btrfs: remove redundant root argument from btrfs_update_inode_item()
[linux-block.git] / fs / btrfs / delayed-inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
16cdcec7
MX
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
16cdcec7
MX
5 */
6
7#include <linux/slab.h>
c7f88c4e 8#include <linux/iversion.h>
ec8eb376
JB
9#include "ctree.h"
10#include "fs.h"
9b569ea0 11#include "messages.h"
602cbe91 12#include "misc.h"
16cdcec7
MX
13#include "delayed-inode.h"
14#include "disk-io.h"
15#include "transaction.h"
4f5427cc 16#include "qgroup.h"
1f95ec01 17#include "locking.h"
26c2c454 18#include "inode-item.h"
f1e5c618 19#include "space-info.h"
07e81dc9 20#include "accessors.h"
7c8ede16 21#include "file-item.h"
16cdcec7 22
de3cb945
CM
23#define BTRFS_DELAYED_WRITEBACK 512
24#define BTRFS_DELAYED_BACKGROUND 128
25#define BTRFS_DELAYED_BATCH 16
16cdcec7
MX
26
27static struct kmem_cache *delayed_node_cache;
28
29int __init btrfs_delayed_inode_init(void)
30{
837e1972 31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
16cdcec7
MX
32 sizeof(struct btrfs_delayed_node),
33 0,
fba4b697 34 SLAB_MEM_SPREAD,
16cdcec7
MX
35 NULL);
36 if (!delayed_node_cache)
37 return -ENOMEM;
38 return 0;
39}
40
e67c718b 41void __cold btrfs_delayed_inode_exit(void)
16cdcec7 42{
5598e900 43 kmem_cache_destroy(delayed_node_cache);
16cdcec7
MX
44}
45
46static inline void btrfs_init_delayed_node(
47 struct btrfs_delayed_node *delayed_node,
48 struct btrfs_root *root, u64 inode_id)
49{
50 delayed_node->root = root;
51 delayed_node->inode_id = inode_id;
6de5f18e 52 refcount_set(&delayed_node->refs, 0);
03a1d4c8
LB
53 delayed_node->ins_root = RB_ROOT_CACHED;
54 delayed_node->del_root = RB_ROOT_CACHED;
16cdcec7 55 mutex_init(&delayed_node->mutex);
16cdcec7
MX
56 INIT_LIST_HEAD(&delayed_node->n_list);
57 INIT_LIST_HEAD(&delayed_node->p_list);
16cdcec7
MX
58}
59
f85b7379
DS
60static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 struct btrfs_inode *btrfs_inode)
16cdcec7 62{
16cdcec7 63 struct btrfs_root *root = btrfs_inode->root;
4a0cc7ca 64 u64 ino = btrfs_ino(btrfs_inode);
2f7e33d4 65 struct btrfs_delayed_node *node;
16cdcec7 66
20c7bcec 67 node = READ_ONCE(btrfs_inode->delayed_node);
16cdcec7 68 if (node) {
6de5f18e 69 refcount_inc(&node->refs);
16cdcec7
MX
70 return node;
71 }
72
73 spin_lock(&root->inode_lock);
088aea3b 74 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
ec35e48b 75
16cdcec7
MX
76 if (node) {
77 if (btrfs_inode->delayed_node) {
6de5f18e 78 refcount_inc(&node->refs); /* can be accessed */
2f7e33d4 79 BUG_ON(btrfs_inode->delayed_node != node);
16cdcec7 80 spin_unlock(&root->inode_lock);
2f7e33d4 81 return node;
16cdcec7 82 }
ec35e48b
CM
83
84 /*
85 * It's possible that we're racing into the middle of removing
088aea3b 86 * this node from the radix tree. In this case, the refcount
ec35e48b 87 * was zero and it should never go back to one. Just return
088aea3b 88 * NULL like it was never in the radix at all; our release
ec35e48b
CM
89 * function is in the process of removing it.
90 *
91 * Some implementations of refcount_inc refuse to bump the
92 * refcount once it has hit zero. If we don't do this dance
93 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 * of actually bumping the refcount.
95 *
088aea3b 96 * If this node is properly in the radix, we want to bump the
ec35e48b
CM
97 * refcount twice, once for the inode and once for this get
98 * operation.
99 */
100 if (refcount_inc_not_zero(&node->refs)) {
101 refcount_inc(&node->refs);
102 btrfs_inode->delayed_node = node;
103 } else {
104 node = NULL;
105 }
106
16cdcec7
MX
107 spin_unlock(&root->inode_lock);
108 return node;
109 }
110 spin_unlock(&root->inode_lock);
111
2f7e33d4
MX
112 return NULL;
113}
114
79787eaa 115/* Will return either the node or PTR_ERR(-ENOMEM) */
2f7e33d4 116static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
f85b7379 117 struct btrfs_inode *btrfs_inode)
2f7e33d4
MX
118{
119 struct btrfs_delayed_node *node;
2f7e33d4 120 struct btrfs_root *root = btrfs_inode->root;
4a0cc7ca 121 u64 ino = btrfs_ino(btrfs_inode);
2f7e33d4
MX
122 int ret;
123
088aea3b
DS
124again:
125 node = btrfs_get_delayed_node(btrfs_inode);
126 if (node)
127 return node;
2f7e33d4 128
088aea3b
DS
129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 if (!node)
131 return ERR_PTR(-ENOMEM);
132 btrfs_init_delayed_node(node, root, ino);
16cdcec7 133
088aea3b
DS
134 /* cached in the btrfs inode and can be accessed */
135 refcount_set(&node->refs, 2);
16cdcec7 136
088aea3b
DS
137 ret = radix_tree_preload(GFP_NOFS);
138 if (ret) {
139 kmem_cache_free(delayed_node_cache, node);
140 return ERR_PTR(ret);
141 }
142
143 spin_lock(&root->inode_lock);
144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 if (ret == -EEXIST) {
146 spin_unlock(&root->inode_lock);
147 kmem_cache_free(delayed_node_cache, node);
148 radix_tree_preload_end();
149 goto again;
150 }
16cdcec7
MX
151 btrfs_inode->delayed_node = node;
152 spin_unlock(&root->inode_lock);
088aea3b 153 radix_tree_preload_end();
16cdcec7
MX
154
155 return node;
156}
157
158/*
159 * Call it when holding delayed_node->mutex
160 *
161 * If mod = 1, add this node into the prepared list.
162 */
163static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 struct btrfs_delayed_node *node,
165 int mod)
166{
167 spin_lock(&root->lock);
7cf35d91 168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
16cdcec7
MX
169 if (!list_empty(&node->p_list))
170 list_move_tail(&node->p_list, &root->prepare_list);
171 else if (mod)
172 list_add_tail(&node->p_list, &root->prepare_list);
173 } else {
174 list_add_tail(&node->n_list, &root->node_list);
175 list_add_tail(&node->p_list, &root->prepare_list);
6de5f18e 176 refcount_inc(&node->refs); /* inserted into list */
16cdcec7 177 root->nodes++;
7cf35d91 178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
16cdcec7
MX
179 }
180 spin_unlock(&root->lock);
181}
182
183/* Call it when holding delayed_node->mutex */
184static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 struct btrfs_delayed_node *node)
186{
187 spin_lock(&root->lock);
7cf35d91 188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
16cdcec7 189 root->nodes--;
6de5f18e 190 refcount_dec(&node->refs); /* not in the list */
16cdcec7
MX
191 list_del_init(&node->n_list);
192 if (!list_empty(&node->p_list))
193 list_del_init(&node->p_list);
7cf35d91 194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
16cdcec7
MX
195 }
196 spin_unlock(&root->lock);
197}
198
48a3b636 199static struct btrfs_delayed_node *btrfs_first_delayed_node(
16cdcec7
MX
200 struct btrfs_delayed_root *delayed_root)
201{
202 struct list_head *p;
203 struct btrfs_delayed_node *node = NULL;
204
205 spin_lock(&delayed_root->lock);
206 if (list_empty(&delayed_root->node_list))
207 goto out;
208
209 p = delayed_root->node_list.next;
210 node = list_entry(p, struct btrfs_delayed_node, n_list);
6de5f18e 211 refcount_inc(&node->refs);
16cdcec7
MX
212out:
213 spin_unlock(&delayed_root->lock);
214
215 return node;
216}
217
48a3b636 218static struct btrfs_delayed_node *btrfs_next_delayed_node(
16cdcec7
MX
219 struct btrfs_delayed_node *node)
220{
221 struct btrfs_delayed_root *delayed_root;
222 struct list_head *p;
223 struct btrfs_delayed_node *next = NULL;
224
225 delayed_root = node->root->fs_info->delayed_root;
226 spin_lock(&delayed_root->lock);
7cf35d91
MX
227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 /* not in the list */
16cdcec7
MX
229 if (list_empty(&delayed_root->node_list))
230 goto out;
231 p = delayed_root->node_list.next;
232 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 goto out;
234 else
235 p = node->n_list.next;
236
237 next = list_entry(p, struct btrfs_delayed_node, n_list);
6de5f18e 238 refcount_inc(&next->refs);
16cdcec7
MX
239out:
240 spin_unlock(&delayed_root->lock);
241
242 return next;
243}
244
245static void __btrfs_release_delayed_node(
246 struct btrfs_delayed_node *delayed_node,
247 int mod)
248{
249 struct btrfs_delayed_root *delayed_root;
250
251 if (!delayed_node)
252 return;
253
254 delayed_root = delayed_node->root->fs_info->delayed_root;
255
256 mutex_lock(&delayed_node->mutex);
257 if (delayed_node->count)
258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 else
260 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 mutex_unlock(&delayed_node->mutex);
262
6de5f18e 263 if (refcount_dec_and_test(&delayed_node->refs)) {
16cdcec7 264 struct btrfs_root *root = delayed_node->root;
ec35e48b 265
16cdcec7 266 spin_lock(&root->inode_lock);
ec35e48b
CM
267 /*
268 * Once our refcount goes to zero, nobody is allowed to bump it
269 * back up. We can delete it now.
270 */
271 ASSERT(refcount_read(&delayed_node->refs) == 0);
088aea3b
DS
272 radix_tree_delete(&root->delayed_nodes_tree,
273 delayed_node->inode_id);
16cdcec7 274 spin_unlock(&root->inode_lock);
ec35e48b 275 kmem_cache_free(delayed_node_cache, delayed_node);
16cdcec7
MX
276 }
277}
278
279static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280{
281 __btrfs_release_delayed_node(node, 0);
282}
283
48a3b636 284static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
16cdcec7
MX
285 struct btrfs_delayed_root *delayed_root)
286{
287 struct list_head *p;
288 struct btrfs_delayed_node *node = NULL;
289
290 spin_lock(&delayed_root->lock);
291 if (list_empty(&delayed_root->prepare_list))
292 goto out;
293
294 p = delayed_root->prepare_list.next;
295 list_del_init(p);
296 node = list_entry(p, struct btrfs_delayed_node, p_list);
6de5f18e 297 refcount_inc(&node->refs);
16cdcec7
MX
298out:
299 spin_unlock(&delayed_root->lock);
300
301 return node;
302}
303
304static inline void btrfs_release_prepared_delayed_node(
305 struct btrfs_delayed_node *node)
306{
307 __btrfs_release_delayed_node(node, 1);
308}
309
4c469798
FM
310static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
311 struct btrfs_delayed_node *node,
312 enum btrfs_delayed_item_type type)
16cdcec7
MX
313{
314 struct btrfs_delayed_item *item;
4c469798 315
75f5f60b 316 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
16cdcec7
MX
317 if (item) {
318 item->data_len = data_len;
4c469798 319 item->type = type;
16cdcec7 320 item->bytes_reserved = 0;
96d89923
FM
321 item->delayed_node = node;
322 RB_CLEAR_NODE(&item->rb_node);
30b80f3c
FM
323 INIT_LIST_HEAD(&item->log_list);
324 item->logged = false;
089e77e1 325 refcount_set(&item->refs, 1);
16cdcec7
MX
326 }
327 return item;
328}
329
330/*
9580503b
DS
331 * Look up the delayed item by key.
332 *
16cdcec7 333 * @delayed_node: pointer to the delayed node
96d89923 334 * @index: the dir index value to lookup (offset of a dir index key)
16cdcec7
MX
335 *
336 * Note: if we don't find the right item, we will return the prev item and
337 * the next item.
338 */
339static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
340 struct rb_root *root,
4cbf37f5 341 u64 index)
16cdcec7 342{
4cbf37f5 343 struct rb_node *node = root->rb_node;
16cdcec7 344 struct btrfs_delayed_item *delayed_item = NULL;
16cdcec7
MX
345
346 while (node) {
347 delayed_item = rb_entry(node, struct btrfs_delayed_item,
348 rb_node);
96d89923 349 if (delayed_item->index < index)
16cdcec7 350 node = node->rb_right;
96d89923 351 else if (delayed_item->index > index)
16cdcec7
MX
352 node = node->rb_left;
353 else
354 return delayed_item;
355 }
356
16cdcec7
MX
357 return NULL;
358}
359
16cdcec7 360static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
c9d02ab4 361 struct btrfs_delayed_item *ins)
16cdcec7
MX
362{
363 struct rb_node **p, *node;
364 struct rb_node *parent_node = NULL;
03a1d4c8 365 struct rb_root_cached *root;
16cdcec7 366 struct btrfs_delayed_item *item;
03a1d4c8 367 bool leftmost = true;
16cdcec7 368
4c469798 369 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
16cdcec7 370 root = &delayed_node->ins_root;
16cdcec7 371 else
4c469798
FM
372 root = &delayed_node->del_root;
373
03a1d4c8 374 p = &root->rb_root.rb_node;
16cdcec7
MX
375 node = &ins->rb_node;
376
377 while (*p) {
378 parent_node = *p;
379 item = rb_entry(parent_node, struct btrfs_delayed_item,
380 rb_node);
381
96d89923 382 if (item->index < ins->index) {
16cdcec7 383 p = &(*p)->rb_right;
03a1d4c8 384 leftmost = false;
96d89923 385 } else if (item->index > ins->index) {
16cdcec7 386 p = &(*p)->rb_left;
03a1d4c8 387 } else {
16cdcec7 388 return -EEXIST;
03a1d4c8 389 }
16cdcec7
MX
390 }
391
392 rb_link_node(node, parent_node, p);
03a1d4c8 393 rb_insert_color_cached(node, root, leftmost);
a176affe 394
4c469798 395 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
96d89923
FM
396 ins->index >= delayed_node->index_cnt)
397 delayed_node->index_cnt = ins->index + 1;
16cdcec7
MX
398
399 delayed_node->count++;
400 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
401 return 0;
402}
403
de3cb945
CM
404static void finish_one_item(struct btrfs_delayed_root *delayed_root)
405{
406 int seq = atomic_inc_return(&delayed_root->items_seq);
ee863954 407
093258e6 408 /* atomic_dec_return implies a barrier */
de3cb945 409 if ((atomic_dec_return(&delayed_root->items) <
093258e6
DS
410 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
411 cond_wake_up_nomb(&delayed_root->wait);
de3cb945
CM
412}
413
16cdcec7
MX
414static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
415{
a57c2d4e 416 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
03a1d4c8 417 struct rb_root_cached *root;
16cdcec7
MX
418 struct btrfs_delayed_root *delayed_root;
419
96d89923
FM
420 /* Not inserted, ignore it. */
421 if (RB_EMPTY_NODE(&delayed_item->rb_node))
933c22a7 422 return;
96d89923 423
a57c2d4e
FM
424 /* If it's in a rbtree, then we need to have delayed node locked. */
425 lockdep_assert_held(&delayed_node->mutex);
426
427 delayed_root = delayed_node->root->fs_info->delayed_root;
16cdcec7
MX
428
429 BUG_ON(!delayed_root);
16cdcec7 430
4c469798 431 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
a57c2d4e 432 root = &delayed_node->ins_root;
16cdcec7 433 else
a57c2d4e 434 root = &delayed_node->del_root;
16cdcec7 435
03a1d4c8 436 rb_erase_cached(&delayed_item->rb_node, root);
96d89923 437 RB_CLEAR_NODE(&delayed_item->rb_node);
a57c2d4e 438 delayed_node->count--;
de3cb945
CM
439
440 finish_one_item(delayed_root);
16cdcec7
MX
441}
442
443static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
444{
445 if (item) {
446 __btrfs_remove_delayed_item(item);
089e77e1 447 if (refcount_dec_and_test(&item->refs))
16cdcec7
MX
448 kfree(item);
449 }
450}
451
48a3b636 452static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
16cdcec7
MX
453 struct btrfs_delayed_node *delayed_node)
454{
455 struct rb_node *p;
456 struct btrfs_delayed_item *item = NULL;
457
03a1d4c8 458 p = rb_first_cached(&delayed_node->ins_root);
16cdcec7
MX
459 if (p)
460 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
461
462 return item;
463}
464
48a3b636 465static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
16cdcec7
MX
466 struct btrfs_delayed_node *delayed_node)
467{
468 struct rb_node *p;
469 struct btrfs_delayed_item *item = NULL;
470
03a1d4c8 471 p = rb_first_cached(&delayed_node->del_root);
16cdcec7
MX
472 if (p)
473 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
474
475 return item;
476}
477
48a3b636 478static struct btrfs_delayed_item *__btrfs_next_delayed_item(
16cdcec7
MX
479 struct btrfs_delayed_item *item)
480{
481 struct rb_node *p;
482 struct btrfs_delayed_item *next = NULL;
483
484 p = rb_next(&item->rb_node);
485 if (p)
486 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
487
488 return next;
489}
490
16cdcec7 491static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
16cdcec7
MX
492 struct btrfs_delayed_item *item)
493{
494 struct btrfs_block_rsv *src_rsv;
495 struct btrfs_block_rsv *dst_rsv;
df492881 496 struct btrfs_fs_info *fs_info = trans->fs_info;
16cdcec7
MX
497 u64 num_bytes;
498 int ret;
499
500 if (!trans->bytes_reserved)
501 return 0;
502
503 src_rsv = trans->block_rsv;
0b246afa 504 dst_rsv = &fs_info->delayed_block_rsv;
16cdcec7 505
2bd36e7b 506 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
f218ea6c
QW
507
508 /*
509 * Here we migrate space rsv from transaction rsv, since have already
510 * reserved space when starting a transaction. So no need to reserve
511 * qgroup space here.
512 */
3a584174 513 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
8c2a3ca2 514 if (!ret) {
0b246afa 515 trace_btrfs_space_reservation(fs_info, "delayed_item",
96d89923 516 item->delayed_node->inode_id,
8c2a3ca2 517 num_bytes, 1);
763748b2
FM
518 /*
519 * For insertions we track reserved metadata space by accounting
520 * for the number of leaves that will be used, based on the delayed
01fc062b 521 * node's curr_index_batch_size and index_item_leaves fields.
763748b2 522 */
4c469798 523 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
763748b2 524 item->bytes_reserved = num_bytes;
8c2a3ca2 525 }
16cdcec7
MX
526
527 return ret;
528}
529
4f5427cc 530static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
16cdcec7
MX
531 struct btrfs_delayed_item *item)
532{
19fd2949 533 struct btrfs_block_rsv *rsv;
4f5427cc 534 struct btrfs_fs_info *fs_info = root->fs_info;
19fd2949 535
16cdcec7
MX
536 if (!item->bytes_reserved)
537 return;
538
0b246afa 539 rsv = &fs_info->delayed_block_rsv;
f218ea6c
QW
540 /*
541 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
542 * to release/reserve qgroup space.
543 */
0b246afa 544 trace_btrfs_space_reservation(fs_info, "delayed_item",
96d89923
FM
545 item->delayed_node->inode_id,
546 item->bytes_reserved, 0);
63f018be 547 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
16cdcec7
MX
548}
549
763748b2
FM
550static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
551 unsigned int num_leaves)
552{
553 struct btrfs_fs_info *fs_info = node->root->fs_info;
554 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
555
556 /* There are no space reservations during log replay, bail out. */
557 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
558 return;
559
560 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
561 bytes, 0);
562 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
563}
564
16cdcec7
MX
565static int btrfs_delayed_inode_reserve_metadata(
566 struct btrfs_trans_handle *trans,
567 struct btrfs_root *root,
568 struct btrfs_delayed_node *node)
569{
0b246afa 570 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
571 struct btrfs_block_rsv *src_rsv;
572 struct btrfs_block_rsv *dst_rsv;
573 u64 num_bytes;
574 int ret;
575
16cdcec7 576 src_rsv = trans->block_rsv;
0b246afa 577 dst_rsv = &fs_info->delayed_block_rsv;
16cdcec7 578
bcacf5f3 579 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
c06a0e12
JB
580
581 /*
582 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
583 * which doesn't reserve space for speed. This is a problem since we
584 * still need to reserve space for this update, so try to reserve the
585 * space.
586 *
587 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
69fe2d75 588 * we always reserve enough to update the inode item.
c06a0e12 589 */
e755d9ab 590 if (!src_rsv || (!trans->bytes_reserved &&
66d8f3dd 591 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
4d14c5cd
NB
592 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
593 BTRFS_QGROUP_RSV_META_PREALLOC, true);
f218ea6c
QW
594 if (ret < 0)
595 return ret;
9270501c 596 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
08e007d2 597 BTRFS_RESERVE_NO_FLUSH);
98686ffc
NB
598 /* NO_FLUSH could only fail with -ENOSPC */
599 ASSERT(ret == 0 || ret == -ENOSPC);
600 if (ret)
0f9c03d8 601 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
98686ffc
NB
602 } else {
603 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
c06a0e12
JB
604 }
605
8c2a3ca2 606 if (!ret) {
0b246afa 607 trace_btrfs_space_reservation(fs_info, "delayed_inode",
8e3c9d3c 608 node->inode_id, num_bytes, 1);
16cdcec7 609 node->bytes_reserved = num_bytes;
8c2a3ca2 610 }
16cdcec7
MX
611
612 return ret;
613}
614
2ff7e61e 615static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
4f5427cc
QW
616 struct btrfs_delayed_node *node,
617 bool qgroup_free)
16cdcec7
MX
618{
619 struct btrfs_block_rsv *rsv;
620
621 if (!node->bytes_reserved)
622 return;
623
0b246afa
JM
624 rsv = &fs_info->delayed_block_rsv;
625 trace_btrfs_space_reservation(fs_info, "delayed_inode",
8c2a3ca2 626 node->inode_id, node->bytes_reserved, 0);
63f018be 627 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
4f5427cc
QW
628 if (qgroup_free)
629 btrfs_qgroup_free_meta_prealloc(node->root,
630 node->bytes_reserved);
631 else
632 btrfs_qgroup_convert_reserved_meta(node->root,
633 node->bytes_reserved);
16cdcec7
MX
634 node->bytes_reserved = 0;
635}
636
637/*
06ac264f
FM
638 * Insert a single delayed item or a batch of delayed items, as many as possible
639 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
640 * in the rbtree, and if there's a gap between two consecutive dir index items,
641 * then it means at some point we had delayed dir indexes to add but they got
642 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
643 * into the subvolume tree. Dir index keys also have their offsets coming from a
644 * monotonically increasing counter, so we can't get new keys with an offset that
645 * fits within a gap between delayed dir index items.
16cdcec7 646 */
506650dc
FM
647static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
648 struct btrfs_root *root,
649 struct btrfs_path *path,
650 struct btrfs_delayed_item *first_item)
16cdcec7 651{
763748b2
FM
652 struct btrfs_fs_info *fs_info = root->fs_info;
653 struct btrfs_delayed_node *node = first_item->delayed_node;
b7ef5f3a 654 LIST_HEAD(item_list);
506650dc
FM
655 struct btrfs_delayed_item *curr;
656 struct btrfs_delayed_item *next;
763748b2 657 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
b7ef5f3a 658 struct btrfs_item_batch batch;
96d89923 659 struct btrfs_key first_key;
4c469798 660 const u32 first_data_size = first_item->data_len;
506650dc 661 int total_size;
506650dc 662 char *ins_data = NULL;
506650dc 663 int ret;
71b68e9e 664 bool continuous_keys_only = false;
16cdcec7 665
763748b2
FM
666 lockdep_assert_held(&node->mutex);
667
71b68e9e
JB
668 /*
669 * During normal operation the delayed index offset is continuously
670 * increasing, so we can batch insert all items as there will not be any
671 * overlapping keys in the tree.
672 *
673 * The exception to this is log replay, where we may have interleaved
674 * offsets in the tree, so our batch needs to be continuous keys only in
675 * order to ensure we do not end up with out of order items in our leaf.
676 */
677 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
678 continuous_keys_only = true;
679
763748b2
FM
680 /*
681 * For delayed items to insert, we track reserved metadata bytes based
682 * on the number of leaves that we will use.
683 * See btrfs_insert_delayed_dir_index() and
684 * btrfs_delayed_item_reserve_metadata()).
685 */
686 ASSERT(first_item->bytes_reserved == 0);
687
b7ef5f3a 688 list_add_tail(&first_item->tree_list, &item_list);
4c469798 689 batch.total_data_size = first_data_size;
b7ef5f3a 690 batch.nr = 1;
4c469798 691 total_size = first_data_size + sizeof(struct btrfs_item);
506650dc 692 curr = first_item;
16cdcec7 693
506650dc
FM
694 while (true) {
695 int next_size;
16cdcec7 696
16cdcec7 697 next = __btrfs_next_delayed_item(curr);
06ac264f 698 if (!next)
16cdcec7
MX
699 break;
700
71b68e9e
JB
701 /*
702 * We cannot allow gaps in the key space if we're doing log
703 * replay.
704 */
96d89923 705 if (continuous_keys_only && (next->index != curr->index + 1))
71b68e9e
JB
706 break;
707
763748b2
FM
708 ASSERT(next->bytes_reserved == 0);
709
506650dc
FM
710 next_size = next->data_len + sizeof(struct btrfs_item);
711 if (total_size + next_size > max_size)
16cdcec7 712 break;
16cdcec7 713
b7ef5f3a
FM
714 list_add_tail(&next->tree_list, &item_list);
715 batch.nr++;
506650dc 716 total_size += next_size;
b7ef5f3a 717 batch.total_data_size += next->data_len;
506650dc 718 curr = next;
16cdcec7
MX
719 }
720
b7ef5f3a 721 if (batch.nr == 1) {
96d89923
FM
722 first_key.objectid = node->inode_id;
723 first_key.type = BTRFS_DIR_INDEX_KEY;
724 first_key.offset = first_item->index;
725 batch.keys = &first_key;
4c469798 726 batch.data_sizes = &first_data_size;
506650dc 727 } else {
b7ef5f3a
FM
728 struct btrfs_key *ins_keys;
729 u32 *ins_sizes;
506650dc 730 int i = 0;
16cdcec7 731
b7ef5f3a
FM
732 ins_data = kmalloc(batch.nr * sizeof(u32) +
733 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
506650dc
FM
734 if (!ins_data) {
735 ret = -ENOMEM;
736 goto out;
737 }
738 ins_sizes = (u32 *)ins_data;
b7ef5f3a
FM
739 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
740 batch.keys = ins_keys;
741 batch.data_sizes = ins_sizes;
742 list_for_each_entry(curr, &item_list, tree_list) {
96d89923
FM
743 ins_keys[i].objectid = node->inode_id;
744 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
745 ins_keys[i].offset = curr->index;
506650dc
FM
746 ins_sizes[i] = curr->data_len;
747 i++;
748 }
16cdcec7
MX
749 }
750
b7ef5f3a 751 ret = btrfs_insert_empty_items(trans, root, path, &batch);
506650dc
FM
752 if (ret)
753 goto out;
16cdcec7 754
b7ef5f3a 755 list_for_each_entry(curr, &item_list, tree_list) {
506650dc 756 char *data_ptr;
16cdcec7 757
506650dc
FM
758 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
759 write_extent_buffer(path->nodes[0], &curr->data,
760 (unsigned long)data_ptr, curr->data_len);
761 path->slots[0]++;
762 }
16cdcec7 763
506650dc
FM
764 /*
765 * Now release our path before releasing the delayed items and their
766 * metadata reservations, so that we don't block other tasks for more
767 * time than needed.
768 */
769 btrfs_release_path(path);
16cdcec7 770
763748b2
FM
771 ASSERT(node->index_item_leaves > 0);
772
71b68e9e
JB
773 /*
774 * For normal operations we will batch an entire leaf's worth of delayed
775 * items, so if there are more items to process we can decrement
776 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
777 *
778 * However for log replay we may not have inserted an entire leaf's
779 * worth of items, we may have not had continuous items, so decrementing
780 * here would mess up the index_item_leaves accounting. For this case
781 * only clean up the accounting when there are no items left.
782 */
783 if (next && !continuous_keys_only) {
763748b2
FM
784 /*
785 * We inserted one batch of items into a leaf a there are more
786 * items to flush in a future batch, now release one unit of
787 * metadata space from the delayed block reserve, corresponding
788 * the leaf we just flushed to.
789 */
790 btrfs_delayed_item_release_leaves(node, 1);
791 node->index_item_leaves--;
71b68e9e 792 } else if (!next) {
763748b2
FM
793 /*
794 * There are no more items to insert. We can have a number of
795 * reserved leaves > 1 here - this happens when many dir index
796 * items are added and then removed before they are flushed (file
797 * names with a very short life, never span a transaction). So
798 * release all remaining leaves.
799 */
800 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
801 node->index_item_leaves = 0;
802 }
803
b7ef5f3a 804 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
16cdcec7
MX
805 list_del(&curr->tree_list);
806 btrfs_release_delayed_item(curr);
807 }
16cdcec7 808out:
506650dc 809 kfree(ins_data);
16cdcec7
MX
810 return ret;
811}
812
16cdcec7
MX
813static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
814 struct btrfs_path *path,
815 struct btrfs_root *root,
816 struct btrfs_delayed_node *node)
817{
16cdcec7
MX
818 int ret = 0;
819
506650dc
FM
820 while (ret == 0) {
821 struct btrfs_delayed_item *curr;
16cdcec7 822
506650dc
FM
823 mutex_lock(&node->mutex);
824 curr = __btrfs_first_delayed_insertion_item(node);
825 if (!curr) {
826 mutex_unlock(&node->mutex);
827 break;
828 }
829 ret = btrfs_insert_delayed_item(trans, root, path, curr);
830 mutex_unlock(&node->mutex);
16cdcec7 831 }
16cdcec7 832
16cdcec7
MX
833 return ret;
834}
835
836static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
837 struct btrfs_root *root,
838 struct btrfs_path *path,
839 struct btrfs_delayed_item *item)
840{
96d89923 841 const u64 ino = item->delayed_node->inode_id;
1f4f639f 842 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7 843 struct btrfs_delayed_item *curr, *next;
659192e6 844 struct extent_buffer *leaf = path->nodes[0];
4bd02d90
FM
845 LIST_HEAD(batch_list);
846 int nitems, slot, last_slot;
847 int ret;
1f4f639f 848 u64 total_reserved_size = item->bytes_reserved;
16cdcec7 849
659192e6 850 ASSERT(leaf != NULL);
16cdcec7 851
4bd02d90
FM
852 slot = path->slots[0];
853 last_slot = btrfs_header_nritems(leaf) - 1;
659192e6
FM
854 /*
855 * Our caller always gives us a path pointing to an existing item, so
856 * this can not happen.
857 */
4bd02d90
FM
858 ASSERT(slot <= last_slot);
859 if (WARN_ON(slot > last_slot))
659192e6 860 return -ENOENT;
16cdcec7 861
4bd02d90
FM
862 nitems = 1;
863 curr = item;
864 list_add_tail(&curr->tree_list, &batch_list);
865
16cdcec7 866 /*
4bd02d90
FM
867 * Keep checking if the next delayed item matches the next item in the
868 * leaf - if so, we can add it to the batch of items to delete from the
869 * leaf.
16cdcec7 870 */
4bd02d90
FM
871 while (slot < last_slot) {
872 struct btrfs_key key;
16cdcec7 873
16cdcec7
MX
874 next = __btrfs_next_delayed_item(curr);
875 if (!next)
876 break;
877
4bd02d90
FM
878 slot++;
879 btrfs_item_key_to_cpu(leaf, &key, slot);
96d89923
FM
880 if (key.objectid != ino ||
881 key.type != BTRFS_DIR_INDEX_KEY ||
882 key.offset != next->index)
16cdcec7 883 break;
4bd02d90
FM
884 nitems++;
885 curr = next;
886 list_add_tail(&curr->tree_list, &batch_list);
1f4f639f 887 total_reserved_size += curr->bytes_reserved;
16cdcec7
MX
888 }
889
16cdcec7
MX
890 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
891 if (ret)
4bd02d90 892 return ret;
16cdcec7 893
1f4f639f
NB
894 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
895 if (total_reserved_size > 0) {
896 /*
897 * Check btrfs_delayed_item_reserve_metadata() to see why we
898 * don't need to release/reserve qgroup space.
899 */
96d89923
FM
900 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
901 total_reserved_size, 0);
1f4f639f
NB
902 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
903 total_reserved_size, NULL);
904 }
905
4bd02d90 906 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
16cdcec7
MX
907 list_del(&curr->tree_list);
908 btrfs_release_delayed_item(curr);
909 }
910
4bd02d90 911 return 0;
16cdcec7
MX
912}
913
914static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
915 struct btrfs_path *path,
916 struct btrfs_root *root,
917 struct btrfs_delayed_node *node)
918{
96d89923 919 struct btrfs_key key;
16cdcec7
MX
920 int ret = 0;
921
96d89923
FM
922 key.objectid = node->inode_id;
923 key.type = BTRFS_DIR_INDEX_KEY;
924
36baa2c7
FM
925 while (ret == 0) {
926 struct btrfs_delayed_item *item;
927
928 mutex_lock(&node->mutex);
929 item = __btrfs_first_delayed_deletion_item(node);
930 if (!item) {
931 mutex_unlock(&node->mutex);
932 break;
933 }
934
96d89923
FM
935 key.offset = item->index;
936 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
36baa2c7
FM
937 if (ret > 0) {
938 /*
939 * There's no matching item in the leaf. This means we
940 * have already deleted this item in a past run of the
941 * delayed items. We ignore errors when running delayed
942 * items from an async context, through a work queue job
943 * running btrfs_async_run_delayed_root(), and don't
944 * release delayed items that failed to complete. This
945 * is because we will retry later, and at transaction
946 * commit time we always run delayed items and will
947 * then deal with errors if they fail to run again.
948 *
949 * So just release delayed items for which we can't find
950 * an item in the tree, and move to the next item.
951 */
952 btrfs_release_path(path);
953 btrfs_release_delayed_item(item);
954 ret = 0;
955 } else if (ret == 0) {
956 ret = btrfs_batch_delete_items(trans, root, path, item);
957 btrfs_release_path(path);
958 }
16cdcec7 959
16cdcec7 960 /*
36baa2c7
FM
961 * We unlock and relock on each iteration, this is to prevent
962 * blocking other tasks for too long while we are being run from
963 * the async context (work queue job). Those tasks are typically
964 * running system calls like creat/mkdir/rename/unlink/etc which
965 * need to add delayed items to this delayed node.
16cdcec7 966 */
36baa2c7 967 mutex_unlock(&node->mutex);
16cdcec7
MX
968 }
969
16cdcec7
MX
970 return ret;
971}
972
973static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
974{
975 struct btrfs_delayed_root *delayed_root;
976
7cf35d91
MX
977 if (delayed_node &&
978 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
16cdcec7 979 BUG_ON(!delayed_node->root);
7cf35d91 980 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
16cdcec7
MX
981 delayed_node->count--;
982
983 delayed_root = delayed_node->root->fs_info->delayed_root;
de3cb945 984 finish_one_item(delayed_root);
16cdcec7
MX
985 }
986}
987
67de1176
MX
988static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
989{
67de1176 990
a4cb90dc
JB
991 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
992 struct btrfs_delayed_root *delayed_root;
67de1176 993
a4cb90dc
JB
994 ASSERT(delayed_node->root);
995 delayed_node->count--;
996
997 delayed_root = delayed_node->root->fs_info->delayed_root;
998 finish_one_item(delayed_root);
999 }
67de1176
MX
1000}
1001
0e8c36a9
MX
1002static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1003 struct btrfs_root *root,
1004 struct btrfs_path *path,
1005 struct btrfs_delayed_node *node)
16cdcec7 1006{
2ff7e61e 1007 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
1008 struct btrfs_key key;
1009 struct btrfs_inode_item *inode_item;
1010 struct extent_buffer *leaf;
67de1176 1011 int mod;
16cdcec7
MX
1012 int ret;
1013
16cdcec7 1014 key.objectid = node->inode_id;
962a298f 1015 key.type = BTRFS_INODE_ITEM_KEY;
16cdcec7 1016 key.offset = 0;
0e8c36a9 1017
67de1176
MX
1018 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1019 mod = -1;
1020 else
1021 mod = 1;
1022
1023 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
bb385bed
JB
1024 if (ret > 0)
1025 ret = -ENOENT;
1026 if (ret < 0)
1027 goto out;
16cdcec7 1028
16cdcec7
MX
1029 leaf = path->nodes[0];
1030 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1031 struct btrfs_inode_item);
1032 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1033 sizeof(struct btrfs_inode_item));
50564b65 1034 btrfs_mark_buffer_dirty(trans, leaf);
16cdcec7 1035
67de1176 1036 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
a4cb90dc 1037 goto out;
67de1176
MX
1038
1039 path->slots[0]++;
1040 if (path->slots[0] >= btrfs_header_nritems(leaf))
1041 goto search;
1042again:
1043 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1044 if (key.objectid != node->inode_id)
1045 goto out;
1046
1047 if (key.type != BTRFS_INODE_REF_KEY &&
1048 key.type != BTRFS_INODE_EXTREF_KEY)
1049 goto out;
1050
1051 /*
1052 * Delayed iref deletion is for the inode who has only one link,
1053 * so there is only one iref. The case that several irefs are
1054 * in the same item doesn't exist.
1055 */
c06016a0 1056 ret = btrfs_del_item(trans, root, path);
67de1176
MX
1057out:
1058 btrfs_release_delayed_iref(node);
67de1176
MX
1059 btrfs_release_path(path);
1060err_out:
4f5427cc 1061 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
16cdcec7 1062 btrfs_release_delayed_inode(node);
16cdcec7 1063
04587ad9
JB
1064 /*
1065 * If we fail to update the delayed inode we need to abort the
1066 * transaction, because we could leave the inode with the improper
1067 * counts behind.
1068 */
1069 if (ret && ret != -ENOENT)
1070 btrfs_abort_transaction(trans, ret);
1071
67de1176
MX
1072 return ret;
1073
1074search:
1075 btrfs_release_path(path);
1076
962a298f 1077 key.type = BTRFS_INODE_EXTREF_KEY;
67de1176 1078 key.offset = -1;
351cbf6e 1079
67de1176
MX
1080 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1081 if (ret < 0)
1082 goto err_out;
1083 ASSERT(ret);
1084
1085 ret = 0;
1086 leaf = path->nodes[0];
1087 path->slots[0]--;
1088 goto again;
16cdcec7
MX
1089}
1090
0e8c36a9
MX
1091static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1092 struct btrfs_root *root,
1093 struct btrfs_path *path,
1094 struct btrfs_delayed_node *node)
1095{
1096 int ret;
1097
1098 mutex_lock(&node->mutex);
7cf35d91 1099 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
0e8c36a9
MX
1100 mutex_unlock(&node->mutex);
1101 return 0;
1102 }
1103
1104 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1105 mutex_unlock(&node->mutex);
1106 return ret;
1107}
1108
4ea41ce0
MX
1109static inline int
1110__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1111 struct btrfs_path *path,
1112 struct btrfs_delayed_node *node)
1113{
1114 int ret;
1115
1116 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1117 if (ret)
1118 return ret;
1119
1120 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1121 if (ret)
1122 return ret;
1123
1124 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1125 return ret;
1126}
1127
79787eaa
JM
1128/*
1129 * Called when committing the transaction.
1130 * Returns 0 on success.
1131 * Returns < 0 on error and returns with an aborted transaction with any
1132 * outstanding delayed items cleaned up.
1133 */
b84acab3 1134static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
16cdcec7 1135{
b84acab3 1136 struct btrfs_fs_info *fs_info = trans->fs_info;
16cdcec7
MX
1137 struct btrfs_delayed_root *delayed_root;
1138 struct btrfs_delayed_node *curr_node, *prev_node;
1139 struct btrfs_path *path;
19fd2949 1140 struct btrfs_block_rsv *block_rsv;
16cdcec7 1141 int ret = 0;
96c3f433 1142 bool count = (nr > 0);
16cdcec7 1143
bf31f87f 1144 if (TRANS_ABORTED(trans))
79787eaa
JM
1145 return -EIO;
1146
16cdcec7
MX
1147 path = btrfs_alloc_path();
1148 if (!path)
1149 return -ENOMEM;
16cdcec7 1150
19fd2949 1151 block_rsv = trans->block_rsv;
0b246afa 1152 trans->block_rsv = &fs_info->delayed_block_rsv;
19fd2949 1153
ccdf9b30 1154 delayed_root = fs_info->delayed_root;
16cdcec7
MX
1155
1156 curr_node = btrfs_first_delayed_node(delayed_root);
a4559e6f 1157 while (curr_node && (!count || nr--)) {
4ea41ce0
MX
1158 ret = __btrfs_commit_inode_delayed_items(trans, path,
1159 curr_node);
16cdcec7 1160 if (ret) {
66642832 1161 btrfs_abort_transaction(trans, ret);
16cdcec7
MX
1162 break;
1163 }
1164
1165 prev_node = curr_node;
1166 curr_node = btrfs_next_delayed_node(curr_node);
e110f891
FM
1167 /*
1168 * See the comment below about releasing path before releasing
1169 * node. If the commit of delayed items was successful the path
1170 * should always be released, but in case of an error, it may
1171 * point to locked extent buffers (a leaf at the very least).
1172 */
1173 ASSERT(path->nodes[0] == NULL);
16cdcec7
MX
1174 btrfs_release_delayed_node(prev_node);
1175 }
1176
e110f891
FM
1177 /*
1178 * Release the path to avoid a potential deadlock and lockdep splat when
1179 * releasing the delayed node, as that requires taking the delayed node's
1180 * mutex. If another task starts running delayed items before we take
1181 * the mutex, it will first lock the mutex and then it may try to lock
1182 * the same btree path (leaf).
1183 */
1184 btrfs_free_path(path);
1185
96c3f433
JB
1186 if (curr_node)
1187 btrfs_release_delayed_node(curr_node);
19fd2949 1188 trans->block_rsv = block_rsv;
79787eaa 1189
16cdcec7
MX
1190 return ret;
1191}
1192
e5c304e6 1193int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
96c3f433 1194{
b84acab3 1195 return __btrfs_run_delayed_items(trans, -1);
96c3f433
JB
1196}
1197
e5c304e6 1198int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
96c3f433 1199{
b84acab3 1200 return __btrfs_run_delayed_items(trans, nr);
96c3f433
JB
1201}
1202
16cdcec7 1203int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
5f4b32e9 1204 struct btrfs_inode *inode)
16cdcec7 1205{
5f4b32e9 1206 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
4ea41ce0
MX
1207 struct btrfs_path *path;
1208 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1209 int ret;
1210
1211 if (!delayed_node)
1212 return 0;
1213
1214 mutex_lock(&delayed_node->mutex);
1215 if (!delayed_node->count) {
1216 mutex_unlock(&delayed_node->mutex);
1217 btrfs_release_delayed_node(delayed_node);
1218 return 0;
1219 }
1220 mutex_unlock(&delayed_node->mutex);
1221
4ea41ce0 1222 path = btrfs_alloc_path();
3c77bd94
FDBM
1223 if (!path) {
1224 btrfs_release_delayed_node(delayed_node);
4ea41ce0 1225 return -ENOMEM;
3c77bd94 1226 }
4ea41ce0
MX
1227
1228 block_rsv = trans->block_rsv;
1229 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1230
1231 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1232
16cdcec7 1233 btrfs_release_delayed_node(delayed_node);
4ea41ce0
MX
1234 btrfs_free_path(path);
1235 trans->block_rsv = block_rsv;
1236
16cdcec7
MX
1237 return ret;
1238}
1239
aa79021f 1240int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
0e8c36a9 1241{
3ffbd68c 1242 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0e8c36a9 1243 struct btrfs_trans_handle *trans;
aa79021f 1244 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
0e8c36a9
MX
1245 struct btrfs_path *path;
1246 struct btrfs_block_rsv *block_rsv;
1247 int ret;
1248
1249 if (!delayed_node)
1250 return 0;
1251
1252 mutex_lock(&delayed_node->mutex);
7cf35d91 1253 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
0e8c36a9
MX
1254 mutex_unlock(&delayed_node->mutex);
1255 btrfs_release_delayed_node(delayed_node);
1256 return 0;
1257 }
1258 mutex_unlock(&delayed_node->mutex);
1259
1260 trans = btrfs_join_transaction(delayed_node->root);
1261 if (IS_ERR(trans)) {
1262 ret = PTR_ERR(trans);
1263 goto out;
1264 }
1265
1266 path = btrfs_alloc_path();
1267 if (!path) {
1268 ret = -ENOMEM;
1269 goto trans_out;
1270 }
0e8c36a9
MX
1271
1272 block_rsv = trans->block_rsv;
2ff7e61e 1273 trans->block_rsv = &fs_info->delayed_block_rsv;
0e8c36a9
MX
1274
1275 mutex_lock(&delayed_node->mutex);
7cf35d91 1276 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
0e8c36a9
MX
1277 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1278 path, delayed_node);
1279 else
1280 ret = 0;
1281 mutex_unlock(&delayed_node->mutex);
1282
1283 btrfs_free_path(path);
1284 trans->block_rsv = block_rsv;
1285trans_out:
3a45bb20 1286 btrfs_end_transaction(trans);
2ff7e61e 1287 btrfs_btree_balance_dirty(fs_info);
0e8c36a9
MX
1288out:
1289 btrfs_release_delayed_node(delayed_node);
1290
1291 return ret;
1292}
1293
f48d1cf5 1294void btrfs_remove_delayed_node(struct btrfs_inode *inode)
16cdcec7
MX
1295{
1296 struct btrfs_delayed_node *delayed_node;
1297
f48d1cf5 1298 delayed_node = READ_ONCE(inode->delayed_node);
16cdcec7
MX
1299 if (!delayed_node)
1300 return;
1301
f48d1cf5 1302 inode->delayed_node = NULL;
16cdcec7
MX
1303 btrfs_release_delayed_node(delayed_node);
1304}
1305
de3cb945
CM
1306struct btrfs_async_delayed_work {
1307 struct btrfs_delayed_root *delayed_root;
1308 int nr;
d458b054 1309 struct btrfs_work work;
16cdcec7
MX
1310};
1311
d458b054 1312static void btrfs_async_run_delayed_root(struct btrfs_work *work)
16cdcec7 1313{
de3cb945
CM
1314 struct btrfs_async_delayed_work *async_work;
1315 struct btrfs_delayed_root *delayed_root;
16cdcec7
MX
1316 struct btrfs_trans_handle *trans;
1317 struct btrfs_path *path;
1318 struct btrfs_delayed_node *delayed_node = NULL;
1319 struct btrfs_root *root;
19fd2949 1320 struct btrfs_block_rsv *block_rsv;
de3cb945 1321 int total_done = 0;
16cdcec7 1322
de3cb945
CM
1323 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1324 delayed_root = async_work->delayed_root;
16cdcec7
MX
1325
1326 path = btrfs_alloc_path();
1327 if (!path)
1328 goto out;
16cdcec7 1329
617c54a8
NB
1330 do {
1331 if (atomic_read(&delayed_root->items) <
1332 BTRFS_DELAYED_BACKGROUND / 2)
1333 break;
de3cb945 1334
617c54a8
NB
1335 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1336 if (!delayed_node)
1337 break;
de3cb945 1338
617c54a8 1339 root = delayed_node->root;
16cdcec7 1340
617c54a8
NB
1341 trans = btrfs_join_transaction(root);
1342 if (IS_ERR(trans)) {
1343 btrfs_release_path(path);
1344 btrfs_release_prepared_delayed_node(delayed_node);
1345 total_done++;
1346 continue;
1347 }
16cdcec7 1348
617c54a8
NB
1349 block_rsv = trans->block_rsv;
1350 trans->block_rsv = &root->fs_info->delayed_block_rsv;
19fd2949 1351
617c54a8 1352 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
16cdcec7 1353
617c54a8
NB
1354 trans->block_rsv = block_rsv;
1355 btrfs_end_transaction(trans);
1356 btrfs_btree_balance_dirty_nodelay(root->fs_info);
de3cb945 1357
617c54a8
NB
1358 btrfs_release_path(path);
1359 btrfs_release_prepared_delayed_node(delayed_node);
1360 total_done++;
de3cb945 1361
617c54a8
NB
1362 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1363 || total_done < async_work->nr);
de3cb945 1364
16cdcec7
MX
1365 btrfs_free_path(path);
1366out:
de3cb945
CM
1367 wake_up(&delayed_root->wait);
1368 kfree(async_work);
16cdcec7
MX
1369}
1370
de3cb945 1371
16cdcec7 1372static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
a585e948 1373 struct btrfs_fs_info *fs_info, int nr)
16cdcec7 1374{
de3cb945 1375 struct btrfs_async_delayed_work *async_work;
16cdcec7 1376
de3cb945
CM
1377 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378 if (!async_work)
16cdcec7 1379 return -ENOMEM;
16cdcec7 1380
de3cb945 1381 async_work->delayed_root = delayed_root;
078b8b90 1382 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
de3cb945 1383 async_work->nr = nr;
16cdcec7 1384
a585e948 1385 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
16cdcec7
MX
1386 return 0;
1387}
1388
ccdf9b30 1389void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
e999376f 1390{
ccdf9b30 1391 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
e999376f
CM
1392}
1393
0353808c 1394static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
de3cb945
CM
1395{
1396 int val = atomic_read(&delayed_root->items_seq);
1397
0353808c 1398 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
de3cb945 1399 return 1;
0353808c
MX
1400
1401 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1402 return 1;
1403
de3cb945
CM
1404 return 0;
1405}
1406
2ff7e61e 1407void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
16cdcec7 1408{
2ff7e61e 1409 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
16cdcec7 1410
8577787f
NB
1411 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1412 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
16cdcec7
MX
1413 return;
1414
1415 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
0353808c 1416 int seq;
16cdcec7 1417 int ret;
0353808c
MX
1418
1419 seq = atomic_read(&delayed_root->items_seq);
de3cb945 1420
a585e948 1421 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
16cdcec7
MX
1422 if (ret)
1423 return;
1424
0353808c
MX
1425 wait_event_interruptible(delayed_root->wait,
1426 could_end_wait(delayed_root, seq));
4dd466d3 1427 return;
16cdcec7
MX
1428 }
1429
a585e948 1430 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
16cdcec7
MX
1431}
1432
2c58c393
FM
1433static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1434{
1435 struct btrfs_fs_info *fs_info = trans->fs_info;
1436 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1437
1438 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1439 return;
1440
1441 /*
1442 * Adding the new dir index item does not require touching another
1443 * leaf, so we can release 1 unit of metadata that was previously
1444 * reserved when starting the transaction. This applies only to
1445 * the case where we had a transaction start and excludes the
1446 * transaction join case (when replaying log trees).
1447 */
1448 trace_btrfs_space_reservation(fs_info, "transaction",
1449 trans->transid, bytes, 0);
1450 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1451 ASSERT(trans->bytes_reserved >= bytes);
1452 trans->bytes_reserved -= bytes;
1453}
1454
1455/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
16cdcec7 1456int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
2ff7e61e 1457 const char *name, int name_len,
6f45d185 1458 struct btrfs_inode *dir,
94a48aef 1459 struct btrfs_disk_key *disk_key, u8 flags,
16cdcec7
MX
1460 u64 index)
1461{
763748b2
FM
1462 struct btrfs_fs_info *fs_info = trans->fs_info;
1463 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
16cdcec7
MX
1464 struct btrfs_delayed_node *delayed_node;
1465 struct btrfs_delayed_item *delayed_item;
1466 struct btrfs_dir_item *dir_item;
763748b2
FM
1467 bool reserve_leaf_space;
1468 u32 data_len;
16cdcec7
MX
1469 int ret;
1470
6f45d185 1471 delayed_node = btrfs_get_or_create_delayed_node(dir);
16cdcec7
MX
1472 if (IS_ERR(delayed_node))
1473 return PTR_ERR(delayed_node);
1474
96d89923 1475 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
4c469798
FM
1476 delayed_node,
1477 BTRFS_DELAYED_INSERTION_ITEM);
16cdcec7
MX
1478 if (!delayed_item) {
1479 ret = -ENOMEM;
1480 goto release_node;
1481 }
1482
96d89923 1483 delayed_item->index = index;
16cdcec7
MX
1484
1485 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1486 dir_item->location = *disk_key;
3cae210f
QW
1487 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1488 btrfs_set_stack_dir_data_len(dir_item, 0);
1489 btrfs_set_stack_dir_name_len(dir_item, name_len);
94a48aef 1490 btrfs_set_stack_dir_flags(dir_item, flags);
16cdcec7
MX
1491 memcpy((char *)(dir_item + 1), name, name_len);
1492
763748b2 1493 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
8c2a3ca2 1494
16cdcec7 1495 mutex_lock(&delayed_node->mutex);
763748b2 1496
2c58c393
FM
1497 /*
1498 * First attempt to insert the delayed item. This is to make the error
1499 * handling path simpler in case we fail (-EEXIST). There's no risk of
1500 * any other task coming in and running the delayed item before we do
1501 * the metadata space reservation below, because we are holding the
1502 * delayed node's mutex and that mutex must also be locked before the
1503 * node's delayed items can be run.
1504 */
1505 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1506 if (unlikely(ret)) {
1507 btrfs_err(trans->fs_info,
1508"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1509 name_len, name, index, btrfs_root_id(delayed_node->root),
1510 delayed_node->inode_id, dir->index_cnt,
1511 delayed_node->index_cnt, ret);
1512 btrfs_release_delayed_item(delayed_item);
1513 btrfs_release_dir_index_item_space(trans);
1514 mutex_unlock(&delayed_node->mutex);
1515 goto release_node;
1516 }
1517
763748b2
FM
1518 if (delayed_node->index_item_leaves == 0 ||
1519 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1520 delayed_node->curr_index_batch_size = data_len;
1521 reserve_leaf_space = true;
1522 } else {
1523 delayed_node->curr_index_batch_size += data_len;
1524 reserve_leaf_space = false;
1525 }
1526
1527 if (reserve_leaf_space) {
df492881 1528 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
763748b2
FM
1529 /*
1530 * Space was reserved for a dir index item insertion when we
1531 * started the transaction, so getting a failure here should be
1532 * impossible.
1533 */
1534 if (WARN_ON(ret)) {
763748b2 1535 btrfs_release_delayed_item(delayed_item);
2c58c393 1536 mutex_unlock(&delayed_node->mutex);
763748b2
FM
1537 goto release_node;
1538 }
1539
1540 delayed_node->index_item_leaves++;
2c58c393
FM
1541 } else {
1542 btrfs_release_dir_index_item_space(trans);
16cdcec7
MX
1543 }
1544 mutex_unlock(&delayed_node->mutex);
1545
1546release_node:
1547 btrfs_release_delayed_node(delayed_node);
1548 return ret;
1549}
1550
2ff7e61e 1551static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
16cdcec7 1552 struct btrfs_delayed_node *node,
96d89923 1553 u64 index)
16cdcec7
MX
1554{
1555 struct btrfs_delayed_item *item;
1556
1557 mutex_lock(&node->mutex);
4cbf37f5 1558 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
16cdcec7
MX
1559 if (!item) {
1560 mutex_unlock(&node->mutex);
1561 return 1;
1562 }
1563
763748b2
FM
1564 /*
1565 * For delayed items to insert, we track reserved metadata bytes based
1566 * on the number of leaves that we will use.
1567 * See btrfs_insert_delayed_dir_index() and
1568 * btrfs_delayed_item_reserve_metadata()).
1569 */
1570 ASSERT(item->bytes_reserved == 0);
1571 ASSERT(node->index_item_leaves > 0);
1572
1573 /*
1574 * If there's only one leaf reserved, we can decrement this item from the
1575 * current batch, otherwise we can not because we don't know which leaf
1576 * it belongs to. With the current limit on delayed items, we rarely
1577 * accumulate enough dir index items to fill more than one leaf (even
1578 * when using a leaf size of 4K).
1579 */
1580 if (node->index_item_leaves == 1) {
1581 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1582
1583 ASSERT(node->curr_index_batch_size >= data_len);
1584 node->curr_index_batch_size -= data_len;
1585 }
1586
16cdcec7 1587 btrfs_release_delayed_item(item);
763748b2
FM
1588
1589 /* If we now have no more dir index items, we can release all leaves. */
1590 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1591 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1592 node->index_item_leaves = 0;
1593 }
1594
16cdcec7
MX
1595 mutex_unlock(&node->mutex);
1596 return 0;
1597}
1598
1599int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
e67bbbb9 1600 struct btrfs_inode *dir, u64 index)
16cdcec7
MX
1601{
1602 struct btrfs_delayed_node *node;
1603 struct btrfs_delayed_item *item;
16cdcec7
MX
1604 int ret;
1605
e67bbbb9 1606 node = btrfs_get_or_create_delayed_node(dir);
16cdcec7
MX
1607 if (IS_ERR(node))
1608 return PTR_ERR(node);
1609
96d89923 1610 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
16cdcec7
MX
1611 if (!ret)
1612 goto end;
1613
4c469798 1614 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
16cdcec7
MX
1615 if (!item) {
1616 ret = -ENOMEM;
1617 goto end;
1618 }
1619
96d89923 1620 item->index = index;
16cdcec7 1621
df492881 1622 ret = btrfs_delayed_item_reserve_metadata(trans, item);
16cdcec7
MX
1623 /*
1624 * we have reserved enough space when we start a new transaction,
1625 * so reserving metadata failure is impossible.
1626 */
933c22a7
QW
1627 if (ret < 0) {
1628 btrfs_err(trans->fs_info,
1629"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1630 btrfs_release_delayed_item(item);
1631 goto end;
1632 }
16cdcec7
MX
1633
1634 mutex_lock(&node->mutex);
c9d02ab4 1635 ret = __btrfs_add_delayed_item(node, item);
16cdcec7 1636 if (unlikely(ret)) {
9add2945 1637 btrfs_err(trans->fs_info,
5d163e0e 1638 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
4fd786e6
MT
1639 index, node->root->root_key.objectid,
1640 node->inode_id, ret);
933c22a7
QW
1641 btrfs_delayed_item_release_metadata(dir->root, item);
1642 btrfs_release_delayed_item(item);
16cdcec7
MX
1643 }
1644 mutex_unlock(&node->mutex);
1645end:
1646 btrfs_release_delayed_node(node);
1647 return ret;
1648}
1649
f5cc7b80 1650int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
16cdcec7 1651{
f5cc7b80 1652 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
16cdcec7
MX
1653
1654 if (!delayed_node)
1655 return -ENOENT;
1656
1657 /*
1658 * Since we have held i_mutex of this directory, it is impossible that
1659 * a new directory index is added into the delayed node and index_cnt
1660 * is updated now. So we needn't lock the delayed node.
1661 */
2f7e33d4
MX
1662 if (!delayed_node->index_cnt) {
1663 btrfs_release_delayed_node(delayed_node);
16cdcec7 1664 return -EINVAL;
2f7e33d4 1665 }
16cdcec7 1666
f5cc7b80 1667 inode->index_cnt = delayed_node->index_cnt;
2f7e33d4
MX
1668 btrfs_release_delayed_node(delayed_node);
1669 return 0;
16cdcec7
MX
1670}
1671
02dbfc99 1672bool btrfs_readdir_get_delayed_items(struct inode *inode,
9b378f6a 1673 u64 last_index,
02dbfc99
OS
1674 struct list_head *ins_list,
1675 struct list_head *del_list)
16cdcec7
MX
1676{
1677 struct btrfs_delayed_node *delayed_node;
1678 struct btrfs_delayed_item *item;
1679
340c6ca9 1680 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
16cdcec7 1681 if (!delayed_node)
02dbfc99
OS
1682 return false;
1683
1684 /*
1685 * We can only do one readdir with delayed items at a time because of
1686 * item->readdir_list.
1687 */
e5d4d75b 1688 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
29b6352b 1689 btrfs_inode_lock(BTRFS_I(inode), 0);
16cdcec7
MX
1690
1691 mutex_lock(&delayed_node->mutex);
1692 item = __btrfs_first_delayed_insertion_item(delayed_node);
9b378f6a 1693 while (item && item->index <= last_index) {
089e77e1 1694 refcount_inc(&item->refs);
16cdcec7
MX
1695 list_add_tail(&item->readdir_list, ins_list);
1696 item = __btrfs_next_delayed_item(item);
1697 }
1698
1699 item = __btrfs_first_delayed_deletion_item(delayed_node);
9b378f6a 1700 while (item && item->index <= last_index) {
089e77e1 1701 refcount_inc(&item->refs);
16cdcec7
MX
1702 list_add_tail(&item->readdir_list, del_list);
1703 item = __btrfs_next_delayed_item(item);
1704 }
1705 mutex_unlock(&delayed_node->mutex);
1706 /*
1707 * This delayed node is still cached in the btrfs inode, so refs
1708 * must be > 1 now, and we needn't check it is going to be freed
1709 * or not.
1710 *
1711 * Besides that, this function is used to read dir, we do not
1712 * insert/delete delayed items in this period. So we also needn't
1713 * requeue or dequeue this delayed node.
1714 */
6de5f18e 1715 refcount_dec(&delayed_node->refs);
02dbfc99
OS
1716
1717 return true;
16cdcec7
MX
1718}
1719
02dbfc99
OS
1720void btrfs_readdir_put_delayed_items(struct inode *inode,
1721 struct list_head *ins_list,
1722 struct list_head *del_list)
16cdcec7
MX
1723{
1724 struct btrfs_delayed_item *curr, *next;
1725
1726 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1727 list_del(&curr->readdir_list);
089e77e1 1728 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1729 kfree(curr);
1730 }
1731
1732 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1733 list_del(&curr->readdir_list);
089e77e1 1734 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1735 kfree(curr);
1736 }
02dbfc99
OS
1737
1738 /*
1739 * The VFS is going to do up_read(), so we need to downgrade back to a
1740 * read lock.
1741 */
1742 downgrade_write(&inode->i_rwsem);
16cdcec7
MX
1743}
1744
1745int btrfs_should_delete_dir_index(struct list_head *del_list,
1746 u64 index)
1747{
e4fd493c
JB
1748 struct btrfs_delayed_item *curr;
1749 int ret = 0;
16cdcec7 1750
e4fd493c 1751 list_for_each_entry(curr, del_list, readdir_list) {
96d89923 1752 if (curr->index > index)
16cdcec7 1753 break;
96d89923 1754 if (curr->index == index) {
e4fd493c
JB
1755 ret = 1;
1756 break;
1757 }
16cdcec7 1758 }
e4fd493c 1759 return ret;
16cdcec7
MX
1760}
1761
1762/*
9580503b 1763 * Read dir info stored in the delayed tree.
16cdcec7 1764 */
9cdda8d3 1765int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
d2fbb2b5 1766 struct list_head *ins_list)
16cdcec7
MX
1767{
1768 struct btrfs_dir_item *di;
1769 struct btrfs_delayed_item *curr, *next;
1770 struct btrfs_key location;
1771 char *name;
1772 int name_len;
1773 int over = 0;
1774 unsigned char d_type;
1775
16cdcec7
MX
1776 /*
1777 * Changing the data of the delayed item is impossible. So
1778 * we needn't lock them. And we have held i_mutex of the
1779 * directory, nobody can delete any directory indexes now.
1780 */
1781 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1782 list_del(&curr->readdir_list);
1783
96d89923 1784 if (curr->index < ctx->pos) {
089e77e1 1785 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1786 kfree(curr);
1787 continue;
1788 }
1789
96d89923 1790 ctx->pos = curr->index;
16cdcec7
MX
1791
1792 di = (struct btrfs_dir_item *)curr->data;
1793 name = (char *)(di + 1);
3cae210f 1794 name_len = btrfs_stack_dir_name_len(di);
16cdcec7 1795
94a48aef 1796 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
16cdcec7
MX
1797 btrfs_disk_key_to_cpu(&location, &di->location);
1798
9cdda8d3 1799 over = !dir_emit(ctx, name, name_len,
16cdcec7
MX
1800 location.objectid, d_type);
1801
089e77e1 1802 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1803 kfree(curr);
1804
1805 if (over)
1806 return 1;
42e9cc46 1807 ctx->pos++;
16cdcec7
MX
1808 }
1809 return 0;
1810}
1811
16cdcec7
MX
1812static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1813 struct btrfs_inode_item *inode_item,
1814 struct inode *inode)
1815{
77eea05e
BB
1816 u64 flags;
1817
2f2f43d3
EB
1818 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1819 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
16cdcec7
MX
1820 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1821 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1822 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1823 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1824 btrfs_set_stack_inode_generation(inode_item,
1825 BTRFS_I(inode)->generation);
c7f88c4e
JL
1826 btrfs_set_stack_inode_sequence(inode_item,
1827 inode_peek_iversion(inode));
16cdcec7
MX
1828 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1829 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
77eea05e
BB
1830 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1831 BTRFS_I(inode)->ro_flags);
1832 btrfs_set_stack_inode_flags(inode_item, flags);
ff5714cc 1833 btrfs_set_stack_inode_block_group(inode_item, 0);
16cdcec7 1834
a937b979 1835 btrfs_set_stack_timespec_sec(&inode_item->atime,
16cdcec7 1836 inode->i_atime.tv_sec);
a937b979 1837 btrfs_set_stack_timespec_nsec(&inode_item->atime,
16cdcec7
MX
1838 inode->i_atime.tv_nsec);
1839
a937b979 1840 btrfs_set_stack_timespec_sec(&inode_item->mtime,
16cdcec7 1841 inode->i_mtime.tv_sec);
a937b979 1842 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
16cdcec7
MX
1843 inode->i_mtime.tv_nsec);
1844
a937b979 1845 btrfs_set_stack_timespec_sec(&inode_item->ctime,
2a9462de 1846 inode_get_ctime(inode).tv_sec);
a937b979 1847 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
2a9462de 1848 inode_get_ctime(inode).tv_nsec);
9cc97d64 1849
1850 btrfs_set_stack_timespec_sec(&inode_item->otime,
1851 BTRFS_I(inode)->i_otime.tv_sec);
1852 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1853 BTRFS_I(inode)->i_otime.tv_nsec);
16cdcec7
MX
1854}
1855
2f7e33d4
MX
1856int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1857{
9ddc959e 1858 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2f7e33d4
MX
1859 struct btrfs_delayed_node *delayed_node;
1860 struct btrfs_inode_item *inode_item;
2f7e33d4 1861
340c6ca9 1862 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
2f7e33d4
MX
1863 if (!delayed_node)
1864 return -ENOENT;
1865
1866 mutex_lock(&delayed_node->mutex);
7cf35d91 1867 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2f7e33d4
MX
1868 mutex_unlock(&delayed_node->mutex);
1869 btrfs_release_delayed_node(delayed_node);
1870 return -ENOENT;
1871 }
1872
1873 inode_item = &delayed_node->inode_item;
1874
2f2f43d3
EB
1875 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1876 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
6ef06d27 1877 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
9ddc959e
JB
1878 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1879 round_up(i_size_read(inode), fs_info->sectorsize));
2f7e33d4 1880 inode->i_mode = btrfs_stack_inode_mode(inode_item);
bfe86848 1881 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
2f7e33d4
MX
1882 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1883 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
6e17d30b
YD
1884 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1885
c7f88c4e
JL
1886 inode_set_iversion_queried(inode,
1887 btrfs_stack_inode_sequence(inode_item));
2f7e33d4
MX
1888 inode->i_rdev = 0;
1889 *rdev = btrfs_stack_inode_rdev(inode_item);
77eea05e
BB
1890 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1891 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
2f7e33d4 1892
a937b979
DS
1893 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1894 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
2f7e33d4 1895
a937b979
DS
1896 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1897 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
2f7e33d4 1898
2a9462de
JL
1899 inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1900 btrfs_stack_timespec_nsec(&inode_item->ctime));
2f7e33d4 1901
9cc97d64 1902 BTRFS_I(inode)->i_otime.tv_sec =
1903 btrfs_stack_timespec_sec(&inode_item->otime);
1904 BTRFS_I(inode)->i_otime.tv_nsec =
1905 btrfs_stack_timespec_nsec(&inode_item->otime);
1906
2f7e33d4
MX
1907 inode->i_generation = BTRFS_I(inode)->generation;
1908 BTRFS_I(inode)->index_cnt = (u64)-1;
1909
1910 mutex_unlock(&delayed_node->mutex);
1911 btrfs_release_delayed_node(delayed_node);
1912 return 0;
1913}
1914
16cdcec7 1915int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
f3fbcaef
NB
1916 struct btrfs_root *root,
1917 struct btrfs_inode *inode)
16cdcec7
MX
1918{
1919 struct btrfs_delayed_node *delayed_node;
aa0467d8 1920 int ret = 0;
16cdcec7 1921
f3fbcaef 1922 delayed_node = btrfs_get_or_create_delayed_node(inode);
16cdcec7
MX
1923 if (IS_ERR(delayed_node))
1924 return PTR_ERR(delayed_node);
1925
1926 mutex_lock(&delayed_node->mutex);
7cf35d91 1927 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
f3fbcaef
NB
1928 fill_stack_inode_item(trans, &delayed_node->inode_item,
1929 &inode->vfs_inode);
16cdcec7
MX
1930 goto release_node;
1931 }
1932
8e3c9d3c 1933 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
c06a0e12
JB
1934 if (ret)
1935 goto release_node;
16cdcec7 1936
f3fbcaef 1937 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
7cf35d91 1938 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
16cdcec7
MX
1939 delayed_node->count++;
1940 atomic_inc(&root->fs_info->delayed_root->items);
1941release_node:
1942 mutex_unlock(&delayed_node->mutex);
1943 btrfs_release_delayed_node(delayed_node);
1944 return ret;
1945}
1946
e07222c7 1947int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
67de1176 1948{
3ffbd68c 1949 struct btrfs_fs_info *fs_info = inode->root->fs_info;
67de1176
MX
1950 struct btrfs_delayed_node *delayed_node;
1951
6f896054
CM
1952 /*
1953 * we don't do delayed inode updates during log recovery because it
1954 * leads to enospc problems. This means we also can't do
1955 * delayed inode refs
1956 */
0b246afa 1957 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
6f896054
CM
1958 return -EAGAIN;
1959
e07222c7 1960 delayed_node = btrfs_get_or_create_delayed_node(inode);
67de1176
MX
1961 if (IS_ERR(delayed_node))
1962 return PTR_ERR(delayed_node);
1963
1964 /*
1965 * We don't reserve space for inode ref deletion is because:
1966 * - We ONLY do async inode ref deletion for the inode who has only
1967 * one link(i_nlink == 1), it means there is only one inode ref.
1968 * And in most case, the inode ref and the inode item are in the
1969 * same leaf, and we will deal with them at the same time.
1970 * Since we are sure we will reserve the space for the inode item,
1971 * it is unnecessary to reserve space for inode ref deletion.
1972 * - If the inode ref and the inode item are not in the same leaf,
1973 * We also needn't worry about enospc problem, because we reserve
1974 * much more space for the inode update than it needs.
1975 * - At the worst, we can steal some space from the global reservation.
1976 * It is very rare.
1977 */
1978 mutex_lock(&delayed_node->mutex);
1979 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1980 goto release_node;
1981
1982 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1983 delayed_node->count++;
0b246afa 1984 atomic_inc(&fs_info->delayed_root->items);
67de1176
MX
1985release_node:
1986 mutex_unlock(&delayed_node->mutex);
1987 btrfs_release_delayed_node(delayed_node);
1988 return 0;
1989}
1990
16cdcec7
MX
1991static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1992{
1993 struct btrfs_root *root = delayed_node->root;
2ff7e61e 1994 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
1995 struct btrfs_delayed_item *curr_item, *prev_item;
1996
1997 mutex_lock(&delayed_node->mutex);
1998 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1999 while (curr_item) {
16cdcec7
MX
2000 prev_item = curr_item;
2001 curr_item = __btrfs_next_delayed_item(prev_item);
2002 btrfs_release_delayed_item(prev_item);
2003 }
2004
763748b2
FM
2005 if (delayed_node->index_item_leaves > 0) {
2006 btrfs_delayed_item_release_leaves(delayed_node,
2007 delayed_node->index_item_leaves);
2008 delayed_node->index_item_leaves = 0;
2009 }
2010
16cdcec7
MX
2011 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2012 while (curr_item) {
4f5427cc 2013 btrfs_delayed_item_release_metadata(root, curr_item);
16cdcec7
MX
2014 prev_item = curr_item;
2015 curr_item = __btrfs_next_delayed_item(prev_item);
2016 btrfs_release_delayed_item(prev_item);
2017 }
2018
a4cb90dc 2019 btrfs_release_delayed_iref(delayed_node);
67de1176 2020
7cf35d91 2021 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
4f5427cc 2022 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
16cdcec7
MX
2023 btrfs_release_delayed_inode(delayed_node);
2024 }
2025 mutex_unlock(&delayed_node->mutex);
2026}
2027
4ccb5c72 2028void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
16cdcec7
MX
2029{
2030 struct btrfs_delayed_node *delayed_node;
2031
4ccb5c72 2032 delayed_node = btrfs_get_delayed_node(inode);
16cdcec7
MX
2033 if (!delayed_node)
2034 return;
2035
2036 __btrfs_kill_delayed_node(delayed_node);
2037 btrfs_release_delayed_node(delayed_node);
2038}
2039
2040void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2041{
088aea3b 2042 u64 inode_id = 0;
16cdcec7 2043 struct btrfs_delayed_node *delayed_nodes[8];
088aea3b 2044 int i, n;
16cdcec7
MX
2045
2046 while (1) {
2047 spin_lock(&root->inode_lock);
088aea3b
DS
2048 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2049 (void **)delayed_nodes, inode_id,
2050 ARRAY_SIZE(delayed_nodes));
2051 if (!n) {
16cdcec7 2052 spin_unlock(&root->inode_lock);
088aea3b 2053 break;
16cdcec7
MX
2054 }
2055
088aea3b
DS
2056 inode_id = delayed_nodes[n - 1]->inode_id + 1;
2057 for (i = 0; i < n; i++) {
baf320b9
JB
2058 /*
2059 * Don't increase refs in case the node is dead and
2060 * about to be removed from the tree in the loop below
2061 */
088aea3b
DS
2062 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
2063 delayed_nodes[i] = NULL;
baf320b9 2064 }
16cdcec7
MX
2065 spin_unlock(&root->inode_lock);
2066
088aea3b
DS
2067 for (i = 0; i < n; i++) {
2068 if (!delayed_nodes[i])
2069 continue;
16cdcec7
MX
2070 __btrfs_kill_delayed_node(delayed_nodes[i]);
2071 btrfs_release_delayed_node(delayed_nodes[i]);
2072 }
2073 }
2074}
67cde344 2075
ccdf9b30 2076void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
67cde344 2077{
67cde344
MX
2078 struct btrfs_delayed_node *curr_node, *prev_node;
2079
ccdf9b30 2080 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
67cde344
MX
2081 while (curr_node) {
2082 __btrfs_kill_delayed_node(curr_node);
2083
2084 prev_node = curr_node;
2085 curr_node = btrfs_next_delayed_node(curr_node);
2086 btrfs_release_delayed_node(prev_node);
2087 }
2088}
2089
30b80f3c
FM
2090void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2091 struct list_head *ins_list,
2092 struct list_head *del_list)
2093{
2094 struct btrfs_delayed_node *node;
2095 struct btrfs_delayed_item *item;
2096
2097 node = btrfs_get_delayed_node(inode);
2098 if (!node)
2099 return;
2100
2101 mutex_lock(&node->mutex);
2102 item = __btrfs_first_delayed_insertion_item(node);
2103 while (item) {
2104 /*
2105 * It's possible that the item is already in a log list. This
2106 * can happen in case two tasks are trying to log the same
2107 * directory. For example if we have tasks A and task B:
2108 *
2109 * Task A collected the delayed items into a log list while
2110 * under the inode's log_mutex (at btrfs_log_inode()), but it
2111 * only releases the items after logging the inodes they point
2112 * to (if they are new inodes), which happens after unlocking
2113 * the log mutex;
2114 *
2115 * Task B enters btrfs_log_inode() and acquires the log_mutex
2116 * of the same directory inode, before task B releases the
2117 * delayed items. This can happen for example when logging some
2118 * inode we need to trigger logging of its parent directory, so
2119 * logging two files that have the same parent directory can
2120 * lead to this.
2121 *
2122 * If this happens, just ignore delayed items already in a log
2123 * list. All the tasks logging the directory are under a log
2124 * transaction and whichever finishes first can not sync the log
2125 * before the other completes and leaves the log transaction.
2126 */
2127 if (!item->logged && list_empty(&item->log_list)) {
2128 refcount_inc(&item->refs);
2129 list_add_tail(&item->log_list, ins_list);
2130 }
2131 item = __btrfs_next_delayed_item(item);
2132 }
2133
2134 item = __btrfs_first_delayed_deletion_item(node);
2135 while (item) {
2136 /* It may be non-empty, for the same reason mentioned above. */
2137 if (!item->logged && list_empty(&item->log_list)) {
2138 refcount_inc(&item->refs);
2139 list_add_tail(&item->log_list, del_list);
2140 }
2141 item = __btrfs_next_delayed_item(item);
2142 }
2143 mutex_unlock(&node->mutex);
2144
2145 /*
2146 * We are called during inode logging, which means the inode is in use
2147 * and can not be evicted before we finish logging the inode. So we never
2148 * have the last reference on the delayed inode.
2149 * Also, we don't use btrfs_release_delayed_node() because that would
2150 * requeue the delayed inode (change its order in the list of prepared
2151 * nodes) and we don't want to do such change because we don't create or
2152 * delete delayed items.
2153 */
2154 ASSERT(refcount_read(&node->refs) > 1);
2155 refcount_dec(&node->refs);
2156}
2157
2158void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2159 struct list_head *ins_list,
2160 struct list_head *del_list)
2161{
2162 struct btrfs_delayed_node *node;
2163 struct btrfs_delayed_item *item;
2164 struct btrfs_delayed_item *next;
2165
2166 node = btrfs_get_delayed_node(inode);
2167 if (!node)
2168 return;
2169
2170 mutex_lock(&node->mutex);
2171
2172 list_for_each_entry_safe(item, next, ins_list, log_list) {
2173 item->logged = true;
2174 list_del_init(&item->log_list);
2175 if (refcount_dec_and_test(&item->refs))
2176 kfree(item);
2177 }
2178
2179 list_for_each_entry_safe(item, next, del_list, log_list) {
2180 item->logged = true;
2181 list_del_init(&item->log_list);
2182 if (refcount_dec_and_test(&item->refs))
2183 kfree(item);
2184 }
2185
2186 mutex_unlock(&node->mutex);
2187
2188 /*
2189 * We are called during inode logging, which means the inode is in use
2190 * and can not be evicted before we finish logging the inode. So we never
2191 * have the last reference on the delayed inode.
2192 * Also, we don't use btrfs_release_delayed_node() because that would
2193 * requeue the delayed inode (change its order in the list of prepared
2194 * nodes) and we don't want to do such change because we don't create or
2195 * delete delayed items.
2196 */
2197 ASSERT(refcount_read(&node->refs) > 1);
2198 refcount_dec(&node->refs);
2199}