Merge tag 'v5.3-rc1' into docs-next
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
6d97c6e3 22#include <crypto/hash.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
e089f05c 25#include "transaction.h"
0f7d52f4 26#include "btrfs_inode.h"
0b86a832 27#include "volumes.h"
db94535d 28#include "print-tree.h"
925baedd 29#include "locking.h"
e02119d5 30#include "tree-log.h"
fa9c0d79 31#include "free-space-cache.h"
70f6d82e 32#include "free-space-tree.h"
581bb050 33#include "inode-map.h"
21adbd5c 34#include "check-integrity.h"
606686ee 35#include "rcu-string.h"
8dabb742 36#include "dev-replace.h"
53b381b3 37#include "raid56.h"
5ac1d209 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
ebb8765b 40#include "compression.h"
557ea5dd 41#include "tree-checker.h"
fd708b81 42#include "ref-verify.h"
eb60ceac 43
319e4d06
QW
44#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
45 BTRFS_HEADER_FLAG_RELOC |\
46 BTRFS_SUPER_FLAG_ERROR |\
47 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
48 BTRFS_SUPER_FLAG_METADUMP |\
49 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 50
e8c9f186 51static const struct extent_io_ops btree_extent_io_ops;
8b712842 52static void end_workqueue_fn(struct btrfs_work *work);
143bede5 53static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 54static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 55 struct btrfs_fs_info *fs_info);
143bede5 56static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 57static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 58 struct extent_io_tree *dirty_pages,
59 int mark);
2ff7e61e 60static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 61 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
62static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 64
d352ac68 65/*
97eb6b69
DS
66 * btrfs_end_io_wq structs are used to do processing in task context when an IO
67 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
68 * by writes to insert metadata for new file extents after IO is complete.
69 */
97eb6b69 70struct btrfs_end_io_wq {
ce9adaa5
CM
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
4e4cbee9 75 blk_status_t status;
bfebd8b5 76 enum btrfs_wq_endio_type metadata;
8b712842 77 struct btrfs_work work;
ce9adaa5 78};
0da5468f 79
97eb6b69
DS
80static struct kmem_cache *btrfs_end_io_wq_cache;
81
82int __init btrfs_end_io_wq_init(void)
83{
84 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
85 sizeof(struct btrfs_end_io_wq),
86 0,
fba4b697 87 SLAB_MEM_SPREAD,
97eb6b69
DS
88 NULL);
89 if (!btrfs_end_io_wq_cache)
90 return -ENOMEM;
91 return 0;
92}
93
e67c718b 94void __cold btrfs_end_io_wq_exit(void)
97eb6b69 95{
5598e900 96 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
97}
98
d352ac68
CM
99/*
100 * async submit bios are used to offload expensive checksumming
101 * onto the worker threads. They checksum file and metadata bios
102 * just before they are sent down the IO stack.
103 */
44b8bd7e 104struct async_submit_bio {
c6100a4b 105 void *private_data;
44b8bd7e 106 struct bio *bio;
a758781d 107 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 108 int mirror_num;
eaf25d93
CM
109 /*
110 * bio_offset is optional, can be used if the pages in the bio
111 * can't tell us where in the file the bio should go
112 */
113 u64 bio_offset;
8b712842 114 struct btrfs_work work;
4e4cbee9 115 blk_status_t status;
44b8bd7e
CM
116};
117
85d4e461
CM
118/*
119 * Lockdep class keys for extent_buffer->lock's in this root. For a given
120 * eb, the lockdep key is determined by the btrfs_root it belongs to and
121 * the level the eb occupies in the tree.
122 *
123 * Different roots are used for different purposes and may nest inside each
124 * other and they require separate keysets. As lockdep keys should be
125 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
126 * by btrfs_root->root_key.objectid. This ensures that all special purpose
127 * roots have separate keysets.
4008c04a 128 *
85d4e461
CM
129 * Lock-nesting across peer nodes is always done with the immediate parent
130 * node locked thus preventing deadlock. As lockdep doesn't know this, use
131 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 132 *
85d4e461
CM
133 * The key is set by the readpage_end_io_hook after the buffer has passed
134 * csum validation but before the pages are unlocked. It is also set by
135 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 136 *
85d4e461
CM
137 * We also add a check to make sure the highest level of the tree is the
138 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
139 * needs update as well.
4008c04a
CM
140 */
141#ifdef CONFIG_DEBUG_LOCK_ALLOC
142# if BTRFS_MAX_LEVEL != 8
143# error
144# endif
85d4e461
CM
145
146static struct btrfs_lockdep_keyset {
147 u64 id; /* root objectid */
148 const char *name_stem; /* lock name stem */
149 char names[BTRFS_MAX_LEVEL + 1][20];
150 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
151} btrfs_lockdep_keysets[] = {
152 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
153 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
154 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
155 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
156 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
157 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 158 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
159 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
160 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
161 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 162 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 163 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 164 { .id = 0, .name_stem = "tree" },
4008c04a 165};
85d4e461
CM
166
167void __init btrfs_init_lockdep(void)
168{
169 int i, j;
170
171 /* initialize lockdep class names */
172 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
173 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
174
175 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
176 snprintf(ks->names[j], sizeof(ks->names[j]),
177 "btrfs-%s-%02d", ks->name_stem, j);
178 }
179}
180
181void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
182 int level)
183{
184 struct btrfs_lockdep_keyset *ks;
185
186 BUG_ON(level >= ARRAY_SIZE(ks->keys));
187
188 /* find the matching keyset, id 0 is the default entry */
189 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
190 if (ks->id == objectid)
191 break;
192
193 lockdep_set_class_and_name(&eb->lock,
194 &ks->keys[level], ks->names[level]);
195}
196
4008c04a
CM
197#endif
198
d352ac68
CM
199/*
200 * extents on the btree inode are pretty simple, there's one extent
201 * that covers the entire device
202 */
6af49dbd 203struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 204 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 205 int create)
7eccb903 206{
3ffbd68c 207 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 208 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
209 struct extent_map *em;
210 int ret;
211
890871be 212 read_lock(&em_tree->lock);
d1310b2e 213 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 214 if (em) {
0b246afa 215 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 216 read_unlock(&em_tree->lock);
5f39d397 217 goto out;
a061fc8d 218 }
890871be 219 read_unlock(&em_tree->lock);
7b13b7b1 220
172ddd60 221 em = alloc_extent_map();
5f39d397
CM
222 if (!em) {
223 em = ERR_PTR(-ENOMEM);
224 goto out;
225 }
226 em->start = 0;
0afbaf8c 227 em->len = (u64)-1;
c8b97818 228 em->block_len = (u64)-1;
5f39d397 229 em->block_start = 0;
0b246afa 230 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 231
890871be 232 write_lock(&em_tree->lock);
09a2a8f9 233 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
234 if (ret == -EEXIST) {
235 free_extent_map(em);
7b13b7b1 236 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 237 if (!em)
0433f20d 238 em = ERR_PTR(-EIO);
5f39d397 239 } else if (ret) {
7b13b7b1 240 free_extent_map(em);
0433f20d 241 em = ERR_PTR(ret);
5f39d397 242 }
890871be 243 write_unlock(&em_tree->lock);
7b13b7b1 244
5f39d397
CM
245out:
246 return em;
7eccb903
CM
247}
248
d352ac68 249/*
2996e1f8
JT
250 * Compute the csum of a btree block and store the result to provided buffer.
251 *
252 * Returns error if the extent buffer cannot be mapped.
d352ac68 253 */
2996e1f8 254static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 255{
d5178578
JT
256 struct btrfs_fs_info *fs_info = buf->fs_info;
257 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc
CM
258 unsigned long len;
259 unsigned long cur_len;
260 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
261 char *kaddr;
262 unsigned long map_start;
263 unsigned long map_len;
264 int err;
d5178578
JT
265
266 shash->tfm = fs_info->csum_shash;
267 crypto_shash_init(shash);
19c00ddc
CM
268
269 len = buf->len - offset;
d5178578 270
d397712b 271 while (len > 0) {
d2e174d5
JT
272 /*
273 * Note: we don't need to check for the err == 1 case here, as
274 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
275 * and 'min_len = 32' and the currently implemented mapping
276 * algorithm we cannot cross a page boundary.
277 */
19c00ddc 278 err = map_private_extent_buffer(buf, offset, 32,
a6591715 279 &kaddr, &map_start, &map_len);
c53839fc 280 if (WARN_ON(err))
8bd98f0e 281 return err;
19c00ddc 282 cur_len = min(len, map_len - (offset - map_start));
d5178578 283 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
19c00ddc
CM
284 len -= cur_len;
285 offset += cur_len;
19c00ddc 286 }
71a63551 287 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 288
d5178578 289 crypto_shash_final(shash, result);
19c00ddc 290
19c00ddc
CM
291 return 0;
292}
293
d352ac68
CM
294/*
295 * we can't consider a given block up to date unless the transid of the
296 * block matches the transid in the parent node's pointer. This is how we
297 * detect blocks that either didn't get written at all or got written
298 * in the wrong place.
299 */
1259ab75 300static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
301 struct extent_buffer *eb, u64 parent_transid,
302 int atomic)
1259ab75 303{
2ac55d41 304 struct extent_state *cached_state = NULL;
1259ab75 305 int ret;
2755a0de 306 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
307
308 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
309 return 0;
310
b9fab919
CM
311 if (atomic)
312 return -EAGAIN;
313
a26e8c9f
JB
314 if (need_lock) {
315 btrfs_tree_read_lock(eb);
300aa896 316 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
317 }
318
2ac55d41 319 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 320 &cached_state);
0b32f4bb 321 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
322 btrfs_header_generation(eb) == parent_transid) {
323 ret = 0;
324 goto out;
325 }
94647322
DS
326 btrfs_err_rl(eb->fs_info,
327 "parent transid verify failed on %llu wanted %llu found %llu",
328 eb->start,
29549aec 329 parent_transid, btrfs_header_generation(eb));
1259ab75 330 ret = 1;
a26e8c9f
JB
331
332 /*
333 * Things reading via commit roots that don't have normal protection,
334 * like send, can have a really old block in cache that may point at a
01327610 335 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
336 * if we find an eb that is under IO (dirty/writeback) because we could
337 * end up reading in the stale data and then writing it back out and
338 * making everybody very sad.
339 */
340 if (!extent_buffer_under_io(eb))
341 clear_extent_buffer_uptodate(eb);
33958dc6 342out:
2ac55d41 343 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 344 &cached_state);
472b909f
JB
345 if (need_lock)
346 btrfs_tree_read_unlock_blocking(eb);
1259ab75 347 return ret;
1259ab75
CM
348}
349
e7e16f48
JT
350static bool btrfs_supported_super_csum(u16 csum_type)
351{
352 switch (csum_type) {
353 case BTRFS_CSUM_TYPE_CRC32:
354 return true;
355 default:
356 return false;
357 }
358}
359
1104a885
DS
360/*
361 * Return 0 if the superblock checksum type matches the checksum value of that
362 * algorithm. Pass the raw disk superblock data.
363 */
ab8d0fc4
JM
364static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
365 char *raw_disk_sb)
1104a885
DS
366{
367 struct btrfs_super_block *disk_sb =
368 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 369 char result[BTRFS_CSUM_SIZE];
d5178578
JT
370 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
371
372 shash->tfm = fs_info->csum_shash;
373 crypto_shash_init(shash);
1104a885 374
51bce6c9
JT
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
378 * filled with zeros and is included in the checksum.
379 */
d5178578
JT
380 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
381 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 crypto_shash_final(shash, result);
1104a885 383
51bce6c9
JT
384 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
385 return 1;
1104a885 386
e7e16f48 387 return 0;
1104a885
DS
388}
389
e064d5e9 390int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 391 struct btrfs_key *first_key, u64 parent_transid)
581c1760 392{
e064d5e9 393 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
394 int found_level;
395 struct btrfs_key found_key;
396 int ret;
397
398 found_level = btrfs_header_level(eb);
399 if (found_level != level) {
63489055
QW
400 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
401 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
402 btrfs_err(fs_info,
403"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
404 eb->start, level, found_level);
581c1760
QW
405 return -EIO;
406 }
407
408 if (!first_key)
409 return 0;
410
5d41be6f
QW
411 /*
412 * For live tree block (new tree blocks in current transaction),
413 * we need proper lock context to avoid race, which is impossible here.
414 * So we only checks tree blocks which is read from disk, whose
415 * generation <= fs_info->last_trans_committed.
416 */
417 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
418 return 0;
581c1760
QW
419 if (found_level)
420 btrfs_node_key_to_cpu(eb, &found_key, 0);
421 else
422 btrfs_item_key_to_cpu(eb, &found_key, 0);
423 ret = btrfs_comp_cpu_keys(first_key, &found_key);
424
581c1760 425 if (ret) {
63489055
QW
426 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
427 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 428 btrfs_err(fs_info,
ff76a864
LB
429"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
430 eb->start, parent_transid, first_key->objectid,
431 first_key->type, first_key->offset,
432 found_key.objectid, found_key.type,
433 found_key.offset);
581c1760 434 }
581c1760
QW
435 return ret;
436}
437
d352ac68
CM
438/*
439 * helper to read a given tree block, doing retries as required when
440 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
441 *
442 * @parent_transid: expected transid, skip check if 0
443 * @level: expected level, mandatory check
444 * @first_key: expected key of first slot, skip check if NULL
d352ac68 445 */
5ab12d1f 446static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
447 u64 parent_transid, int level,
448 struct btrfs_key *first_key)
f188591e 449{
5ab12d1f 450 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 451 struct extent_io_tree *io_tree;
ea466794 452 int failed = 0;
f188591e
CM
453 int ret;
454 int num_copies = 0;
455 int mirror_num = 0;
ea466794 456 int failed_mirror = 0;
f188591e 457
0b246afa 458 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 459 while (1) {
f8397d69 460 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 461 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 462 if (!ret) {
581c1760 463 if (verify_parent_transid(io_tree, eb,
b9fab919 464 parent_transid, 0))
256dd1bb 465 ret = -EIO;
e064d5e9 466 else if (btrfs_verify_level_key(eb, level,
448de471 467 first_key, parent_transid))
581c1760
QW
468 ret = -EUCLEAN;
469 else
470 break;
256dd1bb 471 }
d397712b 472
0b246afa 473 num_copies = btrfs_num_copies(fs_info,
f188591e 474 eb->start, eb->len);
4235298e 475 if (num_copies == 1)
ea466794 476 break;
4235298e 477
5cf1ab56
JB
478 if (!failed_mirror) {
479 failed = 1;
480 failed_mirror = eb->read_mirror;
481 }
482
f188591e 483 mirror_num++;
ea466794
JB
484 if (mirror_num == failed_mirror)
485 mirror_num++;
486
4235298e 487 if (mirror_num > num_copies)
ea466794 488 break;
f188591e 489 }
ea466794 490
c0901581 491 if (failed && !ret && failed_mirror)
20a1fbf9 492 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
493
494 return ret;
f188591e 495}
19c00ddc 496
d352ac68 497/*
d397712b
CM
498 * checksum a dirty tree block before IO. This has extra checks to make sure
499 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 500 */
d397712b 501
01d58472 502static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 503{
4eee4fa4 504 u64 start = page_offset(page);
19c00ddc 505 u64 found_start;
2996e1f8
JT
506 u8 result[BTRFS_CSUM_SIZE];
507 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 508 struct extent_buffer *eb;
8d47a0d8 509 int ret;
f188591e 510
4f2de97a
JB
511 eb = (struct extent_buffer *)page->private;
512 if (page != eb->pages[0])
513 return 0;
0f805531 514
19c00ddc 515 found_start = btrfs_header_bytenr(eb);
0f805531
AL
516 /*
517 * Please do not consolidate these warnings into a single if.
518 * It is useful to know what went wrong.
519 */
520 if (WARN_ON(found_start != start))
521 return -EUCLEAN;
522 if (WARN_ON(!PageUptodate(page)))
523 return -EUCLEAN;
524
de37aa51 525 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
526 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527
2996e1f8
JT
528 if (csum_tree_block(eb, result))
529 return -EINVAL;
530
8d47a0d8
QW
531 if (btrfs_header_level(eb))
532 ret = btrfs_check_node(eb);
533 else
534 ret = btrfs_check_leaf_full(eb);
535
536 if (ret < 0) {
537 btrfs_err(fs_info,
538 "block=%llu write time tree block corruption detected",
539 eb->start);
540 return ret;
541 }
2996e1f8 542 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 543
2996e1f8 544 return 0;
19c00ddc
CM
545}
546
b0c9b3b0 547static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 548{
b0c9b3b0 549 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 550 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 551 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
552 int ret = 1;
553
0a4e5586 554 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 555 while (fs_devices) {
7239ff4b
NB
556 u8 *metadata_uuid;
557
558 /*
559 * Checking the incompat flag is only valid for the current
560 * fs. For seed devices it's forbidden to have their uuid
561 * changed so reading ->fsid in this case is fine
562 */
563 if (fs_devices == fs_info->fs_devices &&
564 btrfs_fs_incompat(fs_info, METADATA_UUID))
565 metadata_uuid = fs_devices->metadata_uuid;
566 else
567 metadata_uuid = fs_devices->fsid;
568
569 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
570 ret = 0;
571 break;
572 }
573 fs_devices = fs_devices->seed;
574 }
575 return ret;
576}
577
facc8a22
MX
578static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
579 u64 phy_offset, struct page *page,
580 u64 start, u64 end, int mirror)
ce9adaa5 581{
ce9adaa5
CM
582 u64 found_start;
583 int found_level;
ce9adaa5
CM
584 struct extent_buffer *eb;
585 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 586 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 587 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 588 int ret = 0;
2996e1f8 589 u8 result[BTRFS_CSUM_SIZE];
727011e0 590 int reads_done;
ce9adaa5 591
ce9adaa5
CM
592 if (!page->private)
593 goto out;
d397712b 594
4f2de97a 595 eb = (struct extent_buffer *)page->private;
d397712b 596
0b32f4bb
JB
597 /* the pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
599 */
600 extent_buffer_get(eb);
601
602 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
603 if (!reads_done)
604 goto err;
f188591e 605
5cf1ab56 606 eb->read_mirror = mirror;
656f30db 607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
608 ret = -EIO;
609 goto err;
610 }
611
ce9adaa5 612 found_start = btrfs_header_bytenr(eb);
727011e0 613 if (found_start != eb->start) {
893bf4b1
SY
614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 eb->start, found_start);
f188591e 616 ret = -EIO;
ce9adaa5
CM
617 goto err;
618 }
b0c9b3b0 619 if (check_tree_block_fsid(eb)) {
02873e43
ZL
620 btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 eb->start);
1259ab75
CM
622 ret = -EIO;
623 goto err;
624 }
ce9adaa5 625 found_level = btrfs_header_level(eb);
1c24c3ce 626 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
627 btrfs_err(fs_info, "bad tree block level %d on %llu",
628 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
629 ret = -EIO;
630 goto err;
631 }
ce9adaa5 632
85d4e461
CM
633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 eb, found_level);
4008c04a 635
2996e1f8 636 ret = csum_tree_block(eb, result);
8bd98f0e 637 if (ret)
a826d6dc 638 goto err;
a826d6dc 639
2996e1f8
JT
640 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
641 u32 val;
642 u32 found = 0;
643
644 memcpy(&found, result, csum_size);
645
646 read_extent_buffer(eb, &val, 0, csum_size);
647 btrfs_warn_rl(fs_info,
648 "%s checksum verify failed on %llu wanted %x found %x level %d",
649 fs_info->sb->s_id, eb->start,
650 val, found, btrfs_header_level(eb));
651 ret = -EUCLEAN;
652 goto err;
653 }
654
a826d6dc
JB
655 /*
656 * If this is a leaf block and it is corrupt, set the corrupt bit so
657 * that we don't try and read the other copies of this block, just
658 * return -EIO.
659 */
1c4360ee 660 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
661 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
662 ret = -EIO;
663 }
ce9adaa5 664
813fd1dc 665 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
666 ret = -EIO;
667
0b32f4bb
JB
668 if (!ret)
669 set_extent_buffer_uptodate(eb);
75391f0d
QW
670 else
671 btrfs_err(fs_info,
672 "block=%llu read time tree block corruption detected",
673 eb->start);
ce9adaa5 674err:
79fb65a1
JB
675 if (reads_done &&
676 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 677 btree_readahead_hook(eb, ret);
4bb31e92 678
53b381b3
DW
679 if (ret) {
680 /*
681 * our io error hook is going to dec the io pages
682 * again, we have to make sure it has something
683 * to decrement
684 */
685 atomic_inc(&eb->io_pages);
0b32f4bb 686 clear_extent_buffer_uptodate(eb);
53b381b3 687 }
0b32f4bb 688 free_extent_buffer(eb);
ce9adaa5 689out:
f188591e 690 return ret;
ce9adaa5
CM
691}
692
4246a0b6 693static void end_workqueue_bio(struct bio *bio)
ce9adaa5 694{
97eb6b69 695 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 696 struct btrfs_fs_info *fs_info;
9e0af237
LB
697 struct btrfs_workqueue *wq;
698 btrfs_work_func_t func;
ce9adaa5 699
ce9adaa5 700 fs_info = end_io_wq->info;
4e4cbee9 701 end_io_wq->status = bio->bi_status;
d20f7043 702
37226b21 703 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
704 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
705 wq = fs_info->endio_meta_write_workers;
706 func = btrfs_endio_meta_write_helper;
707 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
708 wq = fs_info->endio_freespace_worker;
709 func = btrfs_freespace_write_helper;
710 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
711 wq = fs_info->endio_raid56_workers;
712 func = btrfs_endio_raid56_helper;
713 } else {
714 wq = fs_info->endio_write_workers;
715 func = btrfs_endio_write_helper;
716 }
d20f7043 717 } else {
8b110e39
MX
718 if (unlikely(end_io_wq->metadata ==
719 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
720 wq = fs_info->endio_repair_workers;
721 func = btrfs_endio_repair_helper;
722 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
723 wq = fs_info->endio_raid56_workers;
724 func = btrfs_endio_raid56_helper;
725 } else if (end_io_wq->metadata) {
726 wq = fs_info->endio_meta_workers;
727 func = btrfs_endio_meta_helper;
728 } else {
729 wq = fs_info->endio_workers;
730 func = btrfs_endio_helper;
731 }
d20f7043 732 }
9e0af237
LB
733
734 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
735 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
736}
737
4e4cbee9 738blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 739 enum btrfs_wq_endio_type metadata)
0b86a832 740{
97eb6b69 741 struct btrfs_end_io_wq *end_io_wq;
8b110e39 742
97eb6b69 743 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 744 if (!end_io_wq)
4e4cbee9 745 return BLK_STS_RESOURCE;
ce9adaa5
CM
746
747 end_io_wq->private = bio->bi_private;
748 end_io_wq->end_io = bio->bi_end_io;
22c59948 749 end_io_wq->info = info;
4e4cbee9 750 end_io_wq->status = 0;
ce9adaa5 751 end_io_wq->bio = bio;
22c59948 752 end_io_wq->metadata = metadata;
ce9adaa5
CM
753
754 bio->bi_private = end_io_wq;
755 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
756 return 0;
757}
758
4a69a410
CM
759static void run_one_async_start(struct btrfs_work *work)
760{
4a69a410 761 struct async_submit_bio *async;
4e4cbee9 762 blk_status_t ret;
4a69a410
CM
763
764 async = container_of(work, struct async_submit_bio, work);
c6100a4b 765 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
766 async->bio_offset);
767 if (ret)
4e4cbee9 768 async->status = ret;
4a69a410
CM
769}
770
06ea01b1
DS
771/*
772 * In order to insert checksums into the metadata in large chunks, we wait
773 * until bio submission time. All the pages in the bio are checksummed and
774 * sums are attached onto the ordered extent record.
775 *
776 * At IO completion time the csums attached on the ordered extent record are
777 * inserted into the tree.
778 */
4a69a410 779static void run_one_async_done(struct btrfs_work *work)
8b712842 780{
8b712842 781 struct async_submit_bio *async;
06ea01b1
DS
782 struct inode *inode;
783 blk_status_t ret;
8b712842
CM
784
785 async = container_of(work, struct async_submit_bio, work);
06ea01b1 786 inode = async->private_data;
4854ddd0 787
bb7ab3b9 788 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
789 if (async->status) {
790 async->bio->bi_status = async->status;
4246a0b6 791 bio_endio(async->bio);
79787eaa
JM
792 return;
793 }
794
06ea01b1
DS
795 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
796 async->mirror_num, 1);
797 if (ret) {
798 async->bio->bi_status = ret;
799 bio_endio(async->bio);
800 }
4a69a410
CM
801}
802
803static void run_one_async_free(struct btrfs_work *work)
804{
805 struct async_submit_bio *async;
806
807 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
808 kfree(async);
809}
810
8c27cb35
LT
811blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
812 int mirror_num, unsigned long bio_flags,
813 u64 bio_offset, void *private_data,
e288c080 814 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
815{
816 struct async_submit_bio *async;
817
818 async = kmalloc(sizeof(*async), GFP_NOFS);
819 if (!async)
4e4cbee9 820 return BLK_STS_RESOURCE;
44b8bd7e 821
c6100a4b 822 async->private_data = private_data;
44b8bd7e
CM
823 async->bio = bio;
824 async->mirror_num = mirror_num;
4a69a410 825 async->submit_bio_start = submit_bio_start;
4a69a410 826
9e0af237 827 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 828 run_one_async_done, run_one_async_free);
4a69a410 829
eaf25d93 830 async->bio_offset = bio_offset;
8c8bee1d 831
4e4cbee9 832 async->status = 0;
79787eaa 833
67f055c7 834 if (op_is_sync(bio->bi_opf))
5cdc7ad3 835 btrfs_set_work_high_priority(&async->work);
d313d7a3 836
5cdc7ad3 837 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
838 return 0;
839}
840
4e4cbee9 841static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 842{
2c30c71b 843 struct bio_vec *bvec;
ce3ed71a 844 struct btrfs_root *root;
2b070cfe 845 int ret = 0;
6dc4f100 846 struct bvec_iter_all iter_all;
ce3ed71a 847
c09abff8 848 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 849 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 850 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 851 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
852 if (ret)
853 break;
ce3ed71a 854 }
2c30c71b 855
4e4cbee9 856 return errno_to_blk_status(ret);
ce3ed71a
CM
857}
858
d0ee3934 859static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 860 u64 bio_offset)
22c59948 861{
8b712842
CM
862 /*
863 * when we're called for a write, we're already in the async
5443be45 864 * submission context. Just jump into btrfs_map_bio
8b712842 865 */
79787eaa 866 return btree_csum_one_bio(bio);
4a69a410 867}
22c59948 868
9b4e675a
DS
869static int check_async_write(struct btrfs_fs_info *fs_info,
870 struct btrfs_inode *bi)
de0022b9 871{
6300463b
LB
872 if (atomic_read(&bi->sync_writers))
873 return 0;
9b4e675a 874 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 875 return 0;
de0022b9
JB
876 return 1;
877}
878
a56b1c7b 879static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
880 int mirror_num,
881 unsigned long bio_flags)
44b8bd7e 882{
0b246afa 883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 884 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 885 blk_status_t ret;
cad321ad 886
37226b21 887 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
888 /*
889 * called for a read, do the setup so that checksum validation
890 * can happen in the async kernel threads
891 */
0b246afa
JM
892 ret = btrfs_bio_wq_end_io(fs_info, bio,
893 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 894 if (ret)
61891923 895 goto out_w_error;
2ff7e61e 896 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
897 } else if (!async) {
898 ret = btree_csum_one_bio(bio);
899 if (ret)
61891923 900 goto out_w_error;
2ff7e61e 901 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
902 } else {
903 /*
904 * kthread helpers are used to submit writes so that
905 * checksumming can happen in parallel across all CPUs
906 */
c6100a4b 907 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 908 0, inode, btree_submit_bio_start);
44b8bd7e 909 }
d313d7a3 910
4246a0b6
CH
911 if (ret)
912 goto out_w_error;
913 return 0;
914
61891923 915out_w_error:
4e4cbee9 916 bio->bi_status = ret;
4246a0b6 917 bio_endio(bio);
61891923 918 return ret;
44b8bd7e
CM
919}
920
3dd1462e 921#ifdef CONFIG_MIGRATION
784b4e29 922static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
923 struct page *newpage, struct page *page,
924 enum migrate_mode mode)
784b4e29
CM
925{
926 /*
927 * we can't safely write a btree page from here,
928 * we haven't done the locking hook
929 */
930 if (PageDirty(page))
931 return -EAGAIN;
932 /*
933 * Buffers may be managed in a filesystem specific way.
934 * We must have no buffers or drop them.
935 */
936 if (page_has_private(page) &&
937 !try_to_release_page(page, GFP_KERNEL))
938 return -EAGAIN;
a6bc32b8 939 return migrate_page(mapping, newpage, page, mode);
784b4e29 940}
3dd1462e 941#endif
784b4e29 942
0da5468f
CM
943
944static int btree_writepages(struct address_space *mapping,
945 struct writeback_control *wbc)
946{
e2d84521
MX
947 struct btrfs_fs_info *fs_info;
948 int ret;
949
d8d5f3e1 950 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
951
952 if (wbc->for_kupdate)
953 return 0;
954
e2d84521 955 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 956 /* this is a bit racy, but that's ok */
d814a491
EL
957 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
958 BTRFS_DIRTY_METADATA_THRESH,
959 fs_info->dirty_metadata_batch);
e2d84521 960 if (ret < 0)
793955bc 961 return 0;
793955bc 962 }
0b32f4bb 963 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
964}
965
b2950863 966static int btree_readpage(struct file *file, struct page *page)
5f39d397 967{
d1310b2e
CM
968 struct extent_io_tree *tree;
969 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 970 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 971}
22b0ebda 972
70dec807 973static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 974{
98509cfc 975 if (PageWriteback(page) || PageDirty(page))
d397712b 976 return 0;
0c4e538b 977
f7a52a40 978 return try_release_extent_buffer(page);
d98237b3
CM
979}
980
d47992f8
LC
981static void btree_invalidatepage(struct page *page, unsigned int offset,
982 unsigned int length)
d98237b3 983{
d1310b2e
CM
984 struct extent_io_tree *tree;
985 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
986 extent_invalidatepage(tree, page, offset);
987 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 988 if (PagePrivate(page)) {
efe120a0
FH
989 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
990 "page private not zero on page %llu",
991 (unsigned long long)page_offset(page));
9ad6b7bc
CM
992 ClearPagePrivate(page);
993 set_page_private(page, 0);
09cbfeaf 994 put_page(page);
9ad6b7bc 995 }
d98237b3
CM
996}
997
0b32f4bb
JB
998static int btree_set_page_dirty(struct page *page)
999{
bb146eb2 1000#ifdef DEBUG
0b32f4bb
JB
1001 struct extent_buffer *eb;
1002
1003 BUG_ON(!PagePrivate(page));
1004 eb = (struct extent_buffer *)page->private;
1005 BUG_ON(!eb);
1006 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1007 BUG_ON(!atomic_read(&eb->refs));
1008 btrfs_assert_tree_locked(eb);
bb146eb2 1009#endif
0b32f4bb
JB
1010 return __set_page_dirty_nobuffers(page);
1011}
1012
7f09410b 1013static const struct address_space_operations btree_aops = {
d98237b3 1014 .readpage = btree_readpage,
0da5468f 1015 .writepages = btree_writepages,
5f39d397
CM
1016 .releasepage = btree_releasepage,
1017 .invalidatepage = btree_invalidatepage,
5a92bc88 1018#ifdef CONFIG_MIGRATION
784b4e29 1019 .migratepage = btree_migratepage,
5a92bc88 1020#endif
0b32f4bb 1021 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1022};
1023
2ff7e61e 1024void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1025{
5f39d397 1026 struct extent_buffer *buf = NULL;
537f38f0 1027 int ret;
090d1875 1028
2ff7e61e 1029 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1030 if (IS_ERR(buf))
6197d86e 1031 return;
537f38f0 1032
c2ccfbc6 1033 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1034 if (ret < 0)
1035 free_extent_buffer_stale(buf);
1036 else
1037 free_extent_buffer(buf);
090d1875
CM
1038}
1039
2ff7e61e 1040int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1041 int mirror_num, struct extent_buffer **eb)
1042{
1043 struct extent_buffer *buf = NULL;
ab0fff03
AJ
1044 int ret;
1045
2ff7e61e 1046 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1047 if (IS_ERR(buf))
ab0fff03
AJ
1048 return 0;
1049
1050 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1051
c2ccfbc6 1052 ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
ab0fff03 1053 if (ret) {
537f38f0 1054 free_extent_buffer_stale(buf);
ab0fff03
AJ
1055 return ret;
1056 }
1057
1058 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
537f38f0 1059 free_extent_buffer_stale(buf);
ab0fff03 1060 return -EIO;
0b32f4bb 1061 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1062 *eb = buf;
1063 } else {
1064 free_extent_buffer(buf);
1065 }
1066 return 0;
1067}
1068
2ff7e61e
JM
1069struct extent_buffer *btrfs_find_create_tree_block(
1070 struct btrfs_fs_info *fs_info,
1071 u64 bytenr)
0999df54 1072{
0b246afa
JM
1073 if (btrfs_is_testing(fs_info))
1074 return alloc_test_extent_buffer(fs_info, bytenr);
1075 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1076}
1077
581c1760
QW
1078/*
1079 * Read tree block at logical address @bytenr and do variant basic but critical
1080 * verification.
1081 *
1082 * @parent_transid: expected transid of this tree block, skip check if 0
1083 * @level: expected level, mandatory check
1084 * @first_key: expected key in slot 0, skip check if NULL
1085 */
2ff7e61e 1086struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1087 u64 parent_transid, int level,
1088 struct btrfs_key *first_key)
0999df54
CM
1089{
1090 struct extent_buffer *buf = NULL;
0999df54
CM
1091 int ret;
1092
2ff7e61e 1093 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1094 if (IS_ERR(buf))
1095 return buf;
0999df54 1096
5ab12d1f 1097 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1098 level, first_key);
0f0fe8f7 1099 if (ret) {
537f38f0 1100 free_extent_buffer_stale(buf);
64c043de 1101 return ERR_PTR(ret);
0f0fe8f7 1102 }
5f39d397 1103 return buf;
ce9adaa5 1104
eb60ceac
CM
1105}
1106
6a884d7d 1107void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1108{
6a884d7d 1109 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1110 if (btrfs_header_generation(buf) ==
e2d84521 1111 fs_info->running_transaction->transid) {
b9447ef8 1112 btrfs_assert_tree_locked(buf);
b4ce94de 1113
b9473439 1114 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1115 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1116 -buf->len,
1117 fs_info->dirty_metadata_batch);
ed7b63eb 1118 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1119 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1120 clear_extent_buffer_dirty(buf);
1121 }
925baedd 1122 }
5f39d397
CM
1123}
1124
8257b2dc
MX
1125static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1126{
1127 struct btrfs_subvolume_writers *writers;
1128 int ret;
1129
1130 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1131 if (!writers)
1132 return ERR_PTR(-ENOMEM);
1133
8a5a916d 1134 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1135 if (ret < 0) {
1136 kfree(writers);
1137 return ERR_PTR(ret);
1138 }
1139
1140 init_waitqueue_head(&writers->wait);
1141 return writers;
1142}
1143
1144static void
1145btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1146{
1147 percpu_counter_destroy(&writers->counter);
1148 kfree(writers);
1149}
1150
da17066c 1151static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1152 u64 objectid)
d97e63b6 1153{
7c0260ee 1154 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1155 root->node = NULL;
a28ec197 1156 root->commit_root = NULL;
27cdeb70 1157 root->state = 0;
d68fc57b 1158 root->orphan_cleanup_state = 0;
0b86a832 1159
0f7d52f4 1160 root->last_trans = 0;
13a8a7c8 1161 root->highest_objectid = 0;
eb73c1b7 1162 root->nr_delalloc_inodes = 0;
199c2a9c 1163 root->nr_ordered_extents = 0;
6bef4d31 1164 root->inode_tree = RB_ROOT;
16cdcec7 1165 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1166 root->block_rsv = NULL;
0b86a832
CM
1167
1168 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1169 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1170 INIT_LIST_HEAD(&root->delalloc_inodes);
1171 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1172 INIT_LIST_HEAD(&root->ordered_extents);
1173 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1174 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1175 INIT_LIST_HEAD(&root->logged_list[0]);
1176 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1177 spin_lock_init(&root->inode_lock);
eb73c1b7 1178 spin_lock_init(&root->delalloc_lock);
199c2a9c 1179 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1180 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1181 spin_lock_init(&root->log_extents_lock[0]);
1182 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1183 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1184 mutex_init(&root->objectid_mutex);
e02119d5 1185 mutex_init(&root->log_mutex);
31f3d255 1186 mutex_init(&root->ordered_extent_mutex);
573bfb72 1187 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1188 init_waitqueue_head(&root->log_writer_wait);
1189 init_waitqueue_head(&root->log_commit_wait[0]);
1190 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1191 INIT_LIST_HEAD(&root->log_ctxs[0]);
1192 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1193 atomic_set(&root->log_commit[0], 0);
1194 atomic_set(&root->log_commit[1], 0);
1195 atomic_set(&root->log_writers, 0);
2ecb7923 1196 atomic_set(&root->log_batch, 0);
0700cea7 1197 refcount_set(&root->refs, 1);
ea14b57f 1198 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1199 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1200 atomic_set(&root->nr_swapfiles, 0);
7237f183 1201 root->log_transid = 0;
d1433deb 1202 root->log_transid_committed = -1;
257c62e1 1203 root->last_log_commit = 0;
7c0260ee 1204 if (!dummy)
43eb5f29
QW
1205 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1206 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1207
3768f368
CM
1208 memset(&root->root_key, 0, sizeof(root->root_key));
1209 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1210 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1211 if (!dummy)
06ea65a3
JB
1212 root->defrag_trans_start = fs_info->generation;
1213 else
1214 root->defrag_trans_start = 0;
4d775673 1215 root->root_key.objectid = objectid;
0ee5dc67 1216 root->anon_dev = 0;
8ea05e3a 1217
5f3ab90a 1218 spin_lock_init(&root->root_item_lock);
370a11b8 1219 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1220}
1221
74e4d827
DS
1222static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1223 gfp_t flags)
6f07e42e 1224{
74e4d827 1225 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1226 if (root)
1227 root->fs_info = fs_info;
1228 return root;
1229}
1230
06ea65a3
JB
1231#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1232/* Should only be used by the testing infrastructure */
da17066c 1233struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1234{
1235 struct btrfs_root *root;
1236
7c0260ee
JM
1237 if (!fs_info)
1238 return ERR_PTR(-EINVAL);
1239
1240 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1241 if (!root)
1242 return ERR_PTR(-ENOMEM);
da17066c 1243
b9ef22de 1244 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1245 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1246 root->alloc_bytenr = 0;
06ea65a3
JB
1247
1248 return root;
1249}
1250#endif
1251
20897f5c 1252struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1253 u64 objectid)
1254{
9b7a2440 1255 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1256 struct extent_buffer *leaf;
1257 struct btrfs_root *tree_root = fs_info->tree_root;
1258 struct btrfs_root *root;
1259 struct btrfs_key key;
b89f6d1f 1260 unsigned int nofs_flag;
20897f5c 1261 int ret = 0;
33d85fda 1262 uuid_le uuid = NULL_UUID_LE;
20897f5c 1263
b89f6d1f
FM
1264 /*
1265 * We're holding a transaction handle, so use a NOFS memory allocation
1266 * context to avoid deadlock if reclaim happens.
1267 */
1268 nofs_flag = memalloc_nofs_save();
74e4d827 1269 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1270 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1271 if (!root)
1272 return ERR_PTR(-ENOMEM);
1273
da17066c 1274 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1275 root->root_key.objectid = objectid;
1276 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277 root->root_key.offset = 0;
1278
4d75f8a9 1279 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1280 if (IS_ERR(leaf)) {
1281 ret = PTR_ERR(leaf);
1dd05682 1282 leaf = NULL;
20897f5c
AJ
1283 goto fail;
1284 }
1285
20897f5c 1286 root->node = leaf;
20897f5c
AJ
1287 btrfs_mark_buffer_dirty(leaf);
1288
1289 root->commit_root = btrfs_root_node(root);
27cdeb70 1290 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1291
1292 root->root_item.flags = 0;
1293 root->root_item.byte_limit = 0;
1294 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1295 btrfs_set_root_generation(&root->root_item, trans->transid);
1296 btrfs_set_root_level(&root->root_item, 0);
1297 btrfs_set_root_refs(&root->root_item, 1);
1298 btrfs_set_root_used(&root->root_item, leaf->len);
1299 btrfs_set_root_last_snapshot(&root->root_item, 0);
1300 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1301 if (is_fstree(objectid))
1302 uuid_le_gen(&uuid);
6463fe58 1303 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1304 root->root_item.drop_level = 0;
1305
1306 key.objectid = objectid;
1307 key.type = BTRFS_ROOT_ITEM_KEY;
1308 key.offset = 0;
1309 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1310 if (ret)
1311 goto fail;
1312
1313 btrfs_tree_unlock(leaf);
1314
1dd05682
TI
1315 return root;
1316
20897f5c 1317fail:
1dd05682
TI
1318 if (leaf) {
1319 btrfs_tree_unlock(leaf);
59885b39 1320 free_extent_buffer(root->commit_root);
1dd05682
TI
1321 free_extent_buffer(leaf);
1322 }
1323 kfree(root);
20897f5c 1324
1dd05682 1325 return ERR_PTR(ret);
20897f5c
AJ
1326}
1327
7237f183
YZ
1328static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1329 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1330{
1331 struct btrfs_root *root;
7237f183 1332 struct extent_buffer *leaf;
e02119d5 1333
74e4d827 1334 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1335 if (!root)
7237f183 1336 return ERR_PTR(-ENOMEM);
e02119d5 1337
da17066c 1338 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1339
1340 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1341 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1342 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1343
7237f183 1344 /*
27cdeb70
MX
1345 * DON'T set REF_COWS for log trees
1346 *
7237f183
YZ
1347 * log trees do not get reference counted because they go away
1348 * before a real commit is actually done. They do store pointers
1349 * to file data extents, and those reference counts still get
1350 * updated (along with back refs to the log tree).
1351 */
e02119d5 1352
4d75f8a9
DS
1353 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1354 NULL, 0, 0, 0);
7237f183
YZ
1355 if (IS_ERR(leaf)) {
1356 kfree(root);
1357 return ERR_CAST(leaf);
1358 }
e02119d5 1359
7237f183 1360 root->node = leaf;
e02119d5 1361
e02119d5
CM
1362 btrfs_mark_buffer_dirty(root->node);
1363 btrfs_tree_unlock(root->node);
7237f183
YZ
1364 return root;
1365}
1366
1367int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1368 struct btrfs_fs_info *fs_info)
1369{
1370 struct btrfs_root *log_root;
1371
1372 log_root = alloc_log_tree(trans, fs_info);
1373 if (IS_ERR(log_root))
1374 return PTR_ERR(log_root);
1375 WARN_ON(fs_info->log_root_tree);
1376 fs_info->log_root_tree = log_root;
1377 return 0;
1378}
1379
1380int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1381 struct btrfs_root *root)
1382{
0b246afa 1383 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1384 struct btrfs_root *log_root;
1385 struct btrfs_inode_item *inode_item;
1386
0b246afa 1387 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1388 if (IS_ERR(log_root))
1389 return PTR_ERR(log_root);
1390
1391 log_root->last_trans = trans->transid;
1392 log_root->root_key.offset = root->root_key.objectid;
1393
1394 inode_item = &log_root->root_item.inode;
3cae210f
QW
1395 btrfs_set_stack_inode_generation(inode_item, 1);
1396 btrfs_set_stack_inode_size(inode_item, 3);
1397 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1398 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1399 fs_info->nodesize);
3cae210f 1400 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1401
5d4f98a2 1402 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1403
1404 WARN_ON(root->log_root);
1405 root->log_root = log_root;
1406 root->log_transid = 0;
d1433deb 1407 root->log_transid_committed = -1;
257c62e1 1408 root->last_log_commit = 0;
e02119d5
CM
1409 return 0;
1410}
1411
35a3621b
SB
1412static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1413 struct btrfs_key *key)
e02119d5
CM
1414{
1415 struct btrfs_root *root;
1416 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1417 struct btrfs_path *path;
84234f3a 1418 u64 generation;
cb517eab 1419 int ret;
581c1760 1420 int level;
0f7d52f4 1421
cb517eab
MX
1422 path = btrfs_alloc_path();
1423 if (!path)
0f7d52f4 1424 return ERR_PTR(-ENOMEM);
cb517eab 1425
74e4d827 1426 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1427 if (!root) {
1428 ret = -ENOMEM;
1429 goto alloc_fail;
0f7d52f4
CM
1430 }
1431
da17066c 1432 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1433
cb517eab
MX
1434 ret = btrfs_find_root(tree_root, key, path,
1435 &root->root_item, &root->root_key);
0f7d52f4 1436 if (ret) {
13a8a7c8
YZ
1437 if (ret > 0)
1438 ret = -ENOENT;
cb517eab 1439 goto find_fail;
0f7d52f4 1440 }
13a8a7c8 1441
84234f3a 1442 generation = btrfs_root_generation(&root->root_item);
581c1760 1443 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1444 root->node = read_tree_block(fs_info,
1445 btrfs_root_bytenr(&root->root_item),
581c1760 1446 generation, level, NULL);
64c043de
LB
1447 if (IS_ERR(root->node)) {
1448 ret = PTR_ERR(root->node);
cb517eab
MX
1449 goto find_fail;
1450 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1451 ret = -EIO;
64c043de
LB
1452 free_extent_buffer(root->node);
1453 goto find_fail;
416bc658 1454 }
5d4f98a2 1455 root->commit_root = btrfs_root_node(root);
13a8a7c8 1456out:
cb517eab
MX
1457 btrfs_free_path(path);
1458 return root;
1459
cb517eab
MX
1460find_fail:
1461 kfree(root);
1462alloc_fail:
1463 root = ERR_PTR(ret);
1464 goto out;
1465}
1466
1467struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1468 struct btrfs_key *location)
1469{
1470 struct btrfs_root *root;
1471
1472 root = btrfs_read_tree_root(tree_root, location);
1473 if (IS_ERR(root))
1474 return root;
1475
1476 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1477 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1478 btrfs_check_and_init_root_item(&root->root_item);
1479 }
13a8a7c8 1480
5eda7b5e
CM
1481 return root;
1482}
1483
cb517eab
MX
1484int btrfs_init_fs_root(struct btrfs_root *root)
1485{
1486 int ret;
8257b2dc 1487 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1488
1489 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1490 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1491 GFP_NOFS);
1492 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1493 ret = -ENOMEM;
1494 goto fail;
1495 }
1496
8257b2dc
MX
1497 writers = btrfs_alloc_subvolume_writers();
1498 if (IS_ERR(writers)) {
1499 ret = PTR_ERR(writers);
1500 goto fail;
1501 }
1502 root->subv_writers = writers;
1503
cb517eab 1504 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1505 spin_lock_init(&root->ino_cache_lock);
1506 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1507
1508 ret = get_anon_bdev(&root->anon_dev);
1509 if (ret)
876d2cf1 1510 goto fail;
f32e48e9
CR
1511
1512 mutex_lock(&root->objectid_mutex);
1513 ret = btrfs_find_highest_objectid(root,
1514 &root->highest_objectid);
1515 if (ret) {
1516 mutex_unlock(&root->objectid_mutex);
876d2cf1 1517 goto fail;
f32e48e9
CR
1518 }
1519
1520 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1521
1522 mutex_unlock(&root->objectid_mutex);
1523
cb517eab
MX
1524 return 0;
1525fail:
84db5ccf 1526 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1527 return ret;
1528}
1529
35bbb97f
JM
1530struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1531 u64 root_id)
cb517eab
MX
1532{
1533 struct btrfs_root *root;
1534
1535 spin_lock(&fs_info->fs_roots_radix_lock);
1536 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1537 (unsigned long)root_id);
1538 spin_unlock(&fs_info->fs_roots_radix_lock);
1539 return root;
1540}
1541
1542int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1543 struct btrfs_root *root)
1544{
1545 int ret;
1546
e1860a77 1547 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1548 if (ret)
1549 return ret;
1550
1551 spin_lock(&fs_info->fs_roots_radix_lock);
1552 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1553 (unsigned long)root->root_key.objectid,
1554 root);
1555 if (ret == 0)
27cdeb70 1556 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1557 spin_unlock(&fs_info->fs_roots_radix_lock);
1558 radix_tree_preload_end();
1559
1560 return ret;
1561}
1562
c00869f1
MX
1563struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1564 struct btrfs_key *location,
1565 bool check_ref)
5eda7b5e
CM
1566{
1567 struct btrfs_root *root;
381cf658 1568 struct btrfs_path *path;
1d4c08e0 1569 struct btrfs_key key;
5eda7b5e
CM
1570 int ret;
1571
edbd8d4e
CM
1572 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1573 return fs_info->tree_root;
1574 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1575 return fs_info->extent_root;
8f18cf13
CM
1576 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1577 return fs_info->chunk_root;
1578 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1579 return fs_info->dev_root;
0403e47e
YZ
1580 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1581 return fs_info->csum_root;
bcef60f2
AJ
1582 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1583 return fs_info->quota_root ? fs_info->quota_root :
1584 ERR_PTR(-ENOENT);
f7a81ea4
SB
1585 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1586 return fs_info->uuid_root ? fs_info->uuid_root :
1587 ERR_PTR(-ENOENT);
70f6d82e
OS
1588 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1589 return fs_info->free_space_root ? fs_info->free_space_root :
1590 ERR_PTR(-ENOENT);
4df27c4d 1591again:
cb517eab 1592 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1593 if (root) {
c00869f1 1594 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1595 return ERR_PTR(-ENOENT);
5eda7b5e 1596 return root;
48475471 1597 }
5eda7b5e 1598
cb517eab 1599 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1600 if (IS_ERR(root))
1601 return root;
3394e160 1602
c00869f1 1603 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1604 ret = -ENOENT;
581bb050 1605 goto fail;
35a30d7c 1606 }
581bb050 1607
cb517eab 1608 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1609 if (ret)
1610 goto fail;
3394e160 1611
381cf658
DS
1612 path = btrfs_alloc_path();
1613 if (!path) {
1614 ret = -ENOMEM;
1615 goto fail;
1616 }
1d4c08e0
DS
1617 key.objectid = BTRFS_ORPHAN_OBJECTID;
1618 key.type = BTRFS_ORPHAN_ITEM_KEY;
1619 key.offset = location->objectid;
1620
1621 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1622 btrfs_free_path(path);
d68fc57b
YZ
1623 if (ret < 0)
1624 goto fail;
1625 if (ret == 0)
27cdeb70 1626 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1627
cb517eab 1628 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1629 if (ret) {
4df27c4d 1630 if (ret == -EEXIST) {
84db5ccf 1631 btrfs_free_fs_root(root);
4df27c4d
YZ
1632 goto again;
1633 }
1634 goto fail;
0f7d52f4 1635 }
edbd8d4e 1636 return root;
4df27c4d 1637fail:
84db5ccf 1638 btrfs_free_fs_root(root);
4df27c4d 1639 return ERR_PTR(ret);
edbd8d4e
CM
1640}
1641
04160088
CM
1642static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1643{
1644 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1645 int ret = 0;
04160088
CM
1646 struct btrfs_device *device;
1647 struct backing_dev_info *bdi;
b7967db7 1648
1f78160c
XG
1649 rcu_read_lock();
1650 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1651 if (!device->bdev)
1652 continue;
efa7c9f9 1653 bdi = device->bdev->bd_bdi;
ff9ea323 1654 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1655 ret = 1;
1656 break;
1657 }
1658 }
1f78160c 1659 rcu_read_unlock();
04160088
CM
1660 return ret;
1661}
1662
8b712842
CM
1663/*
1664 * called by the kthread helper functions to finally call the bio end_io
1665 * functions. This is where read checksum verification actually happens
1666 */
1667static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1668{
ce9adaa5 1669 struct bio *bio;
97eb6b69 1670 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1671
97eb6b69 1672 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1673 bio = end_io_wq->bio;
ce9adaa5 1674
4e4cbee9 1675 bio->bi_status = end_io_wq->status;
8b712842
CM
1676 bio->bi_private = end_io_wq->private;
1677 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1678 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1679 bio_endio(bio);
44b8bd7e
CM
1680}
1681
a74a4b97
CM
1682static int cleaner_kthread(void *arg)
1683{
1684 struct btrfs_root *root = arg;
0b246afa 1685 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1686 int again;
a74a4b97 1687
d6fd0ae2 1688 while (1) {
d0278245 1689 again = 0;
a74a4b97 1690
fd340d0f
JB
1691 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1692
d0278245 1693 /* Make the cleaner go to sleep early. */
2ff7e61e 1694 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1695 goto sleep;
1696
90c711ab
ZB
1697 /*
1698 * Do not do anything if we might cause open_ctree() to block
1699 * before we have finished mounting the filesystem.
1700 */
0b246afa 1701 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1702 goto sleep;
1703
0b246afa 1704 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1705 goto sleep;
1706
dc7f370c
MX
1707 /*
1708 * Avoid the problem that we change the status of the fs
1709 * during the above check and trylock.
1710 */
2ff7e61e 1711 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1712 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1713 goto sleep;
76dda93c 1714 }
a74a4b97 1715
2ff7e61e 1716 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1717
d0278245 1718 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1719 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1720
1721 /*
05323cd1
MX
1722 * The defragger has dealt with the R/O remount and umount,
1723 * needn't do anything special here.
d0278245 1724 */
0b246afa 1725 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1726
1727 /*
1728 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1729 * with relocation (btrfs_relocate_chunk) and relocation
1730 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1731 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1732 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1733 * unused block groups.
1734 */
0b246afa 1735 btrfs_delete_unused_bgs(fs_info);
d0278245 1736sleep:
fd340d0f 1737 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1738 if (kthread_should_park())
1739 kthread_parkme();
1740 if (kthread_should_stop())
1741 return 0;
838fe188 1742 if (!again) {
a74a4b97 1743 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1744 schedule();
a74a4b97
CM
1745 __set_current_state(TASK_RUNNING);
1746 }
da288d28 1747 }
a74a4b97
CM
1748}
1749
1750static int transaction_kthread(void *arg)
1751{
1752 struct btrfs_root *root = arg;
0b246afa 1753 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1754 struct btrfs_trans_handle *trans;
1755 struct btrfs_transaction *cur;
8929ecfa 1756 u64 transid;
a944442c 1757 time64_t now;
a74a4b97 1758 unsigned long delay;
914b2007 1759 bool cannot_commit;
a74a4b97
CM
1760
1761 do {
914b2007 1762 cannot_commit = false;
0b246afa
JM
1763 delay = HZ * fs_info->commit_interval;
1764 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1765
0b246afa
JM
1766 spin_lock(&fs_info->trans_lock);
1767 cur = fs_info->running_transaction;
a74a4b97 1768 if (!cur) {
0b246afa 1769 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1770 goto sleep;
1771 }
31153d81 1772
afd48513 1773 now = ktime_get_seconds();
4a9d8bde 1774 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1775 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1776 (now < cur->start_time ||
0b246afa
JM
1777 now - cur->start_time < fs_info->commit_interval)) {
1778 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1779 delay = HZ * 5;
1780 goto sleep;
1781 }
8929ecfa 1782 transid = cur->transid;
0b246afa 1783 spin_unlock(&fs_info->trans_lock);
56bec294 1784
79787eaa 1785 /* If the file system is aborted, this will always fail. */
354aa0fb 1786 trans = btrfs_attach_transaction(root);
914b2007 1787 if (IS_ERR(trans)) {
354aa0fb
MX
1788 if (PTR_ERR(trans) != -ENOENT)
1789 cannot_commit = true;
79787eaa 1790 goto sleep;
914b2007 1791 }
8929ecfa 1792 if (transid == trans->transid) {
3a45bb20 1793 btrfs_commit_transaction(trans);
8929ecfa 1794 } else {
3a45bb20 1795 btrfs_end_transaction(trans);
8929ecfa 1796 }
a74a4b97 1797sleep:
0b246afa
JM
1798 wake_up_process(fs_info->cleaner_kthread);
1799 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1800
4e121c06 1801 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1802 &fs_info->fs_state)))
2ff7e61e 1803 btrfs_cleanup_transaction(fs_info);
ce63f891 1804 if (!kthread_should_stop() &&
0b246afa 1805 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1806 cannot_commit))
bc5511d0 1807 schedule_timeout_interruptible(delay);
a74a4b97
CM
1808 } while (!kthread_should_stop());
1809 return 0;
1810}
1811
af31f5e5
CM
1812/*
1813 * this will find the highest generation in the array of
1814 * root backups. The index of the highest array is returned,
1815 * or -1 if we can't find anything.
1816 *
1817 * We check to make sure the array is valid by comparing the
1818 * generation of the latest root in the array with the generation
1819 * in the super block. If they don't match we pitch it.
1820 */
1821static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1822{
1823 u64 cur;
1824 int newest_index = -1;
1825 struct btrfs_root_backup *root_backup;
1826 int i;
1827
1828 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1829 root_backup = info->super_copy->super_roots + i;
1830 cur = btrfs_backup_tree_root_gen(root_backup);
1831 if (cur == newest_gen)
1832 newest_index = i;
1833 }
1834
1835 /* check to see if we actually wrapped around */
1836 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1837 root_backup = info->super_copy->super_roots;
1838 cur = btrfs_backup_tree_root_gen(root_backup);
1839 if (cur == newest_gen)
1840 newest_index = 0;
1841 }
1842 return newest_index;
1843}
1844
1845
1846/*
1847 * find the oldest backup so we know where to store new entries
1848 * in the backup array. This will set the backup_root_index
1849 * field in the fs_info struct
1850 */
1851static void find_oldest_super_backup(struct btrfs_fs_info *info,
1852 u64 newest_gen)
1853{
1854 int newest_index = -1;
1855
1856 newest_index = find_newest_super_backup(info, newest_gen);
1857 /* if there was garbage in there, just move along */
1858 if (newest_index == -1) {
1859 info->backup_root_index = 0;
1860 } else {
1861 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1862 }
1863}
1864
1865/*
1866 * copy all the root pointers into the super backup array.
1867 * this will bump the backup pointer by one when it is
1868 * done
1869 */
1870static void backup_super_roots(struct btrfs_fs_info *info)
1871{
1872 int next_backup;
1873 struct btrfs_root_backup *root_backup;
1874 int last_backup;
1875
1876 next_backup = info->backup_root_index;
1877 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1878 BTRFS_NUM_BACKUP_ROOTS;
1879
1880 /*
1881 * just overwrite the last backup if we're at the same generation
1882 * this happens only at umount
1883 */
1884 root_backup = info->super_for_commit->super_roots + last_backup;
1885 if (btrfs_backup_tree_root_gen(root_backup) ==
1886 btrfs_header_generation(info->tree_root->node))
1887 next_backup = last_backup;
1888
1889 root_backup = info->super_for_commit->super_roots + next_backup;
1890
1891 /*
1892 * make sure all of our padding and empty slots get zero filled
1893 * regardless of which ones we use today
1894 */
1895 memset(root_backup, 0, sizeof(*root_backup));
1896
1897 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1898
1899 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1900 btrfs_set_backup_tree_root_gen(root_backup,
1901 btrfs_header_generation(info->tree_root->node));
1902
1903 btrfs_set_backup_tree_root_level(root_backup,
1904 btrfs_header_level(info->tree_root->node));
1905
1906 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1907 btrfs_set_backup_chunk_root_gen(root_backup,
1908 btrfs_header_generation(info->chunk_root->node));
1909 btrfs_set_backup_chunk_root_level(root_backup,
1910 btrfs_header_level(info->chunk_root->node));
1911
1912 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1913 btrfs_set_backup_extent_root_gen(root_backup,
1914 btrfs_header_generation(info->extent_root->node));
1915 btrfs_set_backup_extent_root_level(root_backup,
1916 btrfs_header_level(info->extent_root->node));
1917
7c7e82a7
CM
1918 /*
1919 * we might commit during log recovery, which happens before we set
1920 * the fs_root. Make sure it is valid before we fill it in.
1921 */
1922 if (info->fs_root && info->fs_root->node) {
1923 btrfs_set_backup_fs_root(root_backup,
1924 info->fs_root->node->start);
1925 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1926 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1927 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1928 btrfs_header_level(info->fs_root->node));
7c7e82a7 1929 }
af31f5e5
CM
1930
1931 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1932 btrfs_set_backup_dev_root_gen(root_backup,
1933 btrfs_header_generation(info->dev_root->node));
1934 btrfs_set_backup_dev_root_level(root_backup,
1935 btrfs_header_level(info->dev_root->node));
1936
1937 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1938 btrfs_set_backup_csum_root_gen(root_backup,
1939 btrfs_header_generation(info->csum_root->node));
1940 btrfs_set_backup_csum_root_level(root_backup,
1941 btrfs_header_level(info->csum_root->node));
1942
1943 btrfs_set_backup_total_bytes(root_backup,
1944 btrfs_super_total_bytes(info->super_copy));
1945 btrfs_set_backup_bytes_used(root_backup,
1946 btrfs_super_bytes_used(info->super_copy));
1947 btrfs_set_backup_num_devices(root_backup,
1948 btrfs_super_num_devices(info->super_copy));
1949
1950 /*
1951 * if we don't copy this out to the super_copy, it won't get remembered
1952 * for the next commit
1953 */
1954 memcpy(&info->super_copy->super_roots,
1955 &info->super_for_commit->super_roots,
1956 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1957}
1958
1959/*
1960 * this copies info out of the root backup array and back into
1961 * the in-memory super block. It is meant to help iterate through
1962 * the array, so you send it the number of backups you've already
1963 * tried and the last backup index you used.
1964 *
1965 * this returns -1 when it has tried all the backups
1966 */
1967static noinline int next_root_backup(struct btrfs_fs_info *info,
1968 struct btrfs_super_block *super,
1969 int *num_backups_tried, int *backup_index)
1970{
1971 struct btrfs_root_backup *root_backup;
1972 int newest = *backup_index;
1973
1974 if (*num_backups_tried == 0) {
1975 u64 gen = btrfs_super_generation(super);
1976
1977 newest = find_newest_super_backup(info, gen);
1978 if (newest == -1)
1979 return -1;
1980
1981 *backup_index = newest;
1982 *num_backups_tried = 1;
1983 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1984 /* we've tried all the backups, all done */
1985 return -1;
1986 } else {
1987 /* jump to the next oldest backup */
1988 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1989 BTRFS_NUM_BACKUP_ROOTS;
1990 *backup_index = newest;
1991 *num_backups_tried += 1;
1992 }
1993 root_backup = super->super_roots + newest;
1994
1995 btrfs_set_super_generation(super,
1996 btrfs_backup_tree_root_gen(root_backup));
1997 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1998 btrfs_set_super_root_level(super,
1999 btrfs_backup_tree_root_level(root_backup));
2000 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2001
2002 /*
2003 * fixme: the total bytes and num_devices need to match or we should
2004 * need a fsck
2005 */
2006 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2007 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2008 return 0;
2009}
2010
7abadb64
LB
2011/* helper to cleanup workers */
2012static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2013{
dc6e3209 2014 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2015 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2016 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2017 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2018 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2019 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2020 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2021 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2022 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2023 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2024 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2025 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2026 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2027 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2028 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2029 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2030 /*
2031 * Now that all other work queues are destroyed, we can safely destroy
2032 * the queues used for metadata I/O, since tasks from those other work
2033 * queues can do metadata I/O operations.
2034 */
2035 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2036 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2037}
2038
2e9f5954
R
2039static void free_root_extent_buffers(struct btrfs_root *root)
2040{
2041 if (root) {
2042 free_extent_buffer(root->node);
2043 free_extent_buffer(root->commit_root);
2044 root->node = NULL;
2045 root->commit_root = NULL;
2046 }
2047}
2048
af31f5e5
CM
2049/* helper to cleanup tree roots */
2050static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2051{
2e9f5954 2052 free_root_extent_buffers(info->tree_root);
655b09fe 2053
2e9f5954
R
2054 free_root_extent_buffers(info->dev_root);
2055 free_root_extent_buffers(info->extent_root);
2056 free_root_extent_buffers(info->csum_root);
2057 free_root_extent_buffers(info->quota_root);
2058 free_root_extent_buffers(info->uuid_root);
2059 if (chunk_root)
2060 free_root_extent_buffers(info->chunk_root);
70f6d82e 2061 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2062}
2063
faa2dbf0 2064void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2065{
2066 int ret;
2067 struct btrfs_root *gang[8];
2068 int i;
2069
2070 while (!list_empty(&fs_info->dead_roots)) {
2071 gang[0] = list_entry(fs_info->dead_roots.next,
2072 struct btrfs_root, root_list);
2073 list_del(&gang[0]->root_list);
2074
27cdeb70 2075 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2076 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2077 } else {
2078 free_extent_buffer(gang[0]->node);
2079 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2080 btrfs_put_fs_root(gang[0]);
171f6537
JB
2081 }
2082 }
2083
2084 while (1) {
2085 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2086 (void **)gang, 0,
2087 ARRAY_SIZE(gang));
2088 if (!ret)
2089 break;
2090 for (i = 0; i < ret; i++)
cb517eab 2091 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2092 }
1a4319cc
LB
2093
2094 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2095 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2096 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2097 }
171f6537 2098}
af31f5e5 2099
638aa7ed
ES
2100static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2101{
2102 mutex_init(&fs_info->scrub_lock);
2103 atomic_set(&fs_info->scrubs_running, 0);
2104 atomic_set(&fs_info->scrub_pause_req, 0);
2105 atomic_set(&fs_info->scrubs_paused, 0);
2106 atomic_set(&fs_info->scrub_cancel_req, 0);
2107 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2108 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2109}
2110
779a65a4
ES
2111static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2112{
2113 spin_lock_init(&fs_info->balance_lock);
2114 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2115 atomic_set(&fs_info->balance_pause_req, 0);
2116 atomic_set(&fs_info->balance_cancel_req, 0);
2117 fs_info->balance_ctl = NULL;
2118 init_waitqueue_head(&fs_info->balance_wait_q);
2119}
2120
6bccf3ab 2121static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2122{
2ff7e61e
JM
2123 struct inode *inode = fs_info->btree_inode;
2124
2125 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2126 set_nlink(inode, 1);
f37938e0
ES
2127 /*
2128 * we set the i_size on the btree inode to the max possible int.
2129 * the real end of the address space is determined by all of
2130 * the devices in the system
2131 */
2ff7e61e
JM
2132 inode->i_size = OFFSET_MAX;
2133 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2134
2ff7e61e 2135 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2136 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2137 IO_TREE_INODE_IO, inode);
7b439738 2138 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2139 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2140
2ff7e61e 2141 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2142
2ff7e61e
JM
2143 BTRFS_I(inode)->root = fs_info->tree_root;
2144 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2145 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2146 btrfs_insert_inode_hash(inode);
f37938e0
ES
2147}
2148
ad618368
ES
2149static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2150{
ad618368 2151 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2152 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2153 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2154}
2155
f9e92e40
ES
2156static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2157{
2158 spin_lock_init(&fs_info->qgroup_lock);
2159 mutex_init(&fs_info->qgroup_ioctl_lock);
2160 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2161 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2162 fs_info->qgroup_seq = 1;
f9e92e40 2163 fs_info->qgroup_ulist = NULL;
d2c609b8 2164 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2165 mutex_init(&fs_info->qgroup_rescan_lock);
2166}
2167
2a458198
ES
2168static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2169 struct btrfs_fs_devices *fs_devices)
2170{
f7b885be 2171 u32 max_active = fs_info->thread_pool_size;
6f011058 2172 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2173
2174 fs_info->workers =
cb001095
JM
2175 btrfs_alloc_workqueue(fs_info, "worker",
2176 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2177
2178 fs_info->delalloc_workers =
cb001095
JM
2179 btrfs_alloc_workqueue(fs_info, "delalloc",
2180 flags, max_active, 2);
2a458198
ES
2181
2182 fs_info->flush_workers =
cb001095
JM
2183 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2184 flags, max_active, 0);
2a458198
ES
2185
2186 fs_info->caching_workers =
cb001095 2187 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2188
2189 /*
2190 * a higher idle thresh on the submit workers makes it much more
2191 * likely that bios will be send down in a sane order to the
2192 * devices
2193 */
2194 fs_info->submit_workers =
cb001095 2195 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2196 min_t(u64, fs_devices->num_devices,
2197 max_active), 64);
2198
2199 fs_info->fixup_workers =
cb001095 2200 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2201
2202 /*
2203 * endios are largely parallel and should have a very
2204 * low idle thresh
2205 */
2206 fs_info->endio_workers =
cb001095 2207 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2208 fs_info->endio_meta_workers =
cb001095
JM
2209 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2210 max_active, 4);
2a458198 2211 fs_info->endio_meta_write_workers =
cb001095
JM
2212 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2213 max_active, 2);
2a458198 2214 fs_info->endio_raid56_workers =
cb001095
JM
2215 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2216 max_active, 4);
2a458198 2217 fs_info->endio_repair_workers =
cb001095 2218 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2219 fs_info->rmw_workers =
cb001095 2220 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2221 fs_info->endio_write_workers =
cb001095
JM
2222 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2223 max_active, 2);
2a458198 2224 fs_info->endio_freespace_worker =
cb001095
JM
2225 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2226 max_active, 0);
2a458198 2227 fs_info->delayed_workers =
cb001095
JM
2228 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2229 max_active, 0);
2a458198 2230 fs_info->readahead_workers =
cb001095
JM
2231 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2232 max_active, 2);
2a458198 2233 fs_info->qgroup_rescan_workers =
cb001095 2234 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2235 fs_info->extent_workers =
cb001095 2236 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2237 min_t(u64, fs_devices->num_devices,
2238 max_active), 8);
2239
2240 if (!(fs_info->workers && fs_info->delalloc_workers &&
2241 fs_info->submit_workers && fs_info->flush_workers &&
2242 fs_info->endio_workers && fs_info->endio_meta_workers &&
2243 fs_info->endio_meta_write_workers &&
2244 fs_info->endio_repair_workers &&
2245 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2246 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2247 fs_info->caching_workers && fs_info->readahead_workers &&
2248 fs_info->fixup_workers && fs_info->delayed_workers &&
2249 fs_info->extent_workers &&
2250 fs_info->qgroup_rescan_workers)) {
2251 return -ENOMEM;
2252 }
2253
2254 return 0;
2255}
2256
6d97c6e3
JT
2257static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2258{
2259 struct crypto_shash *csum_shash;
2260 const char *csum_name = btrfs_super_csum_name(csum_type);
2261
2262 csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2263
2264 if (IS_ERR(csum_shash)) {
2265 btrfs_err(fs_info, "error allocating %s hash for checksum",
2266 csum_name);
2267 return PTR_ERR(csum_shash);
2268 }
2269
2270 fs_info->csum_shash = csum_shash;
2271
2272 return 0;
2273}
2274
2275static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2276{
2277 crypto_free_shash(fs_info->csum_shash);
2278}
2279
63443bf5
ES
2280static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2281 struct btrfs_fs_devices *fs_devices)
2282{
2283 int ret;
63443bf5
ES
2284 struct btrfs_root *log_tree_root;
2285 struct btrfs_super_block *disk_super = fs_info->super_copy;
2286 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2287 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2288
2289 if (fs_devices->rw_devices == 0) {
f14d104d 2290 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2291 return -EIO;
2292 }
2293
74e4d827 2294 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2295 if (!log_tree_root)
2296 return -ENOMEM;
2297
da17066c 2298 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2299
2ff7e61e 2300 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2301 fs_info->generation + 1,
2302 level, NULL);
64c043de 2303 if (IS_ERR(log_tree_root->node)) {
f14d104d 2304 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2305 ret = PTR_ERR(log_tree_root->node);
64c043de 2306 kfree(log_tree_root);
0eeff236 2307 return ret;
64c043de 2308 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2309 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2310 free_extent_buffer(log_tree_root->node);
2311 kfree(log_tree_root);
2312 return -EIO;
2313 }
2314 /* returns with log_tree_root freed on success */
2315 ret = btrfs_recover_log_trees(log_tree_root);
2316 if (ret) {
0b246afa
JM
2317 btrfs_handle_fs_error(fs_info, ret,
2318 "Failed to recover log tree");
63443bf5
ES
2319 free_extent_buffer(log_tree_root->node);
2320 kfree(log_tree_root);
2321 return ret;
2322 }
2323
bc98a42c 2324 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2325 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2326 if (ret)
2327 return ret;
2328 }
2329
2330 return 0;
2331}
2332
6bccf3ab 2333static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2334{
6bccf3ab 2335 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2336 struct btrfs_root *root;
4bbcaa64
ES
2337 struct btrfs_key location;
2338 int ret;
2339
6bccf3ab
JM
2340 BUG_ON(!fs_info->tree_root);
2341
4bbcaa64
ES
2342 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2343 location.type = BTRFS_ROOT_ITEM_KEY;
2344 location.offset = 0;
2345
a4f3d2c4 2346 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2347 if (IS_ERR(root)) {
2348 ret = PTR_ERR(root);
2349 goto out;
2350 }
a4f3d2c4
DS
2351 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2352 fs_info->extent_root = root;
4bbcaa64
ES
2353
2354 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2355 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2356 if (IS_ERR(root)) {
2357 ret = PTR_ERR(root);
2358 goto out;
2359 }
a4f3d2c4
DS
2360 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361 fs_info->dev_root = root;
4bbcaa64
ES
2362 btrfs_init_devices_late(fs_info);
2363
2364 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2365 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2366 if (IS_ERR(root)) {
2367 ret = PTR_ERR(root);
2368 goto out;
2369 }
a4f3d2c4
DS
2370 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371 fs_info->csum_root = root;
4bbcaa64
ES
2372
2373 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2374 root = btrfs_read_tree_root(tree_root, &location);
2375 if (!IS_ERR(root)) {
2376 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2377 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2378 fs_info->quota_root = root;
4bbcaa64
ES
2379 }
2380
2381 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2382 root = btrfs_read_tree_root(tree_root, &location);
2383 if (IS_ERR(root)) {
2384 ret = PTR_ERR(root);
4bbcaa64 2385 if (ret != -ENOENT)
f50f4353 2386 goto out;
4bbcaa64 2387 } else {
a4f3d2c4
DS
2388 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389 fs_info->uuid_root = root;
4bbcaa64
ES
2390 }
2391
70f6d82e
OS
2392 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2393 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2394 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2395 if (IS_ERR(root)) {
2396 ret = PTR_ERR(root);
2397 goto out;
2398 }
70f6d82e
OS
2399 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2400 fs_info->free_space_root = root;
2401 }
2402
4bbcaa64 2403 return 0;
f50f4353
LB
2404out:
2405 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2406 location.objectid, ret);
2407 return ret;
4bbcaa64
ES
2408}
2409
069ec957
QW
2410/*
2411 * Real super block validation
2412 * NOTE: super csum type and incompat features will not be checked here.
2413 *
2414 * @sb: super block to check
2415 * @mirror_num: the super block number to check its bytenr:
2416 * 0 the primary (1st) sb
2417 * 1, 2 2nd and 3rd backup copy
2418 * -1 skip bytenr check
2419 */
2420static int validate_super(struct btrfs_fs_info *fs_info,
2421 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2422{
21a852b0
QW
2423 u64 nodesize = btrfs_super_nodesize(sb);
2424 u64 sectorsize = btrfs_super_sectorsize(sb);
2425 int ret = 0;
2426
2427 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2428 btrfs_err(fs_info, "no valid FS found");
2429 ret = -EINVAL;
2430 }
2431 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2432 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2433 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2434 ret = -EINVAL;
2435 }
2436 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2437 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2438 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2439 ret = -EINVAL;
2440 }
2441 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2442 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2443 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2444 ret = -EINVAL;
2445 }
2446 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2447 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2448 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2449 ret = -EINVAL;
2450 }
2451
2452 /*
2453 * Check sectorsize and nodesize first, other check will need it.
2454 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2455 */
2456 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2457 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2458 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2459 ret = -EINVAL;
2460 }
2461 /* Only PAGE SIZE is supported yet */
2462 if (sectorsize != PAGE_SIZE) {
2463 btrfs_err(fs_info,
2464 "sectorsize %llu not supported yet, only support %lu",
2465 sectorsize, PAGE_SIZE);
2466 ret = -EINVAL;
2467 }
2468 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2469 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2470 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2471 ret = -EINVAL;
2472 }
2473 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2474 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2475 le32_to_cpu(sb->__unused_leafsize), nodesize);
2476 ret = -EINVAL;
2477 }
2478
2479 /* Root alignment check */
2480 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2481 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2482 btrfs_super_root(sb));
2483 ret = -EINVAL;
2484 }
2485 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2486 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2487 btrfs_super_chunk_root(sb));
2488 ret = -EINVAL;
2489 }
2490 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2491 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2492 btrfs_super_log_root(sb));
2493 ret = -EINVAL;
2494 }
2495
de37aa51 2496 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2497 BTRFS_FSID_SIZE) != 0) {
21a852b0 2498 btrfs_err(fs_info,
7239ff4b 2499 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2500 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2501 ret = -EINVAL;
2502 }
2503
2504 /*
2505 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2506 * done later
2507 */
2508 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2509 btrfs_err(fs_info, "bytes_used is too small %llu",
2510 btrfs_super_bytes_used(sb));
2511 ret = -EINVAL;
2512 }
2513 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2514 btrfs_err(fs_info, "invalid stripesize %u",
2515 btrfs_super_stripesize(sb));
2516 ret = -EINVAL;
2517 }
2518 if (btrfs_super_num_devices(sb) > (1UL << 31))
2519 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2520 btrfs_super_num_devices(sb));
2521 if (btrfs_super_num_devices(sb) == 0) {
2522 btrfs_err(fs_info, "number of devices is 0");
2523 ret = -EINVAL;
2524 }
2525
069ec957
QW
2526 if (mirror_num >= 0 &&
2527 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2528 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2529 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2530 ret = -EINVAL;
2531 }
2532
2533 /*
2534 * Obvious sys_chunk_array corruptions, it must hold at least one key
2535 * and one chunk
2536 */
2537 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2538 btrfs_err(fs_info, "system chunk array too big %u > %u",
2539 btrfs_super_sys_array_size(sb),
2540 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2541 ret = -EINVAL;
2542 }
2543 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2544 + sizeof(struct btrfs_chunk)) {
2545 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2546 btrfs_super_sys_array_size(sb),
2547 sizeof(struct btrfs_disk_key)
2548 + sizeof(struct btrfs_chunk));
2549 ret = -EINVAL;
2550 }
2551
2552 /*
2553 * The generation is a global counter, we'll trust it more than the others
2554 * but it's still possible that it's the one that's wrong.
2555 */
2556 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2557 btrfs_warn(fs_info,
2558 "suspicious: generation < chunk_root_generation: %llu < %llu",
2559 btrfs_super_generation(sb),
2560 btrfs_super_chunk_root_generation(sb));
2561 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2562 && btrfs_super_cache_generation(sb) != (u64)-1)
2563 btrfs_warn(fs_info,
2564 "suspicious: generation < cache_generation: %llu < %llu",
2565 btrfs_super_generation(sb),
2566 btrfs_super_cache_generation(sb));
2567
2568 return ret;
2569}
2570
069ec957
QW
2571/*
2572 * Validation of super block at mount time.
2573 * Some checks already done early at mount time, like csum type and incompat
2574 * flags will be skipped.
2575 */
2576static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2577{
2578 return validate_super(fs_info, fs_info->super_copy, 0);
2579}
2580
75cb857d
QW
2581/*
2582 * Validation of super block at write time.
2583 * Some checks like bytenr check will be skipped as their values will be
2584 * overwritten soon.
2585 * Extra checks like csum type and incompat flags will be done here.
2586 */
2587static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2588 struct btrfs_super_block *sb)
2589{
2590 int ret;
2591
2592 ret = validate_super(fs_info, sb, -1);
2593 if (ret < 0)
2594 goto out;
e7e16f48 2595 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2596 ret = -EUCLEAN;
2597 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2598 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2599 goto out;
2600 }
2601 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2602 ret = -EUCLEAN;
2603 btrfs_err(fs_info,
2604 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2605 btrfs_super_incompat_flags(sb),
2606 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2607 goto out;
2608 }
2609out:
2610 if (ret < 0)
2611 btrfs_err(fs_info,
2612 "super block corruption detected before writing it to disk");
2613 return ret;
2614}
2615
ad2b2c80
AV
2616int open_ctree(struct super_block *sb,
2617 struct btrfs_fs_devices *fs_devices,
2618 char *options)
2e635a27 2619{
db94535d
CM
2620 u32 sectorsize;
2621 u32 nodesize;
87ee04eb 2622 u32 stripesize;
84234f3a 2623 u64 generation;
f2b636e8 2624 u64 features;
51bce6c9 2625 u16 csum_type;
3de4586c 2626 struct btrfs_key location;
a061fc8d 2627 struct buffer_head *bh;
4d34b278 2628 struct btrfs_super_block *disk_super;
815745cf 2629 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2630 struct btrfs_root *tree_root;
4d34b278 2631 struct btrfs_root *chunk_root;
eb60ceac 2632 int ret;
e58ca020 2633 int err = -EINVAL;
af31f5e5
CM
2634 int num_backups_tried = 0;
2635 int backup_index = 0;
6675df31 2636 int clear_free_space_tree = 0;
581c1760 2637 int level;
4543df7e 2638
74e4d827
DS
2639 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2640 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2641 if (!tree_root || !chunk_root) {
39279cc3
CM
2642 err = -ENOMEM;
2643 goto fail;
2644 }
76dda93c
YZ
2645
2646 ret = init_srcu_struct(&fs_info->subvol_srcu);
2647 if (ret) {
2648 err = ret;
2649 goto fail;
2650 }
2651
4297ff84 2652 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
e2d84521
MX
2653 if (ret) {
2654 err = ret;
9e11ceee 2655 goto fail_srcu;
e2d84521 2656 }
4297ff84
JB
2657
2658 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2659 if (ret) {
2660 err = ret;
2661 goto fail_dio_bytes;
2662 }
09cbfeaf 2663 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2664 (1 + ilog2(nr_cpu_ids));
2665
908c7f19 2666 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2667 if (ret) {
2668 err = ret;
2669 goto fail_dirty_metadata_bytes;
2670 }
2671
7f8d236a
DS
2672 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2673 GFP_KERNEL);
c404e0dc
MX
2674 if (ret) {
2675 err = ret;
2676 goto fail_delalloc_bytes;
2677 }
2678
76dda93c 2679 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2680 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2681 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2682 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2683 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2684 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2685 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2686 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2687 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2688 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2689 spin_lock_init(&fs_info->trans_lock);
76dda93c 2690 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2691 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2692 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2693 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2694 spin_lock_init(&fs_info->super_lock);
f28491e0 2695 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2696 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2697 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2698 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2699 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2700 mutex_init(&fs_info->reloc_mutex);
573bfb72 2701 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2702 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2703
0b86a832 2704 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2705 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2706 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2707 INIT_LIST_HEAD(&fs_info->unused_bgs);
c8bf1b67 2708 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2709 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2710 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2711 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2712 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2713 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2714 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2715 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2716 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2717 BTRFS_BLOCK_RSV_DELREFS);
2718
771ed689 2719 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2720 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2721 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2722 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2723 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2724 fs_info->sb = sb;
95ac567a 2725 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2726 fs_info->metadata_ratio = 0;
4cb5300b 2727 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2728 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2729 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2730 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2731 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2732 /* readahead state */
d0164adc 2733 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2734 spin_lock_init(&fs_info->reada_lock);
fd708b81 2735 btrfs_init_ref_verify(fs_info);
c8b97818 2736
b34b086c
CM
2737 fs_info->thread_pool_size = min_t(unsigned long,
2738 num_online_cpus() + 2, 8);
0afbaf8c 2739
199c2a9c
MX
2740 INIT_LIST_HEAD(&fs_info->ordered_roots);
2741 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2742
2743 fs_info->btree_inode = new_inode(sb);
2744 if (!fs_info->btree_inode) {
2745 err = -ENOMEM;
2746 goto fail_bio_counter;
2747 }
2748 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2749
16cdcec7 2750 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2751 GFP_KERNEL);
16cdcec7
MX
2752 if (!fs_info->delayed_root) {
2753 err = -ENOMEM;
2754 goto fail_iput;
2755 }
2756 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2757
638aa7ed 2758 btrfs_init_scrub(fs_info);
21adbd5c
SB
2759#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2760 fs_info->check_integrity_print_mask = 0;
2761#endif
779a65a4 2762 btrfs_init_balance(fs_info);
21c7e756 2763 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2764
9f6d2510
DS
2765 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2766 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2767
6bccf3ab 2768 btrfs_init_btree_inode(fs_info);
76dda93c 2769
0f9dd46c 2770 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2771 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2772 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2773
43eb5f29
QW
2774 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2775 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2776 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2777 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2778 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2779 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2780
5a3f23d5 2781 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2782 mutex_init(&fs_info->tree_log_mutex);
925baedd 2783 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2784 mutex_init(&fs_info->transaction_kthread_mutex);
2785 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2786 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2787 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2788 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2789 init_rwsem(&fs_info->subvol_sem);
803b2f54 2790 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2791
ad618368 2792 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2793 btrfs_init_qgroup(fs_info);
416ac51d 2794
fa9c0d79
CM
2795 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2796 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2797
e6dcd2dc 2798 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2799 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2800 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2801 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2802 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2803
da17066c
JM
2804 /* Usable values until the real ones are cached from the superblock */
2805 fs_info->nodesize = 4096;
2806 fs_info->sectorsize = 4096;
2807 fs_info->stripesize = 4096;
2808
eede2bf3
OS
2809 spin_lock_init(&fs_info->swapfile_pins_lock);
2810 fs_info->swapfile_pins = RB_ROOT;
2811
9e967495
FM
2812 fs_info->send_in_progress = 0;
2813
53b381b3
DW
2814 ret = btrfs_alloc_stripe_hash_table(fs_info);
2815 if (ret) {
83c8266a 2816 err = ret;
53b381b3
DW
2817 goto fail_alloc;
2818 }
2819
da17066c 2820 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2821
3c4bb26b 2822 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2823
2824 /*
2825 * Read super block and check the signature bytes only
2826 */
a512bbf8 2827 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2828 if (IS_ERR(bh)) {
2829 err = PTR_ERR(bh);
16cdcec7 2830 goto fail_alloc;
20b45077 2831 }
39279cc3 2832
8dc3f22c
JT
2833 /*
2834 * Verify the type first, if that or the the checksum value are
2835 * corrupted, we'll find out
2836 */
51bce6c9
JT
2837 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2838 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2839 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2840 csum_type);
8dc3f22c
JT
2841 err = -EINVAL;
2842 brelse(bh);
2843 goto fail_alloc;
2844 }
2845
6d97c6e3
JT
2846 ret = btrfs_init_csum_hash(fs_info, csum_type);
2847 if (ret) {
2848 err = ret;
2849 goto fail_alloc;
2850 }
2851
1104a885
DS
2852 /*
2853 * We want to check superblock checksum, the type is stored inside.
2854 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2855 */
ab8d0fc4 2856 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2857 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2858 err = -EINVAL;
b2acdddf 2859 brelse(bh);
6d97c6e3 2860 goto fail_csum;
1104a885
DS
2861 }
2862
2863 /*
2864 * super_copy is zeroed at allocation time and we never touch the
2865 * following bytes up to INFO_SIZE, the checksum is calculated from
2866 * the whole block of INFO_SIZE
2867 */
6c41761f 2868 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2869 brelse(bh);
5f39d397 2870
fbc6feae
NB
2871 disk_super = fs_info->super_copy;
2872
de37aa51
NB
2873 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2874 BTRFS_FSID_SIZE));
2875
7239ff4b 2876 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2877 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2878 fs_info->super_copy->metadata_uuid,
2879 BTRFS_FSID_SIZE));
7239ff4b 2880 }
0b86a832 2881
fbc6feae
NB
2882 features = btrfs_super_flags(disk_super);
2883 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2884 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2885 btrfs_set_super_flags(disk_super, features);
2886 btrfs_info(fs_info,
2887 "found metadata UUID change in progress flag, clearing");
2888 }
2889
2890 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2891 sizeof(*fs_info->super_for_commit));
de37aa51 2892
069ec957 2893 ret = btrfs_validate_mount_super(fs_info);
1104a885 2894 if (ret) {
05135f59 2895 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2896 err = -EINVAL;
6d97c6e3 2897 goto fail_csum;
1104a885
DS
2898 }
2899
0f7d52f4 2900 if (!btrfs_super_root(disk_super))
6d97c6e3 2901 goto fail_csum;
0f7d52f4 2902
acce952b 2903 /* check FS state, whether FS is broken. */
87533c47
MX
2904 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2905 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2906
af31f5e5
CM
2907 /*
2908 * run through our array of backup supers and setup
2909 * our ring pointer to the oldest one
2910 */
2911 generation = btrfs_super_generation(disk_super);
2912 find_oldest_super_backup(fs_info, generation);
2913
75e7cb7f
LB
2914 /*
2915 * In the long term, we'll store the compression type in the super
2916 * block, and it'll be used for per file compression control.
2917 */
2918 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2919
2ff7e61e 2920 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2921 if (ret) {
2922 err = ret;
6d97c6e3 2923 goto fail_csum;
2b82032c 2924 }
dfe25020 2925
f2b636e8
JB
2926 features = btrfs_super_incompat_flags(disk_super) &
2927 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2928 if (features) {
05135f59
DS
2929 btrfs_err(fs_info,
2930 "cannot mount because of unsupported optional features (%llx)",
2931 features);
f2b636e8 2932 err = -EINVAL;
6d97c6e3 2933 goto fail_csum;
f2b636e8
JB
2934 }
2935
5d4f98a2 2936 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2937 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2938 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2939 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2940 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2941 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2942
3173a18f 2943 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2944 btrfs_info(fs_info, "has skinny extents");
3173a18f 2945
727011e0
CM
2946 /*
2947 * flag our filesystem as having big metadata blocks if
2948 * they are bigger than the page size
2949 */
09cbfeaf 2950 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2951 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2952 btrfs_info(fs_info,
2953 "flagging fs with big metadata feature");
727011e0
CM
2954 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2955 }
2956
bc3f116f 2957 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2958 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2959 stripesize = sectorsize;
707e8a07 2960 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2961 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2962
da17066c
JM
2963 /* Cache block sizes */
2964 fs_info->nodesize = nodesize;
2965 fs_info->sectorsize = sectorsize;
2966 fs_info->stripesize = stripesize;
2967
bc3f116f
CM
2968 /*
2969 * mixed block groups end up with duplicate but slightly offset
2970 * extent buffers for the same range. It leads to corruptions
2971 */
2972 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2973 (sectorsize != nodesize)) {
05135f59
DS
2974 btrfs_err(fs_info,
2975"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2976 nodesize, sectorsize);
6d97c6e3 2977 goto fail_csum;
bc3f116f
CM
2978 }
2979
ceda0864
MX
2980 /*
2981 * Needn't use the lock because there is no other task which will
2982 * update the flag.
2983 */
a6fa6fae 2984 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2985
f2b636e8
JB
2986 features = btrfs_super_compat_ro_flags(disk_super) &
2987 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2988 if (!sb_rdonly(sb) && features) {
05135f59
DS
2989 btrfs_err(fs_info,
2990 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2991 features);
f2b636e8 2992 err = -EINVAL;
6d97c6e3 2993 goto fail_csum;
f2b636e8 2994 }
61d92c32 2995
2a458198
ES
2996 ret = btrfs_init_workqueues(fs_info, fs_devices);
2997 if (ret) {
2998 err = ret;
0dc3b84a
JB
2999 goto fail_sb_buffer;
3000 }
4543df7e 3001
9e11ceee
JK
3002 sb->s_bdi->congested_fn = btrfs_congested_fn;
3003 sb->s_bdi->congested_data = fs_info;
3004 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3005 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3006 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3007 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3008
a061fc8d
CM
3009 sb->s_blocksize = sectorsize;
3010 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3011 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3012
925baedd 3013 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3014 ret = btrfs_read_sys_array(fs_info);
925baedd 3015 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3016 if (ret) {
05135f59 3017 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3018 goto fail_sb_buffer;
84eed90f 3019 }
0b86a832 3020
84234f3a 3021 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3022 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3023
da17066c 3024 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 3025
2ff7e61e 3026 chunk_root->node = read_tree_block(fs_info,
0b86a832 3027 btrfs_super_chunk_root(disk_super),
581c1760 3028 generation, level, NULL);
64c043de
LB
3029 if (IS_ERR(chunk_root->node) ||
3030 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3031 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3032 if (!IS_ERR(chunk_root->node))
3033 free_extent_buffer(chunk_root->node);
95ab1f64 3034 chunk_root->node = NULL;
af31f5e5 3035 goto fail_tree_roots;
83121942 3036 }
5d4f98a2
YZ
3037 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3038 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3039
e17cade2 3040 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 3041 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3042
5b4aacef 3043 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3044 if (ret) {
05135f59 3045 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3046 goto fail_tree_roots;
2b82032c 3047 }
0b86a832 3048
8dabb742 3049 /*
9b99b115
AJ
3050 * Keep the devid that is marked to be the target device for the
3051 * device replace procedure
8dabb742 3052 */
9b99b115 3053 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3054
a6b0d5c8 3055 if (!fs_devices->latest_bdev) {
05135f59 3056 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3057 goto fail_tree_roots;
3058 }
3059
af31f5e5 3060retry_root_backup:
84234f3a 3061 generation = btrfs_super_generation(disk_super);
581c1760 3062 level = btrfs_super_root_level(disk_super);
0b86a832 3063
2ff7e61e 3064 tree_root->node = read_tree_block(fs_info,
db94535d 3065 btrfs_super_root(disk_super),
581c1760 3066 generation, level, NULL);
64c043de
LB
3067 if (IS_ERR(tree_root->node) ||
3068 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3069 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3070 if (!IS_ERR(tree_root->node))
3071 free_extent_buffer(tree_root->node);
95ab1f64 3072 tree_root->node = NULL;
af31f5e5 3073 goto recovery_tree_root;
83121942 3074 }
af31f5e5 3075
5d4f98a2
YZ
3076 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3077 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3078 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3079
f32e48e9
CR
3080 mutex_lock(&tree_root->objectid_mutex);
3081 ret = btrfs_find_highest_objectid(tree_root,
3082 &tree_root->highest_objectid);
3083 if (ret) {
3084 mutex_unlock(&tree_root->objectid_mutex);
3085 goto recovery_tree_root;
3086 }
3087
3088 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3089
3090 mutex_unlock(&tree_root->objectid_mutex);
3091
6bccf3ab 3092 ret = btrfs_read_roots(fs_info);
4bbcaa64 3093 if (ret)
af31f5e5 3094 goto recovery_tree_root;
f7a81ea4 3095
8929ecfa
YZ
3096 fs_info->generation = generation;
3097 fs_info->last_trans_committed = generation;
8929ecfa 3098
cf90d884
QW
3099 ret = btrfs_verify_dev_extents(fs_info);
3100 if (ret) {
3101 btrfs_err(fs_info,
3102 "failed to verify dev extents against chunks: %d",
3103 ret);
3104 goto fail_block_groups;
3105 }
68310a5e
ID
3106 ret = btrfs_recover_balance(fs_info);
3107 if (ret) {
05135f59 3108 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3109 goto fail_block_groups;
3110 }
3111
733f4fbb
SB
3112 ret = btrfs_init_dev_stats(fs_info);
3113 if (ret) {
05135f59 3114 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3115 goto fail_block_groups;
3116 }
3117
8dabb742
SB
3118 ret = btrfs_init_dev_replace(fs_info);
3119 if (ret) {
05135f59 3120 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3121 goto fail_block_groups;
3122 }
3123
9b99b115 3124 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3125
b7c35e81
AJ
3126 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3127 if (ret) {
05135f59
DS
3128 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3129 ret);
b7c35e81
AJ
3130 goto fail_block_groups;
3131 }
3132
3133 ret = btrfs_sysfs_add_device(fs_devices);
3134 if (ret) {
05135f59
DS
3135 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3136 ret);
b7c35e81
AJ
3137 goto fail_fsdev_sysfs;
3138 }
3139
96f3136e 3140 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3141 if (ret) {
05135f59 3142 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3143 goto fail_fsdev_sysfs;
c59021f8 3144 }
3145
c59021f8 3146 ret = btrfs_init_space_info(fs_info);
3147 if (ret) {
05135f59 3148 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3149 goto fail_sysfs;
c59021f8 3150 }
3151
5b4aacef 3152 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3153 if (ret) {
05135f59 3154 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3155 goto fail_sysfs;
1b1d1f66 3156 }
4330e183 3157
6528b99d 3158 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3159 btrfs_warn(fs_info,
52042d8e 3160 "writable mount is not allowed due to too many missing devices");
2365dd3c 3161 goto fail_sysfs;
292fd7fc 3162 }
9078a3e1 3163
a74a4b97
CM
3164 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3165 "btrfs-cleaner");
57506d50 3166 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3167 goto fail_sysfs;
a74a4b97
CM
3168
3169 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3170 tree_root,
3171 "btrfs-transaction");
57506d50 3172 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3173 goto fail_cleaner;
a74a4b97 3174
583b7231 3175 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3176 !fs_info->fs_devices->rotating) {
583b7231 3177 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3178 }
3179
572d9ab7 3180 /*
01327610 3181 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3182 * not have to wait for transaction commit
3183 */
3184 btrfs_apply_pending_changes(fs_info);
3818aea2 3185
21adbd5c 3186#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3187 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3188 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3189 btrfs_test_opt(fs_info,
21adbd5c
SB
3190 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3191 1 : 0,
3192 fs_info->check_integrity_print_mask);
3193 if (ret)
05135f59
DS
3194 btrfs_warn(fs_info,
3195 "failed to initialize integrity check module: %d",
3196 ret);
21adbd5c
SB
3197 }
3198#endif
bcef60f2
AJ
3199 ret = btrfs_read_qgroup_config(fs_info);
3200 if (ret)
3201 goto fail_trans_kthread;
21adbd5c 3202
fd708b81
JB
3203 if (btrfs_build_ref_tree(fs_info))
3204 btrfs_err(fs_info, "couldn't build ref tree");
3205
96da0919
QW
3206 /* do not make disk changes in broken FS or nologreplay is given */
3207 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3208 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3209 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3210 if (ret) {
63443bf5 3211 err = ret;
28c16cbb 3212 goto fail_qgroup;
79787eaa 3213 }
e02119d5 3214 }
1a40e23b 3215
6bccf3ab 3216 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3217 if (ret)
28c16cbb 3218 goto fail_qgroup;
76dda93c 3219
bc98a42c 3220 if (!sb_rdonly(sb)) {
d68fc57b 3221 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3222 if (ret)
28c16cbb 3223 goto fail_qgroup;
90c711ab
ZB
3224
3225 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3226 ret = btrfs_recover_relocation(tree_root);
90c711ab 3227 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3228 if (ret < 0) {
05135f59
DS
3229 btrfs_warn(fs_info, "failed to recover relocation: %d",
3230 ret);
d7ce5843 3231 err = -EINVAL;
bcef60f2 3232 goto fail_qgroup;
d7ce5843 3233 }
7c2ca468 3234 }
1a40e23b 3235
3de4586c
CM
3236 location.objectid = BTRFS_FS_TREE_OBJECTID;
3237 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3238 location.offset = 0;
3de4586c 3239
3de4586c 3240 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3241 if (IS_ERR(fs_info->fs_root)) {
3242 err = PTR_ERR(fs_info->fs_root);
f50f4353 3243 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3244 goto fail_qgroup;
3140c9a3 3245 }
c289811c 3246
bc98a42c 3247 if (sb_rdonly(sb))
2b6ba629 3248 return 0;
59641015 3249
f8d468a1
OS
3250 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3251 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3252 clear_free_space_tree = 1;
3253 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3254 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3255 btrfs_warn(fs_info, "free space tree is invalid");
3256 clear_free_space_tree = 1;
3257 }
3258
3259 if (clear_free_space_tree) {
f8d468a1
OS
3260 btrfs_info(fs_info, "clearing free space tree");
3261 ret = btrfs_clear_free_space_tree(fs_info);
3262 if (ret) {
3263 btrfs_warn(fs_info,
3264 "failed to clear free space tree: %d", ret);
6bccf3ab 3265 close_ctree(fs_info);
f8d468a1
OS
3266 return ret;
3267 }
3268 }
3269
0b246afa 3270 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3271 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3272 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3273 ret = btrfs_create_free_space_tree(fs_info);
3274 if (ret) {
05135f59
DS
3275 btrfs_warn(fs_info,
3276 "failed to create free space tree: %d", ret);
6bccf3ab 3277 close_ctree(fs_info);
511711af
CM
3278 return ret;
3279 }
3280 }
3281
2b6ba629
ID
3282 down_read(&fs_info->cleanup_work_sem);
3283 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3284 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3285 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3286 close_ctree(fs_info);
2b6ba629
ID
3287 return ret;
3288 }
3289 up_read(&fs_info->cleanup_work_sem);
59641015 3290
2b6ba629
ID
3291 ret = btrfs_resume_balance_async(fs_info);
3292 if (ret) {
05135f59 3293 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3294 close_ctree(fs_info);
2b6ba629 3295 return ret;
e3acc2a6
JB
3296 }
3297
8dabb742
SB
3298 ret = btrfs_resume_dev_replace_async(fs_info);
3299 if (ret) {
05135f59 3300 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3301 close_ctree(fs_info);
8dabb742
SB
3302 return ret;
3303 }
3304
b382a324
JS
3305 btrfs_qgroup_rescan_resume(fs_info);
3306
4bbcaa64 3307 if (!fs_info->uuid_root) {
05135f59 3308 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3309 ret = btrfs_create_uuid_tree(fs_info);
3310 if (ret) {
05135f59
DS
3311 btrfs_warn(fs_info,
3312 "failed to create the UUID tree: %d", ret);
6bccf3ab 3313 close_ctree(fs_info);
f7a81ea4
SB
3314 return ret;
3315 }
0b246afa 3316 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3317 fs_info->generation !=
3318 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3319 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3320 ret = btrfs_check_uuid_tree(fs_info);
3321 if (ret) {
05135f59
DS
3322 btrfs_warn(fs_info,
3323 "failed to check the UUID tree: %d", ret);
6bccf3ab 3324 close_ctree(fs_info);
70f80175
SB
3325 return ret;
3326 }
3327 } else {
afcdd129 3328 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3329 }
afcdd129 3330 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3331
8dcddfa0
QW
3332 /*
3333 * backuproot only affect mount behavior, and if open_ctree succeeded,
3334 * no need to keep the flag
3335 */
3336 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3337
ad2b2c80 3338 return 0;
39279cc3 3339
bcef60f2
AJ
3340fail_qgroup:
3341 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3342fail_trans_kthread:
3343 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3344 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3345 btrfs_free_fs_roots(fs_info);
3f157a2f 3346fail_cleaner:
a74a4b97 3347 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3348
3349 /*
3350 * make sure we're done with the btree inode before we stop our
3351 * kthreads
3352 */
3353 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3354
2365dd3c 3355fail_sysfs:
6618a59b 3356 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3357
b7c35e81
AJ
3358fail_fsdev_sysfs:
3359 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3360
1b1d1f66 3361fail_block_groups:
54067ae9 3362 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3363
3364fail_tree_roots:
3365 free_root_pointers(fs_info, 1);
2b8195bb 3366 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3367
39279cc3 3368fail_sb_buffer:
7abadb64 3369 btrfs_stop_all_workers(fs_info);
5cdd7db6 3370 btrfs_free_block_groups(fs_info);
6d97c6e3
JT
3371fail_csum:
3372 btrfs_free_csum_hash(fs_info);
16cdcec7 3373fail_alloc:
4543df7e 3374fail_iput:
586e46e2
ID
3375 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3376
4543df7e 3377 iput(fs_info->btree_inode);
c404e0dc 3378fail_bio_counter:
7f8d236a 3379 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3380fail_delalloc_bytes:
3381 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3382fail_dirty_metadata_bytes:
3383 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4297ff84
JB
3384fail_dio_bytes:
3385 percpu_counter_destroy(&fs_info->dio_bytes);
76dda93c
YZ
3386fail_srcu:
3387 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3388fail:
53b381b3 3389 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3390 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3391 return err;
af31f5e5
CM
3392
3393recovery_tree_root:
0b246afa 3394 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3395 goto fail_tree_roots;
3396
3397 free_root_pointers(fs_info, 0);
3398
3399 /* don't use the log in recovery mode, it won't be valid */
3400 btrfs_set_super_log_root(disk_super, 0);
3401
3402 /* we can't trust the free space cache either */
3403 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3404
3405 ret = next_root_backup(fs_info, fs_info->super_copy,
3406 &num_backups_tried, &backup_index);
3407 if (ret == -1)
3408 goto fail_block_groups;
3409 goto retry_root_backup;
eb60ceac 3410}
663faf9f 3411ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3412
f2984462
CM
3413static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3414{
f2984462
CM
3415 if (uptodate) {
3416 set_buffer_uptodate(bh);
3417 } else {
442a4f63
SB
3418 struct btrfs_device *device = (struct btrfs_device *)
3419 bh->b_private;
3420
fb456252 3421 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3422 "lost page write due to IO error on %s",
606686ee 3423 rcu_str_deref(device->name));
01327610 3424 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3425 * our own ways of dealing with the IO errors
3426 */
f2984462 3427 clear_buffer_uptodate(bh);
442a4f63 3428 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3429 }
3430 unlock_buffer(bh);
3431 put_bh(bh);
3432}
3433
29c36d72
AJ
3434int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3435 struct buffer_head **bh_ret)
3436{
3437 struct buffer_head *bh;
3438 struct btrfs_super_block *super;
3439 u64 bytenr;
3440
3441 bytenr = btrfs_sb_offset(copy_num);
3442 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3443 return -EINVAL;
3444
9f6d2510 3445 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3446 /*
3447 * If we fail to read from the underlying devices, as of now
3448 * the best option we have is to mark it EIO.
3449 */
3450 if (!bh)
3451 return -EIO;
3452
3453 super = (struct btrfs_super_block *)bh->b_data;
3454 if (btrfs_super_bytenr(super) != bytenr ||
3455 btrfs_super_magic(super) != BTRFS_MAGIC) {
3456 brelse(bh);
3457 return -EINVAL;
3458 }
3459
3460 *bh_ret = bh;
3461 return 0;
3462}
3463
3464
a512bbf8
YZ
3465struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3466{
3467 struct buffer_head *bh;
3468 struct buffer_head *latest = NULL;
3469 struct btrfs_super_block *super;
3470 int i;
3471 u64 transid = 0;
92fc03fb 3472 int ret = -EINVAL;
a512bbf8
YZ
3473
3474 /* we would like to check all the supers, but that would make
3475 * a btrfs mount succeed after a mkfs from a different FS.
3476 * So, we need to add a special mount option to scan for
3477 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3478 */
3479 for (i = 0; i < 1; i++) {
29c36d72
AJ
3480 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3481 if (ret)
a512bbf8
YZ
3482 continue;
3483
3484 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3485
3486 if (!latest || btrfs_super_generation(super) > transid) {
3487 brelse(latest);
3488 latest = bh;
3489 transid = btrfs_super_generation(super);
3490 } else {
3491 brelse(bh);
3492 }
3493 }
92fc03fb
AJ
3494
3495 if (!latest)
3496 return ERR_PTR(ret);
3497
a512bbf8
YZ
3498 return latest;
3499}
3500
4eedeb75 3501/*
abbb3b8e
DS
3502 * Write superblock @sb to the @device. Do not wait for completion, all the
3503 * buffer heads we write are pinned.
4eedeb75 3504 *
abbb3b8e
DS
3505 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3506 * the expected device size at commit time. Note that max_mirrors must be
3507 * same for write and wait phases.
4eedeb75 3508 *
abbb3b8e 3509 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3510 */
a512bbf8 3511static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3512 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3513{
d5178578
JT
3514 struct btrfs_fs_info *fs_info = device->fs_info;
3515 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8
YZ
3516 struct buffer_head *bh;
3517 int i;
3518 int ret;
3519 int errors = 0;
a512bbf8 3520 u64 bytenr;
1b9e619c 3521 int op_flags;
a512bbf8
YZ
3522
3523 if (max_mirrors == 0)
3524 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3525
d5178578
JT
3526 shash->tfm = fs_info->csum_shash;
3527
a512bbf8
YZ
3528 for (i = 0; i < max_mirrors; i++) {
3529 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3530 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3531 device->commit_total_bytes)
a512bbf8
YZ
3532 break;
3533
abbb3b8e 3534 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3535
d5178578
JT
3536 crypto_shash_init(shash);
3537 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3538 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3539 crypto_shash_final(shash, sb->csum);
4eedeb75 3540
abbb3b8e 3541 /* One reference for us, and we leave it for the caller */
9f6d2510 3542 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3543 BTRFS_SUPER_INFO_SIZE);
3544 if (!bh) {
3545 btrfs_err(device->fs_info,
3546 "couldn't get super buffer head for bytenr %llu",
3547 bytenr);
3548 errors++;
4eedeb75 3549 continue;
abbb3b8e 3550 }
634554dc 3551
abbb3b8e 3552 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3553
abbb3b8e
DS
3554 /* one reference for submit_bh */
3555 get_bh(bh);
4eedeb75 3556
abbb3b8e
DS
3557 set_buffer_uptodate(bh);
3558 lock_buffer(bh);
3559 bh->b_end_io = btrfs_end_buffer_write_sync;
3560 bh->b_private = device;
a512bbf8 3561
387125fc
CM
3562 /*
3563 * we fua the first super. The others we allow
3564 * to go down lazy.
3565 */
1b9e619c
OS
3566 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3567 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3568 op_flags |= REQ_FUA;
3569 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3570 if (ret)
a512bbf8 3571 errors++;
a512bbf8
YZ
3572 }
3573 return errors < i ? 0 : -1;
3574}
3575
abbb3b8e
DS
3576/*
3577 * Wait for write completion of superblocks done by write_dev_supers,
3578 * @max_mirrors same for write and wait phases.
3579 *
3580 * Return number of errors when buffer head is not found or not marked up to
3581 * date.
3582 */
3583static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3584{
3585 struct buffer_head *bh;
3586 int i;
3587 int errors = 0;
b6a535fa 3588 bool primary_failed = false;
abbb3b8e
DS
3589 u64 bytenr;
3590
3591 if (max_mirrors == 0)
3592 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3593
3594 for (i = 0; i < max_mirrors; i++) {
3595 bytenr = btrfs_sb_offset(i);
3596 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3597 device->commit_total_bytes)
3598 break;
3599
9f6d2510
DS
3600 bh = __find_get_block(device->bdev,
3601 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3602 BTRFS_SUPER_INFO_SIZE);
3603 if (!bh) {
3604 errors++;
b6a535fa
HM
3605 if (i == 0)
3606 primary_failed = true;
abbb3b8e
DS
3607 continue;
3608 }
3609 wait_on_buffer(bh);
b6a535fa 3610 if (!buffer_uptodate(bh)) {
abbb3b8e 3611 errors++;
b6a535fa
HM
3612 if (i == 0)
3613 primary_failed = true;
3614 }
abbb3b8e
DS
3615
3616 /* drop our reference */
3617 brelse(bh);
3618
3619 /* drop the reference from the writing run */
3620 brelse(bh);
3621 }
3622
b6a535fa
HM
3623 /* log error, force error return */
3624 if (primary_failed) {
3625 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3626 device->devid);
3627 return -1;
3628 }
3629
abbb3b8e
DS
3630 return errors < i ? 0 : -1;
3631}
3632
387125fc
CM
3633/*
3634 * endio for the write_dev_flush, this will wake anyone waiting
3635 * for the barrier when it is done
3636 */
4246a0b6 3637static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3638{
e0ae9994 3639 complete(bio->bi_private);
387125fc
CM
3640}
3641
3642/*
4fc6441a
AJ
3643 * Submit a flush request to the device if it supports it. Error handling is
3644 * done in the waiting counterpart.
387125fc 3645 */
4fc6441a 3646static void write_dev_flush(struct btrfs_device *device)
387125fc 3647{
c2a9c7ab 3648 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3649 struct bio *bio = device->flush_bio;
387125fc 3650
c2a9c7ab 3651 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3652 return;
387125fc 3653
e0ae9994 3654 bio_reset(bio);
387125fc 3655 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3656 bio_set_dev(bio, device->bdev);
8d910125 3657 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3658 init_completion(&device->flush_wait);
3659 bio->bi_private = &device->flush_wait;
387125fc 3660
43a01111 3661 btrfsic_submit_bio(bio);
1c3063b6 3662 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3663}
387125fc 3664
4fc6441a
AJ
3665/*
3666 * If the flush bio has been submitted by write_dev_flush, wait for it.
3667 */
8c27cb35 3668static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3669{
4fc6441a 3670 struct bio *bio = device->flush_bio;
387125fc 3671
1c3063b6 3672 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3673 return BLK_STS_OK;
387125fc 3674
1c3063b6 3675 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3676 wait_for_completion_io(&device->flush_wait);
387125fc 3677
8c27cb35 3678 return bio->bi_status;
387125fc 3679}
387125fc 3680
d10b82fe 3681static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3682{
6528b99d 3683 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3684 return -EIO;
387125fc
CM
3685 return 0;
3686}
3687
3688/*
3689 * send an empty flush down to each device in parallel,
3690 * then wait for them
3691 */
3692static int barrier_all_devices(struct btrfs_fs_info *info)
3693{
3694 struct list_head *head;
3695 struct btrfs_device *dev;
5af3e8cc 3696 int errors_wait = 0;
4e4cbee9 3697 blk_status_t ret;
387125fc 3698
1538e6c5 3699 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3700 /* send down all the barriers */
3701 head = &info->fs_devices->devices;
1538e6c5 3702 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3703 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3704 continue;
cea7c8bf 3705 if (!dev->bdev)
387125fc 3706 continue;
e12c9621 3707 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3708 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3709 continue;
3710
4fc6441a 3711 write_dev_flush(dev);
58efbc9f 3712 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3713 }
3714
3715 /* wait for all the barriers */
1538e6c5 3716 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3717 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3718 continue;
387125fc 3719 if (!dev->bdev) {
5af3e8cc 3720 errors_wait++;
387125fc
CM
3721 continue;
3722 }
e12c9621 3723 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3724 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3725 continue;
3726
4fc6441a 3727 ret = wait_dev_flush(dev);
401b41e5
AJ
3728 if (ret) {
3729 dev->last_flush_error = ret;
66b4993e
DS
3730 btrfs_dev_stat_inc_and_print(dev,
3731 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3732 errors_wait++;
401b41e5
AJ
3733 }
3734 }
3735
cea7c8bf 3736 if (errors_wait) {
401b41e5
AJ
3737 /*
3738 * At some point we need the status of all disks
3739 * to arrive at the volume status. So error checking
3740 * is being pushed to a separate loop.
3741 */
d10b82fe 3742 return check_barrier_error(info);
387125fc 3743 }
387125fc
CM
3744 return 0;
3745}
3746
943c6e99
ZL
3747int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3748{
8789f4fe
ZL
3749 int raid_type;
3750 int min_tolerated = INT_MAX;
943c6e99 3751
8789f4fe
ZL
3752 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3753 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3754 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3755 btrfs_raid_array[BTRFS_RAID_SINGLE].
3756 tolerated_failures);
943c6e99 3757
8789f4fe
ZL
3758 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3759 if (raid_type == BTRFS_RAID_SINGLE)
3760 continue;
41a6e891 3761 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3762 continue;
8c3e3582 3763 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3764 btrfs_raid_array[raid_type].
3765 tolerated_failures);
3766 }
943c6e99 3767
8789f4fe 3768 if (min_tolerated == INT_MAX) {
ab8d0fc4 3769 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3770 min_tolerated = 0;
3771 }
3772
3773 return min_tolerated;
943c6e99
ZL
3774}
3775
eece6a9c 3776int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3777{
e5e9a520 3778 struct list_head *head;
f2984462 3779 struct btrfs_device *dev;
a061fc8d 3780 struct btrfs_super_block *sb;
f2984462 3781 struct btrfs_dev_item *dev_item;
f2984462
CM
3782 int ret;
3783 int do_barriers;
a236aed1
CM
3784 int max_errors;
3785 int total_errors = 0;
a061fc8d 3786 u64 flags;
f2984462 3787
0b246afa 3788 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3789
3790 /*
3791 * max_mirrors == 0 indicates we're from commit_transaction,
3792 * not from fsync where the tree roots in fs_info have not
3793 * been consistent on disk.
3794 */
3795 if (max_mirrors == 0)
3796 backup_super_roots(fs_info);
f2984462 3797
0b246afa 3798 sb = fs_info->super_for_commit;
a061fc8d 3799 dev_item = &sb->dev_item;
e5e9a520 3800
0b246afa
JM
3801 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3802 head = &fs_info->fs_devices->devices;
3803 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3804
5af3e8cc 3805 if (do_barriers) {
0b246afa 3806 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3807 if (ret) {
3808 mutex_unlock(
0b246afa
JM
3809 &fs_info->fs_devices->device_list_mutex);
3810 btrfs_handle_fs_error(fs_info, ret,
3811 "errors while submitting device barriers.");
5af3e8cc
SB
3812 return ret;
3813 }
3814 }
387125fc 3815
1538e6c5 3816 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3817 if (!dev->bdev) {
3818 total_errors++;
3819 continue;
3820 }
e12c9621 3821 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3822 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3823 continue;
3824
2b82032c 3825 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3826 btrfs_set_stack_device_type(dev_item, dev->type);
3827 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3828 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3829 dev->commit_total_bytes);
ce7213c7
MX
3830 btrfs_set_stack_device_bytes_used(dev_item,
3831 dev->commit_bytes_used);
a061fc8d
CM
3832 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3833 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3834 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3835 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3836 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3837 BTRFS_FSID_SIZE);
a512bbf8 3838
a061fc8d
CM
3839 flags = btrfs_super_flags(sb);
3840 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3841
75cb857d
QW
3842 ret = btrfs_validate_write_super(fs_info, sb);
3843 if (ret < 0) {
3844 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3845 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3846 "unexpected superblock corruption detected");
3847 return -EUCLEAN;
3848 }
3849
abbb3b8e 3850 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3851 if (ret)
3852 total_errors++;
f2984462 3853 }
a236aed1 3854 if (total_errors > max_errors) {
0b246afa
JM
3855 btrfs_err(fs_info, "%d errors while writing supers",
3856 total_errors);
3857 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3858
9d565ba4 3859 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3860 btrfs_handle_fs_error(fs_info, -EIO,
3861 "%d errors while writing supers",
3862 total_errors);
9d565ba4 3863 return -EIO;
a236aed1 3864 }
f2984462 3865
a512bbf8 3866 total_errors = 0;
1538e6c5 3867 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3868 if (!dev->bdev)
3869 continue;
e12c9621 3870 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3871 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3872 continue;
3873
abbb3b8e 3874 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3875 if (ret)
3876 total_errors++;
f2984462 3877 }
0b246afa 3878 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3879 if (total_errors > max_errors) {
0b246afa
JM
3880 btrfs_handle_fs_error(fs_info, -EIO,
3881 "%d errors while writing supers",
3882 total_errors);
79787eaa 3883 return -EIO;
a236aed1 3884 }
f2984462
CM
3885 return 0;
3886}
3887
cb517eab
MX
3888/* Drop a fs root from the radix tree and free it. */
3889void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3890 struct btrfs_root *root)
2619ba1f 3891{
4df27c4d 3892 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3893 radix_tree_delete(&fs_info->fs_roots_radix,
3894 (unsigned long)root->root_key.objectid);
4df27c4d 3895 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3896
3897 if (btrfs_root_refs(&root->root_item) == 0)
3898 synchronize_srcu(&fs_info->subvol_srcu);
3899
1c1ea4f7 3900 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3901 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3902 if (root->reloc_root) {
3903 free_extent_buffer(root->reloc_root->node);
3904 free_extent_buffer(root->reloc_root->commit_root);
3905 btrfs_put_fs_root(root->reloc_root);
3906 root->reloc_root = NULL;
3907 }
3908 }
3321719e 3909
faa2dbf0
JB
3910 if (root->free_ino_pinned)
3911 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3912 if (root->free_ino_ctl)
3913 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3914 btrfs_free_fs_root(root);
4df27c4d
YZ
3915}
3916
84db5ccf 3917void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3918{
57cdc8db 3919 iput(root->ino_cache_inode);
4df27c4d 3920 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3921 if (root->anon_dev)
3922 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3923 if (root->subv_writers)
3924 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3925 free_extent_buffer(root->node);
3926 free_extent_buffer(root->commit_root);
581bb050
LZ
3927 kfree(root->free_ino_ctl);
3928 kfree(root->free_ino_pinned);
b0feb9d9 3929 btrfs_put_fs_root(root);
2619ba1f
CM
3930}
3931
c146afad 3932int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3933{
c146afad
YZ
3934 u64 root_objectid = 0;
3935 struct btrfs_root *gang[8];
65d33fd7
QW
3936 int i = 0;
3937 int err = 0;
3938 unsigned int ret = 0;
3939 int index;
e089f05c 3940
c146afad 3941 while (1) {
65d33fd7 3942 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3943 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3944 (void **)gang, root_objectid,
3945 ARRAY_SIZE(gang));
65d33fd7
QW
3946 if (!ret) {
3947 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3948 break;
65d33fd7 3949 }
5d4f98a2 3950 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3951
c146afad 3952 for (i = 0; i < ret; i++) {
65d33fd7
QW
3953 /* Avoid to grab roots in dead_roots */
3954 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3955 gang[i] = NULL;
3956 continue;
3957 }
3958 /* grab all the search result for later use */
3959 gang[i] = btrfs_grab_fs_root(gang[i]);
3960 }
3961 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3962
65d33fd7
QW
3963 for (i = 0; i < ret; i++) {
3964 if (!gang[i])
3965 continue;
c146afad 3966 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3967 err = btrfs_orphan_cleanup(gang[i]);
3968 if (err)
65d33fd7
QW
3969 break;
3970 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3971 }
3972 root_objectid++;
3973 }
65d33fd7
QW
3974
3975 /* release the uncleaned roots due to error */
3976 for (; i < ret; i++) {
3977 if (gang[i])
3978 btrfs_put_fs_root(gang[i]);
3979 }
3980 return err;
c146afad 3981}
a2135011 3982
6bccf3ab 3983int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3984{
6bccf3ab 3985 struct btrfs_root *root = fs_info->tree_root;
c146afad 3986 struct btrfs_trans_handle *trans;
a74a4b97 3987
0b246afa 3988 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3989 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3990 mutex_unlock(&fs_info->cleaner_mutex);
3991 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3992
3993 /* wait until ongoing cleanup work done */
0b246afa
JM
3994 down_write(&fs_info->cleanup_work_sem);
3995 up_write(&fs_info->cleanup_work_sem);
c71bf099 3996
7a7eaa40 3997 trans = btrfs_join_transaction(root);
3612b495
TI
3998 if (IS_ERR(trans))
3999 return PTR_ERR(trans);
3a45bb20 4000 return btrfs_commit_transaction(trans);
c146afad
YZ
4001}
4002
6bccf3ab 4003void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4004{
c146afad
YZ
4005 int ret;
4006
afcdd129 4007 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4008 /*
4009 * We don't want the cleaner to start new transactions, add more delayed
4010 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4011 * because that frees the task_struct, and the transaction kthread might
4012 * still try to wake up the cleaner.
4013 */
4014 kthread_park(fs_info->cleaner_kthread);
c146afad 4015
7343dd61 4016 /* wait for the qgroup rescan worker to stop */
d06f23d6 4017 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4018
803b2f54
SB
4019 /* wait for the uuid_scan task to finish */
4020 down(&fs_info->uuid_tree_rescan_sem);
4021 /* avoid complains from lockdep et al., set sem back to initial state */
4022 up(&fs_info->uuid_tree_rescan_sem);
4023
837d5b6e 4024 /* pause restriper - we want to resume on mount */
aa1b8cd4 4025 btrfs_pause_balance(fs_info);
837d5b6e 4026
8dabb742
SB
4027 btrfs_dev_replace_suspend_for_unmount(fs_info);
4028
aa1b8cd4 4029 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4030
4031 /* wait for any defraggers to finish */
4032 wait_event(fs_info->transaction_wait,
4033 (atomic_read(&fs_info->defrag_running) == 0));
4034
4035 /* clear out the rbtree of defraggable inodes */
26176e7c 4036 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4037
21c7e756
MX
4038 cancel_work_sync(&fs_info->async_reclaim_work);
4039
bc98a42c 4040 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4041 /*
d6fd0ae2
OS
4042 * The cleaner kthread is stopped, so do one final pass over
4043 * unused block groups.
e44163e1 4044 */
0b246afa 4045 btrfs_delete_unused_bgs(fs_info);
e44163e1 4046
6bccf3ab 4047 ret = btrfs_commit_super(fs_info);
acce952b 4048 if (ret)
04892340 4049 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4050 }
4051
af722733
LB
4052 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4053 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4054 btrfs_error_commit_super(fs_info);
0f7d52f4 4055
e3029d9f
AV
4056 kthread_stop(fs_info->transaction_kthread);
4057 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4058
e187831e 4059 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4060 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4061
04892340 4062 btrfs_free_qgroup_config(fs_info);
fe816d0f 4063 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4064
963d678b 4065 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4066 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4067 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4068 }
bcc63abb 4069
4297ff84
JB
4070 if (percpu_counter_sum(&fs_info->dio_bytes))
4071 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4072 percpu_counter_sum(&fs_info->dio_bytes));
4073
6618a59b 4074 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4075 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4076
faa2dbf0 4077 btrfs_free_fs_roots(fs_info);
d10c5f31 4078
1a4319cc
LB
4079 btrfs_put_block_group_cache(fs_info);
4080
de348ee0
WS
4081 /*
4082 * we must make sure there is not any read request to
4083 * submit after we stopping all workers.
4084 */
4085 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4086 btrfs_stop_all_workers(fs_info);
4087
5cdd7db6
FM
4088 btrfs_free_block_groups(fs_info);
4089
afcdd129 4090 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4091 free_root_pointers(fs_info, 1);
9ad6b7bc 4092
13e6c37b 4093 iput(fs_info->btree_inode);
d6bfde87 4094
21adbd5c 4095#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4096 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4097 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4098#endif
4099
0b86a832 4100 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4101 btrfs_close_devices(fs_info->fs_devices);
b248a415 4102
e2d84521 4103 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4104 percpu_counter_destroy(&fs_info->delalloc_bytes);
4297ff84 4105 percpu_counter_destroy(&fs_info->dio_bytes);
7f8d236a 4106 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4107 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4108
53b381b3 4109 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4110 btrfs_free_ref_cache(fs_info);
eb60ceac
CM
4111}
4112
b9fab919
CM
4113int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4114 int atomic)
5f39d397 4115{
1259ab75 4116 int ret;
727011e0 4117 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4118
0b32f4bb 4119 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4120 if (!ret)
4121 return ret;
4122
4123 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4124 parent_transid, atomic);
4125 if (ret == -EAGAIN)
4126 return ret;
1259ab75 4127 return !ret;
5f39d397
CM
4128}
4129
5f39d397
CM
4130void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4131{
0b246afa 4132 struct btrfs_fs_info *fs_info;
06ea65a3 4133 struct btrfs_root *root;
5f39d397 4134 u64 transid = btrfs_header_generation(buf);
b9473439 4135 int was_dirty;
b4ce94de 4136
06ea65a3
JB
4137#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4138 /*
4139 * This is a fast path so only do this check if we have sanity tests
52042d8e 4140 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4141 * outside of the sanity tests.
4142 */
b0132a3b 4143 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4144 return;
4145#endif
4146 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4147 fs_info = root->fs_info;
b9447ef8 4148 btrfs_assert_tree_locked(buf);
0b246afa 4149 if (transid != fs_info->generation)
5d163e0e 4150 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4151 buf->start, transid, fs_info->generation);
0b32f4bb 4152 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4153 if (!was_dirty)
104b4e51
NB
4154 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4155 buf->len,
4156 fs_info->dirty_metadata_batch);
1f21ef0a 4157#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4158 /*
4159 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4160 * but item data not updated.
4161 * So here we should only check item pointers, not item data.
4162 */
4163 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4164 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4165 btrfs_print_leaf(buf);
1f21ef0a
FM
4166 ASSERT(0);
4167 }
4168#endif
eb60ceac
CM
4169}
4170
2ff7e61e 4171static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4172 int flush_delayed)
16cdcec7
MX
4173{
4174 /*
4175 * looks as though older kernels can get into trouble with
4176 * this code, they end up stuck in balance_dirty_pages forever
4177 */
e2d84521 4178 int ret;
16cdcec7
MX
4179
4180 if (current->flags & PF_MEMALLOC)
4181 return;
4182
b53d3f5d 4183 if (flush_delayed)
2ff7e61e 4184 btrfs_balance_delayed_items(fs_info);
16cdcec7 4185
d814a491
EL
4186 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4187 BTRFS_DIRTY_METADATA_THRESH,
4188 fs_info->dirty_metadata_batch);
e2d84521 4189 if (ret > 0) {
0b246afa 4190 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4191 }
16cdcec7
MX
4192}
4193
2ff7e61e 4194void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4195{
2ff7e61e 4196 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4197}
585ad2c3 4198
2ff7e61e 4199void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4200{
2ff7e61e 4201 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4202}
6b80053d 4203
581c1760
QW
4204int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4205 struct btrfs_key *first_key)
6b80053d 4206{
5ab12d1f 4207 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4208 level, first_key);
6b80053d 4209}
0da5468f 4210
2ff7e61e 4211static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4212{
fe816d0f
NB
4213 /* cleanup FS via transaction */
4214 btrfs_cleanup_transaction(fs_info);
4215
0b246afa 4216 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4217 btrfs_run_delayed_iputs(fs_info);
0b246afa 4218 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4219
0b246afa
JM
4220 down_write(&fs_info->cleanup_work_sem);
4221 up_write(&fs_info->cleanup_work_sem);
acce952b 4222}
4223
143bede5 4224static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4225{
acce952b 4226 struct btrfs_ordered_extent *ordered;
acce952b 4227
199c2a9c 4228 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4229 /*
4230 * This will just short circuit the ordered completion stuff which will
4231 * make sure the ordered extent gets properly cleaned up.
4232 */
199c2a9c 4233 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4234 root_extent_list)
4235 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4236 spin_unlock(&root->ordered_extent_lock);
4237}
4238
4239static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4240{
4241 struct btrfs_root *root;
4242 struct list_head splice;
4243
4244 INIT_LIST_HEAD(&splice);
4245
4246 spin_lock(&fs_info->ordered_root_lock);
4247 list_splice_init(&fs_info->ordered_roots, &splice);
4248 while (!list_empty(&splice)) {
4249 root = list_first_entry(&splice, struct btrfs_root,
4250 ordered_root);
1de2cfde
JB
4251 list_move_tail(&root->ordered_root,
4252 &fs_info->ordered_roots);
199c2a9c 4253
2a85d9ca 4254 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4255 btrfs_destroy_ordered_extents(root);
4256
2a85d9ca
LB
4257 cond_resched();
4258 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4259 }
4260 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4261
4262 /*
4263 * We need this here because if we've been flipped read-only we won't
4264 * get sync() from the umount, so we need to make sure any ordered
4265 * extents that haven't had their dirty pages IO start writeout yet
4266 * actually get run and error out properly.
4267 */
4268 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4269}
4270
35a3621b 4271static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4272 struct btrfs_fs_info *fs_info)
acce952b 4273{
4274 struct rb_node *node;
4275 struct btrfs_delayed_ref_root *delayed_refs;
4276 struct btrfs_delayed_ref_node *ref;
4277 int ret = 0;
4278
4279 delayed_refs = &trans->delayed_refs;
4280
4281 spin_lock(&delayed_refs->lock);
d7df2c79 4282 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4283 spin_unlock(&delayed_refs->lock);
0b246afa 4284 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4285 return ret;
4286 }
4287
5c9d028b 4288 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4289 struct btrfs_delayed_ref_head *head;
0e0adbcf 4290 struct rb_node *n;
e78417d1 4291 bool pin_bytes = false;
acce952b 4292
d7df2c79
JB
4293 head = rb_entry(node, struct btrfs_delayed_ref_head,
4294 href_node);
3069bd26 4295 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4296 continue;
3069bd26 4297
d7df2c79 4298 spin_lock(&head->lock);
e3d03965 4299 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4300 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4301 ref_node);
d7df2c79 4302 ref->in_tree = 0;
e3d03965 4303 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4304 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4305 if (!list_empty(&ref->add_list))
4306 list_del(&ref->add_list);
d7df2c79
JB
4307 atomic_dec(&delayed_refs->num_entries);
4308 btrfs_put_delayed_ref(ref);
e78417d1 4309 }
d7df2c79
JB
4310 if (head->must_insert_reserved)
4311 pin_bytes = true;
4312 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4313 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4314 spin_unlock(&head->lock);
4315 spin_unlock(&delayed_refs->lock);
4316 mutex_unlock(&head->mutex);
acce952b 4317
d7df2c79 4318 if (pin_bytes)
d278850e
JB
4319 btrfs_pin_extent(fs_info, head->bytenr,
4320 head->num_bytes, 1);
31890da0 4321 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4322 btrfs_put_delayed_ref_head(head);
acce952b 4323 cond_resched();
4324 spin_lock(&delayed_refs->lock);
4325 }
4326
4327 spin_unlock(&delayed_refs->lock);
4328
4329 return ret;
4330}
4331
143bede5 4332static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4333{
4334 struct btrfs_inode *btrfs_inode;
4335 struct list_head splice;
4336
4337 INIT_LIST_HEAD(&splice);
4338
eb73c1b7
MX
4339 spin_lock(&root->delalloc_lock);
4340 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4341
4342 while (!list_empty(&splice)) {
fe816d0f 4343 struct inode *inode = NULL;
eb73c1b7
MX
4344 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4345 delalloc_inodes);
fe816d0f 4346 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4347 spin_unlock(&root->delalloc_lock);
acce952b 4348
fe816d0f
NB
4349 /*
4350 * Make sure we get a live inode and that it'll not disappear
4351 * meanwhile.
4352 */
4353 inode = igrab(&btrfs_inode->vfs_inode);
4354 if (inode) {
4355 invalidate_inode_pages2(inode->i_mapping);
4356 iput(inode);
4357 }
eb73c1b7 4358 spin_lock(&root->delalloc_lock);
acce952b 4359 }
eb73c1b7
MX
4360 spin_unlock(&root->delalloc_lock);
4361}
4362
4363static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4364{
4365 struct btrfs_root *root;
4366 struct list_head splice;
4367
4368 INIT_LIST_HEAD(&splice);
4369
4370 spin_lock(&fs_info->delalloc_root_lock);
4371 list_splice_init(&fs_info->delalloc_roots, &splice);
4372 while (!list_empty(&splice)) {
4373 root = list_first_entry(&splice, struct btrfs_root,
4374 delalloc_root);
eb73c1b7
MX
4375 root = btrfs_grab_fs_root(root);
4376 BUG_ON(!root);
4377 spin_unlock(&fs_info->delalloc_root_lock);
4378
4379 btrfs_destroy_delalloc_inodes(root);
4380 btrfs_put_fs_root(root);
4381
4382 spin_lock(&fs_info->delalloc_root_lock);
4383 }
4384 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4385}
4386
2ff7e61e 4387static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4388 struct extent_io_tree *dirty_pages,
4389 int mark)
4390{
4391 int ret;
acce952b 4392 struct extent_buffer *eb;
4393 u64 start = 0;
4394 u64 end;
acce952b 4395
4396 while (1) {
4397 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4398 mark, NULL);
acce952b 4399 if (ret)
4400 break;
4401
91166212 4402 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4403 while (start <= end) {
0b246afa
JM
4404 eb = find_extent_buffer(fs_info, start);
4405 start += fs_info->nodesize;
fd8b2b61 4406 if (!eb)
acce952b 4407 continue;
fd8b2b61 4408 wait_on_extent_buffer_writeback(eb);
acce952b 4409
fd8b2b61
JB
4410 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4411 &eb->bflags))
4412 clear_extent_buffer_dirty(eb);
4413 free_extent_buffer_stale(eb);
acce952b 4414 }
4415 }
4416
4417 return ret;
4418}
4419
2ff7e61e 4420static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4421 struct extent_io_tree *pinned_extents)
4422{
4423 struct extent_io_tree *unpin;
4424 u64 start;
4425 u64 end;
4426 int ret;
ed0eaa14 4427 bool loop = true;
acce952b 4428
4429 unpin = pinned_extents;
ed0eaa14 4430again:
acce952b 4431 while (1) {
0e6ec385
FM
4432 struct extent_state *cached_state = NULL;
4433
fcd5e742
LF
4434 /*
4435 * The btrfs_finish_extent_commit() may get the same range as
4436 * ours between find_first_extent_bit and clear_extent_dirty.
4437 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4438 * the same extent range.
4439 */
4440 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4441 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4442 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4443 if (ret) {
4444 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4445 break;
fcd5e742 4446 }
acce952b 4447
0e6ec385
FM
4448 clear_extent_dirty(unpin, start, end, &cached_state);
4449 free_extent_state(cached_state);
2ff7e61e 4450 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4451 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4452 cond_resched();
4453 }
4454
ed0eaa14 4455 if (loop) {
0b246afa
JM
4456 if (unpin == &fs_info->freed_extents[0])
4457 unpin = &fs_info->freed_extents[1];
ed0eaa14 4458 else
0b246afa 4459 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4460 loop = false;
4461 goto again;
4462 }
4463
acce952b 4464 return 0;
4465}
4466
c79a1751
LB
4467static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4468{
4469 struct inode *inode;
4470
4471 inode = cache->io_ctl.inode;
4472 if (inode) {
4473 invalidate_inode_pages2(inode->i_mapping);
4474 BTRFS_I(inode)->generation = 0;
4475 cache->io_ctl.inode = NULL;
4476 iput(inode);
4477 }
4478 btrfs_put_block_group(cache);
4479}
4480
4481void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4482 struct btrfs_fs_info *fs_info)
c79a1751
LB
4483{
4484 struct btrfs_block_group_cache *cache;
4485
4486 spin_lock(&cur_trans->dirty_bgs_lock);
4487 while (!list_empty(&cur_trans->dirty_bgs)) {
4488 cache = list_first_entry(&cur_trans->dirty_bgs,
4489 struct btrfs_block_group_cache,
4490 dirty_list);
c79a1751
LB
4491
4492 if (!list_empty(&cache->io_list)) {
4493 spin_unlock(&cur_trans->dirty_bgs_lock);
4494 list_del_init(&cache->io_list);
4495 btrfs_cleanup_bg_io(cache);
4496 spin_lock(&cur_trans->dirty_bgs_lock);
4497 }
4498
4499 list_del_init(&cache->dirty_list);
4500 spin_lock(&cache->lock);
4501 cache->disk_cache_state = BTRFS_DC_ERROR;
4502 spin_unlock(&cache->lock);
4503
4504 spin_unlock(&cur_trans->dirty_bgs_lock);
4505 btrfs_put_block_group(cache);
ba2c4d4e 4506 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4507 spin_lock(&cur_trans->dirty_bgs_lock);
4508 }
4509 spin_unlock(&cur_trans->dirty_bgs_lock);
4510
45ae2c18
NB
4511 /*
4512 * Refer to the definition of io_bgs member for details why it's safe
4513 * to use it without any locking
4514 */
c79a1751
LB
4515 while (!list_empty(&cur_trans->io_bgs)) {
4516 cache = list_first_entry(&cur_trans->io_bgs,
4517 struct btrfs_block_group_cache,
4518 io_list);
c79a1751
LB
4519
4520 list_del_init(&cache->io_list);
4521 spin_lock(&cache->lock);
4522 cache->disk_cache_state = BTRFS_DC_ERROR;
4523 spin_unlock(&cache->lock);
4524 btrfs_cleanup_bg_io(cache);
4525 }
4526}
4527
49b25e05 4528void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4529 struct btrfs_fs_info *fs_info)
49b25e05 4530{
bbbf7243
NB
4531 struct btrfs_device *dev, *tmp;
4532
2ff7e61e 4533 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4534 ASSERT(list_empty(&cur_trans->dirty_bgs));
4535 ASSERT(list_empty(&cur_trans->io_bgs));
4536
bbbf7243
NB
4537 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4538 post_commit_list) {
4539 list_del_init(&dev->post_commit_list);
4540 }
4541
2ff7e61e 4542 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4543
4a9d8bde 4544 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4545 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4546
4a9d8bde 4547 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4548 wake_up(&fs_info->transaction_wait);
49b25e05 4549
ccdf9b30
JM
4550 btrfs_destroy_delayed_inodes(fs_info);
4551 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4552
2ff7e61e 4553 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4554 EXTENT_DIRTY);
2ff7e61e 4555 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4556 fs_info->pinned_extents);
49b25e05 4557
4a9d8bde
MX
4558 cur_trans->state =TRANS_STATE_COMPLETED;
4559 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4560}
4561
2ff7e61e 4562static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4563{
4564 struct btrfs_transaction *t;
acce952b 4565
0b246afa 4566 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4567
0b246afa
JM
4568 spin_lock(&fs_info->trans_lock);
4569 while (!list_empty(&fs_info->trans_list)) {
4570 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4571 struct btrfs_transaction, list);
4572 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4573 refcount_inc(&t->use_count);
0b246afa 4574 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4575 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4576 btrfs_put_transaction(t);
0b246afa 4577 spin_lock(&fs_info->trans_lock);
724e2315
JB
4578 continue;
4579 }
0b246afa 4580 if (t == fs_info->running_transaction) {
724e2315 4581 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4582 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4583 /*
4584 * We wait for 0 num_writers since we don't hold a trans
4585 * handle open currently for this transaction.
4586 */
4587 wait_event(t->writer_wait,
4588 atomic_read(&t->num_writers) == 0);
4589 } else {
0b246afa 4590 spin_unlock(&fs_info->trans_lock);
724e2315 4591 }
2ff7e61e 4592 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4593
0b246afa
JM
4594 spin_lock(&fs_info->trans_lock);
4595 if (t == fs_info->running_transaction)
4596 fs_info->running_transaction = NULL;
acce952b 4597 list_del_init(&t->list);
0b246afa 4598 spin_unlock(&fs_info->trans_lock);
acce952b 4599
724e2315 4600 btrfs_put_transaction(t);
2ff7e61e 4601 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4602 spin_lock(&fs_info->trans_lock);
724e2315 4603 }
0b246afa
JM
4604 spin_unlock(&fs_info->trans_lock);
4605 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4606 btrfs_destroy_delayed_inodes(fs_info);
4607 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4608 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4609 btrfs_destroy_all_delalloc_inodes(fs_info);
4610 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4611
4612 return 0;
4613}
4614
e8c9f186 4615static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4616 /* mandatory callbacks */
0b86a832 4617 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4618 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4619};