bfs: convert to new timestamp accessors
[linux-block.git] / fs / btrfs / delayed-inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
16cdcec7
MX
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
16cdcec7
MX
5 */
6
7#include <linux/slab.h>
c7f88c4e 8#include <linux/iversion.h>
ec8eb376
JB
9#include "ctree.h"
10#include "fs.h"
9b569ea0 11#include "messages.h"
602cbe91 12#include "misc.h"
16cdcec7
MX
13#include "delayed-inode.h"
14#include "disk-io.h"
15#include "transaction.h"
4f5427cc 16#include "qgroup.h"
1f95ec01 17#include "locking.h"
26c2c454 18#include "inode-item.h"
f1e5c618 19#include "space-info.h"
07e81dc9 20#include "accessors.h"
7c8ede16 21#include "file-item.h"
16cdcec7 22
de3cb945
CM
23#define BTRFS_DELAYED_WRITEBACK 512
24#define BTRFS_DELAYED_BACKGROUND 128
25#define BTRFS_DELAYED_BATCH 16
16cdcec7
MX
26
27static struct kmem_cache *delayed_node_cache;
28
29int __init btrfs_delayed_inode_init(void)
30{
837e1972 31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
16cdcec7
MX
32 sizeof(struct btrfs_delayed_node),
33 0,
fba4b697 34 SLAB_MEM_SPREAD,
16cdcec7
MX
35 NULL);
36 if (!delayed_node_cache)
37 return -ENOMEM;
38 return 0;
39}
40
e67c718b 41void __cold btrfs_delayed_inode_exit(void)
16cdcec7 42{
5598e900 43 kmem_cache_destroy(delayed_node_cache);
16cdcec7
MX
44}
45
46static inline void btrfs_init_delayed_node(
47 struct btrfs_delayed_node *delayed_node,
48 struct btrfs_root *root, u64 inode_id)
49{
50 delayed_node->root = root;
51 delayed_node->inode_id = inode_id;
6de5f18e 52 refcount_set(&delayed_node->refs, 0);
03a1d4c8
LB
53 delayed_node->ins_root = RB_ROOT_CACHED;
54 delayed_node->del_root = RB_ROOT_CACHED;
16cdcec7 55 mutex_init(&delayed_node->mutex);
16cdcec7
MX
56 INIT_LIST_HEAD(&delayed_node->n_list);
57 INIT_LIST_HEAD(&delayed_node->p_list);
16cdcec7
MX
58}
59
f85b7379
DS
60static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 struct btrfs_inode *btrfs_inode)
16cdcec7 62{
16cdcec7 63 struct btrfs_root *root = btrfs_inode->root;
4a0cc7ca 64 u64 ino = btrfs_ino(btrfs_inode);
2f7e33d4 65 struct btrfs_delayed_node *node;
16cdcec7 66
20c7bcec 67 node = READ_ONCE(btrfs_inode->delayed_node);
16cdcec7 68 if (node) {
6de5f18e 69 refcount_inc(&node->refs);
16cdcec7
MX
70 return node;
71 }
72
73 spin_lock(&root->inode_lock);
088aea3b 74 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
ec35e48b 75
16cdcec7
MX
76 if (node) {
77 if (btrfs_inode->delayed_node) {
6de5f18e 78 refcount_inc(&node->refs); /* can be accessed */
2f7e33d4 79 BUG_ON(btrfs_inode->delayed_node != node);
16cdcec7 80 spin_unlock(&root->inode_lock);
2f7e33d4 81 return node;
16cdcec7 82 }
ec35e48b
CM
83
84 /*
85 * It's possible that we're racing into the middle of removing
088aea3b 86 * this node from the radix tree. In this case, the refcount
ec35e48b 87 * was zero and it should never go back to one. Just return
088aea3b 88 * NULL like it was never in the radix at all; our release
ec35e48b
CM
89 * function is in the process of removing it.
90 *
91 * Some implementations of refcount_inc refuse to bump the
92 * refcount once it has hit zero. If we don't do this dance
93 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 * of actually bumping the refcount.
95 *
088aea3b 96 * If this node is properly in the radix, we want to bump the
ec35e48b
CM
97 * refcount twice, once for the inode and once for this get
98 * operation.
99 */
100 if (refcount_inc_not_zero(&node->refs)) {
101 refcount_inc(&node->refs);
102 btrfs_inode->delayed_node = node;
103 } else {
104 node = NULL;
105 }
106
16cdcec7
MX
107 spin_unlock(&root->inode_lock);
108 return node;
109 }
110 spin_unlock(&root->inode_lock);
111
2f7e33d4
MX
112 return NULL;
113}
114
79787eaa 115/* Will return either the node or PTR_ERR(-ENOMEM) */
2f7e33d4 116static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
f85b7379 117 struct btrfs_inode *btrfs_inode)
2f7e33d4
MX
118{
119 struct btrfs_delayed_node *node;
2f7e33d4 120 struct btrfs_root *root = btrfs_inode->root;
4a0cc7ca 121 u64 ino = btrfs_ino(btrfs_inode);
2f7e33d4
MX
122 int ret;
123
088aea3b
DS
124again:
125 node = btrfs_get_delayed_node(btrfs_inode);
126 if (node)
127 return node;
2f7e33d4 128
088aea3b
DS
129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 if (!node)
131 return ERR_PTR(-ENOMEM);
132 btrfs_init_delayed_node(node, root, ino);
16cdcec7 133
088aea3b
DS
134 /* cached in the btrfs inode and can be accessed */
135 refcount_set(&node->refs, 2);
16cdcec7 136
088aea3b
DS
137 ret = radix_tree_preload(GFP_NOFS);
138 if (ret) {
139 kmem_cache_free(delayed_node_cache, node);
140 return ERR_PTR(ret);
141 }
142
143 spin_lock(&root->inode_lock);
144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 if (ret == -EEXIST) {
146 spin_unlock(&root->inode_lock);
147 kmem_cache_free(delayed_node_cache, node);
148 radix_tree_preload_end();
149 goto again;
150 }
16cdcec7
MX
151 btrfs_inode->delayed_node = node;
152 spin_unlock(&root->inode_lock);
088aea3b 153 radix_tree_preload_end();
16cdcec7
MX
154
155 return node;
156}
157
158/*
159 * Call it when holding delayed_node->mutex
160 *
161 * If mod = 1, add this node into the prepared list.
162 */
163static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 struct btrfs_delayed_node *node,
165 int mod)
166{
167 spin_lock(&root->lock);
7cf35d91 168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
16cdcec7
MX
169 if (!list_empty(&node->p_list))
170 list_move_tail(&node->p_list, &root->prepare_list);
171 else if (mod)
172 list_add_tail(&node->p_list, &root->prepare_list);
173 } else {
174 list_add_tail(&node->n_list, &root->node_list);
175 list_add_tail(&node->p_list, &root->prepare_list);
6de5f18e 176 refcount_inc(&node->refs); /* inserted into list */
16cdcec7 177 root->nodes++;
7cf35d91 178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
16cdcec7
MX
179 }
180 spin_unlock(&root->lock);
181}
182
183/* Call it when holding delayed_node->mutex */
184static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 struct btrfs_delayed_node *node)
186{
187 spin_lock(&root->lock);
7cf35d91 188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
16cdcec7 189 root->nodes--;
6de5f18e 190 refcount_dec(&node->refs); /* not in the list */
16cdcec7
MX
191 list_del_init(&node->n_list);
192 if (!list_empty(&node->p_list))
193 list_del_init(&node->p_list);
7cf35d91 194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
16cdcec7
MX
195 }
196 spin_unlock(&root->lock);
197}
198
48a3b636 199static struct btrfs_delayed_node *btrfs_first_delayed_node(
16cdcec7
MX
200 struct btrfs_delayed_root *delayed_root)
201{
202 struct list_head *p;
203 struct btrfs_delayed_node *node = NULL;
204
205 spin_lock(&delayed_root->lock);
206 if (list_empty(&delayed_root->node_list))
207 goto out;
208
209 p = delayed_root->node_list.next;
210 node = list_entry(p, struct btrfs_delayed_node, n_list);
6de5f18e 211 refcount_inc(&node->refs);
16cdcec7
MX
212out:
213 spin_unlock(&delayed_root->lock);
214
215 return node;
216}
217
48a3b636 218static struct btrfs_delayed_node *btrfs_next_delayed_node(
16cdcec7
MX
219 struct btrfs_delayed_node *node)
220{
221 struct btrfs_delayed_root *delayed_root;
222 struct list_head *p;
223 struct btrfs_delayed_node *next = NULL;
224
225 delayed_root = node->root->fs_info->delayed_root;
226 spin_lock(&delayed_root->lock);
7cf35d91
MX
227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 /* not in the list */
16cdcec7
MX
229 if (list_empty(&delayed_root->node_list))
230 goto out;
231 p = delayed_root->node_list.next;
232 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 goto out;
234 else
235 p = node->n_list.next;
236
237 next = list_entry(p, struct btrfs_delayed_node, n_list);
6de5f18e 238 refcount_inc(&next->refs);
16cdcec7
MX
239out:
240 spin_unlock(&delayed_root->lock);
241
242 return next;
243}
244
245static void __btrfs_release_delayed_node(
246 struct btrfs_delayed_node *delayed_node,
247 int mod)
248{
249 struct btrfs_delayed_root *delayed_root;
250
251 if (!delayed_node)
252 return;
253
254 delayed_root = delayed_node->root->fs_info->delayed_root;
255
256 mutex_lock(&delayed_node->mutex);
257 if (delayed_node->count)
258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 else
260 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 mutex_unlock(&delayed_node->mutex);
262
6de5f18e 263 if (refcount_dec_and_test(&delayed_node->refs)) {
16cdcec7 264 struct btrfs_root *root = delayed_node->root;
ec35e48b 265
16cdcec7 266 spin_lock(&root->inode_lock);
ec35e48b
CM
267 /*
268 * Once our refcount goes to zero, nobody is allowed to bump it
269 * back up. We can delete it now.
270 */
271 ASSERT(refcount_read(&delayed_node->refs) == 0);
088aea3b
DS
272 radix_tree_delete(&root->delayed_nodes_tree,
273 delayed_node->inode_id);
16cdcec7 274 spin_unlock(&root->inode_lock);
ec35e48b 275 kmem_cache_free(delayed_node_cache, delayed_node);
16cdcec7
MX
276 }
277}
278
279static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280{
281 __btrfs_release_delayed_node(node, 0);
282}
283
48a3b636 284static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
16cdcec7
MX
285 struct btrfs_delayed_root *delayed_root)
286{
287 struct list_head *p;
288 struct btrfs_delayed_node *node = NULL;
289
290 spin_lock(&delayed_root->lock);
291 if (list_empty(&delayed_root->prepare_list))
292 goto out;
293
294 p = delayed_root->prepare_list.next;
295 list_del_init(p);
296 node = list_entry(p, struct btrfs_delayed_node, p_list);
6de5f18e 297 refcount_inc(&node->refs);
16cdcec7
MX
298out:
299 spin_unlock(&delayed_root->lock);
300
301 return node;
302}
303
304static inline void btrfs_release_prepared_delayed_node(
305 struct btrfs_delayed_node *node)
306{
307 __btrfs_release_delayed_node(node, 1);
308}
309
4c469798
FM
310static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
311 struct btrfs_delayed_node *node,
312 enum btrfs_delayed_item_type type)
16cdcec7
MX
313{
314 struct btrfs_delayed_item *item;
4c469798 315
16cdcec7
MX
316 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
317 if (item) {
318 item->data_len = data_len;
4c469798 319 item->type = type;
16cdcec7 320 item->bytes_reserved = 0;
96d89923
FM
321 item->delayed_node = node;
322 RB_CLEAR_NODE(&item->rb_node);
30b80f3c
FM
323 INIT_LIST_HEAD(&item->log_list);
324 item->logged = false;
089e77e1 325 refcount_set(&item->refs, 1);
16cdcec7
MX
326 }
327 return item;
328}
329
330/*
331 * __btrfs_lookup_delayed_item - look up the delayed item by key
332 * @delayed_node: pointer to the delayed node
96d89923 333 * @index: the dir index value to lookup (offset of a dir index key)
16cdcec7
MX
334 *
335 * Note: if we don't find the right item, we will return the prev item and
336 * the next item.
337 */
338static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 struct rb_root *root,
4cbf37f5 340 u64 index)
16cdcec7 341{
4cbf37f5 342 struct rb_node *node = root->rb_node;
16cdcec7 343 struct btrfs_delayed_item *delayed_item = NULL;
16cdcec7
MX
344
345 while (node) {
346 delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 rb_node);
96d89923 348 if (delayed_item->index < index)
16cdcec7 349 node = node->rb_right;
96d89923 350 else if (delayed_item->index > index)
16cdcec7
MX
351 node = node->rb_left;
352 else
353 return delayed_item;
354 }
355
16cdcec7
MX
356 return NULL;
357}
358
16cdcec7 359static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
c9d02ab4 360 struct btrfs_delayed_item *ins)
16cdcec7
MX
361{
362 struct rb_node **p, *node;
363 struct rb_node *parent_node = NULL;
03a1d4c8 364 struct rb_root_cached *root;
16cdcec7 365 struct btrfs_delayed_item *item;
03a1d4c8 366 bool leftmost = true;
16cdcec7 367
4c469798 368 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
16cdcec7 369 root = &delayed_node->ins_root;
16cdcec7 370 else
4c469798
FM
371 root = &delayed_node->del_root;
372
03a1d4c8 373 p = &root->rb_root.rb_node;
16cdcec7
MX
374 node = &ins->rb_node;
375
376 while (*p) {
377 parent_node = *p;
378 item = rb_entry(parent_node, struct btrfs_delayed_item,
379 rb_node);
380
96d89923 381 if (item->index < ins->index) {
16cdcec7 382 p = &(*p)->rb_right;
03a1d4c8 383 leftmost = false;
96d89923 384 } else if (item->index > ins->index) {
16cdcec7 385 p = &(*p)->rb_left;
03a1d4c8 386 } else {
16cdcec7 387 return -EEXIST;
03a1d4c8 388 }
16cdcec7
MX
389 }
390
391 rb_link_node(node, parent_node, p);
03a1d4c8 392 rb_insert_color_cached(node, root, leftmost);
a176affe 393
4c469798 394 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
96d89923
FM
395 ins->index >= delayed_node->index_cnt)
396 delayed_node->index_cnt = ins->index + 1;
16cdcec7
MX
397
398 delayed_node->count++;
399 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
400 return 0;
401}
402
de3cb945
CM
403static void finish_one_item(struct btrfs_delayed_root *delayed_root)
404{
405 int seq = atomic_inc_return(&delayed_root->items_seq);
ee863954 406
093258e6 407 /* atomic_dec_return implies a barrier */
de3cb945 408 if ((atomic_dec_return(&delayed_root->items) <
093258e6
DS
409 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
410 cond_wake_up_nomb(&delayed_root->wait);
de3cb945
CM
411}
412
16cdcec7
MX
413static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
414{
a57c2d4e 415 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
03a1d4c8 416 struct rb_root_cached *root;
16cdcec7
MX
417 struct btrfs_delayed_root *delayed_root;
418
96d89923
FM
419 /* Not inserted, ignore it. */
420 if (RB_EMPTY_NODE(&delayed_item->rb_node))
933c22a7 421 return;
96d89923 422
a57c2d4e
FM
423 /* If it's in a rbtree, then we need to have delayed node locked. */
424 lockdep_assert_held(&delayed_node->mutex);
425
426 delayed_root = delayed_node->root->fs_info->delayed_root;
16cdcec7
MX
427
428 BUG_ON(!delayed_root);
16cdcec7 429
4c469798 430 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
a57c2d4e 431 root = &delayed_node->ins_root;
16cdcec7 432 else
a57c2d4e 433 root = &delayed_node->del_root;
16cdcec7 434
03a1d4c8 435 rb_erase_cached(&delayed_item->rb_node, root);
96d89923 436 RB_CLEAR_NODE(&delayed_item->rb_node);
a57c2d4e 437 delayed_node->count--;
de3cb945
CM
438
439 finish_one_item(delayed_root);
16cdcec7
MX
440}
441
442static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
443{
444 if (item) {
445 __btrfs_remove_delayed_item(item);
089e77e1 446 if (refcount_dec_and_test(&item->refs))
16cdcec7
MX
447 kfree(item);
448 }
449}
450
48a3b636 451static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
16cdcec7
MX
452 struct btrfs_delayed_node *delayed_node)
453{
454 struct rb_node *p;
455 struct btrfs_delayed_item *item = NULL;
456
03a1d4c8 457 p = rb_first_cached(&delayed_node->ins_root);
16cdcec7
MX
458 if (p)
459 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
460
461 return item;
462}
463
48a3b636 464static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
16cdcec7
MX
465 struct btrfs_delayed_node *delayed_node)
466{
467 struct rb_node *p;
468 struct btrfs_delayed_item *item = NULL;
469
03a1d4c8 470 p = rb_first_cached(&delayed_node->del_root);
16cdcec7
MX
471 if (p)
472 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
473
474 return item;
475}
476
48a3b636 477static struct btrfs_delayed_item *__btrfs_next_delayed_item(
16cdcec7
MX
478 struct btrfs_delayed_item *item)
479{
480 struct rb_node *p;
481 struct btrfs_delayed_item *next = NULL;
482
483 p = rb_next(&item->rb_node);
484 if (p)
485 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
486
487 return next;
488}
489
16cdcec7 490static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
16cdcec7
MX
491 struct btrfs_delayed_item *item)
492{
493 struct btrfs_block_rsv *src_rsv;
494 struct btrfs_block_rsv *dst_rsv;
df492881 495 struct btrfs_fs_info *fs_info = trans->fs_info;
16cdcec7
MX
496 u64 num_bytes;
497 int ret;
498
499 if (!trans->bytes_reserved)
500 return 0;
501
502 src_rsv = trans->block_rsv;
0b246afa 503 dst_rsv = &fs_info->delayed_block_rsv;
16cdcec7 504
2bd36e7b 505 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
f218ea6c
QW
506
507 /*
508 * Here we migrate space rsv from transaction rsv, since have already
509 * reserved space when starting a transaction. So no need to reserve
510 * qgroup space here.
511 */
3a584174 512 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
8c2a3ca2 513 if (!ret) {
0b246afa 514 trace_btrfs_space_reservation(fs_info, "delayed_item",
96d89923 515 item->delayed_node->inode_id,
8c2a3ca2 516 num_bytes, 1);
763748b2
FM
517 /*
518 * For insertions we track reserved metadata space by accounting
519 * for the number of leaves that will be used, based on the delayed
520 * node's index_items_size field.
521 */
4c469798 522 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
763748b2 523 item->bytes_reserved = num_bytes;
8c2a3ca2 524 }
16cdcec7
MX
525
526 return ret;
527}
528
4f5427cc 529static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
16cdcec7
MX
530 struct btrfs_delayed_item *item)
531{
19fd2949 532 struct btrfs_block_rsv *rsv;
4f5427cc 533 struct btrfs_fs_info *fs_info = root->fs_info;
19fd2949 534
16cdcec7
MX
535 if (!item->bytes_reserved)
536 return;
537
0b246afa 538 rsv = &fs_info->delayed_block_rsv;
f218ea6c
QW
539 /*
540 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
541 * to release/reserve qgroup space.
542 */
0b246afa 543 trace_btrfs_space_reservation(fs_info, "delayed_item",
96d89923
FM
544 item->delayed_node->inode_id,
545 item->bytes_reserved, 0);
63f018be 546 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
16cdcec7
MX
547}
548
763748b2
FM
549static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
550 unsigned int num_leaves)
551{
552 struct btrfs_fs_info *fs_info = node->root->fs_info;
553 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
554
555 /* There are no space reservations during log replay, bail out. */
556 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
557 return;
558
559 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
560 bytes, 0);
561 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
562}
563
16cdcec7
MX
564static int btrfs_delayed_inode_reserve_metadata(
565 struct btrfs_trans_handle *trans,
566 struct btrfs_root *root,
567 struct btrfs_delayed_node *node)
568{
0b246afa 569 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
570 struct btrfs_block_rsv *src_rsv;
571 struct btrfs_block_rsv *dst_rsv;
572 u64 num_bytes;
573 int ret;
574
16cdcec7 575 src_rsv = trans->block_rsv;
0b246afa 576 dst_rsv = &fs_info->delayed_block_rsv;
16cdcec7 577
bcacf5f3 578 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
c06a0e12
JB
579
580 /*
581 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
582 * which doesn't reserve space for speed. This is a problem since we
583 * still need to reserve space for this update, so try to reserve the
584 * space.
585 *
586 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
69fe2d75 587 * we always reserve enough to update the inode item.
c06a0e12 588 */
e755d9ab 589 if (!src_rsv || (!trans->bytes_reserved &&
66d8f3dd 590 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
4d14c5cd
NB
591 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
592 BTRFS_QGROUP_RSV_META_PREALLOC, true);
f218ea6c
QW
593 if (ret < 0)
594 return ret;
9270501c 595 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
08e007d2 596 BTRFS_RESERVE_NO_FLUSH);
98686ffc
NB
597 /* NO_FLUSH could only fail with -ENOSPC */
598 ASSERT(ret == 0 || ret == -ENOSPC);
599 if (ret)
0f9c03d8 600 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
98686ffc
NB
601 } else {
602 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
c06a0e12
JB
603 }
604
8c2a3ca2 605 if (!ret) {
0b246afa 606 trace_btrfs_space_reservation(fs_info, "delayed_inode",
8e3c9d3c 607 node->inode_id, num_bytes, 1);
16cdcec7 608 node->bytes_reserved = num_bytes;
8c2a3ca2 609 }
16cdcec7
MX
610
611 return ret;
612}
613
2ff7e61e 614static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
4f5427cc
QW
615 struct btrfs_delayed_node *node,
616 bool qgroup_free)
16cdcec7
MX
617{
618 struct btrfs_block_rsv *rsv;
619
620 if (!node->bytes_reserved)
621 return;
622
0b246afa
JM
623 rsv = &fs_info->delayed_block_rsv;
624 trace_btrfs_space_reservation(fs_info, "delayed_inode",
8c2a3ca2 625 node->inode_id, node->bytes_reserved, 0);
63f018be 626 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
4f5427cc
QW
627 if (qgroup_free)
628 btrfs_qgroup_free_meta_prealloc(node->root,
629 node->bytes_reserved);
630 else
631 btrfs_qgroup_convert_reserved_meta(node->root,
632 node->bytes_reserved);
16cdcec7
MX
633 node->bytes_reserved = 0;
634}
635
636/*
06ac264f
FM
637 * Insert a single delayed item or a batch of delayed items, as many as possible
638 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
639 * in the rbtree, and if there's a gap between two consecutive dir index items,
640 * then it means at some point we had delayed dir indexes to add but they got
641 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
642 * into the subvolume tree. Dir index keys also have their offsets coming from a
643 * monotonically increasing counter, so we can't get new keys with an offset that
644 * fits within a gap between delayed dir index items.
16cdcec7 645 */
506650dc
FM
646static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
647 struct btrfs_root *root,
648 struct btrfs_path *path,
649 struct btrfs_delayed_item *first_item)
16cdcec7 650{
763748b2
FM
651 struct btrfs_fs_info *fs_info = root->fs_info;
652 struct btrfs_delayed_node *node = first_item->delayed_node;
b7ef5f3a 653 LIST_HEAD(item_list);
506650dc
FM
654 struct btrfs_delayed_item *curr;
655 struct btrfs_delayed_item *next;
763748b2 656 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
b7ef5f3a 657 struct btrfs_item_batch batch;
96d89923 658 struct btrfs_key first_key;
4c469798 659 const u32 first_data_size = first_item->data_len;
506650dc 660 int total_size;
506650dc 661 char *ins_data = NULL;
506650dc 662 int ret;
71b68e9e 663 bool continuous_keys_only = false;
16cdcec7 664
763748b2
FM
665 lockdep_assert_held(&node->mutex);
666
71b68e9e
JB
667 /*
668 * During normal operation the delayed index offset is continuously
669 * increasing, so we can batch insert all items as there will not be any
670 * overlapping keys in the tree.
671 *
672 * The exception to this is log replay, where we may have interleaved
673 * offsets in the tree, so our batch needs to be continuous keys only in
674 * order to ensure we do not end up with out of order items in our leaf.
675 */
676 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
677 continuous_keys_only = true;
678
763748b2
FM
679 /*
680 * For delayed items to insert, we track reserved metadata bytes based
681 * on the number of leaves that we will use.
682 * See btrfs_insert_delayed_dir_index() and
683 * btrfs_delayed_item_reserve_metadata()).
684 */
685 ASSERT(first_item->bytes_reserved == 0);
686
b7ef5f3a 687 list_add_tail(&first_item->tree_list, &item_list);
4c469798 688 batch.total_data_size = first_data_size;
b7ef5f3a 689 batch.nr = 1;
4c469798 690 total_size = first_data_size + sizeof(struct btrfs_item);
506650dc 691 curr = first_item;
16cdcec7 692
506650dc
FM
693 while (true) {
694 int next_size;
16cdcec7 695
16cdcec7 696 next = __btrfs_next_delayed_item(curr);
06ac264f 697 if (!next)
16cdcec7
MX
698 break;
699
71b68e9e
JB
700 /*
701 * We cannot allow gaps in the key space if we're doing log
702 * replay.
703 */
96d89923 704 if (continuous_keys_only && (next->index != curr->index + 1))
71b68e9e
JB
705 break;
706
763748b2
FM
707 ASSERT(next->bytes_reserved == 0);
708
506650dc
FM
709 next_size = next->data_len + sizeof(struct btrfs_item);
710 if (total_size + next_size > max_size)
16cdcec7 711 break;
16cdcec7 712
b7ef5f3a
FM
713 list_add_tail(&next->tree_list, &item_list);
714 batch.nr++;
506650dc 715 total_size += next_size;
b7ef5f3a 716 batch.total_data_size += next->data_len;
506650dc 717 curr = next;
16cdcec7
MX
718 }
719
b7ef5f3a 720 if (batch.nr == 1) {
96d89923
FM
721 first_key.objectid = node->inode_id;
722 first_key.type = BTRFS_DIR_INDEX_KEY;
723 first_key.offset = first_item->index;
724 batch.keys = &first_key;
4c469798 725 batch.data_sizes = &first_data_size;
506650dc 726 } else {
b7ef5f3a
FM
727 struct btrfs_key *ins_keys;
728 u32 *ins_sizes;
506650dc 729 int i = 0;
16cdcec7 730
b7ef5f3a
FM
731 ins_data = kmalloc(batch.nr * sizeof(u32) +
732 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
506650dc
FM
733 if (!ins_data) {
734 ret = -ENOMEM;
735 goto out;
736 }
737 ins_sizes = (u32 *)ins_data;
b7ef5f3a
FM
738 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
739 batch.keys = ins_keys;
740 batch.data_sizes = ins_sizes;
741 list_for_each_entry(curr, &item_list, tree_list) {
96d89923
FM
742 ins_keys[i].objectid = node->inode_id;
743 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
744 ins_keys[i].offset = curr->index;
506650dc
FM
745 ins_sizes[i] = curr->data_len;
746 i++;
747 }
16cdcec7
MX
748 }
749
b7ef5f3a 750 ret = btrfs_insert_empty_items(trans, root, path, &batch);
506650dc
FM
751 if (ret)
752 goto out;
16cdcec7 753
b7ef5f3a 754 list_for_each_entry(curr, &item_list, tree_list) {
506650dc 755 char *data_ptr;
16cdcec7 756
506650dc
FM
757 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
758 write_extent_buffer(path->nodes[0], &curr->data,
759 (unsigned long)data_ptr, curr->data_len);
760 path->slots[0]++;
761 }
16cdcec7 762
506650dc
FM
763 /*
764 * Now release our path before releasing the delayed items and their
765 * metadata reservations, so that we don't block other tasks for more
766 * time than needed.
767 */
768 btrfs_release_path(path);
16cdcec7 769
763748b2
FM
770 ASSERT(node->index_item_leaves > 0);
771
71b68e9e
JB
772 /*
773 * For normal operations we will batch an entire leaf's worth of delayed
774 * items, so if there are more items to process we can decrement
775 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
776 *
777 * However for log replay we may not have inserted an entire leaf's
778 * worth of items, we may have not had continuous items, so decrementing
779 * here would mess up the index_item_leaves accounting. For this case
780 * only clean up the accounting when there are no items left.
781 */
782 if (next && !continuous_keys_only) {
763748b2
FM
783 /*
784 * We inserted one batch of items into a leaf a there are more
785 * items to flush in a future batch, now release one unit of
786 * metadata space from the delayed block reserve, corresponding
787 * the leaf we just flushed to.
788 */
789 btrfs_delayed_item_release_leaves(node, 1);
790 node->index_item_leaves--;
71b68e9e 791 } else if (!next) {
763748b2
FM
792 /*
793 * There are no more items to insert. We can have a number of
794 * reserved leaves > 1 here - this happens when many dir index
795 * items are added and then removed before they are flushed (file
796 * names with a very short life, never span a transaction). So
797 * release all remaining leaves.
798 */
799 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
800 node->index_item_leaves = 0;
801 }
802
b7ef5f3a 803 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
16cdcec7
MX
804 list_del(&curr->tree_list);
805 btrfs_release_delayed_item(curr);
806 }
16cdcec7 807out:
506650dc 808 kfree(ins_data);
16cdcec7
MX
809 return ret;
810}
811
16cdcec7
MX
812static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
813 struct btrfs_path *path,
814 struct btrfs_root *root,
815 struct btrfs_delayed_node *node)
816{
16cdcec7
MX
817 int ret = 0;
818
506650dc
FM
819 while (ret == 0) {
820 struct btrfs_delayed_item *curr;
16cdcec7 821
506650dc
FM
822 mutex_lock(&node->mutex);
823 curr = __btrfs_first_delayed_insertion_item(node);
824 if (!curr) {
825 mutex_unlock(&node->mutex);
826 break;
827 }
828 ret = btrfs_insert_delayed_item(trans, root, path, curr);
829 mutex_unlock(&node->mutex);
16cdcec7 830 }
16cdcec7 831
16cdcec7
MX
832 return ret;
833}
834
835static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
836 struct btrfs_root *root,
837 struct btrfs_path *path,
838 struct btrfs_delayed_item *item)
839{
96d89923 840 const u64 ino = item->delayed_node->inode_id;
1f4f639f 841 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7 842 struct btrfs_delayed_item *curr, *next;
659192e6 843 struct extent_buffer *leaf = path->nodes[0];
4bd02d90
FM
844 LIST_HEAD(batch_list);
845 int nitems, slot, last_slot;
846 int ret;
1f4f639f 847 u64 total_reserved_size = item->bytes_reserved;
16cdcec7 848
659192e6 849 ASSERT(leaf != NULL);
16cdcec7 850
4bd02d90
FM
851 slot = path->slots[0];
852 last_slot = btrfs_header_nritems(leaf) - 1;
659192e6
FM
853 /*
854 * Our caller always gives us a path pointing to an existing item, so
855 * this can not happen.
856 */
4bd02d90
FM
857 ASSERT(slot <= last_slot);
858 if (WARN_ON(slot > last_slot))
659192e6 859 return -ENOENT;
16cdcec7 860
4bd02d90
FM
861 nitems = 1;
862 curr = item;
863 list_add_tail(&curr->tree_list, &batch_list);
864
16cdcec7 865 /*
4bd02d90
FM
866 * Keep checking if the next delayed item matches the next item in the
867 * leaf - if so, we can add it to the batch of items to delete from the
868 * leaf.
16cdcec7 869 */
4bd02d90
FM
870 while (slot < last_slot) {
871 struct btrfs_key key;
16cdcec7 872
16cdcec7
MX
873 next = __btrfs_next_delayed_item(curr);
874 if (!next)
875 break;
876
4bd02d90
FM
877 slot++;
878 btrfs_item_key_to_cpu(leaf, &key, slot);
96d89923
FM
879 if (key.objectid != ino ||
880 key.type != BTRFS_DIR_INDEX_KEY ||
881 key.offset != next->index)
16cdcec7 882 break;
4bd02d90
FM
883 nitems++;
884 curr = next;
885 list_add_tail(&curr->tree_list, &batch_list);
1f4f639f 886 total_reserved_size += curr->bytes_reserved;
16cdcec7
MX
887 }
888
16cdcec7
MX
889 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
890 if (ret)
4bd02d90 891 return ret;
16cdcec7 892
1f4f639f
NB
893 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
894 if (total_reserved_size > 0) {
895 /*
896 * Check btrfs_delayed_item_reserve_metadata() to see why we
897 * don't need to release/reserve qgroup space.
898 */
96d89923
FM
899 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
900 total_reserved_size, 0);
1f4f639f
NB
901 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
902 total_reserved_size, NULL);
903 }
904
4bd02d90 905 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
16cdcec7
MX
906 list_del(&curr->tree_list);
907 btrfs_release_delayed_item(curr);
908 }
909
4bd02d90 910 return 0;
16cdcec7
MX
911}
912
913static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
914 struct btrfs_path *path,
915 struct btrfs_root *root,
916 struct btrfs_delayed_node *node)
917{
96d89923 918 struct btrfs_key key;
16cdcec7
MX
919 int ret = 0;
920
96d89923
FM
921 key.objectid = node->inode_id;
922 key.type = BTRFS_DIR_INDEX_KEY;
923
36baa2c7
FM
924 while (ret == 0) {
925 struct btrfs_delayed_item *item;
926
927 mutex_lock(&node->mutex);
928 item = __btrfs_first_delayed_deletion_item(node);
929 if (!item) {
930 mutex_unlock(&node->mutex);
931 break;
932 }
933
96d89923
FM
934 key.offset = item->index;
935 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
36baa2c7
FM
936 if (ret > 0) {
937 /*
938 * There's no matching item in the leaf. This means we
939 * have already deleted this item in a past run of the
940 * delayed items. We ignore errors when running delayed
941 * items from an async context, through a work queue job
942 * running btrfs_async_run_delayed_root(), and don't
943 * release delayed items that failed to complete. This
944 * is because we will retry later, and at transaction
945 * commit time we always run delayed items and will
946 * then deal with errors if they fail to run again.
947 *
948 * So just release delayed items for which we can't find
949 * an item in the tree, and move to the next item.
950 */
951 btrfs_release_path(path);
952 btrfs_release_delayed_item(item);
953 ret = 0;
954 } else if (ret == 0) {
955 ret = btrfs_batch_delete_items(trans, root, path, item);
956 btrfs_release_path(path);
957 }
16cdcec7 958
16cdcec7 959 /*
36baa2c7
FM
960 * We unlock and relock on each iteration, this is to prevent
961 * blocking other tasks for too long while we are being run from
962 * the async context (work queue job). Those tasks are typically
963 * running system calls like creat/mkdir/rename/unlink/etc which
964 * need to add delayed items to this delayed node.
16cdcec7 965 */
36baa2c7 966 mutex_unlock(&node->mutex);
16cdcec7
MX
967 }
968
16cdcec7
MX
969 return ret;
970}
971
972static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
973{
974 struct btrfs_delayed_root *delayed_root;
975
7cf35d91
MX
976 if (delayed_node &&
977 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
16cdcec7 978 BUG_ON(!delayed_node->root);
7cf35d91 979 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
16cdcec7
MX
980 delayed_node->count--;
981
982 delayed_root = delayed_node->root->fs_info->delayed_root;
de3cb945 983 finish_one_item(delayed_root);
16cdcec7
MX
984 }
985}
986
67de1176
MX
987static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
988{
67de1176 989
a4cb90dc
JB
990 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
991 struct btrfs_delayed_root *delayed_root;
67de1176 992
a4cb90dc
JB
993 ASSERT(delayed_node->root);
994 delayed_node->count--;
995
996 delayed_root = delayed_node->root->fs_info->delayed_root;
997 finish_one_item(delayed_root);
998 }
67de1176
MX
999}
1000
0e8c36a9
MX
1001static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1002 struct btrfs_root *root,
1003 struct btrfs_path *path,
1004 struct btrfs_delayed_node *node)
16cdcec7 1005{
2ff7e61e 1006 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
1007 struct btrfs_key key;
1008 struct btrfs_inode_item *inode_item;
1009 struct extent_buffer *leaf;
67de1176 1010 int mod;
16cdcec7
MX
1011 int ret;
1012
16cdcec7 1013 key.objectid = node->inode_id;
962a298f 1014 key.type = BTRFS_INODE_ITEM_KEY;
16cdcec7 1015 key.offset = 0;
0e8c36a9 1016
67de1176
MX
1017 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1018 mod = -1;
1019 else
1020 mod = 1;
1021
1022 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
bb385bed
JB
1023 if (ret > 0)
1024 ret = -ENOENT;
1025 if (ret < 0)
1026 goto out;
16cdcec7 1027
16cdcec7
MX
1028 leaf = path->nodes[0];
1029 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1030 struct btrfs_inode_item);
1031 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1032 sizeof(struct btrfs_inode_item));
1033 btrfs_mark_buffer_dirty(leaf);
16cdcec7 1034
67de1176 1035 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
a4cb90dc 1036 goto out;
67de1176
MX
1037
1038 path->slots[0]++;
1039 if (path->slots[0] >= btrfs_header_nritems(leaf))
1040 goto search;
1041again:
1042 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1043 if (key.objectid != node->inode_id)
1044 goto out;
1045
1046 if (key.type != BTRFS_INODE_REF_KEY &&
1047 key.type != BTRFS_INODE_EXTREF_KEY)
1048 goto out;
1049
1050 /*
1051 * Delayed iref deletion is for the inode who has only one link,
1052 * so there is only one iref. The case that several irefs are
1053 * in the same item doesn't exist.
1054 */
c06016a0 1055 ret = btrfs_del_item(trans, root, path);
67de1176
MX
1056out:
1057 btrfs_release_delayed_iref(node);
67de1176
MX
1058 btrfs_release_path(path);
1059err_out:
4f5427cc 1060 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
16cdcec7 1061 btrfs_release_delayed_inode(node);
16cdcec7 1062
04587ad9
JB
1063 /*
1064 * If we fail to update the delayed inode we need to abort the
1065 * transaction, because we could leave the inode with the improper
1066 * counts behind.
1067 */
1068 if (ret && ret != -ENOENT)
1069 btrfs_abort_transaction(trans, ret);
1070
67de1176
MX
1071 return ret;
1072
1073search:
1074 btrfs_release_path(path);
1075
962a298f 1076 key.type = BTRFS_INODE_EXTREF_KEY;
67de1176 1077 key.offset = -1;
351cbf6e 1078
67de1176
MX
1079 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1080 if (ret < 0)
1081 goto err_out;
1082 ASSERT(ret);
1083
1084 ret = 0;
1085 leaf = path->nodes[0];
1086 path->slots[0]--;
1087 goto again;
16cdcec7
MX
1088}
1089
0e8c36a9
MX
1090static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1091 struct btrfs_root *root,
1092 struct btrfs_path *path,
1093 struct btrfs_delayed_node *node)
1094{
1095 int ret;
1096
1097 mutex_lock(&node->mutex);
7cf35d91 1098 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
0e8c36a9
MX
1099 mutex_unlock(&node->mutex);
1100 return 0;
1101 }
1102
1103 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1104 mutex_unlock(&node->mutex);
1105 return ret;
1106}
1107
4ea41ce0
MX
1108static inline int
1109__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1110 struct btrfs_path *path,
1111 struct btrfs_delayed_node *node)
1112{
1113 int ret;
1114
1115 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1116 if (ret)
1117 return ret;
1118
1119 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1120 if (ret)
1121 return ret;
1122
1123 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1124 return ret;
1125}
1126
79787eaa
JM
1127/*
1128 * Called when committing the transaction.
1129 * Returns 0 on success.
1130 * Returns < 0 on error and returns with an aborted transaction with any
1131 * outstanding delayed items cleaned up.
1132 */
b84acab3 1133static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
16cdcec7 1134{
b84acab3 1135 struct btrfs_fs_info *fs_info = trans->fs_info;
16cdcec7
MX
1136 struct btrfs_delayed_root *delayed_root;
1137 struct btrfs_delayed_node *curr_node, *prev_node;
1138 struct btrfs_path *path;
19fd2949 1139 struct btrfs_block_rsv *block_rsv;
16cdcec7 1140 int ret = 0;
96c3f433 1141 bool count = (nr > 0);
16cdcec7 1142
bf31f87f 1143 if (TRANS_ABORTED(trans))
79787eaa
JM
1144 return -EIO;
1145
16cdcec7
MX
1146 path = btrfs_alloc_path();
1147 if (!path)
1148 return -ENOMEM;
16cdcec7 1149
19fd2949 1150 block_rsv = trans->block_rsv;
0b246afa 1151 trans->block_rsv = &fs_info->delayed_block_rsv;
19fd2949 1152
ccdf9b30 1153 delayed_root = fs_info->delayed_root;
16cdcec7
MX
1154
1155 curr_node = btrfs_first_delayed_node(delayed_root);
a4559e6f 1156 while (curr_node && (!count || nr--)) {
4ea41ce0
MX
1157 ret = __btrfs_commit_inode_delayed_items(trans, path,
1158 curr_node);
16cdcec7 1159 if (ret) {
66642832 1160 btrfs_abort_transaction(trans, ret);
16cdcec7
MX
1161 break;
1162 }
1163
1164 prev_node = curr_node;
1165 curr_node = btrfs_next_delayed_node(curr_node);
e110f891
FM
1166 /*
1167 * See the comment below about releasing path before releasing
1168 * node. If the commit of delayed items was successful the path
1169 * should always be released, but in case of an error, it may
1170 * point to locked extent buffers (a leaf at the very least).
1171 */
1172 ASSERT(path->nodes[0] == NULL);
16cdcec7
MX
1173 btrfs_release_delayed_node(prev_node);
1174 }
1175
e110f891
FM
1176 /*
1177 * Release the path to avoid a potential deadlock and lockdep splat when
1178 * releasing the delayed node, as that requires taking the delayed node's
1179 * mutex. If another task starts running delayed items before we take
1180 * the mutex, it will first lock the mutex and then it may try to lock
1181 * the same btree path (leaf).
1182 */
1183 btrfs_free_path(path);
1184
96c3f433
JB
1185 if (curr_node)
1186 btrfs_release_delayed_node(curr_node);
19fd2949 1187 trans->block_rsv = block_rsv;
79787eaa 1188
16cdcec7
MX
1189 return ret;
1190}
1191
e5c304e6 1192int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
96c3f433 1193{
b84acab3 1194 return __btrfs_run_delayed_items(trans, -1);
96c3f433
JB
1195}
1196
e5c304e6 1197int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
96c3f433 1198{
b84acab3 1199 return __btrfs_run_delayed_items(trans, nr);
96c3f433
JB
1200}
1201
16cdcec7 1202int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
5f4b32e9 1203 struct btrfs_inode *inode)
16cdcec7 1204{
5f4b32e9 1205 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
4ea41ce0
MX
1206 struct btrfs_path *path;
1207 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1208 int ret;
1209
1210 if (!delayed_node)
1211 return 0;
1212
1213 mutex_lock(&delayed_node->mutex);
1214 if (!delayed_node->count) {
1215 mutex_unlock(&delayed_node->mutex);
1216 btrfs_release_delayed_node(delayed_node);
1217 return 0;
1218 }
1219 mutex_unlock(&delayed_node->mutex);
1220
4ea41ce0 1221 path = btrfs_alloc_path();
3c77bd94
FDBM
1222 if (!path) {
1223 btrfs_release_delayed_node(delayed_node);
4ea41ce0 1224 return -ENOMEM;
3c77bd94 1225 }
4ea41ce0
MX
1226
1227 block_rsv = trans->block_rsv;
1228 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1229
1230 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1231
16cdcec7 1232 btrfs_release_delayed_node(delayed_node);
4ea41ce0
MX
1233 btrfs_free_path(path);
1234 trans->block_rsv = block_rsv;
1235
16cdcec7
MX
1236 return ret;
1237}
1238
aa79021f 1239int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
0e8c36a9 1240{
3ffbd68c 1241 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0e8c36a9 1242 struct btrfs_trans_handle *trans;
aa79021f 1243 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
0e8c36a9
MX
1244 struct btrfs_path *path;
1245 struct btrfs_block_rsv *block_rsv;
1246 int ret;
1247
1248 if (!delayed_node)
1249 return 0;
1250
1251 mutex_lock(&delayed_node->mutex);
7cf35d91 1252 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
0e8c36a9
MX
1253 mutex_unlock(&delayed_node->mutex);
1254 btrfs_release_delayed_node(delayed_node);
1255 return 0;
1256 }
1257 mutex_unlock(&delayed_node->mutex);
1258
1259 trans = btrfs_join_transaction(delayed_node->root);
1260 if (IS_ERR(trans)) {
1261 ret = PTR_ERR(trans);
1262 goto out;
1263 }
1264
1265 path = btrfs_alloc_path();
1266 if (!path) {
1267 ret = -ENOMEM;
1268 goto trans_out;
1269 }
0e8c36a9
MX
1270
1271 block_rsv = trans->block_rsv;
2ff7e61e 1272 trans->block_rsv = &fs_info->delayed_block_rsv;
0e8c36a9
MX
1273
1274 mutex_lock(&delayed_node->mutex);
7cf35d91 1275 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
0e8c36a9
MX
1276 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1277 path, delayed_node);
1278 else
1279 ret = 0;
1280 mutex_unlock(&delayed_node->mutex);
1281
1282 btrfs_free_path(path);
1283 trans->block_rsv = block_rsv;
1284trans_out:
3a45bb20 1285 btrfs_end_transaction(trans);
2ff7e61e 1286 btrfs_btree_balance_dirty(fs_info);
0e8c36a9
MX
1287out:
1288 btrfs_release_delayed_node(delayed_node);
1289
1290 return ret;
1291}
1292
f48d1cf5 1293void btrfs_remove_delayed_node(struct btrfs_inode *inode)
16cdcec7
MX
1294{
1295 struct btrfs_delayed_node *delayed_node;
1296
f48d1cf5 1297 delayed_node = READ_ONCE(inode->delayed_node);
16cdcec7
MX
1298 if (!delayed_node)
1299 return;
1300
f48d1cf5 1301 inode->delayed_node = NULL;
16cdcec7
MX
1302 btrfs_release_delayed_node(delayed_node);
1303}
1304
de3cb945
CM
1305struct btrfs_async_delayed_work {
1306 struct btrfs_delayed_root *delayed_root;
1307 int nr;
d458b054 1308 struct btrfs_work work;
16cdcec7
MX
1309};
1310
d458b054 1311static void btrfs_async_run_delayed_root(struct btrfs_work *work)
16cdcec7 1312{
de3cb945
CM
1313 struct btrfs_async_delayed_work *async_work;
1314 struct btrfs_delayed_root *delayed_root;
16cdcec7
MX
1315 struct btrfs_trans_handle *trans;
1316 struct btrfs_path *path;
1317 struct btrfs_delayed_node *delayed_node = NULL;
1318 struct btrfs_root *root;
19fd2949 1319 struct btrfs_block_rsv *block_rsv;
de3cb945 1320 int total_done = 0;
16cdcec7 1321
de3cb945
CM
1322 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1323 delayed_root = async_work->delayed_root;
16cdcec7
MX
1324
1325 path = btrfs_alloc_path();
1326 if (!path)
1327 goto out;
16cdcec7 1328
617c54a8
NB
1329 do {
1330 if (atomic_read(&delayed_root->items) <
1331 BTRFS_DELAYED_BACKGROUND / 2)
1332 break;
de3cb945 1333
617c54a8
NB
1334 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1335 if (!delayed_node)
1336 break;
de3cb945 1337
617c54a8 1338 root = delayed_node->root;
16cdcec7 1339
617c54a8
NB
1340 trans = btrfs_join_transaction(root);
1341 if (IS_ERR(trans)) {
1342 btrfs_release_path(path);
1343 btrfs_release_prepared_delayed_node(delayed_node);
1344 total_done++;
1345 continue;
1346 }
16cdcec7 1347
617c54a8
NB
1348 block_rsv = trans->block_rsv;
1349 trans->block_rsv = &root->fs_info->delayed_block_rsv;
19fd2949 1350
617c54a8 1351 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
16cdcec7 1352
617c54a8
NB
1353 trans->block_rsv = block_rsv;
1354 btrfs_end_transaction(trans);
1355 btrfs_btree_balance_dirty_nodelay(root->fs_info);
de3cb945 1356
617c54a8
NB
1357 btrfs_release_path(path);
1358 btrfs_release_prepared_delayed_node(delayed_node);
1359 total_done++;
de3cb945 1360
617c54a8
NB
1361 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1362 || total_done < async_work->nr);
de3cb945 1363
16cdcec7
MX
1364 btrfs_free_path(path);
1365out:
de3cb945
CM
1366 wake_up(&delayed_root->wait);
1367 kfree(async_work);
16cdcec7
MX
1368}
1369
de3cb945 1370
16cdcec7 1371static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
a585e948 1372 struct btrfs_fs_info *fs_info, int nr)
16cdcec7 1373{
de3cb945 1374 struct btrfs_async_delayed_work *async_work;
16cdcec7 1375
de3cb945
CM
1376 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1377 if (!async_work)
16cdcec7 1378 return -ENOMEM;
16cdcec7 1379
de3cb945 1380 async_work->delayed_root = delayed_root;
a0cac0ec
OS
1381 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1382 NULL);
de3cb945 1383 async_work->nr = nr;
16cdcec7 1384
a585e948 1385 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
16cdcec7
MX
1386 return 0;
1387}
1388
ccdf9b30 1389void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
e999376f 1390{
ccdf9b30 1391 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
e999376f
CM
1392}
1393
0353808c 1394static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
de3cb945
CM
1395{
1396 int val = atomic_read(&delayed_root->items_seq);
1397
0353808c 1398 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
de3cb945 1399 return 1;
0353808c
MX
1400
1401 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1402 return 1;
1403
de3cb945
CM
1404 return 0;
1405}
1406
2ff7e61e 1407void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
16cdcec7 1408{
2ff7e61e 1409 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
16cdcec7 1410
8577787f
NB
1411 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1412 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
16cdcec7
MX
1413 return;
1414
1415 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
0353808c 1416 int seq;
16cdcec7 1417 int ret;
0353808c
MX
1418
1419 seq = atomic_read(&delayed_root->items_seq);
de3cb945 1420
a585e948 1421 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
16cdcec7
MX
1422 if (ret)
1423 return;
1424
0353808c
MX
1425 wait_event_interruptible(delayed_root->wait,
1426 could_end_wait(delayed_root, seq));
4dd466d3 1427 return;
16cdcec7
MX
1428 }
1429
a585e948 1430 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
16cdcec7
MX
1431}
1432
2c58c393
FM
1433static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1434{
1435 struct btrfs_fs_info *fs_info = trans->fs_info;
1436 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1437
1438 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1439 return;
1440
1441 /*
1442 * Adding the new dir index item does not require touching another
1443 * leaf, so we can release 1 unit of metadata that was previously
1444 * reserved when starting the transaction. This applies only to
1445 * the case where we had a transaction start and excludes the
1446 * transaction join case (when replaying log trees).
1447 */
1448 trace_btrfs_space_reservation(fs_info, "transaction",
1449 trans->transid, bytes, 0);
1450 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1451 ASSERT(trans->bytes_reserved >= bytes);
1452 trans->bytes_reserved -= bytes;
1453}
1454
1455/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
16cdcec7 1456int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
2ff7e61e 1457 const char *name, int name_len,
6f45d185 1458 struct btrfs_inode *dir,
94a48aef 1459 struct btrfs_disk_key *disk_key, u8 flags,
16cdcec7
MX
1460 u64 index)
1461{
763748b2
FM
1462 struct btrfs_fs_info *fs_info = trans->fs_info;
1463 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
16cdcec7
MX
1464 struct btrfs_delayed_node *delayed_node;
1465 struct btrfs_delayed_item *delayed_item;
1466 struct btrfs_dir_item *dir_item;
763748b2
FM
1467 bool reserve_leaf_space;
1468 u32 data_len;
16cdcec7
MX
1469 int ret;
1470
6f45d185 1471 delayed_node = btrfs_get_or_create_delayed_node(dir);
16cdcec7
MX
1472 if (IS_ERR(delayed_node))
1473 return PTR_ERR(delayed_node);
1474
96d89923 1475 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
4c469798
FM
1476 delayed_node,
1477 BTRFS_DELAYED_INSERTION_ITEM);
16cdcec7
MX
1478 if (!delayed_item) {
1479 ret = -ENOMEM;
1480 goto release_node;
1481 }
1482
96d89923 1483 delayed_item->index = index;
16cdcec7
MX
1484
1485 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1486 dir_item->location = *disk_key;
3cae210f
QW
1487 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1488 btrfs_set_stack_dir_data_len(dir_item, 0);
1489 btrfs_set_stack_dir_name_len(dir_item, name_len);
94a48aef 1490 btrfs_set_stack_dir_flags(dir_item, flags);
16cdcec7
MX
1491 memcpy((char *)(dir_item + 1), name, name_len);
1492
763748b2 1493 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
8c2a3ca2 1494
16cdcec7 1495 mutex_lock(&delayed_node->mutex);
763748b2 1496
2c58c393
FM
1497 /*
1498 * First attempt to insert the delayed item. This is to make the error
1499 * handling path simpler in case we fail (-EEXIST). There's no risk of
1500 * any other task coming in and running the delayed item before we do
1501 * the metadata space reservation below, because we are holding the
1502 * delayed node's mutex and that mutex must also be locked before the
1503 * node's delayed items can be run.
1504 */
1505 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1506 if (unlikely(ret)) {
1507 btrfs_err(trans->fs_info,
1508"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1509 name_len, name, index, btrfs_root_id(delayed_node->root),
1510 delayed_node->inode_id, dir->index_cnt,
1511 delayed_node->index_cnt, ret);
1512 btrfs_release_delayed_item(delayed_item);
1513 btrfs_release_dir_index_item_space(trans);
1514 mutex_unlock(&delayed_node->mutex);
1515 goto release_node;
1516 }
1517
763748b2
FM
1518 if (delayed_node->index_item_leaves == 0 ||
1519 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1520 delayed_node->curr_index_batch_size = data_len;
1521 reserve_leaf_space = true;
1522 } else {
1523 delayed_node->curr_index_batch_size += data_len;
1524 reserve_leaf_space = false;
1525 }
1526
1527 if (reserve_leaf_space) {
df492881 1528 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
763748b2
FM
1529 /*
1530 * Space was reserved for a dir index item insertion when we
1531 * started the transaction, so getting a failure here should be
1532 * impossible.
1533 */
1534 if (WARN_ON(ret)) {
763748b2 1535 btrfs_release_delayed_item(delayed_item);
2c58c393 1536 mutex_unlock(&delayed_node->mutex);
763748b2
FM
1537 goto release_node;
1538 }
1539
1540 delayed_node->index_item_leaves++;
2c58c393
FM
1541 } else {
1542 btrfs_release_dir_index_item_space(trans);
16cdcec7
MX
1543 }
1544 mutex_unlock(&delayed_node->mutex);
1545
1546release_node:
1547 btrfs_release_delayed_node(delayed_node);
1548 return ret;
1549}
1550
2ff7e61e 1551static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
16cdcec7 1552 struct btrfs_delayed_node *node,
96d89923 1553 u64 index)
16cdcec7
MX
1554{
1555 struct btrfs_delayed_item *item;
1556
1557 mutex_lock(&node->mutex);
4cbf37f5 1558 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
16cdcec7
MX
1559 if (!item) {
1560 mutex_unlock(&node->mutex);
1561 return 1;
1562 }
1563
763748b2
FM
1564 /*
1565 * For delayed items to insert, we track reserved metadata bytes based
1566 * on the number of leaves that we will use.
1567 * See btrfs_insert_delayed_dir_index() and
1568 * btrfs_delayed_item_reserve_metadata()).
1569 */
1570 ASSERT(item->bytes_reserved == 0);
1571 ASSERT(node->index_item_leaves > 0);
1572
1573 /*
1574 * If there's only one leaf reserved, we can decrement this item from the
1575 * current batch, otherwise we can not because we don't know which leaf
1576 * it belongs to. With the current limit on delayed items, we rarely
1577 * accumulate enough dir index items to fill more than one leaf (even
1578 * when using a leaf size of 4K).
1579 */
1580 if (node->index_item_leaves == 1) {
1581 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1582
1583 ASSERT(node->curr_index_batch_size >= data_len);
1584 node->curr_index_batch_size -= data_len;
1585 }
1586
16cdcec7 1587 btrfs_release_delayed_item(item);
763748b2
FM
1588
1589 /* If we now have no more dir index items, we can release all leaves. */
1590 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1591 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1592 node->index_item_leaves = 0;
1593 }
1594
16cdcec7
MX
1595 mutex_unlock(&node->mutex);
1596 return 0;
1597}
1598
1599int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
e67bbbb9 1600 struct btrfs_inode *dir, u64 index)
16cdcec7
MX
1601{
1602 struct btrfs_delayed_node *node;
1603 struct btrfs_delayed_item *item;
16cdcec7
MX
1604 int ret;
1605
e67bbbb9 1606 node = btrfs_get_or_create_delayed_node(dir);
16cdcec7
MX
1607 if (IS_ERR(node))
1608 return PTR_ERR(node);
1609
96d89923 1610 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
16cdcec7
MX
1611 if (!ret)
1612 goto end;
1613
4c469798 1614 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
16cdcec7
MX
1615 if (!item) {
1616 ret = -ENOMEM;
1617 goto end;
1618 }
1619
96d89923 1620 item->index = index;
16cdcec7 1621
df492881 1622 ret = btrfs_delayed_item_reserve_metadata(trans, item);
16cdcec7
MX
1623 /*
1624 * we have reserved enough space when we start a new transaction,
1625 * so reserving metadata failure is impossible.
1626 */
933c22a7
QW
1627 if (ret < 0) {
1628 btrfs_err(trans->fs_info,
1629"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1630 btrfs_release_delayed_item(item);
1631 goto end;
1632 }
16cdcec7
MX
1633
1634 mutex_lock(&node->mutex);
c9d02ab4 1635 ret = __btrfs_add_delayed_item(node, item);
16cdcec7 1636 if (unlikely(ret)) {
9add2945 1637 btrfs_err(trans->fs_info,
5d163e0e 1638 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
4fd786e6
MT
1639 index, node->root->root_key.objectid,
1640 node->inode_id, ret);
933c22a7
QW
1641 btrfs_delayed_item_release_metadata(dir->root, item);
1642 btrfs_release_delayed_item(item);
16cdcec7
MX
1643 }
1644 mutex_unlock(&node->mutex);
1645end:
1646 btrfs_release_delayed_node(node);
1647 return ret;
1648}
1649
f5cc7b80 1650int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
16cdcec7 1651{
f5cc7b80 1652 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
16cdcec7
MX
1653
1654 if (!delayed_node)
1655 return -ENOENT;
1656
1657 /*
1658 * Since we have held i_mutex of this directory, it is impossible that
1659 * a new directory index is added into the delayed node and index_cnt
1660 * is updated now. So we needn't lock the delayed node.
1661 */
2f7e33d4
MX
1662 if (!delayed_node->index_cnt) {
1663 btrfs_release_delayed_node(delayed_node);
16cdcec7 1664 return -EINVAL;
2f7e33d4 1665 }
16cdcec7 1666
f5cc7b80 1667 inode->index_cnt = delayed_node->index_cnt;
2f7e33d4
MX
1668 btrfs_release_delayed_node(delayed_node);
1669 return 0;
16cdcec7
MX
1670}
1671
02dbfc99 1672bool btrfs_readdir_get_delayed_items(struct inode *inode,
9b378f6a 1673 u64 last_index,
02dbfc99
OS
1674 struct list_head *ins_list,
1675 struct list_head *del_list)
16cdcec7
MX
1676{
1677 struct btrfs_delayed_node *delayed_node;
1678 struct btrfs_delayed_item *item;
1679
340c6ca9 1680 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
16cdcec7 1681 if (!delayed_node)
02dbfc99
OS
1682 return false;
1683
1684 /*
1685 * We can only do one readdir with delayed items at a time because of
1686 * item->readdir_list.
1687 */
e5d4d75b 1688 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
29b6352b 1689 btrfs_inode_lock(BTRFS_I(inode), 0);
16cdcec7
MX
1690
1691 mutex_lock(&delayed_node->mutex);
1692 item = __btrfs_first_delayed_insertion_item(delayed_node);
9b378f6a 1693 while (item && item->index <= last_index) {
089e77e1 1694 refcount_inc(&item->refs);
16cdcec7
MX
1695 list_add_tail(&item->readdir_list, ins_list);
1696 item = __btrfs_next_delayed_item(item);
1697 }
1698
1699 item = __btrfs_first_delayed_deletion_item(delayed_node);
9b378f6a 1700 while (item && item->index <= last_index) {
089e77e1 1701 refcount_inc(&item->refs);
16cdcec7
MX
1702 list_add_tail(&item->readdir_list, del_list);
1703 item = __btrfs_next_delayed_item(item);
1704 }
1705 mutex_unlock(&delayed_node->mutex);
1706 /*
1707 * This delayed node is still cached in the btrfs inode, so refs
1708 * must be > 1 now, and we needn't check it is going to be freed
1709 * or not.
1710 *
1711 * Besides that, this function is used to read dir, we do not
1712 * insert/delete delayed items in this period. So we also needn't
1713 * requeue or dequeue this delayed node.
1714 */
6de5f18e 1715 refcount_dec(&delayed_node->refs);
02dbfc99
OS
1716
1717 return true;
16cdcec7
MX
1718}
1719
02dbfc99
OS
1720void btrfs_readdir_put_delayed_items(struct inode *inode,
1721 struct list_head *ins_list,
1722 struct list_head *del_list)
16cdcec7
MX
1723{
1724 struct btrfs_delayed_item *curr, *next;
1725
1726 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1727 list_del(&curr->readdir_list);
089e77e1 1728 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1729 kfree(curr);
1730 }
1731
1732 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1733 list_del(&curr->readdir_list);
089e77e1 1734 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1735 kfree(curr);
1736 }
02dbfc99
OS
1737
1738 /*
1739 * The VFS is going to do up_read(), so we need to downgrade back to a
1740 * read lock.
1741 */
1742 downgrade_write(&inode->i_rwsem);
16cdcec7
MX
1743}
1744
1745int btrfs_should_delete_dir_index(struct list_head *del_list,
1746 u64 index)
1747{
e4fd493c
JB
1748 struct btrfs_delayed_item *curr;
1749 int ret = 0;
16cdcec7 1750
e4fd493c 1751 list_for_each_entry(curr, del_list, readdir_list) {
96d89923 1752 if (curr->index > index)
16cdcec7 1753 break;
96d89923 1754 if (curr->index == index) {
e4fd493c
JB
1755 ret = 1;
1756 break;
1757 }
16cdcec7 1758 }
e4fd493c 1759 return ret;
16cdcec7
MX
1760}
1761
1762/*
1763 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1764 *
1765 */
9cdda8d3 1766int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
d2fbb2b5 1767 struct list_head *ins_list)
16cdcec7
MX
1768{
1769 struct btrfs_dir_item *di;
1770 struct btrfs_delayed_item *curr, *next;
1771 struct btrfs_key location;
1772 char *name;
1773 int name_len;
1774 int over = 0;
1775 unsigned char d_type;
1776
16cdcec7
MX
1777 /*
1778 * Changing the data of the delayed item is impossible. So
1779 * we needn't lock them. And we have held i_mutex of the
1780 * directory, nobody can delete any directory indexes now.
1781 */
1782 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1783 list_del(&curr->readdir_list);
1784
96d89923 1785 if (curr->index < ctx->pos) {
089e77e1 1786 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1787 kfree(curr);
1788 continue;
1789 }
1790
96d89923 1791 ctx->pos = curr->index;
16cdcec7
MX
1792
1793 di = (struct btrfs_dir_item *)curr->data;
1794 name = (char *)(di + 1);
3cae210f 1795 name_len = btrfs_stack_dir_name_len(di);
16cdcec7 1796
94a48aef 1797 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
16cdcec7
MX
1798 btrfs_disk_key_to_cpu(&location, &di->location);
1799
9cdda8d3 1800 over = !dir_emit(ctx, name, name_len,
16cdcec7
MX
1801 location.objectid, d_type);
1802
089e77e1 1803 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1804 kfree(curr);
1805
1806 if (over)
1807 return 1;
42e9cc46 1808 ctx->pos++;
16cdcec7
MX
1809 }
1810 return 0;
1811}
1812
16cdcec7
MX
1813static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1814 struct btrfs_inode_item *inode_item,
1815 struct inode *inode)
1816{
77eea05e
BB
1817 u64 flags;
1818
2f2f43d3
EB
1819 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1820 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
16cdcec7
MX
1821 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1822 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1823 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1824 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1825 btrfs_set_stack_inode_generation(inode_item,
1826 BTRFS_I(inode)->generation);
c7f88c4e
JL
1827 btrfs_set_stack_inode_sequence(inode_item,
1828 inode_peek_iversion(inode));
16cdcec7
MX
1829 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1830 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
77eea05e
BB
1831 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1832 BTRFS_I(inode)->ro_flags);
1833 btrfs_set_stack_inode_flags(inode_item, flags);
ff5714cc 1834 btrfs_set_stack_inode_block_group(inode_item, 0);
16cdcec7 1835
a937b979 1836 btrfs_set_stack_timespec_sec(&inode_item->atime,
16cdcec7 1837 inode->i_atime.tv_sec);
a937b979 1838 btrfs_set_stack_timespec_nsec(&inode_item->atime,
16cdcec7
MX
1839 inode->i_atime.tv_nsec);
1840
a937b979 1841 btrfs_set_stack_timespec_sec(&inode_item->mtime,
16cdcec7 1842 inode->i_mtime.tv_sec);
a937b979 1843 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
16cdcec7
MX
1844 inode->i_mtime.tv_nsec);
1845
a937b979 1846 btrfs_set_stack_timespec_sec(&inode_item->ctime,
2a9462de 1847 inode_get_ctime(inode).tv_sec);
a937b979 1848 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
2a9462de 1849 inode_get_ctime(inode).tv_nsec);
9cc97d64 1850
1851 btrfs_set_stack_timespec_sec(&inode_item->otime,
1852 BTRFS_I(inode)->i_otime.tv_sec);
1853 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1854 BTRFS_I(inode)->i_otime.tv_nsec);
16cdcec7
MX
1855}
1856
2f7e33d4
MX
1857int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1858{
9ddc959e 1859 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2f7e33d4
MX
1860 struct btrfs_delayed_node *delayed_node;
1861 struct btrfs_inode_item *inode_item;
2f7e33d4 1862
340c6ca9 1863 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
2f7e33d4
MX
1864 if (!delayed_node)
1865 return -ENOENT;
1866
1867 mutex_lock(&delayed_node->mutex);
7cf35d91 1868 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2f7e33d4
MX
1869 mutex_unlock(&delayed_node->mutex);
1870 btrfs_release_delayed_node(delayed_node);
1871 return -ENOENT;
1872 }
1873
1874 inode_item = &delayed_node->inode_item;
1875
2f2f43d3
EB
1876 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1877 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
6ef06d27 1878 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
9ddc959e
JB
1879 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1880 round_up(i_size_read(inode), fs_info->sectorsize));
2f7e33d4 1881 inode->i_mode = btrfs_stack_inode_mode(inode_item);
bfe86848 1882 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
2f7e33d4
MX
1883 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1884 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
6e17d30b
YD
1885 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1886
c7f88c4e
JL
1887 inode_set_iversion_queried(inode,
1888 btrfs_stack_inode_sequence(inode_item));
2f7e33d4
MX
1889 inode->i_rdev = 0;
1890 *rdev = btrfs_stack_inode_rdev(inode_item);
77eea05e
BB
1891 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1892 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
2f7e33d4 1893
a937b979
DS
1894 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1895 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
2f7e33d4 1896
a937b979
DS
1897 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1898 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
2f7e33d4 1899
2a9462de
JL
1900 inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1901 btrfs_stack_timespec_nsec(&inode_item->ctime));
2f7e33d4 1902
9cc97d64 1903 BTRFS_I(inode)->i_otime.tv_sec =
1904 btrfs_stack_timespec_sec(&inode_item->otime);
1905 BTRFS_I(inode)->i_otime.tv_nsec =
1906 btrfs_stack_timespec_nsec(&inode_item->otime);
1907
2f7e33d4
MX
1908 inode->i_generation = BTRFS_I(inode)->generation;
1909 BTRFS_I(inode)->index_cnt = (u64)-1;
1910
1911 mutex_unlock(&delayed_node->mutex);
1912 btrfs_release_delayed_node(delayed_node);
1913 return 0;
1914}
1915
16cdcec7 1916int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
f3fbcaef
NB
1917 struct btrfs_root *root,
1918 struct btrfs_inode *inode)
16cdcec7
MX
1919{
1920 struct btrfs_delayed_node *delayed_node;
aa0467d8 1921 int ret = 0;
16cdcec7 1922
f3fbcaef 1923 delayed_node = btrfs_get_or_create_delayed_node(inode);
16cdcec7
MX
1924 if (IS_ERR(delayed_node))
1925 return PTR_ERR(delayed_node);
1926
1927 mutex_lock(&delayed_node->mutex);
7cf35d91 1928 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
f3fbcaef
NB
1929 fill_stack_inode_item(trans, &delayed_node->inode_item,
1930 &inode->vfs_inode);
16cdcec7
MX
1931 goto release_node;
1932 }
1933
8e3c9d3c 1934 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
c06a0e12
JB
1935 if (ret)
1936 goto release_node;
16cdcec7 1937
f3fbcaef 1938 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
7cf35d91 1939 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
16cdcec7
MX
1940 delayed_node->count++;
1941 atomic_inc(&root->fs_info->delayed_root->items);
1942release_node:
1943 mutex_unlock(&delayed_node->mutex);
1944 btrfs_release_delayed_node(delayed_node);
1945 return ret;
1946}
1947
e07222c7 1948int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
67de1176 1949{
3ffbd68c 1950 struct btrfs_fs_info *fs_info = inode->root->fs_info;
67de1176
MX
1951 struct btrfs_delayed_node *delayed_node;
1952
6f896054
CM
1953 /*
1954 * we don't do delayed inode updates during log recovery because it
1955 * leads to enospc problems. This means we also can't do
1956 * delayed inode refs
1957 */
0b246afa 1958 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
6f896054
CM
1959 return -EAGAIN;
1960
e07222c7 1961 delayed_node = btrfs_get_or_create_delayed_node(inode);
67de1176
MX
1962 if (IS_ERR(delayed_node))
1963 return PTR_ERR(delayed_node);
1964
1965 /*
1966 * We don't reserve space for inode ref deletion is because:
1967 * - We ONLY do async inode ref deletion for the inode who has only
1968 * one link(i_nlink == 1), it means there is only one inode ref.
1969 * And in most case, the inode ref and the inode item are in the
1970 * same leaf, and we will deal with them at the same time.
1971 * Since we are sure we will reserve the space for the inode item,
1972 * it is unnecessary to reserve space for inode ref deletion.
1973 * - If the inode ref and the inode item are not in the same leaf,
1974 * We also needn't worry about enospc problem, because we reserve
1975 * much more space for the inode update than it needs.
1976 * - At the worst, we can steal some space from the global reservation.
1977 * It is very rare.
1978 */
1979 mutex_lock(&delayed_node->mutex);
1980 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1981 goto release_node;
1982
1983 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1984 delayed_node->count++;
0b246afa 1985 atomic_inc(&fs_info->delayed_root->items);
67de1176
MX
1986release_node:
1987 mutex_unlock(&delayed_node->mutex);
1988 btrfs_release_delayed_node(delayed_node);
1989 return 0;
1990}
1991
16cdcec7
MX
1992static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1993{
1994 struct btrfs_root *root = delayed_node->root;
2ff7e61e 1995 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
1996 struct btrfs_delayed_item *curr_item, *prev_item;
1997
1998 mutex_lock(&delayed_node->mutex);
1999 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2000 while (curr_item) {
16cdcec7
MX
2001 prev_item = curr_item;
2002 curr_item = __btrfs_next_delayed_item(prev_item);
2003 btrfs_release_delayed_item(prev_item);
2004 }
2005
763748b2
FM
2006 if (delayed_node->index_item_leaves > 0) {
2007 btrfs_delayed_item_release_leaves(delayed_node,
2008 delayed_node->index_item_leaves);
2009 delayed_node->index_item_leaves = 0;
2010 }
2011
16cdcec7
MX
2012 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2013 while (curr_item) {
4f5427cc 2014 btrfs_delayed_item_release_metadata(root, curr_item);
16cdcec7
MX
2015 prev_item = curr_item;
2016 curr_item = __btrfs_next_delayed_item(prev_item);
2017 btrfs_release_delayed_item(prev_item);
2018 }
2019
a4cb90dc 2020 btrfs_release_delayed_iref(delayed_node);
67de1176 2021
7cf35d91 2022 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
4f5427cc 2023 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
16cdcec7
MX
2024 btrfs_release_delayed_inode(delayed_node);
2025 }
2026 mutex_unlock(&delayed_node->mutex);
2027}
2028
4ccb5c72 2029void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
16cdcec7
MX
2030{
2031 struct btrfs_delayed_node *delayed_node;
2032
4ccb5c72 2033 delayed_node = btrfs_get_delayed_node(inode);
16cdcec7
MX
2034 if (!delayed_node)
2035 return;
2036
2037 __btrfs_kill_delayed_node(delayed_node);
2038 btrfs_release_delayed_node(delayed_node);
2039}
2040
2041void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2042{
088aea3b 2043 u64 inode_id = 0;
16cdcec7 2044 struct btrfs_delayed_node *delayed_nodes[8];
088aea3b 2045 int i, n;
16cdcec7
MX
2046
2047 while (1) {
2048 spin_lock(&root->inode_lock);
088aea3b
DS
2049 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2050 (void **)delayed_nodes, inode_id,
2051 ARRAY_SIZE(delayed_nodes));
2052 if (!n) {
16cdcec7 2053 spin_unlock(&root->inode_lock);
088aea3b 2054 break;
16cdcec7
MX
2055 }
2056
088aea3b
DS
2057 inode_id = delayed_nodes[n - 1]->inode_id + 1;
2058 for (i = 0; i < n; i++) {
baf320b9
JB
2059 /*
2060 * Don't increase refs in case the node is dead and
2061 * about to be removed from the tree in the loop below
2062 */
088aea3b
DS
2063 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
2064 delayed_nodes[i] = NULL;
baf320b9 2065 }
16cdcec7
MX
2066 spin_unlock(&root->inode_lock);
2067
088aea3b
DS
2068 for (i = 0; i < n; i++) {
2069 if (!delayed_nodes[i])
2070 continue;
16cdcec7
MX
2071 __btrfs_kill_delayed_node(delayed_nodes[i]);
2072 btrfs_release_delayed_node(delayed_nodes[i]);
2073 }
2074 }
2075}
67cde344 2076
ccdf9b30 2077void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
67cde344 2078{
67cde344
MX
2079 struct btrfs_delayed_node *curr_node, *prev_node;
2080
ccdf9b30 2081 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
67cde344
MX
2082 while (curr_node) {
2083 __btrfs_kill_delayed_node(curr_node);
2084
2085 prev_node = curr_node;
2086 curr_node = btrfs_next_delayed_node(curr_node);
2087 btrfs_release_delayed_node(prev_node);
2088 }
2089}
2090
30b80f3c
FM
2091void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2092 struct list_head *ins_list,
2093 struct list_head *del_list)
2094{
2095 struct btrfs_delayed_node *node;
2096 struct btrfs_delayed_item *item;
2097
2098 node = btrfs_get_delayed_node(inode);
2099 if (!node)
2100 return;
2101
2102 mutex_lock(&node->mutex);
2103 item = __btrfs_first_delayed_insertion_item(node);
2104 while (item) {
2105 /*
2106 * It's possible that the item is already in a log list. This
2107 * can happen in case two tasks are trying to log the same
2108 * directory. For example if we have tasks A and task B:
2109 *
2110 * Task A collected the delayed items into a log list while
2111 * under the inode's log_mutex (at btrfs_log_inode()), but it
2112 * only releases the items after logging the inodes they point
2113 * to (if they are new inodes), which happens after unlocking
2114 * the log mutex;
2115 *
2116 * Task B enters btrfs_log_inode() and acquires the log_mutex
2117 * of the same directory inode, before task B releases the
2118 * delayed items. This can happen for example when logging some
2119 * inode we need to trigger logging of its parent directory, so
2120 * logging two files that have the same parent directory can
2121 * lead to this.
2122 *
2123 * If this happens, just ignore delayed items already in a log
2124 * list. All the tasks logging the directory are under a log
2125 * transaction and whichever finishes first can not sync the log
2126 * before the other completes and leaves the log transaction.
2127 */
2128 if (!item->logged && list_empty(&item->log_list)) {
2129 refcount_inc(&item->refs);
2130 list_add_tail(&item->log_list, ins_list);
2131 }
2132 item = __btrfs_next_delayed_item(item);
2133 }
2134
2135 item = __btrfs_first_delayed_deletion_item(node);
2136 while (item) {
2137 /* It may be non-empty, for the same reason mentioned above. */
2138 if (!item->logged && list_empty(&item->log_list)) {
2139 refcount_inc(&item->refs);
2140 list_add_tail(&item->log_list, del_list);
2141 }
2142 item = __btrfs_next_delayed_item(item);
2143 }
2144 mutex_unlock(&node->mutex);
2145
2146 /*
2147 * We are called during inode logging, which means the inode is in use
2148 * and can not be evicted before we finish logging the inode. So we never
2149 * have the last reference on the delayed inode.
2150 * Also, we don't use btrfs_release_delayed_node() because that would
2151 * requeue the delayed inode (change its order in the list of prepared
2152 * nodes) and we don't want to do such change because we don't create or
2153 * delete delayed items.
2154 */
2155 ASSERT(refcount_read(&node->refs) > 1);
2156 refcount_dec(&node->refs);
2157}
2158
2159void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2160 struct list_head *ins_list,
2161 struct list_head *del_list)
2162{
2163 struct btrfs_delayed_node *node;
2164 struct btrfs_delayed_item *item;
2165 struct btrfs_delayed_item *next;
2166
2167 node = btrfs_get_delayed_node(inode);
2168 if (!node)
2169 return;
2170
2171 mutex_lock(&node->mutex);
2172
2173 list_for_each_entry_safe(item, next, ins_list, log_list) {
2174 item->logged = true;
2175 list_del_init(&item->log_list);
2176 if (refcount_dec_and_test(&item->refs))
2177 kfree(item);
2178 }
2179
2180 list_for_each_entry_safe(item, next, del_list, log_list) {
2181 item->logged = true;
2182 list_del_init(&item->log_list);
2183 if (refcount_dec_and_test(&item->refs))
2184 kfree(item);
2185 }
2186
2187 mutex_unlock(&node->mutex);
2188
2189 /*
2190 * We are called during inode logging, which means the inode is in use
2191 * and can not be evicted before we finish logging the inode. So we never
2192 * have the last reference on the delayed inode.
2193 * Also, we don't use btrfs_release_delayed_node() because that would
2194 * requeue the delayed inode (change its order in the list of prepared
2195 * nodes) and we don't want to do such change because we don't create or
2196 * delete delayed items.
2197 */
2198 ASSERT(refcount_read(&node->refs) > 1);
2199 refcount_dec(&node->refs);
2200}