
cb517eab
MX
1408 ret = btrfs_find_root(tree_root, key, path,
1409 &root->root_item, &root->root_key);
0f7d52f4 1410 if (ret) {
13a8a7c8
YZ
1411 if (ret > 0)
1412 ret = -ENOENT;
49d11bea 1413 goto fail;
0f7d52f4 1414 }
13a8a7c8 1415
84234f3a 1416 generation = btrfs_root_generation(&root->root_item);
581c1760 1417 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1418 root->node = read_tree_block(fs_info,
1419 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1420 key->objectid, generation, level, NULL);
64c043de
LB
1421 if (IS_ERR(root->node)) {
1422 ret = PTR_ERR(root->node);
8c38938c 1423 root->node = NULL;
49d11bea 1424 goto fail;
cb517eab
MX
1425 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1426 ret = -EIO;
49d11bea 1427 goto fail;
416bc658 1428 }
5d4f98a2 1429 root->commit_root = btrfs_root_node(root);
cb517eab 1430 return root;
49d11bea 1431fail:
00246528 1432 btrfs_put_root(root);
49d11bea
JB
1433 return ERR_PTR(ret);
1434}
1435
1436struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1437 struct btrfs_key *key)
1438{
1439 struct btrfs_root *root;
1440 struct btrfs_path *path;
1441
1442 path = btrfs_alloc_path();
1443 if (!path)
1444 return ERR_PTR(-ENOMEM);
1445 root = read_tree_root_path(tree_root, path, key);
1446 btrfs_free_path(path);
1447
1448 return root;
cb517eab
MX
1449}
1450
2dfb1e43
QW
1451/*
1452 * Initialize subvolume root in-memory structure
1453 *
1454 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1455 */
1456static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1457{
1458 int ret;
dcc3eb96 1459 unsigned int nofs_flag;
cb517eab 1460
dcc3eb96
NB
1461 /*
1462 * We might be called under a transaction (e.g. indirect backref
1463 * resolution) which could deadlock if it triggers memory reclaim
1464 */
1465 nofs_flag = memalloc_nofs_save();
1466 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1467 memalloc_nofs_restore(nofs_flag);
1468 if (ret)
8257b2dc 1469 goto fail;
8257b2dc 1470
aeb935a4
QW
1471 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1472 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
92a7cc42 1473 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1474 btrfs_check_and_init_root_item(&root->root_item);
1475 }
1476
851fd730
QW
1477 /*
1478 * Don't assign anonymous block device to roots that are not exposed to
1479 * userspace, the id pool is limited to 1M
1480 */
1481 if (is_fstree(root->root_key.objectid) &&
1482 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1483 if (!anon_dev) {
1484 ret = get_anon_bdev(&root->anon_dev);
1485 if (ret)
1486 goto fail;
1487 } else {
1488 root->anon_dev = anon_dev;
1489 }
851fd730 1490 }
f32e48e9
CR
1491
1492 mutex_lock(&root->objectid_mutex);
453e4873 1493 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1494 if (ret) {
1495 mutex_unlock(&root->objectid_mutex);
876d2cf1 1496 goto fail;
f32e48e9
CR
1497 }
1498
6b8fad57 1499 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1500
1501 mutex_unlock(&root->objectid_mutex);
1502
cb517eab
MX
1503 return 0;
1504fail:
84db5ccf 1505 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1506 return ret;
1507}
1508
a98db0f3
JB
1509static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1510 u64 root_id)
cb517eab
MX
1511{
1512 struct btrfs_root *root;
1513
1514 spin_lock(&fs_info->fs_roots_radix_lock);
1515 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1516 (unsigned long)root_id);
bc44d7c4 1517 if (root)
00246528 1518 root = btrfs_grab_root(root);
cb517eab
MX
1519 spin_unlock(&fs_info->fs_roots_radix_lock);
1520 return root;
1521}
1522
49d11bea
JB
1523static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1524 u64 objectid)
1525{
1526 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1527 return btrfs_grab_root(fs_info->tree_root);
1528 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1529 return btrfs_grab_root(fs_info->extent_root);
1530 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1531 return btrfs_grab_root(fs_info->chunk_root);
1532 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1533 return btrfs_grab_root(fs_info->dev_root);
1534 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1535 return btrfs_grab_root(fs_info->csum_root);
1536 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1537 return btrfs_grab_root(fs_info->quota_root) ?
1538 fs_info->quota_root : ERR_PTR(-ENOENT);
1539 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1540 return btrfs_grab_root(fs_info->uuid_root) ?
1541 fs_info->uuid_root : ERR_PTR(-ENOENT);
1542 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1543 return btrfs_grab_root(fs_info->free_space_root) ?
1544 fs_info->free_space_root : ERR_PTR(-ENOENT);
1545 return NULL;
1546}
1547
cb517eab
MX
1548int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1549 struct btrfs_root *root)
1550{
1551 int ret;
1552
e1860a77 1553 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1554 if (ret)
1555 return ret;
1556
1557 spin_lock(&fs_info->fs_roots_radix_lock);
1558 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1559 (unsigned long)root->root_key.objectid,
1560 root);
af01d2e5 1561 if (ret == 0) {
00246528 1562 btrfs_grab_root(root);
27cdeb70 1563 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1564 }
cb517eab
MX
1565 spin_unlock(&fs_info->fs_roots_radix_lock);
1566 radix_tree_preload_end();
1567
1568 return ret;
1569}
1570
bd647ce3
JB
1571void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1572{
1573#ifdef CONFIG_BTRFS_DEBUG
1574 struct btrfs_root *root;
1575
1576 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1577 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1578
bd647ce3
JB
1579 root = list_first_entry(&fs_info->allocated_roots,
1580 struct btrfs_root, leak_list);
457f1864 1581 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1582 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1583 refcount_read(&root->refs));
1584 while (refcount_read(&root->refs) > 1)
00246528
JB
1585 btrfs_put_root(root);
1586 btrfs_put_root(root);
bd647ce3
JB
1587 }
1588#endif
1589}
1590
0d4b0463
JB
1591void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1592{
141386e1
JB
1593 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1594 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1595 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1596 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1597 btrfs_free_csum_hash(fs_info);
1598 btrfs_free_stripe_hash_table(fs_info);
1599 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1600 kfree(fs_info->balance_ctl);
1601 kfree(fs_info->delayed_root);
00246528
JB
1602 btrfs_put_root(fs_info->extent_root);
1603 btrfs_put_root(fs_info->tree_root);
1604 btrfs_put_root(fs_info->chunk_root);
1605 btrfs_put_root(fs_info->dev_root);
1606 btrfs_put_root(fs_info->csum_root);
1607 btrfs_put_root(fs_info->quota_root);
1608 btrfs_put_root(fs_info->uuid_root);
1609 btrfs_put_root(fs_info->free_space_root);
1610 btrfs_put_root(fs_info->fs_root);
aeb935a4 1611 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1612 btrfs_check_leaked_roots(fs_info);
3fd63727 1613 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1614 kfree(fs_info->super_copy);
1615 kfree(fs_info->super_for_commit);
1616 kvfree(fs_info);
1617}
1618
1619
2dfb1e43
QW
1620/*
1621 * Get an in-memory reference of a root structure.
1622 *
1623 * For essential trees like root/extent tree, we grab it from fs_info directly.
1624 * For subvolume trees, we check the cached filesystem roots first. If not
1625 * found, then read it from disk and add it to cached fs roots.
1626 *
1627 * Caller should release the root by calling btrfs_put_root() after the usage.
1628 *
1629 * NOTE: Reloc and log trees can't be read by this function as they share the
1630 * same root objectid.
1631 *
1632 * @objectid: root id
1633 * @anon_dev: preallocated anonymous block device number for new roots,
1634 * pass 0 for new allocation.
1635 * @check_ref: whether to check root item references, If true, return -ENOENT
1636 * for orphan roots
1637 */
1638static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1639 u64 objectid, dev_t anon_dev,
1640 bool check_ref)
5eda7b5e
CM
1641{
1642 struct btrfs_root *root;
381cf658 1643 struct btrfs_path *path;
1d4c08e0 1644 struct btrfs_key key;
5eda7b5e
CM
1645 int ret;
1646
49d11bea
JB
1647 root = btrfs_get_global_root(fs_info, objectid);
1648 if (root)
1649 return root;
4df27c4d 1650again:
56e9357a 1651 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1652 if (root) {
2dfb1e43
QW
1653 /* Shouldn't get preallocated anon_dev for cached roots */
1654 ASSERT(!anon_dev);
bc44d7c4 1655 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1656 btrfs_put_root(root);
48475471 1657 return ERR_PTR(-ENOENT);
bc44d7c4 1658 }
5eda7b5e 1659 return root;
48475471 1660 }
5eda7b5e 1661
56e9357a
DS
1662 key.objectid = objectid;
1663 key.type = BTRFS_ROOT_ITEM_KEY;
1664 key.offset = (u64)-1;
1665 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1666 if (IS_ERR(root))
1667 return root;
3394e160 1668
c00869f1 1669 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1670 ret = -ENOENT;
581bb050 1671 goto fail;
35a30d7c 1672 }
581bb050 1673
2dfb1e43 1674 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1675 if (ret)
1676 goto fail;
3394e160 1677
381cf658
DS
1678 path = btrfs_alloc_path();
1679 if (!path) {
1680 ret = -ENOMEM;
1681 goto fail;
1682 }
1d4c08e0
DS
1683 key.objectid = BTRFS_ORPHAN_OBJECTID;
1684 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1685 key.offset = objectid;
1d4c08e0
DS
1686
1687 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1688 btrfs_free_path(path);
d68fc57b
YZ
1689 if (ret < 0)
1690 goto fail;
1691 if (ret == 0)
27cdeb70 1692 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1693
cb517eab 1694 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1695 if (ret) {
00246528 1696 btrfs_put_root(root);
4785e24f 1697 if (ret == -EEXIST)
4df27c4d 1698 goto again;
4df27c4d 1699 goto fail;
0f7d52f4 1700 }
edbd8d4e 1701 return root;
4df27c4d 1702fail:
8c38938c 1703 btrfs_put_root(root);
4df27c4d 1704 return ERR_PTR(ret);
edbd8d4e
CM
1705}
1706
2dfb1e43
QW
1707/*
1708 * Get in-memory reference of a root structure
1709 *
1710 * @objectid: tree objectid
1711 * @check_ref: if set, verify that the tree exists and the item has at least
1712 * one reference
1713 */
1714struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1715 u64 objectid, bool check_ref)
1716{
1717 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1718}
1719
1720/*
1721 * Get in-memory reference of a root structure, created as new, optionally pass
1722 * the anonymous block device id
1723 *
1724 * @objectid: tree objectid
1725 * @anon_dev: if zero, allocate a new anonymous block device or use the
1726 * parameter value
1727 */
1728struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1729 u64 objectid, dev_t anon_dev)
1730{
1731 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1732}
1733
49d11bea
JB
1734/*
1735 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1736 * @fs_info: the fs_info
1737 * @objectid: the objectid we need to lookup
1738 *
1739 * This is exclusively used for backref walking, and exists specifically because
1740 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1741 * creation time, which means we may have to read the tree_root in order to look
1742 * up a fs root that is not in memory. If the root is not in memory we will
1743 * read the tree root commit root and look up the fs root from there. This is a
1744 * temporary root, it will not be inserted into the radix tree as it doesn't
1745 * have the most uptodate information, it'll simply be discarded once the
1746 * backref code is finished using the root.
1747 */
1748struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1749 struct btrfs_path *path,
1750 u64 objectid)
1751{
1752 struct btrfs_root *root;
1753 struct btrfs_key key;
1754
1755 ASSERT(path->search_commit_root && path->skip_locking);
1756
1757 /*
1758 * This can return -ENOENT if we ask for a root that doesn't exist, but
1759 * since this is called via the backref walking code we won't be looking
1760 * up a root that doesn't exist, unless there's corruption. So if root
1761 * != NULL just return it.
1762 */
1763 root = btrfs_get_global_root(fs_info, objectid);
1764 if (root)
1765 return root;
1766
1767 root = btrfs_lookup_fs_root(fs_info, objectid);
1768 if (root)
1769 return root;
1770
1771 key.objectid = objectid;
1772 key.type = BTRFS_ROOT_ITEM_KEY;
1773 key.offset = (u64)-1;
1774 root = read_tree_root_path(fs_info->tree_root, path, &key);
1775 btrfs_release_path(path);
1776
1777 return root;
1778}
1779
8b712842
CM
1780/*
1781 * called by the kthread helper functions to finally call the bio end_io
1782 * functions. This is where read checksum verification actually happens
1783 */
1784static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1785{
ce9adaa5 1786 struct bio *bio;
97eb6b69 1787 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1788
97eb6b69 1789 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1790 bio = end_io_wq->bio;
ce9adaa5 1791
4e4cbee9 1792 bio->bi_status = end_io_wq->status;
8b712842
CM
1793 bio->bi_private = end_io_wq->private;
1794 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1795 bio_endio(bio);
9be490f1 1796 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1797}
1798
a74a4b97
CM
1799static int cleaner_kthread(void *arg)
1800{
1801 struct btrfs_root *root = arg;
0b246afa 1802 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1803 int again;
a74a4b97 1804
d6fd0ae2 1805 while (1) {
d0278245 1806 again = 0;
a74a4b97 1807
fd340d0f
JB
1808 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1809
d0278245 1810 /* Make the cleaner go to sleep early. */
2ff7e61e 1811 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1812 goto sleep;
1813
90c711ab
ZB
1814 /*
1815 * Do not do anything if we might cause open_ctree() to block
1816 * before we have finished mounting the filesystem.
1817 */
0b246afa 1818 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1819 goto sleep;
1820
0b246afa 1821 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1822 goto sleep;
1823
dc7f370c
MX
1824 /*
1825 * Avoid the problem that we change the status of the fs
1826 * during the above check and trylock.
1827 */
2ff7e61e 1828 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1829 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1830 goto sleep;
76dda93c 1831 }
a74a4b97 1832
2ff7e61e 1833 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1834
d0278245 1835 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1836 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1837
1838 /*
05323cd1
MX
1839 * The defragger has dealt with the R/O remount and umount,
1840 * needn't do anything special here.
d0278245 1841 */
0b246afa 1842 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1843
1844 /*
1845 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1846 * with relocation (btrfs_relocate_chunk) and relocation
1847 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1848 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1849 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1850 * unused block groups.
1851 */
0b246afa 1852 btrfs_delete_unused_bgs(fs_info);
d0278245 1853sleep:
a0a1db70 1854 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1855 if (kthread_should_park())
1856 kthread_parkme();
1857 if (kthread_should_stop())
1858 return 0;
838fe188 1859 if (!again) {
a74a4b97 1860 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1861 schedule();
a74a4b97
CM
1862 __set_current_state(TASK_RUNNING);
1863 }
da288d28 1864 }
a74a4b97
CM
1865}
1866
1867static int transaction_kthread(void *arg)
1868{
1869 struct btrfs_root *root = arg;
0b246afa 1870 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1871 struct btrfs_trans_handle *trans;
1872 struct btrfs_transaction *cur;
8929ecfa 1873 u64 transid;
643900be 1874 time64_t delta;
a74a4b97 1875 unsigned long delay;
914b2007 1876 bool cannot_commit;
a74a4b97
CM
1877
1878 do {
914b2007 1879 cannot_commit = false;
ba1bc00f 1880 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1881 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1882
0b246afa
JM
1883 spin_lock(&fs_info->trans_lock);
1884 cur = fs_info->running_transaction;
a74a4b97 1885 if (!cur) {
0b246afa 1886 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1887 goto sleep;
1888 }
31153d81 1889
643900be 1890 delta = ktime_get_seconds() - cur->start_time;
3296bf56 1891 if (cur->state < TRANS_STATE_COMMIT_START &&
643900be 1892 delta < fs_info->commit_interval) {
0b246afa 1893 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1894 delay -= msecs_to_jiffies((delta - 1) * 1000);
1895 delay = min(delay,
1896 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1897 goto sleep;
1898 }
8929ecfa 1899 transid = cur->transid;
0b246afa 1900 spin_unlock(&fs_info->trans_lock);
56bec294 1901
79787eaa 1902 /* If the file system is aborted, this will always fail. */
354aa0fb 1903 trans = btrfs_attach_transaction(root);
914b2007 1904 if (IS_ERR(trans)) {
354aa0fb
MX
1905 if (PTR_ERR(trans) != -ENOENT)
1906 cannot_commit = true;
79787eaa 1907 goto sleep;
914b2007 1908 }
8929ecfa 1909 if (transid == trans->transid) {
3a45bb20 1910 btrfs_commit_transaction(trans);
8929ecfa 1911 } else {
3a45bb20 1912 btrfs_end_transaction(trans);
8929ecfa 1913 }
a74a4b97 1914sleep:
0b246afa
JM
1915 wake_up_process(fs_info->cleaner_kthread);
1916 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1917
4e121c06 1918 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1919 &fs_info->fs_state)))
2ff7e61e 1920 btrfs_cleanup_transaction(fs_info);
ce63f891 1921 if (!kthread_should_stop() &&
0b246afa 1922 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1923 cannot_commit))
bc5511d0 1924 schedule_timeout_interruptible(delay);
a74a4b97
CM
1925 } while (!kthread_should_stop());
1926 return 0;
1927}
1928
af31f5e5 1929/*
01f0f9da
NB
1930 * This will find the highest generation in the array of root backups. The
1931 * index of the highest array is returned, or -EINVAL if we can't find
1932 * anything.
af31f5e5
CM
1933 *
1934 * We check to make sure the array is valid by comparing the
1935 * generation of the latest root in the array with the generation
1936 * in the super block. If they don't match we pitch it.
1937 */
01f0f9da 1938static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1939{
01f0f9da 1940 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1941 u64 cur;
af31f5e5
CM
1942 struct btrfs_root_backup *root_backup;
1943 int i;
1944
1945 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1946 root_backup = info->super_copy->super_roots + i;
1947 cur = btrfs_backup_tree_root_gen(root_backup);
1948 if (cur == newest_gen)
01f0f9da 1949 return i;
af31f5e5
CM
1950 }
1951
01f0f9da 1952 return -EINVAL;
af31f5e5
CM
1953}
1954
af31f5e5
CM
1955/*
1956 * copy all the root pointers into the super backup array.
1957 * this will bump the backup pointer by one when it is
1958 * done
1959 */
1960static void backup_super_roots(struct btrfs_fs_info *info)
1961{
6ef108dd 1962 const int next_backup = info->backup_root_index;
af31f5e5 1963 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1964
1965 root_backup = info->super_for_commit->super_roots + next_backup;
1966
1967 /*
1968 * make sure all of our padding and empty slots get zero filled
1969 * regardless of which ones we use today
1970 */
1971 memset(root_backup, 0, sizeof(*root_backup));
1972
1973 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1974
1975 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1976 btrfs_set_backup_tree_root_gen(root_backup,
1977 btrfs_header_generation(info->tree_root->node));
1978
1979 btrfs_set_backup_tree_root_level(root_backup,
1980 btrfs_header_level(info->tree_root->node));
1981
1982 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1983 btrfs_set_backup_chunk_root_gen(root_backup,
1984 btrfs_header_generation(info->chunk_root->node));
1985 btrfs_set_backup_chunk_root_level(root_backup,
1986 btrfs_header_level(info->chunk_root->node));
1987
1988 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1989 btrfs_set_backup_extent_root_gen(root_backup,
1990 btrfs_header_generation(info->extent_root->node));
1991 btrfs_set_backup_extent_root_level(root_backup,
1992 btrfs_header_level(info->extent_root->node));
1993
7c7e82a7
CM
1994 /*
1995 * we might commit during log recovery, which happens before we set
1996 * the fs_root. Make sure it is valid before we fill it in.
1997 */
1998 if (info->fs_root && info->fs_root->node) {
1999 btrfs_set_backup_fs_root(root_backup,
2000 info->fs_root->node->start);
2001 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2002 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2003 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2004 btrfs_header_level(info->fs_root->node));
7c7e82a7 2005 }
af31f5e5
CM
2006
2007 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2008 btrfs_set_backup_dev_root_gen(root_backup,
2009 btrfs_header_generation(info->dev_root->node));
2010 btrfs_set_backup_dev_root_level(root_backup,
2011 btrfs_header_level(info->dev_root->node));
2012
2013 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2014 btrfs_set_backup_csum_root_gen(root_backup,
2015 btrfs_header_generation(info->csum_root->node));
2016 btrfs_set_backup_csum_root_level(root_backup,
2017 btrfs_header_level(info->csum_root->node));
2018
2019 btrfs_set_backup_total_bytes(root_backup,
2020 btrfs_super_total_bytes(info->super_copy));
2021 btrfs_set_backup_bytes_used(root_backup,
2022 btrfs_super_bytes_used(info->super_copy));
2023 btrfs_set_backup_num_devices(root_backup,
2024 btrfs_super_num_devices(info->super_copy));
2025
2026 /*
2027 * if we don't copy this out to the super_copy, it won't get remembered
2028 * for the next commit
2029 */
2030 memcpy(&info->super_copy->super_roots,
2031 &info->super_for_commit->super_roots,
2032 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2033}
2034
bd2336b2
NB
2035/*
2036 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2037 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2038 *
2039 * fs_info - filesystem whose backup roots need to be read
2040 * priority - priority of backup root required
2041 *
2042 * Returns backup root index on success and -EINVAL otherwise.
2043 */
2044static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2045{
2046 int backup_index = find_newest_super_backup(fs_info);
2047 struct btrfs_super_block *super = fs_info->super_copy;
2048 struct btrfs_root_backup *root_backup;
2049
2050 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2051 if (priority == 0)
2052 return backup_index;
2053
2054 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2055 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2056 } else {
2057 return -EINVAL;
2058 }
2059
2060 root_backup = super->super_roots + backup_index;
2061
2062 btrfs_set_super_generation(super,
2063 btrfs_backup_tree_root_gen(root_backup));
2064 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2065 btrfs_set_super_root_level(super,
2066 btrfs_backup_tree_root_level(root_backup));
2067 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2068
2069 /*
2070 * Fixme: the total bytes and num_devices need to match or we should
2071 * need a fsck
2072 */
2073 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2074 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2075
2076 return backup_index;
2077}
2078
7abadb64
LB
2079/* helper to cleanup workers */
2080static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2081{
dc6e3209 2082 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2083 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2084 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2085 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2086 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2087 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2088 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2089 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2090 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2091 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2092 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2093 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2094 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2095 if (fs_info->discard_ctl.discard_workers)
2096 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2097 /*
2098 * Now that all other work queues are destroyed, we can safely destroy
2099 * the queues used for metadata I/O, since tasks from those other work
2100 * queues can do metadata I/O operations.
2101 */
2102 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2103 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2104}
2105
2e9f5954
R
2106static void free_root_extent_buffers(struct btrfs_root *root)
2107{
2108 if (root) {
2109 free_extent_buffer(root->node);
2110 free_extent_buffer(root->commit_root);
2111 root->node = NULL;
2112 root->commit_root = NULL;
2113 }
2114}
2115
af31f5e5 2116/* helper to cleanup tree roots */
4273eaff 2117static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2118{
2e9f5954 2119 free_root_extent_buffers(info->tree_root);
655b09fe 2120
2e9f5954
R
2121 free_root_extent_buffers(info->dev_root);
2122 free_root_extent_buffers(info->extent_root);
2123 free_root_extent_buffers(info->csum_root);
2124 free_root_extent_buffers(info->quota_root);
2125 free_root_extent_buffers(info->uuid_root);
8c38938c 2126 free_root_extent_buffers(info->fs_root);
aeb935a4 2127 free_root_extent_buffers(info->data_reloc_root);
4273eaff 2128 if (free_chunk_root)
2e9f5954 2129 free_root_extent_buffers(info->chunk_root);
70f6d82e 2130 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2131}
2132
8c38938c
JB
2133void btrfs_put_root(struct btrfs_root *root)
2134{
2135 if (!root)
2136 return;
2137
2138 if (refcount_dec_and_test(&root->refs)) {
2139 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2140 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2141 if (root->anon_dev)
2142 free_anon_bdev(root->anon_dev);
2143 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2144 free_root_extent_buffers(root);
8c38938c
JB
2145#ifdef CONFIG_BTRFS_DEBUG
2146 spin_lock(&root->fs_info->fs_roots_radix_lock);
2147 list_del_init(&root->leak_list);
2148 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2149#endif
2150 kfree(root);
2151 }
2152}
2153
faa2dbf0 2154void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2155{
2156 int ret;
2157 struct btrfs_root *gang[8];
2158 int i;
2159
2160 while (!list_empty(&fs_info->dead_roots)) {
2161 gang[0] = list_entry(fs_info->dead_roots.next,
2162 struct btrfs_root, root_list);
2163 list_del(&gang[0]->root_list);
2164
8c38938c 2165 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2166 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2167 btrfs_put_root(gang[0]);
171f6537
JB
2168 }
2169
2170 while (1) {
2171 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2172 (void **)gang, 0,
2173 ARRAY_SIZE(gang));
2174 if (!ret)
2175 break;
2176 for (i = 0; i < ret; i++)
cb517eab 2177 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2178 }
2179}
af31f5e5 2180
638aa7ed
ES
2181static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2182{
2183 mutex_init(&fs_info->scrub_lock);
2184 atomic_set(&fs_info->scrubs_running, 0);
2185 atomic_set(&fs_info->scrub_pause_req, 0);
2186 atomic_set(&fs_info->scrubs_paused, 0);
2187 atomic_set(&fs_info->scrub_cancel_req, 0);
2188 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2189 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2190}
2191
779a65a4
ES
2192static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2193{
2194 spin_lock_init(&fs_info->balance_lock);
2195 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2196 atomic_set(&fs_info->balance_pause_req, 0);
2197 atomic_set(&fs_info->balance_cancel_req, 0);
2198 fs_info->balance_ctl = NULL;
2199 init_waitqueue_head(&fs_info->balance_wait_q);
2200}
2201
6bccf3ab 2202static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2203{
2ff7e61e
JM
2204 struct inode *inode = fs_info->btree_inode;
2205
2206 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2207 set_nlink(inode, 1);
f37938e0
ES
2208 /*
2209 * we set the i_size on the btree inode to the max possible int.
2210 * the real end of the address space is determined by all of
2211 * the devices in the system
2212 */
2ff7e61e
JM
2213 inode->i_size = OFFSET_MAX;
2214 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2215
2ff7e61e 2216 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2217 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2218 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2219 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2220 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2221
5c8fd99f 2222 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2223 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2224 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2225 btrfs_insert_inode_hash(inode);
f37938e0
ES
2226}
2227
ad618368
ES
2228static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2229{
ad618368 2230 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2231 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2232 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2233}
2234
f9e92e40
ES
2235static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2236{
2237 spin_lock_init(&fs_info->qgroup_lock);
2238 mutex_init(&fs_info->qgroup_ioctl_lock);
2239 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2240 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2241 fs_info->qgroup_seq = 1;
f9e92e40 2242 fs_info->qgroup_ulist = NULL;
d2c609b8 2243 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2244 mutex_init(&fs_info->qgroup_rescan_lock);
2245}
2246
2a458198
ES
2247static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2248 struct btrfs_fs_devices *fs_devices)
2249{
f7b885be 2250 u32 max_active = fs_info->thread_pool_size;
6f011058 2251 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2252
2253 fs_info->workers =
cb001095
JM
2254 btrfs_alloc_workqueue(fs_info, "worker",
2255 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2256
2257 fs_info->delalloc_workers =
cb001095
JM
2258 btrfs_alloc_workqueue(fs_info, "delalloc",
2259 flags, max_active, 2);
2a458198
ES
2260
2261 fs_info->flush_workers =
cb001095
JM
2262 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2263 flags, max_active, 0);
2a458198
ES
2264
2265 fs_info->caching_workers =
cb001095 2266 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2267
2a458198 2268 fs_info->fixup_workers =
cb001095 2269 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2270
2271 /*
2272 * endios are largely parallel and should have a very
2273 * low idle thresh
2274 */
2275 fs_info->endio_workers =
cb001095 2276 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2277 fs_info->endio_meta_workers =
cb001095
JM
2278 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2279 max_active, 4);
2a458198 2280 fs_info->endio_meta_write_workers =
cb001095
JM
2281 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2282 max_active, 2);
2a458198 2283 fs_info->endio_raid56_workers =
cb001095
JM
2284 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2285 max_active, 4);
2a458198 2286 fs_info->rmw_workers =
cb001095 2287 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2288 fs_info->endio_write_workers =
cb001095
JM
2289 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2290 max_active, 2);
2a458198 2291 fs_info->endio_freespace_worker =
cb001095
JM
2292 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2293 max_active, 0);
2a458198 2294 fs_info->delayed_workers =
cb001095
JM
2295 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2296 max_active, 0);
2a458198 2297 fs_info->readahead_workers =
cb001095
JM
2298 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2299 max_active, 2);
2a458198 2300 fs_info->qgroup_rescan_workers =
cb001095 2301 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2302 fs_info->discard_ctl.discard_workers =
2303 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2304
2305 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2306 fs_info->flush_workers &&
2a458198
ES
2307 fs_info->endio_workers && fs_info->endio_meta_workers &&
2308 fs_info->endio_meta_write_workers &&
2a458198
ES
2309 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2310 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2311 fs_info->caching_workers && fs_info->readahead_workers &&
2312 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2313 fs_info->qgroup_rescan_workers &&
2314 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2315 return -ENOMEM;
2316 }
2317
2318 return 0;
2319}
2320
6d97c6e3
JT
2321static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2322{
2323 struct crypto_shash *csum_shash;
b4e967be 2324 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2325
b4e967be 2326 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2327
2328 if (IS_ERR(csum_shash)) {
2329 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2330 csum_driver);
6d97c6e3
JT
2331 return PTR_ERR(csum_shash);
2332 }
2333
2334 fs_info->csum_shash = csum_shash;
2335
2336 return 0;
2337}
2338
63443bf5
ES
2339static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2340 struct btrfs_fs_devices *fs_devices)
2341{
2342 int ret;
63443bf5
ES
2343 struct btrfs_root *log_tree_root;
2344 struct btrfs_super_block *disk_super = fs_info->super_copy;
2345 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2346 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2347
2348 if (fs_devices->rw_devices == 0) {
f14d104d 2349 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2350 return -EIO;
2351 }
2352
96dfcb46
JB
2353 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2354 GFP_KERNEL);
63443bf5
ES
2355 if (!log_tree_root)
2356 return -ENOMEM;
2357
2ff7e61e 2358 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2359 BTRFS_TREE_LOG_OBJECTID,
2360 fs_info->generation + 1, level,
2361 NULL);
64c043de 2362 if (IS_ERR(log_tree_root->node)) {
f14d104d 2363 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2364 ret = PTR_ERR(log_tree_root->node);
8c38938c 2365 log_tree_root->node = NULL;
00246528 2366 btrfs_put_root(log_tree_root);
0eeff236 2367 return ret;
64c043de 2368 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2369 btrfs_err(fs_info, "failed to read log tree");
00246528 2370 btrfs_put_root(log_tree_root);
63443bf5
ES
2371 return -EIO;
2372 }
2373 /* returns with log_tree_root freed on success */
2374 ret = btrfs_recover_log_trees(log_tree_root);
2375 if (ret) {
0b246afa
JM
2376 btrfs_handle_fs_error(fs_info, ret,
2377 "Failed to recover log tree");
00246528 2378 btrfs_put_root(log_tree_root);
63443bf5
ES
2379 return ret;
2380 }
2381
bc98a42c 2382 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2383 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2384 if (ret)
2385 return ret;
2386 }
2387
2388 return 0;
2389}
2390
6bccf3ab 2391static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2392{
6bccf3ab 2393 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2394 struct btrfs_root *root;
4bbcaa64
ES
2395 struct btrfs_key location;
2396 int ret;
2397
6bccf3ab
JM
2398 BUG_ON(!fs_info->tree_root);
2399
4bbcaa64
ES
2400 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2401 location.type = BTRFS_ROOT_ITEM_KEY;
2402 location.offset = 0;
2403
a4f3d2c4 2404 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2405 if (IS_ERR(root)) {
42437a63
JB
2406 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2407 ret = PTR_ERR(root);
2408 goto out;
2409 }
2410 } else {
2411 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2412 fs_info->extent_root = root;
f50f4353 2413 }
4bbcaa64
ES
2414
2415 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2416 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2417 if (IS_ERR(root)) {
42437a63
JB
2418 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2419 ret = PTR_ERR(root);
2420 goto out;
2421 }
2422 } else {
2423 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2424 fs_info->dev_root = root;
f50f4353 2425 }
820a49da
JB
2426 /* Initialize fs_info for all devices in any case */
2427 btrfs_init_devices_late(fs_info);
4bbcaa64 2428
882dbe0c
JB
2429 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2430 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2431 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2432 root = btrfs_read_tree_root(tree_root, &location);
2433 if (IS_ERR(root)) {
2434 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2435 ret = PTR_ERR(root);
2436 goto out;
2437 }
2438 } else {
2439 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2440 fs_info->csum_root = root;
42437a63 2441 }
f50f4353 2442 }
4bbcaa64 2443
aeb935a4
QW
2444 /*
2445 * This tree can share blocks with some other fs tree during relocation
2446 * and we need a proper setup by btrfs_get_fs_root
2447 */
56e9357a
DS
2448 root = btrfs_get_fs_root(tree_root->fs_info,
2449 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2450 if (IS_ERR(root)) {
42437a63
JB
2451 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2452 ret = PTR_ERR(root);
2453 goto out;
2454 }
2455 } else {
2456 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2457 fs_info->data_reloc_root = root;
aeb935a4 2458 }
aeb935a4 2459
4bbcaa64 2460 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2461 root = btrfs_read_tree_root(tree_root, &location);
2462 if (!IS_ERR(root)) {
2463 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2464 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2465 fs_info->quota_root = root;
4bbcaa64
ES
2466 }
2467
2468 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2469 root = btrfs_read_tree_root(tree_root, &location);
2470 if (IS_ERR(root)) {
42437a63
JB
2471 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2472 ret = PTR_ERR(root);
2473 if (ret != -ENOENT)
2474 goto out;
2475 }
4bbcaa64 2476 } else {
a4f3d2c4
DS
2477 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2478 fs_info->uuid_root = root;
4bbcaa64
ES
2479 }
2480
70f6d82e
OS
2481 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2482 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2483 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2484 if (IS_ERR(root)) {
42437a63
JB
2485 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2486 ret = PTR_ERR(root);
2487 goto out;
2488 }
2489 } else {
2490 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2491 fs_info->free_space_root = root;
f50f4353 2492 }
70f6d82e
OS
2493 }
2494
4bbcaa64 2495 return 0;
f50f4353
LB
2496out:
2497 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2498 location.objectid, ret);
2499 return ret;
4bbcaa64
ES
2500}
2501
069ec957
QW
2502/*
2503 * Real super block validation
2504 * NOTE: super csum type and incompat features will not be checked here.
2505 *
2506 * @sb: super block to check
2507 * @mirror_num: the super block number to check its bytenr:
2508 * 0 the primary (1st) sb
2509 * 1, 2 2nd and 3rd backup copy
2510 * -1 skip bytenr check
2511 */
2512static int validate_super(struct btrfs_fs_info *fs_info,
2513 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2514{
21a852b0
QW
2515 u64 nodesize = btrfs_super_nodesize(sb);
2516 u64 sectorsize = btrfs_super_sectorsize(sb);
2517 int ret = 0;
2518
2519 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2520 btrfs_err(fs_info, "no valid FS found");
2521 ret = -EINVAL;
2522 }
2523 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2524 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2525 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2526 ret = -EINVAL;
2527 }
2528 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2529 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2530 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2531 ret = -EINVAL;
2532 }
2533 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2534 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2535 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2536 ret = -EINVAL;
2537 }
2538 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2539 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2540 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2541 ret = -EINVAL;
2542 }
2543
2544 /*
2545 * Check sectorsize and nodesize first, other check will need it.
2546 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2547 */
2548 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2549 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2550 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2551 ret = -EINVAL;
2552 }
0bb3eb3e
QW
2553
2554 /*
2555 * For 4K page size, we only support 4K sector size.
2556 * For 64K page size, we support read-write for 64K sector size, and
2557 * read-only for 4K sector size.
2558 */
2559 if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2560 (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2561 sectorsize != SZ_64K))) {
21a852b0 2562 btrfs_err(fs_info,
0bb3eb3e 2563 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2564 sectorsize, PAGE_SIZE);
2565 ret = -EINVAL;
2566 }
0bb3eb3e 2567
21a852b0
QW
2568 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2569 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2570 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2571 ret = -EINVAL;
2572 }
2573 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2574 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2575 le32_to_cpu(sb->__unused_leafsize), nodesize);
2576 ret = -EINVAL;
2577 }
2578
2579 /* Root alignment check */
2580 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2581 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2582 btrfs_super_root(sb));
2583 ret = -EINVAL;
2584 }
2585 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2586 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2587 btrfs_super_chunk_root(sb));
2588 ret = -EINVAL;
2589 }
2590 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2591 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2592 btrfs_super_log_root(sb));
2593 ret = -EINVAL;
2594 }
2595
de37aa51 2596 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2597 BTRFS_FSID_SIZE) != 0) {
21a852b0 2598 btrfs_err(fs_info,
7239ff4b 2599 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2600 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2601 ret = -EINVAL;
2602 }
2603
2604 /*
2605 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2606 * done later
2607 */
2608 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2609 btrfs_err(fs_info, "bytes_used is too small %llu",
2610 btrfs_super_bytes_used(sb));
2611 ret = -EINVAL;
2612 }
2613 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2614 btrfs_err(fs_info, "invalid stripesize %u",
2615 btrfs_super_stripesize(sb));
2616 ret = -EINVAL;
2617 }
2618 if (btrfs_super_num_devices(sb) > (1UL << 31))
2619 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2620 btrfs_super_num_devices(sb));
2621 if (btrfs_super_num_devices(sb) == 0) {
2622 btrfs_err(fs_info, "number of devices is 0");
2623 ret = -EINVAL;
2624 }
2625
069ec957
QW
2626 if (mirror_num >= 0 &&
2627 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2628 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2629 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2630 ret = -EINVAL;
2631 }
2632
2633 /*
2634 * Obvious sys_chunk_array corruptions, it must hold at least one key
2635 * and one chunk
2636 */
2637 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2638 btrfs_err(fs_info, "system chunk array too big %u > %u",
2639 btrfs_super_sys_array_size(sb),
2640 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2641 ret = -EINVAL;
2642 }
2643 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2644 + sizeof(struct btrfs_chunk)) {
2645 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2646 btrfs_super_sys_array_size(sb),
2647 sizeof(struct btrfs_disk_key)
2648 + sizeof(struct btrfs_chunk));
2649 ret = -EINVAL;
2650 }
2651
2652 /*
2653 * The generation is a global counter, we'll trust it more than the others
2654 * but it's still possible that it's the one that's wrong.
2655 */
2656 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2657 btrfs_warn(fs_info,
2658 "suspicious: generation < chunk_root_generation: %llu < %llu",
2659 btrfs_super_generation(sb),
2660 btrfs_super_chunk_root_generation(sb));
2661 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2662 && btrfs_super_cache_generation(sb) != (u64)-1)
2663 btrfs_warn(fs_info,
2664 "suspicious: generation < cache_generation: %llu < %llu",
2665 btrfs_super_generation(sb),
2666 btrfs_super_cache_generation(sb));
2667
2668 return ret;
2669}
2670
069ec957
QW
2671/*
2672 * Validation of super block at mount time.
2673 * Some checks already done early at mount time, like csum type and incompat
2674 * flags will be skipped.
2675 */
2676static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2677{
2678 return validate_super(fs_info, fs_info->super_copy, 0);
2679}
2680
75cb857d
QW
2681/*
2682 * Validation of super block at write time.
2683 * Some checks like bytenr check will be skipped as their values will be
2684 * overwritten soon.
2685 * Extra checks like csum type and incompat flags will be done here.
2686 */
2687static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2688 struct btrfs_super_block *sb)
2689{
2690 int ret;
2691
2692 ret = validate_super(fs_info, sb, -1);
2693 if (ret < 0)
2694 goto out;
e7e16f48 2695 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2696 ret = -EUCLEAN;
2697 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2698 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2699 goto out;
2700 }
2701 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2702 ret = -EUCLEAN;
2703 btrfs_err(fs_info,
2704 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2705 btrfs_super_incompat_flags(sb),
2706 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2707 goto out;
2708 }
2709out:
2710 if (ret < 0)
2711 btrfs_err(fs_info,
2712 "super block corruption detected before writing it to disk");
2713 return ret;
2714}
2715
6ef108dd 2716static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2717{
6ef108dd 2718 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2719 struct btrfs_super_block *sb = fs_info->super_copy;
2720 struct btrfs_root *tree_root = fs_info->tree_root;
2721 bool handle_error = false;
2722 int ret = 0;
2723 int i;
2724
2725 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2726 u64 generation;
2727 int level;
2728
2729 if (handle_error) {
2730 if (!IS_ERR(tree_root->node))
2731 free_extent_buffer(tree_root->node);
2732 tree_root->node = NULL;
2733
2734 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2735 break;
2736
2737 free_root_pointers(fs_info, 0);
2738
2739 /*
2740 * Don't use the log in recovery mode, it won't be
2741 * valid
2742 */
2743 btrfs_set_super_log_root(sb, 0);
2744
2745 /* We can't trust the free space cache either */
2746 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2747
2748 ret = read_backup_root(fs_info, i);
6ef108dd 2749 backup_index = ret;
b8522a1e
NB
2750 if (ret < 0)
2751 return ret;
2752 }
2753 generation = btrfs_super_generation(sb);
2754 level = btrfs_super_root_level(sb);
2755 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
1b7ec85e 2756 BTRFS_ROOT_TREE_OBJECTID,
b8522a1e 2757 generation, level, NULL);
217f5004 2758 if (IS_ERR(tree_root->node)) {
b8522a1e 2759 handle_error = true;
217f5004
NB
2760 ret = PTR_ERR(tree_root->node);
2761 tree_root->node = NULL;
2762 btrfs_warn(fs_info, "couldn't read tree root");
2763 continue;
b8522a1e 2764
217f5004
NB
2765 } else if (!extent_buffer_uptodate(tree_root->node)) {
2766 handle_error = true;
2767 ret = -EIO;
2768 btrfs_warn(fs_info, "error while reading tree root");
b8522a1e
NB
2769 continue;
2770 }
2771
2772 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2773 tree_root->commit_root = btrfs_root_node(tree_root);
2774 btrfs_set_root_refs(&tree_root->root_item, 1);
2775
336a0d8d
NB
2776 /*
2777 * No need to hold btrfs_root::objectid_mutex since the fs
2778 * hasn't been fully initialised and we are the only user
2779 */
453e4873 2780 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2781 if (ret < 0) {
b8522a1e
NB
2782 handle_error = true;
2783 continue;
2784 }
2785
6b8fad57 2786 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2787
2788 ret = btrfs_read_roots(fs_info);
2789 if (ret < 0) {
2790 handle_error = true;
2791 continue;
2792 }
2793
2794 /* All successful */
2795 fs_info->generation = generation;
2796 fs_info->last_trans_committed = generation;
6ef108dd
NB
2797
2798 /* Always begin writing backup roots after the one being used */
2799 if (backup_index < 0) {
2800 fs_info->backup_root_index = 0;
2801 } else {
2802 fs_info->backup_root_index = backup_index + 1;
2803 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2804 }
b8522a1e
NB
2805 break;
2806 }
2807
2808 return ret;
2809}
2810
8260edba 2811void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2812{
76dda93c 2813 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2814 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2815 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2816 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2817 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2818 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2819 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2820 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2821 spin_lock_init(&fs_info->trans_lock);
76dda93c 2822 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2823 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2824 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2825 spin_lock_init(&fs_info->super_lock);
f28491e0 2826 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2827 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2828 spin_lock_init(&fs_info->treelog_bg_lock);
f29021b2 2829 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2830 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2831 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2832 mutex_init(&fs_info->reloc_mutex);
573bfb72 2833 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2834 mutex_init(&fs_info->zoned_meta_io_lock);
de98ced9 2835 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2836
0b86a832 2837 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2838 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2839 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2840 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2841#ifdef CONFIG_BTRFS_DEBUG
2842 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2843 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2844 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2845#endif
c8bf1b67 2846 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2847 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2848 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2849 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2850 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2851 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2852 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2853 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2854 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2855 BTRFS_BLOCK_RSV_DELREFS);
2856
771ed689 2857 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2858 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2859 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2860 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2861 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2862 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2863 fs_info->metadata_ratio = 0;
4cb5300b 2864 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2865 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2866 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2867 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2868 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2869 /* readahead state */
d0164adc 2870 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2871 spin_lock_init(&fs_info->reada_lock);
fd708b81 2872 btrfs_init_ref_verify(fs_info);
c8b97818 2873
b34b086c
CM
2874 fs_info->thread_pool_size = min_t(unsigned long,
2875 num_online_cpus() + 2, 8);
0afbaf8c 2876
199c2a9c
MX
2877 INIT_LIST_HEAD(&fs_info->ordered_roots);
2878 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2879
638aa7ed 2880 btrfs_init_scrub(fs_info);
21adbd5c
SB
2881#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2882 fs_info->check_integrity_print_mask = 0;
2883#endif
779a65a4 2884 btrfs_init_balance(fs_info);
57056740 2885 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2886
0f9dd46c 2887 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2888 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2889 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2890
fe119a6e
NB
2891 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2892 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2893 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2894
5a3f23d5 2895 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2896 mutex_init(&fs_info->tree_log_mutex);
925baedd 2897 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2898 mutex_init(&fs_info->transaction_kthread_mutex);
2899 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2900 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2901 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2902 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2903 init_rwsem(&fs_info->subvol_sem);
803b2f54 2904 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2905
ad618368 2906 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2907 btrfs_init_qgroup(fs_info);
b0643e59 2908 btrfs_discard_init(fs_info);
416ac51d 2909
fa9c0d79
CM
2910 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2911 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2912
e6dcd2dc 2913 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2914 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2915 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2916 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2917 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2918
da17066c
JM
2919 /* Usable values until the real ones are cached from the superblock */
2920 fs_info->nodesize = 4096;
2921 fs_info->sectorsize = 4096;
ab108d99 2922 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2923 fs_info->stripesize = 4096;
2924
eede2bf3
OS
2925 spin_lock_init(&fs_info->swapfile_pins_lock);
2926 fs_info->swapfile_pins = RB_ROOT;
2927
9e967495 2928 fs_info->send_in_progress = 0;
8260edba
JB
2929}
2930
2931static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2932{
2933 int ret;
2934
2935 fs_info->sb = sb;
2936 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2937 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2938
5deb17e1 2939 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 2940 if (ret)
c75e8394 2941 return ret;
ae18c37a
JB
2942
2943 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2944 if (ret)
c75e8394 2945 return ret;
ae18c37a
JB
2946
2947 fs_info->dirty_metadata_batch = PAGE_SIZE *
2948 (1 + ilog2(nr_cpu_ids));
2949
2950 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2951 if (ret)
c75e8394 2952 return ret;
ae18c37a
JB
2953
2954 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2955 GFP_KERNEL);
2956 if (ret)
c75e8394 2957 return ret;
ae18c37a
JB
2958
2959 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2960 GFP_KERNEL);
c75e8394
JB
2961 if (!fs_info->delayed_root)
2962 return -ENOMEM;
ae18c37a
JB
2963 btrfs_init_delayed_root(fs_info->delayed_root);
2964
a0a1db70
FM
2965 if (sb_rdonly(sb))
2966 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2967
c75e8394 2968 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2969}
2970
97f4dd09
NB
2971static int btrfs_uuid_rescan_kthread(void *data)
2972{
2973 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2974 int ret;
2975
2976 /*
2977 * 1st step is to iterate through the existing UUID tree and
2978 * to delete all entries that contain outdated data.
2979 * 2nd step is to add all missing entries to the UUID tree.
2980 */
2981 ret = btrfs_uuid_tree_iterate(fs_info);
2982 if (ret < 0) {
c94bec2c
JB
2983 if (ret != -EINTR)
2984 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2985 ret);
97f4dd09
NB
2986 up(&fs_info->uuid_tree_rescan_sem);
2987 return ret;
2988 }
2989 return btrfs_uuid_scan_kthread(data);
2990}
2991
2992static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2993{
2994 struct task_struct *task;
2995
2996 down(&fs_info->uuid_tree_rescan_sem);
2997 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2998 if (IS_ERR(task)) {
2999 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3000 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3001 up(&fs_info->uuid_tree_rescan_sem);
3002 return PTR_ERR(task);
3003 }
3004
3005 return 0;
3006}
3007
8cd29088
BB
3008/*
3009 * Some options only have meaning at mount time and shouldn't persist across
3010 * remounts, or be displayed. Clear these at the end of mount and remount
3011 * code paths.
3012 */
3013void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3014{
3015 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3016 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3017}
3018
44c0ca21
BB
3019/*
3020 * Mounting logic specific to read-write file systems. Shared by open_ctree
3021 * and btrfs_remount when remounting from read-only to read-write.
3022 */
3023int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3024{
3025 int ret;
94846229 3026 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3027 bool clear_free_space_tree = false;
3028
3029 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3030 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3031 clear_free_space_tree = true;
3032 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3033 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3034 btrfs_warn(fs_info, "free space tree is invalid");
3035 clear_free_space_tree = true;
3036 }
3037
3038 if (clear_free_space_tree) {
3039 btrfs_info(fs_info, "clearing free space tree");
3040 ret = btrfs_clear_free_space_tree(fs_info);
3041 if (ret) {
3042 btrfs_warn(fs_info,
3043 "failed to clear free space tree: %d", ret);
3044 goto out;
3045 }
3046 }
44c0ca21 3047
8d488a8c
FM
3048 /*
3049 * btrfs_find_orphan_roots() is responsible for finding all the dead
3050 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3051 * them into the fs_info->fs_roots_radix tree. This must be done before
3052 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3053 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3054 * item before the root's tree is deleted - this means that if we unmount
3055 * or crash before the deletion completes, on the next mount we will not
3056 * delete what remains of the tree because the orphan item does not
3057 * exists anymore, which is what tells us we have a pending deletion.
3058 */
3059 ret = btrfs_find_orphan_roots(fs_info);
3060 if (ret)
3061 goto out;
3062
44c0ca21
BB
3063 ret = btrfs_cleanup_fs_roots(fs_info);
3064 if (ret)
3065 goto out;
3066
8f1c21d7
BB
3067 down_read(&fs_info->cleanup_work_sem);
3068 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3069 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3070 up_read(&fs_info->cleanup_work_sem);
3071 goto out;
3072 }
3073 up_read(&fs_info->cleanup_work_sem);
3074
44c0ca21
BB
3075 mutex_lock(&fs_info->cleaner_mutex);
3076 ret = btrfs_recover_relocation(fs_info->tree_root);
3077 mutex_unlock(&fs_info->cleaner_mutex);
3078 if (ret < 0) {
3079 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3080 goto out;
3081 }
3082
5011139a
BB
3083 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3084 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3085 btrfs_info(fs_info, "creating free space tree");
3086 ret = btrfs_create_free_space_tree(fs_info);
3087 if (ret) {
3088 btrfs_warn(fs_info,
3089 "failed to create free space tree: %d", ret);
3090 goto out;
3091 }
3092 }
3093
94846229
BB
3094 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3095 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3096 if (ret)
3097 goto out;
3098 }
3099
44c0ca21
BB
3100 ret = btrfs_resume_balance_async(fs_info);
3101 if (ret)
3102 goto out;
3103
3104 ret = btrfs_resume_dev_replace_async(fs_info);
3105 if (ret) {
3106 btrfs_warn(fs_info, "failed to resume dev_replace");
3107 goto out;
3108 }
3109
3110 btrfs_qgroup_rescan_resume(fs_info);
3111
3112 if (!fs_info->uuid_root) {
3113 btrfs_info(fs_info, "creating UUID tree");
3114 ret = btrfs_create_uuid_tree(fs_info);
3115 if (ret) {
3116 btrfs_warn(fs_info,
3117 "failed to create the UUID tree %d", ret);
3118 goto out;
3119 }
3120 }
3121
3122out:
3123 return ret;
3124}
3125
ae18c37a
JB
3126int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3127 char *options)
3128{
3129 u32 sectorsize;
3130 u32 nodesize;
3131 u32 stripesize;
3132 u64 generation;
3133 u64 features;
3134 u16 csum_type;
ae18c37a
JB
3135 struct btrfs_super_block *disk_super;
3136 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3137 struct btrfs_root *tree_root;
3138 struct btrfs_root *chunk_root;
3139 int ret;
3140 int err = -EINVAL;
ae18c37a
JB
3141 int level;
3142
8260edba 3143 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3144 if (ret) {
83c8266a 3145 err = ret;
ae18c37a 3146 goto fail;
53b381b3
DW
3147 }
3148
ae18c37a
JB
3149 /* These need to be init'ed before we start creating inodes and such. */
3150 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3151 GFP_KERNEL);
3152 fs_info->tree_root = tree_root;
3153 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3154 GFP_KERNEL);
3155 fs_info->chunk_root = chunk_root;
3156 if (!tree_root || !chunk_root) {
3157 err = -ENOMEM;
c75e8394 3158 goto fail;
ae18c37a
JB
3159 }
3160
3161 fs_info->btree_inode = new_inode(sb);
3162 if (!fs_info->btree_inode) {
3163 err = -ENOMEM;
c75e8394 3164 goto fail;
ae18c37a
JB
3165 }
3166 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3167 btrfs_init_btree_inode(fs_info);
3168
3c4bb26b 3169 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
3170
3171 /*
3172 * Read super block and check the signature bytes only
3173 */
8f32380d
JT
3174 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
3175 if (IS_ERR(disk_super)) {
3176 err = PTR_ERR(disk_super);
16cdcec7 3177 goto fail_alloc;
20b45077 3178 }
39279cc3 3179
8dc3f22c 3180 /*
260db43c 3181 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3182 * corrupted, we'll find out
3183 */
8f32380d 3184 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3185 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3186 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3187 csum_type);
8dc3f22c 3188 err = -EINVAL;
8f32380d 3189 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3190 goto fail_alloc;
3191 }
3192
83c68bbc
SY
3193 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3194
6d97c6e3
JT
3195 ret = btrfs_init_csum_hash(fs_info, csum_type);
3196 if (ret) {
3197 err = ret;
8f32380d 3198 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3199 goto fail_alloc;
3200 }
3201
1104a885
DS
3202 /*
3203 * We want to check superblock checksum, the type is stored inside.
3204 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3205 */
8f32380d 3206 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3207 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3208 err = -EINVAL;
8f32380d 3209 btrfs_release_disk_super(disk_super);
141386e1 3210 goto fail_alloc;
1104a885
DS
3211 }
3212
3213 /*
3214 * super_copy is zeroed at allocation time and we never touch the
3215 * following bytes up to INFO_SIZE, the checksum is calculated from
3216 * the whole block of INFO_SIZE
3217 */
8f32380d
JT
3218 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3219 btrfs_release_disk_super(disk_super);
5f39d397 3220
fbc6feae
NB
3221 disk_super = fs_info->super_copy;
3222
de37aa51
NB
3223 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
3224 BTRFS_FSID_SIZE));
3225
7239ff4b 3226 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
3227 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
3228 fs_info->super_copy->metadata_uuid,
3229 BTRFS_FSID_SIZE));
7239ff4b 3230 }
0b86a832 3231
fbc6feae
NB
3232 features = btrfs_super_flags(disk_super);
3233 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3234 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3235 btrfs_set_super_flags(disk_super, features);
3236 btrfs_info(fs_info,
3237 "found metadata UUID change in progress flag, clearing");
3238 }
3239
3240 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3241 sizeof(*fs_info->super_for_commit));
de37aa51 3242
069ec957 3243 ret = btrfs_validate_mount_super(fs_info);
1104a885 3244 if (ret) {
05135f59 3245 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3246 err = -EINVAL;
141386e1 3247 goto fail_alloc;
1104a885
DS
3248 }
3249
0f7d52f4 3250 if (!btrfs_super_root(disk_super))
141386e1 3251 goto fail_alloc;
0f7d52f4 3252
acce952b 3253 /* check FS state, whether FS is broken. */
87533c47
MX
3254 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3255 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3256
75e7cb7f
LB
3257 /*
3258 * In the long term, we'll store the compression type in the super
3259 * block, and it'll be used for per file compression control.
3260 */
3261 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3262
2ff7e61e 3263 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3264 if (ret) {
3265 err = ret;
141386e1 3266 goto fail_alloc;
2b82032c 3267 }
dfe25020 3268
f2b636e8
JB
3269 features = btrfs_super_incompat_flags(disk_super) &
3270 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3271 if (features) {
05135f59
DS
3272 btrfs_err(fs_info,
3273 "cannot mount because of unsupported optional features (%llx)",
3274 features);
f2b636e8 3275 err = -EINVAL;
141386e1 3276 goto fail_alloc;
f2b636e8
JB
3277 }
3278
5d4f98a2 3279 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3280 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3281 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3282 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3283 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3284 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3285
3173a18f 3286 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3287 btrfs_info(fs_info, "has skinny extents");
3173a18f 3288
727011e0
CM
3289 /*
3290 * flag our filesystem as having big metadata blocks if
3291 * they are bigger than the page size
3292 */
09cbfeaf 3293 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3294 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3295 btrfs_info(fs_info,
3296 "flagging fs with big metadata feature");
727011e0
CM
3297 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3298 }
3299
bc3f116f 3300 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3301 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3302 stripesize = sectorsize;
707e8a07 3303 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3304 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3305
da17066c
JM
3306 /* Cache block sizes */
3307 fs_info->nodesize = nodesize;
3308 fs_info->sectorsize = sectorsize;
ab108d99 3309 fs_info->sectorsize_bits = ilog2(sectorsize);
fe5ecbe8 3310 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
da17066c
JM
3311 fs_info->stripesize = stripesize;
3312
bc3f116f
CM
3313 /*
3314 * mixed block groups end up with duplicate but slightly offset
3315 * extent buffers for the same range. It leads to corruptions
3316 */
3317 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3318 (sectorsize != nodesize)) {
05135f59
DS
3319 btrfs_err(fs_info,
3320"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3321 nodesize, sectorsize);
141386e1 3322 goto fail_alloc;
bc3f116f
CM
3323 }
3324
ceda0864
MX
3325 /*
3326 * Needn't use the lock because there is no other task which will
3327 * update the flag.
3328 */
a6fa6fae 3329 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3330
f2b636e8
JB
3331 features = btrfs_super_compat_ro_flags(disk_super) &
3332 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3333 if (!sb_rdonly(sb) && features) {
05135f59
DS
3334 btrfs_err(fs_info,
3335 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3336 features);
f2b636e8 3337 err = -EINVAL;
141386e1 3338 goto fail_alloc;
f2b636e8 3339 }
61d92c32 3340
0bb3eb3e
QW
3341 /* For 4K sector size support, it's only read-only */
3342 if (PAGE_SIZE == SZ_64K && sectorsize == SZ_4K) {
3343 if (!sb_rdonly(sb) || btrfs_super_log_root(disk_super)) {
3344 btrfs_err(fs_info,
3345 "subpage sectorsize %u only supported read-only for page size %lu",
3346 sectorsize, PAGE_SIZE);
3347 err = -EINVAL;
3348 goto fail_alloc;
3349 }
3350 }
3351
2a458198
ES
3352 ret = btrfs_init_workqueues(fs_info, fs_devices);
3353 if (ret) {
3354 err = ret;
0dc3b84a
JB
3355 goto fail_sb_buffer;
3356 }
4543df7e 3357
9e11ceee
JK
3358 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3359 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3360
a061fc8d
CM
3361 sb->s_blocksize = sectorsize;
3362 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3363 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3364
925baedd 3365 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3366 ret = btrfs_read_sys_array(fs_info);
925baedd 3367 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3368 if (ret) {
05135f59 3369 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3370 goto fail_sb_buffer;
84eed90f 3371 }
0b86a832 3372
84234f3a 3373 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3374 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3375
2ff7e61e 3376 chunk_root->node = read_tree_block(fs_info,
0b86a832 3377 btrfs_super_chunk_root(disk_super),
1b7ec85e 3378 BTRFS_CHUNK_TREE_OBJECTID,
581c1760 3379 generation, level, NULL);
64c043de
LB
3380 if (IS_ERR(chunk_root->node) ||
3381 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3382 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3383 if (!IS_ERR(chunk_root->node))
3384 free_extent_buffer(chunk_root->node);
95ab1f64 3385 chunk_root->node = NULL;
af31f5e5 3386 goto fail_tree_roots;
83121942 3387 }
5d4f98a2
YZ
3388 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3389 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3390
e17cade2 3391 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3392 offsetof(struct btrfs_header, chunk_tree_uuid),
3393 BTRFS_UUID_SIZE);
e17cade2 3394
5b4aacef 3395 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3396 if (ret) {
05135f59 3397 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3398 goto fail_tree_roots;
2b82032c 3399 }
0b86a832 3400
8dabb742 3401 /*
bacce86a
AJ
3402 * At this point we know all the devices that make this filesystem,
3403 * including the seed devices but we don't know yet if the replace
3404 * target is required. So free devices that are not part of this
3405 * filesystem but skip the replace traget device which is checked
3406 * below in btrfs_init_dev_replace().
8dabb742 3407 */
bacce86a 3408 btrfs_free_extra_devids(fs_devices);
a6b0d5c8 3409 if (!fs_devices->latest_bdev) {
05135f59 3410 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3411 goto fail_tree_roots;
3412 }
3413
b8522a1e 3414 ret = init_tree_roots(fs_info);
4bbcaa64 3415 if (ret)
b8522a1e 3416 goto fail_tree_roots;
8929ecfa 3417
73651042
NA
3418 /*
3419 * Get zone type information of zoned block devices. This will also
3420 * handle emulation of a zoned filesystem if a regular device has the
3421 * zoned incompat feature flag set.
3422 */
3423 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3424 if (ret) {
3425 btrfs_err(fs_info,
3426 "zoned: failed to read device zone info: %d",
3427 ret);
3428 goto fail_block_groups;
3429 }
3430
75ec1db8
JB
3431 /*
3432 * If we have a uuid root and we're not being told to rescan we need to
3433 * check the generation here so we can set the
3434 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3435 * transaction during a balance or the log replay without updating the
3436 * uuid generation, and then if we crash we would rescan the uuid tree,
3437 * even though it was perfectly fine.
3438 */
3439 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3440 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3441 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3442
cf90d884
QW
3443 ret = btrfs_verify_dev_extents(fs_info);
3444 if (ret) {
3445 btrfs_err(fs_info,
3446 "failed to verify dev extents against chunks: %d",
3447 ret);
3448 goto fail_block_groups;
3449 }
68310a5e
ID
3450 ret = btrfs_recover_balance(fs_info);
3451 if (ret) {
05135f59 3452 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3453 goto fail_block_groups;
3454 }
3455
733f4fbb
SB
3456 ret = btrfs_init_dev_stats(fs_info);
3457 if (ret) {
05135f59 3458 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3459 goto fail_block_groups;
3460 }
3461
8dabb742
SB
3462 ret = btrfs_init_dev_replace(fs_info);
3463 if (ret) {
05135f59 3464 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3465 goto fail_block_groups;
3466 }
3467
b70f5097
NA
3468 ret = btrfs_check_zoned_mode(fs_info);
3469 if (ret) {
3470 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3471 ret);
3472 goto fail_block_groups;
3473 }
3474
c6761a9e 3475 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3476 if (ret) {
05135f59
DS
3477 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3478 ret);
b7c35e81
AJ
3479 goto fail_block_groups;
3480 }
3481
96f3136e 3482 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3483 if (ret) {
05135f59 3484 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3485 goto fail_fsdev_sysfs;
c59021f8 3486 }
3487
c59021f8 3488 ret = btrfs_init_space_info(fs_info);
3489 if (ret) {
05135f59 3490 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3491 goto fail_sysfs;
c59021f8 3492 }
3493
5b4aacef 3494 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3495 if (ret) {
05135f59 3496 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3497 goto fail_sysfs;
1b1d1f66 3498 }
4330e183 3499
6528b99d 3500 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3501 btrfs_warn(fs_info,
52042d8e 3502 "writable mount is not allowed due to too many missing devices");
2365dd3c 3503 goto fail_sysfs;
292fd7fc 3504 }
9078a3e1 3505
a74a4b97
CM
3506 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3507 "btrfs-cleaner");
57506d50 3508 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3509 goto fail_sysfs;
a74a4b97
CM
3510
3511 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3512 tree_root,
3513 "btrfs-transaction");
57506d50 3514 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3515 goto fail_cleaner;
a74a4b97 3516
583b7231 3517 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3518 !fs_info->fs_devices->rotating) {
583b7231 3519 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3520 }
3521
572d9ab7 3522 /*
01327610 3523 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3524 * not have to wait for transaction commit
3525 */
3526 btrfs_apply_pending_changes(fs_info);
3818aea2 3527
21adbd5c 3528#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3529 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3530 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3531 btrfs_test_opt(fs_info,
21adbd5c
SB
3532 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3533 1 : 0,
3534 fs_info->check_integrity_print_mask);
3535 if (ret)
05135f59
DS
3536 btrfs_warn(fs_info,
3537 "failed to initialize integrity check module: %d",
3538 ret);
21adbd5c
SB
3539 }
3540#endif
bcef60f2
AJ
3541 ret = btrfs_read_qgroup_config(fs_info);
3542 if (ret)
3543 goto fail_trans_kthread;
21adbd5c 3544
fd708b81
JB
3545 if (btrfs_build_ref_tree(fs_info))
3546 btrfs_err(fs_info, "couldn't build ref tree");
3547
96da0919
QW
3548 /* do not make disk changes in broken FS or nologreplay is given */
3549 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3550 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3551 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3552 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3553 if (ret) {
63443bf5 3554 err = ret;
28c16cbb 3555 goto fail_qgroup;
79787eaa 3556 }
e02119d5 3557 }
1a40e23b 3558
56e9357a 3559 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3560 if (IS_ERR(fs_info->fs_root)) {
3561 err = PTR_ERR(fs_info->fs_root);
f50f4353 3562 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3563 fs_info->fs_root = NULL;
bcef60f2 3564 goto fail_qgroup;
3140c9a3 3565 }
c289811c 3566
bc98a42c 3567 if (sb_rdonly(sb))
8cd29088 3568 goto clear_oneshot;
59641015 3569
44c0ca21 3570 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3571 if (ret) {
6bccf3ab 3572 close_ctree(fs_info);
2b6ba629 3573 return ret;
e3acc2a6 3574 }
b0643e59 3575 btrfs_discard_resume(fs_info);
b382a324 3576
44c0ca21
BB
3577 if (fs_info->uuid_root &&
3578 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3579 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3580 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3581 ret = btrfs_check_uuid_tree(fs_info);
3582 if (ret) {
05135f59
DS
3583 btrfs_warn(fs_info,
3584 "failed to check the UUID tree: %d", ret);
6bccf3ab 3585 close_ctree(fs_info);
70f80175
SB
3586 return ret;
3587 }
f7a81ea4 3588 }
94846229 3589
afcdd129 3590 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3591
8cd29088
BB
3592clear_oneshot:
3593 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3594 return 0;
39279cc3 3595
bcef60f2
AJ
3596fail_qgroup:
3597 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3598fail_trans_kthread:
3599 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3600 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3601 btrfs_free_fs_roots(fs_info);
3f157a2f 3602fail_cleaner:
a74a4b97 3603 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3604
3605 /*
3606 * make sure we're done with the btree inode before we stop our
3607 * kthreads
3608 */
3609 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3610
2365dd3c 3611fail_sysfs:
6618a59b 3612 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3613
b7c35e81
AJ
3614fail_fsdev_sysfs:
3615 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3616
1b1d1f66 3617fail_block_groups:
54067ae9 3618 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3619
3620fail_tree_roots:
9e3aa805
JB
3621 if (fs_info->data_reloc_root)
3622 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3623 free_root_pointers(fs_info, true);
2b8195bb 3624 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3625
39279cc3 3626fail_sb_buffer:
7abadb64 3627 btrfs_stop_all_workers(fs_info);
5cdd7db6 3628 btrfs_free_block_groups(fs_info);
16cdcec7 3629fail_alloc:
586e46e2
ID
3630 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3631
4543df7e 3632 iput(fs_info->btree_inode);
7e662854 3633fail:
586e46e2 3634 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3635 return err;
eb60ceac 3636}
663faf9f 3637ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3638
314b6dd0 3639static void btrfs_end_super_write(struct bio *bio)
f2984462 3640{
314b6dd0
JT
3641 struct btrfs_device *device = bio->bi_private;
3642 struct bio_vec *bvec;
3643 struct bvec_iter_all iter_all;
3644 struct page *page;
3645
3646 bio_for_each_segment_all(bvec, bio, iter_all) {
3647 page = bvec->bv_page;
3648
3649 if (bio->bi_status) {
3650 btrfs_warn_rl_in_rcu(device->fs_info,
3651 "lost page write due to IO error on %s (%d)",
3652 rcu_str_deref(device->name),
3653 blk_status_to_errno(bio->bi_status));
3654 ClearPageUptodate(page);
3655 SetPageError(page);
3656 btrfs_dev_stat_inc_and_print(device,
3657 BTRFS_DEV_STAT_WRITE_ERRS);
3658 } else {
3659 SetPageUptodate(page);
3660 }
3661
3662 put_page(page);
3663 unlock_page(page);
f2984462 3664 }
314b6dd0
JT
3665
3666 bio_put(bio);
f2984462
CM
3667}
3668
8f32380d
JT
3669struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3670 int copy_num)
29c36d72 3671{
29c36d72 3672 struct btrfs_super_block *super;
8f32380d 3673 struct page *page;
12659251 3674 u64 bytenr, bytenr_orig;
8f32380d 3675 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3676 int ret;
3677
3678 bytenr_orig = btrfs_sb_offset(copy_num);
3679 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3680 if (ret == -ENOENT)
3681 return ERR_PTR(-EINVAL);
3682 else if (ret)
3683 return ERR_PTR(ret);
29c36d72 3684
29c36d72 3685 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3686 return ERR_PTR(-EINVAL);
29c36d72 3687
8f32380d
JT
3688 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3689 if (IS_ERR(page))
3690 return ERR_CAST(page);
29c36d72 3691
8f32380d 3692 super = page_address(page);
96c2e067
AJ
3693 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3694 btrfs_release_disk_super(super);
3695 return ERR_PTR(-ENODATA);
3696 }
3697
12659251 3698 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3699 btrfs_release_disk_super(super);
3700 return ERR_PTR(-EINVAL);
29c36d72
AJ
3701 }
3702
8f32380d 3703 return super;
29c36d72
AJ
3704}
3705
3706
8f32380d 3707struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3708{
8f32380d 3709 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3710 int i;
3711 u64 transid = 0;
a512bbf8
YZ
3712
3713 /* we would like to check all the supers, but that would make
3714 * a btrfs mount succeed after a mkfs from a different FS.
3715 * So, we need to add a special mount option to scan for
3716 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3717 */
3718 for (i = 0; i < 1; i++) {
8f32380d
JT
3719 super = btrfs_read_dev_one_super(bdev, i);
3720 if (IS_ERR(super))
a512bbf8
YZ
3721 continue;
3722
a512bbf8 3723 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3724 if (latest)
3725 btrfs_release_disk_super(super);
3726
3727 latest = super;
a512bbf8 3728 transid = btrfs_super_generation(super);
a512bbf8
YZ
3729 }
3730 }
92fc03fb 3731
8f32380d 3732 return super;
a512bbf8
YZ
3733}
3734
4eedeb75 3735/*
abbb3b8e 3736 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3737 * pages we use for writing are locked.
4eedeb75 3738 *
abbb3b8e
DS
3739 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3740 * the expected device size at commit time. Note that max_mirrors must be
3741 * same for write and wait phases.
4eedeb75 3742 *
314b6dd0 3743 * Return number of errors when page is not found or submission fails.
4eedeb75 3744 */
a512bbf8 3745static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3746 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3747{
d5178578 3748 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3749 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3750 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3751 int i;
a512bbf8 3752 int errors = 0;
12659251
NA
3753 int ret;
3754 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3755
3756 if (max_mirrors == 0)
3757 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3758
d5178578
JT
3759 shash->tfm = fs_info->csum_shash;
3760
a512bbf8 3761 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3762 struct page *page;
3763 struct bio *bio;
3764 struct btrfs_super_block *disk_super;
3765
12659251
NA
3766 bytenr_orig = btrfs_sb_offset(i);
3767 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3768 if (ret == -ENOENT) {
3769 continue;
3770 } else if (ret < 0) {
3771 btrfs_err(device->fs_info,
3772 "couldn't get super block location for mirror %d",
3773 i);
3774 errors++;
3775 continue;
3776 }
935e5cc9
MX
3777 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3778 device->commit_total_bytes)
a512bbf8
YZ
3779 break;
3780
12659251 3781 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3782
fd08001f
EB
3783 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3784 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3785 sb->csum);
4eedeb75 3786
314b6dd0
JT
3787 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3788 GFP_NOFS);
3789 if (!page) {
abbb3b8e 3790 btrfs_err(device->fs_info,
314b6dd0 3791 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3792 bytenr);
3793 errors++;
4eedeb75 3794 continue;
abbb3b8e 3795 }
634554dc 3796
314b6dd0
JT
3797 /* Bump the refcount for wait_dev_supers() */
3798 get_page(page);
a512bbf8 3799
314b6dd0
JT
3800 disk_super = page_address(page);
3801 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3802
314b6dd0
JT
3803 /*
3804 * Directly use bios here instead of relying on the page cache
3805 * to do I/O, so we don't lose the ability to do integrity
3806 * checking.
3807 */
3808 bio = bio_alloc(GFP_NOFS, 1);
3809 bio_set_dev(bio, device->bdev);
3810 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3811 bio->bi_private = device;
3812 bio->bi_end_io = btrfs_end_super_write;
3813 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3814 offset_in_page(bytenr));
a512bbf8 3815
387125fc 3816 /*
314b6dd0
JT
3817 * We FUA only the first super block. The others we allow to
3818 * go down lazy and there's a short window where the on-disk
3819 * copies might still contain the older version.
387125fc 3820 */
314b6dd0 3821 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3822 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3823 bio->bi_opf |= REQ_FUA;
3824
3825 btrfsic_submit_bio(bio);
12659251 3826 btrfs_advance_sb_log(device, i);
a512bbf8
YZ
3827 }
3828 return errors < i ? 0 : -1;
3829}
3830
abbb3b8e
DS
3831/*
3832 * Wait for write completion of superblocks done by write_dev_supers,
3833 * @max_mirrors same for write and wait phases.
3834 *
314b6dd0 3835 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3836 * date.
3837 */
3838static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3839{
abbb3b8e
DS
3840 int i;
3841 int errors = 0;
b6a535fa 3842 bool primary_failed = false;
12659251 3843 int ret;
abbb3b8e
DS
3844 u64 bytenr;
3845
3846 if (max_mirrors == 0)
3847 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3848
3849 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3850 struct page *page;
3851
12659251
NA
3852 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3853 if (ret == -ENOENT) {
3854 break;
3855 } else if (ret < 0) {
3856 errors++;
3857 if (i == 0)
3858 primary_failed = true;
3859 continue;
3860 }
abbb3b8e
DS
3861 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3862 device->commit_total_bytes)
3863 break;
3864
314b6dd0
JT
3865 page = find_get_page(device->bdev->bd_inode->i_mapping,
3866 bytenr >> PAGE_SHIFT);
3867 if (!page) {
abbb3b8e 3868 errors++;
b6a535fa
HM
3869 if (i == 0)
3870 primary_failed = true;
abbb3b8e
DS
3871 continue;
3872 }
314b6dd0
JT
3873 /* Page is submitted locked and unlocked once the IO completes */
3874 wait_on_page_locked(page);
3875 if (PageError(page)) {
abbb3b8e 3876 errors++;
b6a535fa
HM
3877 if (i == 0)
3878 primary_failed = true;
3879 }
abbb3b8e 3880
314b6dd0
JT
3881 /* Drop our reference */
3882 put_page(page);
abbb3b8e 3883
314b6dd0
JT
3884 /* Drop the reference from the writing run */
3885 put_page(page);
abbb3b8e
DS
3886 }
3887
b6a535fa
HM
3888 /* log error, force error return */
3889 if (primary_failed) {
3890 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3891 device->devid);
3892 return -1;
3893 }
3894
abbb3b8e
DS
3895 return errors < i ? 0 : -1;
3896}
3897
387125fc
CM
3898/*
3899 * endio for the write_dev_flush, this will wake anyone waiting
3900 * for the barrier when it is done
3901 */
4246a0b6 3902static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3903{
e0ae9994 3904 complete(bio->bi_private);
387125fc
CM
3905}
3906
3907/*
4fc6441a
AJ
3908 * Submit a flush request to the device if it supports it. Error handling is
3909 * done in the waiting counterpart.
387125fc 3910 */
4fc6441a 3911static void write_dev_flush(struct btrfs_device *device)
387125fc 3912{
c2a9c7ab 3913 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3914 struct bio *bio = device->flush_bio;
387125fc 3915
c2a9c7ab 3916 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3917 return;
387125fc 3918
e0ae9994 3919 bio_reset(bio);
387125fc 3920 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3921 bio_set_dev(bio, device->bdev);
8d910125 3922 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3923 init_completion(&device->flush_wait);
3924 bio->bi_private = &device->flush_wait;
387125fc 3925
43a01111 3926 btrfsic_submit_bio(bio);
1c3063b6 3927 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3928}
387125fc 3929
4fc6441a
AJ
3930/*
3931 * If the flush bio has been submitted by write_dev_flush, wait for it.
3932 */
8c27cb35 3933static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3934{
4fc6441a 3935 struct bio *bio = device->flush_bio;
387125fc 3936
1c3063b6 3937 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3938 return BLK_STS_OK;
387125fc 3939
1c3063b6 3940 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3941 wait_for_completion_io(&device->flush_wait);
387125fc 3942
8c27cb35 3943 return bio->bi_status;
387125fc 3944}
387125fc 3945
d10b82fe 3946static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3947{
6528b99d 3948 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3949 return -EIO;
387125fc
CM
3950 return 0;
3951}
3952
3953/*
3954 * send an empty flush down to each device in parallel,
3955 * then wait for them
3956 */
3957static int barrier_all_devices(struct btrfs_fs_info *info)
3958{
3959 struct list_head *head;
3960 struct btrfs_device *dev;
5af3e8cc 3961 int errors_wait = 0;
4e4cbee9 3962 blk_status_t ret;
387125fc 3963
1538e6c5 3964 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3965 /* send down all the barriers */
3966 head = &info->fs_devices->devices;
1538e6c5 3967 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3968 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3969 continue;
cea7c8bf 3970 if (!dev->bdev)
387125fc 3971 continue;
e12c9621 3972 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3973 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3974 continue;
3975
4fc6441a 3976 write_dev_flush(dev);
58efbc9f 3977 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3978 }
3979
3980 /* wait for all the barriers */
1538e6c5 3981 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3982 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3983 continue;
387125fc 3984 if (!dev->bdev) {
5af3e8cc 3985 errors_wait++;
387125fc
CM
3986 continue;
3987 }
e12c9621 3988 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3989 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3990 continue;
3991
4fc6441a 3992 ret = wait_dev_flush(dev);
401b41e5
AJ
3993 if (ret) {
3994 dev->last_flush_error = ret;
66b4993e
DS
3995 btrfs_dev_stat_inc_and_print(dev,
3996 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3997 errors_wait++;
401b41e5
AJ
3998 }
3999 }
4000
cea7c8bf 4001 if (errors_wait) {
401b41e5
AJ
4002 /*
4003 * At some point we need the status of all disks
4004 * to arrive at the volume status. So error checking
4005 * is being pushed to a separate loop.
4006 */
d10b82fe 4007 return check_barrier_error(info);
387125fc 4008 }
387125fc
CM
4009 return 0;
4010}
4011
943c6e99
ZL
4012int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4013{
8789f4fe
ZL
4014 int raid_type;
4015 int min_tolerated = INT_MAX;
943c6e99 4016
8789f4fe
ZL
4017 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4018 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4019 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4020 btrfs_raid_array[BTRFS_RAID_SINGLE].
4021 tolerated_failures);
943c6e99 4022
8789f4fe
ZL
4023 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4024 if (raid_type == BTRFS_RAID_SINGLE)
4025 continue;
41a6e891 4026 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4027 continue;
8c3e3582 4028 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4029 btrfs_raid_array[raid_type].
4030 tolerated_failures);
4031 }
943c6e99 4032
8789f4fe 4033 if (min_tolerated == INT_MAX) {
ab8d0fc4 4034 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4035 min_tolerated = 0;
4036 }
4037
4038 return min_tolerated;
943c6e99
ZL
4039}
4040
eece6a9c 4041int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4042{
e5e9a520 4043 struct list_head *head;
f2984462 4044 struct btrfs_device *dev;
a061fc8d 4045 struct btrfs_super_block *sb;
f2984462 4046 struct btrfs_dev_item *dev_item;
f2984462
CM
4047 int ret;
4048 int do_barriers;
a236aed1
CM
4049 int max_errors;
4050 int total_errors = 0;
a061fc8d 4051 u64 flags;
f2984462 4052
0b246afa 4053 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4054
4055 /*
4056 * max_mirrors == 0 indicates we're from commit_transaction,
4057 * not from fsync where the tree roots in fs_info have not
4058 * been consistent on disk.
4059 */
4060 if (max_mirrors == 0)
4061 backup_super_roots(fs_info);
f2984462 4062
0b246afa 4063 sb = fs_info->super_for_commit;
a061fc8d 4064 dev_item = &sb->dev_item;
e5e9a520 4065
0b246afa
JM
4066 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4067 head = &fs_info->fs_devices->devices;
4068 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4069
5af3e8cc 4070 if (do_barriers) {
0b246afa 4071 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4072 if (ret) {
4073 mutex_unlock(
0b246afa
JM
4074 &fs_info->fs_devices->device_list_mutex);
4075 btrfs_handle_fs_error(fs_info, ret,
4076 "errors while submitting device barriers.");
5af3e8cc
SB
4077 return ret;
4078 }
4079 }
387125fc 4080
1538e6c5 4081 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4082 if (!dev->bdev) {
4083 total_errors++;
4084 continue;
4085 }
e12c9621 4086 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4087 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4088 continue;
4089
2b82032c 4090 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4091 btrfs_set_stack_device_type(dev_item, dev->type);
4092 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4093 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4094 dev->commit_total_bytes);
ce7213c7
MX
4095 btrfs_set_stack_device_bytes_used(dev_item,
4096 dev->commit_bytes_used);
a061fc8d
CM
4097 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4098 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4099 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4100 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4101 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4102 BTRFS_FSID_SIZE);
a512bbf8 4103
a061fc8d
CM
4104 flags = btrfs_super_flags(sb);
4105 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4106
75cb857d
QW
4107 ret = btrfs_validate_write_super(fs_info, sb);
4108 if (ret < 0) {
4109 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4110 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4111 "unexpected superblock corruption detected");
4112 return -EUCLEAN;
4113 }
4114
abbb3b8e 4115 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4116 if (ret)
4117 total_errors++;
f2984462 4118 }
a236aed1 4119 if (total_errors > max_errors) {
0b246afa
JM
4120 btrfs_err(fs_info, "%d errors while writing supers",
4121 total_errors);
4122 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4123
9d565ba4 4124 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4125 btrfs_handle_fs_error(fs_info, -EIO,
4126 "%d errors while writing supers",
4127 total_errors);
9d565ba4 4128 return -EIO;
a236aed1 4129 }
f2984462 4130
a512bbf8 4131 total_errors = 0;
1538e6c5 4132 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4133 if (!dev->bdev)
4134 continue;
e12c9621 4135 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4136 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4137 continue;
4138
abbb3b8e 4139 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4140 if (ret)
4141 total_errors++;
f2984462 4142 }
0b246afa 4143 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4144 if (total_errors > max_errors) {
0b246afa
JM
4145 btrfs_handle_fs_error(fs_info, -EIO,
4146 "%d errors while writing supers",
4147 total_errors);
79787eaa 4148 return -EIO;
a236aed1 4149 }
f2984462
CM
4150 return 0;
4151}
4152
cb517eab
MX
4153/* Drop a fs root from the radix tree and free it. */
4154void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4155 struct btrfs_root *root)
2619ba1f 4156{
4785e24f
JB
4157 bool drop_ref = false;
4158
4df27c4d 4159 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
4160 radix_tree_delete(&fs_info->fs_roots_radix,
4161 (unsigned long)root->root_key.objectid);
af01d2e5 4162 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4163 drop_ref = true;
4df27c4d 4164 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4165
1c1ea4f7 4166 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 4167 ASSERT(root->log_root == NULL);
1c1ea4f7 4168 if (root->reloc_root) {
00246528 4169 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4170 root->reloc_root = NULL;
4171 }
4172 }
3321719e 4173
4785e24f
JB
4174 if (drop_ref)
4175 btrfs_put_root(root);
2619ba1f
CM
4176}
4177
c146afad 4178int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4179{
c146afad
YZ
4180 u64 root_objectid = 0;
4181 struct btrfs_root *gang[8];
65d33fd7
QW
4182 int i = 0;
4183 int err = 0;
4184 unsigned int ret = 0;
e089f05c 4185
c146afad 4186 while (1) {
efc34534 4187 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
4188 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4189 (void **)gang, root_objectid,
4190 ARRAY_SIZE(gang));
65d33fd7 4191 if (!ret) {
efc34534 4192 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 4193 break;
65d33fd7 4194 }
5d4f98a2 4195 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4196
c146afad 4197 for (i = 0; i < ret; i++) {
65d33fd7
QW
4198 /* Avoid to grab roots in dead_roots */
4199 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4200 gang[i] = NULL;
4201 continue;
4202 }
4203 /* grab all the search result for later use */
00246528 4204 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4205 }
efc34534 4206 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4207
65d33fd7
QW
4208 for (i = 0; i < ret; i++) {
4209 if (!gang[i])
4210 continue;
c146afad 4211 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4212 err = btrfs_orphan_cleanup(gang[i]);
4213 if (err)
65d33fd7 4214 break;
00246528 4215 btrfs_put_root(gang[i]);
c146afad
YZ
4216 }
4217 root_objectid++;
4218 }
65d33fd7
QW
4219
4220 /* release the uncleaned roots due to error */
4221 for (; i < ret; i++) {
4222 if (gang[i])
00246528 4223 btrfs_put_root(gang[i]);
65d33fd7
QW
4224 }
4225 return err;
c146afad 4226}
a2135011 4227
6bccf3ab 4228int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4229{
6bccf3ab 4230 struct btrfs_root *root = fs_info->tree_root;
c146afad 4231 struct btrfs_trans_handle *trans;
a74a4b97 4232
0b246afa 4233 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4234 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4235 mutex_unlock(&fs_info->cleaner_mutex);
4236 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4237
4238 /* wait until ongoing cleanup work done */
0b246afa
JM
4239 down_write(&fs_info->cleanup_work_sem);
4240 up_write(&fs_info->cleanup_work_sem);
c71bf099 4241
7a7eaa40 4242 trans = btrfs_join_transaction(root);
3612b495
TI
4243 if (IS_ERR(trans))
4244 return PTR_ERR(trans);
3a45bb20 4245 return btrfs_commit_transaction(trans);
c146afad
YZ
4246}
4247
b105e927 4248void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4249{
c146afad
YZ
4250 int ret;
4251
afcdd129 4252 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4253 /*
4254 * We don't want the cleaner to start new transactions, add more delayed
4255 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4256 * because that frees the task_struct, and the transaction kthread might
4257 * still try to wake up the cleaner.
4258 */
4259 kthread_park(fs_info->cleaner_kthread);
c146afad 4260
7343dd61 4261 /* wait for the qgroup rescan worker to stop */
d06f23d6 4262 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4263
803b2f54
SB
4264 /* wait for the uuid_scan task to finish */
4265 down(&fs_info->uuid_tree_rescan_sem);
4266 /* avoid complains from lockdep et al., set sem back to initial state */
4267 up(&fs_info->uuid_tree_rescan_sem);
4268
837d5b6e 4269 /* pause restriper - we want to resume on mount */
aa1b8cd4 4270 btrfs_pause_balance(fs_info);
837d5b6e 4271
8dabb742
SB
4272 btrfs_dev_replace_suspend_for_unmount(fs_info);
4273
aa1b8cd4 4274 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4275
4276 /* wait for any defraggers to finish */
4277 wait_event(fs_info->transaction_wait,
4278 (atomic_read(&fs_info->defrag_running) == 0));
4279
4280 /* clear out the rbtree of defraggable inodes */
26176e7c 4281 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4282
21c7e756 4283 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4284 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4285 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4286
b0643e59
DZ
4287 /* Cancel or finish ongoing discard work */
4288 btrfs_discard_cleanup(fs_info);
4289
bc98a42c 4290 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4291 /*
d6fd0ae2
OS
4292 * The cleaner kthread is stopped, so do one final pass over
4293 * unused block groups.
e44163e1 4294 */
0b246afa 4295 btrfs_delete_unused_bgs(fs_info);
e44163e1 4296
f0cc2cd7
FM
4297 /*
4298 * There might be existing delayed inode workers still running
4299 * and holding an empty delayed inode item. We must wait for
4300 * them to complete first because they can create a transaction.
4301 * This happens when someone calls btrfs_balance_delayed_items()
4302 * and then a transaction commit runs the same delayed nodes
4303 * before any delayed worker has done something with the nodes.
4304 * We must wait for any worker here and not at transaction
4305 * commit time since that could cause a deadlock.
4306 * This is a very rare case.
4307 */
4308 btrfs_flush_workqueue(fs_info->delayed_workers);
4309
6bccf3ab 4310 ret = btrfs_commit_super(fs_info);
acce952b 4311 if (ret)
04892340 4312 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4313 }
4314
af722733
LB
4315 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4316 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4317 btrfs_error_commit_super(fs_info);
0f7d52f4 4318
e3029d9f
AV
4319 kthread_stop(fs_info->transaction_kthread);
4320 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4321
e187831e 4322 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4323 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4324
5958253c
QW
4325 if (btrfs_check_quota_leak(fs_info)) {
4326 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4327 btrfs_err(fs_info, "qgroup reserved space leaked");
4328 }
4329
04892340 4330 btrfs_free_qgroup_config(fs_info);
fe816d0f 4331 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4332
963d678b 4333 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4334 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4335 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4336 }
bcc63abb 4337
5deb17e1 4338 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4339 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4340 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4341
6618a59b 4342 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4343 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4344
1a4319cc
LB
4345 btrfs_put_block_group_cache(fs_info);
4346
de348ee0
WS
4347 /*
4348 * we must make sure there is not any read request to
4349 * submit after we stopping all workers.
4350 */
4351 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4352 btrfs_stop_all_workers(fs_info);
4353
0a31daa4
FM
4354 /* We shouldn't have any transaction open at this point */
4355 ASSERT(list_empty(&fs_info->trans_list));
4356
afcdd129 4357 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4358 free_root_pointers(fs_info, true);
8c38938c 4359 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4360
4e19443d
JB
4361 /*
4362 * We must free the block groups after dropping the fs_roots as we could
4363 * have had an IO error and have left over tree log blocks that aren't
4364 * cleaned up until the fs roots are freed. This makes the block group
4365 * accounting appear to be wrong because there's pending reserved bytes,
4366 * so make sure we do the block group cleanup afterwards.
4367 */
4368 btrfs_free_block_groups(fs_info);
4369
13e6c37b 4370 iput(fs_info->btree_inode);
d6bfde87 4371
21adbd5c 4372#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4373 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4374 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4375#endif
4376
0b86a832 4377 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4378 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4379}
4380
b9fab919
CM
4381int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4382 int atomic)
5f39d397 4383{
1259ab75 4384 int ret;
727011e0 4385 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4386
0b32f4bb 4387 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4388 if (!ret)
4389 return ret;
4390
4391 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4392 parent_transid, atomic);
4393 if (ret == -EAGAIN)
4394 return ret;
1259ab75 4395 return !ret;
5f39d397
CM
4396}
4397
5f39d397
CM
4398void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4399{
2f4d60df 4400 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4401 u64 transid = btrfs_header_generation(buf);
b9473439 4402 int was_dirty;
b4ce94de 4403
06ea65a3
JB
4404#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4405 /*
4406 * This is a fast path so only do this check if we have sanity tests
52042d8e 4407 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4408 * outside of the sanity tests.
4409 */
b0132a3b 4410 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4411 return;
4412#endif
b9447ef8 4413 btrfs_assert_tree_locked(buf);
0b246afa 4414 if (transid != fs_info->generation)
5d163e0e 4415 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4416 buf->start, transid, fs_info->generation);
0b32f4bb 4417 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4418 if (!was_dirty)
104b4e51
NB
4419 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4420 buf->len,
4421 fs_info->dirty_metadata_batch);
1f21ef0a 4422#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4423 /*
4424 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4425 * but item data not updated.
4426 * So here we should only check item pointers, not item data.
4427 */
4428 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4429 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4430 btrfs_print_leaf(buf);
1f21ef0a
FM
4431 ASSERT(0);
4432 }
4433#endif
eb60ceac
CM
4434}
4435
2ff7e61e 4436static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4437 int flush_delayed)
16cdcec7
MX
4438{
4439 /*
4440 * looks as though older kernels can get into trouble with
4441 * this code, they end up stuck in balance_dirty_pages forever
4442 */
e2d84521 4443 int ret;
16cdcec7
MX
4444
4445 if (current->flags & PF_MEMALLOC)
4446 return;
4447
b53d3f5d 4448 if (flush_delayed)
2ff7e61e 4449 btrfs_balance_delayed_items(fs_info);
16cdcec7 4450
d814a491
EL
4451 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4452 BTRFS_DIRTY_METADATA_THRESH,
4453 fs_info->dirty_metadata_batch);
e2d84521 4454 if (ret > 0) {
0b246afa 4455 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4456 }
16cdcec7
MX
4457}
4458
2ff7e61e 4459void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4460{
2ff7e61e 4461 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4462}
585ad2c3 4463
2ff7e61e 4464void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4465{
2ff7e61e 4466 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4467}
6b80053d 4468
581c1760
QW
4469int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4470 struct btrfs_key *first_key)
6b80053d 4471{
5ab12d1f 4472 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4473 level, first_key);
6b80053d 4474}
0da5468f 4475
2ff7e61e 4476static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4477{
fe816d0f
NB
4478 /* cleanup FS via transaction */
4479 btrfs_cleanup_transaction(fs_info);
4480
0b246afa 4481 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4482 btrfs_run_delayed_iputs(fs_info);
0b246afa 4483 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4484
0b246afa
JM
4485 down_write(&fs_info->cleanup_work_sem);
4486 up_write(&fs_info->cleanup_work_sem);
acce952b 4487}
4488
ef67963d
JB
4489static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4490{
4491 struct btrfs_root *gang[8];
4492 u64 root_objectid = 0;
4493 int ret;
4494
4495 spin_lock(&fs_info->fs_roots_radix_lock);
4496 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4497 (void **)gang, root_objectid,
4498 ARRAY_SIZE(gang))) != 0) {
4499 int i;
4500
4501 for (i = 0; i < ret; i++)
4502 gang[i] = btrfs_grab_root(gang[i]);
4503 spin_unlock(&fs_info->fs_roots_radix_lock);
4504
4505 for (i = 0; i < ret; i++) {
4506 if (!gang[i])
4507 continue;
4508 root_objectid = gang[i]->root_key.objectid;
4509 btrfs_free_log(NULL, gang[i]);
4510 btrfs_put_root(gang[i]);
4511 }
4512 root_objectid++;
4513 spin_lock(&fs_info->fs_roots_radix_lock);
4514 }
4515 spin_unlock(&fs_info->fs_roots_radix_lock);
4516 btrfs_free_log_root_tree(NULL, fs_info);
4517}
4518
143bede5 4519static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4520{
acce952b 4521 struct btrfs_ordered_extent *ordered;
acce952b 4522
199c2a9c 4523 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4524 /*
4525 * This will just short circuit the ordered completion stuff which will
4526 * make sure the ordered extent gets properly cleaned up.
4527 */
199c2a9c 4528 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4529 root_extent_list)
4530 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4531 spin_unlock(&root->ordered_extent_lock);
4532}
4533
4534static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4535{
4536 struct btrfs_root *root;
4537 struct list_head splice;
4538
4539 INIT_LIST_HEAD(&splice);
4540
4541 spin_lock(&fs_info->ordered_root_lock);
4542 list_splice_init(&fs_info->ordered_roots, &splice);
4543 while (!list_empty(&splice)) {
4544 root = list_first_entry(&splice, struct btrfs_root,
4545 ordered_root);
1de2cfde
JB
4546 list_move_tail(&root->ordered_root,
4547 &fs_info->ordered_roots);
199c2a9c 4548
2a85d9ca 4549 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4550 btrfs_destroy_ordered_extents(root);
4551
2a85d9ca
LB
4552 cond_resched();
4553 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4554 }
4555 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4556
4557 /*
4558 * We need this here because if we've been flipped read-only we won't
4559 * get sync() from the umount, so we need to make sure any ordered
4560 * extents that haven't had their dirty pages IO start writeout yet
4561 * actually get run and error out properly.
4562 */
4563 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4564}
4565
35a3621b 4566static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4567 struct btrfs_fs_info *fs_info)
acce952b 4568{
4569 struct rb_node *node;
4570 struct btrfs_delayed_ref_root *delayed_refs;
4571 struct btrfs_delayed_ref_node *ref;
4572 int ret = 0;
4573
4574 delayed_refs = &trans->delayed_refs;
4575
4576 spin_lock(&delayed_refs->lock);
d7df2c79 4577 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4578 spin_unlock(&delayed_refs->lock);
b79ce3dd 4579 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4580 return ret;
4581 }
4582
5c9d028b 4583 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4584 struct btrfs_delayed_ref_head *head;
0e0adbcf 4585 struct rb_node *n;
e78417d1 4586 bool pin_bytes = false;
acce952b 4587
d7df2c79
JB
4588 head = rb_entry(node, struct btrfs_delayed_ref_head,
4589 href_node);
3069bd26 4590 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4591 continue;
3069bd26 4592
d7df2c79 4593 spin_lock(&head->lock);
e3d03965 4594 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4595 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4596 ref_node);
d7df2c79 4597 ref->in_tree = 0;
e3d03965 4598 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4599 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4600 if (!list_empty(&ref->add_list))
4601 list_del(&ref->add_list);
d7df2c79
JB
4602 atomic_dec(&delayed_refs->num_entries);
4603 btrfs_put_delayed_ref(ref);
e78417d1 4604 }
d7df2c79
JB
4605 if (head->must_insert_reserved)
4606 pin_bytes = true;
4607 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4608 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4609 spin_unlock(&head->lock);
4610 spin_unlock(&delayed_refs->lock);
4611 mutex_unlock(&head->mutex);
acce952b 4612
f603bb94
NB
4613 if (pin_bytes) {
4614 struct btrfs_block_group *cache;
4615
4616 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4617 BUG_ON(!cache);
4618
4619 spin_lock(&cache->space_info->lock);
4620 spin_lock(&cache->lock);
4621 cache->pinned += head->num_bytes;
4622 btrfs_space_info_update_bytes_pinned(fs_info,
4623 cache->space_info, head->num_bytes);
4624 cache->reserved -= head->num_bytes;
4625 cache->space_info->bytes_reserved -= head->num_bytes;
4626 spin_unlock(&cache->lock);
4627 spin_unlock(&cache->space_info->lock);
4628 percpu_counter_add_batch(
4629 &cache->space_info->total_bytes_pinned,
4630 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4631
4632 btrfs_put_block_group(cache);
4633
4634 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4635 head->bytenr + head->num_bytes - 1);
4636 }
31890da0 4637 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4638 btrfs_put_delayed_ref_head(head);
acce952b 4639 cond_resched();
4640 spin_lock(&delayed_refs->lock);
4641 }
81f7eb00 4642 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4643
4644 spin_unlock(&delayed_refs->lock);
4645
4646 return ret;
4647}
4648
143bede5 4649static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4650{
4651 struct btrfs_inode *btrfs_inode;
4652 struct list_head splice;
4653
4654 INIT_LIST_HEAD(&splice);
4655
eb73c1b7
MX
4656 spin_lock(&root->delalloc_lock);
4657 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4658
4659 while (!list_empty(&splice)) {
fe816d0f 4660 struct inode *inode = NULL;
eb73c1b7
MX
4661 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4662 delalloc_inodes);
fe816d0f 4663 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4664 spin_unlock(&root->delalloc_lock);
acce952b 4665
fe816d0f
NB
4666 /*
4667 * Make sure we get a live inode and that it'll not disappear
4668 * meanwhile.
4669 */
4670 inode = igrab(&btrfs_inode->vfs_inode);
4671 if (inode) {
4672 invalidate_inode_pages2(inode->i_mapping);
4673 iput(inode);
4674 }
eb73c1b7 4675 spin_lock(&root->delalloc_lock);
acce952b 4676 }
eb73c1b7
MX
4677 spin_unlock(&root->delalloc_lock);
4678}
4679
4680static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4681{
4682 struct btrfs_root *root;
4683 struct list_head splice;
4684
4685 INIT_LIST_HEAD(&splice);
4686
4687 spin_lock(&fs_info->delalloc_root_lock);
4688 list_splice_init(&fs_info->delalloc_roots, &splice);
4689 while (!list_empty(&splice)) {
4690 root = list_first_entry(&splice, struct btrfs_root,
4691 delalloc_root);
00246528 4692 root = btrfs_grab_root(root);
eb73c1b7
MX
4693 BUG_ON(!root);
4694 spin_unlock(&fs_info->delalloc_root_lock);
4695
4696 btrfs_destroy_delalloc_inodes(root);
00246528 4697 btrfs_put_root(root);
eb73c1b7
MX
4698
4699 spin_lock(&fs_info->delalloc_root_lock);
4700 }
4701 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4702}
4703
2ff7e61e 4704static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4705 struct extent_io_tree *dirty_pages,
4706 int mark)
4707{
4708 int ret;
acce952b 4709 struct extent_buffer *eb;
4710 u64 start = 0;
4711 u64 end;
acce952b 4712
4713 while (1) {
4714 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4715 mark, NULL);
acce952b 4716 if (ret)
4717 break;
4718
91166212 4719 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4720 while (start <= end) {
0b246afa
JM
4721 eb = find_extent_buffer(fs_info, start);
4722 start += fs_info->nodesize;
fd8b2b61 4723 if (!eb)
acce952b 4724 continue;
fd8b2b61 4725 wait_on_extent_buffer_writeback(eb);
acce952b 4726
fd8b2b61
JB
4727 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4728 &eb->bflags))
4729 clear_extent_buffer_dirty(eb);
4730 free_extent_buffer_stale(eb);
acce952b 4731 }
4732 }
4733
4734 return ret;
4735}
4736
2ff7e61e 4737static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4738 struct extent_io_tree *unpin)
acce952b 4739{
acce952b 4740 u64 start;
4741 u64 end;
4742 int ret;
4743
acce952b 4744 while (1) {
0e6ec385
FM
4745 struct extent_state *cached_state = NULL;
4746
fcd5e742
LF
4747 /*
4748 * The btrfs_finish_extent_commit() may get the same range as
4749 * ours between find_first_extent_bit and clear_extent_dirty.
4750 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4751 * the same extent range.
4752 */
4753 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4754 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4755 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4756 if (ret) {
4757 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4758 break;
fcd5e742 4759 }
acce952b 4760
0e6ec385
FM
4761 clear_extent_dirty(unpin, start, end, &cached_state);
4762 free_extent_state(cached_state);
2ff7e61e 4763 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4764 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4765 cond_resched();
4766 }
4767
4768 return 0;
4769}
4770
32da5386 4771static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4772{
4773 struct inode *inode;
4774
4775 inode = cache->io_ctl.inode;
4776 if (inode) {
4777 invalidate_inode_pages2(inode->i_mapping);
4778 BTRFS_I(inode)->generation = 0;
4779 cache->io_ctl.inode = NULL;
4780 iput(inode);
4781 }
bbc37d6e 4782 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4783 btrfs_put_block_group(cache);
4784}
4785
4786void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4787 struct btrfs_fs_info *fs_info)
c79a1751 4788{
32da5386 4789 struct btrfs_block_group *cache;
c79a1751
LB
4790
4791 spin_lock(&cur_trans->dirty_bgs_lock);
4792 while (!list_empty(&cur_trans->dirty_bgs)) {
4793 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4794 struct btrfs_block_group,
c79a1751 4795 dirty_list);
c79a1751
LB
4796
4797 if (!list_empty(&cache->io_list)) {
4798 spin_unlock(&cur_trans->dirty_bgs_lock);
4799 list_del_init(&cache->io_list);
4800 btrfs_cleanup_bg_io(cache);
4801 spin_lock(&cur_trans->dirty_bgs_lock);
4802 }
4803
4804 list_del_init(&cache->dirty_list);
4805 spin_lock(&cache->lock);
4806 cache->disk_cache_state = BTRFS_DC_ERROR;
4807 spin_unlock(&cache->lock);
4808
4809 spin_unlock(&cur_trans->dirty_bgs_lock);
4810 btrfs_put_block_group(cache);
ba2c4d4e 4811 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4812 spin_lock(&cur_trans->dirty_bgs_lock);
4813 }
4814 spin_unlock(&cur_trans->dirty_bgs_lock);
4815
45ae2c18
NB
4816 /*
4817 * Refer to the definition of io_bgs member for details why it's safe
4818 * to use it without any locking
4819 */
c79a1751
LB
4820 while (!list_empty(&cur_trans->io_bgs)) {
4821 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4822 struct btrfs_block_group,
c79a1751 4823 io_list);
c79a1751
LB
4824
4825 list_del_init(&cache->io_list);
4826 spin_lock(&cache->lock);
4827 cache->disk_cache_state = BTRFS_DC_ERROR;
4828 spin_unlock(&cache->lock);
4829 btrfs_cleanup_bg_io(cache);
4830 }
4831}
4832
49b25e05 4833void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4834 struct btrfs_fs_info *fs_info)
49b25e05 4835{
bbbf7243
NB
4836 struct btrfs_device *dev, *tmp;
4837
2ff7e61e 4838 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4839 ASSERT(list_empty(&cur_trans->dirty_bgs));
4840 ASSERT(list_empty(&cur_trans->io_bgs));
4841
bbbf7243
NB
4842 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4843 post_commit_list) {
4844 list_del_init(&dev->post_commit_list);
4845 }
4846
2ff7e61e 4847 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4848
4a9d8bde 4849 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4850 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4851
4a9d8bde 4852 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4853 wake_up(&fs_info->transaction_wait);
49b25e05 4854
ccdf9b30 4855 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4856
2ff7e61e 4857 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4858 EXTENT_DIRTY);
fe119a6e 4859 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4860
d3575156
NA
4861 btrfs_free_redirty_list(cur_trans);
4862
4a9d8bde
MX
4863 cur_trans->state =TRANS_STATE_COMPLETED;
4864 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4865}
4866
2ff7e61e 4867static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4868{
4869 struct btrfs_transaction *t;
acce952b 4870
0b246afa 4871 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4872
0b246afa
JM
4873 spin_lock(&fs_info->trans_lock);
4874 while (!list_empty(&fs_info->trans_list)) {
4875 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4876 struct btrfs_transaction, list);
4877 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4878 refcount_inc(&t->use_count);
0b246afa 4879 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4880 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4881 btrfs_put_transaction(t);
0b246afa 4882 spin_lock(&fs_info->trans_lock);
724e2315
JB
4883 continue;
4884 }
0b246afa 4885 if (t == fs_info->running_transaction) {
724e2315 4886 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4887 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4888 /*
4889 * We wait for 0 num_writers since we don't hold a trans
4890 * handle open currently for this transaction.
4891 */
4892 wait_event(t->writer_wait,
4893 atomic_read(&t->num_writers) == 0);
4894 } else {
0b246afa 4895 spin_unlock(&fs_info->trans_lock);
724e2315 4896 }
2ff7e61e 4897 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4898
0b246afa
JM
4899 spin_lock(&fs_info->trans_lock);
4900 if (t == fs_info->running_transaction)
4901 fs_info->running_transaction = NULL;
acce952b 4902 list_del_init(&t->list);
0b246afa 4903 spin_unlock(&fs_info->trans_lock);
acce952b 4904
724e2315 4905 btrfs_put_transaction(t);
2ff7e61e 4906 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4907 spin_lock(&fs_info->trans_lock);
724e2315 4908 }
0b246afa
JM
4909 spin_unlock(&fs_info->trans_lock);
4910 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4911 btrfs_destroy_delayed_inodes(fs_info);
4912 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4913 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4914 btrfs_drop_all_logs(fs_info);
0b246afa 4915 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4916
4917 return 0;
4918}
ec7d6dfd 4919
453e4873 4920int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
4921{
4922 struct btrfs_path *path;
4923 int ret;
4924 struct extent_buffer *l;
4925 struct btrfs_key search_key;
4926 struct btrfs_key found_key;
4927 int slot;
4928
4929 path = btrfs_alloc_path();
4930 if (!path)
4931 return -ENOMEM;
4932
4933 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4934 search_key.type = -1;
4935 search_key.offset = (u64)-1;
4936 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4937 if (ret < 0)
4938 goto error;
4939 BUG_ON(ret == 0); /* Corruption */
4940 if (path->slots[0] > 0) {
4941 slot = path->slots[0] - 1;
4942 l = path->nodes[0];
4943 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
4944 root->free_objectid = max_t(u64, found_key.objectid + 1,
4945 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 4946 } else {
23125104 4947 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
4948 }
4949 ret = 0;
4950error:
4951 btrfs_free_path(path);
4952 return ret;
4953}
4954
543068a2 4955int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
4956{
4957 int ret;
4958 mutex_lock(&root->objectid_mutex);
4959
6b8fad57 4960 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
4961 btrfs_warn(root->fs_info,
4962 "the objectid of root %llu reaches its highest value",
4963 root->root_key.objectid);
4964 ret = -ENOSPC;
4965 goto out;
4966 }
4967
23125104 4968 *objectid = root->free_objectid++;
ec7d6dfd
NB
4969 ret = 0;
4970out:
4971 mutex_unlock(&root->objectid_mutex);
4972 return ret;
4973}