Merge patch series "Add non-coherent DMA support for AX45MP"
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
103c1972 26#include "bio.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
c7f13d42 46#include "fs.h"
07e81dc9 47#include "accessors.h"
a0231804 48#include "extent-tree.h"
45c40c8f 49#include "root-tree.h"
59b818e0 50#include "defrag.h"
c7a03b52 51#include "uuid-tree.h"
67707479 52#include "relocation.h"
2fc6822c 53#include "scrub.h"
c03b2207 54#include "super.h"
eb60ceac 55
319e4d06
QW
56#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
57 BTRFS_HEADER_FLAG_RELOC |\
58 BTRFS_SUPER_FLAG_ERROR |\
59 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
60 BTRFS_SUPER_FLAG_METADUMP |\
61 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 62
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
141386e1
JB
66static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67{
68 if (fs_info->csum_shash)
69 crypto_free_shash(fs_info->csum_shash);
70}
71
d352ac68 72/*
2996e1f8 73 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 74 */
c67b3892 75static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 76{
d5178578 77 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 78 const int num_pages = num_extent_pages(buf);
a26663e7 79 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 80 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 81 char *kaddr;
e9be5a30 82 int i;
d5178578
JT
83
84 shash->tfm = fs_info->csum_shash;
85 crypto_shash_init(shash);
a26663e7 86 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 87 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 88 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 89
5ad9b471 90 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
e9be5a30
DS
91 kaddr = page_address(buf->pages[i]);
92 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 93 }
71a63551 94 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 95 crypto_shash_final(shash, result);
19c00ddc
CM
96}
97
d352ac68
CM
98/*
99 * we can't consider a given block up to date unless the transid of the
100 * block matches the transid in the parent node's pointer. This is how we
101 * detect blocks that either didn't get written at all or got written
102 * in the wrong place.
103 */
d87e6575 104int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
1259ab75 105{
d87e6575 106 if (!extent_buffer_uptodate(eb))
1259ab75
CM
107 return 0;
108
d87e6575
CH
109 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
110 return 1;
111
b9fab919
CM
112 if (atomic)
113 return -EAGAIN;
114
d87e6575
CH
115 if (!extent_buffer_uptodate(eb) ||
116 btrfs_header_generation(eb) != parent_transid) {
117 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
118"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
119 eb->start, eb->read_mirror,
29549aec 120 parent_transid, btrfs_header_generation(eb));
d87e6575 121 clear_extent_buffer_uptodate(eb);
9e2aff90 122 return 0;
d87e6575 123 }
9e2aff90 124 return 1;
1259ab75
CM
125}
126
e7e16f48
JT
127static bool btrfs_supported_super_csum(u16 csum_type)
128{
129 switch (csum_type) {
130 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 131 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 132 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 133 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
134 return true;
135 default:
136 return false;
137 }
138}
139
1104a885
DS
140/*
141 * Return 0 if the superblock checksum type matches the checksum value of that
142 * algorithm. Pass the raw disk superblock data.
143 */
3d17adea
QW
144int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
145 const struct btrfs_super_block *disk_sb)
1104a885 146{
51bce6c9 147 char result[BTRFS_CSUM_SIZE];
d5178578
JT
148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149
150 shash->tfm = fs_info->csum_shash;
1104a885 151
51bce6c9
JT
152 /*
153 * The super_block structure does not span the whole
154 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
155 * filled with zeros and is included in the checksum.
156 */
3d17adea 157 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
fd08001f 158 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 159
55fc29be 160 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 161 return 1;
1104a885 162
e7e16f48 163 return 0;
1104a885
DS
164}
165
bacf60e5
CH
166static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
167 int mirror_num)
168{
169 struct btrfs_fs_info *fs_info = eb->fs_info;
bacf60e5
CH
170 int i, num_pages = num_extent_pages(eb);
171 int ret = 0;
172
173 if (sb_rdonly(fs_info->sb))
174 return -EROFS;
175
176 for (i = 0; i < num_pages; i++) {
177 struct page *p = eb->pages[i];
917ac778
QW
178 u64 start = max_t(u64, eb->start, page_offset(p));
179 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE);
180 u32 len = end - start;
bacf60e5 181
917ac778
QW
182 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
183 start, p, offset_in_page(start), mirror_num);
bacf60e5
CH
184 if (ret)
185 break;
bacf60e5
CH
186 }
187
188 return ret;
189}
190
d352ac68
CM
191/*
192 * helper to read a given tree block, doing retries as required when
193 * the checksums don't match and we have alternate mirrors to try.
581c1760 194 *
789d6a3a
QW
195 * @check: expected tree parentness check, see the comments of the
196 * structure for details.
d352ac68 197 */
6a2e9dc4 198int btrfs_read_extent_buffer(struct extent_buffer *eb,
789d6a3a 199 struct btrfs_tree_parent_check *check)
f188591e 200{
5ab12d1f 201 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 202 int failed = 0;
f188591e
CM
203 int ret;
204 int num_copies = 0;
205 int mirror_num = 0;
ea466794 206 int failed_mirror = 0;
f188591e 207
789d6a3a
QW
208 ASSERT(check);
209
f188591e 210 while (1) {
f8397d69 211 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
947a6299
QW
212 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
213 if (!ret)
214 break;
d397712b 215
0b246afa 216 num_copies = btrfs_num_copies(fs_info,
f188591e 217 eb->start, eb->len);
4235298e 218 if (num_copies == 1)
ea466794 219 break;
4235298e 220
5cf1ab56
JB
221 if (!failed_mirror) {
222 failed = 1;
223 failed_mirror = eb->read_mirror;
224 }
225
f188591e 226 mirror_num++;
ea466794
JB
227 if (mirror_num == failed_mirror)
228 mirror_num++;
229
4235298e 230 if (mirror_num > num_copies)
ea466794 231 break;
f188591e 232 }
ea466794 233
c0901581 234 if (failed && !ret && failed_mirror)
20a1fbf9 235 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
236
237 return ret;
f188591e 238}
19c00ddc 239
31d89399
CH
240/*
241 * Checksum a dirty tree block before IO.
242 */
243blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
eca0f6f6 244{
31d89399 245 struct extent_buffer *eb = bbio->private;
eca0f6f6 246 struct btrfs_fs_info *fs_info = eb->fs_info;
31d89399 247 u64 found_start = btrfs_header_bytenr(eb);
eca0f6f6
QW
248 u8 result[BTRFS_CSUM_SIZE];
249 int ret;
250
31d89399
CH
251 /* Btree blocks are always contiguous on disk. */
252 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
253 return BLK_STS_IOERR;
254 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
255 return BLK_STS_IOERR;
256
257 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
258 WARN_ON_ONCE(found_start != 0);
259 return BLK_STS_OK;
260 }
261
262 if (WARN_ON_ONCE(found_start != eb->start))
263 return BLK_STS_IOERR;
264 if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start,
265 eb->len)))
266 return BLK_STS_IOERR;
267
eca0f6f6
QW
268 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
269 offsetof(struct btrfs_header, fsid),
270 BTRFS_FSID_SIZE) == 0);
271 csum_tree_block(eb, result);
272
273 if (btrfs_header_level(eb))
274 ret = btrfs_check_node(eb);
275 else
85d8a826 276 ret = btrfs_check_leaf(eb);
eca0f6f6 277
3777369f
QW
278 if (ret < 0)
279 goto error;
280
281 /*
282 * Also check the generation, the eb reached here must be newer than
283 * last committed. Or something seriously wrong happened.
284 */
285 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
286 ret = -EUCLEAN;
eca0f6f6 287 btrfs_err(fs_info,
3777369f
QW
288 "block=%llu bad generation, have %llu expect > %llu",
289 eb->start, btrfs_header_generation(eb),
290 fs_info->last_trans_committed);
291 goto error;
eca0f6f6
QW
292 }
293 write_extent_buffer(eb, result, 0, fs_info->csum_size);
31d89399 294 return BLK_STS_OK;
3777369f
QW
295
296error:
297 btrfs_print_tree(eb, 0);
298 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
299 eb->start);
16199ad9
FM
300 /*
301 * Be noisy if this is an extent buffer from a log tree. We don't abort
302 * a transaction in case there's a bad log tree extent buffer, we just
303 * fallback to a transaction commit. Still we want to know when there is
304 * a bad log tree extent buffer, as that may signal a bug somewhere.
305 */
306 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
307 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
deb6216f
CH
308 return errno_to_blk_status(ret);
309}
310
413fb1bc 311static bool check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 312{
b0c9b3b0 313 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 314 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 315 u8 fsid[BTRFS_FSID_SIZE];
2b82032c 316
9a8658e3
DS
317 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
318 BTRFS_FSID_SIZE);
67bc5ad0 319
944d3f9f 320 /*
67bc5ad0
AJ
321 * alloc_fs_devices() copies the fsid into metadata_uuid if the
322 * metadata_uuid is unset in the superblock, including for a seed device.
323 * So, we can use fs_devices->metadata_uuid.
944d3f9f 324 */
67bc5ad0 325 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
413fb1bc 326 return false;
944d3f9f
NB
327
328 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
329 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
413fb1bc 330 return false;
944d3f9f 331
413fb1bc 332 return true;
2b82032c
YZ
333}
334
77bf40a2 335/* Do basic extent buffer checks at read time */
046b562b
CH
336int btrfs_validate_extent_buffer(struct extent_buffer *eb,
337 struct btrfs_tree_parent_check *check)
ce9adaa5 338{
77bf40a2 339 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 340 u64 found_start;
77bf40a2
QW
341 const u32 csum_size = fs_info->csum_size;
342 u8 found_level;
2996e1f8 343 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 344 const u8 *header_csum;
77bf40a2 345 int ret = 0;
ea466794 346
947a6299
QW
347 ASSERT(check);
348
ce9adaa5 349 found_start = btrfs_header_bytenr(eb);
727011e0 350 if (found_start != eb->start) {
8f0ed7d4
QW
351 btrfs_err_rl(fs_info,
352 "bad tree block start, mirror %u want %llu have %llu",
353 eb->read_mirror, eb->start, found_start);
f188591e 354 ret = -EIO;
77bf40a2 355 goto out;
ce9adaa5 356 }
b0c9b3b0 357 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
358 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
359 eb->start, eb->read_mirror);
1259ab75 360 ret = -EIO;
77bf40a2 361 goto out;
1259ab75 362 }
ce9adaa5 363 found_level = btrfs_header_level(eb);
1c24c3ce 364 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
365 btrfs_err(fs_info,
366 "bad tree block level, mirror %u level %d on logical %llu",
367 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 368 ret = -EIO;
77bf40a2 369 goto out;
1c24c3ce 370 }
ce9adaa5 371
c67b3892 372 csum_tree_block(eb, result);
dfd29eed
DS
373 header_csum = page_address(eb->pages[0]) +
374 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 375
dfd29eed 376 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 377 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
378"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
379 eb->start, eb->read_mirror,
dfd29eed 380 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
381 CSUM_FMT_VALUE(csum_size, result),
382 btrfs_header_level(eb));
2996e1f8 383 ret = -EUCLEAN;
77bf40a2 384 goto out;
2996e1f8
JT
385 }
386
947a6299 387 if (found_level != check->level) {
77177ed1
QW
388 btrfs_err(fs_info,
389 "level verify failed on logical %llu mirror %u wanted %u found %u",
390 eb->start, eb->read_mirror, check->level, found_level);
947a6299
QW
391 ret = -EIO;
392 goto out;
393 }
394 if (unlikely(check->transid &&
395 btrfs_header_generation(eb) != check->transid)) {
396 btrfs_err_rl(eb->fs_info,
397"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
398 eb->start, eb->read_mirror, check->transid,
399 btrfs_header_generation(eb));
400 ret = -EIO;
401 goto out;
402 }
403 if (check->has_first_key) {
404 struct btrfs_key *expect_key = &check->first_key;
405 struct btrfs_key found_key;
406
407 if (found_level)
408 btrfs_node_key_to_cpu(eb, &found_key, 0);
409 else
410 btrfs_item_key_to_cpu(eb, &found_key, 0);
411 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
412 btrfs_err(fs_info,
413"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
414 eb->start, check->transid,
415 expect_key->objectid,
416 expect_key->type, expect_key->offset,
417 found_key.objectid, found_key.type,
418 found_key.offset);
419 ret = -EUCLEAN;
420 goto out;
421 }
422 }
423 if (check->owner_root) {
424 ret = btrfs_check_eb_owner(eb, check->owner_root);
425 if (ret < 0)
426 goto out;
427 }
428
a826d6dc
JB
429 /*
430 * If this is a leaf block and it is corrupt, set the corrupt bit so
431 * that we don't try and read the other copies of this block, just
432 * return -EIO.
433 */
85d8a826 434 if (found_level == 0 && btrfs_check_leaf(eb)) {
a826d6dc
JB
435 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
436 ret = -EIO;
437 }
ce9adaa5 438
813fd1dc 439 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
440 ret = -EIO;
441
aebcc159 442 if (ret)
75391f0d 443 btrfs_err(fs_info,
8f0ed7d4
QW
444 "read time tree block corruption detected on logical %llu mirror %u",
445 eb->start, eb->read_mirror);
77bf40a2
QW
446out:
447 return ret;
448}
449
3dd1462e 450#ifdef CONFIG_MIGRATION
8958b551
MWO
451static int btree_migrate_folio(struct address_space *mapping,
452 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
453{
454 /*
455 * we can't safely write a btree page from here,
456 * we haven't done the locking hook
457 */
8958b551 458 if (folio_test_dirty(src))
784b4e29
CM
459 return -EAGAIN;
460 /*
461 * Buffers may be managed in a filesystem specific way.
462 * We must have no buffers or drop them.
463 */
8958b551
MWO
464 if (folio_get_private(src) &&
465 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 466 return -EAGAIN;
54184650 467 return migrate_folio(mapping, dst, src, mode);
784b4e29 468}
8958b551
MWO
469#else
470#define btree_migrate_folio NULL
3dd1462e 471#endif
784b4e29 472
0da5468f
CM
473static int btree_writepages(struct address_space *mapping,
474 struct writeback_control *wbc)
475{
e2d84521
MX
476 struct btrfs_fs_info *fs_info;
477 int ret;
478
d8d5f3e1 479 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
480
481 if (wbc->for_kupdate)
482 return 0;
483
e2d84521 484 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 485 /* this is a bit racy, but that's ok */
d814a491
EL
486 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
487 BTRFS_DIRTY_METADATA_THRESH,
488 fs_info->dirty_metadata_batch);
e2d84521 489 if (ret < 0)
793955bc 490 return 0;
793955bc 491 }
0b32f4bb 492 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
493}
494
f913cff3 495static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 496{
f913cff3
MWO
497 if (folio_test_writeback(folio) || folio_test_dirty(folio))
498 return false;
0c4e538b 499
f913cff3 500 return try_release_extent_buffer(&folio->page);
d98237b3
CM
501}
502
895586eb
MWO
503static void btree_invalidate_folio(struct folio *folio, size_t offset,
504 size_t length)
d98237b3 505{
d1310b2e 506 struct extent_io_tree *tree;
895586eb
MWO
507 tree = &BTRFS_I(folio->mapping->host)->io_tree;
508 extent_invalidate_folio(tree, folio, offset);
f913cff3 509 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
510 if (folio_get_private(folio)) {
511 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
512 "folio private not zero on folio %llu",
513 (unsigned long long)folio_pos(folio));
514 folio_detach_private(folio);
9ad6b7bc 515 }
d98237b3
CM
516}
517
bb146eb2 518#ifdef DEBUG
0079c3b1
MWO
519static bool btree_dirty_folio(struct address_space *mapping,
520 struct folio *folio)
521{
522 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 523 struct btrfs_subpage *subpage;
0b32f4bb 524 struct extent_buffer *eb;
139e8cd3 525 int cur_bit = 0;
0079c3b1 526 u64 page_start = folio_pos(folio);
139e8cd3
QW
527
528 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 529 eb = folio_get_private(folio);
139e8cd3
QW
530 BUG_ON(!eb);
531 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
532 BUG_ON(!atomic_read(&eb->refs));
49d0c642 533 btrfs_assert_tree_write_locked(eb);
0079c3b1 534 return filemap_dirty_folio(mapping, folio);
139e8cd3 535 }
0079c3b1 536 subpage = folio_get_private(folio);
139e8cd3
QW
537
538 ASSERT(subpage->dirty_bitmap);
539 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
540 unsigned long flags;
541 u64 cur;
542 u16 tmp = (1 << cur_bit);
543
544 spin_lock_irqsave(&subpage->lock, flags);
545 if (!(tmp & subpage->dirty_bitmap)) {
546 spin_unlock_irqrestore(&subpage->lock, flags);
547 cur_bit++;
548 continue;
549 }
550 spin_unlock_irqrestore(&subpage->lock, flags);
551 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 552
139e8cd3
QW
553 eb = find_extent_buffer(fs_info, cur);
554 ASSERT(eb);
555 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
556 ASSERT(atomic_read(&eb->refs));
49d0c642 557 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
558 free_extent_buffer(eb);
559
560 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
561 }
0079c3b1 562 return filemap_dirty_folio(mapping, folio);
0b32f4bb 563}
0079c3b1
MWO
564#else
565#define btree_dirty_folio filemap_dirty_folio
566#endif
0b32f4bb 567
7f09410b 568static const struct address_space_operations btree_aops = {
0da5468f 569 .writepages = btree_writepages,
f913cff3 570 .release_folio = btree_release_folio,
895586eb 571 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
572 .migrate_folio = btree_migrate_folio,
573 .dirty_folio = btree_dirty_folio,
d98237b3
CM
574};
575
2ff7e61e
JM
576struct extent_buffer *btrfs_find_create_tree_block(
577 struct btrfs_fs_info *fs_info,
3fbaf258
JB
578 u64 bytenr, u64 owner_root,
579 int level)
0999df54 580{
0b246afa
JM
581 if (btrfs_is_testing(fs_info))
582 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 583 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
584}
585
581c1760
QW
586/*
587 * Read tree block at logical address @bytenr and do variant basic but critical
588 * verification.
589 *
789d6a3a
QW
590 * @check: expected tree parentness check, see comments of the
591 * structure for details.
581c1760 592 */
2ff7e61e 593struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
789d6a3a 594 struct btrfs_tree_parent_check *check)
0999df54
CM
595{
596 struct extent_buffer *buf = NULL;
0999df54
CM
597 int ret;
598
789d6a3a
QW
599 ASSERT(check);
600
601 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
602 check->level);
c871b0f2
LB
603 if (IS_ERR(buf))
604 return buf;
0999df54 605
789d6a3a 606 ret = btrfs_read_extent_buffer(buf, check);
0f0fe8f7 607 if (ret) {
537f38f0 608 free_extent_buffer_stale(buf);
64c043de 609 return ERR_PTR(ret);
0f0fe8f7 610 }
789d6a3a 611 if (btrfs_check_eb_owner(buf, check->owner_root)) {
88c602ab
QW
612 free_extent_buffer_stale(buf);
613 return ERR_PTR(-EUCLEAN);
614 }
5f39d397 615 return buf;
ce9adaa5 616
eb60ceac
CM
617}
618
da17066c 619static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 620 u64 objectid)
d97e63b6 621{
7c0260ee 622 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
623
624 memset(&root->root_key, 0, sizeof(root->root_key));
625 memset(&root->root_item, 0, sizeof(root->root_item));
626 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 627 root->fs_info = fs_info;
2e608bd1 628 root->root_key.objectid = objectid;
cfaa7295 629 root->node = NULL;
a28ec197 630 root->commit_root = NULL;
27cdeb70 631 root->state = 0;
abed4aaa 632 RB_CLEAR_NODE(&root->rb_node);
0b86a832 633
0f7d52f4 634 root->last_trans = 0;
6b8fad57 635 root->free_objectid = 0;
eb73c1b7 636 root->nr_delalloc_inodes = 0;
199c2a9c 637 root->nr_ordered_extents = 0;
6bef4d31 638 root->inode_tree = RB_ROOT;
088aea3b 639 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
640
641 btrfs_init_root_block_rsv(root);
0b86a832
CM
642
643 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 644 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
645 INIT_LIST_HEAD(&root->delalloc_inodes);
646 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
647 INIT_LIST_HEAD(&root->ordered_extents);
648 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 649 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
650 INIT_LIST_HEAD(&root->logged_list[0]);
651 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 652 spin_lock_init(&root->inode_lock);
eb73c1b7 653 spin_lock_init(&root->delalloc_lock);
199c2a9c 654 spin_lock_init(&root->ordered_extent_lock);
f0486c68 655 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
656 spin_lock_init(&root->log_extents_lock[0]);
657 spin_lock_init(&root->log_extents_lock[1]);
8287475a 658 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 659 mutex_init(&root->objectid_mutex);
e02119d5 660 mutex_init(&root->log_mutex);
31f3d255 661 mutex_init(&root->ordered_extent_mutex);
573bfb72 662 mutex_init(&root->delalloc_mutex);
c53e9653 663 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
664 init_waitqueue_head(&root->log_writer_wait);
665 init_waitqueue_head(&root->log_commit_wait[0]);
666 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
667 INIT_LIST_HEAD(&root->log_ctxs[0]);
668 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
669 atomic_set(&root->log_commit[0], 0);
670 atomic_set(&root->log_commit[1], 0);
671 atomic_set(&root->log_writers, 0);
2ecb7923 672 atomic_set(&root->log_batch, 0);
0700cea7 673 refcount_set(&root->refs, 1);
8ecebf4d 674 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 675 atomic_set(&root->nr_swapfiles, 0);
7237f183 676 root->log_transid = 0;
d1433deb 677 root->log_transid_committed = -1;
257c62e1 678 root->last_log_commit = 0;
2e608bd1 679 root->anon_dev = 0;
e289f03e 680 if (!dummy) {
43eb5f29 681 extent_io_tree_init(fs_info, &root->dirty_log_pages,
35da5a7e 682 IO_TREE_ROOT_DIRTY_LOG_PAGES);
e289f03e 683 extent_io_tree_init(fs_info, &root->log_csum_range,
35da5a7e 684 IO_TREE_LOG_CSUM_RANGE);
e289f03e 685 }
017e5369 686
5f3ab90a 687 spin_lock_init(&root->root_item_lock);
370a11b8 688 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
689#ifdef CONFIG_BTRFS_DEBUG
690 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 691 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 692 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 693 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 694#endif
3768f368
CM
695}
696
74e4d827 697static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 698 u64 objectid, gfp_t flags)
6f07e42e 699{
74e4d827 700 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 701 if (root)
96dfcb46 702 __setup_root(root, fs_info, objectid);
6f07e42e
AV
703 return root;
704}
705
06ea65a3
JB
706#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
707/* Should only be used by the testing infrastructure */
da17066c 708struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
709{
710 struct btrfs_root *root;
711
7c0260ee
JM
712 if (!fs_info)
713 return ERR_PTR(-EINVAL);
714
96dfcb46 715 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
716 if (!root)
717 return ERR_PTR(-ENOMEM);
da17066c 718
b9ef22de 719 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 720 root->alloc_bytenr = 0;
06ea65a3
JB
721
722 return root;
723}
724#endif
725
abed4aaa
JB
726static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
727{
728 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
729 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
730
731 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
732}
733
734static int global_root_key_cmp(const void *k, const struct rb_node *node)
735{
736 const struct btrfs_key *key = k;
737 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
738
739 return btrfs_comp_cpu_keys(key, &root->root_key);
740}
741
742int btrfs_global_root_insert(struct btrfs_root *root)
743{
744 struct btrfs_fs_info *fs_info = root->fs_info;
745 struct rb_node *tmp;
745806fb 746 int ret = 0;
abed4aaa
JB
747
748 write_lock(&fs_info->global_root_lock);
749 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
750 write_unlock(&fs_info->global_root_lock);
abed4aaa 751
745806fb
QW
752 if (tmp) {
753 ret = -EEXIST;
754 btrfs_warn(fs_info, "global root %llu %llu already exists",
755 root->root_key.objectid, root->root_key.offset);
756 }
757 return ret;
abed4aaa
JB
758}
759
760void btrfs_global_root_delete(struct btrfs_root *root)
761{
762 struct btrfs_fs_info *fs_info = root->fs_info;
763
764 write_lock(&fs_info->global_root_lock);
765 rb_erase(&root->rb_node, &fs_info->global_root_tree);
766 write_unlock(&fs_info->global_root_lock);
767}
768
769struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
770 struct btrfs_key *key)
771{
772 struct rb_node *node;
773 struct btrfs_root *root = NULL;
774
775 read_lock(&fs_info->global_root_lock);
776 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
777 if (node)
778 root = container_of(node, struct btrfs_root, rb_node);
779 read_unlock(&fs_info->global_root_lock);
780
781 return root;
782}
783
f7238e50
JB
784static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
785{
786 struct btrfs_block_group *block_group;
787 u64 ret;
788
789 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
790 return 0;
791
792 if (bytenr)
793 block_group = btrfs_lookup_block_group(fs_info, bytenr);
794 else
795 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
796 ASSERT(block_group);
797 if (!block_group)
798 return 0;
799 ret = block_group->global_root_id;
800 btrfs_put_block_group(block_group);
801
802 return ret;
803}
804
abed4aaa
JB
805struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
806{
807 struct btrfs_key key = {
808 .objectid = BTRFS_CSUM_TREE_OBJECTID,
809 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 810 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
811 };
812
813 return btrfs_global_root(fs_info, &key);
814}
815
816struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
817{
818 struct btrfs_key key = {
819 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
820 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 821 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
822 };
823
824 return btrfs_global_root(fs_info, &key);
825}
826
51129b33
JB
827struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
828{
829 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
830 return fs_info->block_group_root;
831 return btrfs_extent_root(fs_info, 0);
832}
833
20897f5c 834struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
835 u64 objectid)
836{
9b7a2440 837 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
838 struct extent_buffer *leaf;
839 struct btrfs_root *tree_root = fs_info->tree_root;
840 struct btrfs_root *root;
841 struct btrfs_key key;
b89f6d1f 842 unsigned int nofs_flag;
20897f5c 843 int ret = 0;
20897f5c 844
b89f6d1f
FM
845 /*
846 * We're holding a transaction handle, so use a NOFS memory allocation
847 * context to avoid deadlock if reclaim happens.
848 */
849 nofs_flag = memalloc_nofs_save();
96dfcb46 850 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 851 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
852 if (!root)
853 return ERR_PTR(-ENOMEM);
854
20897f5c
AJ
855 root->root_key.objectid = objectid;
856 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
857 root->root_key.offset = 0;
858
9631e4cc
JB
859 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
860 BTRFS_NESTING_NORMAL);
20897f5c
AJ
861 if (IS_ERR(leaf)) {
862 ret = PTR_ERR(leaf);
1dd05682 863 leaf = NULL;
c1b07854 864 goto fail;
20897f5c
AJ
865 }
866
20897f5c 867 root->node = leaf;
20897f5c
AJ
868 btrfs_mark_buffer_dirty(leaf);
869
870 root->commit_root = btrfs_root_node(root);
27cdeb70 871 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 872
f944d2cb
DS
873 btrfs_set_root_flags(&root->root_item, 0);
874 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
875 btrfs_set_root_bytenr(&root->root_item, leaf->start);
876 btrfs_set_root_generation(&root->root_item, trans->transid);
877 btrfs_set_root_level(&root->root_item, 0);
878 btrfs_set_root_refs(&root->root_item, 1);
879 btrfs_set_root_used(&root->root_item, leaf->len);
880 btrfs_set_root_last_snapshot(&root->root_item, 0);
881 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 882 if (is_fstree(objectid))
807fc790
AS
883 generate_random_guid(root->root_item.uuid);
884 else
885 export_guid(root->root_item.uuid, &guid_null);
c8422684 886 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 887
8a6a87cd
BB
888 btrfs_tree_unlock(leaf);
889
20897f5c
AJ
890 key.objectid = objectid;
891 key.type = BTRFS_ROOT_ITEM_KEY;
892 key.offset = 0;
893 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
894 if (ret)
895 goto fail;
896
1dd05682
TI
897 return root;
898
8a6a87cd 899fail:
00246528 900 btrfs_put_root(root);
20897f5c 901
1dd05682 902 return ERR_PTR(ret);
20897f5c
AJ
903}
904
7237f183
YZ
905static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
906 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
907{
908 struct btrfs_root *root;
e02119d5 909
96dfcb46 910 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 911 if (!root)
7237f183 912 return ERR_PTR(-ENOMEM);
e02119d5 913
e02119d5
CM
914 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
915 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
916 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 917
6ab6ebb7
NA
918 return root;
919}
920
921int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
922 struct btrfs_root *root)
923{
924 struct extent_buffer *leaf;
925
7237f183 926 /*
92a7cc42 927 * DON'T set SHAREABLE bit for log trees.
27cdeb70 928 *
92a7cc42
QW
929 * Log trees are not exposed to user space thus can't be snapshotted,
930 * and they go away before a real commit is actually done.
931 *
932 * They do store pointers to file data extents, and those reference
933 * counts still get updated (along with back refs to the log tree).
7237f183 934 */
e02119d5 935
4d75f8a9 936 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 937 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
938 if (IS_ERR(leaf))
939 return PTR_ERR(leaf);
e02119d5 940
7237f183 941 root->node = leaf;
e02119d5 942
e02119d5
CM
943 btrfs_mark_buffer_dirty(root->node);
944 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
945
946 return 0;
7237f183
YZ
947}
948
949int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
950 struct btrfs_fs_info *fs_info)
951{
952 struct btrfs_root *log_root;
953
954 log_root = alloc_log_tree(trans, fs_info);
955 if (IS_ERR(log_root))
956 return PTR_ERR(log_root);
6ab6ebb7 957
3ddebf27
NA
958 if (!btrfs_is_zoned(fs_info)) {
959 int ret = btrfs_alloc_log_tree_node(trans, log_root);
960
961 if (ret) {
962 btrfs_put_root(log_root);
963 return ret;
964 }
6ab6ebb7
NA
965 }
966
7237f183
YZ
967 WARN_ON(fs_info->log_root_tree);
968 fs_info->log_root_tree = log_root;
969 return 0;
970}
971
972int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
973 struct btrfs_root *root)
974{
0b246afa 975 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
976 struct btrfs_root *log_root;
977 struct btrfs_inode_item *inode_item;
6ab6ebb7 978 int ret;
7237f183 979
0b246afa 980 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
981 if (IS_ERR(log_root))
982 return PTR_ERR(log_root);
983
6ab6ebb7
NA
984 ret = btrfs_alloc_log_tree_node(trans, log_root);
985 if (ret) {
986 btrfs_put_root(log_root);
987 return ret;
988 }
989
7237f183
YZ
990 log_root->last_trans = trans->transid;
991 log_root->root_key.offset = root->root_key.objectid;
992
993 inode_item = &log_root->root_item.inode;
3cae210f
QW
994 btrfs_set_stack_inode_generation(inode_item, 1);
995 btrfs_set_stack_inode_size(inode_item, 3);
996 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 997 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 998 fs_info->nodesize);
3cae210f 999 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1000
5d4f98a2 1001 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1002
1003 WARN_ON(root->log_root);
1004 root->log_root = log_root;
1005 root->log_transid = 0;
d1433deb 1006 root->log_transid_committed = -1;
257c62e1 1007 root->last_log_commit = 0;
e02119d5
CM
1008 return 0;
1009}
1010
49d11bea
JB
1011static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1012 struct btrfs_path *path,
1013 struct btrfs_key *key)
e02119d5
CM
1014{
1015 struct btrfs_root *root;
789d6a3a 1016 struct btrfs_tree_parent_check check = { 0 };
e02119d5 1017 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1018 u64 generation;
cb517eab 1019 int ret;
581c1760 1020 int level;
0f7d52f4 1021
96dfcb46 1022 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1023 if (!root)
1024 return ERR_PTR(-ENOMEM);
0f7d52f4 1025
cb517eab
MX
1026 ret = btrfs_find_root(tree_root, key, path,
1027 &root->root_item, &root->root_key);
0f7d52f4 1028 if (ret) {
13a8a7c8
YZ
1029 if (ret > 0)
1030 ret = -ENOENT;
49d11bea 1031 goto fail;
0f7d52f4 1032 }
13a8a7c8 1033
84234f3a 1034 generation = btrfs_root_generation(&root->root_item);
581c1760 1035 level = btrfs_root_level(&root->root_item);
789d6a3a
QW
1036 check.level = level;
1037 check.transid = generation;
1038 check.owner_root = key->objectid;
1039 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1040 &check);
64c043de
LB
1041 if (IS_ERR(root->node)) {
1042 ret = PTR_ERR(root->node);
8c38938c 1043 root->node = NULL;
49d11bea 1044 goto fail;
4eb150d6
QW
1045 }
1046 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1047 ret = -EIO;
49d11bea 1048 goto fail;
416bc658 1049 }
88c602ab
QW
1050
1051 /*
1052 * For real fs, and not log/reloc trees, root owner must
1053 * match its root node owner
1054 */
1055 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1056 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1057 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1058 root->root_key.objectid != btrfs_header_owner(root->node)) {
1059 btrfs_crit(fs_info,
1060"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1061 root->root_key.objectid, root->node->start,
1062 btrfs_header_owner(root->node),
1063 root->root_key.objectid);
1064 ret = -EUCLEAN;
1065 goto fail;
1066 }
5d4f98a2 1067 root->commit_root = btrfs_root_node(root);
cb517eab 1068 return root;
49d11bea 1069fail:
00246528 1070 btrfs_put_root(root);
49d11bea
JB
1071 return ERR_PTR(ret);
1072}
1073
1074struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1075 struct btrfs_key *key)
1076{
1077 struct btrfs_root *root;
1078 struct btrfs_path *path;
1079
1080 path = btrfs_alloc_path();
1081 if (!path)
1082 return ERR_PTR(-ENOMEM);
1083 root = read_tree_root_path(tree_root, path, key);
1084 btrfs_free_path(path);
1085
1086 return root;
cb517eab
MX
1087}
1088
2dfb1e43
QW
1089/*
1090 * Initialize subvolume root in-memory structure
1091 *
1092 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1093 */
1094static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1095{
1096 int ret;
1097
0b548539 1098 btrfs_drew_lock_init(&root->snapshot_lock);
8257b2dc 1099
aeb935a4 1100 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
6ebcd021
QW
1101 !btrfs_is_data_reloc_root(root) &&
1102 is_fstree(root->root_key.objectid)) {
92a7cc42 1103 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1104 btrfs_check_and_init_root_item(&root->root_item);
1105 }
1106
851fd730
QW
1107 /*
1108 * Don't assign anonymous block device to roots that are not exposed to
1109 * userspace, the id pool is limited to 1M
1110 */
1111 if (is_fstree(root->root_key.objectid) &&
1112 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1113 if (!anon_dev) {
1114 ret = get_anon_bdev(&root->anon_dev);
1115 if (ret)
1116 goto fail;
1117 } else {
1118 root->anon_dev = anon_dev;
1119 }
851fd730 1120 }
f32e48e9
CR
1121
1122 mutex_lock(&root->objectid_mutex);
453e4873 1123 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1124 if (ret) {
1125 mutex_unlock(&root->objectid_mutex);
876d2cf1 1126 goto fail;
f32e48e9
CR
1127 }
1128
6b8fad57 1129 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1130
1131 mutex_unlock(&root->objectid_mutex);
1132
cb517eab
MX
1133 return 0;
1134fail:
84db5ccf 1135 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1136 return ret;
1137}
1138
a98db0f3
JB
1139static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1140 u64 root_id)
cb517eab
MX
1141{
1142 struct btrfs_root *root;
1143
fc7cbcd4
DS
1144 spin_lock(&fs_info->fs_roots_radix_lock);
1145 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1146 (unsigned long)root_id);
25ac047c 1147 root = btrfs_grab_root(root);
fc7cbcd4 1148 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1149 return root;
1150}
1151
49d11bea
JB
1152static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1153 u64 objectid)
1154{
abed4aaa
JB
1155 struct btrfs_key key = {
1156 .objectid = objectid,
1157 .type = BTRFS_ROOT_ITEM_KEY,
1158 .offset = 0,
1159 };
1160
e91909aa
CH
1161 switch (objectid) {
1162 case BTRFS_ROOT_TREE_OBJECTID:
49d11bea 1163 return btrfs_grab_root(fs_info->tree_root);
e91909aa 1164 case BTRFS_EXTENT_TREE_OBJECTID:
abed4aaa 1165 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa 1166 case BTRFS_CHUNK_TREE_OBJECTID:
49d11bea 1167 return btrfs_grab_root(fs_info->chunk_root);
e91909aa 1168 case BTRFS_DEV_TREE_OBJECTID:
49d11bea 1169 return btrfs_grab_root(fs_info->dev_root);
e91909aa 1170 case BTRFS_CSUM_TREE_OBJECTID:
abed4aaa 1171 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa 1172 case BTRFS_QUOTA_TREE_OBJECTID:
85724171 1173 return btrfs_grab_root(fs_info->quota_root);
e91909aa 1174 case BTRFS_UUID_TREE_OBJECTID:
85724171 1175 return btrfs_grab_root(fs_info->uuid_root);
e91909aa 1176 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
85724171 1177 return btrfs_grab_root(fs_info->block_group_root);
e91909aa 1178 case BTRFS_FREE_SPACE_TREE_OBJECTID:
85724171 1179 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa
CH
1180 default:
1181 return NULL;
1182 }
49d11bea
JB
1183}
1184
cb517eab
MX
1185int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1186 struct btrfs_root *root)
1187{
1188 int ret;
1189
fc7cbcd4
DS
1190 ret = radix_tree_preload(GFP_NOFS);
1191 if (ret)
1192 return ret;
1193
1194 spin_lock(&fs_info->fs_roots_radix_lock);
1195 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1196 (unsigned long)root->root_key.objectid,
1197 root);
af01d2e5 1198 if (ret == 0) {
00246528 1199 btrfs_grab_root(root);
fc7cbcd4 1200 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1201 }
fc7cbcd4
DS
1202 spin_unlock(&fs_info->fs_roots_radix_lock);
1203 radix_tree_preload_end();
cb517eab
MX
1204
1205 return ret;
1206}
1207
bd647ce3
JB
1208void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1209{
1210#ifdef CONFIG_BTRFS_DEBUG
1211 struct btrfs_root *root;
1212
1213 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1214 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1215
bd647ce3
JB
1216 root = list_first_entry(&fs_info->allocated_roots,
1217 struct btrfs_root, leak_list);
457f1864 1218 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1219 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1220 refcount_read(&root->refs));
1221 while (refcount_read(&root->refs) > 1)
00246528
JB
1222 btrfs_put_root(root);
1223 btrfs_put_root(root);
bd647ce3
JB
1224 }
1225#endif
1226}
1227
abed4aaa
JB
1228static void free_global_roots(struct btrfs_fs_info *fs_info)
1229{
1230 struct btrfs_root *root;
1231 struct rb_node *node;
1232
1233 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1234 root = rb_entry(node, struct btrfs_root, rb_node);
1235 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1236 btrfs_put_root(root);
1237 }
1238}
1239
0d4b0463
JB
1240void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1241{
141386e1
JB
1242 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1243 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1244 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1245 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1246 btrfs_free_csum_hash(fs_info);
1247 btrfs_free_stripe_hash_table(fs_info);
1248 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1249 kfree(fs_info->balance_ctl);
1250 kfree(fs_info->delayed_root);
abed4aaa 1251 free_global_roots(fs_info);
00246528
JB
1252 btrfs_put_root(fs_info->tree_root);
1253 btrfs_put_root(fs_info->chunk_root);
1254 btrfs_put_root(fs_info->dev_root);
00246528
JB
1255 btrfs_put_root(fs_info->quota_root);
1256 btrfs_put_root(fs_info->uuid_root);
00246528 1257 btrfs_put_root(fs_info->fs_root);
aeb935a4 1258 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1259 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1260 btrfs_check_leaked_roots(fs_info);
3fd63727 1261 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1262 kfree(fs_info->super_copy);
1263 kfree(fs_info->super_for_commit);
8481dd80 1264 kfree(fs_info->subpage_info);
0d4b0463
JB
1265 kvfree(fs_info);
1266}
1267
1268
2dfb1e43
QW
1269/*
1270 * Get an in-memory reference of a root structure.
1271 *
1272 * For essential trees like root/extent tree, we grab it from fs_info directly.
1273 * For subvolume trees, we check the cached filesystem roots first. If not
1274 * found, then read it from disk and add it to cached fs roots.
1275 *
1276 * Caller should release the root by calling btrfs_put_root() after the usage.
1277 *
1278 * NOTE: Reloc and log trees can't be read by this function as they share the
1279 * same root objectid.
1280 *
1281 * @objectid: root id
1282 * @anon_dev: preallocated anonymous block device number for new roots,
1283 * pass 0 for new allocation.
1284 * @check_ref: whether to check root item references, If true, return -ENOENT
1285 * for orphan roots
1286 */
1287static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1288 u64 objectid, dev_t anon_dev,
1289 bool check_ref)
5eda7b5e
CM
1290{
1291 struct btrfs_root *root;
381cf658 1292 struct btrfs_path *path;
1d4c08e0 1293 struct btrfs_key key;
5eda7b5e
CM
1294 int ret;
1295
49d11bea
JB
1296 root = btrfs_get_global_root(fs_info, objectid);
1297 if (root)
1298 return root;
773e722a
QW
1299
1300 /*
1301 * If we're called for non-subvolume trees, and above function didn't
1302 * find one, do not try to read it from disk.
1303 *
1304 * This is namely for free-space-tree and quota tree, which can change
1305 * at runtime and should only be grabbed from fs_info.
1306 */
1307 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1308 return ERR_PTR(-ENOENT);
4df27c4d 1309again:
56e9357a 1310 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1311 if (root) {
2dfb1e43
QW
1312 /* Shouldn't get preallocated anon_dev for cached roots */
1313 ASSERT(!anon_dev);
bc44d7c4 1314 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1315 btrfs_put_root(root);
48475471 1316 return ERR_PTR(-ENOENT);
bc44d7c4 1317 }
5eda7b5e 1318 return root;
48475471 1319 }
5eda7b5e 1320
56e9357a
DS
1321 key.objectid = objectid;
1322 key.type = BTRFS_ROOT_ITEM_KEY;
1323 key.offset = (u64)-1;
1324 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1325 if (IS_ERR(root))
1326 return root;
3394e160 1327
c00869f1 1328 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1329 ret = -ENOENT;
581bb050 1330 goto fail;
35a30d7c 1331 }
581bb050 1332
2dfb1e43 1333 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1334 if (ret)
1335 goto fail;
3394e160 1336
381cf658
DS
1337 path = btrfs_alloc_path();
1338 if (!path) {
1339 ret = -ENOMEM;
1340 goto fail;
1341 }
1d4c08e0
DS
1342 key.objectid = BTRFS_ORPHAN_OBJECTID;
1343 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1344 key.offset = objectid;
1d4c08e0
DS
1345
1346 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1347 btrfs_free_path(path);
d68fc57b
YZ
1348 if (ret < 0)
1349 goto fail;
1350 if (ret == 0)
27cdeb70 1351 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1352
cb517eab 1353 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1354 if (ret) {
168a2f77
JJB
1355 if (ret == -EEXIST) {
1356 btrfs_put_root(root);
4df27c4d 1357 goto again;
168a2f77 1358 }
4df27c4d 1359 goto fail;
0f7d52f4 1360 }
edbd8d4e 1361 return root;
4df27c4d 1362fail:
33fab972
FM
1363 /*
1364 * If our caller provided us an anonymous device, then it's his
143823cf 1365 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1366 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1367 * and once again by our caller.
1368 */
1369 if (anon_dev)
1370 root->anon_dev = 0;
8c38938c 1371 btrfs_put_root(root);
4df27c4d 1372 return ERR_PTR(ret);
edbd8d4e
CM
1373}
1374
2dfb1e43
QW
1375/*
1376 * Get in-memory reference of a root structure
1377 *
1378 * @objectid: tree objectid
1379 * @check_ref: if set, verify that the tree exists and the item has at least
1380 * one reference
1381 */
1382struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1383 u64 objectid, bool check_ref)
1384{
1385 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1386}
1387
1388/*
1389 * Get in-memory reference of a root structure, created as new, optionally pass
1390 * the anonymous block device id
1391 *
1392 * @objectid: tree objectid
1393 * @anon_dev: if zero, allocate a new anonymous block device or use the
1394 * parameter value
1395 */
1396struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1397 u64 objectid, dev_t anon_dev)
1398{
1399 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1400}
1401
49d11bea
JB
1402/*
1403 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1404 * @fs_info: the fs_info
1405 * @objectid: the objectid we need to lookup
1406 *
1407 * This is exclusively used for backref walking, and exists specifically because
1408 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1409 * creation time, which means we may have to read the tree_root in order to look
1410 * up a fs root that is not in memory. If the root is not in memory we will
1411 * read the tree root commit root and look up the fs root from there. This is a
1412 * temporary root, it will not be inserted into the radix tree as it doesn't
1413 * have the most uptodate information, it'll simply be discarded once the
1414 * backref code is finished using the root.
1415 */
1416struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1417 struct btrfs_path *path,
1418 u64 objectid)
1419{
1420 struct btrfs_root *root;
1421 struct btrfs_key key;
1422
1423 ASSERT(path->search_commit_root && path->skip_locking);
1424
1425 /*
1426 * This can return -ENOENT if we ask for a root that doesn't exist, but
1427 * since this is called via the backref walking code we won't be looking
1428 * up a root that doesn't exist, unless there's corruption. So if root
1429 * != NULL just return it.
1430 */
1431 root = btrfs_get_global_root(fs_info, objectid);
1432 if (root)
1433 return root;
1434
1435 root = btrfs_lookup_fs_root(fs_info, objectid);
1436 if (root)
1437 return root;
1438
1439 key.objectid = objectid;
1440 key.type = BTRFS_ROOT_ITEM_KEY;
1441 key.offset = (u64)-1;
1442 root = read_tree_root_path(fs_info->tree_root, path, &key);
1443 btrfs_release_path(path);
1444
1445 return root;
1446}
1447
a74a4b97
CM
1448static int cleaner_kthread(void *arg)
1449{
0d031dc4 1450 struct btrfs_fs_info *fs_info = arg;
d0278245 1451 int again;
a74a4b97 1452
d6fd0ae2 1453 while (1) {
d0278245 1454 again = 0;
a74a4b97 1455
fd340d0f
JB
1456 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1457
d0278245 1458 /* Make the cleaner go to sleep early. */
2ff7e61e 1459 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1460 goto sleep;
1461
90c711ab
ZB
1462 /*
1463 * Do not do anything if we might cause open_ctree() to block
1464 * before we have finished mounting the filesystem.
1465 */
0b246afa 1466 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1467 goto sleep;
1468
0b246afa 1469 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1470 goto sleep;
1471
dc7f370c
MX
1472 /*
1473 * Avoid the problem that we change the status of the fs
1474 * during the above check and trylock.
1475 */
2ff7e61e 1476 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1477 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1478 goto sleep;
76dda93c 1479 }
a74a4b97 1480
b7625f46
QW
1481 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1482 btrfs_sysfs_feature_update(fs_info);
1483
2ff7e61e 1484 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1485
33c44184 1486 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1487 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1488
1489 /*
05323cd1
MX
1490 * The defragger has dealt with the R/O remount and umount,
1491 * needn't do anything special here.
d0278245 1492 */
0b246afa 1493 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1494
1495 /*
f3372065 1496 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1497 * with relocation (btrfs_relocate_chunk) and relocation
1498 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1499 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1500 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1501 * unused block groups.
1502 */
0b246afa 1503 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1504
1505 /*
1506 * Reclaim block groups in the reclaim_bgs list after we deleted
1507 * all unused block_groups. This possibly gives us some more free
1508 * space.
1509 */
1510 btrfs_reclaim_bgs(fs_info);
d0278245 1511sleep:
a0a1db70 1512 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1513 if (kthread_should_park())
1514 kthread_parkme();
1515 if (kthread_should_stop())
1516 return 0;
838fe188 1517 if (!again) {
a74a4b97 1518 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1519 schedule();
a74a4b97
CM
1520 __set_current_state(TASK_RUNNING);
1521 }
da288d28 1522 }
a74a4b97
CM
1523}
1524
1525static int transaction_kthread(void *arg)
1526{
1527 struct btrfs_root *root = arg;
0b246afa 1528 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1529 struct btrfs_trans_handle *trans;
1530 struct btrfs_transaction *cur;
8929ecfa 1531 u64 transid;
643900be 1532 time64_t delta;
a74a4b97 1533 unsigned long delay;
914b2007 1534 bool cannot_commit;
a74a4b97
CM
1535
1536 do {
914b2007 1537 cannot_commit = false;
ba1bc00f 1538 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1539 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1540
0b246afa
JM
1541 spin_lock(&fs_info->trans_lock);
1542 cur = fs_info->running_transaction;
a74a4b97 1543 if (!cur) {
0b246afa 1544 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1545 goto sleep;
1546 }
31153d81 1547
643900be 1548 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
1549 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1550 cur->state < TRANS_STATE_COMMIT_START &&
643900be 1551 delta < fs_info->commit_interval) {
0b246afa 1552 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1553 delay -= msecs_to_jiffies((delta - 1) * 1000);
1554 delay = min(delay,
1555 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1556 goto sleep;
1557 }
8929ecfa 1558 transid = cur->transid;
0b246afa 1559 spin_unlock(&fs_info->trans_lock);
56bec294 1560
79787eaa 1561 /* If the file system is aborted, this will always fail. */
354aa0fb 1562 trans = btrfs_attach_transaction(root);
914b2007 1563 if (IS_ERR(trans)) {
354aa0fb
MX
1564 if (PTR_ERR(trans) != -ENOENT)
1565 cannot_commit = true;
79787eaa 1566 goto sleep;
914b2007 1567 }
8929ecfa 1568 if (transid == trans->transid) {
3a45bb20 1569 btrfs_commit_transaction(trans);
8929ecfa 1570 } else {
3a45bb20 1571 btrfs_end_transaction(trans);
8929ecfa 1572 }
a74a4b97 1573sleep:
0b246afa
JM
1574 wake_up_process(fs_info->cleaner_kthread);
1575 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1576
84961539 1577 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1578 btrfs_cleanup_transaction(fs_info);
ce63f891 1579 if (!kthread_should_stop() &&
0b246afa 1580 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1581 cannot_commit))
bc5511d0 1582 schedule_timeout_interruptible(delay);
a74a4b97
CM
1583 } while (!kthread_should_stop());
1584 return 0;
1585}
1586
af31f5e5 1587/*
01f0f9da
NB
1588 * This will find the highest generation in the array of root backups. The
1589 * index of the highest array is returned, or -EINVAL if we can't find
1590 * anything.
af31f5e5
CM
1591 *
1592 * We check to make sure the array is valid by comparing the
1593 * generation of the latest root in the array with the generation
1594 * in the super block. If they don't match we pitch it.
1595 */
01f0f9da 1596static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1597{
01f0f9da 1598 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1599 u64 cur;
af31f5e5
CM
1600 struct btrfs_root_backup *root_backup;
1601 int i;
1602
1603 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1604 root_backup = info->super_copy->super_roots + i;
1605 cur = btrfs_backup_tree_root_gen(root_backup);
1606 if (cur == newest_gen)
01f0f9da 1607 return i;
af31f5e5
CM
1608 }
1609
01f0f9da 1610 return -EINVAL;
af31f5e5
CM
1611}
1612
af31f5e5
CM
1613/*
1614 * copy all the root pointers into the super backup array.
1615 * this will bump the backup pointer by one when it is
1616 * done
1617 */
1618static void backup_super_roots(struct btrfs_fs_info *info)
1619{
6ef108dd 1620 const int next_backup = info->backup_root_index;
af31f5e5 1621 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1622
1623 root_backup = info->super_for_commit->super_roots + next_backup;
1624
1625 /*
1626 * make sure all of our padding and empty slots get zero filled
1627 * regardless of which ones we use today
1628 */
1629 memset(root_backup, 0, sizeof(*root_backup));
1630
1631 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1632
1633 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1634 btrfs_set_backup_tree_root_gen(root_backup,
1635 btrfs_header_generation(info->tree_root->node));
1636
1637 btrfs_set_backup_tree_root_level(root_backup,
1638 btrfs_header_level(info->tree_root->node));
1639
1640 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1641 btrfs_set_backup_chunk_root_gen(root_backup,
1642 btrfs_header_generation(info->chunk_root->node));
1643 btrfs_set_backup_chunk_root_level(root_backup,
1644 btrfs_header_level(info->chunk_root->node));
1645
1c56ab99 1646 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
9c54e80d 1647 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1648 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1649
1650 btrfs_set_backup_extent_root(root_backup,
1651 extent_root->node->start);
1652 btrfs_set_backup_extent_root_gen(root_backup,
1653 btrfs_header_generation(extent_root->node));
1654 btrfs_set_backup_extent_root_level(root_backup,
1655 btrfs_header_level(extent_root->node));
f7238e50
JB
1656
1657 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1658 btrfs_set_backup_csum_root_gen(root_backup,
1659 btrfs_header_generation(csum_root->node));
1660 btrfs_set_backup_csum_root_level(root_backup,
1661 btrfs_header_level(csum_root->node));
9c54e80d 1662 }
af31f5e5 1663
7c7e82a7
CM
1664 /*
1665 * we might commit during log recovery, which happens before we set
1666 * the fs_root. Make sure it is valid before we fill it in.
1667 */
1668 if (info->fs_root && info->fs_root->node) {
1669 btrfs_set_backup_fs_root(root_backup,
1670 info->fs_root->node->start);
1671 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1672 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1673 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1674 btrfs_header_level(info->fs_root->node));
7c7e82a7 1675 }
af31f5e5
CM
1676
1677 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1678 btrfs_set_backup_dev_root_gen(root_backup,
1679 btrfs_header_generation(info->dev_root->node));
1680 btrfs_set_backup_dev_root_level(root_backup,
1681 btrfs_header_level(info->dev_root->node));
1682
af31f5e5
CM
1683 btrfs_set_backup_total_bytes(root_backup,
1684 btrfs_super_total_bytes(info->super_copy));
1685 btrfs_set_backup_bytes_used(root_backup,
1686 btrfs_super_bytes_used(info->super_copy));
1687 btrfs_set_backup_num_devices(root_backup,
1688 btrfs_super_num_devices(info->super_copy));
1689
1690 /*
1691 * if we don't copy this out to the super_copy, it won't get remembered
1692 * for the next commit
1693 */
1694 memcpy(&info->super_copy->super_roots,
1695 &info->super_for_commit->super_roots,
1696 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1697}
1698
bd2336b2
NB
1699/*
1700 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1701 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1702 *
1703 * fs_info - filesystem whose backup roots need to be read
1704 * priority - priority of backup root required
1705 *
1706 * Returns backup root index on success and -EINVAL otherwise.
1707 */
1708static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1709{
1710 int backup_index = find_newest_super_backup(fs_info);
1711 struct btrfs_super_block *super = fs_info->super_copy;
1712 struct btrfs_root_backup *root_backup;
1713
1714 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1715 if (priority == 0)
1716 return backup_index;
1717
1718 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1719 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1720 } else {
1721 return -EINVAL;
1722 }
1723
1724 root_backup = super->super_roots + backup_index;
1725
1726 btrfs_set_super_generation(super,
1727 btrfs_backup_tree_root_gen(root_backup));
1728 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1729 btrfs_set_super_root_level(super,
1730 btrfs_backup_tree_root_level(root_backup));
1731 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1732
1733 /*
1734 * Fixme: the total bytes and num_devices need to match or we should
1735 * need a fsck
1736 */
1737 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1738 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1739
1740 return backup_index;
1741}
1742
7abadb64
LB
1743/* helper to cleanup workers */
1744static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1745{
dc6e3209 1746 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1747 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1748 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
1749 if (fs_info->endio_workers)
1750 destroy_workqueue(fs_info->endio_workers);
385de0ef
CH
1751 if (fs_info->rmw_workers)
1752 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
1753 if (fs_info->compressed_write_workers)
1754 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
1755 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1756 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1757 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1758 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 1759 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1760 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1761 if (fs_info->discard_ctl.discard_workers)
1762 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1763 /*
1764 * Now that all other work queues are destroyed, we can safely destroy
1765 * the queues used for metadata I/O, since tasks from those other work
1766 * queues can do metadata I/O operations.
1767 */
d7b9416f
CH
1768 if (fs_info->endio_meta_workers)
1769 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
1770}
1771
2e9f5954
R
1772static void free_root_extent_buffers(struct btrfs_root *root)
1773{
1774 if (root) {
1775 free_extent_buffer(root->node);
1776 free_extent_buffer(root->commit_root);
1777 root->node = NULL;
1778 root->commit_root = NULL;
1779 }
1780}
1781
abed4aaa
JB
1782static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1783{
1784 struct btrfs_root *root, *tmp;
1785
1786 rbtree_postorder_for_each_entry_safe(root, tmp,
1787 &fs_info->global_root_tree,
1788 rb_node)
1789 free_root_extent_buffers(root);
1790}
1791
af31f5e5 1792/* helper to cleanup tree roots */
4273eaff 1793static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1794{
2e9f5954 1795 free_root_extent_buffers(info->tree_root);
655b09fe 1796
abed4aaa 1797 free_global_root_pointers(info);
2e9f5954 1798 free_root_extent_buffers(info->dev_root);
2e9f5954
R
1799 free_root_extent_buffers(info->quota_root);
1800 free_root_extent_buffers(info->uuid_root);
8c38938c 1801 free_root_extent_buffers(info->fs_root);
aeb935a4 1802 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 1803 free_root_extent_buffers(info->block_group_root);
4273eaff 1804 if (free_chunk_root)
2e9f5954 1805 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
1806}
1807
8c38938c
JB
1808void btrfs_put_root(struct btrfs_root *root)
1809{
1810 if (!root)
1811 return;
1812
1813 if (refcount_dec_and_test(&root->refs)) {
1814 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 1815 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
1816 if (root->anon_dev)
1817 free_anon_bdev(root->anon_dev);
923eb523 1818 free_root_extent_buffers(root);
8c38938c 1819#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 1820 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 1821 list_del_init(&root->leak_list);
fc7cbcd4 1822 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
1823#endif
1824 kfree(root);
1825 }
1826}
1827
faa2dbf0 1828void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 1829{
fc7cbcd4
DS
1830 int ret;
1831 struct btrfs_root *gang[8];
1832 int i;
171f6537
JB
1833
1834 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
1835 gang[0] = list_entry(fs_info->dead_roots.next,
1836 struct btrfs_root, root_list);
1837 list_del(&gang[0]->root_list);
171f6537 1838
fc7cbcd4
DS
1839 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1840 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1841 btrfs_put_root(gang[0]);
171f6537
JB
1842 }
1843
fc7cbcd4
DS
1844 while (1) {
1845 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1846 (void **)gang, 0,
1847 ARRAY_SIZE(gang));
1848 if (!ret)
1849 break;
1850 for (i = 0; i < ret; i++)
1851 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
1852 }
1853}
af31f5e5 1854
638aa7ed
ES
1855static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1856{
1857 mutex_init(&fs_info->scrub_lock);
1858 atomic_set(&fs_info->scrubs_running, 0);
1859 atomic_set(&fs_info->scrub_pause_req, 0);
1860 atomic_set(&fs_info->scrubs_paused, 0);
1861 atomic_set(&fs_info->scrub_cancel_req, 0);
1862 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 1863 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
1864}
1865
779a65a4
ES
1866static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1867{
1868 spin_lock_init(&fs_info->balance_lock);
1869 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
1870 atomic_set(&fs_info->balance_pause_req, 0);
1871 atomic_set(&fs_info->balance_cancel_req, 0);
1872 fs_info->balance_ctl = NULL;
1873 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 1874 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
1875}
1876
dcb2137c 1877static int btrfs_init_btree_inode(struct super_block *sb)
f37938e0 1878{
dcb2137c 1879 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
e256927b
JB
1880 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1881 fs_info->tree_root);
dcb2137c
CH
1882 struct inode *inode;
1883
1884 inode = new_inode(sb);
1885 if (!inode)
1886 return -ENOMEM;
2ff7e61e
JM
1887
1888 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1889 set_nlink(inode, 1);
f37938e0
ES
1890 /*
1891 * we set the i_size on the btree inode to the max possible int.
1892 * the real end of the address space is determined by all of
1893 * the devices in the system
1894 */
2ff7e61e
JM
1895 inode->i_size = OFFSET_MAX;
1896 inode->i_mapping->a_ops = &btree_aops;
dcb2137c 1897 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
f37938e0 1898
2ff7e61e 1899 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 1900 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
35da5a7e 1901 IO_TREE_BTREE_INODE_IO);
2ff7e61e 1902 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 1903
5c8fd99f 1904 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
1905 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1906 BTRFS_I(inode)->location.type = 0;
1907 BTRFS_I(inode)->location.offset = 0;
2ff7e61e 1908 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
e256927b 1909 __insert_inode_hash(inode, hash);
dcb2137c
CH
1910 fs_info->btree_inode = inode;
1911
1912 return 0;
f37938e0
ES
1913}
1914
ad618368
ES
1915static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1916{
ad618368 1917 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 1918 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 1919 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
1920}
1921
f9e92e40
ES
1922static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1923{
1924 spin_lock_init(&fs_info->qgroup_lock);
1925 mutex_init(&fs_info->qgroup_ioctl_lock);
1926 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
1927 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1928 fs_info->qgroup_seq = 1;
f9e92e40 1929 fs_info->qgroup_ulist = NULL;
d2c609b8 1930 fs_info->qgroup_rescan_running = false;
011b46c3 1931 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
f9e92e40
ES
1932 mutex_init(&fs_info->qgroup_rescan_lock);
1933}
1934
d21deec5 1935static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 1936{
f7b885be 1937 u32 max_active = fs_info->thread_pool_size;
6f011058 1938 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
58e814fc 1939 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
2a458198
ES
1940
1941 fs_info->workers =
a31b4a43 1942 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2a458198
ES
1943
1944 fs_info->delalloc_workers =
cb001095
JM
1945 btrfs_alloc_workqueue(fs_info, "delalloc",
1946 flags, max_active, 2);
2a458198
ES
1947
1948 fs_info->flush_workers =
cb001095
JM
1949 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1950 flags, max_active, 0);
2a458198
ES
1951
1952 fs_info->caching_workers =
cb001095 1953 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 1954
2a458198 1955 fs_info->fixup_workers =
58e814fc 1956 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
2a458198 1957
2a458198 1958 fs_info->endio_workers =
d7b9416f 1959 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 1960 fs_info->endio_meta_workers =
d7b9416f 1961 alloc_workqueue("btrfs-endio-meta", flags, max_active);
385de0ef 1962 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 1963 fs_info->endio_write_workers =
cb001095
JM
1964 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1965 max_active, 2);
fed8a72d
CH
1966 fs_info->compressed_write_workers =
1967 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 1968 fs_info->endio_freespace_worker =
cb001095
JM
1969 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1970 max_active, 0);
2a458198 1971 fs_info->delayed_workers =
cb001095
JM
1972 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1973 max_active, 0);
2a458198 1974 fs_info->qgroup_rescan_workers =
58e814fc
TH
1975 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1976 ordered_flags);
b0643e59 1977 fs_info->discard_ctl.discard_workers =
58e814fc 1978 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2a458198 1979
8bfec2e4 1980 if (!(fs_info->workers &&
a31b4a43 1981 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 1982 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 1983 fs_info->compressed_write_workers &&
1a1a2851 1984 fs_info->endio_write_workers &&
2a458198 1985 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
1986 fs_info->caching_workers && fs_info->fixup_workers &&
1987 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 1988 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
1989 return -ENOMEM;
1990 }
1991
1992 return 0;
1993}
1994
6d97c6e3
JT
1995static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
1996{
1997 struct crypto_shash *csum_shash;
b4e967be 1998 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 1999
b4e967be 2000 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2001
2002 if (IS_ERR(csum_shash)) {
2003 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2004 csum_driver);
6d97c6e3
JT
2005 return PTR_ERR(csum_shash);
2006 }
2007
2008 fs_info->csum_shash = csum_shash;
2009
68d99ab0
CH
2010 /*
2011 * Check if the checksum implementation is a fast accelerated one.
2012 * As-is this is a bit of a hack and should be replaced once the csum
2013 * implementations provide that information themselves.
2014 */
2015 switch (csum_type) {
2016 case BTRFS_CSUM_TYPE_CRC32:
2017 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2018 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2019 break;
efcfcbc6
DS
2020 case BTRFS_CSUM_TYPE_XXHASH:
2021 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2022 break;
68d99ab0
CH
2023 default:
2024 break;
2025 }
2026
c8a5f8ca
DS
2027 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2028 btrfs_super_csum_name(csum_type),
2029 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2030 return 0;
2031}
2032
63443bf5
ES
2033static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2034 struct btrfs_fs_devices *fs_devices)
2035{
2036 int ret;
789d6a3a 2037 struct btrfs_tree_parent_check check = { 0 };
63443bf5
ES
2038 struct btrfs_root *log_tree_root;
2039 struct btrfs_super_block *disk_super = fs_info->super_copy;
2040 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2041 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2042
2043 if (fs_devices->rw_devices == 0) {
f14d104d 2044 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2045 return -EIO;
2046 }
2047
96dfcb46
JB
2048 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2049 GFP_KERNEL);
63443bf5
ES
2050 if (!log_tree_root)
2051 return -ENOMEM;
2052
789d6a3a
QW
2053 check.level = level;
2054 check.transid = fs_info->generation + 1;
2055 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2056 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
64c043de 2057 if (IS_ERR(log_tree_root->node)) {
f14d104d 2058 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2059 ret = PTR_ERR(log_tree_root->node);
8c38938c 2060 log_tree_root->node = NULL;
00246528 2061 btrfs_put_root(log_tree_root);
0eeff236 2062 return ret;
4eb150d6
QW
2063 }
2064 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2065 btrfs_err(fs_info, "failed to read log tree");
00246528 2066 btrfs_put_root(log_tree_root);
63443bf5
ES
2067 return -EIO;
2068 }
4eb150d6 2069
63443bf5
ES
2070 /* returns with log_tree_root freed on success */
2071 ret = btrfs_recover_log_trees(log_tree_root);
2072 if (ret) {
0b246afa
JM
2073 btrfs_handle_fs_error(fs_info, ret,
2074 "Failed to recover log tree");
00246528 2075 btrfs_put_root(log_tree_root);
63443bf5
ES
2076 return ret;
2077 }
2078
bc98a42c 2079 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2080 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2081 if (ret)
2082 return ret;
2083 }
2084
2085 return 0;
2086}
2087
abed4aaa
JB
2088static int load_global_roots_objectid(struct btrfs_root *tree_root,
2089 struct btrfs_path *path, u64 objectid,
2090 const char *name)
2091{
2092 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2093 struct btrfs_root *root;
f7238e50 2094 u64 max_global_id = 0;
abed4aaa
JB
2095 int ret;
2096 struct btrfs_key key = {
2097 .objectid = objectid,
2098 .type = BTRFS_ROOT_ITEM_KEY,
2099 .offset = 0,
2100 };
2101 bool found = false;
2102
2103 /* If we have IGNOREDATACSUMS skip loading these roots. */
2104 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2105 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2106 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2107 return 0;
2108 }
2109
2110 while (1) {
2111 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2112 if (ret < 0)
2113 break;
2114
2115 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2116 ret = btrfs_next_leaf(tree_root, path);
2117 if (ret) {
2118 if (ret > 0)
2119 ret = 0;
2120 break;
2121 }
2122 }
2123 ret = 0;
2124
2125 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2126 if (key.objectid != objectid)
2127 break;
2128 btrfs_release_path(path);
2129
f7238e50
JB
2130 /*
2131 * Just worry about this for extent tree, it'll be the same for
2132 * everybody.
2133 */
2134 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2135 max_global_id = max(max_global_id, key.offset);
2136
abed4aaa
JB
2137 found = true;
2138 root = read_tree_root_path(tree_root, path, &key);
2139 if (IS_ERR(root)) {
2140 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2141 ret = PTR_ERR(root);
2142 break;
2143 }
2144 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2145 ret = btrfs_global_root_insert(root);
2146 if (ret) {
2147 btrfs_put_root(root);
2148 break;
2149 }
2150 key.offset++;
2151 }
2152 btrfs_release_path(path);
2153
f7238e50
JB
2154 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2155 fs_info->nr_global_roots = max_global_id + 1;
2156
abed4aaa
JB
2157 if (!found || ret) {
2158 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2159 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2160
2161 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2162 ret = ret ? ret : -ENOENT;
2163 else
2164 ret = 0;
2165 btrfs_err(fs_info, "failed to load root %s", name);
2166 }
2167 return ret;
2168}
2169
2170static int load_global_roots(struct btrfs_root *tree_root)
2171{
2172 struct btrfs_path *path;
2173 int ret = 0;
2174
2175 path = btrfs_alloc_path();
2176 if (!path)
2177 return -ENOMEM;
2178
2179 ret = load_global_roots_objectid(tree_root, path,
2180 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2181 if (ret)
2182 goto out;
2183 ret = load_global_roots_objectid(tree_root, path,
2184 BTRFS_CSUM_TREE_OBJECTID, "csum");
2185 if (ret)
2186 goto out;
2187 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2188 goto out;
2189 ret = load_global_roots_objectid(tree_root, path,
2190 BTRFS_FREE_SPACE_TREE_OBJECTID,
2191 "free space");
2192out:
2193 btrfs_free_path(path);
2194 return ret;
2195}
2196
6bccf3ab 2197static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2198{
6bccf3ab 2199 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2200 struct btrfs_root *root;
4bbcaa64
ES
2201 struct btrfs_key location;
2202 int ret;
2203
6bccf3ab
JM
2204 BUG_ON(!fs_info->tree_root);
2205
abed4aaa
JB
2206 ret = load_global_roots(tree_root);
2207 if (ret)
2208 return ret;
2209
4bbcaa64
ES
2210 location.type = BTRFS_ROOT_ITEM_KEY;
2211 location.offset = 0;
2212
1c56ab99 2213 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
14033b08
QW
2214 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2215 root = btrfs_read_tree_root(tree_root, &location);
2216 if (IS_ERR(root)) {
2217 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2218 ret = PTR_ERR(root);
2219 goto out;
2220 }
2221 } else {
2222 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2223 fs_info->block_group_root = root;
2224 }
2225 }
2226
2227 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2228 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2229 if (IS_ERR(root)) {
42437a63
JB
2230 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2231 ret = PTR_ERR(root);
2232 goto out;
2233 }
2234 } else {
2235 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2236 fs_info->dev_root = root;
f50f4353 2237 }
820a49da 2238 /* Initialize fs_info for all devices in any case */
a8d1b164
JT
2239 ret = btrfs_init_devices_late(fs_info);
2240 if (ret)
2241 goto out;
4bbcaa64 2242
aeb935a4
QW
2243 /*
2244 * This tree can share blocks with some other fs tree during relocation
2245 * and we need a proper setup by btrfs_get_fs_root
2246 */
56e9357a
DS
2247 root = btrfs_get_fs_root(tree_root->fs_info,
2248 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2249 if (IS_ERR(root)) {
42437a63
JB
2250 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2251 ret = PTR_ERR(root);
2252 goto out;
2253 }
2254 } else {
2255 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2256 fs_info->data_reloc_root = root;
aeb935a4 2257 }
aeb935a4 2258
4bbcaa64 2259 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2260 root = btrfs_read_tree_root(tree_root, &location);
2261 if (!IS_ERR(root)) {
2262 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2263 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2264 fs_info->quota_root = root;
4bbcaa64
ES
2265 }
2266
2267 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2268 root = btrfs_read_tree_root(tree_root, &location);
2269 if (IS_ERR(root)) {
42437a63
JB
2270 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2271 ret = PTR_ERR(root);
2272 if (ret != -ENOENT)
2273 goto out;
2274 }
4bbcaa64 2275 } else {
a4f3d2c4
DS
2276 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2277 fs_info->uuid_root = root;
4bbcaa64
ES
2278 }
2279
2280 return 0;
f50f4353
LB
2281out:
2282 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2283 location.objectid, ret);
2284 return ret;
4bbcaa64
ES
2285}
2286
069ec957
QW
2287/*
2288 * Real super block validation
2289 * NOTE: super csum type and incompat features will not be checked here.
2290 *
2291 * @sb: super block to check
2292 * @mirror_num: the super block number to check its bytenr:
2293 * 0 the primary (1st) sb
2294 * 1, 2 2nd and 3rd backup copy
2295 * -1 skip bytenr check
2296 */
a05d3c91
QW
2297int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2298 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2299{
21a852b0
QW
2300 u64 nodesize = btrfs_super_nodesize(sb);
2301 u64 sectorsize = btrfs_super_sectorsize(sb);
2302 int ret = 0;
2303
2304 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2305 btrfs_err(fs_info, "no valid FS found");
2306 ret = -EINVAL;
2307 }
2308 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2309 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2310 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2311 ret = -EINVAL;
2312 }
2313 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2314 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2315 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2316 ret = -EINVAL;
2317 }
2318 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2319 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2320 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2321 ret = -EINVAL;
2322 }
2323 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2324 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2325 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2326 ret = -EINVAL;
2327 }
2328
2329 /*
2330 * Check sectorsize and nodesize first, other check will need it.
2331 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2332 */
2333 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2334 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2335 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2336 ret = -EINVAL;
2337 }
0bb3eb3e
QW
2338
2339 /*
1a42daab
QW
2340 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2341 *
2342 * We can support 16K sectorsize with 64K page size without problem,
2343 * but such sectorsize/pagesize combination doesn't make much sense.
2344 * 4K will be our future standard, PAGE_SIZE is supported from the very
2345 * beginning.
0bb3eb3e 2346 */
1a42daab 2347 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2348 btrfs_err(fs_info,
0bb3eb3e 2349 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2350 sectorsize, PAGE_SIZE);
2351 ret = -EINVAL;
2352 }
0bb3eb3e 2353
21a852b0
QW
2354 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2355 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2356 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2357 ret = -EINVAL;
2358 }
2359 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2360 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2361 le32_to_cpu(sb->__unused_leafsize), nodesize);
2362 ret = -EINVAL;
2363 }
2364
2365 /* Root alignment check */
2366 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2367 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2368 btrfs_super_root(sb));
2369 ret = -EINVAL;
2370 }
2371 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2372 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2373 btrfs_super_chunk_root(sb));
2374 ret = -EINVAL;
2375 }
2376 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2377 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2378 btrfs_super_log_root(sb));
2379 ret = -EINVAL;
2380 }
2381
d167aa76 2382 if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
aefd7f70
NB
2383 btrfs_err(fs_info,
2384 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
d167aa76 2385 sb->fsid, fs_info->fs_devices->fsid);
aefd7f70
NB
2386 ret = -EINVAL;
2387 }
2388
6bfe3959
AJ
2389 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2390 BTRFS_FSID_SIZE) != 0) {
aefd7f70
NB
2391 btrfs_err(fs_info,
2392"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
6bfe3959 2393 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
aefd7f70
NB
2394 ret = -EINVAL;
2395 }
2396
25984a5a
AJ
2397 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2398 BTRFS_FSID_SIZE) != 0) {
2399 btrfs_err(fs_info,
2400 "dev_item UUID does not match metadata fsid: %pU != %pU",
2401 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2402 ret = -EINVAL;
2403 }
2404
1c56ab99
QW
2405 /*
2406 * Artificial requirement for block-group-tree to force newer features
2407 * (free-space-tree, no-holes) so the test matrix is smaller.
2408 */
2409 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2410 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2411 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2412 btrfs_err(fs_info,
2413 "block-group-tree feature requires fres-space-tree and no-holes");
2414 ret = -EINVAL;
2415 }
2416
21a852b0
QW
2417 /*
2418 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2419 * done later
2420 */
2421 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2422 btrfs_err(fs_info, "bytes_used is too small %llu",
2423 btrfs_super_bytes_used(sb));
2424 ret = -EINVAL;
2425 }
2426 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2427 btrfs_err(fs_info, "invalid stripesize %u",
2428 btrfs_super_stripesize(sb));
2429 ret = -EINVAL;
2430 }
2431 if (btrfs_super_num_devices(sb) > (1UL << 31))
2432 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2433 btrfs_super_num_devices(sb));
2434 if (btrfs_super_num_devices(sb) == 0) {
2435 btrfs_err(fs_info, "number of devices is 0");
2436 ret = -EINVAL;
2437 }
2438
069ec957
QW
2439 if (mirror_num >= 0 &&
2440 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2441 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2442 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2443 ret = -EINVAL;
2444 }
2445
2446 /*
2447 * Obvious sys_chunk_array corruptions, it must hold at least one key
2448 * and one chunk
2449 */
2450 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2451 btrfs_err(fs_info, "system chunk array too big %u > %u",
2452 btrfs_super_sys_array_size(sb),
2453 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2454 ret = -EINVAL;
2455 }
2456 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2457 + sizeof(struct btrfs_chunk)) {
2458 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2459 btrfs_super_sys_array_size(sb),
2460 sizeof(struct btrfs_disk_key)
2461 + sizeof(struct btrfs_chunk));
2462 ret = -EINVAL;
2463 }
2464
2465 /*
2466 * The generation is a global counter, we'll trust it more than the others
2467 * but it's still possible that it's the one that's wrong.
2468 */
2469 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2470 btrfs_warn(fs_info,
2471 "suspicious: generation < chunk_root_generation: %llu < %llu",
2472 btrfs_super_generation(sb),
2473 btrfs_super_chunk_root_generation(sb));
2474 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2475 && btrfs_super_cache_generation(sb) != (u64)-1)
2476 btrfs_warn(fs_info,
2477 "suspicious: generation < cache_generation: %llu < %llu",
2478 btrfs_super_generation(sb),
2479 btrfs_super_cache_generation(sb));
2480
2481 return ret;
2482}
2483
069ec957
QW
2484/*
2485 * Validation of super block at mount time.
2486 * Some checks already done early at mount time, like csum type and incompat
2487 * flags will be skipped.
2488 */
2489static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2490{
a05d3c91 2491 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
069ec957
QW
2492}
2493
75cb857d
QW
2494/*
2495 * Validation of super block at write time.
2496 * Some checks like bytenr check will be skipped as their values will be
2497 * overwritten soon.
2498 * Extra checks like csum type and incompat flags will be done here.
2499 */
2500static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2501 struct btrfs_super_block *sb)
2502{
2503 int ret;
2504
a05d3c91 2505 ret = btrfs_validate_super(fs_info, sb, -1);
75cb857d
QW
2506 if (ret < 0)
2507 goto out;
e7e16f48 2508 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2509 ret = -EUCLEAN;
2510 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2511 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2512 goto out;
2513 }
2514 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2515 ret = -EUCLEAN;
2516 btrfs_err(fs_info,
2517 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2518 btrfs_super_incompat_flags(sb),
2519 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2520 goto out;
2521 }
2522out:
2523 if (ret < 0)
2524 btrfs_err(fs_info,
2525 "super block corruption detected before writing it to disk");
2526 return ret;
2527}
2528
bd676446
JB
2529static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2530{
789d6a3a
QW
2531 struct btrfs_tree_parent_check check = {
2532 .level = level,
2533 .transid = gen,
2534 .owner_root = root->root_key.objectid
2535 };
bd676446
JB
2536 int ret = 0;
2537
789d6a3a 2538 root->node = read_tree_block(root->fs_info, bytenr, &check);
bd676446
JB
2539 if (IS_ERR(root->node)) {
2540 ret = PTR_ERR(root->node);
2541 root->node = NULL;
4eb150d6
QW
2542 return ret;
2543 }
2544 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2545 free_extent_buffer(root->node);
2546 root->node = NULL;
4eb150d6 2547 return -EIO;
bd676446
JB
2548 }
2549
bd676446
JB
2550 btrfs_set_root_node(&root->root_item, root->node);
2551 root->commit_root = btrfs_root_node(root);
2552 btrfs_set_root_refs(&root->root_item, 1);
2553 return ret;
2554}
2555
2556static int load_important_roots(struct btrfs_fs_info *fs_info)
2557{
2558 struct btrfs_super_block *sb = fs_info->super_copy;
2559 u64 gen, bytenr;
2560 int level, ret;
2561
2562 bytenr = btrfs_super_root(sb);
2563 gen = btrfs_super_generation(sb);
2564 level = btrfs_super_root_level(sb);
2565 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2566 if (ret) {
bd676446 2567 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2568 return ret;
2569 }
14033b08 2570 return 0;
bd676446
JB
2571}
2572
6ef108dd 2573static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2574{
6ef108dd 2575 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2576 struct btrfs_super_block *sb = fs_info->super_copy;
2577 struct btrfs_root *tree_root = fs_info->tree_root;
2578 bool handle_error = false;
2579 int ret = 0;
2580 int i;
2581
2582 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2583 if (handle_error) {
2584 if (!IS_ERR(tree_root->node))
2585 free_extent_buffer(tree_root->node);
2586 tree_root->node = NULL;
2587
2588 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2589 break;
2590
2591 free_root_pointers(fs_info, 0);
2592
2593 /*
2594 * Don't use the log in recovery mode, it won't be
2595 * valid
2596 */
2597 btrfs_set_super_log_root(sb, 0);
2598
2599 /* We can't trust the free space cache either */
2600 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2601
745806fb 2602 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
b8522a1e 2603 ret = read_backup_root(fs_info, i);
6ef108dd 2604 backup_index = ret;
b8522a1e
NB
2605 if (ret < 0)
2606 return ret;
2607 }
b8522a1e 2608
bd676446
JB
2609 ret = load_important_roots(fs_info);
2610 if (ret) {
217f5004 2611 handle_error = true;
b8522a1e
NB
2612 continue;
2613 }
2614
336a0d8d
NB
2615 /*
2616 * No need to hold btrfs_root::objectid_mutex since the fs
2617 * hasn't been fully initialised and we are the only user
2618 */
453e4873 2619 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2620 if (ret < 0) {
b8522a1e
NB
2621 handle_error = true;
2622 continue;
2623 }
2624
6b8fad57 2625 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2626
2627 ret = btrfs_read_roots(fs_info);
2628 if (ret < 0) {
2629 handle_error = true;
2630 continue;
2631 }
2632
2633 /* All successful */
bd676446
JB
2634 fs_info->generation = btrfs_header_generation(tree_root->node);
2635 fs_info->last_trans_committed = fs_info->generation;
d96b3424 2636 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2637
2638 /* Always begin writing backup roots after the one being used */
2639 if (backup_index < 0) {
2640 fs_info->backup_root_index = 0;
2641 } else {
2642 fs_info->backup_root_index = backup_index + 1;
2643 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2644 }
b8522a1e
NB
2645 break;
2646 }
2647
2648 return ret;
2649}
2650
8260edba 2651void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2652{
fc7cbcd4 2653 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2654 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2655 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2656 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2657 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2658 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2659 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2660 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2661 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2662 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2663 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2664 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2665 spin_lock_init(&fs_info->super_lock);
f28491e0 2666 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2667 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2668 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2669 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2670 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2671 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2672 rwlock_init(&fs_info->global_root_lock);
d7c15171 2673 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2674 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2675 mutex_init(&fs_info->reloc_mutex);
573bfb72 2676 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2677 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 2678 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 2679 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2680
e1489b4f 2681 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 2682 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 2683 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 2684 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3e738c53
IA
2685 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2686 BTRFS_LOCKDEP_TRANS_COMMIT_START);
2687 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2688 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2689 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2690 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2691 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2692 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 2693
0b86a832 2694 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2695 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2696 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2697 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 2698 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 2699 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
2700#ifdef CONFIG_BTRFS_DEBUG
2701 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2702 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2703 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2704#endif
c8bf1b67 2705 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2706 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2707 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2708 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2709 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2710 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2711 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2712 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2713 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2714 BTRFS_BLOCK_RSV_DELREFS);
2715
771ed689 2716 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2717 atomic_set(&fs_info->defrag_running, 0);
034f784d 2718 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2719 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 2720 fs_info->global_root_tree = RB_ROOT;
95ac567a 2721 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2722 fs_info->metadata_ratio = 0;
4cb5300b 2723 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2724 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2725 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2726 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
fd708b81 2727 btrfs_init_ref_verify(fs_info);
c8b97818 2728
b34b086c
CM
2729 fs_info->thread_pool_size = min_t(unsigned long,
2730 num_online_cpus() + 2, 8);
0afbaf8c 2731
199c2a9c
MX
2732 INIT_LIST_HEAD(&fs_info->ordered_roots);
2733 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2734
638aa7ed 2735 btrfs_init_scrub(fs_info);
21adbd5c
SB
2736#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2737 fs_info->check_integrity_print_mask = 0;
2738#endif
779a65a4 2739 btrfs_init_balance(fs_info);
57056740 2740 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2741
16b0c258 2742 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 2743 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 2744
fe119a6e 2745 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
35da5a7e 2746 IO_TREE_FS_EXCLUDED_EXTENTS);
39279cc3 2747
5a3f23d5 2748 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2749 mutex_init(&fs_info->tree_log_mutex);
925baedd 2750 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2751 mutex_init(&fs_info->transaction_kthread_mutex);
2752 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2753 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2754 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2755 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2756 init_rwsem(&fs_info->subvol_sem);
803b2f54 2757 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2758
ad618368 2759 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2760 btrfs_init_qgroup(fs_info);
b0643e59 2761 btrfs_discard_init(fs_info);
416ac51d 2762
fa9c0d79
CM
2763 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2764 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2765
e6dcd2dc 2766 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2767 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2768 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2769 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2770 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2771
da17066c
JM
2772 /* Usable values until the real ones are cached from the superblock */
2773 fs_info->nodesize = 4096;
2774 fs_info->sectorsize = 4096;
ab108d99 2775 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2776 fs_info->stripesize = 4096;
2777
f7b12a62
NA
2778 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2779
eede2bf3
OS
2780 spin_lock_init(&fs_info->swapfile_pins_lock);
2781 fs_info->swapfile_pins = RB_ROOT;
2782
18bb8bbf
JT
2783 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2784 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
2785}
2786
2787static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2788{
2789 int ret;
2790
2791 fs_info->sb = sb;
2792 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2793 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2794
5deb17e1 2795 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 2796 if (ret)
c75e8394 2797 return ret;
ae18c37a
JB
2798
2799 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2800 if (ret)
c75e8394 2801 return ret;
ae18c37a
JB
2802
2803 fs_info->dirty_metadata_batch = PAGE_SIZE *
2804 (1 + ilog2(nr_cpu_ids));
2805
2806 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2807 if (ret)
c75e8394 2808 return ret;
ae18c37a
JB
2809
2810 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2811 GFP_KERNEL);
2812 if (ret)
c75e8394 2813 return ret;
ae18c37a
JB
2814
2815 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2816 GFP_KERNEL);
c75e8394
JB
2817 if (!fs_info->delayed_root)
2818 return -ENOMEM;
ae18c37a
JB
2819 btrfs_init_delayed_root(fs_info->delayed_root);
2820
a0a1db70
FM
2821 if (sb_rdonly(sb))
2822 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2823
c75e8394 2824 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2825}
2826
97f4dd09
NB
2827static int btrfs_uuid_rescan_kthread(void *data)
2828{
0d031dc4 2829 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
2830 int ret;
2831
2832 /*
2833 * 1st step is to iterate through the existing UUID tree and
2834 * to delete all entries that contain outdated data.
2835 * 2nd step is to add all missing entries to the UUID tree.
2836 */
2837 ret = btrfs_uuid_tree_iterate(fs_info);
2838 if (ret < 0) {
c94bec2c
JB
2839 if (ret != -EINTR)
2840 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2841 ret);
97f4dd09
NB
2842 up(&fs_info->uuid_tree_rescan_sem);
2843 return ret;
2844 }
2845 return btrfs_uuid_scan_kthread(data);
2846}
2847
2848static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2849{
2850 struct task_struct *task;
2851
2852 down(&fs_info->uuid_tree_rescan_sem);
2853 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2854 if (IS_ERR(task)) {
2855 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2856 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2857 up(&fs_info->uuid_tree_rescan_sem);
2858 return PTR_ERR(task);
2859 }
2860
2861 return 0;
2862}
2863
504b1596
FM
2864static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2865{
2866 u64 root_objectid = 0;
2867 struct btrfs_root *gang[8];
2868 int i = 0;
2869 int err = 0;
2870 unsigned int ret = 0;
2871
2872 while (1) {
2873 spin_lock(&fs_info->fs_roots_radix_lock);
2874 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2875 (void **)gang, root_objectid,
2876 ARRAY_SIZE(gang));
2877 if (!ret) {
2878 spin_unlock(&fs_info->fs_roots_radix_lock);
2879 break;
2880 }
2881 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2882
2883 for (i = 0; i < ret; i++) {
2884 /* Avoid to grab roots in dead_roots. */
2885 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2886 gang[i] = NULL;
2887 continue;
2888 }
2889 /* Grab all the search result for later use. */
2890 gang[i] = btrfs_grab_root(gang[i]);
2891 }
2892 spin_unlock(&fs_info->fs_roots_radix_lock);
2893
2894 for (i = 0; i < ret; i++) {
2895 if (!gang[i])
2896 continue;
2897 root_objectid = gang[i]->root_key.objectid;
2898 err = btrfs_orphan_cleanup(gang[i]);
2899 if (err)
2900 goto out;
2901 btrfs_put_root(gang[i]);
2902 }
2903 root_objectid++;
2904 }
2905out:
2906 /* Release the uncleaned roots due to error. */
2907 for (; i < ret; i++) {
2908 if (gang[i])
2909 btrfs_put_root(gang[i]);
2910 }
2911 return err;
2912}
2913
8cd29088
BB
2914/*
2915 * Some options only have meaning at mount time and shouldn't persist across
2916 * remounts, or be displayed. Clear these at the end of mount and remount
2917 * code paths.
2918 */
2919void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2920{
2921 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 2922 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
2923}
2924
44c0ca21
BB
2925/*
2926 * Mounting logic specific to read-write file systems. Shared by open_ctree
2927 * and btrfs_remount when remounting from read-only to read-write.
2928 */
2929int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2930{
2931 int ret;
94846229 2932 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1d6a4fc8 2933 bool rebuild_free_space_tree = false;
8b228324
BB
2934
2935 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2936 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1d6a4fc8 2937 rebuild_free_space_tree = true;
8b228324
BB
2938 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2939 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2940 btrfs_warn(fs_info, "free space tree is invalid");
1d6a4fc8 2941 rebuild_free_space_tree = true;
8b228324
BB
2942 }
2943
1d6a4fc8
QW
2944 if (rebuild_free_space_tree) {
2945 btrfs_info(fs_info, "rebuilding free space tree");
2946 ret = btrfs_rebuild_free_space_tree(fs_info);
8b228324
BB
2947 if (ret) {
2948 btrfs_warn(fs_info,
1d6a4fc8
QW
2949 "failed to rebuild free space tree: %d", ret);
2950 goto out;
2951 }
2952 }
2953
2954 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2955 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2956 btrfs_info(fs_info, "disabling free space tree");
2957 ret = btrfs_delete_free_space_tree(fs_info);
2958 if (ret) {
2959 btrfs_warn(fs_info,
2960 "failed to disable free space tree: %d", ret);
8b228324
BB
2961 goto out;
2962 }
2963 }
44c0ca21 2964
8d488a8c
FM
2965 /*
2966 * btrfs_find_orphan_roots() is responsible for finding all the dead
2967 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 2968 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
2969 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
2970 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
2971 * item before the root's tree is deleted - this means that if we unmount
2972 * or crash before the deletion completes, on the next mount we will not
2973 * delete what remains of the tree because the orphan item does not
2974 * exists anymore, which is what tells us we have a pending deletion.
2975 */
2976 ret = btrfs_find_orphan_roots(fs_info);
2977 if (ret)
2978 goto out;
2979
44c0ca21
BB
2980 ret = btrfs_cleanup_fs_roots(fs_info);
2981 if (ret)
2982 goto out;
2983
8f1c21d7
BB
2984 down_read(&fs_info->cleanup_work_sem);
2985 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2986 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2987 up_read(&fs_info->cleanup_work_sem);
2988 goto out;
2989 }
2990 up_read(&fs_info->cleanup_work_sem);
2991
44c0ca21 2992 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 2993 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
2994 mutex_unlock(&fs_info->cleaner_mutex);
2995 if (ret < 0) {
2996 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
2997 goto out;
2998 }
2999
5011139a
BB
3000 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3001 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3002 btrfs_info(fs_info, "creating free space tree");
3003 ret = btrfs_create_free_space_tree(fs_info);
3004 if (ret) {
3005 btrfs_warn(fs_info,
3006 "failed to create free space tree: %d", ret);
3007 goto out;
3008 }
3009 }
3010
94846229
BB
3011 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3012 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3013 if (ret)
3014 goto out;
3015 }
3016
44c0ca21
BB
3017 ret = btrfs_resume_balance_async(fs_info);
3018 if (ret)
3019 goto out;
3020
3021 ret = btrfs_resume_dev_replace_async(fs_info);
3022 if (ret) {
3023 btrfs_warn(fs_info, "failed to resume dev_replace");
3024 goto out;
3025 }
3026
3027 btrfs_qgroup_rescan_resume(fs_info);
3028
3029 if (!fs_info->uuid_root) {
3030 btrfs_info(fs_info, "creating UUID tree");
3031 ret = btrfs_create_uuid_tree(fs_info);
3032 if (ret) {
3033 btrfs_warn(fs_info,
3034 "failed to create the UUID tree %d", ret);
3035 goto out;
3036 }
3037 }
3038
3039out:
3040 return ret;
3041}
3042
d7f67ac9
QW
3043/*
3044 * Do various sanity and dependency checks of different features.
3045 *
2ba48b20
QW
3046 * @is_rw_mount: If the mount is read-write.
3047 *
d7f67ac9
QW
3048 * This is the place for less strict checks (like for subpage or artificial
3049 * feature dependencies).
3050 *
3051 * For strict checks or possible corruption detection, see
3052 * btrfs_validate_super().
3053 *
3054 * This should be called after btrfs_parse_options(), as some mount options
3055 * (space cache related) can modify on-disk format like free space tree and
3056 * screw up certain feature dependencies.
3057 */
2ba48b20 3058int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
d7f67ac9
QW
3059{
3060 struct btrfs_super_block *disk_super = fs_info->super_copy;
3061 u64 incompat = btrfs_super_incompat_flags(disk_super);
3062 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3063 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3064
3065 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3066 btrfs_err(fs_info,
3067 "cannot mount because of unknown incompat features (0x%llx)",
3068 incompat);
3069 return -EINVAL;
3070 }
3071
3072 /* Runtime limitation for mixed block groups. */
3073 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3074 (fs_info->sectorsize != fs_info->nodesize)) {
3075 btrfs_err(fs_info,
3076"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3077 fs_info->nodesize, fs_info->sectorsize);
3078 return -EINVAL;
3079 }
3080
3081 /* Mixed backref is an always-enabled feature. */
3082 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3083
3084 /* Set compression related flags just in case. */
3085 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3086 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3087 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3088 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3089
3090 /*
3091 * An ancient flag, which should really be marked deprecated.
3092 * Such runtime limitation doesn't really need a incompat flag.
3093 */
3094 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3095 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3096
2ba48b20 3097 if (compat_ro_unsupp && is_rw_mount) {
d7f67ac9
QW
3098 btrfs_err(fs_info,
3099 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3100 compat_ro);
3101 return -EINVAL;
3102 }
3103
3104 /*
3105 * We have unsupported RO compat features, although RO mounted, we
3106 * should not cause any metadata writes, including log replay.
3107 * Or we could screw up whatever the new feature requires.
3108 */
3109 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3110 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3111 btrfs_err(fs_info,
3112"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3113 compat_ro);
3114 return -EINVAL;
3115 }
3116
3117 /*
3118 * Artificial limitations for block group tree, to force
3119 * block-group-tree to rely on no-holes and free-space-tree.
3120 */
3121 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3122 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3123 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3124 btrfs_err(fs_info,
3125"block-group-tree feature requires no-holes and free-space-tree features");
3126 return -EINVAL;
3127 }
3128
3129 /*
3130 * Subpage runtime limitation on v1 cache.
3131 *
3132 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3133 * we're already defaulting to v2 cache, no need to bother v1 as it's
3134 * going to be deprecated anyway.
3135 */
3136 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3137 btrfs_warn(fs_info,
3138 "v1 space cache is not supported for page size %lu with sectorsize %u",
3139 PAGE_SIZE, fs_info->sectorsize);
3140 return -EINVAL;
3141 }
3142
3143 /* This can be called by remount, we need to protect the super block. */
3144 spin_lock(&fs_info->super_lock);
3145 btrfs_set_super_incompat_flags(disk_super, incompat);
3146 spin_unlock(&fs_info->super_lock);
3147
3148 return 0;
3149}
3150
ae18c37a
JB
3151int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3152 char *options)
3153{
3154 u32 sectorsize;
3155 u32 nodesize;
3156 u32 stripesize;
3157 u64 generation;
3158 u64 features;
3159 u16 csum_type;
ae18c37a
JB
3160 struct btrfs_super_block *disk_super;
3161 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3162 struct btrfs_root *tree_root;
3163 struct btrfs_root *chunk_root;
3164 int ret;
ae18c37a
JB
3165 int level;
3166
8260edba 3167 ret = init_mount_fs_info(fs_info, sb);
4871c33b 3168 if (ret)
ae18c37a 3169 goto fail;
53b381b3 3170
ae18c37a
JB
3171 /* These need to be init'ed before we start creating inodes and such. */
3172 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3173 GFP_KERNEL);
3174 fs_info->tree_root = tree_root;
3175 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3176 GFP_KERNEL);
3177 fs_info->chunk_root = chunk_root;
3178 if (!tree_root || !chunk_root) {
4871c33b 3179 ret = -ENOMEM;
c75e8394 3180 goto fail;
ae18c37a
JB
3181 }
3182
dcb2137c 3183 ret = btrfs_init_btree_inode(sb);
4871c33b 3184 if (ret)
c75e8394 3185 goto fail;
ae18c37a 3186
d24fa5c1 3187 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3188
3189 /*
3190 * Read super block and check the signature bytes only
3191 */
d24fa5c1 3192 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d 3193 if (IS_ERR(disk_super)) {
4871c33b 3194 ret = PTR_ERR(disk_super);
16cdcec7 3195 goto fail_alloc;
20b45077 3196 }
39279cc3 3197
8dc3f22c 3198 /*
260db43c 3199 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3200 * corrupted, we'll find out
3201 */
8f32380d 3202 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3203 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3204 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3205 csum_type);
4871c33b 3206 ret = -EINVAL;
8f32380d 3207 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3208 goto fail_alloc;
3209 }
3210
83c68bbc
SY
3211 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3212
6d97c6e3
JT
3213 ret = btrfs_init_csum_hash(fs_info, csum_type);
3214 if (ret) {
8f32380d 3215 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3216 goto fail_alloc;
3217 }
3218
1104a885
DS
3219 /*
3220 * We want to check superblock checksum, the type is stored inside.
3221 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3222 */
3d17adea 3223 if (btrfs_check_super_csum(fs_info, disk_super)) {
05135f59 3224 btrfs_err(fs_info, "superblock checksum mismatch");
4871c33b 3225 ret = -EINVAL;
8f32380d 3226 btrfs_release_disk_super(disk_super);
141386e1 3227 goto fail_alloc;
1104a885
DS
3228 }
3229
3230 /*
3231 * super_copy is zeroed at allocation time and we never touch the
3232 * following bytes up to INFO_SIZE, the checksum is calculated from
3233 * the whole block of INFO_SIZE
3234 */
8f32380d
JT
3235 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3236 btrfs_release_disk_super(disk_super);
5f39d397 3237
fbc6feae
NB
3238 disk_super = fs_info->super_copy;
3239
0b86a832 3240
fbc6feae
NB
3241 features = btrfs_super_flags(disk_super);
3242 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3243 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3244 btrfs_set_super_flags(disk_super, features);
3245 btrfs_info(fs_info,
3246 "found metadata UUID change in progress flag, clearing");
3247 }
3248
3249 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3250 sizeof(*fs_info->super_for_commit));
de37aa51 3251
069ec957 3252 ret = btrfs_validate_mount_super(fs_info);
1104a885 3253 if (ret) {
05135f59 3254 btrfs_err(fs_info, "superblock contains fatal errors");
4871c33b 3255 ret = -EINVAL;
141386e1 3256 goto fail_alloc;
1104a885
DS
3257 }
3258
4871c33b
QW
3259 if (!btrfs_super_root(disk_super)) {
3260 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3261 ret = -EINVAL;
141386e1 3262 goto fail_alloc;
4871c33b 3263 }
0f7d52f4 3264
acce952b 3265 /* check FS state, whether FS is broken. */
87533c47 3266 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
ae3364e5 3267 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
acce952b 3268
75e7cb7f
LB
3269 /*
3270 * In the long term, we'll store the compression type in the super
3271 * block, and it'll be used for per file compression control.
3272 */
3273 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3274
6f93e834
AJ
3275
3276 /* Set up fs_info before parsing mount options */
3277 nodesize = btrfs_super_nodesize(disk_super);
3278 sectorsize = btrfs_super_sectorsize(disk_super);
3279 stripesize = sectorsize;
3280 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3281 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3282
3283 fs_info->nodesize = nodesize;
3284 fs_info->sectorsize = sectorsize;
3285 fs_info->sectorsize_bits = ilog2(sectorsize);
3286 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3287 fs_info->stripesize = stripesize;
3288
2ff7e61e 3289 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
4871c33b 3290 if (ret)
141386e1 3291 goto fail_alloc;
dfe25020 3292
2ba48b20 3293 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
4871c33b 3294 if (ret < 0)
dc4d3168 3295 goto fail_alloc;
dc4d3168 3296
8481dd80
QW
3297 if (sectorsize < PAGE_SIZE) {
3298 struct btrfs_subpage_info *subpage_info;
3299
9f73f1ae
QW
3300 /*
3301 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3302 * going to be deprecated.
3303 *
3304 * Force to use v2 cache for subpage case.
3305 */
3306 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3307 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3308 "forcing free space tree for sector size %u with page size %lu",
3309 sectorsize, PAGE_SIZE);
3310
95ea0486
QW
3311 btrfs_warn(fs_info,
3312 "read-write for sector size %u with page size %lu is experimental",
3313 sectorsize, PAGE_SIZE);
8481dd80 3314 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
4871c33b
QW
3315 if (!subpage_info) {
3316 ret = -ENOMEM;
8481dd80 3317 goto fail_alloc;
4871c33b 3318 }
8481dd80
QW
3319 btrfs_init_subpage_info(subpage_info, sectorsize);
3320 fs_info->subpage_info = subpage_info;
c8050b3b 3321 }
0bb3eb3e 3322
d21deec5 3323 ret = btrfs_init_workqueues(fs_info);
4871c33b 3324 if (ret)
0dc3b84a 3325 goto fail_sb_buffer;
4543df7e 3326
9e11ceee
JK
3327 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3328 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3329
a061fc8d
CM
3330 sb->s_blocksize = sectorsize;
3331 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3332 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3333
925baedd 3334 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3335 ret = btrfs_read_sys_array(fs_info);
925baedd 3336 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3337 if (ret) {
05135f59 3338 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3339 goto fail_sb_buffer;
84eed90f 3340 }
0b86a832 3341
84234f3a 3342 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3343 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3344 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3345 generation, level);
3346 if (ret) {
05135f59 3347 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3348 goto fail_tree_roots;
83121942 3349 }
0b86a832 3350
e17cade2 3351 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3352 offsetof(struct btrfs_header, chunk_tree_uuid),
3353 BTRFS_UUID_SIZE);
e17cade2 3354
5b4aacef 3355 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3356 if (ret) {
05135f59 3357 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3358 goto fail_tree_roots;
2b82032c 3359 }
0b86a832 3360
8dabb742 3361 /*
bacce86a
AJ
3362 * At this point we know all the devices that make this filesystem,
3363 * including the seed devices but we don't know yet if the replace
3364 * target is required. So free devices that are not part of this
1a9fd417 3365 * filesystem but skip the replace target device which is checked
bacce86a 3366 * below in btrfs_init_dev_replace().
8dabb742 3367 */
bacce86a 3368 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3369 if (!fs_devices->latest_dev->bdev) {
05135f59 3370 btrfs_err(fs_info, "failed to read devices");
4871c33b 3371 ret = -EIO;
a6b0d5c8
CM
3372 goto fail_tree_roots;
3373 }
3374
b8522a1e 3375 ret = init_tree_roots(fs_info);
4bbcaa64 3376 if (ret)
b8522a1e 3377 goto fail_tree_roots;
8929ecfa 3378
73651042
NA
3379 /*
3380 * Get zone type information of zoned block devices. This will also
3381 * handle emulation of a zoned filesystem if a regular device has the
3382 * zoned incompat feature flag set.
3383 */
3384 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3385 if (ret) {
3386 btrfs_err(fs_info,
4871c33b 3387 "zoned: failed to read device zone info: %d", ret);
73651042
NA
3388 goto fail_block_groups;
3389 }
3390
75ec1db8
JB
3391 /*
3392 * If we have a uuid root and we're not being told to rescan we need to
3393 * check the generation here so we can set the
3394 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3395 * transaction during a balance or the log replay without updating the
3396 * uuid generation, and then if we crash we would rescan the uuid tree,
3397 * even though it was perfectly fine.
3398 */
3399 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3400 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3401 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3402
cf90d884
QW
3403 ret = btrfs_verify_dev_extents(fs_info);
3404 if (ret) {
3405 btrfs_err(fs_info,
3406 "failed to verify dev extents against chunks: %d",
3407 ret);
3408 goto fail_block_groups;
3409 }
68310a5e
ID
3410 ret = btrfs_recover_balance(fs_info);
3411 if (ret) {
05135f59 3412 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3413 goto fail_block_groups;
3414 }
3415
733f4fbb
SB
3416 ret = btrfs_init_dev_stats(fs_info);
3417 if (ret) {
05135f59 3418 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3419 goto fail_block_groups;
3420 }
3421
8dabb742
SB
3422 ret = btrfs_init_dev_replace(fs_info);
3423 if (ret) {
05135f59 3424 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3425 goto fail_block_groups;
3426 }
3427
b70f5097
NA
3428 ret = btrfs_check_zoned_mode(fs_info);
3429 if (ret) {
3430 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3431 ret);
3432 goto fail_block_groups;
3433 }
3434
c6761a9e 3435 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3436 if (ret) {
05135f59
DS
3437 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3438 ret);
b7c35e81
AJ
3439 goto fail_block_groups;
3440 }
3441
96f3136e 3442 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3443 if (ret) {
05135f59 3444 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3445 goto fail_fsdev_sysfs;
c59021f8 3446 }
3447
c59021f8 3448 ret = btrfs_init_space_info(fs_info);
3449 if (ret) {
05135f59 3450 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3451 goto fail_sysfs;
c59021f8 3452 }
3453
5b4aacef 3454 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3455 if (ret) {
05135f59 3456 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3457 goto fail_sysfs;
1b1d1f66 3458 }
4330e183 3459
16beac87
NA
3460 btrfs_free_zone_cache(fs_info);
3461
a7e1ac7b
NA
3462 btrfs_check_active_zone_reservation(fs_info);
3463
5c78a5e7
AJ
3464 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3465 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3466 btrfs_warn(fs_info,
52042d8e 3467 "writable mount is not allowed due to too many missing devices");
4871c33b 3468 ret = -EINVAL;
2365dd3c 3469 goto fail_sysfs;
292fd7fc 3470 }
9078a3e1 3471
33c44184 3472 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3473 "btrfs-cleaner");
4871c33b
QW
3474 if (IS_ERR(fs_info->cleaner_kthread)) {
3475 ret = PTR_ERR(fs_info->cleaner_kthread);
2365dd3c 3476 goto fail_sysfs;
4871c33b 3477 }
a74a4b97
CM
3478
3479 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3480 tree_root,
3481 "btrfs-transaction");
4871c33b
QW
3482 if (IS_ERR(fs_info->transaction_kthread)) {
3483 ret = PTR_ERR(fs_info->transaction_kthread);
3f157a2f 3484 goto fail_cleaner;
4871c33b 3485 }
a74a4b97 3486
583b7231 3487 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3488 !fs_info->fs_devices->rotating) {
583b7231 3489 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3490 }
3491
63a7cb13
DS
3492 /*
3493 * For devices supporting discard turn on discard=async automatically,
3494 * unless it's already set or disabled. This could be turned off by
3495 * nodiscard for the same mount.
95ca6599
NA
3496 *
3497 * The zoned mode piggy backs on the discard functionality for
3498 * resetting a zone. There is no reason to delay the zone reset as it is
3499 * fast enough. So, do not enable async discard for zoned mode.
63a7cb13
DS
3500 */
3501 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3502 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3503 btrfs_test_opt(fs_info, NODISCARD)) &&
95ca6599
NA
3504 fs_info->fs_devices->discardable &&
3505 !btrfs_is_zoned(fs_info)) {
63a7cb13
DS
3506 btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3507 "auto enabling async discard");
63a7cb13
DS
3508 }
3509
21adbd5c 3510#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3511 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3512 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3513 btrfs_test_opt(fs_info,
cbeaae4f 3514 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3515 fs_info->check_integrity_print_mask);
3516 if (ret)
05135f59
DS
3517 btrfs_warn(fs_info,
3518 "failed to initialize integrity check module: %d",
3519 ret);
21adbd5c
SB
3520 }
3521#endif
bcef60f2
AJ
3522 ret = btrfs_read_qgroup_config(fs_info);
3523 if (ret)
3524 goto fail_trans_kthread;
21adbd5c 3525
fd708b81
JB
3526 if (btrfs_build_ref_tree(fs_info))
3527 btrfs_err(fs_info, "couldn't build ref tree");
3528
96da0919
QW
3529 /* do not make disk changes in broken FS or nologreplay is given */
3530 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3531 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3532 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3533 ret = btrfs_replay_log(fs_info, fs_devices);
4871c33b 3534 if (ret)
28c16cbb 3535 goto fail_qgroup;
e02119d5 3536 }
1a40e23b 3537
56e9357a 3538 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3 3539 if (IS_ERR(fs_info->fs_root)) {
4871c33b
QW
3540 ret = PTR_ERR(fs_info->fs_root);
3541 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
315bf8ef 3542 fs_info->fs_root = NULL;
bcef60f2 3543 goto fail_qgroup;
3140c9a3 3544 }
c289811c 3545
bc98a42c 3546 if (sb_rdonly(sb))
8cd29088 3547 goto clear_oneshot;
59641015 3548
44c0ca21 3549 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3550 if (ret) {
6bccf3ab 3551 close_ctree(fs_info);
2b6ba629 3552 return ret;
e3acc2a6 3553 }
b0643e59 3554 btrfs_discard_resume(fs_info);
b382a324 3555
44c0ca21
BB
3556 if (fs_info->uuid_root &&
3557 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3558 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3559 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3560 ret = btrfs_check_uuid_tree(fs_info);
3561 if (ret) {
05135f59
DS
3562 btrfs_warn(fs_info,
3563 "failed to check the UUID tree: %d", ret);
6bccf3ab 3564 close_ctree(fs_info);
70f80175
SB
3565 return ret;
3566 }
f7a81ea4 3567 }
94846229 3568
afcdd129 3569 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3570
b4be6aef
JB
3571 /* Kick the cleaner thread so it'll start deleting snapshots. */
3572 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3573 wake_up_process(fs_info->cleaner_kthread);
3574
8cd29088
BB
3575clear_oneshot:
3576 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3577 return 0;
39279cc3 3578
bcef60f2
AJ
3579fail_qgroup:
3580 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3581fail_trans_kthread:
3582 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3583 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3584 btrfs_free_fs_roots(fs_info);
3f157a2f 3585fail_cleaner:
a74a4b97 3586 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3587
3588 /*
3589 * make sure we're done with the btree inode before we stop our
3590 * kthreads
3591 */
3592 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3593
2365dd3c 3594fail_sysfs:
6618a59b 3595 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3596
b7c35e81
AJ
3597fail_fsdev_sysfs:
3598 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3599
1b1d1f66 3600fail_block_groups:
54067ae9 3601 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3602
3603fail_tree_roots:
9e3aa805
JB
3604 if (fs_info->data_reloc_root)
3605 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3606 free_root_pointers(fs_info, true);
2b8195bb 3607 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3608
39279cc3 3609fail_sb_buffer:
7abadb64 3610 btrfs_stop_all_workers(fs_info);
5cdd7db6 3611 btrfs_free_block_groups(fs_info);
16cdcec7 3612fail_alloc:
586e46e2
ID
3613 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3614
4543df7e 3615 iput(fs_info->btree_inode);
7e662854 3616fail:
586e46e2 3617 btrfs_close_devices(fs_info->fs_devices);
4871c33b
QW
3618 ASSERT(ret < 0);
3619 return ret;
eb60ceac 3620}
663faf9f 3621ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3622
314b6dd0 3623static void btrfs_end_super_write(struct bio *bio)
f2984462 3624{
314b6dd0
JT
3625 struct btrfs_device *device = bio->bi_private;
3626 struct bio_vec *bvec;
3627 struct bvec_iter_all iter_all;
3628 struct page *page;
3629
3630 bio_for_each_segment_all(bvec, bio, iter_all) {
3631 page = bvec->bv_page;
3632
3633 if (bio->bi_status) {
3634 btrfs_warn_rl_in_rcu(device->fs_info,
3635 "lost page write due to IO error on %s (%d)",
cb3e217b 3636 btrfs_dev_name(device),
314b6dd0
JT
3637 blk_status_to_errno(bio->bi_status));
3638 ClearPageUptodate(page);
3639 SetPageError(page);
3640 btrfs_dev_stat_inc_and_print(device,
3641 BTRFS_DEV_STAT_WRITE_ERRS);
3642 } else {
3643 SetPageUptodate(page);
3644 }
3645
3646 put_page(page);
3647 unlock_page(page);
f2984462 3648 }
314b6dd0
JT
3649
3650 bio_put(bio);
f2984462
CM
3651}
3652
8f32380d 3653struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
a05d3c91 3654 int copy_num, bool drop_cache)
29c36d72 3655{
29c36d72 3656 struct btrfs_super_block *super;
8f32380d 3657 struct page *page;
12659251 3658 u64 bytenr, bytenr_orig;
8f32380d 3659 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3660 int ret;
3661
3662 bytenr_orig = btrfs_sb_offset(copy_num);
3663 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3664 if (ret == -ENOENT)
3665 return ERR_PTR(-EINVAL);
3666 else if (ret)
3667 return ERR_PTR(ret);
29c36d72 3668
cda00eba 3669 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3670 return ERR_PTR(-EINVAL);
29c36d72 3671
a05d3c91
QW
3672 if (drop_cache) {
3673 /* This should only be called with the primary sb. */
3674 ASSERT(copy_num == 0);
3675
3676 /*
3677 * Drop the page of the primary superblock, so later read will
3678 * always read from the device.
3679 */
3680 invalidate_inode_pages2_range(mapping,
3681 bytenr >> PAGE_SHIFT,
3682 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3683 }
3684
8f32380d
JT
3685 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3686 if (IS_ERR(page))
3687 return ERR_CAST(page);
29c36d72 3688
8f32380d 3689 super = page_address(page);
96c2e067
AJ
3690 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3691 btrfs_release_disk_super(super);
3692 return ERR_PTR(-ENODATA);
3693 }
3694
12659251 3695 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3696 btrfs_release_disk_super(super);
3697 return ERR_PTR(-EINVAL);
29c36d72
AJ
3698 }
3699
8f32380d 3700 return super;
29c36d72
AJ
3701}
3702
3703
8f32380d 3704struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3705{
8f32380d 3706 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3707 int i;
3708 u64 transid = 0;
a512bbf8
YZ
3709
3710 /* we would like to check all the supers, but that would make
3711 * a btrfs mount succeed after a mkfs from a different FS.
3712 * So, we need to add a special mount option to scan for
3713 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3714 */
3715 for (i = 0; i < 1; i++) {
a05d3c91 3716 super = btrfs_read_dev_one_super(bdev, i, false);
8f32380d 3717 if (IS_ERR(super))
a512bbf8
YZ
3718 continue;
3719
a512bbf8 3720 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3721 if (latest)
3722 btrfs_release_disk_super(super);
3723
3724 latest = super;
a512bbf8 3725 transid = btrfs_super_generation(super);
a512bbf8
YZ
3726 }
3727 }
92fc03fb 3728
8f32380d 3729 return super;
a512bbf8
YZ
3730}
3731
4eedeb75 3732/*
abbb3b8e 3733 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3734 * pages we use for writing are locked.
4eedeb75 3735 *
abbb3b8e
DS
3736 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3737 * the expected device size at commit time. Note that max_mirrors must be
3738 * same for write and wait phases.
4eedeb75 3739 *
314b6dd0 3740 * Return number of errors when page is not found or submission fails.
4eedeb75 3741 */
a512bbf8 3742static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3743 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3744{
d5178578 3745 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3746 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3747 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3748 int i;
a512bbf8 3749 int errors = 0;
12659251
NA
3750 int ret;
3751 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3752
3753 if (max_mirrors == 0)
3754 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3755
d5178578
JT
3756 shash->tfm = fs_info->csum_shash;
3757
a512bbf8 3758 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3759 struct page *page;
3760 struct bio *bio;
3761 struct btrfs_super_block *disk_super;
3762
12659251
NA
3763 bytenr_orig = btrfs_sb_offset(i);
3764 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3765 if (ret == -ENOENT) {
3766 continue;
3767 } else if (ret < 0) {
3768 btrfs_err(device->fs_info,
3769 "couldn't get super block location for mirror %d",
3770 i);
3771 errors++;
3772 continue;
3773 }
935e5cc9
MX
3774 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3775 device->commit_total_bytes)
a512bbf8
YZ
3776 break;
3777
12659251 3778 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3779
fd08001f
EB
3780 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3781 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3782 sb->csum);
4eedeb75 3783
314b6dd0
JT
3784 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3785 GFP_NOFS);
3786 if (!page) {
abbb3b8e 3787 btrfs_err(device->fs_info,
314b6dd0 3788 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3789 bytenr);
3790 errors++;
4eedeb75 3791 continue;
abbb3b8e 3792 }
634554dc 3793
314b6dd0
JT
3794 /* Bump the refcount for wait_dev_supers() */
3795 get_page(page);
a512bbf8 3796
314b6dd0
JT
3797 disk_super = page_address(page);
3798 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3799
314b6dd0
JT
3800 /*
3801 * Directly use bios here instead of relying on the page cache
3802 * to do I/O, so we don't lose the ability to do integrity
3803 * checking.
3804 */
07888c66
CH
3805 bio = bio_alloc(device->bdev, 1,
3806 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3807 GFP_NOFS);
314b6dd0
JT
3808 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3809 bio->bi_private = device;
3810 bio->bi_end_io = btrfs_end_super_write;
3811 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3812 offset_in_page(bytenr));
a512bbf8 3813
387125fc 3814 /*
314b6dd0
JT
3815 * We FUA only the first super block. The others we allow to
3816 * go down lazy and there's a short window where the on-disk
3817 * copies might still contain the older version.
387125fc 3818 */
1b9e619c 3819 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3820 bio->bi_opf |= REQ_FUA;
3821
58ff51f1
CH
3822 btrfsic_check_bio(bio);
3823 submit_bio(bio);
8376d9e1
NA
3824
3825 if (btrfs_advance_sb_log(device, i))
3826 errors++;
a512bbf8
YZ
3827 }
3828 return errors < i ? 0 : -1;
3829}
3830
abbb3b8e
DS
3831/*
3832 * Wait for write completion of superblocks done by write_dev_supers,
3833 * @max_mirrors same for write and wait phases.
3834 *
314b6dd0 3835 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3836 * date.
3837 */
3838static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3839{
abbb3b8e
DS
3840 int i;
3841 int errors = 0;
b6a535fa 3842 bool primary_failed = false;
12659251 3843 int ret;
abbb3b8e
DS
3844 u64 bytenr;
3845
3846 if (max_mirrors == 0)
3847 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3848
3849 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3850 struct page *page;
3851
12659251
NA
3852 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3853 if (ret == -ENOENT) {
3854 break;
3855 } else if (ret < 0) {
3856 errors++;
3857 if (i == 0)
3858 primary_failed = true;
3859 continue;
3860 }
abbb3b8e
DS
3861 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3862 device->commit_total_bytes)
3863 break;
3864
314b6dd0
JT
3865 page = find_get_page(device->bdev->bd_inode->i_mapping,
3866 bytenr >> PAGE_SHIFT);
3867 if (!page) {
abbb3b8e 3868 errors++;
b6a535fa
HM
3869 if (i == 0)
3870 primary_failed = true;
abbb3b8e
DS
3871 continue;
3872 }
314b6dd0
JT
3873 /* Page is submitted locked and unlocked once the IO completes */
3874 wait_on_page_locked(page);
3875 if (PageError(page)) {
abbb3b8e 3876 errors++;
b6a535fa
HM
3877 if (i == 0)
3878 primary_failed = true;
3879 }
abbb3b8e 3880
314b6dd0
JT
3881 /* Drop our reference */
3882 put_page(page);
abbb3b8e 3883
314b6dd0
JT
3884 /* Drop the reference from the writing run */
3885 put_page(page);
abbb3b8e
DS
3886 }
3887
b6a535fa
HM
3888 /* log error, force error return */
3889 if (primary_failed) {
3890 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3891 device->devid);
3892 return -1;
3893 }
3894
abbb3b8e
DS
3895 return errors < i ? 0 : -1;
3896}
3897
387125fc
CM
3898/*
3899 * endio for the write_dev_flush, this will wake anyone waiting
3900 * for the barrier when it is done
3901 */
4246a0b6 3902static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3903{
f9e69aa9 3904 bio_uninit(bio);
e0ae9994 3905 complete(bio->bi_private);
387125fc
CM
3906}
3907
3908/*
4fc6441a
AJ
3909 * Submit a flush request to the device if it supports it. Error handling is
3910 * done in the waiting counterpart.
387125fc 3911 */
4fc6441a 3912static void write_dev_flush(struct btrfs_device *device)
387125fc 3913{
f9e69aa9 3914 struct bio *bio = &device->flush_bio;
387125fc 3915
bfd3ea94
AJ
3916 device->last_flush_error = BLK_STS_OK;
3917
a91cf0ff
WY
3918#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3919 /*
3920 * When a disk has write caching disabled, we skip submission of a bio
3921 * with flush and sync requests before writing the superblock, since
3922 * it's not needed. However when the integrity checker is enabled, this
3923 * results in reports that there are metadata blocks referred by a
3924 * superblock that were not properly flushed. So don't skip the bio
3925 * submission only when the integrity checker is enabled for the sake
3926 * of simplicity, since this is a debug tool and not meant for use in
3927 * non-debug builds.
3928 */
08e688fd 3929 if (!bdev_write_cache(device->bdev))
4fc6441a 3930 return;
a91cf0ff 3931#endif
387125fc 3932
f9e69aa9
CH
3933 bio_init(bio, device->bdev, NULL, 0,
3934 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 3935 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
3936 init_completion(&device->flush_wait);
3937 bio->bi_private = &device->flush_wait;
387125fc 3938
58ff51f1
CH
3939 btrfsic_check_bio(bio);
3940 submit_bio(bio);
1c3063b6 3941 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3942}
387125fc 3943
4fc6441a
AJ
3944/*
3945 * If the flush bio has been submitted by write_dev_flush, wait for it.
1b465784 3946 * Return true for any error, and false otherwise.
4fc6441a 3947 */
1b465784 3948static bool wait_dev_flush(struct btrfs_device *device)
4fc6441a 3949{
f9e69aa9 3950 struct bio *bio = &device->flush_bio;
387125fc 3951
7e812f20 3952 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
1b465784 3953 return false;
387125fc 3954
2980d574 3955 wait_for_completion_io(&device->flush_wait);
387125fc 3956
bfd3ea94
AJ
3957 if (bio->bi_status) {
3958 device->last_flush_error = bio->bi_status;
3959 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
1b465784 3960 return true;
bfd3ea94
AJ
3961 }
3962
1b465784 3963 return false;
387125fc 3964}
387125fc 3965
387125fc
CM
3966/*
3967 * send an empty flush down to each device in parallel,
3968 * then wait for them
3969 */
3970static int barrier_all_devices(struct btrfs_fs_info *info)
3971{
3972 struct list_head *head;
3973 struct btrfs_device *dev;
5af3e8cc 3974 int errors_wait = 0;
387125fc 3975
1538e6c5 3976 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3977 /* send down all the barriers */
3978 head = &info->fs_devices->devices;
1538e6c5 3979 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3980 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3981 continue;
cea7c8bf 3982 if (!dev->bdev)
387125fc 3983 continue;
e12c9621 3984 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3985 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3986 continue;
3987
4fc6441a 3988 write_dev_flush(dev);
387125fc
CM
3989 }
3990
3991 /* wait for all the barriers */
1538e6c5 3992 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3993 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3994 continue;
387125fc 3995 if (!dev->bdev) {
5af3e8cc 3996 errors_wait++;
387125fc
CM
3997 continue;
3998 }
e12c9621 3999 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4000 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4001 continue;
4002
1b465784 4003 if (wait_dev_flush(dev))
5af3e8cc 4004 errors_wait++;
401b41e5
AJ
4005 }
4006
de38a206
AJ
4007 /*
4008 * Checks last_flush_error of disks in order to determine the device
4009 * state.
4010 */
4011 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
4012 return -EIO;
4013
387125fc
CM
4014 return 0;
4015}
4016
943c6e99
ZL
4017int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4018{
8789f4fe
ZL
4019 int raid_type;
4020 int min_tolerated = INT_MAX;
943c6e99 4021
8789f4fe
ZL
4022 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4023 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4024 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4025 btrfs_raid_array[BTRFS_RAID_SINGLE].
4026 tolerated_failures);
943c6e99 4027
8789f4fe
ZL
4028 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4029 if (raid_type == BTRFS_RAID_SINGLE)
4030 continue;
41a6e891 4031 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4032 continue;
8c3e3582 4033 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4034 btrfs_raid_array[raid_type].
4035 tolerated_failures);
4036 }
943c6e99 4037
8789f4fe 4038 if (min_tolerated == INT_MAX) {
ab8d0fc4 4039 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4040 min_tolerated = 0;
4041 }
4042
4043 return min_tolerated;
943c6e99
ZL
4044}
4045
eece6a9c 4046int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4047{
e5e9a520 4048 struct list_head *head;
f2984462 4049 struct btrfs_device *dev;
a061fc8d 4050 struct btrfs_super_block *sb;
f2984462 4051 struct btrfs_dev_item *dev_item;
f2984462
CM
4052 int ret;
4053 int do_barriers;
a236aed1
CM
4054 int max_errors;
4055 int total_errors = 0;
a061fc8d 4056 u64 flags;
f2984462 4057
0b246afa 4058 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4059
4060 /*
4061 * max_mirrors == 0 indicates we're from commit_transaction,
4062 * not from fsync where the tree roots in fs_info have not
4063 * been consistent on disk.
4064 */
4065 if (max_mirrors == 0)
4066 backup_super_roots(fs_info);
f2984462 4067
0b246afa 4068 sb = fs_info->super_for_commit;
a061fc8d 4069 dev_item = &sb->dev_item;
e5e9a520 4070
0b246afa
JM
4071 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4072 head = &fs_info->fs_devices->devices;
4073 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4074
5af3e8cc 4075 if (do_barriers) {
0b246afa 4076 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4077 if (ret) {
4078 mutex_unlock(
0b246afa
JM
4079 &fs_info->fs_devices->device_list_mutex);
4080 btrfs_handle_fs_error(fs_info, ret,
4081 "errors while submitting device barriers.");
5af3e8cc
SB
4082 return ret;
4083 }
4084 }
387125fc 4085
1538e6c5 4086 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4087 if (!dev->bdev) {
4088 total_errors++;
4089 continue;
4090 }
e12c9621 4091 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4092 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4093 continue;
4094
2b82032c 4095 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4096 btrfs_set_stack_device_type(dev_item, dev->type);
4097 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4098 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4099 dev->commit_total_bytes);
ce7213c7
MX
4100 btrfs_set_stack_device_bytes_used(dev_item,
4101 dev->commit_bytes_used);
a061fc8d
CM
4102 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4103 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4104 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4105 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4106 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4107 BTRFS_FSID_SIZE);
a512bbf8 4108
a061fc8d
CM
4109 flags = btrfs_super_flags(sb);
4110 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4111
75cb857d
QW
4112 ret = btrfs_validate_write_super(fs_info, sb);
4113 if (ret < 0) {
4114 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4115 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4116 "unexpected superblock corruption detected");
4117 return -EUCLEAN;
4118 }
4119
abbb3b8e 4120 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4121 if (ret)
4122 total_errors++;
f2984462 4123 }
a236aed1 4124 if (total_errors > max_errors) {
0b246afa
JM
4125 btrfs_err(fs_info, "%d errors while writing supers",
4126 total_errors);
4127 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4128
9d565ba4 4129 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4130 btrfs_handle_fs_error(fs_info, -EIO,
4131 "%d errors while writing supers",
4132 total_errors);
9d565ba4 4133 return -EIO;
a236aed1 4134 }
f2984462 4135
a512bbf8 4136 total_errors = 0;
1538e6c5 4137 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4138 if (!dev->bdev)
4139 continue;
e12c9621 4140 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4141 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4142 continue;
4143
abbb3b8e 4144 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4145 if (ret)
4146 total_errors++;
f2984462 4147 }
0b246afa 4148 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4149 if (total_errors > max_errors) {
0b246afa
JM
4150 btrfs_handle_fs_error(fs_info, -EIO,
4151 "%d errors while writing supers",
4152 total_errors);
79787eaa 4153 return -EIO;
a236aed1 4154 }
f2984462
CM
4155 return 0;
4156}
4157
cb517eab
MX
4158/* Drop a fs root from the radix tree and free it. */
4159void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4160 struct btrfs_root *root)
2619ba1f 4161{
4785e24f
JB
4162 bool drop_ref = false;
4163
fc7cbcd4
DS
4164 spin_lock(&fs_info->fs_roots_radix_lock);
4165 radix_tree_delete(&fs_info->fs_roots_radix,
4166 (unsigned long)root->root_key.objectid);
4167 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4168 drop_ref = true;
fc7cbcd4 4169 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4170
84961539 4171 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4172 ASSERT(root->log_root == NULL);
1c1ea4f7 4173 if (root->reloc_root) {
00246528 4174 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4175 root->reloc_root = NULL;
4176 }
4177 }
3321719e 4178
4785e24f
JB
4179 if (drop_ref)
4180 btrfs_put_root(root);
2619ba1f
CM
4181}
4182
6bccf3ab 4183int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4184{
6bccf3ab 4185 struct btrfs_root *root = fs_info->tree_root;
c146afad 4186 struct btrfs_trans_handle *trans;
a74a4b97 4187
0b246afa 4188 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4189 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4190 mutex_unlock(&fs_info->cleaner_mutex);
4191 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4192
4193 /* wait until ongoing cleanup work done */
0b246afa
JM
4194 down_write(&fs_info->cleanup_work_sem);
4195 up_write(&fs_info->cleanup_work_sem);
c71bf099 4196
7a7eaa40 4197 trans = btrfs_join_transaction(root);
3612b495
TI
4198 if (IS_ERR(trans))
4199 return PTR_ERR(trans);
3a45bb20 4200 return btrfs_commit_transaction(trans);
c146afad
YZ
4201}
4202
36c86a9e
QW
4203static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4204{
4205 struct btrfs_transaction *trans;
4206 struct btrfs_transaction *tmp;
4207 bool found = false;
4208
4209 if (list_empty(&fs_info->trans_list))
4210 return;
4211
4212 /*
4213 * This function is only called at the very end of close_ctree(),
4214 * thus no other running transaction, no need to take trans_lock.
4215 */
4216 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4217 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4218 struct extent_state *cached = NULL;
4219 u64 dirty_bytes = 0;
4220 u64 cur = 0;
4221 u64 found_start;
4222 u64 found_end;
4223
4224 found = true;
e5860f82 4225 while (find_first_extent_bit(&trans->dirty_pages, cur,
36c86a9e
QW
4226 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4227 dirty_bytes += found_end + 1 - found_start;
4228 cur = found_end + 1;
4229 }
4230 btrfs_warn(fs_info,
4231 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4232 trans->transid, dirty_bytes);
4233 btrfs_cleanup_one_transaction(trans, fs_info);
4234
4235 if (trans == fs_info->running_transaction)
4236 fs_info->running_transaction = NULL;
4237 list_del_init(&trans->list);
4238
4239 btrfs_put_transaction(trans);
4240 trace_btrfs_transaction_commit(fs_info);
4241 }
4242 ASSERT(!found);
4243}
4244
b105e927 4245void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4246{
c146afad
YZ
4247 int ret;
4248
afcdd129 4249 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4250
8a1f1e3d
FM
4251 /*
4252 * If we had UNFINISHED_DROPS we could still be processing them, so
4253 * clear that bit and wake up relocation so it can stop.
4254 * We must do this before stopping the block group reclaim task, because
4255 * at btrfs_relocate_block_group() we wait for this bit, and after the
4256 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4257 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4258 * return 1.
4259 */
4260 btrfs_wake_unfinished_drop(fs_info);
4261
31e70e52
FM
4262 /*
4263 * We may have the reclaim task running and relocating a data block group,
4264 * in which case it may create delayed iputs. So stop it before we park
4265 * the cleaner kthread otherwise we can get new delayed iputs after
4266 * parking the cleaner, and that can make the async reclaim task to hang
4267 * if it's waiting for delayed iputs to complete, since the cleaner is
4268 * parked and can not run delayed iputs - this will make us hang when
4269 * trying to stop the async reclaim task.
4270 */
4271 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4272 /*
4273 * We don't want the cleaner to start new transactions, add more delayed
4274 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4275 * because that frees the task_struct, and the transaction kthread might
4276 * still try to wake up the cleaner.
4277 */
4278 kthread_park(fs_info->cleaner_kthread);
c146afad 4279
7343dd61 4280 /* wait for the qgroup rescan worker to stop */
d06f23d6 4281 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4282
803b2f54
SB
4283 /* wait for the uuid_scan task to finish */
4284 down(&fs_info->uuid_tree_rescan_sem);
4285 /* avoid complains from lockdep et al., set sem back to initial state */
4286 up(&fs_info->uuid_tree_rescan_sem);
4287
837d5b6e 4288 /* pause restriper - we want to resume on mount */
aa1b8cd4 4289 btrfs_pause_balance(fs_info);
837d5b6e 4290
8dabb742
SB
4291 btrfs_dev_replace_suspend_for_unmount(fs_info);
4292
aa1b8cd4 4293 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4294
4295 /* wait for any defraggers to finish */
4296 wait_event(fs_info->transaction_wait,
4297 (atomic_read(&fs_info->defrag_running) == 0));
4298
4299 /* clear out the rbtree of defraggable inodes */
26176e7c 4300 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4301
a362bb86
FM
4302 /*
4303 * After we parked the cleaner kthread, ordered extents may have
4304 * completed and created new delayed iputs. If one of the async reclaim
4305 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4306 * can hang forever trying to stop it, because if a delayed iput is
4307 * added after it ran btrfs_run_delayed_iputs() and before it called
4308 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4309 * no one else to run iputs.
4310 *
4311 * So wait for all ongoing ordered extents to complete and then run
4312 * delayed iputs. This works because once we reach this point no one
4313 * can either create new ordered extents nor create delayed iputs
4314 * through some other means.
4315 *
4316 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4317 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4318 * but the delayed iput for the respective inode is made only when doing
4319 * the final btrfs_put_ordered_extent() (which must happen at
4320 * btrfs_finish_ordered_io() when we are unmounting).
4321 */
4322 btrfs_flush_workqueue(fs_info->endio_write_workers);
4323 /* Ordered extents for free space inodes. */
4324 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4325 btrfs_run_delayed_iputs(fs_info);
4326
21c7e756 4327 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4328 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4329 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4330
b0643e59
DZ
4331 /* Cancel or finish ongoing discard work */
4332 btrfs_discard_cleanup(fs_info);
4333
bc98a42c 4334 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4335 /*
d6fd0ae2
OS
4336 * The cleaner kthread is stopped, so do one final pass over
4337 * unused block groups.
e44163e1 4338 */
0b246afa 4339 btrfs_delete_unused_bgs(fs_info);
e44163e1 4340
f0cc2cd7
FM
4341 /*
4342 * There might be existing delayed inode workers still running
4343 * and holding an empty delayed inode item. We must wait for
4344 * them to complete first because they can create a transaction.
4345 * This happens when someone calls btrfs_balance_delayed_items()
4346 * and then a transaction commit runs the same delayed nodes
4347 * before any delayed worker has done something with the nodes.
4348 * We must wait for any worker here and not at transaction
4349 * commit time since that could cause a deadlock.
4350 * This is a very rare case.
4351 */
4352 btrfs_flush_workqueue(fs_info->delayed_workers);
4353
6bccf3ab 4354 ret = btrfs_commit_super(fs_info);
acce952b 4355 if (ret)
04892340 4356 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4357 }
4358
84961539 4359 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4360 btrfs_error_commit_super(fs_info);
0f7d52f4 4361
e3029d9f
AV
4362 kthread_stop(fs_info->transaction_kthread);
4363 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4364
e187831e 4365 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4366 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4367
5958253c
QW
4368 if (btrfs_check_quota_leak(fs_info)) {
4369 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4370 btrfs_err(fs_info, "qgroup reserved space leaked");
4371 }
4372
04892340 4373 btrfs_free_qgroup_config(fs_info);
fe816d0f 4374 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4375
963d678b 4376 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4377 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4378 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4379 }
bcc63abb 4380
5deb17e1 4381 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4382 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4383 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4384
6618a59b 4385 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4386 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4387
1a4319cc
LB
4388 btrfs_put_block_group_cache(fs_info);
4389
de348ee0
WS
4390 /*
4391 * we must make sure there is not any read request to
4392 * submit after we stopping all workers.
4393 */
4394 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4395 btrfs_stop_all_workers(fs_info);
4396
0a31daa4 4397 /* We shouldn't have any transaction open at this point */
36c86a9e 4398 warn_about_uncommitted_trans(fs_info);
0a31daa4 4399
afcdd129 4400 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4401 free_root_pointers(fs_info, true);
8c38938c 4402 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4403
4e19443d
JB
4404 /*
4405 * We must free the block groups after dropping the fs_roots as we could
4406 * have had an IO error and have left over tree log blocks that aren't
4407 * cleaned up until the fs roots are freed. This makes the block group
4408 * accounting appear to be wrong because there's pending reserved bytes,
4409 * so make sure we do the block group cleanup afterwards.
4410 */
4411 btrfs_free_block_groups(fs_info);
4412
13e6c37b 4413 iput(fs_info->btree_inode);
d6bfde87 4414
21adbd5c 4415#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4416 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4417 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4418#endif
4419
0b86a832 4420 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4421 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4422}
4423
5f39d397
CM
4424void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4425{
2f4d60df 4426 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4427 u64 transid = btrfs_header_generation(buf);
b4ce94de 4428
06ea65a3
JB
4429#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4430 /*
4431 * This is a fast path so only do this check if we have sanity tests
52042d8e 4432 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4433 * outside of the sanity tests.
4434 */
b0132a3b 4435 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4436 return;
4437#endif
49d0c642 4438 btrfs_assert_tree_write_locked(buf);
0b246afa 4439 if (transid != fs_info->generation)
5d163e0e 4440 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4441 buf->start, transid, fs_info->generation);
f18cc978 4442 set_extent_buffer_dirty(buf);
1f21ef0a 4443#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb 4444 /*
85d8a826
JB
4445 * btrfs_check_leaf() won't check item data if we don't have WRITTEN
4446 * set, so this will only validate the basic structure of the items.
69fc6cbb 4447 */
85d8a826 4448 if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) {
a4f78750 4449 btrfs_print_leaf(buf);
1f21ef0a
FM
4450 ASSERT(0);
4451 }
4452#endif
eb60ceac
CM
4453}
4454
2ff7e61e 4455static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4456 int flush_delayed)
16cdcec7
MX
4457{
4458 /*
4459 * looks as though older kernels can get into trouble with
4460 * this code, they end up stuck in balance_dirty_pages forever
4461 */
e2d84521 4462 int ret;
16cdcec7
MX
4463
4464 if (current->flags & PF_MEMALLOC)
4465 return;
4466
b53d3f5d 4467 if (flush_delayed)
2ff7e61e 4468 btrfs_balance_delayed_items(fs_info);
16cdcec7 4469
d814a491
EL
4470 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4471 BTRFS_DIRTY_METADATA_THRESH,
4472 fs_info->dirty_metadata_batch);
e2d84521 4473 if (ret > 0) {
0b246afa 4474 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4475 }
16cdcec7
MX
4476}
4477
2ff7e61e 4478void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4479{
2ff7e61e 4480 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4481}
585ad2c3 4482
2ff7e61e 4483void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4484{
2ff7e61e 4485 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4486}
6b80053d 4487
2ff7e61e 4488static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4489{
fe816d0f
NB
4490 /* cleanup FS via transaction */
4491 btrfs_cleanup_transaction(fs_info);
4492
0b246afa 4493 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4494 btrfs_run_delayed_iputs(fs_info);
0b246afa 4495 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4496
0b246afa
JM
4497 down_write(&fs_info->cleanup_work_sem);
4498 up_write(&fs_info->cleanup_work_sem);
acce952b 4499}
4500
ef67963d
JB
4501static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4502{
fc7cbcd4
DS
4503 struct btrfs_root *gang[8];
4504 u64 root_objectid = 0;
4505 int ret;
4506
4507 spin_lock(&fs_info->fs_roots_radix_lock);
4508 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4509 (void **)gang, root_objectid,
4510 ARRAY_SIZE(gang))) != 0) {
4511 int i;
4512
4513 for (i = 0; i < ret; i++)
4514 gang[i] = btrfs_grab_root(gang[i]);
4515 spin_unlock(&fs_info->fs_roots_radix_lock);
4516
4517 for (i = 0; i < ret; i++) {
4518 if (!gang[i])
ef67963d 4519 continue;
fc7cbcd4
DS
4520 root_objectid = gang[i]->root_key.objectid;
4521 btrfs_free_log(NULL, gang[i]);
4522 btrfs_put_root(gang[i]);
ef67963d 4523 }
fc7cbcd4
DS
4524 root_objectid++;
4525 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4526 }
fc7cbcd4 4527 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4528 btrfs_free_log_root_tree(NULL, fs_info);
4529}
4530
143bede5 4531static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4532{
acce952b 4533 struct btrfs_ordered_extent *ordered;
acce952b 4534
199c2a9c 4535 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4536 /*
4537 * This will just short circuit the ordered completion stuff which will
4538 * make sure the ordered extent gets properly cleaned up.
4539 */
199c2a9c 4540 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4541 root_extent_list)
4542 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4543 spin_unlock(&root->ordered_extent_lock);
4544}
4545
4546static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4547{
4548 struct btrfs_root *root;
84af994b 4549 LIST_HEAD(splice);
199c2a9c
MX
4550
4551 spin_lock(&fs_info->ordered_root_lock);
4552 list_splice_init(&fs_info->ordered_roots, &splice);
4553 while (!list_empty(&splice)) {
4554 root = list_first_entry(&splice, struct btrfs_root,
4555 ordered_root);
1de2cfde
JB
4556 list_move_tail(&root->ordered_root,
4557 &fs_info->ordered_roots);
199c2a9c 4558
2a85d9ca 4559 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4560 btrfs_destroy_ordered_extents(root);
4561
2a85d9ca
LB
4562 cond_resched();
4563 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4564 }
4565 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4566
4567 /*
4568 * We need this here because if we've been flipped read-only we won't
4569 * get sync() from the umount, so we need to make sure any ordered
4570 * extents that haven't had their dirty pages IO start writeout yet
4571 * actually get run and error out properly.
4572 */
4573 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4574}
4575
99f09ce3
FM
4576static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4577 struct btrfs_fs_info *fs_info)
acce952b 4578{
4579 struct rb_node *node;
4580 struct btrfs_delayed_ref_root *delayed_refs;
4581 struct btrfs_delayed_ref_node *ref;
acce952b 4582
4583 delayed_refs = &trans->delayed_refs;
4584
4585 spin_lock(&delayed_refs->lock);
d7df2c79 4586 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4587 spin_unlock(&delayed_refs->lock);
b79ce3dd 4588 btrfs_debug(fs_info, "delayed_refs has NO entry");
99f09ce3 4589 return;
acce952b 4590 }
4591
5c9d028b 4592 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4593 struct btrfs_delayed_ref_head *head;
0e0adbcf 4594 struct rb_node *n;
e78417d1 4595 bool pin_bytes = false;
acce952b 4596
d7df2c79
JB
4597 head = rb_entry(node, struct btrfs_delayed_ref_head,
4598 href_node);
3069bd26 4599 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4600 continue;
3069bd26 4601
d7df2c79 4602 spin_lock(&head->lock);
e3d03965 4603 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4604 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4605 ref_node);
e3d03965 4606 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4607 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4608 if (!list_empty(&ref->add_list))
4609 list_del(&ref->add_list);
d7df2c79
JB
4610 atomic_dec(&delayed_refs->num_entries);
4611 btrfs_put_delayed_ref(ref);
e78417d1 4612 }
d7df2c79
JB
4613 if (head->must_insert_reserved)
4614 pin_bytes = true;
4615 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4616 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4617 spin_unlock(&head->lock);
4618 spin_unlock(&delayed_refs->lock);
4619 mutex_unlock(&head->mutex);
acce952b 4620
f603bb94
NB
4621 if (pin_bytes) {
4622 struct btrfs_block_group *cache;
4623
4624 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4625 BUG_ON(!cache);
4626
4627 spin_lock(&cache->space_info->lock);
4628 spin_lock(&cache->lock);
4629 cache->pinned += head->num_bytes;
4630 btrfs_space_info_update_bytes_pinned(fs_info,
4631 cache->space_info, head->num_bytes);
4632 cache->reserved -= head->num_bytes;
4633 cache->space_info->bytes_reserved -= head->num_bytes;
4634 spin_unlock(&cache->lock);
4635 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4636
4637 btrfs_put_block_group(cache);
4638
4639 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4640 head->bytenr + head->num_bytes - 1);
4641 }
31890da0 4642 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4643 btrfs_put_delayed_ref_head(head);
acce952b 4644 cond_resched();
4645 spin_lock(&delayed_refs->lock);
4646 }
81f7eb00 4647 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4648
4649 spin_unlock(&delayed_refs->lock);
acce952b 4650}
4651
143bede5 4652static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4653{
4654 struct btrfs_inode *btrfs_inode;
84af994b 4655 LIST_HEAD(splice);
acce952b 4656
eb73c1b7
MX
4657 spin_lock(&root->delalloc_lock);
4658 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4659
4660 while (!list_empty(&splice)) {
fe816d0f 4661 struct inode *inode = NULL;
eb73c1b7
MX
4662 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4663 delalloc_inodes);
fe816d0f 4664 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4665 spin_unlock(&root->delalloc_lock);
acce952b 4666
fe816d0f
NB
4667 /*
4668 * Make sure we get a live inode and that it'll not disappear
4669 * meanwhile.
4670 */
4671 inode = igrab(&btrfs_inode->vfs_inode);
4672 if (inode) {
597441b3
JB
4673 unsigned int nofs_flag;
4674
4675 nofs_flag = memalloc_nofs_save();
fe816d0f 4676 invalidate_inode_pages2(inode->i_mapping);
597441b3 4677 memalloc_nofs_restore(nofs_flag);
fe816d0f
NB
4678 iput(inode);
4679 }
eb73c1b7 4680 spin_lock(&root->delalloc_lock);
acce952b 4681 }
eb73c1b7
MX
4682 spin_unlock(&root->delalloc_lock);
4683}
4684
4685static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4686{
4687 struct btrfs_root *root;
84af994b 4688 LIST_HEAD(splice);
eb73c1b7
MX
4689
4690 spin_lock(&fs_info->delalloc_root_lock);
4691 list_splice_init(&fs_info->delalloc_roots, &splice);
4692 while (!list_empty(&splice)) {
4693 root = list_first_entry(&splice, struct btrfs_root,
4694 delalloc_root);
00246528 4695 root = btrfs_grab_root(root);
eb73c1b7
MX
4696 BUG_ON(!root);
4697 spin_unlock(&fs_info->delalloc_root_lock);
4698
4699 btrfs_destroy_delalloc_inodes(root);
00246528 4700 btrfs_put_root(root);
eb73c1b7
MX
4701
4702 spin_lock(&fs_info->delalloc_root_lock);
4703 }
4704 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4705}
4706
aec5716c
FM
4707static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4708 struct extent_io_tree *dirty_pages,
4709 int mark)
acce952b 4710{
acce952b 4711 struct extent_buffer *eb;
4712 u64 start = 0;
4713 u64 end;
acce952b 4714
e5860f82
FM
4715 while (find_first_extent_bit(dirty_pages, start, &start, &end,
4716 mark, NULL)) {
91166212 4717 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4718 while (start <= end) {
0b246afa
JM
4719 eb = find_extent_buffer(fs_info, start);
4720 start += fs_info->nodesize;
fd8b2b61 4721 if (!eb)
acce952b 4722 continue;
c4e54a65
JB
4723
4724 btrfs_tree_lock(eb);
fd8b2b61 4725 wait_on_extent_buffer_writeback(eb);
190a8339 4726 btrfs_clear_buffer_dirty(NULL, eb);
c4e54a65 4727 btrfs_tree_unlock(eb);
acce952b 4728
fd8b2b61 4729 free_extent_buffer_stale(eb);
acce952b 4730 }
4731 }
acce952b 4732}
4733
46d81ebd
FM
4734static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4735 struct extent_io_tree *unpin)
acce952b 4736{
acce952b 4737 u64 start;
4738 u64 end;
acce952b 4739
acce952b 4740 while (1) {
0e6ec385
FM
4741 struct extent_state *cached_state = NULL;
4742
fcd5e742
LF
4743 /*
4744 * The btrfs_finish_extent_commit() may get the same range as
4745 * ours between find_first_extent_bit and clear_extent_dirty.
4746 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4747 * the same extent range.
4748 */
4749 mutex_lock(&fs_info->unused_bg_unpin_mutex);
e5860f82
FM
4750 if (!find_first_extent_bit(unpin, 0, &start, &end,
4751 EXTENT_DIRTY, &cached_state)) {
fcd5e742 4752 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4753 break;
fcd5e742 4754 }
acce952b 4755
0e6ec385
FM
4756 clear_extent_dirty(unpin, start, end, &cached_state);
4757 free_extent_state(cached_state);
2ff7e61e 4758 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4759 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4760 cond_resched();
4761 }
acce952b 4762}
4763
32da5386 4764static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4765{
4766 struct inode *inode;
4767
4768 inode = cache->io_ctl.inode;
4769 if (inode) {
597441b3
JB
4770 unsigned int nofs_flag;
4771
4772 nofs_flag = memalloc_nofs_save();
c79a1751 4773 invalidate_inode_pages2(inode->i_mapping);
597441b3
JB
4774 memalloc_nofs_restore(nofs_flag);
4775
c79a1751
LB
4776 BTRFS_I(inode)->generation = 0;
4777 cache->io_ctl.inode = NULL;
4778 iput(inode);
4779 }
bbc37d6e 4780 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4781 btrfs_put_block_group(cache);
4782}
4783
4784void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4785 struct btrfs_fs_info *fs_info)
c79a1751 4786{
32da5386 4787 struct btrfs_block_group *cache;
c79a1751
LB
4788
4789 spin_lock(&cur_trans->dirty_bgs_lock);
4790 while (!list_empty(&cur_trans->dirty_bgs)) {
4791 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4792 struct btrfs_block_group,
c79a1751 4793 dirty_list);
c79a1751
LB
4794
4795 if (!list_empty(&cache->io_list)) {
4796 spin_unlock(&cur_trans->dirty_bgs_lock);
4797 list_del_init(&cache->io_list);
4798 btrfs_cleanup_bg_io(cache);
4799 spin_lock(&cur_trans->dirty_bgs_lock);
4800 }
4801
4802 list_del_init(&cache->dirty_list);
4803 spin_lock(&cache->lock);
4804 cache->disk_cache_state = BTRFS_DC_ERROR;
4805 spin_unlock(&cache->lock);
4806
4807 spin_unlock(&cur_trans->dirty_bgs_lock);
4808 btrfs_put_block_group(cache);
ba2c4d4e 4809 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4810 spin_lock(&cur_trans->dirty_bgs_lock);
4811 }
4812 spin_unlock(&cur_trans->dirty_bgs_lock);
4813
45ae2c18
NB
4814 /*
4815 * Refer to the definition of io_bgs member for details why it's safe
4816 * to use it without any locking
4817 */
c79a1751
LB
4818 while (!list_empty(&cur_trans->io_bgs)) {
4819 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4820 struct btrfs_block_group,
c79a1751 4821 io_list);
c79a1751
LB
4822
4823 list_del_init(&cache->io_list);
4824 spin_lock(&cache->lock);
4825 cache->disk_cache_state = BTRFS_DC_ERROR;
4826 spin_unlock(&cache->lock);
4827 btrfs_cleanup_bg_io(cache);
4828 }
4829}
4830
49b25e05 4831void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4832 struct btrfs_fs_info *fs_info)
49b25e05 4833{
bbbf7243
NB
4834 struct btrfs_device *dev, *tmp;
4835
2ff7e61e 4836 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4837 ASSERT(list_empty(&cur_trans->dirty_bgs));
4838 ASSERT(list_empty(&cur_trans->io_bgs));
4839
bbbf7243
NB
4840 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4841 post_commit_list) {
4842 list_del_init(&dev->post_commit_list);
4843 }
4844
2ff7e61e 4845 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4846
4a9d8bde 4847 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4848 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4849
4a9d8bde 4850 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4851 wake_up(&fs_info->transaction_wait);
49b25e05 4852
ccdf9b30 4853 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4854
2ff7e61e 4855 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4856 EXTENT_DIRTY);
fe119a6e 4857 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4858
4a9d8bde
MX
4859 cur_trans->state =TRANS_STATE_COMPLETED;
4860 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4861}
4862
2ff7e61e 4863static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4864{
4865 struct btrfs_transaction *t;
acce952b 4866
0b246afa 4867 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4868
0b246afa
JM
4869 spin_lock(&fs_info->trans_lock);
4870 while (!list_empty(&fs_info->trans_list)) {
4871 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4872 struct btrfs_transaction, list);
4873 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4874 refcount_inc(&t->use_count);
0b246afa 4875 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4876 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4877 btrfs_put_transaction(t);
0b246afa 4878 spin_lock(&fs_info->trans_lock);
724e2315
JB
4879 continue;
4880 }
0b246afa 4881 if (t == fs_info->running_transaction) {
724e2315 4882 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4883 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4884 /*
4885 * We wait for 0 num_writers since we don't hold a trans
4886 * handle open currently for this transaction.
4887 */
4888 wait_event(t->writer_wait,
4889 atomic_read(&t->num_writers) == 0);
4890 } else {
0b246afa 4891 spin_unlock(&fs_info->trans_lock);
724e2315 4892 }
2ff7e61e 4893 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4894
0b246afa
JM
4895 spin_lock(&fs_info->trans_lock);
4896 if (t == fs_info->running_transaction)
4897 fs_info->running_transaction = NULL;
acce952b 4898 list_del_init(&t->list);
0b246afa 4899 spin_unlock(&fs_info->trans_lock);
acce952b 4900
724e2315 4901 btrfs_put_transaction(t);
2e4e97ab 4902 trace_btrfs_transaction_commit(fs_info);
0b246afa 4903 spin_lock(&fs_info->trans_lock);
724e2315 4904 }
0b246afa
JM
4905 spin_unlock(&fs_info->trans_lock);
4906 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4907 btrfs_destroy_delayed_inodes(fs_info);
4908 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4909 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4910 btrfs_drop_all_logs(fs_info);
0b246afa 4911 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4912
4913 return 0;
4914}
ec7d6dfd 4915
453e4873 4916int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
4917{
4918 struct btrfs_path *path;
4919 int ret;
4920 struct extent_buffer *l;
4921 struct btrfs_key search_key;
4922 struct btrfs_key found_key;
4923 int slot;
4924
4925 path = btrfs_alloc_path();
4926 if (!path)
4927 return -ENOMEM;
4928
4929 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4930 search_key.type = -1;
4931 search_key.offset = (u64)-1;
4932 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4933 if (ret < 0)
4934 goto error;
4935 BUG_ON(ret == 0); /* Corruption */
4936 if (path->slots[0] > 0) {
4937 slot = path->slots[0] - 1;
4938 l = path->nodes[0];
4939 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
4940 root->free_objectid = max_t(u64, found_key.objectid + 1,
4941 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 4942 } else {
23125104 4943 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
4944 }
4945 ret = 0;
4946error:
4947 btrfs_free_path(path);
4948 return ret;
4949}
4950
543068a2 4951int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
4952{
4953 int ret;
4954 mutex_lock(&root->objectid_mutex);
4955
6b8fad57 4956 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
4957 btrfs_warn(root->fs_info,
4958 "the objectid of root %llu reaches its highest value",
4959 root->root_key.objectid);
4960 ret = -ENOSPC;
4961 goto out;
4962 }
4963
23125104 4964 *objectid = root->free_objectid++;
ec7d6dfd
NB
4965 ret = 0;
4966out:
4967 mutex_unlock(&root->objectid_mutex);
4968 return ret;
4969}