btrfs: reset block group chunk force if we have to wait
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
eb60ceac 46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
141386e1
JB
66static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67{
68 if (fs_info->csum_shash)
69 crypto_free_shash(fs_info->csum_shash);
70}
71
d352ac68
CM
72/*
73 * async submit bios are used to offload expensive checksumming
74 * onto the worker threads. They checksum file and metadata bios
75 * just before they are sent down the IO stack.
76 */
44b8bd7e 77struct async_submit_bio {
8896a08d 78 struct inode *inode;
44b8bd7e 79 struct bio *bio;
a758781d 80 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 81 int mirror_num;
1941b64b
QW
82
83 /* Optional parameter for submit_bio_start used by direct io */
84 u64 dio_file_offset;
8b712842 85 struct btrfs_work work;
4e4cbee9 86 blk_status_t status;
44b8bd7e
CM
87};
88
85d4e461
CM
89/*
90 * Lockdep class keys for extent_buffer->lock's in this root. For a given
91 * eb, the lockdep key is determined by the btrfs_root it belongs to and
92 * the level the eb occupies in the tree.
93 *
94 * Different roots are used for different purposes and may nest inside each
95 * other and they require separate keysets. As lockdep keys should be
96 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
97 * by btrfs_root->root_key.objectid. This ensures that all special purpose
98 * roots have separate keysets.
4008c04a 99 *
85d4e461
CM
100 * Lock-nesting across peer nodes is always done with the immediate parent
101 * node locked thus preventing deadlock. As lockdep doesn't know this, use
102 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 103 *
85d4e461
CM
104 * The key is set by the readpage_end_io_hook after the buffer has passed
105 * csum validation but before the pages are unlocked. It is also set by
106 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 107 *
85d4e461
CM
108 * We also add a check to make sure the highest level of the tree is the
109 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
110 * needs update as well.
4008c04a
CM
111 */
112#ifdef CONFIG_DEBUG_LOCK_ALLOC
113# if BTRFS_MAX_LEVEL != 8
114# error
115# endif
85d4e461 116
ab1405aa
DS
117#define DEFINE_LEVEL(stem, level) \
118 .names[level] = "btrfs-" stem "-0" #level,
119
120#define DEFINE_NAME(stem) \
121 DEFINE_LEVEL(stem, 0) \
122 DEFINE_LEVEL(stem, 1) \
123 DEFINE_LEVEL(stem, 2) \
124 DEFINE_LEVEL(stem, 3) \
125 DEFINE_LEVEL(stem, 4) \
126 DEFINE_LEVEL(stem, 5) \
127 DEFINE_LEVEL(stem, 6) \
128 DEFINE_LEVEL(stem, 7)
129
85d4e461
CM
130static struct btrfs_lockdep_keyset {
131 u64 id; /* root objectid */
ab1405aa 132 /* Longest entry: btrfs-free-space-00 */
387824af
DS
133 char names[BTRFS_MAX_LEVEL][20];
134 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 135} btrfs_lockdep_keysets[] = {
ab1405aa
DS
136 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
137 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
138 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
139 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
ab1405aa
DS
140 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
141 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
142 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
143 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
144 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
145 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
146 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
147 { .id = 0, DEFINE_NAME("tree") },
4008c04a 148};
85d4e461 149
ab1405aa
DS
150#undef DEFINE_LEVEL
151#undef DEFINE_NAME
85d4e461
CM
152
153void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
154 int level)
155{
156 struct btrfs_lockdep_keyset *ks;
157
158 BUG_ON(level >= ARRAY_SIZE(ks->keys));
159
160 /* find the matching keyset, id 0 is the default entry */
161 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
162 if (ks->id == objectid)
163 break;
164
165 lockdep_set_class_and_name(&eb->lock,
166 &ks->keys[level], ks->names[level]);
167}
168
4008c04a
CM
169#endif
170
d352ac68 171/*
2996e1f8 172 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 173 */
c67b3892 174static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 175{
d5178578 176 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 177 const int num_pages = num_extent_pages(buf);
a26663e7 178 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 179 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 180 char *kaddr;
e9be5a30 181 int i;
d5178578
JT
182
183 shash->tfm = fs_info->csum_shash;
184 crypto_shash_init(shash);
a26663e7 185 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 186 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 187 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 188
e9be5a30
DS
189 for (i = 1; i < num_pages; i++) {
190 kaddr = page_address(buf->pages[i]);
191 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 192 }
71a63551 193 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 194 crypto_shash_final(shash, result);
19c00ddc
CM
195}
196
d352ac68
CM
197/*
198 * we can't consider a given block up to date unless the transid of the
199 * block matches the transid in the parent node's pointer. This is how we
200 * detect blocks that either didn't get written at all or got written
201 * in the wrong place.
202 */
1259ab75 203static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
204 struct extent_buffer *eb, u64 parent_transid,
205 int atomic)
1259ab75 206{
2ac55d41 207 struct extent_state *cached_state = NULL;
1259ab75
CM
208 int ret;
209
210 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
211 return 0;
212
b9fab919
CM
213 if (atomic)
214 return -EAGAIN;
215
2ac55d41 216 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 217 &cached_state);
0b32f4bb 218 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
219 btrfs_header_generation(eb) == parent_transid) {
220 ret = 0;
221 goto out;
222 }
94647322 223 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
224"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
225 eb->start, eb->read_mirror,
29549aec 226 parent_transid, btrfs_header_generation(eb));
1259ab75 227 ret = 1;
35b22c19 228 clear_extent_buffer_uptodate(eb);
33958dc6 229out:
2ac55d41 230 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 231 &cached_state);
1259ab75 232 return ret;
1259ab75
CM
233}
234
e7e16f48
JT
235static bool btrfs_supported_super_csum(u16 csum_type)
236{
237 switch (csum_type) {
238 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 239 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 240 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 241 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
242 return true;
243 default:
244 return false;
245 }
246}
247
1104a885
DS
248/*
249 * Return 0 if the superblock checksum type matches the checksum value of that
250 * algorithm. Pass the raw disk superblock data.
251 */
ab8d0fc4
JM
252static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
253 char *raw_disk_sb)
1104a885
DS
254{
255 struct btrfs_super_block *disk_sb =
256 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 257 char result[BTRFS_CSUM_SIZE];
d5178578
JT
258 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
259
260 shash->tfm = fs_info->csum_shash;
1104a885 261
51bce6c9
JT
262 /*
263 * The super_block structure does not span the whole
264 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
265 * filled with zeros and is included in the checksum.
266 */
fd08001f
EB
267 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
268 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 269
55fc29be 270 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 271 return 1;
1104a885 272
e7e16f48 273 return 0;
1104a885
DS
274}
275
e064d5e9 276int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 277 struct btrfs_key *first_key, u64 parent_transid)
581c1760 278{
e064d5e9 279 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
280 int found_level;
281 struct btrfs_key found_key;
282 int ret;
283
284 found_level = btrfs_header_level(eb);
285 if (found_level != level) {
63489055
QW
286 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
287 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
288 btrfs_err(fs_info,
289"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
290 eb->start, level, found_level);
581c1760
QW
291 return -EIO;
292 }
293
294 if (!first_key)
295 return 0;
296
5d41be6f
QW
297 /*
298 * For live tree block (new tree blocks in current transaction),
299 * we need proper lock context to avoid race, which is impossible here.
300 * So we only checks tree blocks which is read from disk, whose
301 * generation <= fs_info->last_trans_committed.
302 */
303 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
304 return 0;
62fdaa52
QW
305
306 /* We have @first_key, so this @eb must have at least one item */
307 if (btrfs_header_nritems(eb) == 0) {
308 btrfs_err(fs_info,
309 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
310 eb->start);
311 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
312 return -EUCLEAN;
313 }
314
581c1760
QW
315 if (found_level)
316 btrfs_node_key_to_cpu(eb, &found_key, 0);
317 else
318 btrfs_item_key_to_cpu(eb, &found_key, 0);
319 ret = btrfs_comp_cpu_keys(first_key, &found_key);
320
581c1760 321 if (ret) {
63489055
QW
322 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
323 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 324 btrfs_err(fs_info,
ff76a864
LB
325"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
326 eb->start, parent_transid, first_key->objectid,
327 first_key->type, first_key->offset,
328 found_key.objectid, found_key.type,
329 found_key.offset);
581c1760 330 }
581c1760
QW
331 return ret;
332}
333
d352ac68
CM
334/*
335 * helper to read a given tree block, doing retries as required when
336 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
337 *
338 * @parent_transid: expected transid, skip check if 0
339 * @level: expected level, mandatory check
340 * @first_key: expected key of first slot, skip check if NULL
d352ac68 341 */
6a2e9dc4
FM
342int btrfs_read_extent_buffer(struct extent_buffer *eb,
343 u64 parent_transid, int level,
344 struct btrfs_key *first_key)
f188591e 345{
5ab12d1f 346 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 347 struct extent_io_tree *io_tree;
ea466794 348 int failed = 0;
f188591e
CM
349 int ret;
350 int num_copies = 0;
351 int mirror_num = 0;
ea466794 352 int failed_mirror = 0;
f188591e 353
0b246afa 354 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 355 while (1) {
f8397d69 356 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 357 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 358 if (!ret) {
581c1760 359 if (verify_parent_transid(io_tree, eb,
b9fab919 360 parent_transid, 0))
256dd1bb 361 ret = -EIO;
e064d5e9 362 else if (btrfs_verify_level_key(eb, level,
448de471 363 first_key, parent_transid))
581c1760
QW
364 ret = -EUCLEAN;
365 else
366 break;
256dd1bb 367 }
d397712b 368
0b246afa 369 num_copies = btrfs_num_copies(fs_info,
f188591e 370 eb->start, eb->len);
4235298e 371 if (num_copies == 1)
ea466794 372 break;
4235298e 373
5cf1ab56
JB
374 if (!failed_mirror) {
375 failed = 1;
376 failed_mirror = eb->read_mirror;
377 }
378
f188591e 379 mirror_num++;
ea466794
JB
380 if (mirror_num == failed_mirror)
381 mirror_num++;
382
4235298e 383 if (mirror_num > num_copies)
ea466794 384 break;
f188591e 385 }
ea466794 386
c0901581 387 if (failed && !ret && failed_mirror)
20a1fbf9 388 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
389
390 return ret;
f188591e 391}
19c00ddc 392
eca0f6f6
QW
393static int csum_one_extent_buffer(struct extent_buffer *eb)
394{
395 struct btrfs_fs_info *fs_info = eb->fs_info;
396 u8 result[BTRFS_CSUM_SIZE];
397 int ret;
398
399 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
400 offsetof(struct btrfs_header, fsid),
401 BTRFS_FSID_SIZE) == 0);
402 csum_tree_block(eb, result);
403
404 if (btrfs_header_level(eb))
405 ret = btrfs_check_node(eb);
406 else
407 ret = btrfs_check_leaf_full(eb);
408
3777369f
QW
409 if (ret < 0)
410 goto error;
411
412 /*
413 * Also check the generation, the eb reached here must be newer than
414 * last committed. Or something seriously wrong happened.
415 */
416 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
417 ret = -EUCLEAN;
eca0f6f6 418 btrfs_err(fs_info,
3777369f
QW
419 "block=%llu bad generation, have %llu expect > %llu",
420 eb->start, btrfs_header_generation(eb),
421 fs_info->last_trans_committed);
422 goto error;
eca0f6f6
QW
423 }
424 write_extent_buffer(eb, result, 0, fs_info->csum_size);
425
426 return 0;
3777369f
QW
427
428error:
429 btrfs_print_tree(eb, 0);
430 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
431 eb->start);
432 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
433 return ret;
eca0f6f6
QW
434}
435
436/* Checksum all dirty extent buffers in one bio_vec */
437static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
438 struct bio_vec *bvec)
439{
440 struct page *page = bvec->bv_page;
441 u64 bvec_start = page_offset(page) + bvec->bv_offset;
442 u64 cur;
443 int ret = 0;
444
445 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
446 cur += fs_info->nodesize) {
447 struct extent_buffer *eb;
448 bool uptodate;
449
450 eb = find_extent_buffer(fs_info, cur);
451 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
452 fs_info->nodesize);
453
01cd3909 454 /* A dirty eb shouldn't disappear from buffer_radix */
eca0f6f6
QW
455 if (WARN_ON(!eb))
456 return -EUCLEAN;
457
458 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
459 free_extent_buffer(eb);
460 return -EUCLEAN;
461 }
462 if (WARN_ON(!uptodate)) {
463 free_extent_buffer(eb);
464 return -EUCLEAN;
465 }
466
467 ret = csum_one_extent_buffer(eb);
468 free_extent_buffer(eb);
469 if (ret < 0)
470 return ret;
471 }
472 return ret;
473}
474
d352ac68 475/*
ac303b69
QW
476 * Checksum a dirty tree block before IO. This has extra checks to make sure
477 * we only fill in the checksum field in the first page of a multi-page block.
478 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 479 */
ac303b69 480static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 481{
ac303b69 482 struct page *page = bvec->bv_page;
4eee4fa4 483 u64 start = page_offset(page);
19c00ddc 484 u64 found_start;
19c00ddc 485 struct extent_buffer *eb;
eca0f6f6 486
fbca46eb 487 if (fs_info->nodesize < PAGE_SIZE)
eca0f6f6 488 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 489
4f2de97a
JB
490 eb = (struct extent_buffer *)page->private;
491 if (page != eb->pages[0])
492 return 0;
0f805531 493
19c00ddc 494 found_start = btrfs_header_bytenr(eb);
d3575156
NA
495
496 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
497 WARN_ON(found_start != 0);
498 return 0;
499 }
500
0f805531
AL
501 /*
502 * Please do not consolidate these warnings into a single if.
503 * It is useful to know what went wrong.
504 */
505 if (WARN_ON(found_start != start))
506 return -EUCLEAN;
507 if (WARN_ON(!PageUptodate(page)))
508 return -EUCLEAN;
509
eca0f6f6 510 return csum_one_extent_buffer(eb);
19c00ddc
CM
511}
512
b0c9b3b0 513static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 514{
b0c9b3b0 515 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 516 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 517 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 518 u8 *metadata_uuid;
2b82032c 519
9a8658e3
DS
520 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
521 BTRFS_FSID_SIZE);
944d3f9f
NB
522 /*
523 * Checking the incompat flag is only valid for the current fs. For
524 * seed devices it's forbidden to have their uuid changed so reading
525 * ->fsid in this case is fine
526 */
527 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
528 metadata_uuid = fs_devices->metadata_uuid;
529 else
530 metadata_uuid = fs_devices->fsid;
531
532 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
533 return 0;
534
535 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
536 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
537 return 0;
538
539 return 1;
2b82032c
YZ
540}
541
77bf40a2
QW
542/* Do basic extent buffer checks at read time */
543static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 544{
77bf40a2 545 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 546 u64 found_start;
77bf40a2
QW
547 const u32 csum_size = fs_info->csum_size;
548 u8 found_level;
2996e1f8 549 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 550 const u8 *header_csum;
77bf40a2 551 int ret = 0;
ea466794 552
ce9adaa5 553 found_start = btrfs_header_bytenr(eb);
727011e0 554 if (found_start != eb->start) {
8f0ed7d4
QW
555 btrfs_err_rl(fs_info,
556 "bad tree block start, mirror %u want %llu have %llu",
557 eb->read_mirror, eb->start, found_start);
f188591e 558 ret = -EIO;
77bf40a2 559 goto out;
ce9adaa5 560 }
b0c9b3b0 561 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
562 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
563 eb->start, eb->read_mirror);
1259ab75 564 ret = -EIO;
77bf40a2 565 goto out;
1259ab75 566 }
ce9adaa5 567 found_level = btrfs_header_level(eb);
1c24c3ce 568 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
569 btrfs_err(fs_info,
570 "bad tree block level, mirror %u level %d on logical %llu",
571 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 572 ret = -EIO;
77bf40a2 573 goto out;
1c24c3ce 574 }
ce9adaa5 575
c67b3892 576 csum_tree_block(eb, result);
dfd29eed
DS
577 header_csum = page_address(eb->pages[0]) +
578 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 579
dfd29eed 580 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 581 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
582"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
583 eb->start, eb->read_mirror,
dfd29eed 584 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
585 CSUM_FMT_VALUE(csum_size, result),
586 btrfs_header_level(eb));
2996e1f8 587 ret = -EUCLEAN;
77bf40a2 588 goto out;
2996e1f8
JT
589 }
590
a826d6dc
JB
591 /*
592 * If this is a leaf block and it is corrupt, set the corrupt bit so
593 * that we don't try and read the other copies of this block, just
594 * return -EIO.
595 */
1c4360ee 596 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
597 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
598 ret = -EIO;
599 }
ce9adaa5 600
813fd1dc 601 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
602 ret = -EIO;
603
0b32f4bb
JB
604 if (!ret)
605 set_extent_buffer_uptodate(eb);
75391f0d
QW
606 else
607 btrfs_err(fs_info,
8f0ed7d4
QW
608 "read time tree block corruption detected on logical %llu mirror %u",
609 eb->start, eb->read_mirror);
77bf40a2
QW
610out:
611 return ret;
612}
613
371cdc07
QW
614static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
615 int mirror)
616{
617 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
618 struct extent_buffer *eb;
619 bool reads_done;
620 int ret = 0;
621
622 /*
623 * We don't allow bio merge for subpage metadata read, so we should
624 * only get one eb for each endio hook.
625 */
626 ASSERT(end == start + fs_info->nodesize - 1);
627 ASSERT(PagePrivate(page));
628
629 eb = find_extent_buffer(fs_info, start);
630 /*
631 * When we are reading one tree block, eb must have been inserted into
632 * the radix tree. If not, something is wrong.
633 */
634 ASSERT(eb);
635
636 reads_done = atomic_dec_and_test(&eb->io_pages);
637 /* Subpage read must finish in page read */
638 ASSERT(reads_done);
639
640 eb->read_mirror = mirror;
641 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
642 ret = -EIO;
643 goto err;
644 }
645 ret = validate_extent_buffer(eb);
646 if (ret < 0)
647 goto err;
648
371cdc07
QW
649 set_extent_buffer_uptodate(eb);
650
651 free_extent_buffer(eb);
652 return ret;
653err:
654 /*
655 * end_bio_extent_readpage decrements io_pages in case of error,
656 * make sure it has something to decrement.
657 */
658 atomic_inc(&eb->io_pages);
659 clear_extent_buffer_uptodate(eb);
660 free_extent_buffer(eb);
661 return ret;
662}
663
c3a3b19b 664int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
77bf40a2
QW
665 struct page *page, u64 start, u64 end,
666 int mirror)
667{
668 struct extent_buffer *eb;
669 int ret = 0;
670 int reads_done;
671
672 ASSERT(page->private);
371cdc07 673
fbca46eb 674 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
371cdc07
QW
675 return validate_subpage_buffer(page, start, end, mirror);
676
77bf40a2
QW
677 eb = (struct extent_buffer *)page->private;
678
679 /*
680 * The pending IO might have been the only thing that kept this buffer
681 * in memory. Make sure we have a ref for all this other checks
682 */
683 atomic_inc(&eb->refs);
684
685 reads_done = atomic_dec_and_test(&eb->io_pages);
686 if (!reads_done)
687 goto err;
688
689 eb->read_mirror = mirror;
690 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
691 ret = -EIO;
692 goto err;
693 }
694 ret = validate_extent_buffer(eb);
ce9adaa5 695err:
53b381b3
DW
696 if (ret) {
697 /*
698 * our io error hook is going to dec the io pages
699 * again, we have to make sure it has something
700 * to decrement
701 */
702 atomic_inc(&eb->io_pages);
0b32f4bb 703 clear_extent_buffer_uptodate(eb);
53b381b3 704 }
0b32f4bb 705 free_extent_buffer(eb);
77bf40a2 706
f188591e 707 return ret;
ce9adaa5
CM
708}
709
4a69a410
CM
710static void run_one_async_start(struct btrfs_work *work)
711{
4a69a410 712 struct async_submit_bio *async;
4e4cbee9 713 blk_status_t ret;
4a69a410
CM
714
715 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
716 ret = async->submit_bio_start(async->inode, async->bio,
717 async->dio_file_offset);
79787eaa 718 if (ret)
4e4cbee9 719 async->status = ret;
4a69a410
CM
720}
721
06ea01b1
DS
722/*
723 * In order to insert checksums into the metadata in large chunks, we wait
724 * until bio submission time. All the pages in the bio are checksummed and
725 * sums are attached onto the ordered extent record.
726 *
727 * At IO completion time the csums attached on the ordered extent record are
728 * inserted into the tree.
729 */
4a69a410 730static void run_one_async_done(struct btrfs_work *work)
8b712842 731{
8b712842 732 struct async_submit_bio *async;
06ea01b1
DS
733 struct inode *inode;
734 blk_status_t ret;
8b712842
CM
735
736 async = container_of(work, struct async_submit_bio, work);
8896a08d 737 inode = async->inode;
4854ddd0 738
bb7ab3b9 739 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
740 if (async->status) {
741 async->bio->bi_status = async->status;
4246a0b6 742 bio_endio(async->bio);
79787eaa
JM
743 return;
744 }
745
ec39f769
CM
746 /*
747 * All of the bios that pass through here are from async helpers.
748 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
749 * This changes nothing when cgroups aren't in use.
750 */
751 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 752 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
753 if (ret) {
754 async->bio->bi_status = ret;
755 bio_endio(async->bio);
756 }
4a69a410
CM
757}
758
759static void run_one_async_free(struct btrfs_work *work)
760{
761 struct async_submit_bio *async;
762
763 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
764 kfree(async);
765}
766
8896a08d 767blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
a6f5e39e 768 int mirror_num, u64 dio_file_offset,
e288c080 769 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 770{
8896a08d 771 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
772 struct async_submit_bio *async;
773
774 async = kmalloc(sizeof(*async), GFP_NOFS);
775 if (!async)
4e4cbee9 776 return BLK_STS_RESOURCE;
44b8bd7e 777
8896a08d 778 async->inode = inode;
44b8bd7e
CM
779 async->bio = bio;
780 async->mirror_num = mirror_num;
4a69a410 781 async->submit_bio_start = submit_bio_start;
4a69a410 782
a0cac0ec
OS
783 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
784 run_one_async_free);
4a69a410 785
1941b64b 786 async->dio_file_offset = dio_file_offset;
8c8bee1d 787
4e4cbee9 788 async->status = 0;
79787eaa 789
67f055c7 790 if (op_is_sync(bio->bi_opf))
a31b4a43
CH
791 btrfs_queue_work(fs_info->hipri_workers, &async->work);
792 else
793 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
794 return 0;
795}
796
4e4cbee9 797static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 798{
2c30c71b 799 struct bio_vec *bvec;
ce3ed71a 800 struct btrfs_root *root;
2b070cfe 801 int ret = 0;
6dc4f100 802 struct bvec_iter_all iter_all;
ce3ed71a 803
c09abff8 804 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 805 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 806 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 807 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
808 if (ret)
809 break;
ce3ed71a 810 }
2c30c71b 811
4e4cbee9 812 return errno_to_blk_status(ret);
ce3ed71a
CM
813}
814
8896a08d 815static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 816 u64 dio_file_offset)
22c59948 817{
8b712842
CM
818 /*
819 * when we're called for a write, we're already in the async
5443be45 820 * submission context. Just jump into btrfs_map_bio
8b712842 821 */
79787eaa 822 return btree_csum_one_bio(bio);
4a69a410 823}
22c59948 824
f4dcfb30 825static bool should_async_write(struct btrfs_fs_info *fs_info,
9b4e675a 826 struct btrfs_inode *bi)
de0022b9 827{
4eef29ef 828 if (btrfs_is_zoned(fs_info))
f4dcfb30 829 return false;
6300463b 830 if (atomic_read(&bi->sync_writers))
f4dcfb30 831 return false;
9b4e675a 832 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
f4dcfb30
JT
833 return false;
834 return true;
de0022b9
JB
835}
836
94d9e11b 837void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
44b8bd7e 838{
0b246afa 839 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 840 blk_status_t ret;
cad321ad 841
08a6f464
CH
842 bio->bi_opf |= REQ_META;
843
cfe94440 844 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
d7b9416f 845 ret = btrfs_map_bio(fs_info, bio, mirror_num);
f4dcfb30 846 } else if (!should_async_write(fs_info, BTRFS_I(inode))) {
de0022b9 847 ret = btree_csum_one_bio(bio);
94d9e11b
CH
848 if (!ret)
849 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
850 } else {
851 /*
852 * kthread helpers are used to submit writes so that
853 * checksumming can happen in parallel across all CPUs
854 */
8896a08d 855 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
a6f5e39e 856 btree_submit_bio_start);
44b8bd7e 857 }
d313d7a3 858
94d9e11b
CH
859 if (ret) {
860 bio->bi_status = ret;
861 bio_endio(bio);
862 }
44b8bd7e
CM
863}
864
3dd1462e 865#ifdef CONFIG_MIGRATION
784b4e29 866static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
867 struct page *newpage, struct page *page,
868 enum migrate_mode mode)
784b4e29
CM
869{
870 /*
871 * we can't safely write a btree page from here,
872 * we haven't done the locking hook
873 */
874 if (PageDirty(page))
875 return -EAGAIN;
876 /*
877 * Buffers may be managed in a filesystem specific way.
878 * We must have no buffers or drop them.
879 */
880 if (page_has_private(page) &&
881 !try_to_release_page(page, GFP_KERNEL))
882 return -EAGAIN;
a6bc32b8 883 return migrate_page(mapping, newpage, page, mode);
784b4e29 884}
3dd1462e 885#endif
784b4e29 886
0da5468f
CM
887
888static int btree_writepages(struct address_space *mapping,
889 struct writeback_control *wbc)
890{
e2d84521
MX
891 struct btrfs_fs_info *fs_info;
892 int ret;
893
d8d5f3e1 894 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
895
896 if (wbc->for_kupdate)
897 return 0;
898
e2d84521 899 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 900 /* this is a bit racy, but that's ok */
d814a491
EL
901 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
902 BTRFS_DIRTY_METADATA_THRESH,
903 fs_info->dirty_metadata_batch);
e2d84521 904 if (ret < 0)
793955bc 905 return 0;
793955bc 906 }
0b32f4bb 907 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
908}
909
f913cff3 910static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 911{
f913cff3
MWO
912 if (folio_test_writeback(folio) || folio_test_dirty(folio))
913 return false;
0c4e538b 914
f913cff3 915 return try_release_extent_buffer(&folio->page);
d98237b3
CM
916}
917
895586eb
MWO
918static void btree_invalidate_folio(struct folio *folio, size_t offset,
919 size_t length)
d98237b3 920{
d1310b2e 921 struct extent_io_tree *tree;
895586eb
MWO
922 tree = &BTRFS_I(folio->mapping->host)->io_tree;
923 extent_invalidate_folio(tree, folio, offset);
f913cff3 924 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
925 if (folio_get_private(folio)) {
926 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
927 "folio private not zero on folio %llu",
928 (unsigned long long)folio_pos(folio));
929 folio_detach_private(folio);
9ad6b7bc 930 }
d98237b3
CM
931}
932
bb146eb2 933#ifdef DEBUG
0079c3b1
MWO
934static bool btree_dirty_folio(struct address_space *mapping,
935 struct folio *folio)
936{
937 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 938 struct btrfs_subpage *subpage;
0b32f4bb 939 struct extent_buffer *eb;
139e8cd3 940 int cur_bit = 0;
0079c3b1 941 u64 page_start = folio_pos(folio);
139e8cd3
QW
942
943 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 944 eb = folio_get_private(folio);
139e8cd3
QW
945 BUG_ON(!eb);
946 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
947 BUG_ON(!atomic_read(&eb->refs));
49d0c642 948 btrfs_assert_tree_write_locked(eb);
0079c3b1 949 return filemap_dirty_folio(mapping, folio);
139e8cd3 950 }
0079c3b1 951 subpage = folio_get_private(folio);
139e8cd3
QW
952
953 ASSERT(subpage->dirty_bitmap);
954 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
955 unsigned long flags;
956 u64 cur;
957 u16 tmp = (1 << cur_bit);
958
959 spin_lock_irqsave(&subpage->lock, flags);
960 if (!(tmp & subpage->dirty_bitmap)) {
961 spin_unlock_irqrestore(&subpage->lock, flags);
962 cur_bit++;
963 continue;
964 }
965 spin_unlock_irqrestore(&subpage->lock, flags);
966 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 967
139e8cd3
QW
968 eb = find_extent_buffer(fs_info, cur);
969 ASSERT(eb);
970 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
971 ASSERT(atomic_read(&eb->refs));
49d0c642 972 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
973 free_extent_buffer(eb);
974
975 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
976 }
0079c3b1 977 return filemap_dirty_folio(mapping, folio);
0b32f4bb 978}
0079c3b1
MWO
979#else
980#define btree_dirty_folio filemap_dirty_folio
981#endif
0b32f4bb 982
7f09410b 983static const struct address_space_operations btree_aops = {
0da5468f 984 .writepages = btree_writepages,
f913cff3 985 .release_folio = btree_release_folio,
895586eb 986 .invalidate_folio = btree_invalidate_folio,
5a92bc88 987#ifdef CONFIG_MIGRATION
784b4e29 988 .migratepage = btree_migratepage,
5a92bc88 989#endif
0079c3b1 990 .dirty_folio = btree_dirty_folio,
d98237b3
CM
991};
992
2ff7e61e
JM
993struct extent_buffer *btrfs_find_create_tree_block(
994 struct btrfs_fs_info *fs_info,
3fbaf258
JB
995 u64 bytenr, u64 owner_root,
996 int level)
0999df54 997{
0b246afa
JM
998 if (btrfs_is_testing(fs_info))
999 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 1000 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
1001}
1002
581c1760
QW
1003/*
1004 * Read tree block at logical address @bytenr and do variant basic but critical
1005 * verification.
1006 *
1b7ec85e 1007 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
1008 * @parent_transid: expected transid of this tree block, skip check if 0
1009 * @level: expected level, mandatory check
1010 * @first_key: expected key in slot 0, skip check if NULL
1011 */
2ff7e61e 1012struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
1013 u64 owner_root, u64 parent_transid,
1014 int level, struct btrfs_key *first_key)
0999df54
CM
1015{
1016 struct extent_buffer *buf = NULL;
0999df54
CM
1017 int ret;
1018
3fbaf258 1019 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
1020 if (IS_ERR(buf))
1021 return buf;
0999df54 1022
6a2e9dc4 1023 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
0f0fe8f7 1024 if (ret) {
537f38f0 1025 free_extent_buffer_stale(buf);
64c043de 1026 return ERR_PTR(ret);
0f0fe8f7 1027 }
88c602ab
QW
1028 if (btrfs_check_eb_owner(buf, owner_root)) {
1029 free_extent_buffer_stale(buf);
1030 return ERR_PTR(-EUCLEAN);
1031 }
5f39d397 1032 return buf;
ce9adaa5 1033
eb60ceac
CM
1034}
1035
6a884d7d 1036void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1037{
6a884d7d 1038 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1039 if (btrfs_header_generation(buf) ==
e2d84521 1040 fs_info->running_transaction->transid) {
49d0c642 1041 btrfs_assert_tree_write_locked(buf);
b4ce94de 1042
b9473439 1043 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1044 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1045 -buf->len,
1046 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1047 clear_extent_buffer_dirty(buf);
1048 }
925baedd 1049 }
5f39d397
CM
1050}
1051
da17066c 1052static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1053 u64 objectid)
d97e63b6 1054{
7c0260ee 1055 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
1056
1057 memset(&root->root_key, 0, sizeof(root->root_key));
1058 memset(&root->root_item, 0, sizeof(root->root_item));
1059 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 1060 root->fs_info = fs_info;
2e608bd1 1061 root->root_key.objectid = objectid;
cfaa7295 1062 root->node = NULL;
a28ec197 1063 root->commit_root = NULL;
27cdeb70 1064 root->state = 0;
abed4aaa 1065 RB_CLEAR_NODE(&root->rb_node);
0b86a832 1066
0f7d52f4 1067 root->last_trans = 0;
6b8fad57 1068 root->free_objectid = 0;
eb73c1b7 1069 root->nr_delalloc_inodes = 0;
199c2a9c 1070 root->nr_ordered_extents = 0;
6bef4d31 1071 root->inode_tree = RB_ROOT;
088aea3b 1072 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
1073
1074 btrfs_init_root_block_rsv(root);
0b86a832
CM
1075
1076 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1077 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1078 INIT_LIST_HEAD(&root->delalloc_inodes);
1079 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1080 INIT_LIST_HEAD(&root->ordered_extents);
1081 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1082 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1083 INIT_LIST_HEAD(&root->logged_list[0]);
1084 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1085 spin_lock_init(&root->inode_lock);
eb73c1b7 1086 spin_lock_init(&root->delalloc_lock);
199c2a9c 1087 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1088 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1089 spin_lock_init(&root->log_extents_lock[0]);
1090 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1091 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1092 mutex_init(&root->objectid_mutex);
e02119d5 1093 mutex_init(&root->log_mutex);
31f3d255 1094 mutex_init(&root->ordered_extent_mutex);
573bfb72 1095 mutex_init(&root->delalloc_mutex);
c53e9653 1096 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1097 init_waitqueue_head(&root->log_writer_wait);
1098 init_waitqueue_head(&root->log_commit_wait[0]);
1099 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1100 INIT_LIST_HEAD(&root->log_ctxs[0]);
1101 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1102 atomic_set(&root->log_commit[0], 0);
1103 atomic_set(&root->log_commit[1], 0);
1104 atomic_set(&root->log_writers, 0);
2ecb7923 1105 atomic_set(&root->log_batch, 0);
0700cea7 1106 refcount_set(&root->refs, 1);
8ecebf4d 1107 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1108 atomic_set(&root->nr_swapfiles, 0);
7237f183 1109 root->log_transid = 0;
d1433deb 1110 root->log_transid_committed = -1;
257c62e1 1111 root->last_log_commit = 0;
2e608bd1 1112 root->anon_dev = 0;
e289f03e 1113 if (!dummy) {
43eb5f29
QW
1114 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1115 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1116 extent_io_tree_init(fs_info, &root->log_csum_range,
1117 IO_TREE_LOG_CSUM_RANGE, NULL);
1118 }
017e5369 1119
5f3ab90a 1120 spin_lock_init(&root->root_item_lock);
370a11b8 1121 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1122#ifdef CONFIG_BTRFS_DEBUG
1123 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 1124 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 1125 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 1126 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 1127#endif
3768f368
CM
1128}
1129
74e4d827 1130static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1131 u64 objectid, gfp_t flags)
6f07e42e 1132{
74e4d827 1133 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1134 if (root)
96dfcb46 1135 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1136 return root;
1137}
1138
06ea65a3
JB
1139#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1140/* Should only be used by the testing infrastructure */
da17066c 1141struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1142{
1143 struct btrfs_root *root;
1144
7c0260ee
JM
1145 if (!fs_info)
1146 return ERR_PTR(-EINVAL);
1147
96dfcb46 1148 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1149 if (!root)
1150 return ERR_PTR(-ENOMEM);
da17066c 1151
b9ef22de 1152 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1153 root->alloc_bytenr = 0;
06ea65a3
JB
1154
1155 return root;
1156}
1157#endif
1158
abed4aaa
JB
1159static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1160{
1161 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1162 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1163
1164 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1165}
1166
1167static int global_root_key_cmp(const void *k, const struct rb_node *node)
1168{
1169 const struct btrfs_key *key = k;
1170 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1171
1172 return btrfs_comp_cpu_keys(key, &root->root_key);
1173}
1174
1175int btrfs_global_root_insert(struct btrfs_root *root)
1176{
1177 struct btrfs_fs_info *fs_info = root->fs_info;
1178 struct rb_node *tmp;
1179
1180 write_lock(&fs_info->global_root_lock);
1181 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1182 write_unlock(&fs_info->global_root_lock);
1183 ASSERT(!tmp);
1184
1185 return tmp ? -EEXIST : 0;
1186}
1187
1188void btrfs_global_root_delete(struct btrfs_root *root)
1189{
1190 struct btrfs_fs_info *fs_info = root->fs_info;
1191
1192 write_lock(&fs_info->global_root_lock);
1193 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1194 write_unlock(&fs_info->global_root_lock);
1195}
1196
1197struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1198 struct btrfs_key *key)
1199{
1200 struct rb_node *node;
1201 struct btrfs_root *root = NULL;
1202
1203 read_lock(&fs_info->global_root_lock);
1204 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1205 if (node)
1206 root = container_of(node, struct btrfs_root, rb_node);
1207 read_unlock(&fs_info->global_root_lock);
1208
1209 return root;
1210}
1211
f7238e50
JB
1212static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1213{
1214 struct btrfs_block_group *block_group;
1215 u64 ret;
1216
1217 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1218 return 0;
1219
1220 if (bytenr)
1221 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1222 else
1223 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1224 ASSERT(block_group);
1225 if (!block_group)
1226 return 0;
1227 ret = block_group->global_root_id;
1228 btrfs_put_block_group(block_group);
1229
1230 return ret;
1231}
1232
abed4aaa
JB
1233struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1234{
1235 struct btrfs_key key = {
1236 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1237 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1238 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1239 };
1240
1241 return btrfs_global_root(fs_info, &key);
1242}
1243
1244struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1245{
1246 struct btrfs_key key = {
1247 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1248 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1249 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1250 };
1251
1252 return btrfs_global_root(fs_info, &key);
1253}
1254
20897f5c 1255struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1256 u64 objectid)
1257{
9b7a2440 1258 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1259 struct extent_buffer *leaf;
1260 struct btrfs_root *tree_root = fs_info->tree_root;
1261 struct btrfs_root *root;
1262 struct btrfs_key key;
b89f6d1f 1263 unsigned int nofs_flag;
20897f5c 1264 int ret = 0;
20897f5c 1265
b89f6d1f
FM
1266 /*
1267 * We're holding a transaction handle, so use a NOFS memory allocation
1268 * context to avoid deadlock if reclaim happens.
1269 */
1270 nofs_flag = memalloc_nofs_save();
96dfcb46 1271 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1272 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1273 if (!root)
1274 return ERR_PTR(-ENOMEM);
1275
20897f5c
AJ
1276 root->root_key.objectid = objectid;
1277 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1278 root->root_key.offset = 0;
1279
9631e4cc
JB
1280 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1281 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1282 if (IS_ERR(leaf)) {
1283 ret = PTR_ERR(leaf);
1dd05682 1284 leaf = NULL;
8a6a87cd 1285 goto fail_unlock;
20897f5c
AJ
1286 }
1287
20897f5c 1288 root->node = leaf;
20897f5c
AJ
1289 btrfs_mark_buffer_dirty(leaf);
1290
1291 root->commit_root = btrfs_root_node(root);
27cdeb70 1292 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1293
f944d2cb
DS
1294 btrfs_set_root_flags(&root->root_item, 0);
1295 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1296 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1297 btrfs_set_root_generation(&root->root_item, trans->transid);
1298 btrfs_set_root_level(&root->root_item, 0);
1299 btrfs_set_root_refs(&root->root_item, 1);
1300 btrfs_set_root_used(&root->root_item, leaf->len);
1301 btrfs_set_root_last_snapshot(&root->root_item, 0);
1302 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1303 if (is_fstree(objectid))
807fc790
AS
1304 generate_random_guid(root->root_item.uuid);
1305 else
1306 export_guid(root->root_item.uuid, &guid_null);
c8422684 1307 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1308
8a6a87cd
BB
1309 btrfs_tree_unlock(leaf);
1310
20897f5c
AJ
1311 key.objectid = objectid;
1312 key.type = BTRFS_ROOT_ITEM_KEY;
1313 key.offset = 0;
1314 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1315 if (ret)
1316 goto fail;
1317
1dd05682
TI
1318 return root;
1319
8a6a87cd 1320fail_unlock:
8c38938c 1321 if (leaf)
1dd05682 1322 btrfs_tree_unlock(leaf);
8a6a87cd 1323fail:
00246528 1324 btrfs_put_root(root);
20897f5c 1325
1dd05682 1326 return ERR_PTR(ret);
20897f5c
AJ
1327}
1328
7237f183
YZ
1329static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1330 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1331{
1332 struct btrfs_root *root;
e02119d5 1333
96dfcb46 1334 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1335 if (!root)
7237f183 1336 return ERR_PTR(-ENOMEM);
e02119d5 1337
e02119d5
CM
1338 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1339 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1340 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1341
6ab6ebb7
NA
1342 return root;
1343}
1344
1345int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1346 struct btrfs_root *root)
1347{
1348 struct extent_buffer *leaf;
1349
7237f183 1350 /*
92a7cc42 1351 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1352 *
92a7cc42
QW
1353 * Log trees are not exposed to user space thus can't be snapshotted,
1354 * and they go away before a real commit is actually done.
1355 *
1356 * They do store pointers to file data extents, and those reference
1357 * counts still get updated (along with back refs to the log tree).
7237f183 1358 */
e02119d5 1359
4d75f8a9 1360 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1361 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1362 if (IS_ERR(leaf))
1363 return PTR_ERR(leaf);
e02119d5 1364
7237f183 1365 root->node = leaf;
e02119d5 1366
e02119d5
CM
1367 btrfs_mark_buffer_dirty(root->node);
1368 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1369
1370 return 0;
7237f183
YZ
1371}
1372
1373int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1374 struct btrfs_fs_info *fs_info)
1375{
1376 struct btrfs_root *log_root;
1377
1378 log_root = alloc_log_tree(trans, fs_info);
1379 if (IS_ERR(log_root))
1380 return PTR_ERR(log_root);
6ab6ebb7 1381
3ddebf27
NA
1382 if (!btrfs_is_zoned(fs_info)) {
1383 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1384
1385 if (ret) {
1386 btrfs_put_root(log_root);
1387 return ret;
1388 }
6ab6ebb7
NA
1389 }
1390
7237f183
YZ
1391 WARN_ON(fs_info->log_root_tree);
1392 fs_info->log_root_tree = log_root;
1393 return 0;
1394}
1395
1396int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1397 struct btrfs_root *root)
1398{
0b246afa 1399 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1400 struct btrfs_root *log_root;
1401 struct btrfs_inode_item *inode_item;
6ab6ebb7 1402 int ret;
7237f183 1403
0b246afa 1404 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1405 if (IS_ERR(log_root))
1406 return PTR_ERR(log_root);
1407
6ab6ebb7
NA
1408 ret = btrfs_alloc_log_tree_node(trans, log_root);
1409 if (ret) {
1410 btrfs_put_root(log_root);
1411 return ret;
1412 }
1413
7237f183
YZ
1414 log_root->last_trans = trans->transid;
1415 log_root->root_key.offset = root->root_key.objectid;
1416
1417 inode_item = &log_root->root_item.inode;
3cae210f
QW
1418 btrfs_set_stack_inode_generation(inode_item, 1);
1419 btrfs_set_stack_inode_size(inode_item, 3);
1420 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1421 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1422 fs_info->nodesize);
3cae210f 1423 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1424
5d4f98a2 1425 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1426
1427 WARN_ON(root->log_root);
1428 root->log_root = log_root;
1429 root->log_transid = 0;
d1433deb 1430 root->log_transid_committed = -1;
257c62e1 1431 root->last_log_commit = 0;
e02119d5
CM
1432 return 0;
1433}
1434
49d11bea
JB
1435static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1436 struct btrfs_path *path,
1437 struct btrfs_key *key)
e02119d5
CM
1438{
1439 struct btrfs_root *root;
1440 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1441 u64 generation;
cb517eab 1442 int ret;
581c1760 1443 int level;
0f7d52f4 1444
96dfcb46 1445 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1446 if (!root)
1447 return ERR_PTR(-ENOMEM);
0f7d52f4 1448
cb517eab
MX
1449 ret = btrfs_find_root(tree_root, key, path,
1450 &root->root_item, &root->root_key);
0f7d52f4 1451 if (ret) {
13a8a7c8
YZ
1452 if (ret > 0)
1453 ret = -ENOENT;
49d11bea 1454 goto fail;
0f7d52f4 1455 }
13a8a7c8 1456
84234f3a 1457 generation = btrfs_root_generation(&root->root_item);
581c1760 1458 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1459 root->node = read_tree_block(fs_info,
1460 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1461 key->objectid, generation, level, NULL);
64c043de
LB
1462 if (IS_ERR(root->node)) {
1463 ret = PTR_ERR(root->node);
8c38938c 1464 root->node = NULL;
49d11bea 1465 goto fail;
4eb150d6
QW
1466 }
1467 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1468 ret = -EIO;
49d11bea 1469 goto fail;
416bc658 1470 }
88c602ab
QW
1471
1472 /*
1473 * For real fs, and not log/reloc trees, root owner must
1474 * match its root node owner
1475 */
1476 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1477 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1478 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1479 root->root_key.objectid != btrfs_header_owner(root->node)) {
1480 btrfs_crit(fs_info,
1481"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1482 root->root_key.objectid, root->node->start,
1483 btrfs_header_owner(root->node),
1484 root->root_key.objectid);
1485 ret = -EUCLEAN;
1486 goto fail;
1487 }
5d4f98a2 1488 root->commit_root = btrfs_root_node(root);
cb517eab 1489 return root;
49d11bea 1490fail:
00246528 1491 btrfs_put_root(root);
49d11bea
JB
1492 return ERR_PTR(ret);
1493}
1494
1495struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1496 struct btrfs_key *key)
1497{
1498 struct btrfs_root *root;
1499 struct btrfs_path *path;
1500
1501 path = btrfs_alloc_path();
1502 if (!path)
1503 return ERR_PTR(-ENOMEM);
1504 root = read_tree_root_path(tree_root, path, key);
1505 btrfs_free_path(path);
1506
1507 return root;
cb517eab
MX
1508}
1509
2dfb1e43
QW
1510/*
1511 * Initialize subvolume root in-memory structure
1512 *
1513 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1514 */
1515static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1516{
1517 int ret;
dcc3eb96 1518 unsigned int nofs_flag;
cb517eab 1519
dcc3eb96
NB
1520 /*
1521 * We might be called under a transaction (e.g. indirect backref
1522 * resolution) which could deadlock if it triggers memory reclaim
1523 */
1524 nofs_flag = memalloc_nofs_save();
1525 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1526 memalloc_nofs_restore(nofs_flag);
1527 if (ret)
8257b2dc 1528 goto fail;
8257b2dc 1529
aeb935a4 1530 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1531 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1532 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1533 btrfs_check_and_init_root_item(&root->root_item);
1534 }
1535
851fd730
QW
1536 /*
1537 * Don't assign anonymous block device to roots that are not exposed to
1538 * userspace, the id pool is limited to 1M
1539 */
1540 if (is_fstree(root->root_key.objectid) &&
1541 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1542 if (!anon_dev) {
1543 ret = get_anon_bdev(&root->anon_dev);
1544 if (ret)
1545 goto fail;
1546 } else {
1547 root->anon_dev = anon_dev;
1548 }
851fd730 1549 }
f32e48e9
CR
1550
1551 mutex_lock(&root->objectid_mutex);
453e4873 1552 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1553 if (ret) {
1554 mutex_unlock(&root->objectid_mutex);
876d2cf1 1555 goto fail;
f32e48e9
CR
1556 }
1557
6b8fad57 1558 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1559
1560 mutex_unlock(&root->objectid_mutex);
1561
cb517eab
MX
1562 return 0;
1563fail:
84db5ccf 1564 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1565 return ret;
1566}
1567
a98db0f3
JB
1568static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1569 u64 root_id)
cb517eab
MX
1570{
1571 struct btrfs_root *root;
1572
fc7cbcd4
DS
1573 spin_lock(&fs_info->fs_roots_radix_lock);
1574 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1575 (unsigned long)root_id);
bc44d7c4 1576 if (root)
00246528 1577 root = btrfs_grab_root(root);
fc7cbcd4 1578 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1579 return root;
1580}
1581
49d11bea
JB
1582static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1583 u64 objectid)
1584{
abed4aaa
JB
1585 struct btrfs_key key = {
1586 .objectid = objectid,
1587 .type = BTRFS_ROOT_ITEM_KEY,
1588 .offset = 0,
1589 };
1590
49d11bea
JB
1591 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1592 return btrfs_grab_root(fs_info->tree_root);
1593 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
abed4aaa 1594 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1595 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1596 return btrfs_grab_root(fs_info->chunk_root);
1597 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1598 return btrfs_grab_root(fs_info->dev_root);
1599 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
abed4aaa 1600 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1601 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1602 return btrfs_grab_root(fs_info->quota_root) ?
1603 fs_info->quota_root : ERR_PTR(-ENOENT);
1604 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1605 return btrfs_grab_root(fs_info->uuid_root) ?
1606 fs_info->uuid_root : ERR_PTR(-ENOENT);
abed4aaa
JB
1607 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1608 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1609
1610 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1611 }
49d11bea
JB
1612 return NULL;
1613}
1614
cb517eab
MX
1615int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1616 struct btrfs_root *root)
1617{
1618 int ret;
1619
fc7cbcd4
DS
1620 ret = radix_tree_preload(GFP_NOFS);
1621 if (ret)
1622 return ret;
1623
1624 spin_lock(&fs_info->fs_roots_radix_lock);
1625 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1626 (unsigned long)root->root_key.objectid,
1627 root);
af01d2e5 1628 if (ret == 0) {
00246528 1629 btrfs_grab_root(root);
fc7cbcd4 1630 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1631 }
fc7cbcd4
DS
1632 spin_unlock(&fs_info->fs_roots_radix_lock);
1633 radix_tree_preload_end();
cb517eab
MX
1634
1635 return ret;
1636}
1637
bd647ce3
JB
1638void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1639{
1640#ifdef CONFIG_BTRFS_DEBUG
1641 struct btrfs_root *root;
1642
1643 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1644 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1645
bd647ce3
JB
1646 root = list_first_entry(&fs_info->allocated_roots,
1647 struct btrfs_root, leak_list);
457f1864 1648 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1649 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1650 refcount_read(&root->refs));
1651 while (refcount_read(&root->refs) > 1)
00246528
JB
1652 btrfs_put_root(root);
1653 btrfs_put_root(root);
bd647ce3
JB
1654 }
1655#endif
1656}
1657
abed4aaa
JB
1658static void free_global_roots(struct btrfs_fs_info *fs_info)
1659{
1660 struct btrfs_root *root;
1661 struct rb_node *node;
1662
1663 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1664 root = rb_entry(node, struct btrfs_root, rb_node);
1665 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1666 btrfs_put_root(root);
1667 }
1668}
1669
0d4b0463
JB
1670void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1671{
141386e1
JB
1672 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1673 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1674 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1675 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1676 btrfs_free_csum_hash(fs_info);
1677 btrfs_free_stripe_hash_table(fs_info);
1678 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1679 kfree(fs_info->balance_ctl);
1680 kfree(fs_info->delayed_root);
abed4aaa 1681 free_global_roots(fs_info);
00246528
JB
1682 btrfs_put_root(fs_info->tree_root);
1683 btrfs_put_root(fs_info->chunk_root);
1684 btrfs_put_root(fs_info->dev_root);
00246528
JB
1685 btrfs_put_root(fs_info->quota_root);
1686 btrfs_put_root(fs_info->uuid_root);
00246528 1687 btrfs_put_root(fs_info->fs_root);
aeb935a4 1688 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1689 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1690 btrfs_check_leaked_roots(fs_info);
3fd63727 1691 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1692 kfree(fs_info->super_copy);
1693 kfree(fs_info->super_for_commit);
8481dd80 1694 kfree(fs_info->subpage_info);
0d4b0463
JB
1695 kvfree(fs_info);
1696}
1697
1698
2dfb1e43
QW
1699/*
1700 * Get an in-memory reference of a root structure.
1701 *
1702 * For essential trees like root/extent tree, we grab it from fs_info directly.
1703 * For subvolume trees, we check the cached filesystem roots first. If not
1704 * found, then read it from disk and add it to cached fs roots.
1705 *
1706 * Caller should release the root by calling btrfs_put_root() after the usage.
1707 *
1708 * NOTE: Reloc and log trees can't be read by this function as they share the
1709 * same root objectid.
1710 *
1711 * @objectid: root id
1712 * @anon_dev: preallocated anonymous block device number for new roots,
1713 * pass 0 for new allocation.
1714 * @check_ref: whether to check root item references, If true, return -ENOENT
1715 * for orphan roots
1716 */
1717static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1718 u64 objectid, dev_t anon_dev,
1719 bool check_ref)
5eda7b5e
CM
1720{
1721 struct btrfs_root *root;
381cf658 1722 struct btrfs_path *path;
1d4c08e0 1723 struct btrfs_key key;
5eda7b5e
CM
1724 int ret;
1725
49d11bea
JB
1726 root = btrfs_get_global_root(fs_info, objectid);
1727 if (root)
1728 return root;
4df27c4d 1729again:
56e9357a 1730 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1731 if (root) {
2dfb1e43
QW
1732 /* Shouldn't get preallocated anon_dev for cached roots */
1733 ASSERT(!anon_dev);
bc44d7c4 1734 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1735 btrfs_put_root(root);
48475471 1736 return ERR_PTR(-ENOENT);
bc44d7c4 1737 }
5eda7b5e 1738 return root;
48475471 1739 }
5eda7b5e 1740
56e9357a
DS
1741 key.objectid = objectid;
1742 key.type = BTRFS_ROOT_ITEM_KEY;
1743 key.offset = (u64)-1;
1744 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1745 if (IS_ERR(root))
1746 return root;
3394e160 1747
c00869f1 1748 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1749 ret = -ENOENT;
581bb050 1750 goto fail;
35a30d7c 1751 }
581bb050 1752
2dfb1e43 1753 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1754 if (ret)
1755 goto fail;
3394e160 1756
381cf658
DS
1757 path = btrfs_alloc_path();
1758 if (!path) {
1759 ret = -ENOMEM;
1760 goto fail;
1761 }
1d4c08e0
DS
1762 key.objectid = BTRFS_ORPHAN_OBJECTID;
1763 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1764 key.offset = objectid;
1d4c08e0
DS
1765
1766 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1767 btrfs_free_path(path);
d68fc57b
YZ
1768 if (ret < 0)
1769 goto fail;
1770 if (ret == 0)
27cdeb70 1771 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1772
cb517eab 1773 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1774 if (ret) {
168a2f77
JJB
1775 if (ret == -EEXIST) {
1776 btrfs_put_root(root);
4df27c4d 1777 goto again;
168a2f77 1778 }
4df27c4d 1779 goto fail;
0f7d52f4 1780 }
edbd8d4e 1781 return root;
4df27c4d 1782fail:
33fab972
FM
1783 /*
1784 * If our caller provided us an anonymous device, then it's his
143823cf 1785 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1786 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1787 * and once again by our caller.
1788 */
1789 if (anon_dev)
1790 root->anon_dev = 0;
8c38938c 1791 btrfs_put_root(root);
4df27c4d 1792 return ERR_PTR(ret);
edbd8d4e
CM
1793}
1794
2dfb1e43
QW
1795/*
1796 * Get in-memory reference of a root structure
1797 *
1798 * @objectid: tree objectid
1799 * @check_ref: if set, verify that the tree exists and the item has at least
1800 * one reference
1801 */
1802struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1803 u64 objectid, bool check_ref)
1804{
1805 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1806}
1807
1808/*
1809 * Get in-memory reference of a root structure, created as new, optionally pass
1810 * the anonymous block device id
1811 *
1812 * @objectid: tree objectid
1813 * @anon_dev: if zero, allocate a new anonymous block device or use the
1814 * parameter value
1815 */
1816struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1817 u64 objectid, dev_t anon_dev)
1818{
1819 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1820}
1821
49d11bea
JB
1822/*
1823 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1824 * @fs_info: the fs_info
1825 * @objectid: the objectid we need to lookup
1826 *
1827 * This is exclusively used for backref walking, and exists specifically because
1828 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1829 * creation time, which means we may have to read the tree_root in order to look
1830 * up a fs root that is not in memory. If the root is not in memory we will
1831 * read the tree root commit root and look up the fs root from there. This is a
1832 * temporary root, it will not be inserted into the radix tree as it doesn't
1833 * have the most uptodate information, it'll simply be discarded once the
1834 * backref code is finished using the root.
1835 */
1836struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1837 struct btrfs_path *path,
1838 u64 objectid)
1839{
1840 struct btrfs_root *root;
1841 struct btrfs_key key;
1842
1843 ASSERT(path->search_commit_root && path->skip_locking);
1844
1845 /*
1846 * This can return -ENOENT if we ask for a root that doesn't exist, but
1847 * since this is called via the backref walking code we won't be looking
1848 * up a root that doesn't exist, unless there's corruption. So if root
1849 * != NULL just return it.
1850 */
1851 root = btrfs_get_global_root(fs_info, objectid);
1852 if (root)
1853 return root;
1854
1855 root = btrfs_lookup_fs_root(fs_info, objectid);
1856 if (root)
1857 return root;
1858
1859 key.objectid = objectid;
1860 key.type = BTRFS_ROOT_ITEM_KEY;
1861 key.offset = (u64)-1;
1862 root = read_tree_root_path(fs_info->tree_root, path, &key);
1863 btrfs_release_path(path);
1864
1865 return root;
1866}
1867
a74a4b97
CM
1868static int cleaner_kthread(void *arg)
1869{
0d031dc4 1870 struct btrfs_fs_info *fs_info = arg;
d0278245 1871 int again;
a74a4b97 1872
d6fd0ae2 1873 while (1) {
d0278245 1874 again = 0;
a74a4b97 1875
fd340d0f
JB
1876 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1877
d0278245 1878 /* Make the cleaner go to sleep early. */
2ff7e61e 1879 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1880 goto sleep;
1881
90c711ab
ZB
1882 /*
1883 * Do not do anything if we might cause open_ctree() to block
1884 * before we have finished mounting the filesystem.
1885 */
0b246afa 1886 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1887 goto sleep;
1888
0b246afa 1889 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1890 goto sleep;
1891
dc7f370c
MX
1892 /*
1893 * Avoid the problem that we change the status of the fs
1894 * during the above check and trylock.
1895 */
2ff7e61e 1896 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1897 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1898 goto sleep;
76dda93c 1899 }
a74a4b97 1900
2ff7e61e 1901 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1902
33c44184 1903 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1904 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1905
1906 /*
05323cd1
MX
1907 * The defragger has dealt with the R/O remount and umount,
1908 * needn't do anything special here.
d0278245 1909 */
0b246afa 1910 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1911
1912 /*
f3372065 1913 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1914 * with relocation (btrfs_relocate_chunk) and relocation
1915 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1916 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1917 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1918 * unused block groups.
1919 */
0b246afa 1920 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1921
1922 /*
1923 * Reclaim block groups in the reclaim_bgs list after we deleted
1924 * all unused block_groups. This possibly gives us some more free
1925 * space.
1926 */
1927 btrfs_reclaim_bgs(fs_info);
d0278245 1928sleep:
a0a1db70 1929 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1930 if (kthread_should_park())
1931 kthread_parkme();
1932 if (kthread_should_stop())
1933 return 0;
838fe188 1934 if (!again) {
a74a4b97 1935 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1936 schedule();
a74a4b97
CM
1937 __set_current_state(TASK_RUNNING);
1938 }
da288d28 1939 }
a74a4b97
CM
1940}
1941
1942static int transaction_kthread(void *arg)
1943{
1944 struct btrfs_root *root = arg;
0b246afa 1945 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1946 struct btrfs_trans_handle *trans;
1947 struct btrfs_transaction *cur;
8929ecfa 1948 u64 transid;
643900be 1949 time64_t delta;
a74a4b97 1950 unsigned long delay;
914b2007 1951 bool cannot_commit;
a74a4b97
CM
1952
1953 do {
914b2007 1954 cannot_commit = false;
ba1bc00f 1955 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1956 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1957
0b246afa
JM
1958 spin_lock(&fs_info->trans_lock);
1959 cur = fs_info->running_transaction;
a74a4b97 1960 if (!cur) {
0b246afa 1961 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1962 goto sleep;
1963 }
31153d81 1964
643900be 1965 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
1966 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1967 cur->state < TRANS_STATE_COMMIT_START &&
643900be 1968 delta < fs_info->commit_interval) {
0b246afa 1969 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1970 delay -= msecs_to_jiffies((delta - 1) * 1000);
1971 delay = min(delay,
1972 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1973 goto sleep;
1974 }
8929ecfa 1975 transid = cur->transid;
0b246afa 1976 spin_unlock(&fs_info->trans_lock);
56bec294 1977
79787eaa 1978 /* If the file system is aborted, this will always fail. */
354aa0fb 1979 trans = btrfs_attach_transaction(root);
914b2007 1980 if (IS_ERR(trans)) {
354aa0fb
MX
1981 if (PTR_ERR(trans) != -ENOENT)
1982 cannot_commit = true;
79787eaa 1983 goto sleep;
914b2007 1984 }
8929ecfa 1985 if (transid == trans->transid) {
3a45bb20 1986 btrfs_commit_transaction(trans);
8929ecfa 1987 } else {
3a45bb20 1988 btrfs_end_transaction(trans);
8929ecfa 1989 }
a74a4b97 1990sleep:
0b246afa
JM
1991 wake_up_process(fs_info->cleaner_kthread);
1992 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1993
84961539 1994 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1995 btrfs_cleanup_transaction(fs_info);
ce63f891 1996 if (!kthread_should_stop() &&
0b246afa 1997 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1998 cannot_commit))
bc5511d0 1999 schedule_timeout_interruptible(delay);
a74a4b97
CM
2000 } while (!kthread_should_stop());
2001 return 0;
2002}
2003
af31f5e5 2004/*
01f0f9da
NB
2005 * This will find the highest generation in the array of root backups. The
2006 * index of the highest array is returned, or -EINVAL if we can't find
2007 * anything.
af31f5e5
CM
2008 *
2009 * We check to make sure the array is valid by comparing the
2010 * generation of the latest root in the array with the generation
2011 * in the super block. If they don't match we pitch it.
2012 */
01f0f9da 2013static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 2014{
01f0f9da 2015 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 2016 u64 cur;
af31f5e5
CM
2017 struct btrfs_root_backup *root_backup;
2018 int i;
2019
2020 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2021 root_backup = info->super_copy->super_roots + i;
2022 cur = btrfs_backup_tree_root_gen(root_backup);
2023 if (cur == newest_gen)
01f0f9da 2024 return i;
af31f5e5
CM
2025 }
2026
01f0f9da 2027 return -EINVAL;
af31f5e5
CM
2028}
2029
af31f5e5
CM
2030/*
2031 * copy all the root pointers into the super backup array.
2032 * this will bump the backup pointer by one when it is
2033 * done
2034 */
2035static void backup_super_roots(struct btrfs_fs_info *info)
2036{
6ef108dd 2037 const int next_backup = info->backup_root_index;
af31f5e5 2038 struct btrfs_root_backup *root_backup;
af31f5e5
CM
2039
2040 root_backup = info->super_for_commit->super_roots + next_backup;
2041
2042 /*
2043 * make sure all of our padding and empty slots get zero filled
2044 * regardless of which ones we use today
2045 */
2046 memset(root_backup, 0, sizeof(*root_backup));
2047
2048 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2049
2050 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2051 btrfs_set_backup_tree_root_gen(root_backup,
2052 btrfs_header_generation(info->tree_root->node));
2053
2054 btrfs_set_backup_tree_root_level(root_backup,
2055 btrfs_header_level(info->tree_root->node));
2056
2057 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2058 btrfs_set_backup_chunk_root_gen(root_backup,
2059 btrfs_header_generation(info->chunk_root->node));
2060 btrfs_set_backup_chunk_root_level(root_backup,
2061 btrfs_header_level(info->chunk_root->node));
2062
9c54e80d
JB
2063 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
2064 btrfs_set_backup_block_group_root(root_backup,
2065 info->block_group_root->node->start);
2066 btrfs_set_backup_block_group_root_gen(root_backup,
2067 btrfs_header_generation(info->block_group_root->node));
2068 btrfs_set_backup_block_group_root_level(root_backup,
2069 btrfs_header_level(info->block_group_root->node));
2070 } else {
2071 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 2072 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
2073
2074 btrfs_set_backup_extent_root(root_backup,
2075 extent_root->node->start);
2076 btrfs_set_backup_extent_root_gen(root_backup,
2077 btrfs_header_generation(extent_root->node));
2078 btrfs_set_backup_extent_root_level(root_backup,
2079 btrfs_header_level(extent_root->node));
f7238e50
JB
2080
2081 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2082 btrfs_set_backup_csum_root_gen(root_backup,
2083 btrfs_header_generation(csum_root->node));
2084 btrfs_set_backup_csum_root_level(root_backup,
2085 btrfs_header_level(csum_root->node));
9c54e80d 2086 }
af31f5e5 2087
7c7e82a7
CM
2088 /*
2089 * we might commit during log recovery, which happens before we set
2090 * the fs_root. Make sure it is valid before we fill it in.
2091 */
2092 if (info->fs_root && info->fs_root->node) {
2093 btrfs_set_backup_fs_root(root_backup,
2094 info->fs_root->node->start);
2095 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2096 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2097 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2098 btrfs_header_level(info->fs_root->node));
7c7e82a7 2099 }
af31f5e5
CM
2100
2101 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2102 btrfs_set_backup_dev_root_gen(root_backup,
2103 btrfs_header_generation(info->dev_root->node));
2104 btrfs_set_backup_dev_root_level(root_backup,
2105 btrfs_header_level(info->dev_root->node));
2106
af31f5e5
CM
2107 btrfs_set_backup_total_bytes(root_backup,
2108 btrfs_super_total_bytes(info->super_copy));
2109 btrfs_set_backup_bytes_used(root_backup,
2110 btrfs_super_bytes_used(info->super_copy));
2111 btrfs_set_backup_num_devices(root_backup,
2112 btrfs_super_num_devices(info->super_copy));
2113
2114 /*
2115 * if we don't copy this out to the super_copy, it won't get remembered
2116 * for the next commit
2117 */
2118 memcpy(&info->super_copy->super_roots,
2119 &info->super_for_commit->super_roots,
2120 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2121}
2122
bd2336b2
NB
2123/*
2124 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2125 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2126 *
2127 * fs_info - filesystem whose backup roots need to be read
2128 * priority - priority of backup root required
2129 *
2130 * Returns backup root index on success and -EINVAL otherwise.
2131 */
2132static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2133{
2134 int backup_index = find_newest_super_backup(fs_info);
2135 struct btrfs_super_block *super = fs_info->super_copy;
2136 struct btrfs_root_backup *root_backup;
2137
2138 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2139 if (priority == 0)
2140 return backup_index;
2141
2142 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2143 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2144 } else {
2145 return -EINVAL;
2146 }
2147
2148 root_backup = super->super_roots + backup_index;
2149
2150 btrfs_set_super_generation(super,
2151 btrfs_backup_tree_root_gen(root_backup));
2152 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2153 btrfs_set_super_root_level(super,
2154 btrfs_backup_tree_root_level(root_backup));
2155 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2156
2157 /*
2158 * Fixme: the total bytes and num_devices need to match or we should
2159 * need a fsck
2160 */
2161 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2162 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2163
2164 return backup_index;
2165}
2166
7abadb64
LB
2167/* helper to cleanup workers */
2168static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2169{
dc6e3209 2170 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2171 btrfs_destroy_workqueue(fs_info->delalloc_workers);
a31b4a43 2172 btrfs_destroy_workqueue(fs_info->hipri_workers);
5cdc7ad3 2173 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
2174 if (fs_info->endio_workers)
2175 destroy_workqueue(fs_info->endio_workers);
d34e123d
CH
2176 if (fs_info->endio_raid56_workers)
2177 destroy_workqueue(fs_info->endio_raid56_workers);
385de0ef
CH
2178 if (fs_info->rmw_workers)
2179 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
2180 if (fs_info->compressed_write_workers)
2181 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
2182 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2183 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2184 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2185 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 2186 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2187 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2188 if (fs_info->discard_ctl.discard_workers)
2189 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2190 /*
2191 * Now that all other work queues are destroyed, we can safely destroy
2192 * the queues used for metadata I/O, since tasks from those other work
2193 * queues can do metadata I/O operations.
2194 */
d7b9416f
CH
2195 if (fs_info->endio_meta_workers)
2196 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
2197}
2198
2e9f5954
R
2199static void free_root_extent_buffers(struct btrfs_root *root)
2200{
2201 if (root) {
2202 free_extent_buffer(root->node);
2203 free_extent_buffer(root->commit_root);
2204 root->node = NULL;
2205 root->commit_root = NULL;
2206 }
2207}
2208
abed4aaa
JB
2209static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2210{
2211 struct btrfs_root *root, *tmp;
2212
2213 rbtree_postorder_for_each_entry_safe(root, tmp,
2214 &fs_info->global_root_tree,
2215 rb_node)
2216 free_root_extent_buffers(root);
2217}
2218
af31f5e5 2219/* helper to cleanup tree roots */
4273eaff 2220static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2221{
2e9f5954 2222 free_root_extent_buffers(info->tree_root);
655b09fe 2223
abed4aaa 2224 free_global_root_pointers(info);
2e9f5954 2225 free_root_extent_buffers(info->dev_root);
2e9f5954
R
2226 free_root_extent_buffers(info->quota_root);
2227 free_root_extent_buffers(info->uuid_root);
8c38938c 2228 free_root_extent_buffers(info->fs_root);
aeb935a4 2229 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 2230 free_root_extent_buffers(info->block_group_root);
4273eaff 2231 if (free_chunk_root)
2e9f5954 2232 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2233}
2234
8c38938c
JB
2235void btrfs_put_root(struct btrfs_root *root)
2236{
2237 if (!root)
2238 return;
2239
2240 if (refcount_dec_and_test(&root->refs)) {
2241 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2242 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2243 if (root->anon_dev)
2244 free_anon_bdev(root->anon_dev);
2245 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2246 free_root_extent_buffers(root);
8c38938c 2247#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 2248 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 2249 list_del_init(&root->leak_list);
fc7cbcd4 2250 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
2251#endif
2252 kfree(root);
2253 }
2254}
2255
faa2dbf0 2256void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 2257{
fc7cbcd4
DS
2258 int ret;
2259 struct btrfs_root *gang[8];
2260 int i;
171f6537
JB
2261
2262 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
2263 gang[0] = list_entry(fs_info->dead_roots.next,
2264 struct btrfs_root, root_list);
2265 list_del(&gang[0]->root_list);
171f6537 2266
fc7cbcd4
DS
2267 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2268 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2269 btrfs_put_root(gang[0]);
171f6537
JB
2270 }
2271
fc7cbcd4
DS
2272 while (1) {
2273 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2274 (void **)gang, 0,
2275 ARRAY_SIZE(gang));
2276 if (!ret)
2277 break;
2278 for (i = 0; i < ret; i++)
2279 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2280 }
2281}
af31f5e5 2282
638aa7ed
ES
2283static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2284{
2285 mutex_init(&fs_info->scrub_lock);
2286 atomic_set(&fs_info->scrubs_running, 0);
2287 atomic_set(&fs_info->scrub_pause_req, 0);
2288 atomic_set(&fs_info->scrubs_paused, 0);
2289 atomic_set(&fs_info->scrub_cancel_req, 0);
2290 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2291 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2292}
2293
779a65a4
ES
2294static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2295{
2296 spin_lock_init(&fs_info->balance_lock);
2297 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2298 atomic_set(&fs_info->balance_pause_req, 0);
2299 atomic_set(&fs_info->balance_cancel_req, 0);
2300 fs_info->balance_ctl = NULL;
2301 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2302 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2303}
2304
6bccf3ab 2305static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2306{
2ff7e61e
JM
2307 struct inode *inode = fs_info->btree_inode;
2308
2309 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2310 set_nlink(inode, 1);
f37938e0
ES
2311 /*
2312 * we set the i_size on the btree inode to the max possible int.
2313 * the real end of the address space is determined by all of
2314 * the devices in the system
2315 */
2ff7e61e
JM
2316 inode->i_size = OFFSET_MAX;
2317 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2318
2ff7e61e 2319 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2320 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2321 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2322 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2323 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2324
5c8fd99f 2325 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2326 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2327 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2328 btrfs_insert_inode_hash(inode);
f37938e0
ES
2329}
2330
ad618368
ES
2331static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2332{
ad618368 2333 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2334 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2335 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2336}
2337
f9e92e40
ES
2338static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2339{
2340 spin_lock_init(&fs_info->qgroup_lock);
2341 mutex_init(&fs_info->qgroup_ioctl_lock);
2342 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2343 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2344 fs_info->qgroup_seq = 1;
f9e92e40 2345 fs_info->qgroup_ulist = NULL;
d2c609b8 2346 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2347 mutex_init(&fs_info->qgroup_rescan_lock);
2348}
2349
d21deec5 2350static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 2351{
f7b885be 2352 u32 max_active = fs_info->thread_pool_size;
6f011058 2353 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2354
2355 fs_info->workers =
a31b4a43
CH
2356 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2357 fs_info->hipri_workers =
2358 btrfs_alloc_workqueue(fs_info, "worker-high",
cb001095 2359 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2360
2361 fs_info->delalloc_workers =
cb001095
JM
2362 btrfs_alloc_workqueue(fs_info, "delalloc",
2363 flags, max_active, 2);
2a458198
ES
2364
2365 fs_info->flush_workers =
cb001095
JM
2366 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2367 flags, max_active, 0);
2a458198
ES
2368
2369 fs_info->caching_workers =
cb001095 2370 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2371
2a458198 2372 fs_info->fixup_workers =
cb001095 2373 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198 2374
2a458198 2375 fs_info->endio_workers =
d7b9416f 2376 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 2377 fs_info->endio_meta_workers =
d7b9416f 2378 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2a458198 2379 fs_info->endio_raid56_workers =
d34e123d 2380 alloc_workqueue("btrfs-endio-raid56", flags, max_active);
385de0ef 2381 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2382 fs_info->endio_write_workers =
cb001095
JM
2383 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2384 max_active, 2);
fed8a72d
CH
2385 fs_info->compressed_write_workers =
2386 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 2387 fs_info->endio_freespace_worker =
cb001095
JM
2388 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2389 max_active, 0);
2a458198 2390 fs_info->delayed_workers =
cb001095
JM
2391 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2392 max_active, 0);
2a458198 2393 fs_info->qgroup_rescan_workers =
cb001095 2394 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2395 fs_info->discard_ctl.discard_workers =
2396 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198 2397
a31b4a43
CH
2398 if (!(fs_info->workers && fs_info->hipri_workers &&
2399 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2400 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2401 fs_info->compressed_write_workers &&
2a458198
ES
2402 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2403 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2404 fs_info->caching_workers && fs_info->fixup_workers &&
2405 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2406 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2407 return -ENOMEM;
2408 }
2409
2410 return 0;
2411}
2412
6d97c6e3
JT
2413static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2414{
2415 struct crypto_shash *csum_shash;
b4e967be 2416 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2417
b4e967be 2418 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2419
2420 if (IS_ERR(csum_shash)) {
2421 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2422 csum_driver);
6d97c6e3
JT
2423 return PTR_ERR(csum_shash);
2424 }
2425
2426 fs_info->csum_shash = csum_shash;
2427
2428 return 0;
2429}
2430
63443bf5
ES
2431static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2432 struct btrfs_fs_devices *fs_devices)
2433{
2434 int ret;
63443bf5
ES
2435 struct btrfs_root *log_tree_root;
2436 struct btrfs_super_block *disk_super = fs_info->super_copy;
2437 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2438 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2439
2440 if (fs_devices->rw_devices == 0) {
f14d104d 2441 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2442 return -EIO;
2443 }
2444
96dfcb46
JB
2445 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2446 GFP_KERNEL);
63443bf5
ES
2447 if (!log_tree_root)
2448 return -ENOMEM;
2449
2ff7e61e 2450 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2451 BTRFS_TREE_LOG_OBJECTID,
2452 fs_info->generation + 1, level,
2453 NULL);
64c043de 2454 if (IS_ERR(log_tree_root->node)) {
f14d104d 2455 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2456 ret = PTR_ERR(log_tree_root->node);
8c38938c 2457 log_tree_root->node = NULL;
00246528 2458 btrfs_put_root(log_tree_root);
0eeff236 2459 return ret;
4eb150d6
QW
2460 }
2461 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2462 btrfs_err(fs_info, "failed to read log tree");
00246528 2463 btrfs_put_root(log_tree_root);
63443bf5
ES
2464 return -EIO;
2465 }
4eb150d6 2466
63443bf5
ES
2467 /* returns with log_tree_root freed on success */
2468 ret = btrfs_recover_log_trees(log_tree_root);
2469 if (ret) {
0b246afa
JM
2470 btrfs_handle_fs_error(fs_info, ret,
2471 "Failed to recover log tree");
00246528 2472 btrfs_put_root(log_tree_root);
63443bf5
ES
2473 return ret;
2474 }
2475
bc98a42c 2476 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2477 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2478 if (ret)
2479 return ret;
2480 }
2481
2482 return 0;
2483}
2484
abed4aaa
JB
2485static int load_global_roots_objectid(struct btrfs_root *tree_root,
2486 struct btrfs_path *path, u64 objectid,
2487 const char *name)
2488{
2489 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2490 struct btrfs_root *root;
f7238e50 2491 u64 max_global_id = 0;
abed4aaa
JB
2492 int ret;
2493 struct btrfs_key key = {
2494 .objectid = objectid,
2495 .type = BTRFS_ROOT_ITEM_KEY,
2496 .offset = 0,
2497 };
2498 bool found = false;
2499
2500 /* If we have IGNOREDATACSUMS skip loading these roots. */
2501 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2502 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2503 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2504 return 0;
2505 }
2506
2507 while (1) {
2508 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2509 if (ret < 0)
2510 break;
2511
2512 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2513 ret = btrfs_next_leaf(tree_root, path);
2514 if (ret) {
2515 if (ret > 0)
2516 ret = 0;
2517 break;
2518 }
2519 }
2520 ret = 0;
2521
2522 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2523 if (key.objectid != objectid)
2524 break;
2525 btrfs_release_path(path);
2526
f7238e50
JB
2527 /*
2528 * Just worry about this for extent tree, it'll be the same for
2529 * everybody.
2530 */
2531 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2532 max_global_id = max(max_global_id, key.offset);
2533
abed4aaa
JB
2534 found = true;
2535 root = read_tree_root_path(tree_root, path, &key);
2536 if (IS_ERR(root)) {
2537 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2538 ret = PTR_ERR(root);
2539 break;
2540 }
2541 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2542 ret = btrfs_global_root_insert(root);
2543 if (ret) {
2544 btrfs_put_root(root);
2545 break;
2546 }
2547 key.offset++;
2548 }
2549 btrfs_release_path(path);
2550
f7238e50
JB
2551 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2552 fs_info->nr_global_roots = max_global_id + 1;
2553
abed4aaa
JB
2554 if (!found || ret) {
2555 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2556 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2557
2558 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2559 ret = ret ? ret : -ENOENT;
2560 else
2561 ret = 0;
2562 btrfs_err(fs_info, "failed to load root %s", name);
2563 }
2564 return ret;
2565}
2566
2567static int load_global_roots(struct btrfs_root *tree_root)
2568{
2569 struct btrfs_path *path;
2570 int ret = 0;
2571
2572 path = btrfs_alloc_path();
2573 if (!path)
2574 return -ENOMEM;
2575
2576 ret = load_global_roots_objectid(tree_root, path,
2577 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2578 if (ret)
2579 goto out;
2580 ret = load_global_roots_objectid(tree_root, path,
2581 BTRFS_CSUM_TREE_OBJECTID, "csum");
2582 if (ret)
2583 goto out;
2584 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2585 goto out;
2586 ret = load_global_roots_objectid(tree_root, path,
2587 BTRFS_FREE_SPACE_TREE_OBJECTID,
2588 "free space");
2589out:
2590 btrfs_free_path(path);
2591 return ret;
2592}
2593
6bccf3ab 2594static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2595{
6bccf3ab 2596 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2597 struct btrfs_root *root;
4bbcaa64
ES
2598 struct btrfs_key location;
2599 int ret;
2600
6bccf3ab
JM
2601 BUG_ON(!fs_info->tree_root);
2602
abed4aaa
JB
2603 ret = load_global_roots(tree_root);
2604 if (ret)
2605 return ret;
2606
2607 location.objectid = BTRFS_DEV_TREE_OBJECTID;
4bbcaa64
ES
2608 location.type = BTRFS_ROOT_ITEM_KEY;
2609 location.offset = 0;
2610
a4f3d2c4 2611 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2612 if (IS_ERR(root)) {
42437a63
JB
2613 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2614 ret = PTR_ERR(root);
2615 goto out;
2616 }
2617 } else {
2618 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2619 fs_info->dev_root = root;
f50f4353 2620 }
820a49da
JB
2621 /* Initialize fs_info for all devices in any case */
2622 btrfs_init_devices_late(fs_info);
4bbcaa64 2623
aeb935a4
QW
2624 /*
2625 * This tree can share blocks with some other fs tree during relocation
2626 * and we need a proper setup by btrfs_get_fs_root
2627 */
56e9357a
DS
2628 root = btrfs_get_fs_root(tree_root->fs_info,
2629 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2630 if (IS_ERR(root)) {
42437a63
JB
2631 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2632 ret = PTR_ERR(root);
2633 goto out;
2634 }
2635 } else {
2636 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2637 fs_info->data_reloc_root = root;
aeb935a4 2638 }
aeb935a4 2639
4bbcaa64 2640 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2641 root = btrfs_read_tree_root(tree_root, &location);
2642 if (!IS_ERR(root)) {
2643 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2644 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2645 fs_info->quota_root = root;
4bbcaa64
ES
2646 }
2647
2648 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2649 root = btrfs_read_tree_root(tree_root, &location);
2650 if (IS_ERR(root)) {
42437a63
JB
2651 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2652 ret = PTR_ERR(root);
2653 if (ret != -ENOENT)
2654 goto out;
2655 }
4bbcaa64 2656 } else {
a4f3d2c4
DS
2657 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2658 fs_info->uuid_root = root;
4bbcaa64
ES
2659 }
2660
2661 return 0;
f50f4353
LB
2662out:
2663 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2664 location.objectid, ret);
2665 return ret;
4bbcaa64
ES
2666}
2667
069ec957
QW
2668/*
2669 * Real super block validation
2670 * NOTE: super csum type and incompat features will not be checked here.
2671 *
2672 * @sb: super block to check
2673 * @mirror_num: the super block number to check its bytenr:
2674 * 0 the primary (1st) sb
2675 * 1, 2 2nd and 3rd backup copy
2676 * -1 skip bytenr check
2677 */
2678static int validate_super(struct btrfs_fs_info *fs_info,
2679 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2680{
21a852b0
QW
2681 u64 nodesize = btrfs_super_nodesize(sb);
2682 u64 sectorsize = btrfs_super_sectorsize(sb);
2683 int ret = 0;
2684
2685 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2686 btrfs_err(fs_info, "no valid FS found");
2687 ret = -EINVAL;
2688 }
2689 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2690 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2691 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2692 ret = -EINVAL;
2693 }
2694 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2695 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2696 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2697 ret = -EINVAL;
2698 }
2699 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2700 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2701 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2702 ret = -EINVAL;
2703 }
2704 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2705 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2706 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2707 ret = -EINVAL;
2708 }
2709
2710 /*
2711 * Check sectorsize and nodesize first, other check will need it.
2712 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2713 */
2714 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2715 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2716 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2717 ret = -EINVAL;
2718 }
0bb3eb3e
QW
2719
2720 /*
1a42daab
QW
2721 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2722 *
2723 * We can support 16K sectorsize with 64K page size without problem,
2724 * but such sectorsize/pagesize combination doesn't make much sense.
2725 * 4K will be our future standard, PAGE_SIZE is supported from the very
2726 * beginning.
0bb3eb3e 2727 */
1a42daab 2728 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2729 btrfs_err(fs_info,
0bb3eb3e 2730 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2731 sectorsize, PAGE_SIZE);
2732 ret = -EINVAL;
2733 }
0bb3eb3e 2734
21a852b0
QW
2735 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2736 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2737 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2738 ret = -EINVAL;
2739 }
2740 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2741 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2742 le32_to_cpu(sb->__unused_leafsize), nodesize);
2743 ret = -EINVAL;
2744 }
2745
2746 /* Root alignment check */
2747 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2748 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2749 btrfs_super_root(sb));
2750 ret = -EINVAL;
2751 }
2752 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2753 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2754 btrfs_super_chunk_root(sb));
2755 ret = -EINVAL;
2756 }
2757 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2758 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2759 btrfs_super_log_root(sb));
2760 ret = -EINVAL;
2761 }
2762
aefd7f70
NB
2763 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2764 BTRFS_FSID_SIZE)) {
2765 btrfs_err(fs_info,
2766 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2767 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2768 ret = -EINVAL;
2769 }
2770
2771 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2772 memcmp(fs_info->fs_devices->metadata_uuid,
2773 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2774 btrfs_err(fs_info,
2775"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2776 fs_info->super_copy->metadata_uuid,
2777 fs_info->fs_devices->metadata_uuid);
2778 ret = -EINVAL;
2779 }
2780
de37aa51 2781 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2782 BTRFS_FSID_SIZE) != 0) {
21a852b0 2783 btrfs_err(fs_info,
7239ff4b 2784 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2785 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2786 ret = -EINVAL;
2787 }
2788
2789 /*
2790 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2791 * done later
2792 */
2793 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2794 btrfs_err(fs_info, "bytes_used is too small %llu",
2795 btrfs_super_bytes_used(sb));
2796 ret = -EINVAL;
2797 }
2798 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2799 btrfs_err(fs_info, "invalid stripesize %u",
2800 btrfs_super_stripesize(sb));
2801 ret = -EINVAL;
2802 }
2803 if (btrfs_super_num_devices(sb) > (1UL << 31))
2804 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2805 btrfs_super_num_devices(sb));
2806 if (btrfs_super_num_devices(sb) == 0) {
2807 btrfs_err(fs_info, "number of devices is 0");
2808 ret = -EINVAL;
2809 }
2810
069ec957
QW
2811 if (mirror_num >= 0 &&
2812 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2813 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2814 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2815 ret = -EINVAL;
2816 }
2817
2818 /*
2819 * Obvious sys_chunk_array corruptions, it must hold at least one key
2820 * and one chunk
2821 */
2822 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2823 btrfs_err(fs_info, "system chunk array too big %u > %u",
2824 btrfs_super_sys_array_size(sb),
2825 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2826 ret = -EINVAL;
2827 }
2828 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2829 + sizeof(struct btrfs_chunk)) {
2830 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2831 btrfs_super_sys_array_size(sb),
2832 sizeof(struct btrfs_disk_key)
2833 + sizeof(struct btrfs_chunk));
2834 ret = -EINVAL;
2835 }
2836
2837 /*
2838 * The generation is a global counter, we'll trust it more than the others
2839 * but it's still possible that it's the one that's wrong.
2840 */
2841 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2842 btrfs_warn(fs_info,
2843 "suspicious: generation < chunk_root_generation: %llu < %llu",
2844 btrfs_super_generation(sb),
2845 btrfs_super_chunk_root_generation(sb));
2846 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2847 && btrfs_super_cache_generation(sb) != (u64)-1)
2848 btrfs_warn(fs_info,
2849 "suspicious: generation < cache_generation: %llu < %llu",
2850 btrfs_super_generation(sb),
2851 btrfs_super_cache_generation(sb));
2852
2853 return ret;
2854}
2855
069ec957
QW
2856/*
2857 * Validation of super block at mount time.
2858 * Some checks already done early at mount time, like csum type and incompat
2859 * flags will be skipped.
2860 */
2861static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2862{
2863 return validate_super(fs_info, fs_info->super_copy, 0);
2864}
2865
75cb857d
QW
2866/*
2867 * Validation of super block at write time.
2868 * Some checks like bytenr check will be skipped as their values will be
2869 * overwritten soon.
2870 * Extra checks like csum type and incompat flags will be done here.
2871 */
2872static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2873 struct btrfs_super_block *sb)
2874{
2875 int ret;
2876
2877 ret = validate_super(fs_info, sb, -1);
2878 if (ret < 0)
2879 goto out;
e7e16f48 2880 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2881 ret = -EUCLEAN;
2882 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2883 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2884 goto out;
2885 }
2886 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2887 ret = -EUCLEAN;
2888 btrfs_err(fs_info,
2889 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2890 btrfs_super_incompat_flags(sb),
2891 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2892 goto out;
2893 }
2894out:
2895 if (ret < 0)
2896 btrfs_err(fs_info,
2897 "super block corruption detected before writing it to disk");
2898 return ret;
2899}
2900
bd676446
JB
2901static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2902{
2903 int ret = 0;
2904
2905 root->node = read_tree_block(root->fs_info, bytenr,
2906 root->root_key.objectid, gen, level, NULL);
2907 if (IS_ERR(root->node)) {
2908 ret = PTR_ERR(root->node);
2909 root->node = NULL;
4eb150d6
QW
2910 return ret;
2911 }
2912 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2913 free_extent_buffer(root->node);
2914 root->node = NULL;
4eb150d6 2915 return -EIO;
bd676446
JB
2916 }
2917
bd676446
JB
2918 btrfs_set_root_node(&root->root_item, root->node);
2919 root->commit_root = btrfs_root_node(root);
2920 btrfs_set_root_refs(&root->root_item, 1);
2921 return ret;
2922}
2923
2924static int load_important_roots(struct btrfs_fs_info *fs_info)
2925{
2926 struct btrfs_super_block *sb = fs_info->super_copy;
2927 u64 gen, bytenr;
2928 int level, ret;
2929
2930 bytenr = btrfs_super_root(sb);
2931 gen = btrfs_super_generation(sb);
2932 level = btrfs_super_root_level(sb);
2933 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2934 if (ret) {
bd676446 2935 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2936 return ret;
2937 }
2938
2939 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2940 return 0;
2941
2942 bytenr = btrfs_super_block_group_root(sb);
2943 gen = btrfs_super_block_group_root_generation(sb);
2944 level = btrfs_super_block_group_root_level(sb);
2945 ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
2946 if (ret)
2947 btrfs_warn(fs_info, "couldn't read block group root");
bd676446
JB
2948 return ret;
2949}
2950
6ef108dd 2951static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2952{
6ef108dd 2953 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2954 struct btrfs_super_block *sb = fs_info->super_copy;
2955 struct btrfs_root *tree_root = fs_info->tree_root;
2956 bool handle_error = false;
2957 int ret = 0;
2958 int i;
2959
9c54e80d
JB
2960 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2961 struct btrfs_root *root;
2962
2963 root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
2964 GFP_KERNEL);
2965 if (!root)
2966 return -ENOMEM;
2967 fs_info->block_group_root = root;
2968 }
b8522a1e 2969
b8522a1e 2970 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2971 if (handle_error) {
2972 if (!IS_ERR(tree_root->node))
2973 free_extent_buffer(tree_root->node);
2974 tree_root->node = NULL;
2975
2976 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2977 break;
2978
2979 free_root_pointers(fs_info, 0);
2980
2981 /*
2982 * Don't use the log in recovery mode, it won't be
2983 * valid
2984 */
2985 btrfs_set_super_log_root(sb, 0);
2986
2987 /* We can't trust the free space cache either */
2988 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2989
2990 ret = read_backup_root(fs_info, i);
6ef108dd 2991 backup_index = ret;
b8522a1e
NB
2992 if (ret < 0)
2993 return ret;
2994 }
b8522a1e 2995
bd676446
JB
2996 ret = load_important_roots(fs_info);
2997 if (ret) {
217f5004 2998 handle_error = true;
b8522a1e
NB
2999 continue;
3000 }
3001
336a0d8d
NB
3002 /*
3003 * No need to hold btrfs_root::objectid_mutex since the fs
3004 * hasn't been fully initialised and we are the only user
3005 */
453e4873 3006 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 3007 if (ret < 0) {
b8522a1e
NB
3008 handle_error = true;
3009 continue;
3010 }
3011
6b8fad57 3012 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
3013
3014 ret = btrfs_read_roots(fs_info);
3015 if (ret < 0) {
3016 handle_error = true;
3017 continue;
3018 }
3019
3020 /* All successful */
bd676446
JB
3021 fs_info->generation = btrfs_header_generation(tree_root->node);
3022 fs_info->last_trans_committed = fs_info->generation;
d96b3424 3023 fs_info->last_reloc_trans = 0;
6ef108dd
NB
3024
3025 /* Always begin writing backup roots after the one being used */
3026 if (backup_index < 0) {
3027 fs_info->backup_root_index = 0;
3028 } else {
3029 fs_info->backup_root_index = backup_index + 1;
3030 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3031 }
b8522a1e
NB
3032 break;
3033 }
3034
3035 return ret;
3036}
3037
8260edba 3038void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 3039{
fc7cbcd4 3040 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 3041 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 3042 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 3043 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 3044 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 3045 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 3046 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 3047 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 3048 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 3049 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 3050 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 3051 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 3052 spin_lock_init(&fs_info->super_lock);
f28491e0 3053 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 3054 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 3055 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 3056 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 3057 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 3058 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 3059 rwlock_init(&fs_info->global_root_lock);
d7c15171 3060 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 3061 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 3062 mutex_init(&fs_info->reloc_mutex);
573bfb72 3063 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 3064 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 3065 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 3066 seqlock_init(&fs_info->profiles_lock);
19c00ddc 3067
0b86a832 3068 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 3069 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 3070 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 3071 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 3072 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 3073 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
3074#ifdef CONFIG_BTRFS_DEBUG
3075 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
3076 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3077 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 3078#endif
c8bf1b67 3079 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
3080 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3081 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
3082 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3083 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3084 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3085 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3086 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
3087 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3088 BTRFS_BLOCK_RSV_DELREFS);
3089
771ed689 3090 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 3091 atomic_set(&fs_info->defrag_running, 0);
034f784d 3092 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 3093 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 3094 fs_info->global_root_tree = RB_ROOT;
95ac567a 3095 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 3096 fs_info->metadata_ratio = 0;
4cb5300b 3097 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 3098 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 3099 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 3100 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 3101 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
fd708b81 3102 btrfs_init_ref_verify(fs_info);
c8b97818 3103
b34b086c
CM
3104 fs_info->thread_pool_size = min_t(unsigned long,
3105 num_online_cpus() + 2, 8);
0afbaf8c 3106
199c2a9c
MX
3107 INIT_LIST_HEAD(&fs_info->ordered_roots);
3108 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 3109
638aa7ed 3110 btrfs_init_scrub(fs_info);
21adbd5c
SB
3111#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3112 fs_info->check_integrity_print_mask = 0;
3113#endif
779a65a4 3114 btrfs_init_balance(fs_info);
57056740 3115 btrfs_init_async_reclaim_work(fs_info);
a2de733c 3116
16b0c258 3117 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 3118 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 3119
fe119a6e
NB
3120 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3121 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
39279cc3 3122
5a3f23d5 3123 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 3124 mutex_init(&fs_info->tree_log_mutex);
925baedd 3125 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
3126 mutex_init(&fs_info->transaction_kthread_mutex);
3127 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 3128 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 3129 init_rwsem(&fs_info->commit_root_sem);
c71bf099 3130 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 3131 init_rwsem(&fs_info->subvol_sem);
803b2f54 3132 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 3133
ad618368 3134 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 3135 btrfs_init_qgroup(fs_info);
b0643e59 3136 btrfs_discard_init(fs_info);
416ac51d 3137
fa9c0d79
CM
3138 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3139 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3140
e6dcd2dc 3141 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 3142 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 3143 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 3144 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 3145 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3146
da17066c
JM
3147 /* Usable values until the real ones are cached from the superblock */
3148 fs_info->nodesize = 4096;
3149 fs_info->sectorsize = 4096;
ab108d99 3150 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3151 fs_info->stripesize = 4096;
3152
eede2bf3
OS
3153 spin_lock_init(&fs_info->swapfile_pins_lock);
3154 fs_info->swapfile_pins = RB_ROOT;
3155
18bb8bbf
JT
3156 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3157 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3158}
3159
3160static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3161{
3162 int ret;
3163
3164 fs_info->sb = sb;
3165 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3166 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3167
5deb17e1 3168 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3169 if (ret)
c75e8394 3170 return ret;
ae18c37a
JB
3171
3172 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3173 if (ret)
c75e8394 3174 return ret;
ae18c37a
JB
3175
3176 fs_info->dirty_metadata_batch = PAGE_SIZE *
3177 (1 + ilog2(nr_cpu_ids));
3178
3179 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3180 if (ret)
c75e8394 3181 return ret;
ae18c37a
JB
3182
3183 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3184 GFP_KERNEL);
3185 if (ret)
c75e8394 3186 return ret;
ae18c37a
JB
3187
3188 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3189 GFP_KERNEL);
c75e8394
JB
3190 if (!fs_info->delayed_root)
3191 return -ENOMEM;
ae18c37a
JB
3192 btrfs_init_delayed_root(fs_info->delayed_root);
3193
a0a1db70
FM
3194 if (sb_rdonly(sb))
3195 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3196
c75e8394 3197 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3198}
3199
97f4dd09
NB
3200static int btrfs_uuid_rescan_kthread(void *data)
3201{
0d031dc4 3202 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
3203 int ret;
3204
3205 /*
3206 * 1st step is to iterate through the existing UUID tree and
3207 * to delete all entries that contain outdated data.
3208 * 2nd step is to add all missing entries to the UUID tree.
3209 */
3210 ret = btrfs_uuid_tree_iterate(fs_info);
3211 if (ret < 0) {
c94bec2c
JB
3212 if (ret != -EINTR)
3213 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3214 ret);
97f4dd09
NB
3215 up(&fs_info->uuid_tree_rescan_sem);
3216 return ret;
3217 }
3218 return btrfs_uuid_scan_kthread(data);
3219}
3220
3221static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3222{
3223 struct task_struct *task;
3224
3225 down(&fs_info->uuid_tree_rescan_sem);
3226 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3227 if (IS_ERR(task)) {
3228 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3229 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3230 up(&fs_info->uuid_tree_rescan_sem);
3231 return PTR_ERR(task);
3232 }
3233
3234 return 0;
3235}
3236
8cd29088
BB
3237/*
3238 * Some options only have meaning at mount time and shouldn't persist across
3239 * remounts, or be displayed. Clear these at the end of mount and remount
3240 * code paths.
3241 */
3242void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3243{
3244 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3245 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3246}
3247
44c0ca21
BB
3248/*
3249 * Mounting logic specific to read-write file systems. Shared by open_ctree
3250 * and btrfs_remount when remounting from read-only to read-write.
3251 */
3252int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3253{
3254 int ret;
94846229 3255 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3256 bool clear_free_space_tree = false;
3257
3258 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3259 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3260 clear_free_space_tree = true;
3261 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3262 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3263 btrfs_warn(fs_info, "free space tree is invalid");
3264 clear_free_space_tree = true;
3265 }
3266
3267 if (clear_free_space_tree) {
3268 btrfs_info(fs_info, "clearing free space tree");
3269 ret = btrfs_clear_free_space_tree(fs_info);
3270 if (ret) {
3271 btrfs_warn(fs_info,
3272 "failed to clear free space tree: %d", ret);
3273 goto out;
3274 }
3275 }
44c0ca21 3276
8d488a8c
FM
3277 /*
3278 * btrfs_find_orphan_roots() is responsible for finding all the dead
3279 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3280 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3281 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3282 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3283 * item before the root's tree is deleted - this means that if we unmount
3284 * or crash before the deletion completes, on the next mount we will not
3285 * delete what remains of the tree because the orphan item does not
3286 * exists anymore, which is what tells us we have a pending deletion.
3287 */
3288 ret = btrfs_find_orphan_roots(fs_info);
3289 if (ret)
3290 goto out;
3291
44c0ca21
BB
3292 ret = btrfs_cleanup_fs_roots(fs_info);
3293 if (ret)
3294 goto out;
3295
8f1c21d7
BB
3296 down_read(&fs_info->cleanup_work_sem);
3297 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3298 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3299 up_read(&fs_info->cleanup_work_sem);
3300 goto out;
3301 }
3302 up_read(&fs_info->cleanup_work_sem);
3303
44c0ca21 3304 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3305 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3306 mutex_unlock(&fs_info->cleaner_mutex);
3307 if (ret < 0) {
3308 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3309 goto out;
3310 }
3311
5011139a
BB
3312 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3313 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3314 btrfs_info(fs_info, "creating free space tree");
3315 ret = btrfs_create_free_space_tree(fs_info);
3316 if (ret) {
3317 btrfs_warn(fs_info,
3318 "failed to create free space tree: %d", ret);
3319 goto out;
3320 }
3321 }
3322
94846229
BB
3323 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3324 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3325 if (ret)
3326 goto out;
3327 }
3328
44c0ca21
BB
3329 ret = btrfs_resume_balance_async(fs_info);
3330 if (ret)
3331 goto out;
3332
3333 ret = btrfs_resume_dev_replace_async(fs_info);
3334 if (ret) {
3335 btrfs_warn(fs_info, "failed to resume dev_replace");
3336 goto out;
3337 }
3338
3339 btrfs_qgroup_rescan_resume(fs_info);
3340
3341 if (!fs_info->uuid_root) {
3342 btrfs_info(fs_info, "creating UUID tree");
3343 ret = btrfs_create_uuid_tree(fs_info);
3344 if (ret) {
3345 btrfs_warn(fs_info,
3346 "failed to create the UUID tree %d", ret);
3347 goto out;
3348 }
3349 }
3350
3351out:
3352 return ret;
3353}
3354
ae18c37a
JB
3355int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3356 char *options)
3357{
3358 u32 sectorsize;
3359 u32 nodesize;
3360 u32 stripesize;
3361 u64 generation;
3362 u64 features;
3363 u16 csum_type;
ae18c37a
JB
3364 struct btrfs_super_block *disk_super;
3365 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3366 struct btrfs_root *tree_root;
3367 struct btrfs_root *chunk_root;
3368 int ret;
3369 int err = -EINVAL;
ae18c37a
JB
3370 int level;
3371
8260edba 3372 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3373 if (ret) {
83c8266a 3374 err = ret;
ae18c37a 3375 goto fail;
53b381b3
DW
3376 }
3377
ae18c37a
JB
3378 /* These need to be init'ed before we start creating inodes and such. */
3379 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3380 GFP_KERNEL);
3381 fs_info->tree_root = tree_root;
3382 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3383 GFP_KERNEL);
3384 fs_info->chunk_root = chunk_root;
3385 if (!tree_root || !chunk_root) {
3386 err = -ENOMEM;
c75e8394 3387 goto fail;
ae18c37a
JB
3388 }
3389
3390 fs_info->btree_inode = new_inode(sb);
3391 if (!fs_info->btree_inode) {
3392 err = -ENOMEM;
c75e8394 3393 goto fail;
ae18c37a
JB
3394 }
3395 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3396 btrfs_init_btree_inode(fs_info);
3397
d24fa5c1 3398 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3399
3400 /*
3401 * Read super block and check the signature bytes only
3402 */
d24fa5c1 3403 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3404 if (IS_ERR(disk_super)) {
3405 err = PTR_ERR(disk_super);
16cdcec7 3406 goto fail_alloc;
20b45077 3407 }
39279cc3 3408
8dc3f22c 3409 /*
260db43c 3410 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3411 * corrupted, we'll find out
3412 */
8f32380d 3413 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3414 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3415 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3416 csum_type);
8dc3f22c 3417 err = -EINVAL;
8f32380d 3418 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3419 goto fail_alloc;
3420 }
3421
83c68bbc
SY
3422 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3423
6d97c6e3
JT
3424 ret = btrfs_init_csum_hash(fs_info, csum_type);
3425 if (ret) {
3426 err = ret;
8f32380d 3427 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3428 goto fail_alloc;
3429 }
3430
1104a885
DS
3431 /*
3432 * We want to check superblock checksum, the type is stored inside.
3433 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3434 */
8f32380d 3435 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3436 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3437 err = -EINVAL;
8f32380d 3438 btrfs_release_disk_super(disk_super);
141386e1 3439 goto fail_alloc;
1104a885
DS
3440 }
3441
3442 /*
3443 * super_copy is zeroed at allocation time and we never touch the
3444 * following bytes up to INFO_SIZE, the checksum is calculated from
3445 * the whole block of INFO_SIZE
3446 */
8f32380d
JT
3447 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3448 btrfs_release_disk_super(disk_super);
5f39d397 3449
fbc6feae
NB
3450 disk_super = fs_info->super_copy;
3451
0b86a832 3452
fbc6feae
NB
3453 features = btrfs_super_flags(disk_super);
3454 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3455 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3456 btrfs_set_super_flags(disk_super, features);
3457 btrfs_info(fs_info,
3458 "found metadata UUID change in progress flag, clearing");
3459 }
3460
3461 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3462 sizeof(*fs_info->super_for_commit));
de37aa51 3463
069ec957 3464 ret = btrfs_validate_mount_super(fs_info);
1104a885 3465 if (ret) {
05135f59 3466 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3467 err = -EINVAL;
141386e1 3468 goto fail_alloc;
1104a885
DS
3469 }
3470
0f7d52f4 3471 if (!btrfs_super_root(disk_super))
141386e1 3472 goto fail_alloc;
0f7d52f4 3473
acce952b 3474 /* check FS state, whether FS is broken. */
87533c47
MX
3475 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3476 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3477
75e7cb7f
LB
3478 /*
3479 * In the long term, we'll store the compression type in the super
3480 * block, and it'll be used for per file compression control.
3481 */
3482 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3483
6f93e834
AJ
3484 /*
3485 * Flag our filesystem as having big metadata blocks if they are bigger
3486 * than the page size.
3487 */
3488 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3489 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3490 btrfs_info(fs_info,
3491 "flagging fs with big metadata feature");
3492 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3493 }
3494
3495 /* Set up fs_info before parsing mount options */
3496 nodesize = btrfs_super_nodesize(disk_super);
3497 sectorsize = btrfs_super_sectorsize(disk_super);
3498 stripesize = sectorsize;
3499 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3500 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3501
3502 fs_info->nodesize = nodesize;
3503 fs_info->sectorsize = sectorsize;
3504 fs_info->sectorsize_bits = ilog2(sectorsize);
3505 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3506 fs_info->stripesize = stripesize;
3507
2ff7e61e 3508 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3509 if (ret) {
3510 err = ret;
141386e1 3511 goto fail_alloc;
2b82032c 3512 }
dfe25020 3513
f2b636e8
JB
3514 features = btrfs_super_incompat_flags(disk_super) &
3515 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3516 if (features) {
05135f59 3517 btrfs_err(fs_info,
d5321a0f 3518 "cannot mount because of unsupported optional features (0x%llx)",
05135f59 3519 features);
f2b636e8 3520 err = -EINVAL;
141386e1 3521 goto fail_alloc;
f2b636e8
JB
3522 }
3523
5d4f98a2 3524 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3525 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3526 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3527 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3528 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3529 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3530
3173a18f 3531 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3532 btrfs_info(fs_info, "has skinny extents");
3173a18f 3533
bc3f116f
CM
3534 /*
3535 * mixed block groups end up with duplicate but slightly offset
3536 * extent buffers for the same range. It leads to corruptions
3537 */
3538 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3539 (sectorsize != nodesize)) {
05135f59
DS
3540 btrfs_err(fs_info,
3541"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3542 nodesize, sectorsize);
141386e1 3543 goto fail_alloc;
bc3f116f
CM
3544 }
3545
ceda0864
MX
3546 /*
3547 * Needn't use the lock because there is no other task which will
3548 * update the flag.
3549 */
a6fa6fae 3550 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3551
f2b636e8
JB
3552 features = btrfs_super_compat_ro_flags(disk_super) &
3553 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3554 if (!sb_rdonly(sb) && features) {
05135f59 3555 btrfs_err(fs_info,
d5321a0f 3556 "cannot mount read-write because of unsupported optional features (0x%llx)",
c1c9ff7c 3557 features);
f2b636e8 3558 err = -EINVAL;
141386e1 3559 goto fail_alloc;
f2b636e8 3560 }
dc4d3168
QW
3561 /*
3562 * We have unsupported RO compat features, although RO mounted, we
3563 * should not cause any metadata write, including log replay.
3564 * Or we could screw up whatever the new feature requires.
3565 */
3566 if (unlikely(features && btrfs_super_log_root(disk_super) &&
3567 !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3568 btrfs_err(fs_info,
3569"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3570 features);
3571 err = -EINVAL;
3572 goto fail_alloc;
3573 }
3574
61d92c32 3575
8481dd80
QW
3576 if (sectorsize < PAGE_SIZE) {
3577 struct btrfs_subpage_info *subpage_info;
3578
9f73f1ae
QW
3579 /*
3580 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3581 * going to be deprecated.
3582 *
3583 * Force to use v2 cache for subpage case.
3584 */
3585 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3586 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3587 "forcing free space tree for sector size %u with page size %lu",
3588 sectorsize, PAGE_SIZE);
3589
95ea0486
QW
3590 btrfs_warn(fs_info,
3591 "read-write for sector size %u with page size %lu is experimental",
3592 sectorsize, PAGE_SIZE);
8481dd80
QW
3593 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3594 if (!subpage_info)
3595 goto fail_alloc;
3596 btrfs_init_subpage_info(subpage_info, sectorsize);
3597 fs_info->subpage_info = subpage_info;
c8050b3b 3598 }
0bb3eb3e 3599
d21deec5 3600 ret = btrfs_init_workqueues(fs_info);
2a458198
ES
3601 if (ret) {
3602 err = ret;
0dc3b84a
JB
3603 goto fail_sb_buffer;
3604 }
4543df7e 3605
9e11ceee
JK
3606 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3607 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3608
a061fc8d
CM
3609 sb->s_blocksize = sectorsize;
3610 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3611 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3612
925baedd 3613 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3614 ret = btrfs_read_sys_array(fs_info);
925baedd 3615 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3616 if (ret) {
05135f59 3617 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3618 goto fail_sb_buffer;
84eed90f 3619 }
0b86a832 3620
84234f3a 3621 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3622 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3623 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3624 generation, level);
3625 if (ret) {
05135f59 3626 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3627 goto fail_tree_roots;
83121942 3628 }
0b86a832 3629
e17cade2 3630 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3631 offsetof(struct btrfs_header, chunk_tree_uuid),
3632 BTRFS_UUID_SIZE);
e17cade2 3633
5b4aacef 3634 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3635 if (ret) {
05135f59 3636 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3637 goto fail_tree_roots;
2b82032c 3638 }
0b86a832 3639
8dabb742 3640 /*
bacce86a
AJ
3641 * At this point we know all the devices that make this filesystem,
3642 * including the seed devices but we don't know yet if the replace
3643 * target is required. So free devices that are not part of this
1a9fd417 3644 * filesystem but skip the replace target device which is checked
bacce86a 3645 * below in btrfs_init_dev_replace().
8dabb742 3646 */
bacce86a 3647 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3648 if (!fs_devices->latest_dev->bdev) {
05135f59 3649 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3650 goto fail_tree_roots;
3651 }
3652
b8522a1e 3653 ret = init_tree_roots(fs_info);
4bbcaa64 3654 if (ret)
b8522a1e 3655 goto fail_tree_roots;
8929ecfa 3656
73651042
NA
3657 /*
3658 * Get zone type information of zoned block devices. This will also
3659 * handle emulation of a zoned filesystem if a regular device has the
3660 * zoned incompat feature flag set.
3661 */
3662 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3663 if (ret) {
3664 btrfs_err(fs_info,
3665 "zoned: failed to read device zone info: %d",
3666 ret);
3667 goto fail_block_groups;
3668 }
3669
75ec1db8
JB
3670 /*
3671 * If we have a uuid root and we're not being told to rescan we need to
3672 * check the generation here so we can set the
3673 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3674 * transaction during a balance or the log replay without updating the
3675 * uuid generation, and then if we crash we would rescan the uuid tree,
3676 * even though it was perfectly fine.
3677 */
3678 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3679 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3680 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3681
cf90d884
QW
3682 ret = btrfs_verify_dev_extents(fs_info);
3683 if (ret) {
3684 btrfs_err(fs_info,
3685 "failed to verify dev extents against chunks: %d",
3686 ret);
3687 goto fail_block_groups;
3688 }
68310a5e
ID
3689 ret = btrfs_recover_balance(fs_info);
3690 if (ret) {
05135f59 3691 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3692 goto fail_block_groups;
3693 }
3694
733f4fbb
SB
3695 ret = btrfs_init_dev_stats(fs_info);
3696 if (ret) {
05135f59 3697 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3698 goto fail_block_groups;
3699 }
3700
8dabb742
SB
3701 ret = btrfs_init_dev_replace(fs_info);
3702 if (ret) {
05135f59 3703 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3704 goto fail_block_groups;
3705 }
3706
b70f5097
NA
3707 ret = btrfs_check_zoned_mode(fs_info);
3708 if (ret) {
3709 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3710 ret);
3711 goto fail_block_groups;
3712 }
3713
c6761a9e 3714 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3715 if (ret) {
05135f59
DS
3716 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3717 ret);
b7c35e81
AJ
3718 goto fail_block_groups;
3719 }
3720
96f3136e 3721 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3722 if (ret) {
05135f59 3723 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3724 goto fail_fsdev_sysfs;
c59021f8 3725 }
3726
c59021f8 3727 ret = btrfs_init_space_info(fs_info);
3728 if (ret) {
05135f59 3729 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3730 goto fail_sysfs;
c59021f8 3731 }
3732
5b4aacef 3733 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3734 if (ret) {
05135f59 3735 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3736 goto fail_sysfs;
1b1d1f66 3737 }
4330e183 3738
16beac87
NA
3739 btrfs_free_zone_cache(fs_info);
3740
5c78a5e7
AJ
3741 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3742 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3743 btrfs_warn(fs_info,
52042d8e 3744 "writable mount is not allowed due to too many missing devices");
2365dd3c 3745 goto fail_sysfs;
292fd7fc 3746 }
9078a3e1 3747
33c44184 3748 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3749 "btrfs-cleaner");
57506d50 3750 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3751 goto fail_sysfs;
a74a4b97
CM
3752
3753 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3754 tree_root,
3755 "btrfs-transaction");
57506d50 3756 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3757 goto fail_cleaner;
a74a4b97 3758
583b7231 3759 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3760 !fs_info->fs_devices->rotating) {
583b7231 3761 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3762 }
3763
572d9ab7 3764 /*
01327610 3765 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3766 * not have to wait for transaction commit
3767 */
3768 btrfs_apply_pending_changes(fs_info);
3818aea2 3769
21adbd5c 3770#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3771 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3772 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3773 btrfs_test_opt(fs_info,
cbeaae4f 3774 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3775 fs_info->check_integrity_print_mask);
3776 if (ret)
05135f59
DS
3777 btrfs_warn(fs_info,
3778 "failed to initialize integrity check module: %d",
3779 ret);
21adbd5c
SB
3780 }
3781#endif
bcef60f2
AJ
3782 ret = btrfs_read_qgroup_config(fs_info);
3783 if (ret)
3784 goto fail_trans_kthread;
21adbd5c 3785
fd708b81
JB
3786 if (btrfs_build_ref_tree(fs_info))
3787 btrfs_err(fs_info, "couldn't build ref tree");
3788
96da0919
QW
3789 /* do not make disk changes in broken FS or nologreplay is given */
3790 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3791 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3792 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3793 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3794 if (ret) {
63443bf5 3795 err = ret;
28c16cbb 3796 goto fail_qgroup;
79787eaa 3797 }
e02119d5 3798 }
1a40e23b 3799
56e9357a 3800 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3801 if (IS_ERR(fs_info->fs_root)) {
3802 err = PTR_ERR(fs_info->fs_root);
f50f4353 3803 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3804 fs_info->fs_root = NULL;
bcef60f2 3805 goto fail_qgroup;
3140c9a3 3806 }
c289811c 3807
bc98a42c 3808 if (sb_rdonly(sb))
8cd29088 3809 goto clear_oneshot;
59641015 3810
44c0ca21 3811 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3812 if (ret) {
6bccf3ab 3813 close_ctree(fs_info);
2b6ba629 3814 return ret;
e3acc2a6 3815 }
b0643e59 3816 btrfs_discard_resume(fs_info);
b382a324 3817
44c0ca21
BB
3818 if (fs_info->uuid_root &&
3819 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3820 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3821 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3822 ret = btrfs_check_uuid_tree(fs_info);
3823 if (ret) {
05135f59
DS
3824 btrfs_warn(fs_info,
3825 "failed to check the UUID tree: %d", ret);
6bccf3ab 3826 close_ctree(fs_info);
70f80175
SB
3827 return ret;
3828 }
f7a81ea4 3829 }
94846229 3830
afcdd129 3831 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3832
b4be6aef
JB
3833 /* Kick the cleaner thread so it'll start deleting snapshots. */
3834 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3835 wake_up_process(fs_info->cleaner_kthread);
3836
8cd29088
BB
3837clear_oneshot:
3838 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3839 return 0;
39279cc3 3840
bcef60f2
AJ
3841fail_qgroup:
3842 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3843fail_trans_kthread:
3844 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3845 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3846 btrfs_free_fs_roots(fs_info);
3f157a2f 3847fail_cleaner:
a74a4b97 3848 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3849
3850 /*
3851 * make sure we're done with the btree inode before we stop our
3852 * kthreads
3853 */
3854 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3855
2365dd3c 3856fail_sysfs:
6618a59b 3857 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3858
b7c35e81
AJ
3859fail_fsdev_sysfs:
3860 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3861
1b1d1f66 3862fail_block_groups:
54067ae9 3863 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3864
3865fail_tree_roots:
9e3aa805
JB
3866 if (fs_info->data_reloc_root)
3867 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3868 free_root_pointers(fs_info, true);
2b8195bb 3869 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3870
39279cc3 3871fail_sb_buffer:
7abadb64 3872 btrfs_stop_all_workers(fs_info);
5cdd7db6 3873 btrfs_free_block_groups(fs_info);
16cdcec7 3874fail_alloc:
586e46e2
ID
3875 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3876
4543df7e 3877 iput(fs_info->btree_inode);
7e662854 3878fail:
586e46e2 3879 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3880 return err;
eb60ceac 3881}
663faf9f 3882ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3883
314b6dd0 3884static void btrfs_end_super_write(struct bio *bio)
f2984462 3885{
314b6dd0
JT
3886 struct btrfs_device *device = bio->bi_private;
3887 struct bio_vec *bvec;
3888 struct bvec_iter_all iter_all;
3889 struct page *page;
3890
3891 bio_for_each_segment_all(bvec, bio, iter_all) {
3892 page = bvec->bv_page;
3893
3894 if (bio->bi_status) {
3895 btrfs_warn_rl_in_rcu(device->fs_info,
3896 "lost page write due to IO error on %s (%d)",
3897 rcu_str_deref(device->name),
3898 blk_status_to_errno(bio->bi_status));
3899 ClearPageUptodate(page);
3900 SetPageError(page);
3901 btrfs_dev_stat_inc_and_print(device,
3902 BTRFS_DEV_STAT_WRITE_ERRS);
3903 } else {
3904 SetPageUptodate(page);
3905 }
3906
3907 put_page(page);
3908 unlock_page(page);
f2984462 3909 }
314b6dd0
JT
3910
3911 bio_put(bio);
f2984462
CM
3912}
3913
8f32380d
JT
3914struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3915 int copy_num)
29c36d72 3916{
29c36d72 3917 struct btrfs_super_block *super;
8f32380d 3918 struct page *page;
12659251 3919 u64 bytenr, bytenr_orig;
8f32380d 3920 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3921 int ret;
3922
3923 bytenr_orig = btrfs_sb_offset(copy_num);
3924 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3925 if (ret == -ENOENT)
3926 return ERR_PTR(-EINVAL);
3927 else if (ret)
3928 return ERR_PTR(ret);
29c36d72 3929
cda00eba 3930 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3931 return ERR_PTR(-EINVAL);
29c36d72 3932
8f32380d
JT
3933 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3934 if (IS_ERR(page))
3935 return ERR_CAST(page);
29c36d72 3936
8f32380d 3937 super = page_address(page);
96c2e067
AJ
3938 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3939 btrfs_release_disk_super(super);
3940 return ERR_PTR(-ENODATA);
3941 }
3942
12659251 3943 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3944 btrfs_release_disk_super(super);
3945 return ERR_PTR(-EINVAL);
29c36d72
AJ
3946 }
3947
8f32380d 3948 return super;
29c36d72
AJ
3949}
3950
3951
8f32380d 3952struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3953{
8f32380d 3954 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3955 int i;
3956 u64 transid = 0;
a512bbf8
YZ
3957
3958 /* we would like to check all the supers, but that would make
3959 * a btrfs mount succeed after a mkfs from a different FS.
3960 * So, we need to add a special mount option to scan for
3961 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3962 */
3963 for (i = 0; i < 1; i++) {
8f32380d
JT
3964 super = btrfs_read_dev_one_super(bdev, i);
3965 if (IS_ERR(super))
a512bbf8
YZ
3966 continue;
3967
a512bbf8 3968 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3969 if (latest)
3970 btrfs_release_disk_super(super);
3971
3972 latest = super;
a512bbf8 3973 transid = btrfs_super_generation(super);
a512bbf8
YZ
3974 }
3975 }
92fc03fb 3976
8f32380d 3977 return super;
a512bbf8
YZ
3978}
3979
4eedeb75 3980/*
abbb3b8e 3981 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3982 * pages we use for writing are locked.
4eedeb75 3983 *
abbb3b8e
DS
3984 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3985 * the expected device size at commit time. Note that max_mirrors must be
3986 * same for write and wait phases.
4eedeb75 3987 *
314b6dd0 3988 * Return number of errors when page is not found or submission fails.
4eedeb75 3989 */
a512bbf8 3990static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3991 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3992{
d5178578 3993 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3994 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3995 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3996 int i;
a512bbf8 3997 int errors = 0;
12659251
NA
3998 int ret;
3999 u64 bytenr, bytenr_orig;
a512bbf8
YZ
4000
4001 if (max_mirrors == 0)
4002 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4003
d5178578
JT
4004 shash->tfm = fs_info->csum_shash;
4005
a512bbf8 4006 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4007 struct page *page;
4008 struct bio *bio;
4009 struct btrfs_super_block *disk_super;
4010
12659251
NA
4011 bytenr_orig = btrfs_sb_offset(i);
4012 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4013 if (ret == -ENOENT) {
4014 continue;
4015 } else if (ret < 0) {
4016 btrfs_err(device->fs_info,
4017 "couldn't get super block location for mirror %d",
4018 i);
4019 errors++;
4020 continue;
4021 }
935e5cc9
MX
4022 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4023 device->commit_total_bytes)
a512bbf8
YZ
4024 break;
4025
12659251 4026 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 4027
fd08001f
EB
4028 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4029 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4030 sb->csum);
4eedeb75 4031
314b6dd0
JT
4032 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4033 GFP_NOFS);
4034 if (!page) {
abbb3b8e 4035 btrfs_err(device->fs_info,
314b6dd0 4036 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
4037 bytenr);
4038 errors++;
4eedeb75 4039 continue;
abbb3b8e 4040 }
634554dc 4041
314b6dd0
JT
4042 /* Bump the refcount for wait_dev_supers() */
4043 get_page(page);
a512bbf8 4044
314b6dd0
JT
4045 disk_super = page_address(page);
4046 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 4047
314b6dd0
JT
4048 /*
4049 * Directly use bios here instead of relying on the page cache
4050 * to do I/O, so we don't lose the ability to do integrity
4051 * checking.
4052 */
07888c66
CH
4053 bio = bio_alloc(device->bdev, 1,
4054 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4055 GFP_NOFS);
314b6dd0
JT
4056 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4057 bio->bi_private = device;
4058 bio->bi_end_io = btrfs_end_super_write;
4059 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4060 offset_in_page(bytenr));
a512bbf8 4061
387125fc 4062 /*
314b6dd0
JT
4063 * We FUA only the first super block. The others we allow to
4064 * go down lazy and there's a short window where the on-disk
4065 * copies might still contain the older version.
387125fc 4066 */
1b9e619c 4067 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
4068 bio->bi_opf |= REQ_FUA;
4069
58ff51f1
CH
4070 btrfsic_check_bio(bio);
4071 submit_bio(bio);
8376d9e1
NA
4072
4073 if (btrfs_advance_sb_log(device, i))
4074 errors++;
a512bbf8
YZ
4075 }
4076 return errors < i ? 0 : -1;
4077}
4078
abbb3b8e
DS
4079/*
4080 * Wait for write completion of superblocks done by write_dev_supers,
4081 * @max_mirrors same for write and wait phases.
4082 *
314b6dd0 4083 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
4084 * date.
4085 */
4086static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4087{
abbb3b8e
DS
4088 int i;
4089 int errors = 0;
b6a535fa 4090 bool primary_failed = false;
12659251 4091 int ret;
abbb3b8e
DS
4092 u64 bytenr;
4093
4094 if (max_mirrors == 0)
4095 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4096
4097 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4098 struct page *page;
4099
12659251
NA
4100 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4101 if (ret == -ENOENT) {
4102 break;
4103 } else if (ret < 0) {
4104 errors++;
4105 if (i == 0)
4106 primary_failed = true;
4107 continue;
4108 }
abbb3b8e
DS
4109 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4110 device->commit_total_bytes)
4111 break;
4112
314b6dd0
JT
4113 page = find_get_page(device->bdev->bd_inode->i_mapping,
4114 bytenr >> PAGE_SHIFT);
4115 if (!page) {
abbb3b8e 4116 errors++;
b6a535fa
HM
4117 if (i == 0)
4118 primary_failed = true;
abbb3b8e
DS
4119 continue;
4120 }
314b6dd0
JT
4121 /* Page is submitted locked and unlocked once the IO completes */
4122 wait_on_page_locked(page);
4123 if (PageError(page)) {
abbb3b8e 4124 errors++;
b6a535fa
HM
4125 if (i == 0)
4126 primary_failed = true;
4127 }
abbb3b8e 4128
314b6dd0
JT
4129 /* Drop our reference */
4130 put_page(page);
abbb3b8e 4131
314b6dd0
JT
4132 /* Drop the reference from the writing run */
4133 put_page(page);
abbb3b8e
DS
4134 }
4135
b6a535fa
HM
4136 /* log error, force error return */
4137 if (primary_failed) {
4138 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4139 device->devid);
4140 return -1;
4141 }
4142
abbb3b8e
DS
4143 return errors < i ? 0 : -1;
4144}
4145
387125fc
CM
4146/*
4147 * endio for the write_dev_flush, this will wake anyone waiting
4148 * for the barrier when it is done
4149 */
4246a0b6 4150static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 4151{
f9e69aa9 4152 bio_uninit(bio);
e0ae9994 4153 complete(bio->bi_private);
387125fc
CM
4154}
4155
4156/*
4fc6441a
AJ
4157 * Submit a flush request to the device if it supports it. Error handling is
4158 * done in the waiting counterpart.
387125fc 4159 */
4fc6441a 4160static void write_dev_flush(struct btrfs_device *device)
387125fc 4161{
f9e69aa9 4162 struct bio *bio = &device->flush_bio;
387125fc 4163
a91cf0ff
WY
4164#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4165 /*
4166 * When a disk has write caching disabled, we skip submission of a bio
4167 * with flush and sync requests before writing the superblock, since
4168 * it's not needed. However when the integrity checker is enabled, this
4169 * results in reports that there are metadata blocks referred by a
4170 * superblock that were not properly flushed. So don't skip the bio
4171 * submission only when the integrity checker is enabled for the sake
4172 * of simplicity, since this is a debug tool and not meant for use in
4173 * non-debug builds.
4174 */
08e688fd 4175 if (!bdev_write_cache(device->bdev))
4fc6441a 4176 return;
a91cf0ff 4177#endif
387125fc 4178
f9e69aa9
CH
4179 bio_init(bio, device->bdev, NULL, 0,
4180 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 4181 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
4182 init_completion(&device->flush_wait);
4183 bio->bi_private = &device->flush_wait;
387125fc 4184
58ff51f1
CH
4185 btrfsic_check_bio(bio);
4186 submit_bio(bio);
1c3063b6 4187 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4188}
387125fc 4189
4fc6441a
AJ
4190/*
4191 * If the flush bio has been submitted by write_dev_flush, wait for it.
4192 */
8c27cb35 4193static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4194{
f9e69aa9 4195 struct bio *bio = &device->flush_bio;
387125fc 4196
1c3063b6 4197 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4198 return BLK_STS_OK;
387125fc 4199
1c3063b6 4200 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4201 wait_for_completion_io(&device->flush_wait);
387125fc 4202
8c27cb35 4203 return bio->bi_status;
387125fc 4204}
387125fc 4205
d10b82fe 4206static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4207{
6528b99d 4208 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4209 return -EIO;
387125fc
CM
4210 return 0;
4211}
4212
4213/*
4214 * send an empty flush down to each device in parallel,
4215 * then wait for them
4216 */
4217static int barrier_all_devices(struct btrfs_fs_info *info)
4218{
4219 struct list_head *head;
4220 struct btrfs_device *dev;
5af3e8cc 4221 int errors_wait = 0;
4e4cbee9 4222 blk_status_t ret;
387125fc 4223
1538e6c5 4224 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4225 /* send down all the barriers */
4226 head = &info->fs_devices->devices;
1538e6c5 4227 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4228 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4229 continue;
cea7c8bf 4230 if (!dev->bdev)
387125fc 4231 continue;
e12c9621 4232 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4233 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4234 continue;
4235
4fc6441a 4236 write_dev_flush(dev);
58efbc9f 4237 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4238 }
4239
4240 /* wait for all the barriers */
1538e6c5 4241 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4242 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4243 continue;
387125fc 4244 if (!dev->bdev) {
5af3e8cc 4245 errors_wait++;
387125fc
CM
4246 continue;
4247 }
e12c9621 4248 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4249 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4250 continue;
4251
4fc6441a 4252 ret = wait_dev_flush(dev);
401b41e5
AJ
4253 if (ret) {
4254 dev->last_flush_error = ret;
66b4993e
DS
4255 btrfs_dev_stat_inc_and_print(dev,
4256 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4257 errors_wait++;
401b41e5
AJ
4258 }
4259 }
4260
cea7c8bf 4261 if (errors_wait) {
401b41e5
AJ
4262 /*
4263 * At some point we need the status of all disks
4264 * to arrive at the volume status. So error checking
4265 * is being pushed to a separate loop.
4266 */
d10b82fe 4267 return check_barrier_error(info);
387125fc 4268 }
387125fc
CM
4269 return 0;
4270}
4271
943c6e99
ZL
4272int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4273{
8789f4fe
ZL
4274 int raid_type;
4275 int min_tolerated = INT_MAX;
943c6e99 4276
8789f4fe
ZL
4277 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4278 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4279 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4280 btrfs_raid_array[BTRFS_RAID_SINGLE].
4281 tolerated_failures);
943c6e99 4282
8789f4fe
ZL
4283 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4284 if (raid_type == BTRFS_RAID_SINGLE)
4285 continue;
41a6e891 4286 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4287 continue;
8c3e3582 4288 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4289 btrfs_raid_array[raid_type].
4290 tolerated_failures);
4291 }
943c6e99 4292
8789f4fe 4293 if (min_tolerated == INT_MAX) {
ab8d0fc4 4294 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4295 min_tolerated = 0;
4296 }
4297
4298 return min_tolerated;
943c6e99
ZL
4299}
4300
eece6a9c 4301int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4302{
e5e9a520 4303 struct list_head *head;
f2984462 4304 struct btrfs_device *dev;
a061fc8d 4305 struct btrfs_super_block *sb;
f2984462 4306 struct btrfs_dev_item *dev_item;
f2984462
CM
4307 int ret;
4308 int do_barriers;
a236aed1
CM
4309 int max_errors;
4310 int total_errors = 0;
a061fc8d 4311 u64 flags;
f2984462 4312
0b246afa 4313 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4314
4315 /*
4316 * max_mirrors == 0 indicates we're from commit_transaction,
4317 * not from fsync where the tree roots in fs_info have not
4318 * been consistent on disk.
4319 */
4320 if (max_mirrors == 0)
4321 backup_super_roots(fs_info);
f2984462 4322
0b246afa 4323 sb = fs_info->super_for_commit;
a061fc8d 4324 dev_item = &sb->dev_item;
e5e9a520 4325
0b246afa
JM
4326 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4327 head = &fs_info->fs_devices->devices;
4328 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4329
5af3e8cc 4330 if (do_barriers) {
0b246afa 4331 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4332 if (ret) {
4333 mutex_unlock(
0b246afa
JM
4334 &fs_info->fs_devices->device_list_mutex);
4335 btrfs_handle_fs_error(fs_info, ret,
4336 "errors while submitting device barriers.");
5af3e8cc
SB
4337 return ret;
4338 }
4339 }
387125fc 4340
1538e6c5 4341 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4342 if (!dev->bdev) {
4343 total_errors++;
4344 continue;
4345 }
e12c9621 4346 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4347 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4348 continue;
4349
2b82032c 4350 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4351 btrfs_set_stack_device_type(dev_item, dev->type);
4352 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4353 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4354 dev->commit_total_bytes);
ce7213c7
MX
4355 btrfs_set_stack_device_bytes_used(dev_item,
4356 dev->commit_bytes_used);
a061fc8d
CM
4357 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4358 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4359 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4360 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4361 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4362 BTRFS_FSID_SIZE);
a512bbf8 4363
a061fc8d
CM
4364 flags = btrfs_super_flags(sb);
4365 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4366
75cb857d
QW
4367 ret = btrfs_validate_write_super(fs_info, sb);
4368 if (ret < 0) {
4369 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4370 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4371 "unexpected superblock corruption detected");
4372 return -EUCLEAN;
4373 }
4374
abbb3b8e 4375 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4376 if (ret)
4377 total_errors++;
f2984462 4378 }
a236aed1 4379 if (total_errors > max_errors) {
0b246afa
JM
4380 btrfs_err(fs_info, "%d errors while writing supers",
4381 total_errors);
4382 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4383
9d565ba4 4384 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4385 btrfs_handle_fs_error(fs_info, -EIO,
4386 "%d errors while writing supers",
4387 total_errors);
9d565ba4 4388 return -EIO;
a236aed1 4389 }
f2984462 4390
a512bbf8 4391 total_errors = 0;
1538e6c5 4392 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4393 if (!dev->bdev)
4394 continue;
e12c9621 4395 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4396 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4397 continue;
4398
abbb3b8e 4399 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4400 if (ret)
4401 total_errors++;
f2984462 4402 }
0b246afa 4403 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4404 if (total_errors > max_errors) {
0b246afa
JM
4405 btrfs_handle_fs_error(fs_info, -EIO,
4406 "%d errors while writing supers",
4407 total_errors);
79787eaa 4408 return -EIO;
a236aed1 4409 }
f2984462
CM
4410 return 0;
4411}
4412
cb517eab
MX
4413/* Drop a fs root from the radix tree and free it. */
4414void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4415 struct btrfs_root *root)
2619ba1f 4416{
4785e24f
JB
4417 bool drop_ref = false;
4418
fc7cbcd4
DS
4419 spin_lock(&fs_info->fs_roots_radix_lock);
4420 radix_tree_delete(&fs_info->fs_roots_radix,
4421 (unsigned long)root->root_key.objectid);
4422 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4423 drop_ref = true;
fc7cbcd4 4424 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4425
84961539 4426 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4427 ASSERT(root->log_root == NULL);
1c1ea4f7 4428 if (root->reloc_root) {
00246528 4429 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4430 root->reloc_root = NULL;
4431 }
4432 }
3321719e 4433
4785e24f
JB
4434 if (drop_ref)
4435 btrfs_put_root(root);
2619ba1f
CM
4436}
4437
c146afad 4438int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4439{
fc7cbcd4
DS
4440 u64 root_objectid = 0;
4441 struct btrfs_root *gang[8];
4442 int i = 0;
65d33fd7 4443 int err = 0;
fc7cbcd4 4444 unsigned int ret = 0;
e089f05c 4445
c146afad 4446 while (1) {
fc7cbcd4
DS
4447 spin_lock(&fs_info->fs_roots_radix_lock);
4448 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4449 (void **)gang, root_objectid,
4450 ARRAY_SIZE(gang));
4451 if (!ret) {
4452 spin_unlock(&fs_info->fs_roots_radix_lock);
4453 break;
65d33fd7 4454 }
fc7cbcd4 4455 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4456
fc7cbcd4
DS
4457 for (i = 0; i < ret; i++) {
4458 /* Avoid to grab roots in dead_roots */
4459 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4460 gang[i] = NULL;
4461 continue;
4462 }
4463 /* grab all the search result for later use */
4464 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4465 }
fc7cbcd4 4466 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4467
fc7cbcd4
DS
4468 for (i = 0; i < ret; i++) {
4469 if (!gang[i])
65d33fd7 4470 continue;
fc7cbcd4
DS
4471 root_objectid = gang[i]->root_key.objectid;
4472 err = btrfs_orphan_cleanup(gang[i]);
66b4ffd1 4473 if (err)
fc7cbcd4
DS
4474 break;
4475 btrfs_put_root(gang[i]);
c146afad 4476 }
fc7cbcd4 4477 root_objectid++;
c146afad 4478 }
65d33fd7 4479
fc7cbcd4
DS
4480 /* release the uncleaned roots due to error */
4481 for (; i < ret; i++) {
4482 if (gang[i])
4483 btrfs_put_root(gang[i]);
65d33fd7
QW
4484 }
4485 return err;
c146afad 4486}
a2135011 4487
6bccf3ab 4488int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4489{
6bccf3ab 4490 struct btrfs_root *root = fs_info->tree_root;
c146afad 4491 struct btrfs_trans_handle *trans;
a74a4b97 4492
0b246afa 4493 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4494 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4495 mutex_unlock(&fs_info->cleaner_mutex);
4496 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4497
4498 /* wait until ongoing cleanup work done */
0b246afa
JM
4499 down_write(&fs_info->cleanup_work_sem);
4500 up_write(&fs_info->cleanup_work_sem);
c71bf099 4501
7a7eaa40 4502 trans = btrfs_join_transaction(root);
3612b495
TI
4503 if (IS_ERR(trans))
4504 return PTR_ERR(trans);
3a45bb20 4505 return btrfs_commit_transaction(trans);
c146afad
YZ
4506}
4507
36c86a9e
QW
4508static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4509{
4510 struct btrfs_transaction *trans;
4511 struct btrfs_transaction *tmp;
4512 bool found = false;
4513
4514 if (list_empty(&fs_info->trans_list))
4515 return;
4516
4517 /*
4518 * This function is only called at the very end of close_ctree(),
4519 * thus no other running transaction, no need to take trans_lock.
4520 */
4521 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4522 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4523 struct extent_state *cached = NULL;
4524 u64 dirty_bytes = 0;
4525 u64 cur = 0;
4526 u64 found_start;
4527 u64 found_end;
4528
4529 found = true;
4530 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4531 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4532 dirty_bytes += found_end + 1 - found_start;
4533 cur = found_end + 1;
4534 }
4535 btrfs_warn(fs_info,
4536 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4537 trans->transid, dirty_bytes);
4538 btrfs_cleanup_one_transaction(trans, fs_info);
4539
4540 if (trans == fs_info->running_transaction)
4541 fs_info->running_transaction = NULL;
4542 list_del_init(&trans->list);
4543
4544 btrfs_put_transaction(trans);
4545 trace_btrfs_transaction_commit(fs_info);
4546 }
4547 ASSERT(!found);
4548}
4549
b105e927 4550void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4551{
c146afad
YZ
4552 int ret;
4553
afcdd129 4554 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52
FM
4555
4556 /*
4557 * We may have the reclaim task running and relocating a data block group,
4558 * in which case it may create delayed iputs. So stop it before we park
4559 * the cleaner kthread otherwise we can get new delayed iputs after
4560 * parking the cleaner, and that can make the async reclaim task to hang
4561 * if it's waiting for delayed iputs to complete, since the cleaner is
4562 * parked and can not run delayed iputs - this will make us hang when
4563 * trying to stop the async reclaim task.
4564 */
4565 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4566 /*
4567 * We don't want the cleaner to start new transactions, add more delayed
4568 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4569 * because that frees the task_struct, and the transaction kthread might
4570 * still try to wake up the cleaner.
4571 */
4572 kthread_park(fs_info->cleaner_kthread);
c146afad 4573
b4be6aef
JB
4574 /*
4575 * If we had UNFINISHED_DROPS we could still be processing them, so
4576 * clear that bit and wake up relocation so it can stop.
4577 */
4578 btrfs_wake_unfinished_drop(fs_info);
4579
7343dd61 4580 /* wait for the qgroup rescan worker to stop */
d06f23d6 4581 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4582
803b2f54
SB
4583 /* wait for the uuid_scan task to finish */
4584 down(&fs_info->uuid_tree_rescan_sem);
4585 /* avoid complains from lockdep et al., set sem back to initial state */
4586 up(&fs_info->uuid_tree_rescan_sem);
4587
837d5b6e 4588 /* pause restriper - we want to resume on mount */
aa1b8cd4 4589 btrfs_pause_balance(fs_info);
837d5b6e 4590
8dabb742
SB
4591 btrfs_dev_replace_suspend_for_unmount(fs_info);
4592
aa1b8cd4 4593 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4594
4595 /* wait for any defraggers to finish */
4596 wait_event(fs_info->transaction_wait,
4597 (atomic_read(&fs_info->defrag_running) == 0));
4598
4599 /* clear out the rbtree of defraggable inodes */
26176e7c 4600 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4601
21c7e756 4602 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4603 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4604 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4605
b0643e59
DZ
4606 /* Cancel or finish ongoing discard work */
4607 btrfs_discard_cleanup(fs_info);
4608
bc98a42c 4609 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4610 /*
d6fd0ae2
OS
4611 * The cleaner kthread is stopped, so do one final pass over
4612 * unused block groups.
e44163e1 4613 */
0b246afa 4614 btrfs_delete_unused_bgs(fs_info);
e44163e1 4615
f0cc2cd7
FM
4616 /*
4617 * There might be existing delayed inode workers still running
4618 * and holding an empty delayed inode item. We must wait for
4619 * them to complete first because they can create a transaction.
4620 * This happens when someone calls btrfs_balance_delayed_items()
4621 * and then a transaction commit runs the same delayed nodes
4622 * before any delayed worker has done something with the nodes.
4623 * We must wait for any worker here and not at transaction
4624 * commit time since that could cause a deadlock.
4625 * This is a very rare case.
4626 */
4627 btrfs_flush_workqueue(fs_info->delayed_workers);
4628
6bccf3ab 4629 ret = btrfs_commit_super(fs_info);
acce952b 4630 if (ret)
04892340 4631 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4632 }
4633
84961539 4634 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4635 btrfs_error_commit_super(fs_info);
0f7d52f4 4636
e3029d9f
AV
4637 kthread_stop(fs_info->transaction_kthread);
4638 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4639
e187831e 4640 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4641 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4642
5958253c
QW
4643 if (btrfs_check_quota_leak(fs_info)) {
4644 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4645 btrfs_err(fs_info, "qgroup reserved space leaked");
4646 }
4647
04892340 4648 btrfs_free_qgroup_config(fs_info);
fe816d0f 4649 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4650
963d678b 4651 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4652 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4653 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4654 }
bcc63abb 4655
5deb17e1 4656 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4657 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4658 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4659
6618a59b 4660 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4661 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4662
1a4319cc
LB
4663 btrfs_put_block_group_cache(fs_info);
4664
de348ee0
WS
4665 /*
4666 * we must make sure there is not any read request to
4667 * submit after we stopping all workers.
4668 */
4669 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4670 btrfs_stop_all_workers(fs_info);
4671
0a31daa4 4672 /* We shouldn't have any transaction open at this point */
36c86a9e 4673 warn_about_uncommitted_trans(fs_info);
0a31daa4 4674
afcdd129 4675 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4676 free_root_pointers(fs_info, true);
8c38938c 4677 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4678
4e19443d
JB
4679 /*
4680 * We must free the block groups after dropping the fs_roots as we could
4681 * have had an IO error and have left over tree log blocks that aren't
4682 * cleaned up until the fs roots are freed. This makes the block group
4683 * accounting appear to be wrong because there's pending reserved bytes,
4684 * so make sure we do the block group cleanup afterwards.
4685 */
4686 btrfs_free_block_groups(fs_info);
4687
13e6c37b 4688 iput(fs_info->btree_inode);
d6bfde87 4689
21adbd5c 4690#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4691 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4692 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4693#endif
4694
0b86a832 4695 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4696 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4697}
4698
b9fab919
CM
4699int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4700 int atomic)
5f39d397 4701{
1259ab75 4702 int ret;
727011e0 4703 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4704
0b32f4bb 4705 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4706 if (!ret)
4707 return ret;
4708
4709 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4710 parent_transid, atomic);
4711 if (ret == -EAGAIN)
4712 return ret;
1259ab75 4713 return !ret;
5f39d397
CM
4714}
4715
5f39d397
CM
4716void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4717{
2f4d60df 4718 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4719 u64 transid = btrfs_header_generation(buf);
b9473439 4720 int was_dirty;
b4ce94de 4721
06ea65a3
JB
4722#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4723 /*
4724 * This is a fast path so only do this check if we have sanity tests
52042d8e 4725 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4726 * outside of the sanity tests.
4727 */
b0132a3b 4728 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4729 return;
4730#endif
49d0c642 4731 btrfs_assert_tree_write_locked(buf);
0b246afa 4732 if (transid != fs_info->generation)
5d163e0e 4733 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4734 buf->start, transid, fs_info->generation);
0b32f4bb 4735 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4736 if (!was_dirty)
104b4e51
NB
4737 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4738 buf->len,
4739 fs_info->dirty_metadata_batch);
1f21ef0a 4740#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4741 /*
4742 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4743 * but item data not updated.
4744 * So here we should only check item pointers, not item data.
4745 */
4746 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4747 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4748 btrfs_print_leaf(buf);
1f21ef0a
FM
4749 ASSERT(0);
4750 }
4751#endif
eb60ceac
CM
4752}
4753
2ff7e61e 4754static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4755 int flush_delayed)
16cdcec7
MX
4756{
4757 /*
4758 * looks as though older kernels can get into trouble with
4759 * this code, they end up stuck in balance_dirty_pages forever
4760 */
e2d84521 4761 int ret;
16cdcec7
MX
4762
4763 if (current->flags & PF_MEMALLOC)
4764 return;
4765
b53d3f5d 4766 if (flush_delayed)
2ff7e61e 4767 btrfs_balance_delayed_items(fs_info);
16cdcec7 4768
d814a491
EL
4769 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4770 BTRFS_DIRTY_METADATA_THRESH,
4771 fs_info->dirty_metadata_batch);
e2d84521 4772 if (ret > 0) {
0b246afa 4773 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4774 }
16cdcec7
MX
4775}
4776
2ff7e61e 4777void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4778{
2ff7e61e 4779 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4780}
585ad2c3 4781
2ff7e61e 4782void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4783{
2ff7e61e 4784 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4785}
6b80053d 4786
2ff7e61e 4787static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4788{
fe816d0f
NB
4789 /* cleanup FS via transaction */
4790 btrfs_cleanup_transaction(fs_info);
4791
0b246afa 4792 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4793 btrfs_run_delayed_iputs(fs_info);
0b246afa 4794 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4795
0b246afa
JM
4796 down_write(&fs_info->cleanup_work_sem);
4797 up_write(&fs_info->cleanup_work_sem);
acce952b 4798}
4799
ef67963d
JB
4800static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4801{
fc7cbcd4
DS
4802 struct btrfs_root *gang[8];
4803 u64 root_objectid = 0;
4804 int ret;
4805
4806 spin_lock(&fs_info->fs_roots_radix_lock);
4807 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4808 (void **)gang, root_objectid,
4809 ARRAY_SIZE(gang))) != 0) {
4810 int i;
4811
4812 for (i = 0; i < ret; i++)
4813 gang[i] = btrfs_grab_root(gang[i]);
4814 spin_unlock(&fs_info->fs_roots_radix_lock);
4815
4816 for (i = 0; i < ret; i++) {
4817 if (!gang[i])
ef67963d 4818 continue;
fc7cbcd4
DS
4819 root_objectid = gang[i]->root_key.objectid;
4820 btrfs_free_log(NULL, gang[i]);
4821 btrfs_put_root(gang[i]);
ef67963d 4822 }
fc7cbcd4
DS
4823 root_objectid++;
4824 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4825 }
fc7cbcd4 4826 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4827 btrfs_free_log_root_tree(NULL, fs_info);
4828}
4829
143bede5 4830static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4831{
acce952b 4832 struct btrfs_ordered_extent *ordered;
acce952b 4833
199c2a9c 4834 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4835 /*
4836 * This will just short circuit the ordered completion stuff which will
4837 * make sure the ordered extent gets properly cleaned up.
4838 */
199c2a9c 4839 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4840 root_extent_list)
4841 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4842 spin_unlock(&root->ordered_extent_lock);
4843}
4844
4845static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4846{
4847 struct btrfs_root *root;
4848 struct list_head splice;
4849
4850 INIT_LIST_HEAD(&splice);
4851
4852 spin_lock(&fs_info->ordered_root_lock);
4853 list_splice_init(&fs_info->ordered_roots, &splice);
4854 while (!list_empty(&splice)) {
4855 root = list_first_entry(&splice, struct btrfs_root,
4856 ordered_root);
1de2cfde
JB
4857 list_move_tail(&root->ordered_root,
4858 &fs_info->ordered_roots);
199c2a9c 4859
2a85d9ca 4860 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4861 btrfs_destroy_ordered_extents(root);
4862
2a85d9ca
LB
4863 cond_resched();
4864 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4865 }
4866 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4867
4868 /*
4869 * We need this here because if we've been flipped read-only we won't
4870 * get sync() from the umount, so we need to make sure any ordered
4871 * extents that haven't had their dirty pages IO start writeout yet
4872 * actually get run and error out properly.
4873 */
4874 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4875}
4876
35a3621b 4877static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4878 struct btrfs_fs_info *fs_info)
acce952b 4879{
4880 struct rb_node *node;
4881 struct btrfs_delayed_ref_root *delayed_refs;
4882 struct btrfs_delayed_ref_node *ref;
4883 int ret = 0;
4884
4885 delayed_refs = &trans->delayed_refs;
4886
4887 spin_lock(&delayed_refs->lock);
d7df2c79 4888 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4889 spin_unlock(&delayed_refs->lock);
b79ce3dd 4890 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4891 return ret;
4892 }
4893
5c9d028b 4894 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4895 struct btrfs_delayed_ref_head *head;
0e0adbcf 4896 struct rb_node *n;
e78417d1 4897 bool pin_bytes = false;
acce952b 4898
d7df2c79
JB
4899 head = rb_entry(node, struct btrfs_delayed_ref_head,
4900 href_node);
3069bd26 4901 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4902 continue;
3069bd26 4903
d7df2c79 4904 spin_lock(&head->lock);
e3d03965 4905 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4906 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4907 ref_node);
d7df2c79 4908 ref->in_tree = 0;
e3d03965 4909 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4910 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4911 if (!list_empty(&ref->add_list))
4912 list_del(&ref->add_list);
d7df2c79
JB
4913 atomic_dec(&delayed_refs->num_entries);
4914 btrfs_put_delayed_ref(ref);
e78417d1 4915 }
d7df2c79
JB
4916 if (head->must_insert_reserved)
4917 pin_bytes = true;
4918 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4919 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4920 spin_unlock(&head->lock);
4921 spin_unlock(&delayed_refs->lock);
4922 mutex_unlock(&head->mutex);
acce952b 4923
f603bb94
NB
4924 if (pin_bytes) {
4925 struct btrfs_block_group *cache;
4926
4927 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4928 BUG_ON(!cache);
4929
4930 spin_lock(&cache->space_info->lock);
4931 spin_lock(&cache->lock);
4932 cache->pinned += head->num_bytes;
4933 btrfs_space_info_update_bytes_pinned(fs_info,
4934 cache->space_info, head->num_bytes);
4935 cache->reserved -= head->num_bytes;
4936 cache->space_info->bytes_reserved -= head->num_bytes;
4937 spin_unlock(&cache->lock);
4938 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4939
4940 btrfs_put_block_group(cache);
4941
4942 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4943 head->bytenr + head->num_bytes - 1);
4944 }
31890da0 4945 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4946 btrfs_put_delayed_ref_head(head);
acce952b 4947 cond_resched();
4948 spin_lock(&delayed_refs->lock);
4949 }
81f7eb00 4950 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4951
4952 spin_unlock(&delayed_refs->lock);
4953
4954 return ret;
4955}
4956
143bede5 4957static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4958{
4959 struct btrfs_inode *btrfs_inode;
4960 struct list_head splice;
4961
4962 INIT_LIST_HEAD(&splice);
4963
eb73c1b7
MX
4964 spin_lock(&root->delalloc_lock);
4965 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4966
4967 while (!list_empty(&splice)) {
fe816d0f 4968 struct inode *inode = NULL;
eb73c1b7
MX
4969 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4970 delalloc_inodes);
fe816d0f 4971 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4972 spin_unlock(&root->delalloc_lock);
acce952b 4973
fe816d0f
NB
4974 /*
4975 * Make sure we get a live inode and that it'll not disappear
4976 * meanwhile.
4977 */
4978 inode = igrab(&btrfs_inode->vfs_inode);
4979 if (inode) {
4980 invalidate_inode_pages2(inode->i_mapping);
4981 iput(inode);
4982 }
eb73c1b7 4983 spin_lock(&root->delalloc_lock);
acce952b 4984 }
eb73c1b7
MX
4985 spin_unlock(&root->delalloc_lock);
4986}
4987
4988static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4989{
4990 struct btrfs_root *root;
4991 struct list_head splice;
4992
4993 INIT_LIST_HEAD(&splice);
4994
4995 spin_lock(&fs_info->delalloc_root_lock);
4996 list_splice_init(&fs_info->delalloc_roots, &splice);
4997 while (!list_empty(&splice)) {
4998 root = list_first_entry(&splice, struct btrfs_root,
4999 delalloc_root);
00246528 5000 root = btrfs_grab_root(root);
eb73c1b7
MX
5001 BUG_ON(!root);
5002 spin_unlock(&fs_info->delalloc_root_lock);
5003
5004 btrfs_destroy_delalloc_inodes(root);
00246528 5005 btrfs_put_root(root);
eb73c1b7
MX
5006
5007 spin_lock(&fs_info->delalloc_root_lock);
5008 }
5009 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 5010}
5011
2ff7e61e 5012static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 5013 struct extent_io_tree *dirty_pages,
5014 int mark)
5015{
5016 int ret;
acce952b 5017 struct extent_buffer *eb;
5018 u64 start = 0;
5019 u64 end;
acce952b 5020
5021 while (1) {
5022 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 5023 mark, NULL);
acce952b 5024 if (ret)
5025 break;
5026
91166212 5027 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 5028 while (start <= end) {
0b246afa
JM
5029 eb = find_extent_buffer(fs_info, start);
5030 start += fs_info->nodesize;
fd8b2b61 5031 if (!eb)
acce952b 5032 continue;
fd8b2b61 5033 wait_on_extent_buffer_writeback(eb);
acce952b 5034
fd8b2b61
JB
5035 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5036 &eb->bflags))
5037 clear_extent_buffer_dirty(eb);
5038 free_extent_buffer_stale(eb);
acce952b 5039 }
5040 }
5041
5042 return ret;
5043}
5044
2ff7e61e 5045static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 5046 struct extent_io_tree *unpin)
acce952b 5047{
acce952b 5048 u64 start;
5049 u64 end;
5050 int ret;
5051
acce952b 5052 while (1) {
0e6ec385
FM
5053 struct extent_state *cached_state = NULL;
5054
fcd5e742
LF
5055 /*
5056 * The btrfs_finish_extent_commit() may get the same range as
5057 * ours between find_first_extent_bit and clear_extent_dirty.
5058 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5059 * the same extent range.
5060 */
5061 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 5062 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 5063 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
5064 if (ret) {
5065 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5066 break;
fcd5e742 5067 }
acce952b 5068
0e6ec385
FM
5069 clear_extent_dirty(unpin, start, end, &cached_state);
5070 free_extent_state(cached_state);
2ff7e61e 5071 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 5072 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5073 cond_resched();
5074 }
5075
5076 return 0;
5077}
5078
32da5386 5079static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
5080{
5081 struct inode *inode;
5082
5083 inode = cache->io_ctl.inode;
5084 if (inode) {
5085 invalidate_inode_pages2(inode->i_mapping);
5086 BTRFS_I(inode)->generation = 0;
5087 cache->io_ctl.inode = NULL;
5088 iput(inode);
5089 }
bbc37d6e 5090 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
5091 btrfs_put_block_group(cache);
5092}
5093
5094void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 5095 struct btrfs_fs_info *fs_info)
c79a1751 5096{
32da5386 5097 struct btrfs_block_group *cache;
c79a1751
LB
5098
5099 spin_lock(&cur_trans->dirty_bgs_lock);
5100 while (!list_empty(&cur_trans->dirty_bgs)) {
5101 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 5102 struct btrfs_block_group,
c79a1751 5103 dirty_list);
c79a1751
LB
5104
5105 if (!list_empty(&cache->io_list)) {
5106 spin_unlock(&cur_trans->dirty_bgs_lock);
5107 list_del_init(&cache->io_list);
5108 btrfs_cleanup_bg_io(cache);
5109 spin_lock(&cur_trans->dirty_bgs_lock);
5110 }
5111
5112 list_del_init(&cache->dirty_list);
5113 spin_lock(&cache->lock);
5114 cache->disk_cache_state = BTRFS_DC_ERROR;
5115 spin_unlock(&cache->lock);
5116
5117 spin_unlock(&cur_trans->dirty_bgs_lock);
5118 btrfs_put_block_group(cache);
ba2c4d4e 5119 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
5120 spin_lock(&cur_trans->dirty_bgs_lock);
5121 }
5122 spin_unlock(&cur_trans->dirty_bgs_lock);
5123
45ae2c18
NB
5124 /*
5125 * Refer to the definition of io_bgs member for details why it's safe
5126 * to use it without any locking
5127 */
c79a1751
LB
5128 while (!list_empty(&cur_trans->io_bgs)) {
5129 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 5130 struct btrfs_block_group,
c79a1751 5131 io_list);
c79a1751
LB
5132
5133 list_del_init(&cache->io_list);
5134 spin_lock(&cache->lock);
5135 cache->disk_cache_state = BTRFS_DC_ERROR;
5136 spin_unlock(&cache->lock);
5137 btrfs_cleanup_bg_io(cache);
5138 }
5139}
5140
49b25e05 5141void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 5142 struct btrfs_fs_info *fs_info)
49b25e05 5143{
bbbf7243
NB
5144 struct btrfs_device *dev, *tmp;
5145
2ff7e61e 5146 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
5147 ASSERT(list_empty(&cur_trans->dirty_bgs));
5148 ASSERT(list_empty(&cur_trans->io_bgs));
5149
bbbf7243
NB
5150 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5151 post_commit_list) {
5152 list_del_init(&dev->post_commit_list);
5153 }
5154
2ff7e61e 5155 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 5156
4a9d8bde 5157 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 5158 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 5159
4a9d8bde 5160 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 5161 wake_up(&fs_info->transaction_wait);
49b25e05 5162
ccdf9b30 5163 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 5164
2ff7e61e 5165 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 5166 EXTENT_DIRTY);
fe119a6e 5167 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 5168
d3575156
NA
5169 btrfs_free_redirty_list(cur_trans);
5170
4a9d8bde
MX
5171 cur_trans->state =TRANS_STATE_COMPLETED;
5172 wake_up(&cur_trans->commit_wait);
49b25e05
JM
5173}
5174
2ff7e61e 5175static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 5176{
5177 struct btrfs_transaction *t;
acce952b 5178
0b246afa 5179 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 5180
0b246afa
JM
5181 spin_lock(&fs_info->trans_lock);
5182 while (!list_empty(&fs_info->trans_list)) {
5183 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
5184 struct btrfs_transaction, list);
5185 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 5186 refcount_inc(&t->use_count);
0b246afa 5187 spin_unlock(&fs_info->trans_lock);
2ff7e61e 5188 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 5189 btrfs_put_transaction(t);
0b246afa 5190 spin_lock(&fs_info->trans_lock);
724e2315
JB
5191 continue;
5192 }
0b246afa 5193 if (t == fs_info->running_transaction) {
724e2315 5194 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 5195 spin_unlock(&fs_info->trans_lock);
724e2315
JB
5196 /*
5197 * We wait for 0 num_writers since we don't hold a trans
5198 * handle open currently for this transaction.
5199 */
5200 wait_event(t->writer_wait,
5201 atomic_read(&t->num_writers) == 0);
5202 } else {
0b246afa 5203 spin_unlock(&fs_info->trans_lock);
724e2315 5204 }
2ff7e61e 5205 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5206
0b246afa
JM
5207 spin_lock(&fs_info->trans_lock);
5208 if (t == fs_info->running_transaction)
5209 fs_info->running_transaction = NULL;
acce952b 5210 list_del_init(&t->list);
0b246afa 5211 spin_unlock(&fs_info->trans_lock);
acce952b 5212
724e2315 5213 btrfs_put_transaction(t);
2e4e97ab 5214 trace_btrfs_transaction_commit(fs_info);
0b246afa 5215 spin_lock(&fs_info->trans_lock);
724e2315 5216 }
0b246afa
JM
5217 spin_unlock(&fs_info->trans_lock);
5218 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5219 btrfs_destroy_delayed_inodes(fs_info);
5220 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5221 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5222 btrfs_drop_all_logs(fs_info);
0b246afa 5223 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5224
5225 return 0;
5226}
ec7d6dfd 5227
453e4873 5228int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5229{
5230 struct btrfs_path *path;
5231 int ret;
5232 struct extent_buffer *l;
5233 struct btrfs_key search_key;
5234 struct btrfs_key found_key;
5235 int slot;
5236
5237 path = btrfs_alloc_path();
5238 if (!path)
5239 return -ENOMEM;
5240
5241 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5242 search_key.type = -1;
5243 search_key.offset = (u64)-1;
5244 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5245 if (ret < 0)
5246 goto error;
5247 BUG_ON(ret == 0); /* Corruption */
5248 if (path->slots[0] > 0) {
5249 slot = path->slots[0] - 1;
5250 l = path->nodes[0];
5251 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5252 root->free_objectid = max_t(u64, found_key.objectid + 1,
5253 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5254 } else {
23125104 5255 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5256 }
5257 ret = 0;
5258error:
5259 btrfs_free_path(path);
5260 return ret;
5261}
5262
543068a2 5263int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5264{
5265 int ret;
5266 mutex_lock(&root->objectid_mutex);
5267
6b8fad57 5268 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5269 btrfs_warn(root->fs_info,
5270 "the objectid of root %llu reaches its highest value",
5271 root->root_key.objectid);
5272 ret = -ENOSPC;
5273 goto out;
5274 }
5275
23125104 5276 *objectid = root->free_objectid++;
ec7d6dfd
NB
5277 ret = 0;
5278out:
5279 mutex_unlock(&root->objectid_mutex);
5280 return ret;
5281}