btrfs: simplify btrfs_wait_cache_io prototype
[linux-block.git] / fs / btrfs / delayed-inode.c
CommitLineData
16cdcec7
MX
1/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include "delayed-inode.h"
22#include "disk-io.h"
23#include "transaction.h"
3cae210f 24#include "ctree.h"
16cdcec7 25
de3cb945
CM
26#define BTRFS_DELAYED_WRITEBACK 512
27#define BTRFS_DELAYED_BACKGROUND 128
28#define BTRFS_DELAYED_BATCH 16
16cdcec7
MX
29
30static struct kmem_cache *delayed_node_cache;
31
32int __init btrfs_delayed_inode_init(void)
33{
837e1972 34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
16cdcec7
MX
35 sizeof(struct btrfs_delayed_node),
36 0,
fba4b697 37 SLAB_MEM_SPREAD,
16cdcec7
MX
38 NULL);
39 if (!delayed_node_cache)
40 return -ENOMEM;
41 return 0;
42}
43
44void btrfs_delayed_inode_exit(void)
45{
5598e900 46 kmem_cache_destroy(delayed_node_cache);
16cdcec7
MX
47}
48
49static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node *delayed_node,
51 struct btrfs_root *root, u64 inode_id)
52{
53 delayed_node->root = root;
54 delayed_node->inode_id = inode_id;
55 atomic_set(&delayed_node->refs, 0);
16cdcec7
MX
56 delayed_node->ins_root = RB_ROOT;
57 delayed_node->del_root = RB_ROOT;
58 mutex_init(&delayed_node->mutex);
16cdcec7
MX
59 INIT_LIST_HEAD(&delayed_node->n_list);
60 INIT_LIST_HEAD(&delayed_node->p_list);
16cdcec7
MX
61}
62
63static inline int btrfs_is_continuous_delayed_item(
64 struct btrfs_delayed_item *item1,
65 struct btrfs_delayed_item *item2)
66{
67 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68 item1->key.objectid == item2->key.objectid &&
69 item1->key.type == item2->key.type &&
70 item1->key.offset + 1 == item2->key.offset)
71 return 1;
72 return 0;
73}
74
2f7e33d4 75static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
16cdcec7 76{
16cdcec7
MX
77 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
78 struct btrfs_root *root = btrfs_inode->root;
0d0ca30f 79 u64 ino = btrfs_ino(inode);
2f7e33d4 80 struct btrfs_delayed_node *node;
16cdcec7 81
16cdcec7
MX
82 node = ACCESS_ONCE(btrfs_inode->delayed_node);
83 if (node) {
2f7e33d4 84 atomic_inc(&node->refs);
16cdcec7
MX
85 return node;
86 }
87
88 spin_lock(&root->inode_lock);
0d0ca30f 89 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
16cdcec7
MX
90 if (node) {
91 if (btrfs_inode->delayed_node) {
2f7e33d4
MX
92 atomic_inc(&node->refs); /* can be accessed */
93 BUG_ON(btrfs_inode->delayed_node != node);
16cdcec7 94 spin_unlock(&root->inode_lock);
2f7e33d4 95 return node;
16cdcec7
MX
96 }
97 btrfs_inode->delayed_node = node;
95e94d14
R
98 /* can be accessed and cached in the inode */
99 atomic_add(2, &node->refs);
16cdcec7
MX
100 spin_unlock(&root->inode_lock);
101 return node;
102 }
103 spin_unlock(&root->inode_lock);
104
2f7e33d4
MX
105 return NULL;
106}
107
79787eaa 108/* Will return either the node or PTR_ERR(-ENOMEM) */
2f7e33d4
MX
109static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
110 struct inode *inode)
111{
112 struct btrfs_delayed_node *node;
113 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
114 struct btrfs_root *root = btrfs_inode->root;
115 u64 ino = btrfs_ino(inode);
116 int ret;
117
118again:
119 node = btrfs_get_delayed_node(inode);
120 if (node)
121 return node;
122
352dd9c8 123 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
16cdcec7
MX
124 if (!node)
125 return ERR_PTR(-ENOMEM);
0d0ca30f 126 btrfs_init_delayed_node(node, root, ino);
16cdcec7 127
95e94d14
R
128 /* cached in the btrfs inode and can be accessed */
129 atomic_add(2, &node->refs);
16cdcec7 130
e1860a77 131 ret = radix_tree_preload(GFP_NOFS);
16cdcec7
MX
132 if (ret) {
133 kmem_cache_free(delayed_node_cache, node);
134 return ERR_PTR(ret);
135 }
136
137 spin_lock(&root->inode_lock);
0d0ca30f 138 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
16cdcec7 139 if (ret == -EEXIST) {
16cdcec7 140 spin_unlock(&root->inode_lock);
96493031 141 kmem_cache_free(delayed_node_cache, node);
16cdcec7
MX
142 radix_tree_preload_end();
143 goto again;
144 }
145 btrfs_inode->delayed_node = node;
146 spin_unlock(&root->inode_lock);
147 radix_tree_preload_end();
148
149 return node;
150}
151
152/*
153 * Call it when holding delayed_node->mutex
154 *
155 * If mod = 1, add this node into the prepared list.
156 */
157static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
158 struct btrfs_delayed_node *node,
159 int mod)
160{
161 spin_lock(&root->lock);
7cf35d91 162 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
16cdcec7
MX
163 if (!list_empty(&node->p_list))
164 list_move_tail(&node->p_list, &root->prepare_list);
165 else if (mod)
166 list_add_tail(&node->p_list, &root->prepare_list);
167 } else {
168 list_add_tail(&node->n_list, &root->node_list);
169 list_add_tail(&node->p_list, &root->prepare_list);
170 atomic_inc(&node->refs); /* inserted into list */
171 root->nodes++;
7cf35d91 172 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
16cdcec7
MX
173 }
174 spin_unlock(&root->lock);
175}
176
177/* Call it when holding delayed_node->mutex */
178static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
179 struct btrfs_delayed_node *node)
180{
181 spin_lock(&root->lock);
7cf35d91 182 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
16cdcec7
MX
183 root->nodes--;
184 atomic_dec(&node->refs); /* not in the list */
185 list_del_init(&node->n_list);
186 if (!list_empty(&node->p_list))
187 list_del_init(&node->p_list);
7cf35d91 188 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
16cdcec7
MX
189 }
190 spin_unlock(&root->lock);
191}
192
48a3b636 193static struct btrfs_delayed_node *btrfs_first_delayed_node(
16cdcec7
MX
194 struct btrfs_delayed_root *delayed_root)
195{
196 struct list_head *p;
197 struct btrfs_delayed_node *node = NULL;
198
199 spin_lock(&delayed_root->lock);
200 if (list_empty(&delayed_root->node_list))
201 goto out;
202
203 p = delayed_root->node_list.next;
204 node = list_entry(p, struct btrfs_delayed_node, n_list);
205 atomic_inc(&node->refs);
206out:
207 spin_unlock(&delayed_root->lock);
208
209 return node;
210}
211
48a3b636 212static struct btrfs_delayed_node *btrfs_next_delayed_node(
16cdcec7
MX
213 struct btrfs_delayed_node *node)
214{
215 struct btrfs_delayed_root *delayed_root;
216 struct list_head *p;
217 struct btrfs_delayed_node *next = NULL;
218
219 delayed_root = node->root->fs_info->delayed_root;
220 spin_lock(&delayed_root->lock);
7cf35d91
MX
221 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
222 /* not in the list */
16cdcec7
MX
223 if (list_empty(&delayed_root->node_list))
224 goto out;
225 p = delayed_root->node_list.next;
226 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
227 goto out;
228 else
229 p = node->n_list.next;
230
231 next = list_entry(p, struct btrfs_delayed_node, n_list);
232 atomic_inc(&next->refs);
233out:
234 spin_unlock(&delayed_root->lock);
235
236 return next;
237}
238
239static void __btrfs_release_delayed_node(
240 struct btrfs_delayed_node *delayed_node,
241 int mod)
242{
243 struct btrfs_delayed_root *delayed_root;
244
245 if (!delayed_node)
246 return;
247
248 delayed_root = delayed_node->root->fs_info->delayed_root;
249
250 mutex_lock(&delayed_node->mutex);
251 if (delayed_node->count)
252 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
253 else
254 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
255 mutex_unlock(&delayed_node->mutex);
256
257 if (atomic_dec_and_test(&delayed_node->refs)) {
96493031 258 bool free = false;
16cdcec7
MX
259 struct btrfs_root *root = delayed_node->root;
260 spin_lock(&root->inode_lock);
261 if (atomic_read(&delayed_node->refs) == 0) {
262 radix_tree_delete(&root->delayed_nodes_tree,
263 delayed_node->inode_id);
96493031 264 free = true;
16cdcec7
MX
265 }
266 spin_unlock(&root->inode_lock);
96493031
JM
267 if (free)
268 kmem_cache_free(delayed_node_cache, delayed_node);
16cdcec7
MX
269 }
270}
271
272static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
273{
274 __btrfs_release_delayed_node(node, 0);
275}
276
48a3b636 277static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
16cdcec7
MX
278 struct btrfs_delayed_root *delayed_root)
279{
280 struct list_head *p;
281 struct btrfs_delayed_node *node = NULL;
282
283 spin_lock(&delayed_root->lock);
284 if (list_empty(&delayed_root->prepare_list))
285 goto out;
286
287 p = delayed_root->prepare_list.next;
288 list_del_init(p);
289 node = list_entry(p, struct btrfs_delayed_node, p_list);
290 atomic_inc(&node->refs);
291out:
292 spin_unlock(&delayed_root->lock);
293
294 return node;
295}
296
297static inline void btrfs_release_prepared_delayed_node(
298 struct btrfs_delayed_node *node)
299{
300 __btrfs_release_delayed_node(node, 1);
301}
302
48a3b636 303static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
16cdcec7
MX
304{
305 struct btrfs_delayed_item *item;
306 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
307 if (item) {
308 item->data_len = data_len;
309 item->ins_or_del = 0;
310 item->bytes_reserved = 0;
16cdcec7
MX
311 item->delayed_node = NULL;
312 atomic_set(&item->refs, 1);
313 }
314 return item;
315}
316
317/*
318 * __btrfs_lookup_delayed_item - look up the delayed item by key
319 * @delayed_node: pointer to the delayed node
320 * @key: the key to look up
321 * @prev: used to store the prev item if the right item isn't found
322 * @next: used to store the next item if the right item isn't found
323 *
324 * Note: if we don't find the right item, we will return the prev item and
325 * the next item.
326 */
327static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
328 struct rb_root *root,
329 struct btrfs_key *key,
330 struct btrfs_delayed_item **prev,
331 struct btrfs_delayed_item **next)
332{
333 struct rb_node *node, *prev_node = NULL;
334 struct btrfs_delayed_item *delayed_item = NULL;
335 int ret = 0;
336
337 node = root->rb_node;
338
339 while (node) {
340 delayed_item = rb_entry(node, struct btrfs_delayed_item,
341 rb_node);
342 prev_node = node;
343 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
344 if (ret < 0)
345 node = node->rb_right;
346 else if (ret > 0)
347 node = node->rb_left;
348 else
349 return delayed_item;
350 }
351
352 if (prev) {
353 if (!prev_node)
354 *prev = NULL;
355 else if (ret < 0)
356 *prev = delayed_item;
357 else if ((node = rb_prev(prev_node)) != NULL) {
358 *prev = rb_entry(node, struct btrfs_delayed_item,
359 rb_node);
360 } else
361 *prev = NULL;
362 }
363
364 if (next) {
365 if (!prev_node)
366 *next = NULL;
367 else if (ret > 0)
368 *next = delayed_item;
369 else if ((node = rb_next(prev_node)) != NULL) {
370 *next = rb_entry(node, struct btrfs_delayed_item,
371 rb_node);
372 } else
373 *next = NULL;
374 }
375 return NULL;
376}
377
48a3b636 378static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
16cdcec7
MX
379 struct btrfs_delayed_node *delayed_node,
380 struct btrfs_key *key)
381{
e2c89907 382 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
16cdcec7 383 NULL, NULL);
16cdcec7
MX
384}
385
16cdcec7
MX
386static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
387 struct btrfs_delayed_item *ins,
388 int action)
389{
390 struct rb_node **p, *node;
391 struct rb_node *parent_node = NULL;
392 struct rb_root *root;
393 struct btrfs_delayed_item *item;
394 int cmp;
395
396 if (action == BTRFS_DELAYED_INSERTION_ITEM)
397 root = &delayed_node->ins_root;
398 else if (action == BTRFS_DELAYED_DELETION_ITEM)
399 root = &delayed_node->del_root;
400 else
401 BUG();
402 p = &root->rb_node;
403 node = &ins->rb_node;
404
405 while (*p) {
406 parent_node = *p;
407 item = rb_entry(parent_node, struct btrfs_delayed_item,
408 rb_node);
409
410 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
411 if (cmp < 0)
412 p = &(*p)->rb_right;
413 else if (cmp > 0)
414 p = &(*p)->rb_left;
415 else
416 return -EEXIST;
417 }
418
419 rb_link_node(node, parent_node, p);
420 rb_insert_color(node, root);
421 ins->delayed_node = delayed_node;
422 ins->ins_or_del = action;
423
424 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
425 action == BTRFS_DELAYED_INSERTION_ITEM &&
426 ins->key.offset >= delayed_node->index_cnt)
427 delayed_node->index_cnt = ins->key.offset + 1;
428
429 delayed_node->count++;
430 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
431 return 0;
432}
433
434static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
435 struct btrfs_delayed_item *item)
436{
437 return __btrfs_add_delayed_item(node, item,
438 BTRFS_DELAYED_INSERTION_ITEM);
439}
440
441static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
442 struct btrfs_delayed_item *item)
443{
444 return __btrfs_add_delayed_item(node, item,
445 BTRFS_DELAYED_DELETION_ITEM);
446}
447
de3cb945
CM
448static void finish_one_item(struct btrfs_delayed_root *delayed_root)
449{
450 int seq = atomic_inc_return(&delayed_root->items_seq);
ee863954
DS
451
452 /*
453 * atomic_dec_return implies a barrier for waitqueue_active
454 */
de3cb945
CM
455 if ((atomic_dec_return(&delayed_root->items) <
456 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
457 waitqueue_active(&delayed_root->wait))
458 wake_up(&delayed_root->wait);
459}
460
16cdcec7
MX
461static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
462{
463 struct rb_root *root;
464 struct btrfs_delayed_root *delayed_root;
465
466 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
467
468 BUG_ON(!delayed_root);
469 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
470 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
471
472 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
473 root = &delayed_item->delayed_node->ins_root;
474 else
475 root = &delayed_item->delayed_node->del_root;
476
477 rb_erase(&delayed_item->rb_node, root);
478 delayed_item->delayed_node->count--;
de3cb945
CM
479
480 finish_one_item(delayed_root);
16cdcec7
MX
481}
482
483static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
484{
485 if (item) {
486 __btrfs_remove_delayed_item(item);
487 if (atomic_dec_and_test(&item->refs))
488 kfree(item);
489 }
490}
491
48a3b636 492static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
16cdcec7
MX
493 struct btrfs_delayed_node *delayed_node)
494{
495 struct rb_node *p;
496 struct btrfs_delayed_item *item = NULL;
497
498 p = rb_first(&delayed_node->ins_root);
499 if (p)
500 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
501
502 return item;
503}
504
48a3b636 505static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
16cdcec7
MX
506 struct btrfs_delayed_node *delayed_node)
507{
508 struct rb_node *p;
509 struct btrfs_delayed_item *item = NULL;
510
511 p = rb_first(&delayed_node->del_root);
512 if (p)
513 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
514
515 return item;
516}
517
48a3b636 518static struct btrfs_delayed_item *__btrfs_next_delayed_item(
16cdcec7
MX
519 struct btrfs_delayed_item *item)
520{
521 struct rb_node *p;
522 struct btrfs_delayed_item *next = NULL;
523
524 p = rb_next(&item->rb_node);
525 if (p)
526 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
527
528 return next;
529}
530
16cdcec7
MX
531static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
532 struct btrfs_root *root,
533 struct btrfs_delayed_item *item)
534{
0b246afa 535 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
536 struct btrfs_block_rsv *src_rsv;
537 struct btrfs_block_rsv *dst_rsv;
538 u64 num_bytes;
539 int ret;
540
541 if (!trans->bytes_reserved)
542 return 0;
543
544 src_rsv = trans->block_rsv;
0b246afa 545 dst_rsv = &fs_info->delayed_block_rsv;
16cdcec7 546
0b246afa 547 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
25d609f8 548 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
8c2a3ca2 549 if (!ret) {
0b246afa 550 trace_btrfs_space_reservation(fs_info, "delayed_item",
8c2a3ca2
JB
551 item->key.objectid,
552 num_bytes, 1);
16cdcec7 553 item->bytes_reserved = num_bytes;
8c2a3ca2 554 }
16cdcec7
MX
555
556 return ret;
557}
558
559static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
560 struct btrfs_delayed_item *item)
561{
0b246afa 562 struct btrfs_fs_info *fs_info = root->fs_info;
19fd2949
MX
563 struct btrfs_block_rsv *rsv;
564
16cdcec7
MX
565 if (!item->bytes_reserved)
566 return;
567
0b246afa
JM
568 rsv = &fs_info->delayed_block_rsv;
569 trace_btrfs_space_reservation(fs_info, "delayed_item",
8c2a3ca2
JB
570 item->key.objectid, item->bytes_reserved,
571 0);
19fd2949 572 btrfs_block_rsv_release(root, rsv,
16cdcec7
MX
573 item->bytes_reserved);
574}
575
576static int btrfs_delayed_inode_reserve_metadata(
577 struct btrfs_trans_handle *trans,
578 struct btrfs_root *root,
7fd2ae21 579 struct inode *inode,
16cdcec7
MX
580 struct btrfs_delayed_node *node)
581{
0b246afa 582 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
583 struct btrfs_block_rsv *src_rsv;
584 struct btrfs_block_rsv *dst_rsv;
585 u64 num_bytes;
586 int ret;
8c2a3ca2 587 bool release = false;
16cdcec7 588
16cdcec7 589 src_rsv = trans->block_rsv;
0b246afa 590 dst_rsv = &fs_info->delayed_block_rsv;
16cdcec7 591
0b246afa 592 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
c06a0e12 593
c48f49d6
JB
594 /*
595 * If our block_rsv is the delalloc block reserve then check and see if
596 * we have our extra reservation for updating the inode. If not fall
597 * through and try to reserve space quickly.
598 *
599 * We used to try and steal from the delalloc block rsv or the global
600 * reserve, but we'd steal a full reservation, which isn't kind. We are
601 * here through delalloc which means we've likely just cowed down close
602 * to the leaf that contains the inode, so we would steal less just
603 * doing the fallback inode update, so if we do end up having to steal
604 * from the global block rsv we hopefully only steal one or two blocks
605 * worth which is less likely to hurt us.
606 */
607 if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
608 spin_lock(&BTRFS_I(inode)->lock);
609 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
610 &BTRFS_I(inode)->runtime_flags))
611 release = true;
612 else
613 src_rsv = NULL;
614 spin_unlock(&BTRFS_I(inode)->lock);
615 }
616
c06a0e12
JB
617 /*
618 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
619 * which doesn't reserve space for speed. This is a problem since we
620 * still need to reserve space for this update, so try to reserve the
621 * space.
622 *
623 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
624 * we're accounted for.
625 */
e755d9ab 626 if (!src_rsv || (!trans->bytes_reserved &&
66d8f3dd 627 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
08e007d2
MX
628 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
629 BTRFS_RESERVE_NO_FLUSH);
c06a0e12
JB
630 /*
631 * Since we're under a transaction reserve_metadata_bytes could
632 * try to commit the transaction which will make it return
633 * EAGAIN to make us stop the transaction we have, so return
634 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
635 */
636 if (ret == -EAGAIN)
637 ret = -ENOSPC;
8c2a3ca2 638 if (!ret) {
c06a0e12 639 node->bytes_reserved = num_bytes;
0b246afa 640 trace_btrfs_space_reservation(fs_info,
8c2a3ca2
JB
641 "delayed_inode",
642 btrfs_ino(inode),
643 num_bytes, 1);
644 }
c06a0e12
JB
645 return ret;
646 }
647
25d609f8 648 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
7fd2ae21 649
7fd2ae21
JB
650 /*
651 * Migrate only takes a reservation, it doesn't touch the size of the
652 * block_rsv. This is to simplify people who don't normally have things
653 * migrated from their block rsv. If they go to release their
654 * reservation, that will decrease the size as well, so if migrate
655 * reduced size we'd end up with a negative size. But for the
656 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
657 * but we could in fact do this reserve/migrate dance several times
658 * between the time we did the original reservation and we'd clean it
659 * up. So to take care of this, release the space for the meta
660 * reservation here. I think it may be time for a documentation page on
661 * how block rsvs. work.
662 */
8c2a3ca2 663 if (!ret) {
0b246afa 664 trace_btrfs_space_reservation(fs_info, "delayed_inode",
8c2a3ca2 665 btrfs_ino(inode), num_bytes, 1);
16cdcec7 666 node->bytes_reserved = num_bytes;
8c2a3ca2 667 }
16cdcec7 668
8c2a3ca2 669 if (release) {
0b246afa 670 trace_btrfs_space_reservation(fs_info, "delalloc",
8c2a3ca2 671 btrfs_ino(inode), num_bytes, 0);
7fd2ae21 672 btrfs_block_rsv_release(root, src_rsv, num_bytes);
8c2a3ca2 673 }
16cdcec7
MX
674
675 return ret;
676}
677
678static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
679 struct btrfs_delayed_node *node)
680{
0b246afa 681 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
682 struct btrfs_block_rsv *rsv;
683
684 if (!node->bytes_reserved)
685 return;
686
0b246afa
JM
687 rsv = &fs_info->delayed_block_rsv;
688 trace_btrfs_space_reservation(fs_info, "delayed_inode",
8c2a3ca2 689 node->inode_id, node->bytes_reserved, 0);
16cdcec7
MX
690 btrfs_block_rsv_release(root, rsv,
691 node->bytes_reserved);
692 node->bytes_reserved = 0;
693}
694
695/*
696 * This helper will insert some continuous items into the same leaf according
697 * to the free space of the leaf.
698 */
afe5fea7
TI
699static int btrfs_batch_insert_items(struct btrfs_root *root,
700 struct btrfs_path *path,
701 struct btrfs_delayed_item *item)
16cdcec7
MX
702{
703 struct btrfs_delayed_item *curr, *next;
704 int free_space;
705 int total_data_size = 0, total_size = 0;
706 struct extent_buffer *leaf;
707 char *data_ptr;
708 struct btrfs_key *keys;
709 u32 *data_size;
710 struct list_head head;
711 int slot;
712 int nitems;
713 int i;
714 int ret = 0;
715
716 BUG_ON(!path->nodes[0]);
717
718 leaf = path->nodes[0];
719 free_space = btrfs_leaf_free_space(root, leaf);
720 INIT_LIST_HEAD(&head);
721
722 next = item;
17aca1c9 723 nitems = 0;
16cdcec7
MX
724
725 /*
726 * count the number of the continuous items that we can insert in batch
727 */
728 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
729 free_space) {
730 total_data_size += next->data_len;
731 total_size += next->data_len + sizeof(struct btrfs_item);
732 list_add_tail(&next->tree_list, &head);
733 nitems++;
734
735 curr = next;
736 next = __btrfs_next_delayed_item(curr);
737 if (!next)
738 break;
739
740 if (!btrfs_is_continuous_delayed_item(curr, next))
741 break;
742 }
743
744 if (!nitems) {
745 ret = 0;
746 goto out;
747 }
748
749 /*
750 * we need allocate some memory space, but it might cause the task
751 * to sleep, so we set all locked nodes in the path to blocking locks
752 * first.
753 */
754 btrfs_set_path_blocking(path);
755
d9b0d9ba 756 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
16cdcec7
MX
757 if (!keys) {
758 ret = -ENOMEM;
759 goto out;
760 }
761
d9b0d9ba 762 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
16cdcec7
MX
763 if (!data_size) {
764 ret = -ENOMEM;
765 goto error;
766 }
767
768 /* get keys of all the delayed items */
769 i = 0;
770 list_for_each_entry(next, &head, tree_list) {
771 keys[i] = next->key;
772 data_size[i] = next->data_len;
773 i++;
774 }
775
776 /* reset all the locked nodes in the patch to spinning locks. */
bd681513 777 btrfs_clear_path_blocking(path, NULL, 0);
16cdcec7
MX
778
779 /* insert the keys of the items */
afe5fea7 780 setup_items_for_insert(root, path, keys, data_size,
143bede5 781 total_data_size, total_size, nitems);
16cdcec7
MX
782
783 /* insert the dir index items */
784 slot = path->slots[0];
785 list_for_each_entry_safe(curr, next, &head, tree_list) {
786 data_ptr = btrfs_item_ptr(leaf, slot, char);
787 write_extent_buffer(leaf, &curr->data,
788 (unsigned long)data_ptr,
789 curr->data_len);
790 slot++;
791
792 btrfs_delayed_item_release_metadata(root, curr);
793
794 list_del(&curr->tree_list);
795 btrfs_release_delayed_item(curr);
796 }
797
798error:
799 kfree(data_size);
800 kfree(keys);
801out:
802 return ret;
803}
804
805/*
806 * This helper can just do simple insertion that needn't extend item for new
807 * data, such as directory name index insertion, inode insertion.
808 */
809static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
810 struct btrfs_root *root,
811 struct btrfs_path *path,
812 struct btrfs_delayed_item *delayed_item)
813{
814 struct extent_buffer *leaf;
16cdcec7
MX
815 char *ptr;
816 int ret;
817
818 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
819 delayed_item->data_len);
820 if (ret < 0 && ret != -EEXIST)
821 return ret;
822
823 leaf = path->nodes[0];
824
16cdcec7
MX
825 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
826
827 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
828 delayed_item->data_len);
829 btrfs_mark_buffer_dirty(leaf);
830
831 btrfs_delayed_item_release_metadata(root, delayed_item);
832 return 0;
833}
834
835/*
836 * we insert an item first, then if there are some continuous items, we try
837 * to insert those items into the same leaf.
838 */
839static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
840 struct btrfs_path *path,
841 struct btrfs_root *root,
842 struct btrfs_delayed_node *node)
843{
844 struct btrfs_delayed_item *curr, *prev;
845 int ret = 0;
846
847do_again:
848 mutex_lock(&node->mutex);
849 curr = __btrfs_first_delayed_insertion_item(node);
850 if (!curr)
851 goto insert_end;
852
853 ret = btrfs_insert_delayed_item(trans, root, path, curr);
854 if (ret < 0) {
945d8962 855 btrfs_release_path(path);
16cdcec7
MX
856 goto insert_end;
857 }
858
859 prev = curr;
860 curr = __btrfs_next_delayed_item(prev);
861 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
862 /* insert the continuous items into the same leaf */
863 path->slots[0]++;
afe5fea7 864 btrfs_batch_insert_items(root, path, curr);
16cdcec7
MX
865 }
866 btrfs_release_delayed_item(prev);
867 btrfs_mark_buffer_dirty(path->nodes[0]);
868
945d8962 869 btrfs_release_path(path);
16cdcec7
MX
870 mutex_unlock(&node->mutex);
871 goto do_again;
872
873insert_end:
874 mutex_unlock(&node->mutex);
875 return ret;
876}
877
878static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
879 struct btrfs_root *root,
880 struct btrfs_path *path,
881 struct btrfs_delayed_item *item)
882{
883 struct btrfs_delayed_item *curr, *next;
884 struct extent_buffer *leaf;
885 struct btrfs_key key;
886 struct list_head head;
887 int nitems, i, last_item;
888 int ret = 0;
889
890 BUG_ON(!path->nodes[0]);
891
892 leaf = path->nodes[0];
893
894 i = path->slots[0];
895 last_item = btrfs_header_nritems(leaf) - 1;
896 if (i > last_item)
897 return -ENOENT; /* FIXME: Is errno suitable? */
898
899 next = item;
900 INIT_LIST_HEAD(&head);
901 btrfs_item_key_to_cpu(leaf, &key, i);
902 nitems = 0;
903 /*
904 * count the number of the dir index items that we can delete in batch
905 */
906 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
907 list_add_tail(&next->tree_list, &head);
908 nitems++;
909
910 curr = next;
911 next = __btrfs_next_delayed_item(curr);
912 if (!next)
913 break;
914
915 if (!btrfs_is_continuous_delayed_item(curr, next))
916 break;
917
918 i++;
919 if (i > last_item)
920 break;
921 btrfs_item_key_to_cpu(leaf, &key, i);
922 }
923
924 if (!nitems)
925 return 0;
926
927 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
928 if (ret)
929 goto out;
930
931 list_for_each_entry_safe(curr, next, &head, tree_list) {
932 btrfs_delayed_item_release_metadata(root, curr);
933 list_del(&curr->tree_list);
934 btrfs_release_delayed_item(curr);
935 }
936
937out:
938 return ret;
939}
940
941static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
942 struct btrfs_path *path,
943 struct btrfs_root *root,
944 struct btrfs_delayed_node *node)
945{
946 struct btrfs_delayed_item *curr, *prev;
947 int ret = 0;
948
949do_again:
950 mutex_lock(&node->mutex);
951 curr = __btrfs_first_delayed_deletion_item(node);
952 if (!curr)
953 goto delete_fail;
954
955 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
956 if (ret < 0)
957 goto delete_fail;
958 else if (ret > 0) {
959 /*
960 * can't find the item which the node points to, so this node
961 * is invalid, just drop it.
962 */
963 prev = curr;
964 curr = __btrfs_next_delayed_item(prev);
965 btrfs_release_delayed_item(prev);
966 ret = 0;
945d8962 967 btrfs_release_path(path);
62095265
FW
968 if (curr) {
969 mutex_unlock(&node->mutex);
16cdcec7 970 goto do_again;
62095265 971 } else
16cdcec7
MX
972 goto delete_fail;
973 }
974
975 btrfs_batch_delete_items(trans, root, path, curr);
945d8962 976 btrfs_release_path(path);
16cdcec7
MX
977 mutex_unlock(&node->mutex);
978 goto do_again;
979
980delete_fail:
945d8962 981 btrfs_release_path(path);
16cdcec7
MX
982 mutex_unlock(&node->mutex);
983 return ret;
984}
985
986static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
987{
988 struct btrfs_delayed_root *delayed_root;
989
7cf35d91
MX
990 if (delayed_node &&
991 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
16cdcec7 992 BUG_ON(!delayed_node->root);
7cf35d91 993 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
16cdcec7
MX
994 delayed_node->count--;
995
996 delayed_root = delayed_node->root->fs_info->delayed_root;
de3cb945 997 finish_one_item(delayed_root);
16cdcec7
MX
998 }
999}
1000
67de1176
MX
1001static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1002{
1003 struct btrfs_delayed_root *delayed_root;
1004
1005 ASSERT(delayed_node->root);
1006 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1007 delayed_node->count--;
1008
1009 delayed_root = delayed_node->root->fs_info->delayed_root;
1010 finish_one_item(delayed_root);
1011}
1012
0e8c36a9
MX
1013static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1014 struct btrfs_root *root,
1015 struct btrfs_path *path,
1016 struct btrfs_delayed_node *node)
16cdcec7
MX
1017{
1018 struct btrfs_key key;
1019 struct btrfs_inode_item *inode_item;
1020 struct extent_buffer *leaf;
67de1176 1021 int mod;
16cdcec7
MX
1022 int ret;
1023
16cdcec7 1024 key.objectid = node->inode_id;
962a298f 1025 key.type = BTRFS_INODE_ITEM_KEY;
16cdcec7 1026 key.offset = 0;
0e8c36a9 1027
67de1176
MX
1028 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1029 mod = -1;
1030 else
1031 mod = 1;
1032
1033 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
16cdcec7 1034 if (ret > 0) {
945d8962 1035 btrfs_release_path(path);
16cdcec7
MX
1036 return -ENOENT;
1037 } else if (ret < 0) {
16cdcec7
MX
1038 return ret;
1039 }
1040
16cdcec7
MX
1041 leaf = path->nodes[0];
1042 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1043 struct btrfs_inode_item);
1044 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1045 sizeof(struct btrfs_inode_item));
1046 btrfs_mark_buffer_dirty(leaf);
16cdcec7 1047
67de1176
MX
1048 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1049 goto no_iref;
1050
1051 path->slots[0]++;
1052 if (path->slots[0] >= btrfs_header_nritems(leaf))
1053 goto search;
1054again:
1055 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1056 if (key.objectid != node->inode_id)
1057 goto out;
1058
1059 if (key.type != BTRFS_INODE_REF_KEY &&
1060 key.type != BTRFS_INODE_EXTREF_KEY)
1061 goto out;
1062
1063 /*
1064 * Delayed iref deletion is for the inode who has only one link,
1065 * so there is only one iref. The case that several irefs are
1066 * in the same item doesn't exist.
1067 */
1068 btrfs_del_item(trans, root, path);
1069out:
1070 btrfs_release_delayed_iref(node);
1071no_iref:
1072 btrfs_release_path(path);
1073err_out:
16cdcec7
MX
1074 btrfs_delayed_inode_release_metadata(root, node);
1075 btrfs_release_delayed_inode(node);
16cdcec7 1076
67de1176
MX
1077 return ret;
1078
1079search:
1080 btrfs_release_path(path);
1081
962a298f 1082 key.type = BTRFS_INODE_EXTREF_KEY;
67de1176
MX
1083 key.offset = -1;
1084 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1085 if (ret < 0)
1086 goto err_out;
1087 ASSERT(ret);
1088
1089 ret = 0;
1090 leaf = path->nodes[0];
1091 path->slots[0]--;
1092 goto again;
16cdcec7
MX
1093}
1094
0e8c36a9
MX
1095static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 struct btrfs_delayed_node *node)
1099{
1100 int ret;
1101
1102 mutex_lock(&node->mutex);
7cf35d91 1103 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
0e8c36a9
MX
1104 mutex_unlock(&node->mutex);
1105 return 0;
1106 }
1107
1108 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1109 mutex_unlock(&node->mutex);
1110 return ret;
1111}
1112
4ea41ce0
MX
1113static inline int
1114__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1115 struct btrfs_path *path,
1116 struct btrfs_delayed_node *node)
1117{
1118 int ret;
1119
1120 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1121 if (ret)
1122 return ret;
1123
1124 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1125 if (ret)
1126 return ret;
1127
1128 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1129 return ret;
1130}
1131
79787eaa
JM
1132/*
1133 * Called when committing the transaction.
1134 * Returns 0 on success.
1135 * Returns < 0 on error and returns with an aborted transaction with any
1136 * outstanding delayed items cleaned up.
1137 */
96c3f433
JB
1138static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1139 struct btrfs_root *root, int nr)
16cdcec7 1140{
0b246afa 1141 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
1142 struct btrfs_delayed_root *delayed_root;
1143 struct btrfs_delayed_node *curr_node, *prev_node;
1144 struct btrfs_path *path;
19fd2949 1145 struct btrfs_block_rsv *block_rsv;
16cdcec7 1146 int ret = 0;
96c3f433 1147 bool count = (nr > 0);
16cdcec7 1148
79787eaa
JM
1149 if (trans->aborted)
1150 return -EIO;
1151
16cdcec7
MX
1152 path = btrfs_alloc_path();
1153 if (!path)
1154 return -ENOMEM;
1155 path->leave_spinning = 1;
1156
19fd2949 1157 block_rsv = trans->block_rsv;
0b246afa 1158 trans->block_rsv = &fs_info->delayed_block_rsv;
19fd2949 1159
ccdf9b30 1160 delayed_root = fs_info->delayed_root;
16cdcec7
MX
1161
1162 curr_node = btrfs_first_delayed_node(delayed_root);
96c3f433 1163 while (curr_node && (!count || (count && nr--))) {
4ea41ce0
MX
1164 ret = __btrfs_commit_inode_delayed_items(trans, path,
1165 curr_node);
16cdcec7
MX
1166 if (ret) {
1167 btrfs_release_delayed_node(curr_node);
96c3f433 1168 curr_node = NULL;
66642832 1169 btrfs_abort_transaction(trans, ret);
16cdcec7
MX
1170 break;
1171 }
1172
1173 prev_node = curr_node;
1174 curr_node = btrfs_next_delayed_node(curr_node);
1175 btrfs_release_delayed_node(prev_node);
1176 }
1177
96c3f433
JB
1178 if (curr_node)
1179 btrfs_release_delayed_node(curr_node);
16cdcec7 1180 btrfs_free_path(path);
19fd2949 1181 trans->block_rsv = block_rsv;
79787eaa 1182
16cdcec7
MX
1183 return ret;
1184}
1185
96c3f433
JB
1186int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1187 struct btrfs_root *root)
1188{
1189 return __btrfs_run_delayed_items(trans, root, -1);
1190}
1191
1192int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1193 struct btrfs_root *root, int nr)
1194{
1195 return __btrfs_run_delayed_items(trans, root, nr);
1196}
1197
16cdcec7
MX
1198int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1199 struct inode *inode)
1200{
1201 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
4ea41ce0
MX
1202 struct btrfs_path *path;
1203 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1204 int ret;
1205
1206 if (!delayed_node)
1207 return 0;
1208
1209 mutex_lock(&delayed_node->mutex);
1210 if (!delayed_node->count) {
1211 mutex_unlock(&delayed_node->mutex);
1212 btrfs_release_delayed_node(delayed_node);
1213 return 0;
1214 }
1215 mutex_unlock(&delayed_node->mutex);
1216
4ea41ce0 1217 path = btrfs_alloc_path();
3c77bd94
FDBM
1218 if (!path) {
1219 btrfs_release_delayed_node(delayed_node);
4ea41ce0 1220 return -ENOMEM;
3c77bd94 1221 }
4ea41ce0
MX
1222 path->leave_spinning = 1;
1223
1224 block_rsv = trans->block_rsv;
1225 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1226
1227 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1228
16cdcec7 1229 btrfs_release_delayed_node(delayed_node);
4ea41ce0
MX
1230 btrfs_free_path(path);
1231 trans->block_rsv = block_rsv;
1232
16cdcec7
MX
1233 return ret;
1234}
1235
0e8c36a9
MX
1236int btrfs_commit_inode_delayed_inode(struct inode *inode)
1237{
1238 struct btrfs_trans_handle *trans;
1239 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1240 struct btrfs_path *path;
1241 struct btrfs_block_rsv *block_rsv;
1242 int ret;
1243
1244 if (!delayed_node)
1245 return 0;
1246
1247 mutex_lock(&delayed_node->mutex);
7cf35d91 1248 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
0e8c36a9
MX
1249 mutex_unlock(&delayed_node->mutex);
1250 btrfs_release_delayed_node(delayed_node);
1251 return 0;
1252 }
1253 mutex_unlock(&delayed_node->mutex);
1254
1255 trans = btrfs_join_transaction(delayed_node->root);
1256 if (IS_ERR(trans)) {
1257 ret = PTR_ERR(trans);
1258 goto out;
1259 }
1260
1261 path = btrfs_alloc_path();
1262 if (!path) {
1263 ret = -ENOMEM;
1264 goto trans_out;
1265 }
1266 path->leave_spinning = 1;
1267
1268 block_rsv = trans->block_rsv;
1269 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1270
1271 mutex_lock(&delayed_node->mutex);
7cf35d91 1272 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
0e8c36a9
MX
1273 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1274 path, delayed_node);
1275 else
1276 ret = 0;
1277 mutex_unlock(&delayed_node->mutex);
1278
1279 btrfs_free_path(path);
1280 trans->block_rsv = block_rsv;
1281trans_out:
1282 btrfs_end_transaction(trans, delayed_node->root);
1283 btrfs_btree_balance_dirty(delayed_node->root);
1284out:
1285 btrfs_release_delayed_node(delayed_node);
1286
1287 return ret;
1288}
1289
16cdcec7
MX
1290void btrfs_remove_delayed_node(struct inode *inode)
1291{
1292 struct btrfs_delayed_node *delayed_node;
1293
1294 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1295 if (!delayed_node)
1296 return;
1297
1298 BTRFS_I(inode)->delayed_node = NULL;
1299 btrfs_release_delayed_node(delayed_node);
1300}
1301
de3cb945
CM
1302struct btrfs_async_delayed_work {
1303 struct btrfs_delayed_root *delayed_root;
1304 int nr;
d458b054 1305 struct btrfs_work work;
16cdcec7
MX
1306};
1307
d458b054 1308static void btrfs_async_run_delayed_root(struct btrfs_work *work)
16cdcec7 1309{
de3cb945
CM
1310 struct btrfs_async_delayed_work *async_work;
1311 struct btrfs_delayed_root *delayed_root;
16cdcec7
MX
1312 struct btrfs_trans_handle *trans;
1313 struct btrfs_path *path;
1314 struct btrfs_delayed_node *delayed_node = NULL;
1315 struct btrfs_root *root;
19fd2949 1316 struct btrfs_block_rsv *block_rsv;
de3cb945 1317 int total_done = 0;
16cdcec7 1318
de3cb945
CM
1319 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1320 delayed_root = async_work->delayed_root;
16cdcec7
MX
1321
1322 path = btrfs_alloc_path();
1323 if (!path)
1324 goto out;
16cdcec7 1325
de3cb945
CM
1326again:
1327 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1328 goto free_path;
1329
1330 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1331 if (!delayed_node)
1332 goto free_path;
1333
1334 path->leave_spinning = 1;
16cdcec7
MX
1335 root = delayed_node->root;
1336
ff5714cc 1337 trans = btrfs_join_transaction(root);
16cdcec7 1338 if (IS_ERR(trans))
de3cb945 1339 goto release_path;
16cdcec7 1340
19fd2949 1341 block_rsv = trans->block_rsv;
6d668dda 1342 trans->block_rsv = &root->fs_info->delayed_block_rsv;
19fd2949 1343
4ea41ce0 1344 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
16cdcec7 1345
19fd2949 1346 trans->block_rsv = block_rsv;
a56dbd89 1347 btrfs_end_transaction(trans, root);
b53d3f5d 1348 btrfs_btree_balance_dirty_nodelay(root);
de3cb945
CM
1349
1350release_path:
1351 btrfs_release_path(path);
1352 total_done++;
1353
1354 btrfs_release_prepared_delayed_node(delayed_node);
1355 if (async_work->nr == 0 || total_done < async_work->nr)
1356 goto again;
1357
16cdcec7
MX
1358free_path:
1359 btrfs_free_path(path);
1360out:
de3cb945
CM
1361 wake_up(&delayed_root->wait);
1362 kfree(async_work);
16cdcec7
MX
1363}
1364
de3cb945 1365
16cdcec7 1366static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
a585e948 1367 struct btrfs_fs_info *fs_info, int nr)
16cdcec7 1368{
de3cb945 1369 struct btrfs_async_delayed_work *async_work;
16cdcec7 1370
de3cb945 1371 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
16cdcec7
MX
1372 return 0;
1373
de3cb945
CM
1374 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1375 if (!async_work)
16cdcec7 1376 return -ENOMEM;
16cdcec7 1377
de3cb945 1378 async_work->delayed_root = delayed_root;
9e0af237
LB
1379 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1380 btrfs_async_run_delayed_root, NULL, NULL);
de3cb945 1381 async_work->nr = nr;
16cdcec7 1382
a585e948 1383 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
16cdcec7
MX
1384 return 0;
1385}
1386
ccdf9b30 1387void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
e999376f 1388{
ccdf9b30 1389 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
e999376f
CM
1390}
1391
0353808c 1392static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
de3cb945
CM
1393{
1394 int val = atomic_read(&delayed_root->items_seq);
1395
0353808c 1396 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
de3cb945 1397 return 1;
0353808c
MX
1398
1399 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1400 return 1;
1401
de3cb945
CM
1402 return 0;
1403}
1404
16cdcec7
MX
1405void btrfs_balance_delayed_items(struct btrfs_root *root)
1406{
1407 struct btrfs_delayed_root *delayed_root;
a585e948 1408 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7 1409
ccdf9b30 1410 delayed_root = fs_info->delayed_root;
16cdcec7
MX
1411
1412 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1413 return;
1414
1415 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
0353808c 1416 int seq;
16cdcec7 1417 int ret;
0353808c
MX
1418
1419 seq = atomic_read(&delayed_root->items_seq);
de3cb945 1420
a585e948 1421 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
16cdcec7
MX
1422 if (ret)
1423 return;
1424
0353808c
MX
1425 wait_event_interruptible(delayed_root->wait,
1426 could_end_wait(delayed_root, seq));
4dd466d3 1427 return;
16cdcec7
MX
1428 }
1429
a585e948 1430 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
16cdcec7
MX
1431}
1432
79787eaa 1433/* Will return 0 or -ENOMEM */
16cdcec7
MX
1434int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1435 struct btrfs_root *root, const char *name,
1436 int name_len, struct inode *dir,
1437 struct btrfs_disk_key *disk_key, u8 type,
1438 u64 index)
1439{
1440 struct btrfs_delayed_node *delayed_node;
1441 struct btrfs_delayed_item *delayed_item;
1442 struct btrfs_dir_item *dir_item;
1443 int ret;
1444
1445 delayed_node = btrfs_get_or_create_delayed_node(dir);
1446 if (IS_ERR(delayed_node))
1447 return PTR_ERR(delayed_node);
1448
1449 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1450 if (!delayed_item) {
1451 ret = -ENOMEM;
1452 goto release_node;
1453 }
1454
0d0ca30f 1455 delayed_item->key.objectid = btrfs_ino(dir);
962a298f 1456 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
16cdcec7
MX
1457 delayed_item->key.offset = index;
1458
1459 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1460 dir_item->location = *disk_key;
3cae210f
QW
1461 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1462 btrfs_set_stack_dir_data_len(dir_item, 0);
1463 btrfs_set_stack_dir_name_len(dir_item, name_len);
1464 btrfs_set_stack_dir_type(dir_item, type);
16cdcec7
MX
1465 memcpy((char *)(dir_item + 1), name, name_len);
1466
8c2a3ca2
JB
1467 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1468 /*
1469 * we have reserved enough space when we start a new transaction,
1470 * so reserving metadata failure is impossible
1471 */
1472 BUG_ON(ret);
1473
1474
16cdcec7
MX
1475 mutex_lock(&delayed_node->mutex);
1476 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1477 if (unlikely(ret)) {
5d163e0e
JM
1478 btrfs_err(root->fs_info,
1479 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1480 name_len, name, delayed_node->root->objectid,
1481 delayed_node->inode_id, ret);
16cdcec7
MX
1482 BUG();
1483 }
1484 mutex_unlock(&delayed_node->mutex);
1485
1486release_node:
1487 btrfs_release_delayed_node(delayed_node);
1488 return ret;
1489}
1490
1491static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1492 struct btrfs_delayed_node *node,
1493 struct btrfs_key *key)
1494{
1495 struct btrfs_delayed_item *item;
1496
1497 mutex_lock(&node->mutex);
1498 item = __btrfs_lookup_delayed_insertion_item(node, key);
1499 if (!item) {
1500 mutex_unlock(&node->mutex);
1501 return 1;
1502 }
1503
1504 btrfs_delayed_item_release_metadata(root, item);
1505 btrfs_release_delayed_item(item);
1506 mutex_unlock(&node->mutex);
1507 return 0;
1508}
1509
1510int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1511 struct btrfs_root *root, struct inode *dir,
1512 u64 index)
1513{
1514 struct btrfs_delayed_node *node;
1515 struct btrfs_delayed_item *item;
1516 struct btrfs_key item_key;
1517 int ret;
1518
1519 node = btrfs_get_or_create_delayed_node(dir);
1520 if (IS_ERR(node))
1521 return PTR_ERR(node);
1522
0d0ca30f 1523 item_key.objectid = btrfs_ino(dir);
962a298f 1524 item_key.type = BTRFS_DIR_INDEX_KEY;
16cdcec7
MX
1525 item_key.offset = index;
1526
1527 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1528 if (!ret)
1529 goto end;
1530
1531 item = btrfs_alloc_delayed_item(0);
1532 if (!item) {
1533 ret = -ENOMEM;
1534 goto end;
1535 }
1536
1537 item->key = item_key;
1538
1539 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1540 /*
1541 * we have reserved enough space when we start a new transaction,
1542 * so reserving metadata failure is impossible.
1543 */
1544 BUG_ON(ret);
1545
1546 mutex_lock(&node->mutex);
1547 ret = __btrfs_add_delayed_deletion_item(node, item);
1548 if (unlikely(ret)) {
5d163e0e
JM
1549 btrfs_err(root->fs_info,
1550 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1551 index, node->root->objectid, node->inode_id, ret);
16cdcec7
MX
1552 BUG();
1553 }
1554 mutex_unlock(&node->mutex);
1555end:
1556 btrfs_release_delayed_node(node);
1557 return ret;
1558}
1559
1560int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1561{
2f7e33d4 1562 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
16cdcec7
MX
1563
1564 if (!delayed_node)
1565 return -ENOENT;
1566
1567 /*
1568 * Since we have held i_mutex of this directory, it is impossible that
1569 * a new directory index is added into the delayed node and index_cnt
1570 * is updated now. So we needn't lock the delayed node.
1571 */
2f7e33d4
MX
1572 if (!delayed_node->index_cnt) {
1573 btrfs_release_delayed_node(delayed_node);
16cdcec7 1574 return -EINVAL;
2f7e33d4 1575 }
16cdcec7
MX
1576
1577 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
2f7e33d4
MX
1578 btrfs_release_delayed_node(delayed_node);
1579 return 0;
16cdcec7
MX
1580}
1581
02dbfc99
OS
1582bool btrfs_readdir_get_delayed_items(struct inode *inode,
1583 struct list_head *ins_list,
1584 struct list_head *del_list)
16cdcec7
MX
1585{
1586 struct btrfs_delayed_node *delayed_node;
1587 struct btrfs_delayed_item *item;
1588
1589 delayed_node = btrfs_get_delayed_node(inode);
1590 if (!delayed_node)
02dbfc99
OS
1591 return false;
1592
1593 /*
1594 * We can only do one readdir with delayed items at a time because of
1595 * item->readdir_list.
1596 */
1597 inode_unlock_shared(inode);
1598 inode_lock(inode);
16cdcec7
MX
1599
1600 mutex_lock(&delayed_node->mutex);
1601 item = __btrfs_first_delayed_insertion_item(delayed_node);
1602 while (item) {
1603 atomic_inc(&item->refs);
1604 list_add_tail(&item->readdir_list, ins_list);
1605 item = __btrfs_next_delayed_item(item);
1606 }
1607
1608 item = __btrfs_first_delayed_deletion_item(delayed_node);
1609 while (item) {
1610 atomic_inc(&item->refs);
1611 list_add_tail(&item->readdir_list, del_list);
1612 item = __btrfs_next_delayed_item(item);
1613 }
1614 mutex_unlock(&delayed_node->mutex);
1615 /*
1616 * This delayed node is still cached in the btrfs inode, so refs
1617 * must be > 1 now, and we needn't check it is going to be freed
1618 * or not.
1619 *
1620 * Besides that, this function is used to read dir, we do not
1621 * insert/delete delayed items in this period. So we also needn't
1622 * requeue or dequeue this delayed node.
1623 */
1624 atomic_dec(&delayed_node->refs);
02dbfc99
OS
1625
1626 return true;
16cdcec7
MX
1627}
1628
02dbfc99
OS
1629void btrfs_readdir_put_delayed_items(struct inode *inode,
1630 struct list_head *ins_list,
1631 struct list_head *del_list)
16cdcec7
MX
1632{
1633 struct btrfs_delayed_item *curr, *next;
1634
1635 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1636 list_del(&curr->readdir_list);
1637 if (atomic_dec_and_test(&curr->refs))
1638 kfree(curr);
1639 }
1640
1641 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1642 list_del(&curr->readdir_list);
1643 if (atomic_dec_and_test(&curr->refs))
1644 kfree(curr);
1645 }
02dbfc99
OS
1646
1647 /*
1648 * The VFS is going to do up_read(), so we need to downgrade back to a
1649 * read lock.
1650 */
1651 downgrade_write(&inode->i_rwsem);
16cdcec7
MX
1652}
1653
1654int btrfs_should_delete_dir_index(struct list_head *del_list,
1655 u64 index)
1656{
1657 struct btrfs_delayed_item *curr, *next;
1658 int ret;
1659
1660 if (list_empty(del_list))
1661 return 0;
1662
1663 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1664 if (curr->key.offset > index)
1665 break;
1666
1667 list_del(&curr->readdir_list);
1668 ret = (curr->key.offset == index);
1669
1670 if (atomic_dec_and_test(&curr->refs))
1671 kfree(curr);
1672
1673 if (ret)
1674 return 1;
1675 else
1676 continue;
1677 }
1678 return 0;
1679}
1680
1681/*
1682 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1683 *
1684 */
9cdda8d3 1685int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
d2fbb2b5 1686 struct list_head *ins_list)
16cdcec7
MX
1687{
1688 struct btrfs_dir_item *di;
1689 struct btrfs_delayed_item *curr, *next;
1690 struct btrfs_key location;
1691 char *name;
1692 int name_len;
1693 int over = 0;
1694 unsigned char d_type;
1695
1696 if (list_empty(ins_list))
1697 return 0;
1698
1699 /*
1700 * Changing the data of the delayed item is impossible. So
1701 * we needn't lock them. And we have held i_mutex of the
1702 * directory, nobody can delete any directory indexes now.
1703 */
1704 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1705 list_del(&curr->readdir_list);
1706
9cdda8d3 1707 if (curr->key.offset < ctx->pos) {
16cdcec7
MX
1708 if (atomic_dec_and_test(&curr->refs))
1709 kfree(curr);
1710 continue;
1711 }
1712
9cdda8d3 1713 ctx->pos = curr->key.offset;
16cdcec7
MX
1714
1715 di = (struct btrfs_dir_item *)curr->data;
1716 name = (char *)(di + 1);
3cae210f 1717 name_len = btrfs_stack_dir_name_len(di);
16cdcec7
MX
1718
1719 d_type = btrfs_filetype_table[di->type];
1720 btrfs_disk_key_to_cpu(&location, &di->location);
1721
9cdda8d3 1722 over = !dir_emit(ctx, name, name_len,
16cdcec7
MX
1723 location.objectid, d_type);
1724
1725 if (atomic_dec_and_test(&curr->refs))
1726 kfree(curr);
1727
1728 if (over)
1729 return 1;
1730 }
1731 return 0;
1732}
1733
16cdcec7
MX
1734static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1735 struct btrfs_inode_item *inode_item,
1736 struct inode *inode)
1737{
2f2f43d3
EB
1738 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1739 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
16cdcec7
MX
1740 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1741 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1742 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1743 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1744 btrfs_set_stack_inode_generation(inode_item,
1745 BTRFS_I(inode)->generation);
0c4d2d95 1746 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
16cdcec7
MX
1747 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1748 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1749 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
ff5714cc 1750 btrfs_set_stack_inode_block_group(inode_item, 0);
16cdcec7 1751
a937b979 1752 btrfs_set_stack_timespec_sec(&inode_item->atime,
16cdcec7 1753 inode->i_atime.tv_sec);
a937b979 1754 btrfs_set_stack_timespec_nsec(&inode_item->atime,
16cdcec7
MX
1755 inode->i_atime.tv_nsec);
1756
a937b979 1757 btrfs_set_stack_timespec_sec(&inode_item->mtime,
16cdcec7 1758 inode->i_mtime.tv_sec);
a937b979 1759 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
16cdcec7
MX
1760 inode->i_mtime.tv_nsec);
1761
a937b979 1762 btrfs_set_stack_timespec_sec(&inode_item->ctime,
16cdcec7 1763 inode->i_ctime.tv_sec);
a937b979 1764 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
16cdcec7 1765 inode->i_ctime.tv_nsec);
9cc97d64 1766
1767 btrfs_set_stack_timespec_sec(&inode_item->otime,
1768 BTRFS_I(inode)->i_otime.tv_sec);
1769 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1770 BTRFS_I(inode)->i_otime.tv_nsec);
16cdcec7
MX
1771}
1772
2f7e33d4
MX
1773int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1774{
1775 struct btrfs_delayed_node *delayed_node;
1776 struct btrfs_inode_item *inode_item;
2f7e33d4
MX
1777
1778 delayed_node = btrfs_get_delayed_node(inode);
1779 if (!delayed_node)
1780 return -ENOENT;
1781
1782 mutex_lock(&delayed_node->mutex);
7cf35d91 1783 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2f7e33d4
MX
1784 mutex_unlock(&delayed_node->mutex);
1785 btrfs_release_delayed_node(delayed_node);
1786 return -ENOENT;
1787 }
1788
1789 inode_item = &delayed_node->inode_item;
1790
2f2f43d3
EB
1791 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1792 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
2f7e33d4
MX
1793 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1794 inode->i_mode = btrfs_stack_inode_mode(inode_item);
bfe86848 1795 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
2f7e33d4
MX
1796 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1797 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
6e17d30b
YD
1798 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1799
0c4d2d95 1800 inode->i_version = btrfs_stack_inode_sequence(inode_item);
2f7e33d4
MX
1801 inode->i_rdev = 0;
1802 *rdev = btrfs_stack_inode_rdev(inode_item);
1803 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1804
a937b979
DS
1805 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1806 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
2f7e33d4 1807
a937b979
DS
1808 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1809 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
2f7e33d4 1810
a937b979
DS
1811 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1812 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
2f7e33d4 1813
9cc97d64 1814 BTRFS_I(inode)->i_otime.tv_sec =
1815 btrfs_stack_timespec_sec(&inode_item->otime);
1816 BTRFS_I(inode)->i_otime.tv_nsec =
1817 btrfs_stack_timespec_nsec(&inode_item->otime);
1818
2f7e33d4
MX
1819 inode->i_generation = BTRFS_I(inode)->generation;
1820 BTRFS_I(inode)->index_cnt = (u64)-1;
1821
1822 mutex_unlock(&delayed_node->mutex);
1823 btrfs_release_delayed_node(delayed_node);
1824 return 0;
1825}
1826
16cdcec7
MX
1827int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1828 struct btrfs_root *root, struct inode *inode)
1829{
1830 struct btrfs_delayed_node *delayed_node;
aa0467d8 1831 int ret = 0;
16cdcec7
MX
1832
1833 delayed_node = btrfs_get_or_create_delayed_node(inode);
1834 if (IS_ERR(delayed_node))
1835 return PTR_ERR(delayed_node);
1836
1837 mutex_lock(&delayed_node->mutex);
7cf35d91 1838 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
16cdcec7
MX
1839 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1840 goto release_node;
1841 }
1842
7fd2ae21
JB
1843 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1844 delayed_node);
c06a0e12
JB
1845 if (ret)
1846 goto release_node;
16cdcec7
MX
1847
1848 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
7cf35d91 1849 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
16cdcec7
MX
1850 delayed_node->count++;
1851 atomic_inc(&root->fs_info->delayed_root->items);
1852release_node:
1853 mutex_unlock(&delayed_node->mutex);
1854 btrfs_release_delayed_node(delayed_node);
1855 return ret;
1856}
1857
67de1176
MX
1858int btrfs_delayed_delete_inode_ref(struct inode *inode)
1859{
0b246afa 1860 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
67de1176
MX
1861 struct btrfs_delayed_node *delayed_node;
1862
6f896054
CM
1863 /*
1864 * we don't do delayed inode updates during log recovery because it
1865 * leads to enospc problems. This means we also can't do
1866 * delayed inode refs
1867 */
0b246afa 1868 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
6f896054
CM
1869 return -EAGAIN;
1870
67de1176
MX
1871 delayed_node = btrfs_get_or_create_delayed_node(inode);
1872 if (IS_ERR(delayed_node))
1873 return PTR_ERR(delayed_node);
1874
1875 /*
1876 * We don't reserve space for inode ref deletion is because:
1877 * - We ONLY do async inode ref deletion for the inode who has only
1878 * one link(i_nlink == 1), it means there is only one inode ref.
1879 * And in most case, the inode ref and the inode item are in the
1880 * same leaf, and we will deal with them at the same time.
1881 * Since we are sure we will reserve the space for the inode item,
1882 * it is unnecessary to reserve space for inode ref deletion.
1883 * - If the inode ref and the inode item are not in the same leaf,
1884 * We also needn't worry about enospc problem, because we reserve
1885 * much more space for the inode update than it needs.
1886 * - At the worst, we can steal some space from the global reservation.
1887 * It is very rare.
1888 */
1889 mutex_lock(&delayed_node->mutex);
1890 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1891 goto release_node;
1892
1893 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1894 delayed_node->count++;
0b246afa 1895 atomic_inc(&fs_info->delayed_root->items);
67de1176
MX
1896release_node:
1897 mutex_unlock(&delayed_node->mutex);
1898 btrfs_release_delayed_node(delayed_node);
1899 return 0;
1900}
1901
16cdcec7
MX
1902static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1903{
1904 struct btrfs_root *root = delayed_node->root;
1905 struct btrfs_delayed_item *curr_item, *prev_item;
1906
1907 mutex_lock(&delayed_node->mutex);
1908 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1909 while (curr_item) {
1910 btrfs_delayed_item_release_metadata(root, curr_item);
1911 prev_item = curr_item;
1912 curr_item = __btrfs_next_delayed_item(prev_item);
1913 btrfs_release_delayed_item(prev_item);
1914 }
1915
1916 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1917 while (curr_item) {
1918 btrfs_delayed_item_release_metadata(root, curr_item);
1919 prev_item = curr_item;
1920 curr_item = __btrfs_next_delayed_item(prev_item);
1921 btrfs_release_delayed_item(prev_item);
1922 }
1923
67de1176
MX
1924 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1925 btrfs_release_delayed_iref(delayed_node);
1926
7cf35d91 1927 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
16cdcec7
MX
1928 btrfs_delayed_inode_release_metadata(root, delayed_node);
1929 btrfs_release_delayed_inode(delayed_node);
1930 }
1931 mutex_unlock(&delayed_node->mutex);
1932}
1933
1934void btrfs_kill_delayed_inode_items(struct inode *inode)
1935{
1936 struct btrfs_delayed_node *delayed_node;
1937
1938 delayed_node = btrfs_get_delayed_node(inode);
1939 if (!delayed_node)
1940 return;
1941
1942 __btrfs_kill_delayed_node(delayed_node);
1943 btrfs_release_delayed_node(delayed_node);
1944}
1945
1946void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1947{
1948 u64 inode_id = 0;
1949 struct btrfs_delayed_node *delayed_nodes[8];
1950 int i, n;
1951
1952 while (1) {
1953 spin_lock(&root->inode_lock);
1954 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1955 (void **)delayed_nodes, inode_id,
1956 ARRAY_SIZE(delayed_nodes));
1957 if (!n) {
1958 spin_unlock(&root->inode_lock);
1959 break;
1960 }
1961
1962 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1963
1964 for (i = 0; i < n; i++)
1965 atomic_inc(&delayed_nodes[i]->refs);
1966 spin_unlock(&root->inode_lock);
1967
1968 for (i = 0; i < n; i++) {
1969 __btrfs_kill_delayed_node(delayed_nodes[i]);
1970 btrfs_release_delayed_node(delayed_nodes[i]);
1971 }
1972 }
1973}
67cde344 1974
ccdf9b30 1975void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
67cde344 1976{
67cde344
MX
1977 struct btrfs_delayed_node *curr_node, *prev_node;
1978
ccdf9b30 1979 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
67cde344
MX
1980 while (curr_node) {
1981 __btrfs_kill_delayed_node(curr_node);
1982
1983 prev_node = curr_node;
1984 curr_node = btrfs_next_delayed_node(curr_node);
1985 btrfs_release_delayed_node(prev_node);
1986 }
1987}
1988