Merge tag 'edac_updates_for_v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
103c1972 26#include "bio.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
c7f13d42 46#include "fs.h"
07e81dc9 47#include "accessors.h"
a0231804 48#include "extent-tree.h"
45c40c8f 49#include "root-tree.h"
59b818e0 50#include "defrag.h"
c7a03b52 51#include "uuid-tree.h"
67707479 52#include "relocation.h"
2fc6822c 53#include "scrub.h"
c03b2207 54#include "super.h"
eb60ceac 55
319e4d06
QW
56#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
57 BTRFS_HEADER_FLAG_RELOC |\
58 BTRFS_SUPER_FLAG_ERROR |\
59 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
60 BTRFS_SUPER_FLAG_METADUMP |\
61 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 62
143bede5 63static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 64static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 65 struct btrfs_fs_info *fs_info);
143bede5 66static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 67static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 68 struct extent_io_tree *dirty_pages,
69 int mark);
2ff7e61e 70static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 71 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
72static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
73static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 74
141386e1
JB
75static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
76{
77 if (fs_info->csum_shash)
78 crypto_free_shash(fs_info->csum_shash);
79}
80
d352ac68 81/*
2996e1f8 82 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 83 */
c67b3892 84static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 85{
d5178578 86 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 87 const int num_pages = num_extent_pages(buf);
a26663e7 88 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 89 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 90 char *kaddr;
e9be5a30 91 int i;
d5178578
JT
92
93 shash->tfm = fs_info->csum_shash;
94 crypto_shash_init(shash);
a26663e7 95 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 97 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 98
e9be5a30
DS
99 for (i = 1; i < num_pages; i++) {
100 kaddr = page_address(buf->pages[i]);
101 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 102 }
71a63551 103 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 104 crypto_shash_final(shash, result);
19c00ddc
CM
105}
106
d352ac68
CM
107/*
108 * we can't consider a given block up to date unless the transid of the
109 * block matches the transid in the parent node's pointer. This is how we
110 * detect blocks that either didn't get written at all or got written
111 * in the wrong place.
112 */
1259ab75 113static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
114 struct extent_buffer *eb, u64 parent_transid,
115 int atomic)
1259ab75 116{
2ac55d41 117 struct extent_state *cached_state = NULL;
1259ab75
CM
118 int ret;
119
120 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
121 return 0;
122
b9fab919
CM
123 if (atomic)
124 return -EAGAIN;
125
570eb97b 126 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
0b32f4bb 127 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
128 btrfs_header_generation(eb) == parent_transid) {
129 ret = 0;
130 goto out;
131 }
94647322 132 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
133"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 eb->start, eb->read_mirror,
29549aec 135 parent_transid, btrfs_header_generation(eb));
1259ab75 136 ret = 1;
35b22c19 137 clear_extent_buffer_uptodate(eb);
33958dc6 138out:
570eb97b
JB
139 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
140 &cached_state);
1259ab75 141 return ret;
1259ab75
CM
142}
143
e7e16f48
JT
144static bool btrfs_supported_super_csum(u16 csum_type)
145{
146 switch (csum_type) {
147 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 148 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 149 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 150 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
151 return true;
152 default:
153 return false;
154 }
155}
156
1104a885
DS
157/*
158 * Return 0 if the superblock checksum type matches the checksum value of that
159 * algorithm. Pass the raw disk superblock data.
160 */
3d17adea
QW
161int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
162 const struct btrfs_super_block *disk_sb)
1104a885 163{
51bce6c9 164 char result[BTRFS_CSUM_SIZE];
d5178578
JT
165 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
166
167 shash->tfm = fs_info->csum_shash;
1104a885 168
51bce6c9
JT
169 /*
170 * The super_block structure does not span the whole
171 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
172 * filled with zeros and is included in the checksum.
173 */
3d17adea 174 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
fd08001f 175 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 176
55fc29be 177 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 178 return 1;
1104a885 179
e7e16f48 180 return 0;
1104a885
DS
181}
182
e064d5e9 183int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 184 struct btrfs_key *first_key, u64 parent_transid)
581c1760 185{
e064d5e9 186 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
187 int found_level;
188 struct btrfs_key found_key;
189 int ret;
190
191 found_level = btrfs_header_level(eb);
192 if (found_level != level) {
63489055
QW
193 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
194 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
195 btrfs_err(fs_info,
196"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
197 eb->start, level, found_level);
581c1760
QW
198 return -EIO;
199 }
200
201 if (!first_key)
202 return 0;
203
5d41be6f
QW
204 /*
205 * For live tree block (new tree blocks in current transaction),
206 * we need proper lock context to avoid race, which is impossible here.
207 * So we only checks tree blocks which is read from disk, whose
208 * generation <= fs_info->last_trans_committed.
209 */
210 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
211 return 0;
62fdaa52
QW
212
213 /* We have @first_key, so this @eb must have at least one item */
214 if (btrfs_header_nritems(eb) == 0) {
215 btrfs_err(fs_info,
216 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
217 eb->start);
218 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
219 return -EUCLEAN;
220 }
221
581c1760
QW
222 if (found_level)
223 btrfs_node_key_to_cpu(eb, &found_key, 0);
224 else
225 btrfs_item_key_to_cpu(eb, &found_key, 0);
226 ret = btrfs_comp_cpu_keys(first_key, &found_key);
227
581c1760 228 if (ret) {
63489055
QW
229 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
230 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 231 btrfs_err(fs_info,
ff76a864
LB
232"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
233 eb->start, parent_transid, first_key->objectid,
234 first_key->type, first_key->offset,
235 found_key.objectid, found_key.type,
236 found_key.offset);
581c1760 237 }
581c1760
QW
238 return ret;
239}
240
bacf60e5
CH
241static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
242 int mirror_num)
243{
244 struct btrfs_fs_info *fs_info = eb->fs_info;
245 u64 start = eb->start;
246 int i, num_pages = num_extent_pages(eb);
247 int ret = 0;
248
249 if (sb_rdonly(fs_info->sb))
250 return -EROFS;
251
252 for (i = 0; i < num_pages; i++) {
253 struct page *p = eb->pages[i];
254
255 ret = btrfs_repair_io_failure(fs_info, 0, start, PAGE_SIZE,
256 start, p, start - page_offset(p), mirror_num);
257 if (ret)
258 break;
259 start += PAGE_SIZE;
260 }
261
262 return ret;
263}
264
d352ac68
CM
265/*
266 * helper to read a given tree block, doing retries as required when
267 * the checksums don't match and we have alternate mirrors to try.
581c1760 268 *
789d6a3a
QW
269 * @check: expected tree parentness check, see the comments of the
270 * structure for details.
d352ac68 271 */
6a2e9dc4 272int btrfs_read_extent_buffer(struct extent_buffer *eb,
789d6a3a 273 struct btrfs_tree_parent_check *check)
f188591e 274{
5ab12d1f 275 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 276 int failed = 0;
f188591e
CM
277 int ret;
278 int num_copies = 0;
279 int mirror_num = 0;
ea466794 280 int failed_mirror = 0;
f188591e 281
789d6a3a
QW
282 ASSERT(check);
283
f188591e 284 while (1) {
f8397d69 285 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
947a6299
QW
286 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
287 if (!ret)
288 break;
d397712b 289
0b246afa 290 num_copies = btrfs_num_copies(fs_info,
f188591e 291 eb->start, eb->len);
4235298e 292 if (num_copies == 1)
ea466794 293 break;
4235298e 294
5cf1ab56
JB
295 if (!failed_mirror) {
296 failed = 1;
297 failed_mirror = eb->read_mirror;
298 }
299
f188591e 300 mirror_num++;
ea466794
JB
301 if (mirror_num == failed_mirror)
302 mirror_num++;
303
4235298e 304 if (mirror_num > num_copies)
ea466794 305 break;
f188591e 306 }
ea466794 307
c0901581 308 if (failed && !ret && failed_mirror)
20a1fbf9 309 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
310
311 return ret;
f188591e 312}
19c00ddc 313
eca0f6f6
QW
314static int csum_one_extent_buffer(struct extent_buffer *eb)
315{
316 struct btrfs_fs_info *fs_info = eb->fs_info;
317 u8 result[BTRFS_CSUM_SIZE];
318 int ret;
319
320 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
321 offsetof(struct btrfs_header, fsid),
322 BTRFS_FSID_SIZE) == 0);
323 csum_tree_block(eb, result);
324
325 if (btrfs_header_level(eb))
326 ret = btrfs_check_node(eb);
327 else
328 ret = btrfs_check_leaf_full(eb);
329
3777369f
QW
330 if (ret < 0)
331 goto error;
332
333 /*
334 * Also check the generation, the eb reached here must be newer than
335 * last committed. Or something seriously wrong happened.
336 */
337 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
338 ret = -EUCLEAN;
eca0f6f6 339 btrfs_err(fs_info,
3777369f
QW
340 "block=%llu bad generation, have %llu expect > %llu",
341 eb->start, btrfs_header_generation(eb),
342 fs_info->last_trans_committed);
343 goto error;
eca0f6f6
QW
344 }
345 write_extent_buffer(eb, result, 0, fs_info->csum_size);
346
347 return 0;
3777369f
QW
348
349error:
350 btrfs_print_tree(eb, 0);
351 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
352 eb->start);
16199ad9
FM
353 /*
354 * Be noisy if this is an extent buffer from a log tree. We don't abort
355 * a transaction in case there's a bad log tree extent buffer, we just
356 * fallback to a transaction commit. Still we want to know when there is
357 * a bad log tree extent buffer, as that may signal a bug somewhere.
358 */
359 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
360 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
3777369f 361 return ret;
eca0f6f6
QW
362}
363
364/* Checksum all dirty extent buffers in one bio_vec */
365static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
366 struct bio_vec *bvec)
367{
368 struct page *page = bvec->bv_page;
369 u64 bvec_start = page_offset(page) + bvec->bv_offset;
370 u64 cur;
371 int ret = 0;
372
373 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
374 cur += fs_info->nodesize) {
375 struct extent_buffer *eb;
376 bool uptodate;
377
378 eb = find_extent_buffer(fs_info, cur);
379 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
380 fs_info->nodesize);
381
01cd3909 382 /* A dirty eb shouldn't disappear from buffer_radix */
eca0f6f6
QW
383 if (WARN_ON(!eb))
384 return -EUCLEAN;
385
386 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
387 free_extent_buffer(eb);
388 return -EUCLEAN;
389 }
390 if (WARN_ON(!uptodate)) {
391 free_extent_buffer(eb);
392 return -EUCLEAN;
393 }
394
395 ret = csum_one_extent_buffer(eb);
396 free_extent_buffer(eb);
397 if (ret < 0)
398 return ret;
399 }
400 return ret;
401}
402
d352ac68 403/*
ac303b69
QW
404 * Checksum a dirty tree block before IO. This has extra checks to make sure
405 * we only fill in the checksum field in the first page of a multi-page block.
406 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 407 */
ac303b69 408static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 409{
ac303b69 410 struct page *page = bvec->bv_page;
4eee4fa4 411 u64 start = page_offset(page);
19c00ddc 412 u64 found_start;
19c00ddc 413 struct extent_buffer *eb;
eca0f6f6 414
fbca46eb 415 if (fs_info->nodesize < PAGE_SIZE)
eca0f6f6 416 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 417
4f2de97a
JB
418 eb = (struct extent_buffer *)page->private;
419 if (page != eb->pages[0])
420 return 0;
0f805531 421
19c00ddc 422 found_start = btrfs_header_bytenr(eb);
d3575156
NA
423
424 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
425 WARN_ON(found_start != 0);
426 return 0;
427 }
428
0f805531
AL
429 /*
430 * Please do not consolidate these warnings into a single if.
431 * It is useful to know what went wrong.
432 */
433 if (WARN_ON(found_start != start))
434 return -EUCLEAN;
435 if (WARN_ON(!PageUptodate(page)))
436 return -EUCLEAN;
437
eca0f6f6 438 return csum_one_extent_buffer(eb);
19c00ddc
CM
439}
440
542e300e 441blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
deb6216f 442{
542e300e
CH
443 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
444 struct bvec_iter iter;
445 struct bio_vec bv;
deb6216f
CH
446 int ret = 0;
447
542e300e
CH
448 bio_for_each_segment(bv, &bbio->bio, iter) {
449 ret = csum_dirty_buffer(fs_info, &bv);
deb6216f
CH
450 if (ret)
451 break;
452 }
453
454 return errno_to_blk_status(ret);
455}
456
b0c9b3b0 457static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 458{
b0c9b3b0 459 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 460 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 461 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 462 u8 *metadata_uuid;
2b82032c 463
9a8658e3
DS
464 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
465 BTRFS_FSID_SIZE);
944d3f9f
NB
466 /*
467 * Checking the incompat flag is only valid for the current fs. For
468 * seed devices it's forbidden to have their uuid changed so reading
469 * ->fsid in this case is fine
470 */
471 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
472 metadata_uuid = fs_devices->metadata_uuid;
473 else
474 metadata_uuid = fs_devices->fsid;
475
476 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
477 return 0;
478
479 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
480 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
481 return 0;
482
483 return 1;
2b82032c
YZ
484}
485
77bf40a2 486/* Do basic extent buffer checks at read time */
947a6299
QW
487static int validate_extent_buffer(struct extent_buffer *eb,
488 struct btrfs_tree_parent_check *check)
ce9adaa5 489{
77bf40a2 490 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 491 u64 found_start;
77bf40a2
QW
492 const u32 csum_size = fs_info->csum_size;
493 u8 found_level;
2996e1f8 494 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 495 const u8 *header_csum;
77bf40a2 496 int ret = 0;
ea466794 497
947a6299
QW
498 ASSERT(check);
499
ce9adaa5 500 found_start = btrfs_header_bytenr(eb);
727011e0 501 if (found_start != eb->start) {
8f0ed7d4
QW
502 btrfs_err_rl(fs_info,
503 "bad tree block start, mirror %u want %llu have %llu",
504 eb->read_mirror, eb->start, found_start);
f188591e 505 ret = -EIO;
77bf40a2 506 goto out;
ce9adaa5 507 }
b0c9b3b0 508 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
509 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
510 eb->start, eb->read_mirror);
1259ab75 511 ret = -EIO;
77bf40a2 512 goto out;
1259ab75 513 }
ce9adaa5 514 found_level = btrfs_header_level(eb);
1c24c3ce 515 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
516 btrfs_err(fs_info,
517 "bad tree block level, mirror %u level %d on logical %llu",
518 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 519 ret = -EIO;
77bf40a2 520 goto out;
1c24c3ce 521 }
ce9adaa5 522
c67b3892 523 csum_tree_block(eb, result);
dfd29eed
DS
524 header_csum = page_address(eb->pages[0]) +
525 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 526
dfd29eed 527 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 528 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
529"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
530 eb->start, eb->read_mirror,
dfd29eed 531 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
532 CSUM_FMT_VALUE(csum_size, result),
533 btrfs_header_level(eb));
2996e1f8 534 ret = -EUCLEAN;
77bf40a2 535 goto out;
2996e1f8
JT
536 }
537
947a6299 538 if (found_level != check->level) {
77177ed1
QW
539 btrfs_err(fs_info,
540 "level verify failed on logical %llu mirror %u wanted %u found %u",
541 eb->start, eb->read_mirror, check->level, found_level);
947a6299
QW
542 ret = -EIO;
543 goto out;
544 }
545 if (unlikely(check->transid &&
546 btrfs_header_generation(eb) != check->transid)) {
547 btrfs_err_rl(eb->fs_info,
548"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
549 eb->start, eb->read_mirror, check->transid,
550 btrfs_header_generation(eb));
551 ret = -EIO;
552 goto out;
553 }
554 if (check->has_first_key) {
555 struct btrfs_key *expect_key = &check->first_key;
556 struct btrfs_key found_key;
557
558 if (found_level)
559 btrfs_node_key_to_cpu(eb, &found_key, 0);
560 else
561 btrfs_item_key_to_cpu(eb, &found_key, 0);
562 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
563 btrfs_err(fs_info,
564"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
565 eb->start, check->transid,
566 expect_key->objectid,
567 expect_key->type, expect_key->offset,
568 found_key.objectid, found_key.type,
569 found_key.offset);
570 ret = -EUCLEAN;
571 goto out;
572 }
573 }
574 if (check->owner_root) {
575 ret = btrfs_check_eb_owner(eb, check->owner_root);
576 if (ret < 0)
577 goto out;
578 }
579
a826d6dc
JB
580 /*
581 * If this is a leaf block and it is corrupt, set the corrupt bit so
582 * that we don't try and read the other copies of this block, just
583 * return -EIO.
584 */
1c4360ee 585 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
586 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
587 ret = -EIO;
588 }
ce9adaa5 589
813fd1dc 590 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
591 ret = -EIO;
592
0b32f4bb
JB
593 if (!ret)
594 set_extent_buffer_uptodate(eb);
75391f0d
QW
595 else
596 btrfs_err(fs_info,
8f0ed7d4
QW
597 "read time tree block corruption detected on logical %llu mirror %u",
598 eb->start, eb->read_mirror);
77bf40a2
QW
599out:
600 return ret;
601}
602
371cdc07 603static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
947a6299 604 int mirror, struct btrfs_tree_parent_check *check)
371cdc07
QW
605{
606 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
607 struct extent_buffer *eb;
608 bool reads_done;
609 int ret = 0;
610
947a6299
QW
611 ASSERT(check);
612
371cdc07
QW
613 /*
614 * We don't allow bio merge for subpage metadata read, so we should
615 * only get one eb for each endio hook.
616 */
617 ASSERT(end == start + fs_info->nodesize - 1);
618 ASSERT(PagePrivate(page));
619
620 eb = find_extent_buffer(fs_info, start);
621 /*
622 * When we are reading one tree block, eb must have been inserted into
623 * the radix tree. If not, something is wrong.
624 */
625 ASSERT(eb);
626
627 reads_done = atomic_dec_and_test(&eb->io_pages);
628 /* Subpage read must finish in page read */
629 ASSERT(reads_done);
630
631 eb->read_mirror = mirror;
632 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
633 ret = -EIO;
634 goto err;
635 }
947a6299 636 ret = validate_extent_buffer(eb, check);
371cdc07
QW
637 if (ret < 0)
638 goto err;
639
371cdc07
QW
640 set_extent_buffer_uptodate(eb);
641
642 free_extent_buffer(eb);
643 return ret;
644err:
645 /*
646 * end_bio_extent_readpage decrements io_pages in case of error,
647 * make sure it has something to decrement.
648 */
649 atomic_inc(&eb->io_pages);
650 clear_extent_buffer_uptodate(eb);
651 free_extent_buffer(eb);
652 return ret;
653}
654
c3a3b19b 655int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
77bf40a2
QW
656 struct page *page, u64 start, u64 end,
657 int mirror)
658{
659 struct extent_buffer *eb;
660 int ret = 0;
661 int reads_done;
662
663 ASSERT(page->private);
371cdc07 664
fbca46eb 665 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
947a6299
QW
666 return validate_subpage_buffer(page, start, end, mirror,
667 &bbio->parent_check);
371cdc07 668
77bf40a2
QW
669 eb = (struct extent_buffer *)page->private;
670
671 /*
672 * The pending IO might have been the only thing that kept this buffer
673 * in memory. Make sure we have a ref for all this other checks
674 */
675 atomic_inc(&eb->refs);
676
677 reads_done = atomic_dec_and_test(&eb->io_pages);
678 if (!reads_done)
679 goto err;
680
681 eb->read_mirror = mirror;
682 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
683 ret = -EIO;
684 goto err;
685 }
947a6299 686 ret = validate_extent_buffer(eb, &bbio->parent_check);
ce9adaa5 687err:
53b381b3
DW
688 if (ret) {
689 /*
690 * our io error hook is going to dec the io pages
691 * again, we have to make sure it has something
692 * to decrement
693 */
694 atomic_inc(&eb->io_pages);
0b32f4bb 695 clear_extent_buffer_uptodate(eb);
53b381b3 696 }
0b32f4bb 697 free_extent_buffer(eb);
77bf40a2 698
f188591e 699 return ret;
ce9adaa5
CM
700}
701
3dd1462e 702#ifdef CONFIG_MIGRATION
8958b551
MWO
703static int btree_migrate_folio(struct address_space *mapping,
704 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
705{
706 /*
707 * we can't safely write a btree page from here,
708 * we haven't done the locking hook
709 */
8958b551 710 if (folio_test_dirty(src))
784b4e29
CM
711 return -EAGAIN;
712 /*
713 * Buffers may be managed in a filesystem specific way.
714 * We must have no buffers or drop them.
715 */
8958b551
MWO
716 if (folio_get_private(src) &&
717 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 718 return -EAGAIN;
54184650 719 return migrate_folio(mapping, dst, src, mode);
784b4e29 720}
8958b551
MWO
721#else
722#define btree_migrate_folio NULL
3dd1462e 723#endif
784b4e29 724
0da5468f
CM
725static int btree_writepages(struct address_space *mapping,
726 struct writeback_control *wbc)
727{
e2d84521
MX
728 struct btrfs_fs_info *fs_info;
729 int ret;
730
d8d5f3e1 731 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
732
733 if (wbc->for_kupdate)
734 return 0;
735
e2d84521 736 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 737 /* this is a bit racy, but that's ok */
d814a491
EL
738 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
739 BTRFS_DIRTY_METADATA_THRESH,
740 fs_info->dirty_metadata_batch);
e2d84521 741 if (ret < 0)
793955bc 742 return 0;
793955bc 743 }
0b32f4bb 744 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
745}
746
f913cff3 747static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 748{
f913cff3
MWO
749 if (folio_test_writeback(folio) || folio_test_dirty(folio))
750 return false;
0c4e538b 751
f913cff3 752 return try_release_extent_buffer(&folio->page);
d98237b3
CM
753}
754
895586eb
MWO
755static void btree_invalidate_folio(struct folio *folio, size_t offset,
756 size_t length)
d98237b3 757{
d1310b2e 758 struct extent_io_tree *tree;
895586eb
MWO
759 tree = &BTRFS_I(folio->mapping->host)->io_tree;
760 extent_invalidate_folio(tree, folio, offset);
f913cff3 761 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
762 if (folio_get_private(folio)) {
763 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
764 "folio private not zero on folio %llu",
765 (unsigned long long)folio_pos(folio));
766 folio_detach_private(folio);
9ad6b7bc 767 }
d98237b3
CM
768}
769
bb146eb2 770#ifdef DEBUG
0079c3b1
MWO
771static bool btree_dirty_folio(struct address_space *mapping,
772 struct folio *folio)
773{
774 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 775 struct btrfs_subpage *subpage;
0b32f4bb 776 struct extent_buffer *eb;
139e8cd3 777 int cur_bit = 0;
0079c3b1 778 u64 page_start = folio_pos(folio);
139e8cd3
QW
779
780 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 781 eb = folio_get_private(folio);
139e8cd3
QW
782 BUG_ON(!eb);
783 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
784 BUG_ON(!atomic_read(&eb->refs));
49d0c642 785 btrfs_assert_tree_write_locked(eb);
0079c3b1 786 return filemap_dirty_folio(mapping, folio);
139e8cd3 787 }
0079c3b1 788 subpage = folio_get_private(folio);
139e8cd3
QW
789
790 ASSERT(subpage->dirty_bitmap);
791 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
792 unsigned long flags;
793 u64 cur;
794 u16 tmp = (1 << cur_bit);
795
796 spin_lock_irqsave(&subpage->lock, flags);
797 if (!(tmp & subpage->dirty_bitmap)) {
798 spin_unlock_irqrestore(&subpage->lock, flags);
799 cur_bit++;
800 continue;
801 }
802 spin_unlock_irqrestore(&subpage->lock, flags);
803 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 804
139e8cd3
QW
805 eb = find_extent_buffer(fs_info, cur);
806 ASSERT(eb);
807 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
808 ASSERT(atomic_read(&eb->refs));
49d0c642 809 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
810 free_extent_buffer(eb);
811
812 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
813 }
0079c3b1 814 return filemap_dirty_folio(mapping, folio);
0b32f4bb 815}
0079c3b1
MWO
816#else
817#define btree_dirty_folio filemap_dirty_folio
818#endif
0b32f4bb 819
7f09410b 820static const struct address_space_operations btree_aops = {
0da5468f 821 .writepages = btree_writepages,
f913cff3 822 .release_folio = btree_release_folio,
895586eb 823 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
824 .migrate_folio = btree_migrate_folio,
825 .dirty_folio = btree_dirty_folio,
d98237b3
CM
826};
827
2ff7e61e
JM
828struct extent_buffer *btrfs_find_create_tree_block(
829 struct btrfs_fs_info *fs_info,
3fbaf258
JB
830 u64 bytenr, u64 owner_root,
831 int level)
0999df54 832{
0b246afa
JM
833 if (btrfs_is_testing(fs_info))
834 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 835 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
836}
837
581c1760
QW
838/*
839 * Read tree block at logical address @bytenr and do variant basic but critical
840 * verification.
841 *
789d6a3a
QW
842 * @check: expected tree parentness check, see comments of the
843 * structure for details.
581c1760 844 */
2ff7e61e 845struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
789d6a3a 846 struct btrfs_tree_parent_check *check)
0999df54
CM
847{
848 struct extent_buffer *buf = NULL;
0999df54
CM
849 int ret;
850
789d6a3a
QW
851 ASSERT(check);
852
853 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
854 check->level);
c871b0f2
LB
855 if (IS_ERR(buf))
856 return buf;
0999df54 857
789d6a3a 858 ret = btrfs_read_extent_buffer(buf, check);
0f0fe8f7 859 if (ret) {
537f38f0 860 free_extent_buffer_stale(buf);
64c043de 861 return ERR_PTR(ret);
0f0fe8f7 862 }
789d6a3a 863 if (btrfs_check_eb_owner(buf, check->owner_root)) {
88c602ab
QW
864 free_extent_buffer_stale(buf);
865 return ERR_PTR(-EUCLEAN);
866 }
5f39d397 867 return buf;
ce9adaa5 868
eb60ceac
CM
869}
870
da17066c 871static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 872 u64 objectid)
d97e63b6 873{
7c0260ee 874 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
875
876 memset(&root->root_key, 0, sizeof(root->root_key));
877 memset(&root->root_item, 0, sizeof(root->root_item));
878 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 879 root->fs_info = fs_info;
2e608bd1 880 root->root_key.objectid = objectid;
cfaa7295 881 root->node = NULL;
a28ec197 882 root->commit_root = NULL;
27cdeb70 883 root->state = 0;
abed4aaa 884 RB_CLEAR_NODE(&root->rb_node);
0b86a832 885
0f7d52f4 886 root->last_trans = 0;
6b8fad57 887 root->free_objectid = 0;
eb73c1b7 888 root->nr_delalloc_inodes = 0;
199c2a9c 889 root->nr_ordered_extents = 0;
6bef4d31 890 root->inode_tree = RB_ROOT;
088aea3b 891 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
892
893 btrfs_init_root_block_rsv(root);
0b86a832
CM
894
895 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 896 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
897 INIT_LIST_HEAD(&root->delalloc_inodes);
898 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
899 INIT_LIST_HEAD(&root->ordered_extents);
900 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 901 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
902 INIT_LIST_HEAD(&root->logged_list[0]);
903 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 904 spin_lock_init(&root->inode_lock);
eb73c1b7 905 spin_lock_init(&root->delalloc_lock);
199c2a9c 906 spin_lock_init(&root->ordered_extent_lock);
f0486c68 907 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
908 spin_lock_init(&root->log_extents_lock[0]);
909 spin_lock_init(&root->log_extents_lock[1]);
8287475a 910 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 911 mutex_init(&root->objectid_mutex);
e02119d5 912 mutex_init(&root->log_mutex);
31f3d255 913 mutex_init(&root->ordered_extent_mutex);
573bfb72 914 mutex_init(&root->delalloc_mutex);
c53e9653 915 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
916 init_waitqueue_head(&root->log_writer_wait);
917 init_waitqueue_head(&root->log_commit_wait[0]);
918 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
919 INIT_LIST_HEAD(&root->log_ctxs[0]);
920 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
921 atomic_set(&root->log_commit[0], 0);
922 atomic_set(&root->log_commit[1], 0);
923 atomic_set(&root->log_writers, 0);
2ecb7923 924 atomic_set(&root->log_batch, 0);
0700cea7 925 refcount_set(&root->refs, 1);
8ecebf4d 926 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 927 atomic_set(&root->nr_swapfiles, 0);
7237f183 928 root->log_transid = 0;
d1433deb 929 root->log_transid_committed = -1;
257c62e1 930 root->last_log_commit = 0;
2e608bd1 931 root->anon_dev = 0;
e289f03e 932 if (!dummy) {
43eb5f29 933 extent_io_tree_init(fs_info, &root->dirty_log_pages,
35da5a7e 934 IO_TREE_ROOT_DIRTY_LOG_PAGES);
e289f03e 935 extent_io_tree_init(fs_info, &root->log_csum_range,
35da5a7e 936 IO_TREE_LOG_CSUM_RANGE);
e289f03e 937 }
017e5369 938
5f3ab90a 939 spin_lock_init(&root->root_item_lock);
370a11b8 940 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
941#ifdef CONFIG_BTRFS_DEBUG
942 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 943 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 944 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 945 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 946#endif
3768f368
CM
947}
948
74e4d827 949static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 950 u64 objectid, gfp_t flags)
6f07e42e 951{
74e4d827 952 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 953 if (root)
96dfcb46 954 __setup_root(root, fs_info, objectid);
6f07e42e
AV
955 return root;
956}
957
06ea65a3
JB
958#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
959/* Should only be used by the testing infrastructure */
da17066c 960struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
961{
962 struct btrfs_root *root;
963
7c0260ee
JM
964 if (!fs_info)
965 return ERR_PTR(-EINVAL);
966
96dfcb46 967 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
968 if (!root)
969 return ERR_PTR(-ENOMEM);
da17066c 970
b9ef22de 971 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 972 root->alloc_bytenr = 0;
06ea65a3
JB
973
974 return root;
975}
976#endif
977
abed4aaa
JB
978static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
979{
980 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
981 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
982
983 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
984}
985
986static int global_root_key_cmp(const void *k, const struct rb_node *node)
987{
988 const struct btrfs_key *key = k;
989 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
990
991 return btrfs_comp_cpu_keys(key, &root->root_key);
992}
993
994int btrfs_global_root_insert(struct btrfs_root *root)
995{
996 struct btrfs_fs_info *fs_info = root->fs_info;
997 struct rb_node *tmp;
998
999 write_lock(&fs_info->global_root_lock);
1000 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1001 write_unlock(&fs_info->global_root_lock);
1002 ASSERT(!tmp);
1003
1004 return tmp ? -EEXIST : 0;
1005}
1006
1007void btrfs_global_root_delete(struct btrfs_root *root)
1008{
1009 struct btrfs_fs_info *fs_info = root->fs_info;
1010
1011 write_lock(&fs_info->global_root_lock);
1012 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1013 write_unlock(&fs_info->global_root_lock);
1014}
1015
1016struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1017 struct btrfs_key *key)
1018{
1019 struct rb_node *node;
1020 struct btrfs_root *root = NULL;
1021
1022 read_lock(&fs_info->global_root_lock);
1023 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1024 if (node)
1025 root = container_of(node, struct btrfs_root, rb_node);
1026 read_unlock(&fs_info->global_root_lock);
1027
1028 return root;
1029}
1030
f7238e50
JB
1031static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1032{
1033 struct btrfs_block_group *block_group;
1034 u64 ret;
1035
1036 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1037 return 0;
1038
1039 if (bytenr)
1040 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1041 else
1042 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1043 ASSERT(block_group);
1044 if (!block_group)
1045 return 0;
1046 ret = block_group->global_root_id;
1047 btrfs_put_block_group(block_group);
1048
1049 return ret;
1050}
1051
abed4aaa
JB
1052struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1053{
1054 struct btrfs_key key = {
1055 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1056 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1057 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1058 };
1059
1060 return btrfs_global_root(fs_info, &key);
1061}
1062
1063struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1064{
1065 struct btrfs_key key = {
1066 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1067 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1068 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1069 };
1070
1071 return btrfs_global_root(fs_info, &key);
1072}
1073
51129b33
JB
1074struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1075{
1076 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1077 return fs_info->block_group_root;
1078 return btrfs_extent_root(fs_info, 0);
1079}
1080
20897f5c 1081struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1082 u64 objectid)
1083{
9b7a2440 1084 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1085 struct extent_buffer *leaf;
1086 struct btrfs_root *tree_root = fs_info->tree_root;
1087 struct btrfs_root *root;
1088 struct btrfs_key key;
b89f6d1f 1089 unsigned int nofs_flag;
20897f5c 1090 int ret = 0;
20897f5c 1091
b89f6d1f
FM
1092 /*
1093 * We're holding a transaction handle, so use a NOFS memory allocation
1094 * context to avoid deadlock if reclaim happens.
1095 */
1096 nofs_flag = memalloc_nofs_save();
96dfcb46 1097 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1098 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1099 if (!root)
1100 return ERR_PTR(-ENOMEM);
1101
20897f5c
AJ
1102 root->root_key.objectid = objectid;
1103 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1104 root->root_key.offset = 0;
1105
9631e4cc
JB
1106 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1107 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1108 if (IS_ERR(leaf)) {
1109 ret = PTR_ERR(leaf);
1dd05682 1110 leaf = NULL;
c1b07854 1111 goto fail;
20897f5c
AJ
1112 }
1113
20897f5c 1114 root->node = leaf;
20897f5c
AJ
1115 btrfs_mark_buffer_dirty(leaf);
1116
1117 root->commit_root = btrfs_root_node(root);
27cdeb70 1118 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1119
f944d2cb
DS
1120 btrfs_set_root_flags(&root->root_item, 0);
1121 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1122 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1123 btrfs_set_root_generation(&root->root_item, trans->transid);
1124 btrfs_set_root_level(&root->root_item, 0);
1125 btrfs_set_root_refs(&root->root_item, 1);
1126 btrfs_set_root_used(&root->root_item, leaf->len);
1127 btrfs_set_root_last_snapshot(&root->root_item, 0);
1128 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1129 if (is_fstree(objectid))
807fc790
AS
1130 generate_random_guid(root->root_item.uuid);
1131 else
1132 export_guid(root->root_item.uuid, &guid_null);
c8422684 1133 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1134
8a6a87cd
BB
1135 btrfs_tree_unlock(leaf);
1136
20897f5c
AJ
1137 key.objectid = objectid;
1138 key.type = BTRFS_ROOT_ITEM_KEY;
1139 key.offset = 0;
1140 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1141 if (ret)
1142 goto fail;
1143
1dd05682
TI
1144 return root;
1145
8a6a87cd 1146fail:
00246528 1147 btrfs_put_root(root);
20897f5c 1148
1dd05682 1149 return ERR_PTR(ret);
20897f5c
AJ
1150}
1151
7237f183
YZ
1152static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1153 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1154{
1155 struct btrfs_root *root;
e02119d5 1156
96dfcb46 1157 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1158 if (!root)
7237f183 1159 return ERR_PTR(-ENOMEM);
e02119d5 1160
e02119d5
CM
1161 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1162 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1163 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1164
6ab6ebb7
NA
1165 return root;
1166}
1167
1168int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1169 struct btrfs_root *root)
1170{
1171 struct extent_buffer *leaf;
1172
7237f183 1173 /*
92a7cc42 1174 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1175 *
92a7cc42
QW
1176 * Log trees are not exposed to user space thus can't be snapshotted,
1177 * and they go away before a real commit is actually done.
1178 *
1179 * They do store pointers to file data extents, and those reference
1180 * counts still get updated (along with back refs to the log tree).
7237f183 1181 */
e02119d5 1182
4d75f8a9 1183 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1184 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1185 if (IS_ERR(leaf))
1186 return PTR_ERR(leaf);
e02119d5 1187
7237f183 1188 root->node = leaf;
e02119d5 1189
e02119d5
CM
1190 btrfs_mark_buffer_dirty(root->node);
1191 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1192
1193 return 0;
7237f183
YZ
1194}
1195
1196int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1197 struct btrfs_fs_info *fs_info)
1198{
1199 struct btrfs_root *log_root;
1200
1201 log_root = alloc_log_tree(trans, fs_info);
1202 if (IS_ERR(log_root))
1203 return PTR_ERR(log_root);
6ab6ebb7 1204
3ddebf27
NA
1205 if (!btrfs_is_zoned(fs_info)) {
1206 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1207
1208 if (ret) {
1209 btrfs_put_root(log_root);
1210 return ret;
1211 }
6ab6ebb7
NA
1212 }
1213
7237f183
YZ
1214 WARN_ON(fs_info->log_root_tree);
1215 fs_info->log_root_tree = log_root;
1216 return 0;
1217}
1218
1219int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1220 struct btrfs_root *root)
1221{
0b246afa 1222 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1223 struct btrfs_root *log_root;
1224 struct btrfs_inode_item *inode_item;
6ab6ebb7 1225 int ret;
7237f183 1226
0b246afa 1227 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1228 if (IS_ERR(log_root))
1229 return PTR_ERR(log_root);
1230
6ab6ebb7
NA
1231 ret = btrfs_alloc_log_tree_node(trans, log_root);
1232 if (ret) {
1233 btrfs_put_root(log_root);
1234 return ret;
1235 }
1236
7237f183
YZ
1237 log_root->last_trans = trans->transid;
1238 log_root->root_key.offset = root->root_key.objectid;
1239
1240 inode_item = &log_root->root_item.inode;
3cae210f
QW
1241 btrfs_set_stack_inode_generation(inode_item, 1);
1242 btrfs_set_stack_inode_size(inode_item, 3);
1243 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1244 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1245 fs_info->nodesize);
3cae210f 1246 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1247
5d4f98a2 1248 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1249
1250 WARN_ON(root->log_root);
1251 root->log_root = log_root;
1252 root->log_transid = 0;
d1433deb 1253 root->log_transid_committed = -1;
257c62e1 1254 root->last_log_commit = 0;
e02119d5
CM
1255 return 0;
1256}
1257
49d11bea
JB
1258static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1259 struct btrfs_path *path,
1260 struct btrfs_key *key)
e02119d5
CM
1261{
1262 struct btrfs_root *root;
789d6a3a 1263 struct btrfs_tree_parent_check check = { 0 };
e02119d5 1264 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1265 u64 generation;
cb517eab 1266 int ret;
581c1760 1267 int level;
0f7d52f4 1268
96dfcb46 1269 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1270 if (!root)
1271 return ERR_PTR(-ENOMEM);
0f7d52f4 1272
cb517eab
MX
1273 ret = btrfs_find_root(tree_root, key, path,
1274 &root->root_item, &root->root_key);
0f7d52f4 1275 if (ret) {
13a8a7c8
YZ
1276 if (ret > 0)
1277 ret = -ENOENT;
49d11bea 1278 goto fail;
0f7d52f4 1279 }
13a8a7c8 1280
84234f3a 1281 generation = btrfs_root_generation(&root->root_item);
581c1760 1282 level = btrfs_root_level(&root->root_item);
789d6a3a
QW
1283 check.level = level;
1284 check.transid = generation;
1285 check.owner_root = key->objectid;
1286 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1287 &check);
64c043de
LB
1288 if (IS_ERR(root->node)) {
1289 ret = PTR_ERR(root->node);
8c38938c 1290 root->node = NULL;
49d11bea 1291 goto fail;
4eb150d6
QW
1292 }
1293 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1294 ret = -EIO;
49d11bea 1295 goto fail;
416bc658 1296 }
88c602ab
QW
1297
1298 /*
1299 * For real fs, and not log/reloc trees, root owner must
1300 * match its root node owner
1301 */
1302 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1303 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1304 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1305 root->root_key.objectid != btrfs_header_owner(root->node)) {
1306 btrfs_crit(fs_info,
1307"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1308 root->root_key.objectid, root->node->start,
1309 btrfs_header_owner(root->node),
1310 root->root_key.objectid);
1311 ret = -EUCLEAN;
1312 goto fail;
1313 }
5d4f98a2 1314 root->commit_root = btrfs_root_node(root);
cb517eab 1315 return root;
49d11bea 1316fail:
00246528 1317 btrfs_put_root(root);
49d11bea
JB
1318 return ERR_PTR(ret);
1319}
1320
1321struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1322 struct btrfs_key *key)
1323{
1324 struct btrfs_root *root;
1325 struct btrfs_path *path;
1326
1327 path = btrfs_alloc_path();
1328 if (!path)
1329 return ERR_PTR(-ENOMEM);
1330 root = read_tree_root_path(tree_root, path, key);
1331 btrfs_free_path(path);
1332
1333 return root;
cb517eab
MX
1334}
1335
2dfb1e43
QW
1336/*
1337 * Initialize subvolume root in-memory structure
1338 *
1339 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1340 */
1341static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1342{
1343 int ret;
dcc3eb96 1344 unsigned int nofs_flag;
cb517eab 1345
dcc3eb96
NB
1346 /*
1347 * We might be called under a transaction (e.g. indirect backref
1348 * resolution) which could deadlock if it triggers memory reclaim
1349 */
1350 nofs_flag = memalloc_nofs_save();
1351 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1352 memalloc_nofs_restore(nofs_flag);
1353 if (ret)
8257b2dc 1354 goto fail;
8257b2dc 1355
aeb935a4 1356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1357 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1358 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1359 btrfs_check_and_init_root_item(&root->root_item);
1360 }
1361
851fd730
QW
1362 /*
1363 * Don't assign anonymous block device to roots that are not exposed to
1364 * userspace, the id pool is limited to 1M
1365 */
1366 if (is_fstree(root->root_key.objectid) &&
1367 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1368 if (!anon_dev) {
1369 ret = get_anon_bdev(&root->anon_dev);
1370 if (ret)
1371 goto fail;
1372 } else {
1373 root->anon_dev = anon_dev;
1374 }
851fd730 1375 }
f32e48e9
CR
1376
1377 mutex_lock(&root->objectid_mutex);
453e4873 1378 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1379 if (ret) {
1380 mutex_unlock(&root->objectid_mutex);
876d2cf1 1381 goto fail;
f32e48e9
CR
1382 }
1383
6b8fad57 1384 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1385
1386 mutex_unlock(&root->objectid_mutex);
1387
cb517eab
MX
1388 return 0;
1389fail:
84db5ccf 1390 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1391 return ret;
1392}
1393
a98db0f3
JB
1394static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1395 u64 root_id)
cb517eab
MX
1396{
1397 struct btrfs_root *root;
1398
fc7cbcd4
DS
1399 spin_lock(&fs_info->fs_roots_radix_lock);
1400 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1401 (unsigned long)root_id);
bc44d7c4 1402 if (root)
00246528 1403 root = btrfs_grab_root(root);
fc7cbcd4 1404 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1405 return root;
1406}
1407
49d11bea
JB
1408static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1409 u64 objectid)
1410{
abed4aaa
JB
1411 struct btrfs_key key = {
1412 .objectid = objectid,
1413 .type = BTRFS_ROOT_ITEM_KEY,
1414 .offset = 0,
1415 };
1416
49d11bea
JB
1417 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1418 return btrfs_grab_root(fs_info->tree_root);
1419 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
abed4aaa 1420 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1421 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1422 return btrfs_grab_root(fs_info->chunk_root);
1423 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1424 return btrfs_grab_root(fs_info->dev_root);
1425 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
abed4aaa 1426 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1427 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1428 return btrfs_grab_root(fs_info->quota_root) ?
1429 fs_info->quota_root : ERR_PTR(-ENOENT);
1430 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1431 return btrfs_grab_root(fs_info->uuid_root) ?
1432 fs_info->uuid_root : ERR_PTR(-ENOENT);
14033b08
QW
1433 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1434 return btrfs_grab_root(fs_info->block_group_root) ?
1435 fs_info->block_group_root : ERR_PTR(-ENOENT);
abed4aaa
JB
1436 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1437 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1438
1439 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1440 }
49d11bea
JB
1441 return NULL;
1442}
1443
cb517eab
MX
1444int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1445 struct btrfs_root *root)
1446{
1447 int ret;
1448
fc7cbcd4
DS
1449 ret = radix_tree_preload(GFP_NOFS);
1450 if (ret)
1451 return ret;
1452
1453 spin_lock(&fs_info->fs_roots_radix_lock);
1454 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1455 (unsigned long)root->root_key.objectid,
1456 root);
af01d2e5 1457 if (ret == 0) {
00246528 1458 btrfs_grab_root(root);
fc7cbcd4 1459 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1460 }
fc7cbcd4
DS
1461 spin_unlock(&fs_info->fs_roots_radix_lock);
1462 radix_tree_preload_end();
cb517eab
MX
1463
1464 return ret;
1465}
1466
bd647ce3
JB
1467void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1468{
1469#ifdef CONFIG_BTRFS_DEBUG
1470 struct btrfs_root *root;
1471
1472 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1473 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1474
bd647ce3
JB
1475 root = list_first_entry(&fs_info->allocated_roots,
1476 struct btrfs_root, leak_list);
457f1864 1477 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1478 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1479 refcount_read(&root->refs));
1480 while (refcount_read(&root->refs) > 1)
00246528
JB
1481 btrfs_put_root(root);
1482 btrfs_put_root(root);
bd647ce3
JB
1483 }
1484#endif
1485}
1486
abed4aaa
JB
1487static void free_global_roots(struct btrfs_fs_info *fs_info)
1488{
1489 struct btrfs_root *root;
1490 struct rb_node *node;
1491
1492 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1493 root = rb_entry(node, struct btrfs_root, rb_node);
1494 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1495 btrfs_put_root(root);
1496 }
1497}
1498
0d4b0463
JB
1499void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1500{
141386e1
JB
1501 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1502 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1503 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1504 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1505 btrfs_free_csum_hash(fs_info);
1506 btrfs_free_stripe_hash_table(fs_info);
1507 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1508 kfree(fs_info->balance_ctl);
1509 kfree(fs_info->delayed_root);
abed4aaa 1510 free_global_roots(fs_info);
00246528
JB
1511 btrfs_put_root(fs_info->tree_root);
1512 btrfs_put_root(fs_info->chunk_root);
1513 btrfs_put_root(fs_info->dev_root);
00246528
JB
1514 btrfs_put_root(fs_info->quota_root);
1515 btrfs_put_root(fs_info->uuid_root);
00246528 1516 btrfs_put_root(fs_info->fs_root);
aeb935a4 1517 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1518 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1519 btrfs_check_leaked_roots(fs_info);
3fd63727 1520 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1521 kfree(fs_info->super_copy);
1522 kfree(fs_info->super_for_commit);
8481dd80 1523 kfree(fs_info->subpage_info);
0d4b0463
JB
1524 kvfree(fs_info);
1525}
1526
1527
2dfb1e43
QW
1528/*
1529 * Get an in-memory reference of a root structure.
1530 *
1531 * For essential trees like root/extent tree, we grab it from fs_info directly.
1532 * For subvolume trees, we check the cached filesystem roots first. If not
1533 * found, then read it from disk and add it to cached fs roots.
1534 *
1535 * Caller should release the root by calling btrfs_put_root() after the usage.
1536 *
1537 * NOTE: Reloc and log trees can't be read by this function as they share the
1538 * same root objectid.
1539 *
1540 * @objectid: root id
1541 * @anon_dev: preallocated anonymous block device number for new roots,
1542 * pass 0 for new allocation.
1543 * @check_ref: whether to check root item references, If true, return -ENOENT
1544 * for orphan roots
1545 */
1546static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1547 u64 objectid, dev_t anon_dev,
1548 bool check_ref)
5eda7b5e
CM
1549{
1550 struct btrfs_root *root;
381cf658 1551 struct btrfs_path *path;
1d4c08e0 1552 struct btrfs_key key;
5eda7b5e
CM
1553 int ret;
1554
49d11bea
JB
1555 root = btrfs_get_global_root(fs_info, objectid);
1556 if (root)
1557 return root;
4df27c4d 1558again:
56e9357a 1559 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1560 if (root) {
2dfb1e43
QW
1561 /* Shouldn't get preallocated anon_dev for cached roots */
1562 ASSERT(!anon_dev);
bc44d7c4 1563 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1564 btrfs_put_root(root);
48475471 1565 return ERR_PTR(-ENOENT);
bc44d7c4 1566 }
5eda7b5e 1567 return root;
48475471 1568 }
5eda7b5e 1569
56e9357a
DS
1570 key.objectid = objectid;
1571 key.type = BTRFS_ROOT_ITEM_KEY;
1572 key.offset = (u64)-1;
1573 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1574 if (IS_ERR(root))
1575 return root;
3394e160 1576
c00869f1 1577 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1578 ret = -ENOENT;
581bb050 1579 goto fail;
35a30d7c 1580 }
581bb050 1581
2dfb1e43 1582 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1583 if (ret)
1584 goto fail;
3394e160 1585
381cf658
DS
1586 path = btrfs_alloc_path();
1587 if (!path) {
1588 ret = -ENOMEM;
1589 goto fail;
1590 }
1d4c08e0
DS
1591 key.objectid = BTRFS_ORPHAN_OBJECTID;
1592 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1593 key.offset = objectid;
1d4c08e0
DS
1594
1595 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1596 btrfs_free_path(path);
d68fc57b
YZ
1597 if (ret < 0)
1598 goto fail;
1599 if (ret == 0)
27cdeb70 1600 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1601
cb517eab 1602 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1603 if (ret) {
168a2f77
JJB
1604 if (ret == -EEXIST) {
1605 btrfs_put_root(root);
4df27c4d 1606 goto again;
168a2f77 1607 }
4df27c4d 1608 goto fail;
0f7d52f4 1609 }
edbd8d4e 1610 return root;
4df27c4d 1611fail:
33fab972
FM
1612 /*
1613 * If our caller provided us an anonymous device, then it's his
143823cf 1614 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1615 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1616 * and once again by our caller.
1617 */
1618 if (anon_dev)
1619 root->anon_dev = 0;
8c38938c 1620 btrfs_put_root(root);
4df27c4d 1621 return ERR_PTR(ret);
edbd8d4e
CM
1622}
1623
2dfb1e43
QW
1624/*
1625 * Get in-memory reference of a root structure
1626 *
1627 * @objectid: tree objectid
1628 * @check_ref: if set, verify that the tree exists and the item has at least
1629 * one reference
1630 */
1631struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1632 u64 objectid, bool check_ref)
1633{
1634 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1635}
1636
1637/*
1638 * Get in-memory reference of a root structure, created as new, optionally pass
1639 * the anonymous block device id
1640 *
1641 * @objectid: tree objectid
1642 * @anon_dev: if zero, allocate a new anonymous block device or use the
1643 * parameter value
1644 */
1645struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1646 u64 objectid, dev_t anon_dev)
1647{
1648 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1649}
1650
49d11bea
JB
1651/*
1652 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1653 * @fs_info: the fs_info
1654 * @objectid: the objectid we need to lookup
1655 *
1656 * This is exclusively used for backref walking, and exists specifically because
1657 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1658 * creation time, which means we may have to read the tree_root in order to look
1659 * up a fs root that is not in memory. If the root is not in memory we will
1660 * read the tree root commit root and look up the fs root from there. This is a
1661 * temporary root, it will not be inserted into the radix tree as it doesn't
1662 * have the most uptodate information, it'll simply be discarded once the
1663 * backref code is finished using the root.
1664 */
1665struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1666 struct btrfs_path *path,
1667 u64 objectid)
1668{
1669 struct btrfs_root *root;
1670 struct btrfs_key key;
1671
1672 ASSERT(path->search_commit_root && path->skip_locking);
1673
1674 /*
1675 * This can return -ENOENT if we ask for a root that doesn't exist, but
1676 * since this is called via the backref walking code we won't be looking
1677 * up a root that doesn't exist, unless there's corruption. So if root
1678 * != NULL just return it.
1679 */
1680 root = btrfs_get_global_root(fs_info, objectid);
1681 if (root)
1682 return root;
1683
1684 root = btrfs_lookup_fs_root(fs_info, objectid);
1685 if (root)
1686 return root;
1687
1688 key.objectid = objectid;
1689 key.type = BTRFS_ROOT_ITEM_KEY;
1690 key.offset = (u64)-1;
1691 root = read_tree_root_path(fs_info->tree_root, path, &key);
1692 btrfs_release_path(path);
1693
1694 return root;
1695}
1696
a74a4b97
CM
1697static int cleaner_kthread(void *arg)
1698{
0d031dc4 1699 struct btrfs_fs_info *fs_info = arg;
d0278245 1700 int again;
a74a4b97 1701
d6fd0ae2 1702 while (1) {
d0278245 1703 again = 0;
a74a4b97 1704
fd340d0f
JB
1705 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1706
d0278245 1707 /* Make the cleaner go to sleep early. */
2ff7e61e 1708 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1709 goto sleep;
1710
90c711ab
ZB
1711 /*
1712 * Do not do anything if we might cause open_ctree() to block
1713 * before we have finished mounting the filesystem.
1714 */
0b246afa 1715 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1716 goto sleep;
1717
0b246afa 1718 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1719 goto sleep;
1720
dc7f370c
MX
1721 /*
1722 * Avoid the problem that we change the status of the fs
1723 * during the above check and trylock.
1724 */
2ff7e61e 1725 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1726 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1727 goto sleep;
76dda93c 1728 }
a74a4b97 1729
b7625f46
QW
1730 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1731 btrfs_sysfs_feature_update(fs_info);
1732
2ff7e61e 1733 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1734
33c44184 1735 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1736 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1737
1738 /*
05323cd1
MX
1739 * The defragger has dealt with the R/O remount and umount,
1740 * needn't do anything special here.
d0278245 1741 */
0b246afa 1742 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1743
1744 /*
f3372065 1745 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1746 * with relocation (btrfs_relocate_chunk) and relocation
1747 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1748 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1749 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1750 * unused block groups.
1751 */
0b246afa 1752 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1753
1754 /*
1755 * Reclaim block groups in the reclaim_bgs list after we deleted
1756 * all unused block_groups. This possibly gives us some more free
1757 * space.
1758 */
1759 btrfs_reclaim_bgs(fs_info);
d0278245 1760sleep:
a0a1db70 1761 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1762 if (kthread_should_park())
1763 kthread_parkme();
1764 if (kthread_should_stop())
1765 return 0;
838fe188 1766 if (!again) {
a74a4b97 1767 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1768 schedule();
a74a4b97
CM
1769 __set_current_state(TASK_RUNNING);
1770 }
da288d28 1771 }
a74a4b97
CM
1772}
1773
1774static int transaction_kthread(void *arg)
1775{
1776 struct btrfs_root *root = arg;
0b246afa 1777 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1778 struct btrfs_trans_handle *trans;
1779 struct btrfs_transaction *cur;
8929ecfa 1780 u64 transid;
643900be 1781 time64_t delta;
a74a4b97 1782 unsigned long delay;
914b2007 1783 bool cannot_commit;
a74a4b97
CM
1784
1785 do {
914b2007 1786 cannot_commit = false;
ba1bc00f 1787 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1788 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1789
0b246afa
JM
1790 spin_lock(&fs_info->trans_lock);
1791 cur = fs_info->running_transaction;
a74a4b97 1792 if (!cur) {
0b246afa 1793 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1794 goto sleep;
1795 }
31153d81 1796
643900be 1797 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
1798 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1799 cur->state < TRANS_STATE_COMMIT_START &&
643900be 1800 delta < fs_info->commit_interval) {
0b246afa 1801 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1802 delay -= msecs_to_jiffies((delta - 1) * 1000);
1803 delay = min(delay,
1804 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1805 goto sleep;
1806 }
8929ecfa 1807 transid = cur->transid;
0b246afa 1808 spin_unlock(&fs_info->trans_lock);
56bec294 1809
79787eaa 1810 /* If the file system is aborted, this will always fail. */
354aa0fb 1811 trans = btrfs_attach_transaction(root);
914b2007 1812 if (IS_ERR(trans)) {
354aa0fb
MX
1813 if (PTR_ERR(trans) != -ENOENT)
1814 cannot_commit = true;
79787eaa 1815 goto sleep;
914b2007 1816 }
8929ecfa 1817 if (transid == trans->transid) {
3a45bb20 1818 btrfs_commit_transaction(trans);
8929ecfa 1819 } else {
3a45bb20 1820 btrfs_end_transaction(trans);
8929ecfa 1821 }
a74a4b97 1822sleep:
0b246afa
JM
1823 wake_up_process(fs_info->cleaner_kthread);
1824 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1825
84961539 1826 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1827 btrfs_cleanup_transaction(fs_info);
ce63f891 1828 if (!kthread_should_stop() &&
0b246afa 1829 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1830 cannot_commit))
bc5511d0 1831 schedule_timeout_interruptible(delay);
a74a4b97
CM
1832 } while (!kthread_should_stop());
1833 return 0;
1834}
1835
af31f5e5 1836/*
01f0f9da
NB
1837 * This will find the highest generation in the array of root backups. The
1838 * index of the highest array is returned, or -EINVAL if we can't find
1839 * anything.
af31f5e5
CM
1840 *
1841 * We check to make sure the array is valid by comparing the
1842 * generation of the latest root in the array with the generation
1843 * in the super block. If they don't match we pitch it.
1844 */
01f0f9da 1845static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1846{
01f0f9da 1847 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1848 u64 cur;
af31f5e5
CM
1849 struct btrfs_root_backup *root_backup;
1850 int i;
1851
1852 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1853 root_backup = info->super_copy->super_roots + i;
1854 cur = btrfs_backup_tree_root_gen(root_backup);
1855 if (cur == newest_gen)
01f0f9da 1856 return i;
af31f5e5
CM
1857 }
1858
01f0f9da 1859 return -EINVAL;
af31f5e5
CM
1860}
1861
af31f5e5
CM
1862/*
1863 * copy all the root pointers into the super backup array.
1864 * this will bump the backup pointer by one when it is
1865 * done
1866 */
1867static void backup_super_roots(struct btrfs_fs_info *info)
1868{
6ef108dd 1869 const int next_backup = info->backup_root_index;
af31f5e5 1870 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1871
1872 root_backup = info->super_for_commit->super_roots + next_backup;
1873
1874 /*
1875 * make sure all of our padding and empty slots get zero filled
1876 * regardless of which ones we use today
1877 */
1878 memset(root_backup, 0, sizeof(*root_backup));
1879
1880 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1881
1882 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1883 btrfs_set_backup_tree_root_gen(root_backup,
1884 btrfs_header_generation(info->tree_root->node));
1885
1886 btrfs_set_backup_tree_root_level(root_backup,
1887 btrfs_header_level(info->tree_root->node));
1888
1889 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1890 btrfs_set_backup_chunk_root_gen(root_backup,
1891 btrfs_header_generation(info->chunk_root->node));
1892 btrfs_set_backup_chunk_root_level(root_backup,
1893 btrfs_header_level(info->chunk_root->node));
1894
1c56ab99 1895 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
9c54e80d 1896 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1897 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1898
1899 btrfs_set_backup_extent_root(root_backup,
1900 extent_root->node->start);
1901 btrfs_set_backup_extent_root_gen(root_backup,
1902 btrfs_header_generation(extent_root->node));
1903 btrfs_set_backup_extent_root_level(root_backup,
1904 btrfs_header_level(extent_root->node));
f7238e50
JB
1905
1906 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1907 btrfs_set_backup_csum_root_gen(root_backup,
1908 btrfs_header_generation(csum_root->node));
1909 btrfs_set_backup_csum_root_level(root_backup,
1910 btrfs_header_level(csum_root->node));
9c54e80d 1911 }
af31f5e5 1912
7c7e82a7
CM
1913 /*
1914 * we might commit during log recovery, which happens before we set
1915 * the fs_root. Make sure it is valid before we fill it in.
1916 */
1917 if (info->fs_root && info->fs_root->node) {
1918 btrfs_set_backup_fs_root(root_backup,
1919 info->fs_root->node->start);
1920 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1921 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1922 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1923 btrfs_header_level(info->fs_root->node));
7c7e82a7 1924 }
af31f5e5
CM
1925
1926 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1927 btrfs_set_backup_dev_root_gen(root_backup,
1928 btrfs_header_generation(info->dev_root->node));
1929 btrfs_set_backup_dev_root_level(root_backup,
1930 btrfs_header_level(info->dev_root->node));
1931
af31f5e5
CM
1932 btrfs_set_backup_total_bytes(root_backup,
1933 btrfs_super_total_bytes(info->super_copy));
1934 btrfs_set_backup_bytes_used(root_backup,
1935 btrfs_super_bytes_used(info->super_copy));
1936 btrfs_set_backup_num_devices(root_backup,
1937 btrfs_super_num_devices(info->super_copy));
1938
1939 /*
1940 * if we don't copy this out to the super_copy, it won't get remembered
1941 * for the next commit
1942 */
1943 memcpy(&info->super_copy->super_roots,
1944 &info->super_for_commit->super_roots,
1945 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1946}
1947
bd2336b2
NB
1948/*
1949 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1950 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1951 *
1952 * fs_info - filesystem whose backup roots need to be read
1953 * priority - priority of backup root required
1954 *
1955 * Returns backup root index on success and -EINVAL otherwise.
1956 */
1957static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1958{
1959 int backup_index = find_newest_super_backup(fs_info);
1960 struct btrfs_super_block *super = fs_info->super_copy;
1961 struct btrfs_root_backup *root_backup;
1962
1963 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1964 if (priority == 0)
1965 return backup_index;
1966
1967 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1968 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1969 } else {
1970 return -EINVAL;
1971 }
1972
1973 root_backup = super->super_roots + backup_index;
1974
1975 btrfs_set_super_generation(super,
1976 btrfs_backup_tree_root_gen(root_backup));
1977 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1978 btrfs_set_super_root_level(super,
1979 btrfs_backup_tree_root_level(root_backup));
1980 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1981
1982 /*
1983 * Fixme: the total bytes and num_devices need to match or we should
1984 * need a fsck
1985 */
1986 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1987 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1988
1989 return backup_index;
1990}
1991
7abadb64
LB
1992/* helper to cleanup workers */
1993static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1994{
dc6e3209 1995 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1996 btrfs_destroy_workqueue(fs_info->delalloc_workers);
a31b4a43 1997 btrfs_destroy_workqueue(fs_info->hipri_workers);
5cdc7ad3 1998 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
1999 if (fs_info->endio_workers)
2000 destroy_workqueue(fs_info->endio_workers);
385de0ef
CH
2001 if (fs_info->rmw_workers)
2002 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
2003 if (fs_info->compressed_write_workers)
2004 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
2005 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2006 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2007 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2008 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 2009 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2010 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2011 if (fs_info->discard_ctl.discard_workers)
2012 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2013 /*
2014 * Now that all other work queues are destroyed, we can safely destroy
2015 * the queues used for metadata I/O, since tasks from those other work
2016 * queues can do metadata I/O operations.
2017 */
d7b9416f
CH
2018 if (fs_info->endio_meta_workers)
2019 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
2020}
2021
2e9f5954
R
2022static void free_root_extent_buffers(struct btrfs_root *root)
2023{
2024 if (root) {
2025 free_extent_buffer(root->node);
2026 free_extent_buffer(root->commit_root);
2027 root->node = NULL;
2028 root->commit_root = NULL;
2029 }
2030}
2031
abed4aaa
JB
2032static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2033{
2034 struct btrfs_root *root, *tmp;
2035
2036 rbtree_postorder_for_each_entry_safe(root, tmp,
2037 &fs_info->global_root_tree,
2038 rb_node)
2039 free_root_extent_buffers(root);
2040}
2041
af31f5e5 2042/* helper to cleanup tree roots */
4273eaff 2043static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2044{
2e9f5954 2045 free_root_extent_buffers(info->tree_root);
655b09fe 2046
abed4aaa 2047 free_global_root_pointers(info);
2e9f5954 2048 free_root_extent_buffers(info->dev_root);
2e9f5954
R
2049 free_root_extent_buffers(info->quota_root);
2050 free_root_extent_buffers(info->uuid_root);
8c38938c 2051 free_root_extent_buffers(info->fs_root);
aeb935a4 2052 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 2053 free_root_extent_buffers(info->block_group_root);
4273eaff 2054 if (free_chunk_root)
2e9f5954 2055 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2056}
2057
8c38938c
JB
2058void btrfs_put_root(struct btrfs_root *root)
2059{
2060 if (!root)
2061 return;
2062
2063 if (refcount_dec_and_test(&root->refs)) {
2064 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2065 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2066 if (root->anon_dev)
2067 free_anon_bdev(root->anon_dev);
2068 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2069 free_root_extent_buffers(root);
8c38938c 2070#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 2071 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 2072 list_del_init(&root->leak_list);
fc7cbcd4 2073 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
2074#endif
2075 kfree(root);
2076 }
2077}
2078
faa2dbf0 2079void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 2080{
fc7cbcd4
DS
2081 int ret;
2082 struct btrfs_root *gang[8];
2083 int i;
171f6537
JB
2084
2085 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
2086 gang[0] = list_entry(fs_info->dead_roots.next,
2087 struct btrfs_root, root_list);
2088 list_del(&gang[0]->root_list);
171f6537 2089
fc7cbcd4
DS
2090 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2091 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2092 btrfs_put_root(gang[0]);
171f6537
JB
2093 }
2094
fc7cbcd4
DS
2095 while (1) {
2096 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2097 (void **)gang, 0,
2098 ARRAY_SIZE(gang));
2099 if (!ret)
2100 break;
2101 for (i = 0; i < ret; i++)
2102 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2103 }
2104}
af31f5e5 2105
638aa7ed
ES
2106static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2107{
2108 mutex_init(&fs_info->scrub_lock);
2109 atomic_set(&fs_info->scrubs_running, 0);
2110 atomic_set(&fs_info->scrub_pause_req, 0);
2111 atomic_set(&fs_info->scrubs_paused, 0);
2112 atomic_set(&fs_info->scrub_cancel_req, 0);
2113 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2114 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2115}
2116
779a65a4
ES
2117static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2118{
2119 spin_lock_init(&fs_info->balance_lock);
2120 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2121 atomic_set(&fs_info->balance_pause_req, 0);
2122 atomic_set(&fs_info->balance_cancel_req, 0);
2123 fs_info->balance_ctl = NULL;
2124 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2125 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2126}
2127
6bccf3ab 2128static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2129{
2ff7e61e 2130 struct inode *inode = fs_info->btree_inode;
e256927b
JB
2131 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2132 fs_info->tree_root);
2ff7e61e
JM
2133
2134 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2135 set_nlink(inode, 1);
f37938e0
ES
2136 /*
2137 * we set the i_size on the btree inode to the max possible int.
2138 * the real end of the address space is determined by all of
2139 * the devices in the system
2140 */
2ff7e61e
JM
2141 inode->i_size = OFFSET_MAX;
2142 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2143
2ff7e61e 2144 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2145 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
35da5a7e 2146 IO_TREE_BTREE_INODE_IO);
2ff7e61e 2147 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2148
5c8fd99f 2149 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
2150 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2151 BTRFS_I(inode)->location.type = 0;
2152 BTRFS_I(inode)->location.offset = 0;
2ff7e61e 2153 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
e256927b 2154 __insert_inode_hash(inode, hash);
f37938e0
ES
2155}
2156
ad618368
ES
2157static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2158{
ad618368 2159 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2160 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2161 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2162}
2163
f9e92e40
ES
2164static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2165{
2166 spin_lock_init(&fs_info->qgroup_lock);
2167 mutex_init(&fs_info->qgroup_ioctl_lock);
2168 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2169 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2170 fs_info->qgroup_seq = 1;
f9e92e40 2171 fs_info->qgroup_ulist = NULL;
d2c609b8 2172 fs_info->qgroup_rescan_running = false;
011b46c3 2173 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
f9e92e40
ES
2174 mutex_init(&fs_info->qgroup_rescan_lock);
2175}
2176
d21deec5 2177static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 2178{
f7b885be 2179 u32 max_active = fs_info->thread_pool_size;
6f011058 2180 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2181
2182 fs_info->workers =
a31b4a43
CH
2183 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2184 fs_info->hipri_workers =
2185 btrfs_alloc_workqueue(fs_info, "worker-high",
cb001095 2186 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2187
2188 fs_info->delalloc_workers =
cb001095
JM
2189 btrfs_alloc_workqueue(fs_info, "delalloc",
2190 flags, max_active, 2);
2a458198
ES
2191
2192 fs_info->flush_workers =
cb001095
JM
2193 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2194 flags, max_active, 0);
2a458198
ES
2195
2196 fs_info->caching_workers =
cb001095 2197 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2198
2a458198 2199 fs_info->fixup_workers =
cb001095 2200 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198 2201
2a458198 2202 fs_info->endio_workers =
d7b9416f 2203 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 2204 fs_info->endio_meta_workers =
d7b9416f 2205 alloc_workqueue("btrfs-endio-meta", flags, max_active);
385de0ef 2206 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2207 fs_info->endio_write_workers =
cb001095
JM
2208 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2209 max_active, 2);
fed8a72d
CH
2210 fs_info->compressed_write_workers =
2211 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 2212 fs_info->endio_freespace_worker =
cb001095
JM
2213 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2214 max_active, 0);
2a458198 2215 fs_info->delayed_workers =
cb001095
JM
2216 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2217 max_active, 0);
2a458198 2218 fs_info->qgroup_rescan_workers =
cb001095 2219 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2220 fs_info->discard_ctl.discard_workers =
2221 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198 2222
a31b4a43
CH
2223 if (!(fs_info->workers && fs_info->hipri_workers &&
2224 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2225 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2226 fs_info->compressed_write_workers &&
1a1a2851 2227 fs_info->endio_write_workers &&
2a458198 2228 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2229 fs_info->caching_workers && fs_info->fixup_workers &&
2230 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2231 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2232 return -ENOMEM;
2233 }
2234
2235 return 0;
2236}
2237
6d97c6e3
JT
2238static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2239{
2240 struct crypto_shash *csum_shash;
b4e967be 2241 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2242
b4e967be 2243 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2244
2245 if (IS_ERR(csum_shash)) {
2246 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2247 csum_driver);
6d97c6e3
JT
2248 return PTR_ERR(csum_shash);
2249 }
2250
2251 fs_info->csum_shash = csum_shash;
2252
68d99ab0
CH
2253 /*
2254 * Check if the checksum implementation is a fast accelerated one.
2255 * As-is this is a bit of a hack and should be replaced once the csum
2256 * implementations provide that information themselves.
2257 */
2258 switch (csum_type) {
2259 case BTRFS_CSUM_TYPE_CRC32:
2260 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2261 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2262 break;
2263 default:
2264 break;
2265 }
2266
c8a5f8ca
DS
2267 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2268 btrfs_super_csum_name(csum_type),
2269 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2270 return 0;
2271}
2272
63443bf5
ES
2273static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2274 struct btrfs_fs_devices *fs_devices)
2275{
2276 int ret;
789d6a3a 2277 struct btrfs_tree_parent_check check = { 0 };
63443bf5
ES
2278 struct btrfs_root *log_tree_root;
2279 struct btrfs_super_block *disk_super = fs_info->super_copy;
2280 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2281 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2282
2283 if (fs_devices->rw_devices == 0) {
f14d104d 2284 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2285 return -EIO;
2286 }
2287
96dfcb46
JB
2288 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2289 GFP_KERNEL);
63443bf5
ES
2290 if (!log_tree_root)
2291 return -ENOMEM;
2292
789d6a3a
QW
2293 check.level = level;
2294 check.transid = fs_info->generation + 1;
2295 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2296 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
64c043de 2297 if (IS_ERR(log_tree_root->node)) {
f14d104d 2298 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2299 ret = PTR_ERR(log_tree_root->node);
8c38938c 2300 log_tree_root->node = NULL;
00246528 2301 btrfs_put_root(log_tree_root);
0eeff236 2302 return ret;
4eb150d6
QW
2303 }
2304 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2305 btrfs_err(fs_info, "failed to read log tree");
00246528 2306 btrfs_put_root(log_tree_root);
63443bf5
ES
2307 return -EIO;
2308 }
4eb150d6 2309
63443bf5
ES
2310 /* returns with log_tree_root freed on success */
2311 ret = btrfs_recover_log_trees(log_tree_root);
2312 if (ret) {
0b246afa
JM
2313 btrfs_handle_fs_error(fs_info, ret,
2314 "Failed to recover log tree");
00246528 2315 btrfs_put_root(log_tree_root);
63443bf5
ES
2316 return ret;
2317 }
2318
bc98a42c 2319 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2320 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2321 if (ret)
2322 return ret;
2323 }
2324
2325 return 0;
2326}
2327
abed4aaa
JB
2328static int load_global_roots_objectid(struct btrfs_root *tree_root,
2329 struct btrfs_path *path, u64 objectid,
2330 const char *name)
2331{
2332 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2333 struct btrfs_root *root;
f7238e50 2334 u64 max_global_id = 0;
abed4aaa
JB
2335 int ret;
2336 struct btrfs_key key = {
2337 .objectid = objectid,
2338 .type = BTRFS_ROOT_ITEM_KEY,
2339 .offset = 0,
2340 };
2341 bool found = false;
2342
2343 /* If we have IGNOREDATACSUMS skip loading these roots. */
2344 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2345 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2346 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2347 return 0;
2348 }
2349
2350 while (1) {
2351 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2352 if (ret < 0)
2353 break;
2354
2355 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2356 ret = btrfs_next_leaf(tree_root, path);
2357 if (ret) {
2358 if (ret > 0)
2359 ret = 0;
2360 break;
2361 }
2362 }
2363 ret = 0;
2364
2365 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2366 if (key.objectid != objectid)
2367 break;
2368 btrfs_release_path(path);
2369
f7238e50
JB
2370 /*
2371 * Just worry about this for extent tree, it'll be the same for
2372 * everybody.
2373 */
2374 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2375 max_global_id = max(max_global_id, key.offset);
2376
abed4aaa
JB
2377 found = true;
2378 root = read_tree_root_path(tree_root, path, &key);
2379 if (IS_ERR(root)) {
2380 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2381 ret = PTR_ERR(root);
2382 break;
2383 }
2384 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2385 ret = btrfs_global_root_insert(root);
2386 if (ret) {
2387 btrfs_put_root(root);
2388 break;
2389 }
2390 key.offset++;
2391 }
2392 btrfs_release_path(path);
2393
f7238e50
JB
2394 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2395 fs_info->nr_global_roots = max_global_id + 1;
2396
abed4aaa
JB
2397 if (!found || ret) {
2398 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2399 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2400
2401 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2402 ret = ret ? ret : -ENOENT;
2403 else
2404 ret = 0;
2405 btrfs_err(fs_info, "failed to load root %s", name);
2406 }
2407 return ret;
2408}
2409
2410static int load_global_roots(struct btrfs_root *tree_root)
2411{
2412 struct btrfs_path *path;
2413 int ret = 0;
2414
2415 path = btrfs_alloc_path();
2416 if (!path)
2417 return -ENOMEM;
2418
2419 ret = load_global_roots_objectid(tree_root, path,
2420 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2421 if (ret)
2422 goto out;
2423 ret = load_global_roots_objectid(tree_root, path,
2424 BTRFS_CSUM_TREE_OBJECTID, "csum");
2425 if (ret)
2426 goto out;
2427 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2428 goto out;
2429 ret = load_global_roots_objectid(tree_root, path,
2430 BTRFS_FREE_SPACE_TREE_OBJECTID,
2431 "free space");
2432out:
2433 btrfs_free_path(path);
2434 return ret;
2435}
2436
6bccf3ab 2437static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2438{
6bccf3ab 2439 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2440 struct btrfs_root *root;
4bbcaa64
ES
2441 struct btrfs_key location;
2442 int ret;
2443
6bccf3ab
JM
2444 BUG_ON(!fs_info->tree_root);
2445
abed4aaa
JB
2446 ret = load_global_roots(tree_root);
2447 if (ret)
2448 return ret;
2449
4bbcaa64
ES
2450 location.type = BTRFS_ROOT_ITEM_KEY;
2451 location.offset = 0;
2452
1c56ab99 2453 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
14033b08
QW
2454 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2455 root = btrfs_read_tree_root(tree_root, &location);
2456 if (IS_ERR(root)) {
2457 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2458 ret = PTR_ERR(root);
2459 goto out;
2460 }
2461 } else {
2462 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2463 fs_info->block_group_root = root;
2464 }
2465 }
2466
2467 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2468 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2469 if (IS_ERR(root)) {
42437a63
JB
2470 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2471 ret = PTR_ERR(root);
2472 goto out;
2473 }
2474 } else {
2475 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2476 fs_info->dev_root = root;
f50f4353 2477 }
820a49da 2478 /* Initialize fs_info for all devices in any case */
a8d1b164
JT
2479 ret = btrfs_init_devices_late(fs_info);
2480 if (ret)
2481 goto out;
4bbcaa64 2482
aeb935a4
QW
2483 /*
2484 * This tree can share blocks with some other fs tree during relocation
2485 * and we need a proper setup by btrfs_get_fs_root
2486 */
56e9357a
DS
2487 root = btrfs_get_fs_root(tree_root->fs_info,
2488 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2489 if (IS_ERR(root)) {
42437a63
JB
2490 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2491 ret = PTR_ERR(root);
2492 goto out;
2493 }
2494 } else {
2495 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2496 fs_info->data_reloc_root = root;
aeb935a4 2497 }
aeb935a4 2498
4bbcaa64 2499 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2500 root = btrfs_read_tree_root(tree_root, &location);
2501 if (!IS_ERR(root)) {
2502 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2503 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2504 fs_info->quota_root = root;
4bbcaa64
ES
2505 }
2506
2507 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2508 root = btrfs_read_tree_root(tree_root, &location);
2509 if (IS_ERR(root)) {
42437a63
JB
2510 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2511 ret = PTR_ERR(root);
2512 if (ret != -ENOENT)
2513 goto out;
2514 }
4bbcaa64 2515 } else {
a4f3d2c4
DS
2516 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2517 fs_info->uuid_root = root;
4bbcaa64
ES
2518 }
2519
2520 return 0;
f50f4353
LB
2521out:
2522 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2523 location.objectid, ret);
2524 return ret;
4bbcaa64
ES
2525}
2526
069ec957
QW
2527/*
2528 * Real super block validation
2529 * NOTE: super csum type and incompat features will not be checked here.
2530 *
2531 * @sb: super block to check
2532 * @mirror_num: the super block number to check its bytenr:
2533 * 0 the primary (1st) sb
2534 * 1, 2 2nd and 3rd backup copy
2535 * -1 skip bytenr check
2536 */
a05d3c91
QW
2537int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2538 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2539{
21a852b0
QW
2540 u64 nodesize = btrfs_super_nodesize(sb);
2541 u64 sectorsize = btrfs_super_sectorsize(sb);
2542 int ret = 0;
2543
2544 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2545 btrfs_err(fs_info, "no valid FS found");
2546 ret = -EINVAL;
2547 }
2548 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2549 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2550 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2551 ret = -EINVAL;
2552 }
2553 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2554 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2555 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2556 ret = -EINVAL;
2557 }
2558 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2559 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2560 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2561 ret = -EINVAL;
2562 }
2563 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2564 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2565 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2566 ret = -EINVAL;
2567 }
2568
2569 /*
2570 * Check sectorsize and nodesize first, other check will need it.
2571 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2572 */
2573 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2574 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2575 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2576 ret = -EINVAL;
2577 }
0bb3eb3e
QW
2578
2579 /*
1a42daab
QW
2580 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2581 *
2582 * We can support 16K sectorsize with 64K page size without problem,
2583 * but such sectorsize/pagesize combination doesn't make much sense.
2584 * 4K will be our future standard, PAGE_SIZE is supported from the very
2585 * beginning.
0bb3eb3e 2586 */
1a42daab 2587 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2588 btrfs_err(fs_info,
0bb3eb3e 2589 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2590 sectorsize, PAGE_SIZE);
2591 ret = -EINVAL;
2592 }
0bb3eb3e 2593
21a852b0
QW
2594 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2595 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2596 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2597 ret = -EINVAL;
2598 }
2599 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2600 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2601 le32_to_cpu(sb->__unused_leafsize), nodesize);
2602 ret = -EINVAL;
2603 }
2604
2605 /* Root alignment check */
2606 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2607 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2608 btrfs_super_root(sb));
2609 ret = -EINVAL;
2610 }
2611 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2612 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2613 btrfs_super_chunk_root(sb));
2614 ret = -EINVAL;
2615 }
2616 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2617 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2618 btrfs_super_log_root(sb));
2619 ret = -EINVAL;
2620 }
2621
aefd7f70
NB
2622 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2623 BTRFS_FSID_SIZE)) {
2624 btrfs_err(fs_info,
2625 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2626 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2627 ret = -EINVAL;
2628 }
2629
2630 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2631 memcmp(fs_info->fs_devices->metadata_uuid,
2632 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2633 btrfs_err(fs_info,
2634"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2635 fs_info->super_copy->metadata_uuid,
2636 fs_info->fs_devices->metadata_uuid);
2637 ret = -EINVAL;
2638 }
2639
1c56ab99
QW
2640 /*
2641 * Artificial requirement for block-group-tree to force newer features
2642 * (free-space-tree, no-holes) so the test matrix is smaller.
2643 */
2644 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2645 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2646 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2647 btrfs_err(fs_info,
2648 "block-group-tree feature requires fres-space-tree and no-holes");
2649 ret = -EINVAL;
2650 }
2651
de37aa51 2652 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2653 BTRFS_FSID_SIZE) != 0) {
21a852b0 2654 btrfs_err(fs_info,
7239ff4b 2655 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2656 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2657 ret = -EINVAL;
2658 }
2659
2660 /*
2661 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2662 * done later
2663 */
2664 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2665 btrfs_err(fs_info, "bytes_used is too small %llu",
2666 btrfs_super_bytes_used(sb));
2667 ret = -EINVAL;
2668 }
2669 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2670 btrfs_err(fs_info, "invalid stripesize %u",
2671 btrfs_super_stripesize(sb));
2672 ret = -EINVAL;
2673 }
2674 if (btrfs_super_num_devices(sb) > (1UL << 31))
2675 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2676 btrfs_super_num_devices(sb));
2677 if (btrfs_super_num_devices(sb) == 0) {
2678 btrfs_err(fs_info, "number of devices is 0");
2679 ret = -EINVAL;
2680 }
2681
069ec957
QW
2682 if (mirror_num >= 0 &&
2683 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2684 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2685 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2686 ret = -EINVAL;
2687 }
2688
2689 /*
2690 * Obvious sys_chunk_array corruptions, it must hold at least one key
2691 * and one chunk
2692 */
2693 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2694 btrfs_err(fs_info, "system chunk array too big %u > %u",
2695 btrfs_super_sys_array_size(sb),
2696 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2697 ret = -EINVAL;
2698 }
2699 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2700 + sizeof(struct btrfs_chunk)) {
2701 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2702 btrfs_super_sys_array_size(sb),
2703 sizeof(struct btrfs_disk_key)
2704 + sizeof(struct btrfs_chunk));
2705 ret = -EINVAL;
2706 }
2707
2708 /*
2709 * The generation is a global counter, we'll trust it more than the others
2710 * but it's still possible that it's the one that's wrong.
2711 */
2712 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2713 btrfs_warn(fs_info,
2714 "suspicious: generation < chunk_root_generation: %llu < %llu",
2715 btrfs_super_generation(sb),
2716 btrfs_super_chunk_root_generation(sb));
2717 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2718 && btrfs_super_cache_generation(sb) != (u64)-1)
2719 btrfs_warn(fs_info,
2720 "suspicious: generation < cache_generation: %llu < %llu",
2721 btrfs_super_generation(sb),
2722 btrfs_super_cache_generation(sb));
2723
2724 return ret;
2725}
2726
069ec957
QW
2727/*
2728 * Validation of super block at mount time.
2729 * Some checks already done early at mount time, like csum type and incompat
2730 * flags will be skipped.
2731 */
2732static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2733{
a05d3c91 2734 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
069ec957
QW
2735}
2736
75cb857d
QW
2737/*
2738 * Validation of super block at write time.
2739 * Some checks like bytenr check will be skipped as their values will be
2740 * overwritten soon.
2741 * Extra checks like csum type and incompat flags will be done here.
2742 */
2743static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2744 struct btrfs_super_block *sb)
2745{
2746 int ret;
2747
a05d3c91 2748 ret = btrfs_validate_super(fs_info, sb, -1);
75cb857d
QW
2749 if (ret < 0)
2750 goto out;
e7e16f48 2751 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2752 ret = -EUCLEAN;
2753 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2754 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2755 goto out;
2756 }
2757 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2758 ret = -EUCLEAN;
2759 btrfs_err(fs_info,
2760 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2761 btrfs_super_incompat_flags(sb),
2762 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2763 goto out;
2764 }
2765out:
2766 if (ret < 0)
2767 btrfs_err(fs_info,
2768 "super block corruption detected before writing it to disk");
2769 return ret;
2770}
2771
bd676446
JB
2772static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2773{
789d6a3a
QW
2774 struct btrfs_tree_parent_check check = {
2775 .level = level,
2776 .transid = gen,
2777 .owner_root = root->root_key.objectid
2778 };
bd676446
JB
2779 int ret = 0;
2780
789d6a3a 2781 root->node = read_tree_block(root->fs_info, bytenr, &check);
bd676446
JB
2782 if (IS_ERR(root->node)) {
2783 ret = PTR_ERR(root->node);
2784 root->node = NULL;
4eb150d6
QW
2785 return ret;
2786 }
2787 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2788 free_extent_buffer(root->node);
2789 root->node = NULL;
4eb150d6 2790 return -EIO;
bd676446
JB
2791 }
2792
bd676446
JB
2793 btrfs_set_root_node(&root->root_item, root->node);
2794 root->commit_root = btrfs_root_node(root);
2795 btrfs_set_root_refs(&root->root_item, 1);
2796 return ret;
2797}
2798
2799static int load_important_roots(struct btrfs_fs_info *fs_info)
2800{
2801 struct btrfs_super_block *sb = fs_info->super_copy;
2802 u64 gen, bytenr;
2803 int level, ret;
2804
2805 bytenr = btrfs_super_root(sb);
2806 gen = btrfs_super_generation(sb);
2807 level = btrfs_super_root_level(sb);
2808 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2809 if (ret) {
bd676446 2810 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2811 return ret;
2812 }
14033b08 2813 return 0;
bd676446
JB
2814}
2815
6ef108dd 2816static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2817{
6ef108dd 2818 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2819 struct btrfs_super_block *sb = fs_info->super_copy;
2820 struct btrfs_root *tree_root = fs_info->tree_root;
2821 bool handle_error = false;
2822 int ret = 0;
2823 int i;
2824
2825 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2826 if (handle_error) {
2827 if (!IS_ERR(tree_root->node))
2828 free_extent_buffer(tree_root->node);
2829 tree_root->node = NULL;
2830
2831 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2832 break;
2833
2834 free_root_pointers(fs_info, 0);
2835
2836 /*
2837 * Don't use the log in recovery mode, it won't be
2838 * valid
2839 */
2840 btrfs_set_super_log_root(sb, 0);
2841
2842 /* We can't trust the free space cache either */
2843 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2844
2845 ret = read_backup_root(fs_info, i);
6ef108dd 2846 backup_index = ret;
b8522a1e
NB
2847 if (ret < 0)
2848 return ret;
2849 }
b8522a1e 2850
bd676446
JB
2851 ret = load_important_roots(fs_info);
2852 if (ret) {
217f5004 2853 handle_error = true;
b8522a1e
NB
2854 continue;
2855 }
2856
336a0d8d
NB
2857 /*
2858 * No need to hold btrfs_root::objectid_mutex since the fs
2859 * hasn't been fully initialised and we are the only user
2860 */
453e4873 2861 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2862 if (ret < 0) {
b8522a1e
NB
2863 handle_error = true;
2864 continue;
2865 }
2866
6b8fad57 2867 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2868
2869 ret = btrfs_read_roots(fs_info);
2870 if (ret < 0) {
2871 handle_error = true;
2872 continue;
2873 }
2874
2875 /* All successful */
bd676446
JB
2876 fs_info->generation = btrfs_header_generation(tree_root->node);
2877 fs_info->last_trans_committed = fs_info->generation;
d96b3424 2878 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2879
2880 /* Always begin writing backup roots after the one being used */
2881 if (backup_index < 0) {
2882 fs_info->backup_root_index = 0;
2883 } else {
2884 fs_info->backup_root_index = backup_index + 1;
2885 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2886 }
b8522a1e
NB
2887 break;
2888 }
2889
2890 return ret;
2891}
2892
8260edba 2893void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2894{
fc7cbcd4 2895 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2896 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2897 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2898 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2899 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2900 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2901 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2902 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2903 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2904 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2905 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2906 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2907 spin_lock_init(&fs_info->super_lock);
f28491e0 2908 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2909 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2910 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2911 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2912 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2913 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2914 rwlock_init(&fs_info->global_root_lock);
d7c15171 2915 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2916 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2917 mutex_init(&fs_info->reloc_mutex);
573bfb72 2918 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2919 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 2920 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 2921 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2922
e1489b4f 2923 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 2924 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 2925 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 2926 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3e738c53
IA
2927 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2928 BTRFS_LOCKDEP_TRANS_COMMIT_START);
2929 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2930 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2931 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2932 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2933 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2934 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 2935
0b86a832 2936 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2937 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2938 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2939 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 2940 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 2941 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
2942#ifdef CONFIG_BTRFS_DEBUG
2943 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2944 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2945 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2946#endif
c8bf1b67 2947 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2948 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2949 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2950 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2951 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2952 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2953 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2954 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2955 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2956 BTRFS_BLOCK_RSV_DELREFS);
2957
771ed689 2958 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2959 atomic_set(&fs_info->defrag_running, 0);
034f784d 2960 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2961 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 2962 fs_info->global_root_tree = RB_ROOT;
95ac567a 2963 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2964 fs_info->metadata_ratio = 0;
4cb5300b 2965 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2966 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2967 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2968 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2969 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
fd708b81 2970 btrfs_init_ref_verify(fs_info);
c8b97818 2971
b34b086c
CM
2972 fs_info->thread_pool_size = min_t(unsigned long,
2973 num_online_cpus() + 2, 8);
0afbaf8c 2974
199c2a9c
MX
2975 INIT_LIST_HEAD(&fs_info->ordered_roots);
2976 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2977
638aa7ed 2978 btrfs_init_scrub(fs_info);
21adbd5c
SB
2979#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2980 fs_info->check_integrity_print_mask = 0;
2981#endif
779a65a4 2982 btrfs_init_balance(fs_info);
57056740 2983 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2984
16b0c258 2985 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 2986 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 2987
fe119a6e 2988 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
35da5a7e 2989 IO_TREE_FS_EXCLUDED_EXTENTS);
39279cc3 2990
5a3f23d5 2991 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2992 mutex_init(&fs_info->tree_log_mutex);
925baedd 2993 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2994 mutex_init(&fs_info->transaction_kthread_mutex);
2995 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2996 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2997 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2998 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2999 init_rwsem(&fs_info->subvol_sem);
803b2f54 3000 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 3001
ad618368 3002 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 3003 btrfs_init_qgroup(fs_info);
b0643e59 3004 btrfs_discard_init(fs_info);
416ac51d 3005
fa9c0d79
CM
3006 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3007 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3008
e6dcd2dc 3009 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 3010 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 3011 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 3012 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 3013 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3014
da17066c
JM
3015 /* Usable values until the real ones are cached from the superblock */
3016 fs_info->nodesize = 4096;
3017 fs_info->sectorsize = 4096;
ab108d99 3018 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3019 fs_info->stripesize = 4096;
3020
f7b12a62
NA
3021 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3022
eede2bf3
OS
3023 spin_lock_init(&fs_info->swapfile_pins_lock);
3024 fs_info->swapfile_pins = RB_ROOT;
3025
18bb8bbf
JT
3026 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3027 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3028}
3029
3030static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3031{
3032 int ret;
3033
3034 fs_info->sb = sb;
3035 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3036 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3037
5deb17e1 3038 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3039 if (ret)
c75e8394 3040 return ret;
ae18c37a
JB
3041
3042 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3043 if (ret)
c75e8394 3044 return ret;
ae18c37a
JB
3045
3046 fs_info->dirty_metadata_batch = PAGE_SIZE *
3047 (1 + ilog2(nr_cpu_ids));
3048
3049 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3050 if (ret)
c75e8394 3051 return ret;
ae18c37a
JB
3052
3053 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3054 GFP_KERNEL);
3055 if (ret)
c75e8394 3056 return ret;
ae18c37a
JB
3057
3058 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3059 GFP_KERNEL);
c75e8394
JB
3060 if (!fs_info->delayed_root)
3061 return -ENOMEM;
ae18c37a
JB
3062 btrfs_init_delayed_root(fs_info->delayed_root);
3063
a0a1db70
FM
3064 if (sb_rdonly(sb))
3065 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3066
c75e8394 3067 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3068}
3069
97f4dd09
NB
3070static int btrfs_uuid_rescan_kthread(void *data)
3071{
0d031dc4 3072 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
3073 int ret;
3074
3075 /*
3076 * 1st step is to iterate through the existing UUID tree and
3077 * to delete all entries that contain outdated data.
3078 * 2nd step is to add all missing entries to the UUID tree.
3079 */
3080 ret = btrfs_uuid_tree_iterate(fs_info);
3081 if (ret < 0) {
c94bec2c
JB
3082 if (ret != -EINTR)
3083 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3084 ret);
97f4dd09
NB
3085 up(&fs_info->uuid_tree_rescan_sem);
3086 return ret;
3087 }
3088 return btrfs_uuid_scan_kthread(data);
3089}
3090
3091static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3092{
3093 struct task_struct *task;
3094
3095 down(&fs_info->uuid_tree_rescan_sem);
3096 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3097 if (IS_ERR(task)) {
3098 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3099 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3100 up(&fs_info->uuid_tree_rescan_sem);
3101 return PTR_ERR(task);
3102 }
3103
3104 return 0;
3105}
3106
8cd29088
BB
3107/*
3108 * Some options only have meaning at mount time and shouldn't persist across
3109 * remounts, or be displayed. Clear these at the end of mount and remount
3110 * code paths.
3111 */
3112void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3113{
3114 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3115 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3116}
3117
44c0ca21
BB
3118/*
3119 * Mounting logic specific to read-write file systems. Shared by open_ctree
3120 * and btrfs_remount when remounting from read-only to read-write.
3121 */
3122int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3123{
3124 int ret;
94846229 3125 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3126 bool clear_free_space_tree = false;
3127
3128 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3129 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3130 clear_free_space_tree = true;
3131 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3132 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3133 btrfs_warn(fs_info, "free space tree is invalid");
3134 clear_free_space_tree = true;
3135 }
3136
3137 if (clear_free_space_tree) {
3138 btrfs_info(fs_info, "clearing free space tree");
3139 ret = btrfs_clear_free_space_tree(fs_info);
3140 if (ret) {
3141 btrfs_warn(fs_info,
3142 "failed to clear free space tree: %d", ret);
3143 goto out;
3144 }
3145 }
44c0ca21 3146
8d488a8c
FM
3147 /*
3148 * btrfs_find_orphan_roots() is responsible for finding all the dead
3149 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3150 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3151 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3152 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3153 * item before the root's tree is deleted - this means that if we unmount
3154 * or crash before the deletion completes, on the next mount we will not
3155 * delete what remains of the tree because the orphan item does not
3156 * exists anymore, which is what tells us we have a pending deletion.
3157 */
3158 ret = btrfs_find_orphan_roots(fs_info);
3159 if (ret)
3160 goto out;
3161
44c0ca21
BB
3162 ret = btrfs_cleanup_fs_roots(fs_info);
3163 if (ret)
3164 goto out;
3165
8f1c21d7
BB
3166 down_read(&fs_info->cleanup_work_sem);
3167 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3168 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3169 up_read(&fs_info->cleanup_work_sem);
3170 goto out;
3171 }
3172 up_read(&fs_info->cleanup_work_sem);
3173
44c0ca21 3174 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3175 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3176 mutex_unlock(&fs_info->cleaner_mutex);
3177 if (ret < 0) {
3178 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3179 goto out;
3180 }
3181
5011139a
BB
3182 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3183 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3184 btrfs_info(fs_info, "creating free space tree");
3185 ret = btrfs_create_free_space_tree(fs_info);
3186 if (ret) {
3187 btrfs_warn(fs_info,
3188 "failed to create free space tree: %d", ret);
3189 goto out;
3190 }
3191 }
3192
94846229
BB
3193 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3194 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3195 if (ret)
3196 goto out;
3197 }
3198
44c0ca21
BB
3199 ret = btrfs_resume_balance_async(fs_info);
3200 if (ret)
3201 goto out;
3202
3203 ret = btrfs_resume_dev_replace_async(fs_info);
3204 if (ret) {
3205 btrfs_warn(fs_info, "failed to resume dev_replace");
3206 goto out;
3207 }
3208
3209 btrfs_qgroup_rescan_resume(fs_info);
3210
3211 if (!fs_info->uuid_root) {
3212 btrfs_info(fs_info, "creating UUID tree");
3213 ret = btrfs_create_uuid_tree(fs_info);
3214 if (ret) {
3215 btrfs_warn(fs_info,
3216 "failed to create the UUID tree %d", ret);
3217 goto out;
3218 }
3219 }
3220
3221out:
3222 return ret;
3223}
3224
d7f67ac9
QW
3225/*
3226 * Do various sanity and dependency checks of different features.
3227 *
2ba48b20
QW
3228 * @is_rw_mount: If the mount is read-write.
3229 *
d7f67ac9
QW
3230 * This is the place for less strict checks (like for subpage or artificial
3231 * feature dependencies).
3232 *
3233 * For strict checks or possible corruption detection, see
3234 * btrfs_validate_super().
3235 *
3236 * This should be called after btrfs_parse_options(), as some mount options
3237 * (space cache related) can modify on-disk format like free space tree and
3238 * screw up certain feature dependencies.
3239 */
2ba48b20 3240int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
d7f67ac9
QW
3241{
3242 struct btrfs_super_block *disk_super = fs_info->super_copy;
3243 u64 incompat = btrfs_super_incompat_flags(disk_super);
3244 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3245 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3246
3247 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3248 btrfs_err(fs_info,
3249 "cannot mount because of unknown incompat features (0x%llx)",
3250 incompat);
3251 return -EINVAL;
3252 }
3253
3254 /* Runtime limitation for mixed block groups. */
3255 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3256 (fs_info->sectorsize != fs_info->nodesize)) {
3257 btrfs_err(fs_info,
3258"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3259 fs_info->nodesize, fs_info->sectorsize);
3260 return -EINVAL;
3261 }
3262
3263 /* Mixed backref is an always-enabled feature. */
3264 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3265
3266 /* Set compression related flags just in case. */
3267 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3268 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3269 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3270 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3271
3272 /*
3273 * An ancient flag, which should really be marked deprecated.
3274 * Such runtime limitation doesn't really need a incompat flag.
3275 */
3276 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3277 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3278
2ba48b20 3279 if (compat_ro_unsupp && is_rw_mount) {
d7f67ac9
QW
3280 btrfs_err(fs_info,
3281 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3282 compat_ro);
3283 return -EINVAL;
3284 }
3285
3286 /*
3287 * We have unsupported RO compat features, although RO mounted, we
3288 * should not cause any metadata writes, including log replay.
3289 * Or we could screw up whatever the new feature requires.
3290 */
3291 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3292 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3293 btrfs_err(fs_info,
3294"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3295 compat_ro);
3296 return -EINVAL;
3297 }
3298
3299 /*
3300 * Artificial limitations for block group tree, to force
3301 * block-group-tree to rely on no-holes and free-space-tree.
3302 */
3303 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3304 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3305 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3306 btrfs_err(fs_info,
3307"block-group-tree feature requires no-holes and free-space-tree features");
3308 return -EINVAL;
3309 }
3310
3311 /*
3312 * Subpage runtime limitation on v1 cache.
3313 *
3314 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3315 * we're already defaulting to v2 cache, no need to bother v1 as it's
3316 * going to be deprecated anyway.
3317 */
3318 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3319 btrfs_warn(fs_info,
3320 "v1 space cache is not supported for page size %lu with sectorsize %u",
3321 PAGE_SIZE, fs_info->sectorsize);
3322 return -EINVAL;
3323 }
3324
3325 /* This can be called by remount, we need to protect the super block. */
3326 spin_lock(&fs_info->super_lock);
3327 btrfs_set_super_incompat_flags(disk_super, incompat);
3328 spin_unlock(&fs_info->super_lock);
3329
3330 return 0;
3331}
3332
ae18c37a
JB
3333int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3334 char *options)
3335{
3336 u32 sectorsize;
3337 u32 nodesize;
3338 u32 stripesize;
3339 u64 generation;
3340 u64 features;
3341 u16 csum_type;
ae18c37a
JB
3342 struct btrfs_super_block *disk_super;
3343 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3344 struct btrfs_root *tree_root;
3345 struct btrfs_root *chunk_root;
3346 int ret;
3347 int err = -EINVAL;
ae18c37a
JB
3348 int level;
3349
8260edba 3350 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3351 if (ret) {
83c8266a 3352 err = ret;
ae18c37a 3353 goto fail;
53b381b3
DW
3354 }
3355
ae18c37a
JB
3356 /* These need to be init'ed before we start creating inodes and such. */
3357 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3358 GFP_KERNEL);
3359 fs_info->tree_root = tree_root;
3360 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3361 GFP_KERNEL);
3362 fs_info->chunk_root = chunk_root;
3363 if (!tree_root || !chunk_root) {
3364 err = -ENOMEM;
c75e8394 3365 goto fail;
ae18c37a
JB
3366 }
3367
3368 fs_info->btree_inode = new_inode(sb);
3369 if (!fs_info->btree_inode) {
3370 err = -ENOMEM;
c75e8394 3371 goto fail;
ae18c37a
JB
3372 }
3373 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3374 btrfs_init_btree_inode(fs_info);
3375
d24fa5c1 3376 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3377
3378 /*
3379 * Read super block and check the signature bytes only
3380 */
d24fa5c1 3381 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3382 if (IS_ERR(disk_super)) {
3383 err = PTR_ERR(disk_super);
16cdcec7 3384 goto fail_alloc;
20b45077 3385 }
39279cc3 3386
8dc3f22c 3387 /*
260db43c 3388 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3389 * corrupted, we'll find out
3390 */
8f32380d 3391 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3392 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3393 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3394 csum_type);
8dc3f22c 3395 err = -EINVAL;
8f32380d 3396 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3397 goto fail_alloc;
3398 }
3399
83c68bbc
SY
3400 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3401
6d97c6e3
JT
3402 ret = btrfs_init_csum_hash(fs_info, csum_type);
3403 if (ret) {
3404 err = ret;
8f32380d 3405 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3406 goto fail_alloc;
3407 }
3408
1104a885
DS
3409 /*
3410 * We want to check superblock checksum, the type is stored inside.
3411 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3412 */
3d17adea 3413 if (btrfs_check_super_csum(fs_info, disk_super)) {
05135f59 3414 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3415 err = -EINVAL;
8f32380d 3416 btrfs_release_disk_super(disk_super);
141386e1 3417 goto fail_alloc;
1104a885
DS
3418 }
3419
3420 /*
3421 * super_copy is zeroed at allocation time and we never touch the
3422 * following bytes up to INFO_SIZE, the checksum is calculated from
3423 * the whole block of INFO_SIZE
3424 */
8f32380d
JT
3425 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3426 btrfs_release_disk_super(disk_super);
5f39d397 3427
fbc6feae
NB
3428 disk_super = fs_info->super_copy;
3429
0b86a832 3430
fbc6feae
NB
3431 features = btrfs_super_flags(disk_super);
3432 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3433 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3434 btrfs_set_super_flags(disk_super, features);
3435 btrfs_info(fs_info,
3436 "found metadata UUID change in progress flag, clearing");
3437 }
3438
3439 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3440 sizeof(*fs_info->super_for_commit));
de37aa51 3441
069ec957 3442 ret = btrfs_validate_mount_super(fs_info);
1104a885 3443 if (ret) {
05135f59 3444 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3445 err = -EINVAL;
141386e1 3446 goto fail_alloc;
1104a885
DS
3447 }
3448
0f7d52f4 3449 if (!btrfs_super_root(disk_super))
141386e1 3450 goto fail_alloc;
0f7d52f4 3451
acce952b 3452 /* check FS state, whether FS is broken. */
87533c47
MX
3453 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3454 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3455
75e7cb7f
LB
3456 /*
3457 * In the long term, we'll store the compression type in the super
3458 * block, and it'll be used for per file compression control.
3459 */
3460 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3461
6f93e834
AJ
3462
3463 /* Set up fs_info before parsing mount options */
3464 nodesize = btrfs_super_nodesize(disk_super);
3465 sectorsize = btrfs_super_sectorsize(disk_super);
3466 stripesize = sectorsize;
3467 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3468 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3469
3470 fs_info->nodesize = nodesize;
3471 fs_info->sectorsize = sectorsize;
3472 fs_info->sectorsize_bits = ilog2(sectorsize);
3473 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3474 fs_info->stripesize = stripesize;
3475
2ff7e61e 3476 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3477 if (ret) {
3478 err = ret;
141386e1 3479 goto fail_alloc;
2b82032c 3480 }
dfe25020 3481
2ba48b20 3482 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
d7f67ac9
QW
3483 if (ret < 0) {
3484 err = ret;
dc4d3168
QW
3485 goto fail_alloc;
3486 }
3487
8481dd80
QW
3488 if (sectorsize < PAGE_SIZE) {
3489 struct btrfs_subpage_info *subpage_info;
3490
9f73f1ae
QW
3491 /*
3492 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3493 * going to be deprecated.
3494 *
3495 * Force to use v2 cache for subpage case.
3496 */
3497 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3498 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3499 "forcing free space tree for sector size %u with page size %lu",
3500 sectorsize, PAGE_SIZE);
3501
95ea0486
QW
3502 btrfs_warn(fs_info,
3503 "read-write for sector size %u with page size %lu is experimental",
3504 sectorsize, PAGE_SIZE);
8481dd80
QW
3505 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3506 if (!subpage_info)
3507 goto fail_alloc;
3508 btrfs_init_subpage_info(subpage_info, sectorsize);
3509 fs_info->subpage_info = subpage_info;
c8050b3b 3510 }
0bb3eb3e 3511
d21deec5 3512 ret = btrfs_init_workqueues(fs_info);
2a458198
ES
3513 if (ret) {
3514 err = ret;
0dc3b84a
JB
3515 goto fail_sb_buffer;
3516 }
4543df7e 3517
9e11ceee
JK
3518 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3519 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3520
a061fc8d
CM
3521 sb->s_blocksize = sectorsize;
3522 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3523 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3524
925baedd 3525 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3526 ret = btrfs_read_sys_array(fs_info);
925baedd 3527 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3528 if (ret) {
05135f59 3529 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3530 goto fail_sb_buffer;
84eed90f 3531 }
0b86a832 3532
84234f3a 3533 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3534 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3535 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3536 generation, level);
3537 if (ret) {
05135f59 3538 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3539 goto fail_tree_roots;
83121942 3540 }
0b86a832 3541
e17cade2 3542 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3543 offsetof(struct btrfs_header, chunk_tree_uuid),
3544 BTRFS_UUID_SIZE);
e17cade2 3545
5b4aacef 3546 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3547 if (ret) {
05135f59 3548 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3549 goto fail_tree_roots;
2b82032c 3550 }
0b86a832 3551
8dabb742 3552 /*
bacce86a
AJ
3553 * At this point we know all the devices that make this filesystem,
3554 * including the seed devices but we don't know yet if the replace
3555 * target is required. So free devices that are not part of this
1a9fd417 3556 * filesystem but skip the replace target device which is checked
bacce86a 3557 * below in btrfs_init_dev_replace().
8dabb742 3558 */
bacce86a 3559 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3560 if (!fs_devices->latest_dev->bdev) {
05135f59 3561 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3562 goto fail_tree_roots;
3563 }
3564
b8522a1e 3565 ret = init_tree_roots(fs_info);
4bbcaa64 3566 if (ret)
b8522a1e 3567 goto fail_tree_roots;
8929ecfa 3568
73651042
NA
3569 /*
3570 * Get zone type information of zoned block devices. This will also
3571 * handle emulation of a zoned filesystem if a regular device has the
3572 * zoned incompat feature flag set.
3573 */
3574 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3575 if (ret) {
3576 btrfs_err(fs_info,
3577 "zoned: failed to read device zone info: %d",
3578 ret);
3579 goto fail_block_groups;
3580 }
3581
75ec1db8
JB
3582 /*
3583 * If we have a uuid root and we're not being told to rescan we need to
3584 * check the generation here so we can set the
3585 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3586 * transaction during a balance or the log replay without updating the
3587 * uuid generation, and then if we crash we would rescan the uuid tree,
3588 * even though it was perfectly fine.
3589 */
3590 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3591 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3592 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3593
cf90d884
QW
3594 ret = btrfs_verify_dev_extents(fs_info);
3595 if (ret) {
3596 btrfs_err(fs_info,
3597 "failed to verify dev extents against chunks: %d",
3598 ret);
3599 goto fail_block_groups;
3600 }
68310a5e
ID
3601 ret = btrfs_recover_balance(fs_info);
3602 if (ret) {
05135f59 3603 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3604 goto fail_block_groups;
3605 }
3606
733f4fbb
SB
3607 ret = btrfs_init_dev_stats(fs_info);
3608 if (ret) {
05135f59 3609 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3610 goto fail_block_groups;
3611 }
3612
8dabb742
SB
3613 ret = btrfs_init_dev_replace(fs_info);
3614 if (ret) {
05135f59 3615 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3616 goto fail_block_groups;
3617 }
3618
b70f5097
NA
3619 ret = btrfs_check_zoned_mode(fs_info);
3620 if (ret) {
3621 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3622 ret);
3623 goto fail_block_groups;
3624 }
3625
c6761a9e 3626 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3627 if (ret) {
05135f59
DS
3628 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3629 ret);
b7c35e81
AJ
3630 goto fail_block_groups;
3631 }
3632
96f3136e 3633 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3634 if (ret) {
05135f59 3635 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3636 goto fail_fsdev_sysfs;
c59021f8 3637 }
3638
c59021f8 3639 ret = btrfs_init_space_info(fs_info);
3640 if (ret) {
05135f59 3641 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3642 goto fail_sysfs;
c59021f8 3643 }
3644
5b4aacef 3645 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3646 if (ret) {
05135f59 3647 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3648 goto fail_sysfs;
1b1d1f66 3649 }
4330e183 3650
16beac87
NA
3651 btrfs_free_zone_cache(fs_info);
3652
5c78a5e7
AJ
3653 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3654 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3655 btrfs_warn(fs_info,
52042d8e 3656 "writable mount is not allowed due to too many missing devices");
2365dd3c 3657 goto fail_sysfs;
292fd7fc 3658 }
9078a3e1 3659
33c44184 3660 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3661 "btrfs-cleaner");
57506d50 3662 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3663 goto fail_sysfs;
a74a4b97
CM
3664
3665 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3666 tree_root,
3667 "btrfs-transaction");
57506d50 3668 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3669 goto fail_cleaner;
a74a4b97 3670
583b7231 3671 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3672 !fs_info->fs_devices->rotating) {
583b7231 3673 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3674 }
3675
63a7cb13
DS
3676 /*
3677 * For devices supporting discard turn on discard=async automatically,
3678 * unless it's already set or disabled. This could be turned off by
3679 * nodiscard for the same mount.
3680 */
3681 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3682 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3683 btrfs_test_opt(fs_info, NODISCARD)) &&
3684 fs_info->fs_devices->discardable) {
3685 btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3686 "auto enabling async discard");
3687 btrfs_clear_opt(fs_info->mount_opt, NODISCARD);
3688 }
3689
21adbd5c 3690#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3691 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3692 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3693 btrfs_test_opt(fs_info,
cbeaae4f 3694 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3695 fs_info->check_integrity_print_mask);
3696 if (ret)
05135f59
DS
3697 btrfs_warn(fs_info,
3698 "failed to initialize integrity check module: %d",
3699 ret);
21adbd5c
SB
3700 }
3701#endif
bcef60f2
AJ
3702 ret = btrfs_read_qgroup_config(fs_info);
3703 if (ret)
3704 goto fail_trans_kthread;
21adbd5c 3705
fd708b81
JB
3706 if (btrfs_build_ref_tree(fs_info))
3707 btrfs_err(fs_info, "couldn't build ref tree");
3708
96da0919
QW
3709 /* do not make disk changes in broken FS or nologreplay is given */
3710 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3711 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3712 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3713 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3714 if (ret) {
63443bf5 3715 err = ret;
28c16cbb 3716 goto fail_qgroup;
79787eaa 3717 }
e02119d5 3718 }
1a40e23b 3719
56e9357a 3720 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3721 if (IS_ERR(fs_info->fs_root)) {
3722 err = PTR_ERR(fs_info->fs_root);
f50f4353 3723 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3724 fs_info->fs_root = NULL;
bcef60f2 3725 goto fail_qgroup;
3140c9a3 3726 }
c289811c 3727
bc98a42c 3728 if (sb_rdonly(sb))
8cd29088 3729 goto clear_oneshot;
59641015 3730
44c0ca21 3731 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3732 if (ret) {
6bccf3ab 3733 close_ctree(fs_info);
2b6ba629 3734 return ret;
e3acc2a6 3735 }
b0643e59 3736 btrfs_discard_resume(fs_info);
b382a324 3737
44c0ca21
BB
3738 if (fs_info->uuid_root &&
3739 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3740 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3741 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3742 ret = btrfs_check_uuid_tree(fs_info);
3743 if (ret) {
05135f59
DS
3744 btrfs_warn(fs_info,
3745 "failed to check the UUID tree: %d", ret);
6bccf3ab 3746 close_ctree(fs_info);
70f80175
SB
3747 return ret;
3748 }
f7a81ea4 3749 }
94846229 3750
afcdd129 3751 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3752
b4be6aef
JB
3753 /* Kick the cleaner thread so it'll start deleting snapshots. */
3754 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3755 wake_up_process(fs_info->cleaner_kthread);
3756
8cd29088
BB
3757clear_oneshot:
3758 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3759 return 0;
39279cc3 3760
bcef60f2
AJ
3761fail_qgroup:
3762 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3763fail_trans_kthread:
3764 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3765 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3766 btrfs_free_fs_roots(fs_info);
3f157a2f 3767fail_cleaner:
a74a4b97 3768 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3769
3770 /*
3771 * make sure we're done with the btree inode before we stop our
3772 * kthreads
3773 */
3774 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3775
2365dd3c 3776fail_sysfs:
6618a59b 3777 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3778
b7c35e81
AJ
3779fail_fsdev_sysfs:
3780 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3781
1b1d1f66 3782fail_block_groups:
54067ae9 3783 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3784
3785fail_tree_roots:
9e3aa805
JB
3786 if (fs_info->data_reloc_root)
3787 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3788 free_root_pointers(fs_info, true);
2b8195bb 3789 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3790
39279cc3 3791fail_sb_buffer:
7abadb64 3792 btrfs_stop_all_workers(fs_info);
5cdd7db6 3793 btrfs_free_block_groups(fs_info);
16cdcec7 3794fail_alloc:
586e46e2
ID
3795 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3796
4543df7e 3797 iput(fs_info->btree_inode);
7e662854 3798fail:
586e46e2 3799 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3800 return err;
eb60ceac 3801}
663faf9f 3802ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3803
314b6dd0 3804static void btrfs_end_super_write(struct bio *bio)
f2984462 3805{
314b6dd0
JT
3806 struct btrfs_device *device = bio->bi_private;
3807 struct bio_vec *bvec;
3808 struct bvec_iter_all iter_all;
3809 struct page *page;
3810
3811 bio_for_each_segment_all(bvec, bio, iter_all) {
3812 page = bvec->bv_page;
3813
3814 if (bio->bi_status) {
3815 btrfs_warn_rl_in_rcu(device->fs_info,
3816 "lost page write due to IO error on %s (%d)",
cb3e217b 3817 btrfs_dev_name(device),
314b6dd0
JT
3818 blk_status_to_errno(bio->bi_status));
3819 ClearPageUptodate(page);
3820 SetPageError(page);
3821 btrfs_dev_stat_inc_and_print(device,
3822 BTRFS_DEV_STAT_WRITE_ERRS);
3823 } else {
3824 SetPageUptodate(page);
3825 }
3826
3827 put_page(page);
3828 unlock_page(page);
f2984462 3829 }
314b6dd0
JT
3830
3831 bio_put(bio);
f2984462
CM
3832}
3833
8f32380d 3834struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
a05d3c91 3835 int copy_num, bool drop_cache)
29c36d72 3836{
29c36d72 3837 struct btrfs_super_block *super;
8f32380d 3838 struct page *page;
12659251 3839 u64 bytenr, bytenr_orig;
8f32380d 3840 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3841 int ret;
3842
3843 bytenr_orig = btrfs_sb_offset(copy_num);
3844 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3845 if (ret == -ENOENT)
3846 return ERR_PTR(-EINVAL);
3847 else if (ret)
3848 return ERR_PTR(ret);
29c36d72 3849
cda00eba 3850 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3851 return ERR_PTR(-EINVAL);
29c36d72 3852
a05d3c91
QW
3853 if (drop_cache) {
3854 /* This should only be called with the primary sb. */
3855 ASSERT(copy_num == 0);
3856
3857 /*
3858 * Drop the page of the primary superblock, so later read will
3859 * always read from the device.
3860 */
3861 invalidate_inode_pages2_range(mapping,
3862 bytenr >> PAGE_SHIFT,
3863 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3864 }
3865
8f32380d
JT
3866 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3867 if (IS_ERR(page))
3868 return ERR_CAST(page);
29c36d72 3869
8f32380d 3870 super = page_address(page);
96c2e067
AJ
3871 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3872 btrfs_release_disk_super(super);
3873 return ERR_PTR(-ENODATA);
3874 }
3875
12659251 3876 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3877 btrfs_release_disk_super(super);
3878 return ERR_PTR(-EINVAL);
29c36d72
AJ
3879 }
3880
8f32380d 3881 return super;
29c36d72
AJ
3882}
3883
3884
8f32380d 3885struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3886{
8f32380d 3887 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3888 int i;
3889 u64 transid = 0;
a512bbf8
YZ
3890
3891 /* we would like to check all the supers, but that would make
3892 * a btrfs mount succeed after a mkfs from a different FS.
3893 * So, we need to add a special mount option to scan for
3894 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3895 */
3896 for (i = 0; i < 1; i++) {
a05d3c91 3897 super = btrfs_read_dev_one_super(bdev, i, false);
8f32380d 3898 if (IS_ERR(super))
a512bbf8
YZ
3899 continue;
3900
a512bbf8 3901 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3902 if (latest)
3903 btrfs_release_disk_super(super);
3904
3905 latest = super;
a512bbf8 3906 transid = btrfs_super_generation(super);
a512bbf8
YZ
3907 }
3908 }
92fc03fb 3909
8f32380d 3910 return super;
a512bbf8
YZ
3911}
3912
4eedeb75 3913/*
abbb3b8e 3914 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3915 * pages we use for writing are locked.
4eedeb75 3916 *
abbb3b8e
DS
3917 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3918 * the expected device size at commit time. Note that max_mirrors must be
3919 * same for write and wait phases.
4eedeb75 3920 *
314b6dd0 3921 * Return number of errors when page is not found or submission fails.
4eedeb75 3922 */
a512bbf8 3923static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3924 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3925{
d5178578 3926 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3927 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3928 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3929 int i;
a512bbf8 3930 int errors = 0;
12659251
NA
3931 int ret;
3932 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3933
3934 if (max_mirrors == 0)
3935 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3936
d5178578
JT
3937 shash->tfm = fs_info->csum_shash;
3938
a512bbf8 3939 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3940 struct page *page;
3941 struct bio *bio;
3942 struct btrfs_super_block *disk_super;
3943
12659251
NA
3944 bytenr_orig = btrfs_sb_offset(i);
3945 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3946 if (ret == -ENOENT) {
3947 continue;
3948 } else if (ret < 0) {
3949 btrfs_err(device->fs_info,
3950 "couldn't get super block location for mirror %d",
3951 i);
3952 errors++;
3953 continue;
3954 }
935e5cc9
MX
3955 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3956 device->commit_total_bytes)
a512bbf8
YZ
3957 break;
3958
12659251 3959 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3960
fd08001f
EB
3961 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3962 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3963 sb->csum);
4eedeb75 3964
314b6dd0
JT
3965 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3966 GFP_NOFS);
3967 if (!page) {
abbb3b8e 3968 btrfs_err(device->fs_info,
314b6dd0 3969 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3970 bytenr);
3971 errors++;
4eedeb75 3972 continue;
abbb3b8e 3973 }
634554dc 3974
314b6dd0
JT
3975 /* Bump the refcount for wait_dev_supers() */
3976 get_page(page);
a512bbf8 3977
314b6dd0
JT
3978 disk_super = page_address(page);
3979 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3980
314b6dd0
JT
3981 /*
3982 * Directly use bios here instead of relying on the page cache
3983 * to do I/O, so we don't lose the ability to do integrity
3984 * checking.
3985 */
07888c66
CH
3986 bio = bio_alloc(device->bdev, 1,
3987 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3988 GFP_NOFS);
314b6dd0
JT
3989 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3990 bio->bi_private = device;
3991 bio->bi_end_io = btrfs_end_super_write;
3992 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3993 offset_in_page(bytenr));
a512bbf8 3994
387125fc 3995 /*
314b6dd0
JT
3996 * We FUA only the first super block. The others we allow to
3997 * go down lazy and there's a short window where the on-disk
3998 * copies might still contain the older version.
387125fc 3999 */
1b9e619c 4000 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
4001 bio->bi_opf |= REQ_FUA;
4002
58ff51f1
CH
4003 btrfsic_check_bio(bio);
4004 submit_bio(bio);
8376d9e1
NA
4005
4006 if (btrfs_advance_sb_log(device, i))
4007 errors++;
a512bbf8
YZ
4008 }
4009 return errors < i ? 0 : -1;
4010}
4011
abbb3b8e
DS
4012/*
4013 * Wait for write completion of superblocks done by write_dev_supers,
4014 * @max_mirrors same for write and wait phases.
4015 *
314b6dd0 4016 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
4017 * date.
4018 */
4019static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4020{
abbb3b8e
DS
4021 int i;
4022 int errors = 0;
b6a535fa 4023 bool primary_failed = false;
12659251 4024 int ret;
abbb3b8e
DS
4025 u64 bytenr;
4026
4027 if (max_mirrors == 0)
4028 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4029
4030 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4031 struct page *page;
4032
12659251
NA
4033 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4034 if (ret == -ENOENT) {
4035 break;
4036 } else if (ret < 0) {
4037 errors++;
4038 if (i == 0)
4039 primary_failed = true;
4040 continue;
4041 }
abbb3b8e
DS
4042 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4043 device->commit_total_bytes)
4044 break;
4045
314b6dd0
JT
4046 page = find_get_page(device->bdev->bd_inode->i_mapping,
4047 bytenr >> PAGE_SHIFT);
4048 if (!page) {
abbb3b8e 4049 errors++;
b6a535fa
HM
4050 if (i == 0)
4051 primary_failed = true;
abbb3b8e
DS
4052 continue;
4053 }
314b6dd0
JT
4054 /* Page is submitted locked and unlocked once the IO completes */
4055 wait_on_page_locked(page);
4056 if (PageError(page)) {
abbb3b8e 4057 errors++;
b6a535fa
HM
4058 if (i == 0)
4059 primary_failed = true;
4060 }
abbb3b8e 4061
314b6dd0
JT
4062 /* Drop our reference */
4063 put_page(page);
abbb3b8e 4064
314b6dd0
JT
4065 /* Drop the reference from the writing run */
4066 put_page(page);
abbb3b8e
DS
4067 }
4068
b6a535fa
HM
4069 /* log error, force error return */
4070 if (primary_failed) {
4071 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4072 device->devid);
4073 return -1;
4074 }
4075
abbb3b8e
DS
4076 return errors < i ? 0 : -1;
4077}
4078
387125fc
CM
4079/*
4080 * endio for the write_dev_flush, this will wake anyone waiting
4081 * for the barrier when it is done
4082 */
4246a0b6 4083static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 4084{
f9e69aa9 4085 bio_uninit(bio);
e0ae9994 4086 complete(bio->bi_private);
387125fc
CM
4087}
4088
4089/*
4fc6441a
AJ
4090 * Submit a flush request to the device if it supports it. Error handling is
4091 * done in the waiting counterpart.
387125fc 4092 */
4fc6441a 4093static void write_dev_flush(struct btrfs_device *device)
387125fc 4094{
f9e69aa9 4095 struct bio *bio = &device->flush_bio;
387125fc 4096
a91cf0ff
WY
4097#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4098 /*
4099 * When a disk has write caching disabled, we skip submission of a bio
4100 * with flush and sync requests before writing the superblock, since
4101 * it's not needed. However when the integrity checker is enabled, this
4102 * results in reports that there are metadata blocks referred by a
4103 * superblock that were not properly flushed. So don't skip the bio
4104 * submission only when the integrity checker is enabled for the sake
4105 * of simplicity, since this is a debug tool and not meant for use in
4106 * non-debug builds.
4107 */
08e688fd 4108 if (!bdev_write_cache(device->bdev))
4fc6441a 4109 return;
a91cf0ff 4110#endif
387125fc 4111
f9e69aa9
CH
4112 bio_init(bio, device->bdev, NULL, 0,
4113 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 4114 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
4115 init_completion(&device->flush_wait);
4116 bio->bi_private = &device->flush_wait;
387125fc 4117
58ff51f1
CH
4118 btrfsic_check_bio(bio);
4119 submit_bio(bio);
1c3063b6 4120 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4121}
387125fc 4122
4fc6441a
AJ
4123/*
4124 * If the flush bio has been submitted by write_dev_flush, wait for it.
4125 */
8c27cb35 4126static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4127{
f9e69aa9 4128 struct bio *bio = &device->flush_bio;
387125fc 4129
1c3063b6 4130 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4131 return BLK_STS_OK;
387125fc 4132
1c3063b6 4133 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4134 wait_for_completion_io(&device->flush_wait);
387125fc 4135
8c27cb35 4136 return bio->bi_status;
387125fc 4137}
387125fc 4138
d10b82fe 4139static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4140{
6528b99d 4141 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4142 return -EIO;
387125fc
CM
4143 return 0;
4144}
4145
4146/*
4147 * send an empty flush down to each device in parallel,
4148 * then wait for them
4149 */
4150static int barrier_all_devices(struct btrfs_fs_info *info)
4151{
4152 struct list_head *head;
4153 struct btrfs_device *dev;
5af3e8cc 4154 int errors_wait = 0;
4e4cbee9 4155 blk_status_t ret;
387125fc 4156
1538e6c5 4157 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4158 /* send down all the barriers */
4159 head = &info->fs_devices->devices;
1538e6c5 4160 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4161 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4162 continue;
cea7c8bf 4163 if (!dev->bdev)
387125fc 4164 continue;
e12c9621 4165 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4166 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4167 continue;
4168
4fc6441a 4169 write_dev_flush(dev);
58efbc9f 4170 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4171 }
4172
4173 /* wait for all the barriers */
1538e6c5 4174 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4175 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4176 continue;
387125fc 4177 if (!dev->bdev) {
5af3e8cc 4178 errors_wait++;
387125fc
CM
4179 continue;
4180 }
e12c9621 4181 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4182 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4183 continue;
4184
4fc6441a 4185 ret = wait_dev_flush(dev);
401b41e5
AJ
4186 if (ret) {
4187 dev->last_flush_error = ret;
66b4993e
DS
4188 btrfs_dev_stat_inc_and_print(dev,
4189 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4190 errors_wait++;
401b41e5
AJ
4191 }
4192 }
4193
cea7c8bf 4194 if (errors_wait) {
401b41e5
AJ
4195 /*
4196 * At some point we need the status of all disks
4197 * to arrive at the volume status. So error checking
4198 * is being pushed to a separate loop.
4199 */
d10b82fe 4200 return check_barrier_error(info);
387125fc 4201 }
387125fc
CM
4202 return 0;
4203}
4204
943c6e99
ZL
4205int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4206{
8789f4fe
ZL
4207 int raid_type;
4208 int min_tolerated = INT_MAX;
943c6e99 4209
8789f4fe
ZL
4210 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4211 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4212 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4213 btrfs_raid_array[BTRFS_RAID_SINGLE].
4214 tolerated_failures);
943c6e99 4215
8789f4fe
ZL
4216 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4217 if (raid_type == BTRFS_RAID_SINGLE)
4218 continue;
41a6e891 4219 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4220 continue;
8c3e3582 4221 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4222 btrfs_raid_array[raid_type].
4223 tolerated_failures);
4224 }
943c6e99 4225
8789f4fe 4226 if (min_tolerated == INT_MAX) {
ab8d0fc4 4227 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4228 min_tolerated = 0;
4229 }
4230
4231 return min_tolerated;
943c6e99
ZL
4232}
4233
eece6a9c 4234int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4235{
e5e9a520 4236 struct list_head *head;
f2984462 4237 struct btrfs_device *dev;
a061fc8d 4238 struct btrfs_super_block *sb;
f2984462 4239 struct btrfs_dev_item *dev_item;
f2984462
CM
4240 int ret;
4241 int do_barriers;
a236aed1
CM
4242 int max_errors;
4243 int total_errors = 0;
a061fc8d 4244 u64 flags;
f2984462 4245
0b246afa 4246 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4247
4248 /*
4249 * max_mirrors == 0 indicates we're from commit_transaction,
4250 * not from fsync where the tree roots in fs_info have not
4251 * been consistent on disk.
4252 */
4253 if (max_mirrors == 0)
4254 backup_super_roots(fs_info);
f2984462 4255
0b246afa 4256 sb = fs_info->super_for_commit;
a061fc8d 4257 dev_item = &sb->dev_item;
e5e9a520 4258
0b246afa
JM
4259 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4260 head = &fs_info->fs_devices->devices;
4261 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4262
5af3e8cc 4263 if (do_barriers) {
0b246afa 4264 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4265 if (ret) {
4266 mutex_unlock(
0b246afa
JM
4267 &fs_info->fs_devices->device_list_mutex);
4268 btrfs_handle_fs_error(fs_info, ret,
4269 "errors while submitting device barriers.");
5af3e8cc
SB
4270 return ret;
4271 }
4272 }
387125fc 4273
1538e6c5 4274 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4275 if (!dev->bdev) {
4276 total_errors++;
4277 continue;
4278 }
e12c9621 4279 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4280 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4281 continue;
4282
2b82032c 4283 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4284 btrfs_set_stack_device_type(dev_item, dev->type);
4285 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4286 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4287 dev->commit_total_bytes);
ce7213c7
MX
4288 btrfs_set_stack_device_bytes_used(dev_item,
4289 dev->commit_bytes_used);
a061fc8d
CM
4290 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4291 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4292 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4293 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4294 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4295 BTRFS_FSID_SIZE);
a512bbf8 4296
a061fc8d
CM
4297 flags = btrfs_super_flags(sb);
4298 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4299
75cb857d
QW
4300 ret = btrfs_validate_write_super(fs_info, sb);
4301 if (ret < 0) {
4302 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4303 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4304 "unexpected superblock corruption detected");
4305 return -EUCLEAN;
4306 }
4307
abbb3b8e 4308 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4309 if (ret)
4310 total_errors++;
f2984462 4311 }
a236aed1 4312 if (total_errors > max_errors) {
0b246afa
JM
4313 btrfs_err(fs_info, "%d errors while writing supers",
4314 total_errors);
4315 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4316
9d565ba4 4317 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4318 btrfs_handle_fs_error(fs_info, -EIO,
4319 "%d errors while writing supers",
4320 total_errors);
9d565ba4 4321 return -EIO;
a236aed1 4322 }
f2984462 4323
a512bbf8 4324 total_errors = 0;
1538e6c5 4325 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4326 if (!dev->bdev)
4327 continue;
e12c9621 4328 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4329 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4330 continue;
4331
abbb3b8e 4332 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4333 if (ret)
4334 total_errors++;
f2984462 4335 }
0b246afa 4336 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4337 if (total_errors > max_errors) {
0b246afa
JM
4338 btrfs_handle_fs_error(fs_info, -EIO,
4339 "%d errors while writing supers",
4340 total_errors);
79787eaa 4341 return -EIO;
a236aed1 4342 }
f2984462
CM
4343 return 0;
4344}
4345
cb517eab
MX
4346/* Drop a fs root from the radix tree and free it. */
4347void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4348 struct btrfs_root *root)
2619ba1f 4349{
4785e24f
JB
4350 bool drop_ref = false;
4351
fc7cbcd4
DS
4352 spin_lock(&fs_info->fs_roots_radix_lock);
4353 radix_tree_delete(&fs_info->fs_roots_radix,
4354 (unsigned long)root->root_key.objectid);
4355 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4356 drop_ref = true;
fc7cbcd4 4357 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4358
84961539 4359 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4360 ASSERT(root->log_root == NULL);
1c1ea4f7 4361 if (root->reloc_root) {
00246528 4362 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4363 root->reloc_root = NULL;
4364 }
4365 }
3321719e 4366
4785e24f
JB
4367 if (drop_ref)
4368 btrfs_put_root(root);
2619ba1f
CM
4369}
4370
c146afad 4371int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4372{
fc7cbcd4
DS
4373 u64 root_objectid = 0;
4374 struct btrfs_root *gang[8];
4375 int i = 0;
65d33fd7 4376 int err = 0;
fc7cbcd4 4377 unsigned int ret = 0;
e089f05c 4378
c146afad 4379 while (1) {
fc7cbcd4
DS
4380 spin_lock(&fs_info->fs_roots_radix_lock);
4381 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4382 (void **)gang, root_objectid,
4383 ARRAY_SIZE(gang));
4384 if (!ret) {
4385 spin_unlock(&fs_info->fs_roots_radix_lock);
4386 break;
65d33fd7 4387 }
fc7cbcd4 4388 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4389
fc7cbcd4
DS
4390 for (i = 0; i < ret; i++) {
4391 /* Avoid to grab roots in dead_roots */
4392 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4393 gang[i] = NULL;
4394 continue;
4395 }
4396 /* grab all the search result for later use */
4397 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4398 }
fc7cbcd4 4399 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4400
fc7cbcd4
DS
4401 for (i = 0; i < ret; i++) {
4402 if (!gang[i])
65d33fd7 4403 continue;
fc7cbcd4
DS
4404 root_objectid = gang[i]->root_key.objectid;
4405 err = btrfs_orphan_cleanup(gang[i]);
66b4ffd1 4406 if (err)
fc7cbcd4
DS
4407 break;
4408 btrfs_put_root(gang[i]);
c146afad 4409 }
fc7cbcd4 4410 root_objectid++;
c146afad 4411 }
65d33fd7 4412
fc7cbcd4
DS
4413 /* release the uncleaned roots due to error */
4414 for (; i < ret; i++) {
4415 if (gang[i])
4416 btrfs_put_root(gang[i]);
65d33fd7
QW
4417 }
4418 return err;
c146afad 4419}
a2135011 4420
6bccf3ab 4421int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4422{
6bccf3ab 4423 struct btrfs_root *root = fs_info->tree_root;
c146afad 4424 struct btrfs_trans_handle *trans;
a74a4b97 4425
0b246afa 4426 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4427 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4428 mutex_unlock(&fs_info->cleaner_mutex);
4429 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4430
4431 /* wait until ongoing cleanup work done */
0b246afa
JM
4432 down_write(&fs_info->cleanup_work_sem);
4433 up_write(&fs_info->cleanup_work_sem);
c71bf099 4434
7a7eaa40 4435 trans = btrfs_join_transaction(root);
3612b495
TI
4436 if (IS_ERR(trans))
4437 return PTR_ERR(trans);
3a45bb20 4438 return btrfs_commit_transaction(trans);
c146afad
YZ
4439}
4440
36c86a9e
QW
4441static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4442{
4443 struct btrfs_transaction *trans;
4444 struct btrfs_transaction *tmp;
4445 bool found = false;
4446
4447 if (list_empty(&fs_info->trans_list))
4448 return;
4449
4450 /*
4451 * This function is only called at the very end of close_ctree(),
4452 * thus no other running transaction, no need to take trans_lock.
4453 */
4454 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4455 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4456 struct extent_state *cached = NULL;
4457 u64 dirty_bytes = 0;
4458 u64 cur = 0;
4459 u64 found_start;
4460 u64 found_end;
4461
4462 found = true;
4463 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4464 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4465 dirty_bytes += found_end + 1 - found_start;
4466 cur = found_end + 1;
4467 }
4468 btrfs_warn(fs_info,
4469 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4470 trans->transid, dirty_bytes);
4471 btrfs_cleanup_one_transaction(trans, fs_info);
4472
4473 if (trans == fs_info->running_transaction)
4474 fs_info->running_transaction = NULL;
4475 list_del_init(&trans->list);
4476
4477 btrfs_put_transaction(trans);
4478 trace_btrfs_transaction_commit(fs_info);
4479 }
4480 ASSERT(!found);
4481}
4482
b105e927 4483void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4484{
c146afad
YZ
4485 int ret;
4486
afcdd129 4487 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4488
8a1f1e3d
FM
4489 /*
4490 * If we had UNFINISHED_DROPS we could still be processing them, so
4491 * clear that bit and wake up relocation so it can stop.
4492 * We must do this before stopping the block group reclaim task, because
4493 * at btrfs_relocate_block_group() we wait for this bit, and after the
4494 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4495 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4496 * return 1.
4497 */
4498 btrfs_wake_unfinished_drop(fs_info);
4499
31e70e52
FM
4500 /*
4501 * We may have the reclaim task running and relocating a data block group,
4502 * in which case it may create delayed iputs. So stop it before we park
4503 * the cleaner kthread otherwise we can get new delayed iputs after
4504 * parking the cleaner, and that can make the async reclaim task to hang
4505 * if it's waiting for delayed iputs to complete, since the cleaner is
4506 * parked and can not run delayed iputs - this will make us hang when
4507 * trying to stop the async reclaim task.
4508 */
4509 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4510 /*
4511 * We don't want the cleaner to start new transactions, add more delayed
4512 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4513 * because that frees the task_struct, and the transaction kthread might
4514 * still try to wake up the cleaner.
4515 */
4516 kthread_park(fs_info->cleaner_kthread);
c146afad 4517
7343dd61 4518 /* wait for the qgroup rescan worker to stop */
d06f23d6 4519 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4520
803b2f54
SB
4521 /* wait for the uuid_scan task to finish */
4522 down(&fs_info->uuid_tree_rescan_sem);
4523 /* avoid complains from lockdep et al., set sem back to initial state */
4524 up(&fs_info->uuid_tree_rescan_sem);
4525
837d5b6e 4526 /* pause restriper - we want to resume on mount */
aa1b8cd4 4527 btrfs_pause_balance(fs_info);
837d5b6e 4528
8dabb742
SB
4529 btrfs_dev_replace_suspend_for_unmount(fs_info);
4530
aa1b8cd4 4531 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4532
4533 /* wait for any defraggers to finish */
4534 wait_event(fs_info->transaction_wait,
4535 (atomic_read(&fs_info->defrag_running) == 0));
4536
4537 /* clear out the rbtree of defraggable inodes */
26176e7c 4538 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4539
a362bb86
FM
4540 /*
4541 * After we parked the cleaner kthread, ordered extents may have
4542 * completed and created new delayed iputs. If one of the async reclaim
4543 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4544 * can hang forever trying to stop it, because if a delayed iput is
4545 * added after it ran btrfs_run_delayed_iputs() and before it called
4546 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4547 * no one else to run iputs.
4548 *
4549 * So wait for all ongoing ordered extents to complete and then run
4550 * delayed iputs. This works because once we reach this point no one
4551 * can either create new ordered extents nor create delayed iputs
4552 * through some other means.
4553 *
4554 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4555 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4556 * but the delayed iput for the respective inode is made only when doing
4557 * the final btrfs_put_ordered_extent() (which must happen at
4558 * btrfs_finish_ordered_io() when we are unmounting).
4559 */
4560 btrfs_flush_workqueue(fs_info->endio_write_workers);
4561 /* Ordered extents for free space inodes. */
4562 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4563 btrfs_run_delayed_iputs(fs_info);
4564
21c7e756 4565 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4566 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4567 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4568
b0643e59
DZ
4569 /* Cancel or finish ongoing discard work */
4570 btrfs_discard_cleanup(fs_info);
4571
bc98a42c 4572 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4573 /*
d6fd0ae2
OS
4574 * The cleaner kthread is stopped, so do one final pass over
4575 * unused block groups.
e44163e1 4576 */
0b246afa 4577 btrfs_delete_unused_bgs(fs_info);
e44163e1 4578
f0cc2cd7
FM
4579 /*
4580 * There might be existing delayed inode workers still running
4581 * and holding an empty delayed inode item. We must wait for
4582 * them to complete first because they can create a transaction.
4583 * This happens when someone calls btrfs_balance_delayed_items()
4584 * and then a transaction commit runs the same delayed nodes
4585 * before any delayed worker has done something with the nodes.
4586 * We must wait for any worker here and not at transaction
4587 * commit time since that could cause a deadlock.
4588 * This is a very rare case.
4589 */
4590 btrfs_flush_workqueue(fs_info->delayed_workers);
4591
6bccf3ab 4592 ret = btrfs_commit_super(fs_info);
acce952b 4593 if (ret)
04892340 4594 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4595 }
4596
84961539 4597 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4598 btrfs_error_commit_super(fs_info);
0f7d52f4 4599
e3029d9f
AV
4600 kthread_stop(fs_info->transaction_kthread);
4601 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4602
e187831e 4603 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4604 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4605
5958253c
QW
4606 if (btrfs_check_quota_leak(fs_info)) {
4607 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4608 btrfs_err(fs_info, "qgroup reserved space leaked");
4609 }
4610
04892340 4611 btrfs_free_qgroup_config(fs_info);
fe816d0f 4612 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4613
963d678b 4614 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4615 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4616 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4617 }
bcc63abb 4618
5deb17e1 4619 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4620 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4621 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4622
6618a59b 4623 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4624 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4625
1a4319cc
LB
4626 btrfs_put_block_group_cache(fs_info);
4627
de348ee0
WS
4628 /*
4629 * we must make sure there is not any read request to
4630 * submit after we stopping all workers.
4631 */
4632 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4633 btrfs_stop_all_workers(fs_info);
4634
0a31daa4 4635 /* We shouldn't have any transaction open at this point */
36c86a9e 4636 warn_about_uncommitted_trans(fs_info);
0a31daa4 4637
afcdd129 4638 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4639 free_root_pointers(fs_info, true);
8c38938c 4640 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4641
4e19443d
JB
4642 /*
4643 * We must free the block groups after dropping the fs_roots as we could
4644 * have had an IO error and have left over tree log blocks that aren't
4645 * cleaned up until the fs roots are freed. This makes the block group
4646 * accounting appear to be wrong because there's pending reserved bytes,
4647 * so make sure we do the block group cleanup afterwards.
4648 */
4649 btrfs_free_block_groups(fs_info);
4650
13e6c37b 4651 iput(fs_info->btree_inode);
d6bfde87 4652
21adbd5c 4653#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4654 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4655 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4656#endif
4657
0b86a832 4658 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4659 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4660}
4661
b9fab919
CM
4662int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4663 int atomic)
5f39d397 4664{
1259ab75 4665 int ret;
727011e0 4666 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4667
0b32f4bb 4668 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4669 if (!ret)
4670 return ret;
4671
4672 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4673 parent_transid, atomic);
4674 if (ret == -EAGAIN)
4675 return ret;
1259ab75 4676 return !ret;
5f39d397
CM
4677}
4678
5f39d397
CM
4679void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4680{
2f4d60df 4681 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4682 u64 transid = btrfs_header_generation(buf);
b9473439 4683 int was_dirty;
b4ce94de 4684
06ea65a3
JB
4685#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4686 /*
4687 * This is a fast path so only do this check if we have sanity tests
52042d8e 4688 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4689 * outside of the sanity tests.
4690 */
b0132a3b 4691 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4692 return;
4693#endif
49d0c642 4694 btrfs_assert_tree_write_locked(buf);
0b246afa 4695 if (transid != fs_info->generation)
5d163e0e 4696 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4697 buf->start, transid, fs_info->generation);
0b32f4bb 4698 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4699 if (!was_dirty)
104b4e51
NB
4700 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4701 buf->len,
4702 fs_info->dirty_metadata_batch);
1f21ef0a 4703#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4704 /*
4705 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4706 * but item data not updated.
4707 * So here we should only check item pointers, not item data.
4708 */
4709 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4710 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4711 btrfs_print_leaf(buf);
1f21ef0a
FM
4712 ASSERT(0);
4713 }
4714#endif
eb60ceac
CM
4715}
4716
2ff7e61e 4717static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4718 int flush_delayed)
16cdcec7
MX
4719{
4720 /*
4721 * looks as though older kernels can get into trouble with
4722 * this code, they end up stuck in balance_dirty_pages forever
4723 */
e2d84521 4724 int ret;
16cdcec7
MX
4725
4726 if (current->flags & PF_MEMALLOC)
4727 return;
4728
b53d3f5d 4729 if (flush_delayed)
2ff7e61e 4730 btrfs_balance_delayed_items(fs_info);
16cdcec7 4731
d814a491
EL
4732 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4733 BTRFS_DIRTY_METADATA_THRESH,
4734 fs_info->dirty_metadata_batch);
e2d84521 4735 if (ret > 0) {
0b246afa 4736 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4737 }
16cdcec7
MX
4738}
4739
2ff7e61e 4740void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4741{
2ff7e61e 4742 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4743}
585ad2c3 4744
2ff7e61e 4745void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4746{
2ff7e61e 4747 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4748}
6b80053d 4749
2ff7e61e 4750static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4751{
fe816d0f
NB
4752 /* cleanup FS via transaction */
4753 btrfs_cleanup_transaction(fs_info);
4754
0b246afa 4755 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4756 btrfs_run_delayed_iputs(fs_info);
0b246afa 4757 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4758
0b246afa
JM
4759 down_write(&fs_info->cleanup_work_sem);
4760 up_write(&fs_info->cleanup_work_sem);
acce952b 4761}
4762
ef67963d
JB
4763static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4764{
fc7cbcd4
DS
4765 struct btrfs_root *gang[8];
4766 u64 root_objectid = 0;
4767 int ret;
4768
4769 spin_lock(&fs_info->fs_roots_radix_lock);
4770 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4771 (void **)gang, root_objectid,
4772 ARRAY_SIZE(gang))) != 0) {
4773 int i;
4774
4775 for (i = 0; i < ret; i++)
4776 gang[i] = btrfs_grab_root(gang[i]);
4777 spin_unlock(&fs_info->fs_roots_radix_lock);
4778
4779 for (i = 0; i < ret; i++) {
4780 if (!gang[i])
ef67963d 4781 continue;
fc7cbcd4
DS
4782 root_objectid = gang[i]->root_key.objectid;
4783 btrfs_free_log(NULL, gang[i]);
4784 btrfs_put_root(gang[i]);
ef67963d 4785 }
fc7cbcd4
DS
4786 root_objectid++;
4787 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4788 }
fc7cbcd4 4789 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4790 btrfs_free_log_root_tree(NULL, fs_info);
4791}
4792
143bede5 4793static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4794{
acce952b 4795 struct btrfs_ordered_extent *ordered;
acce952b 4796
199c2a9c 4797 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4798 /*
4799 * This will just short circuit the ordered completion stuff which will
4800 * make sure the ordered extent gets properly cleaned up.
4801 */
199c2a9c 4802 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4803 root_extent_list)
4804 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4805 spin_unlock(&root->ordered_extent_lock);
4806}
4807
4808static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4809{
4810 struct btrfs_root *root;
4811 struct list_head splice;
4812
4813 INIT_LIST_HEAD(&splice);
4814
4815 spin_lock(&fs_info->ordered_root_lock);
4816 list_splice_init(&fs_info->ordered_roots, &splice);
4817 while (!list_empty(&splice)) {
4818 root = list_first_entry(&splice, struct btrfs_root,
4819 ordered_root);
1de2cfde
JB
4820 list_move_tail(&root->ordered_root,
4821 &fs_info->ordered_roots);
199c2a9c 4822
2a85d9ca 4823 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4824 btrfs_destroy_ordered_extents(root);
4825
2a85d9ca
LB
4826 cond_resched();
4827 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4828 }
4829 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4830
4831 /*
4832 * We need this here because if we've been flipped read-only we won't
4833 * get sync() from the umount, so we need to make sure any ordered
4834 * extents that haven't had their dirty pages IO start writeout yet
4835 * actually get run and error out properly.
4836 */
4837 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4838}
4839
35a3621b 4840static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4841 struct btrfs_fs_info *fs_info)
acce952b 4842{
4843 struct rb_node *node;
4844 struct btrfs_delayed_ref_root *delayed_refs;
4845 struct btrfs_delayed_ref_node *ref;
4846 int ret = 0;
4847
4848 delayed_refs = &trans->delayed_refs;
4849
4850 spin_lock(&delayed_refs->lock);
d7df2c79 4851 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4852 spin_unlock(&delayed_refs->lock);
b79ce3dd 4853 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4854 return ret;
4855 }
4856
5c9d028b 4857 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4858 struct btrfs_delayed_ref_head *head;
0e0adbcf 4859 struct rb_node *n;
e78417d1 4860 bool pin_bytes = false;
acce952b 4861
d7df2c79
JB
4862 head = rb_entry(node, struct btrfs_delayed_ref_head,
4863 href_node);
3069bd26 4864 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4865 continue;
3069bd26 4866
d7df2c79 4867 spin_lock(&head->lock);
e3d03965 4868 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4869 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4870 ref_node);
d7df2c79 4871 ref->in_tree = 0;
e3d03965 4872 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4873 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4874 if (!list_empty(&ref->add_list))
4875 list_del(&ref->add_list);
d7df2c79
JB
4876 atomic_dec(&delayed_refs->num_entries);
4877 btrfs_put_delayed_ref(ref);
e78417d1 4878 }
d7df2c79
JB
4879 if (head->must_insert_reserved)
4880 pin_bytes = true;
4881 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4882 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4883 spin_unlock(&head->lock);
4884 spin_unlock(&delayed_refs->lock);
4885 mutex_unlock(&head->mutex);
acce952b 4886
f603bb94
NB
4887 if (pin_bytes) {
4888 struct btrfs_block_group *cache;
4889
4890 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4891 BUG_ON(!cache);
4892
4893 spin_lock(&cache->space_info->lock);
4894 spin_lock(&cache->lock);
4895 cache->pinned += head->num_bytes;
4896 btrfs_space_info_update_bytes_pinned(fs_info,
4897 cache->space_info, head->num_bytes);
4898 cache->reserved -= head->num_bytes;
4899 cache->space_info->bytes_reserved -= head->num_bytes;
4900 spin_unlock(&cache->lock);
4901 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4902
4903 btrfs_put_block_group(cache);
4904
4905 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4906 head->bytenr + head->num_bytes - 1);
4907 }
31890da0 4908 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4909 btrfs_put_delayed_ref_head(head);
acce952b 4910 cond_resched();
4911 spin_lock(&delayed_refs->lock);
4912 }
81f7eb00 4913 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4914
4915 spin_unlock(&delayed_refs->lock);
4916
4917 return ret;
4918}
4919
143bede5 4920static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4921{
4922 struct btrfs_inode *btrfs_inode;
4923 struct list_head splice;
4924
4925 INIT_LIST_HEAD(&splice);
4926
eb73c1b7
MX
4927 spin_lock(&root->delalloc_lock);
4928 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4929
4930 while (!list_empty(&splice)) {
fe816d0f 4931 struct inode *inode = NULL;
eb73c1b7
MX
4932 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4933 delalloc_inodes);
fe816d0f 4934 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4935 spin_unlock(&root->delalloc_lock);
acce952b 4936
fe816d0f
NB
4937 /*
4938 * Make sure we get a live inode and that it'll not disappear
4939 * meanwhile.
4940 */
4941 inode = igrab(&btrfs_inode->vfs_inode);
4942 if (inode) {
4943 invalidate_inode_pages2(inode->i_mapping);
4944 iput(inode);
4945 }
eb73c1b7 4946 spin_lock(&root->delalloc_lock);
acce952b 4947 }
eb73c1b7
MX
4948 spin_unlock(&root->delalloc_lock);
4949}
4950
4951static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4952{
4953 struct btrfs_root *root;
4954 struct list_head splice;
4955
4956 INIT_LIST_HEAD(&splice);
4957
4958 spin_lock(&fs_info->delalloc_root_lock);
4959 list_splice_init(&fs_info->delalloc_roots, &splice);
4960 while (!list_empty(&splice)) {
4961 root = list_first_entry(&splice, struct btrfs_root,
4962 delalloc_root);
00246528 4963 root = btrfs_grab_root(root);
eb73c1b7
MX
4964 BUG_ON(!root);
4965 spin_unlock(&fs_info->delalloc_root_lock);
4966
4967 btrfs_destroy_delalloc_inodes(root);
00246528 4968 btrfs_put_root(root);
eb73c1b7
MX
4969
4970 spin_lock(&fs_info->delalloc_root_lock);
4971 }
4972 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4973}
4974
2ff7e61e 4975static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4976 struct extent_io_tree *dirty_pages,
4977 int mark)
4978{
4979 int ret;
acce952b 4980 struct extent_buffer *eb;
4981 u64 start = 0;
4982 u64 end;
acce952b 4983
4984 while (1) {
4985 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4986 mark, NULL);
acce952b 4987 if (ret)
4988 break;
4989
91166212 4990 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4991 while (start <= end) {
0b246afa
JM
4992 eb = find_extent_buffer(fs_info, start);
4993 start += fs_info->nodesize;
fd8b2b61 4994 if (!eb)
acce952b 4995 continue;
c4e54a65
JB
4996
4997 btrfs_tree_lock(eb);
fd8b2b61 4998 wait_on_extent_buffer_writeback(eb);
190a8339 4999 btrfs_clear_buffer_dirty(NULL, eb);
c4e54a65 5000 btrfs_tree_unlock(eb);
acce952b 5001
fd8b2b61 5002 free_extent_buffer_stale(eb);
acce952b 5003 }
5004 }
5005
5006 return ret;
5007}
5008
2ff7e61e 5009static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 5010 struct extent_io_tree *unpin)
acce952b 5011{
acce952b 5012 u64 start;
5013 u64 end;
5014 int ret;
5015
acce952b 5016 while (1) {
0e6ec385
FM
5017 struct extent_state *cached_state = NULL;
5018
fcd5e742
LF
5019 /*
5020 * The btrfs_finish_extent_commit() may get the same range as
5021 * ours between find_first_extent_bit and clear_extent_dirty.
5022 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5023 * the same extent range.
5024 */
5025 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 5026 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 5027 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
5028 if (ret) {
5029 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5030 break;
fcd5e742 5031 }
acce952b 5032
0e6ec385
FM
5033 clear_extent_dirty(unpin, start, end, &cached_state);
5034 free_extent_state(cached_state);
2ff7e61e 5035 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 5036 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5037 cond_resched();
5038 }
5039
5040 return 0;
5041}
5042
32da5386 5043static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
5044{
5045 struct inode *inode;
5046
5047 inode = cache->io_ctl.inode;
5048 if (inode) {
5049 invalidate_inode_pages2(inode->i_mapping);
5050 BTRFS_I(inode)->generation = 0;
5051 cache->io_ctl.inode = NULL;
5052 iput(inode);
5053 }
bbc37d6e 5054 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
5055 btrfs_put_block_group(cache);
5056}
5057
5058void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 5059 struct btrfs_fs_info *fs_info)
c79a1751 5060{
32da5386 5061 struct btrfs_block_group *cache;
c79a1751
LB
5062
5063 spin_lock(&cur_trans->dirty_bgs_lock);
5064 while (!list_empty(&cur_trans->dirty_bgs)) {
5065 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 5066 struct btrfs_block_group,
c79a1751 5067 dirty_list);
c79a1751
LB
5068
5069 if (!list_empty(&cache->io_list)) {
5070 spin_unlock(&cur_trans->dirty_bgs_lock);
5071 list_del_init(&cache->io_list);
5072 btrfs_cleanup_bg_io(cache);
5073 spin_lock(&cur_trans->dirty_bgs_lock);
5074 }
5075
5076 list_del_init(&cache->dirty_list);
5077 spin_lock(&cache->lock);
5078 cache->disk_cache_state = BTRFS_DC_ERROR;
5079 spin_unlock(&cache->lock);
5080
5081 spin_unlock(&cur_trans->dirty_bgs_lock);
5082 btrfs_put_block_group(cache);
ba2c4d4e 5083 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
5084 spin_lock(&cur_trans->dirty_bgs_lock);
5085 }
5086 spin_unlock(&cur_trans->dirty_bgs_lock);
5087
45ae2c18
NB
5088 /*
5089 * Refer to the definition of io_bgs member for details why it's safe
5090 * to use it without any locking
5091 */
c79a1751
LB
5092 while (!list_empty(&cur_trans->io_bgs)) {
5093 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 5094 struct btrfs_block_group,
c79a1751 5095 io_list);
c79a1751
LB
5096
5097 list_del_init(&cache->io_list);
5098 spin_lock(&cache->lock);
5099 cache->disk_cache_state = BTRFS_DC_ERROR;
5100 spin_unlock(&cache->lock);
5101 btrfs_cleanup_bg_io(cache);
5102 }
5103}
5104
49b25e05 5105void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 5106 struct btrfs_fs_info *fs_info)
49b25e05 5107{
bbbf7243
NB
5108 struct btrfs_device *dev, *tmp;
5109
2ff7e61e 5110 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
5111 ASSERT(list_empty(&cur_trans->dirty_bgs));
5112 ASSERT(list_empty(&cur_trans->io_bgs));
5113
bbbf7243
NB
5114 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5115 post_commit_list) {
5116 list_del_init(&dev->post_commit_list);
5117 }
5118
2ff7e61e 5119 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 5120
4a9d8bde 5121 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 5122 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 5123
4a9d8bde 5124 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 5125 wake_up(&fs_info->transaction_wait);
49b25e05 5126
ccdf9b30 5127 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 5128
2ff7e61e 5129 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 5130 EXTENT_DIRTY);
fe119a6e 5131 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 5132
d3575156
NA
5133 btrfs_free_redirty_list(cur_trans);
5134
4a9d8bde
MX
5135 cur_trans->state =TRANS_STATE_COMPLETED;
5136 wake_up(&cur_trans->commit_wait);
49b25e05
JM
5137}
5138
2ff7e61e 5139static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 5140{
5141 struct btrfs_transaction *t;
acce952b 5142
0b246afa 5143 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 5144
0b246afa
JM
5145 spin_lock(&fs_info->trans_lock);
5146 while (!list_empty(&fs_info->trans_list)) {
5147 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
5148 struct btrfs_transaction, list);
5149 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 5150 refcount_inc(&t->use_count);
0b246afa 5151 spin_unlock(&fs_info->trans_lock);
2ff7e61e 5152 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 5153 btrfs_put_transaction(t);
0b246afa 5154 spin_lock(&fs_info->trans_lock);
724e2315
JB
5155 continue;
5156 }
0b246afa 5157 if (t == fs_info->running_transaction) {
724e2315 5158 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 5159 spin_unlock(&fs_info->trans_lock);
724e2315
JB
5160 /*
5161 * We wait for 0 num_writers since we don't hold a trans
5162 * handle open currently for this transaction.
5163 */
5164 wait_event(t->writer_wait,
5165 atomic_read(&t->num_writers) == 0);
5166 } else {
0b246afa 5167 spin_unlock(&fs_info->trans_lock);
724e2315 5168 }
2ff7e61e 5169 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5170
0b246afa
JM
5171 spin_lock(&fs_info->trans_lock);
5172 if (t == fs_info->running_transaction)
5173 fs_info->running_transaction = NULL;
acce952b 5174 list_del_init(&t->list);
0b246afa 5175 spin_unlock(&fs_info->trans_lock);
acce952b 5176
724e2315 5177 btrfs_put_transaction(t);
2e4e97ab 5178 trace_btrfs_transaction_commit(fs_info);
0b246afa 5179 spin_lock(&fs_info->trans_lock);
724e2315 5180 }
0b246afa
JM
5181 spin_unlock(&fs_info->trans_lock);
5182 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5183 btrfs_destroy_delayed_inodes(fs_info);
5184 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5185 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5186 btrfs_drop_all_logs(fs_info);
0b246afa 5187 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5188
5189 return 0;
5190}
ec7d6dfd 5191
453e4873 5192int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5193{
5194 struct btrfs_path *path;
5195 int ret;
5196 struct extent_buffer *l;
5197 struct btrfs_key search_key;
5198 struct btrfs_key found_key;
5199 int slot;
5200
5201 path = btrfs_alloc_path();
5202 if (!path)
5203 return -ENOMEM;
5204
5205 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5206 search_key.type = -1;
5207 search_key.offset = (u64)-1;
5208 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5209 if (ret < 0)
5210 goto error;
5211 BUG_ON(ret == 0); /* Corruption */
5212 if (path->slots[0] > 0) {
5213 slot = path->slots[0] - 1;
5214 l = path->nodes[0];
5215 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5216 root->free_objectid = max_t(u64, found_key.objectid + 1,
5217 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5218 } else {
23125104 5219 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5220 }
5221 ret = 0;
5222error:
5223 btrfs_free_path(path);
5224 return ret;
5225}
5226
543068a2 5227int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5228{
5229 int ret;
5230 mutex_lock(&root->objectid_mutex);
5231
6b8fad57 5232 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5233 btrfs_warn(root->fs_info,
5234 "the objectid of root %llu reaches its highest value",
5235 root->root_key.objectid);
5236 ret = -ENOSPC;
5237 goto out;
5238 }
5239
23125104 5240 *objectid = root->free_objectid++;
ec7d6dfd
NB
5241 ret = 0;
5242out:
5243 mutex_unlock(&root->objectid_mutex);
5244 return ret;
5245}