Merge tag 'uml-for-linus-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / fs / btrfs / delayed-inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
16cdcec7
MX
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
16cdcec7
MX
5 */
6
7#include <linux/slab.h>
c7f88c4e 8#include <linux/iversion.h>
ec8eb376
JB
9#include "ctree.h"
10#include "fs.h"
9b569ea0 11#include "messages.h"
602cbe91 12#include "misc.h"
16cdcec7
MX
13#include "delayed-inode.h"
14#include "disk-io.h"
15#include "transaction.h"
4f5427cc 16#include "qgroup.h"
1f95ec01 17#include "locking.h"
26c2c454 18#include "inode-item.h"
f1e5c618 19#include "space-info.h"
07e81dc9 20#include "accessors.h"
7c8ede16 21#include "file-item.h"
16cdcec7 22
de3cb945
CM
23#define BTRFS_DELAYED_WRITEBACK 512
24#define BTRFS_DELAYED_BACKGROUND 128
25#define BTRFS_DELAYED_BATCH 16
16cdcec7
MX
26
27static struct kmem_cache *delayed_node_cache;
28
29int __init btrfs_delayed_inode_init(void)
30{
837e1972 31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
16cdcec7
MX
32 sizeof(struct btrfs_delayed_node),
33 0,
fba4b697 34 SLAB_MEM_SPREAD,
16cdcec7
MX
35 NULL);
36 if (!delayed_node_cache)
37 return -ENOMEM;
38 return 0;
39}
40
e67c718b 41void __cold btrfs_delayed_inode_exit(void)
16cdcec7 42{
5598e900 43 kmem_cache_destroy(delayed_node_cache);
16cdcec7
MX
44}
45
46static inline void btrfs_init_delayed_node(
47 struct btrfs_delayed_node *delayed_node,
48 struct btrfs_root *root, u64 inode_id)
49{
50 delayed_node->root = root;
51 delayed_node->inode_id = inode_id;
6de5f18e 52 refcount_set(&delayed_node->refs, 0);
03a1d4c8
LB
53 delayed_node->ins_root = RB_ROOT_CACHED;
54 delayed_node->del_root = RB_ROOT_CACHED;
16cdcec7 55 mutex_init(&delayed_node->mutex);
16cdcec7
MX
56 INIT_LIST_HEAD(&delayed_node->n_list);
57 INIT_LIST_HEAD(&delayed_node->p_list);
16cdcec7
MX
58}
59
f85b7379
DS
60static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 struct btrfs_inode *btrfs_inode)
16cdcec7 62{
16cdcec7 63 struct btrfs_root *root = btrfs_inode->root;
4a0cc7ca 64 u64 ino = btrfs_ino(btrfs_inode);
2f7e33d4 65 struct btrfs_delayed_node *node;
16cdcec7 66
20c7bcec 67 node = READ_ONCE(btrfs_inode->delayed_node);
16cdcec7 68 if (node) {
6de5f18e 69 refcount_inc(&node->refs);
16cdcec7
MX
70 return node;
71 }
72
73 spin_lock(&root->inode_lock);
088aea3b 74 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
ec35e48b 75
16cdcec7
MX
76 if (node) {
77 if (btrfs_inode->delayed_node) {
6de5f18e 78 refcount_inc(&node->refs); /* can be accessed */
2f7e33d4 79 BUG_ON(btrfs_inode->delayed_node != node);
16cdcec7 80 spin_unlock(&root->inode_lock);
2f7e33d4 81 return node;
16cdcec7 82 }
ec35e48b
CM
83
84 /*
85 * It's possible that we're racing into the middle of removing
088aea3b 86 * this node from the radix tree. In this case, the refcount
ec35e48b 87 * was zero and it should never go back to one. Just return
088aea3b 88 * NULL like it was never in the radix at all; our release
ec35e48b
CM
89 * function is in the process of removing it.
90 *
91 * Some implementations of refcount_inc refuse to bump the
92 * refcount once it has hit zero. If we don't do this dance
93 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 * of actually bumping the refcount.
95 *
088aea3b 96 * If this node is properly in the radix, we want to bump the
ec35e48b
CM
97 * refcount twice, once for the inode and once for this get
98 * operation.
99 */
100 if (refcount_inc_not_zero(&node->refs)) {
101 refcount_inc(&node->refs);
102 btrfs_inode->delayed_node = node;
103 } else {
104 node = NULL;
105 }
106
16cdcec7
MX
107 spin_unlock(&root->inode_lock);
108 return node;
109 }
110 spin_unlock(&root->inode_lock);
111
2f7e33d4
MX
112 return NULL;
113}
114
79787eaa 115/* Will return either the node or PTR_ERR(-ENOMEM) */
2f7e33d4 116static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
f85b7379 117 struct btrfs_inode *btrfs_inode)
2f7e33d4
MX
118{
119 struct btrfs_delayed_node *node;
2f7e33d4 120 struct btrfs_root *root = btrfs_inode->root;
4a0cc7ca 121 u64 ino = btrfs_ino(btrfs_inode);
2f7e33d4
MX
122 int ret;
123
088aea3b
DS
124again:
125 node = btrfs_get_delayed_node(btrfs_inode);
126 if (node)
127 return node;
2f7e33d4 128
088aea3b
DS
129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 if (!node)
131 return ERR_PTR(-ENOMEM);
132 btrfs_init_delayed_node(node, root, ino);
16cdcec7 133
088aea3b
DS
134 /* cached in the btrfs inode and can be accessed */
135 refcount_set(&node->refs, 2);
16cdcec7 136
088aea3b
DS
137 ret = radix_tree_preload(GFP_NOFS);
138 if (ret) {
139 kmem_cache_free(delayed_node_cache, node);
140 return ERR_PTR(ret);
141 }
142
143 spin_lock(&root->inode_lock);
144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 if (ret == -EEXIST) {
146 spin_unlock(&root->inode_lock);
147 kmem_cache_free(delayed_node_cache, node);
148 radix_tree_preload_end();
149 goto again;
150 }
16cdcec7
MX
151 btrfs_inode->delayed_node = node;
152 spin_unlock(&root->inode_lock);
088aea3b 153 radix_tree_preload_end();
16cdcec7
MX
154
155 return node;
156}
157
158/*
159 * Call it when holding delayed_node->mutex
160 *
161 * If mod = 1, add this node into the prepared list.
162 */
163static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 struct btrfs_delayed_node *node,
165 int mod)
166{
167 spin_lock(&root->lock);
7cf35d91 168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
16cdcec7
MX
169 if (!list_empty(&node->p_list))
170 list_move_tail(&node->p_list, &root->prepare_list);
171 else if (mod)
172 list_add_tail(&node->p_list, &root->prepare_list);
173 } else {
174 list_add_tail(&node->n_list, &root->node_list);
175 list_add_tail(&node->p_list, &root->prepare_list);
6de5f18e 176 refcount_inc(&node->refs); /* inserted into list */
16cdcec7 177 root->nodes++;
7cf35d91 178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
16cdcec7
MX
179 }
180 spin_unlock(&root->lock);
181}
182
183/* Call it when holding delayed_node->mutex */
184static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 struct btrfs_delayed_node *node)
186{
187 spin_lock(&root->lock);
7cf35d91 188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
16cdcec7 189 root->nodes--;
6de5f18e 190 refcount_dec(&node->refs); /* not in the list */
16cdcec7
MX
191 list_del_init(&node->n_list);
192 if (!list_empty(&node->p_list))
193 list_del_init(&node->p_list);
7cf35d91 194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
16cdcec7
MX
195 }
196 spin_unlock(&root->lock);
197}
198
48a3b636 199static struct btrfs_delayed_node *btrfs_first_delayed_node(
16cdcec7
MX
200 struct btrfs_delayed_root *delayed_root)
201{
202 struct list_head *p;
203 struct btrfs_delayed_node *node = NULL;
204
205 spin_lock(&delayed_root->lock);
206 if (list_empty(&delayed_root->node_list))
207 goto out;
208
209 p = delayed_root->node_list.next;
210 node = list_entry(p, struct btrfs_delayed_node, n_list);
6de5f18e 211 refcount_inc(&node->refs);
16cdcec7
MX
212out:
213 spin_unlock(&delayed_root->lock);
214
215 return node;
216}
217
48a3b636 218static struct btrfs_delayed_node *btrfs_next_delayed_node(
16cdcec7
MX
219 struct btrfs_delayed_node *node)
220{
221 struct btrfs_delayed_root *delayed_root;
222 struct list_head *p;
223 struct btrfs_delayed_node *next = NULL;
224
225 delayed_root = node->root->fs_info->delayed_root;
226 spin_lock(&delayed_root->lock);
7cf35d91
MX
227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 /* not in the list */
16cdcec7
MX
229 if (list_empty(&delayed_root->node_list))
230 goto out;
231 p = delayed_root->node_list.next;
232 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 goto out;
234 else
235 p = node->n_list.next;
236
237 next = list_entry(p, struct btrfs_delayed_node, n_list);
6de5f18e 238 refcount_inc(&next->refs);
16cdcec7
MX
239out:
240 spin_unlock(&delayed_root->lock);
241
242 return next;
243}
244
245static void __btrfs_release_delayed_node(
246 struct btrfs_delayed_node *delayed_node,
247 int mod)
248{
249 struct btrfs_delayed_root *delayed_root;
250
251 if (!delayed_node)
252 return;
253
254 delayed_root = delayed_node->root->fs_info->delayed_root;
255
256 mutex_lock(&delayed_node->mutex);
257 if (delayed_node->count)
258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 else
260 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 mutex_unlock(&delayed_node->mutex);
262
6de5f18e 263 if (refcount_dec_and_test(&delayed_node->refs)) {
16cdcec7 264 struct btrfs_root *root = delayed_node->root;
ec35e48b 265
16cdcec7 266 spin_lock(&root->inode_lock);
ec35e48b
CM
267 /*
268 * Once our refcount goes to zero, nobody is allowed to bump it
269 * back up. We can delete it now.
270 */
271 ASSERT(refcount_read(&delayed_node->refs) == 0);
088aea3b
DS
272 radix_tree_delete(&root->delayed_nodes_tree,
273 delayed_node->inode_id);
16cdcec7 274 spin_unlock(&root->inode_lock);
ec35e48b 275 kmem_cache_free(delayed_node_cache, delayed_node);
16cdcec7
MX
276 }
277}
278
279static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280{
281 __btrfs_release_delayed_node(node, 0);
282}
283
48a3b636 284static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
16cdcec7
MX
285 struct btrfs_delayed_root *delayed_root)
286{
287 struct list_head *p;
288 struct btrfs_delayed_node *node = NULL;
289
290 spin_lock(&delayed_root->lock);
291 if (list_empty(&delayed_root->prepare_list))
292 goto out;
293
294 p = delayed_root->prepare_list.next;
295 list_del_init(p);
296 node = list_entry(p, struct btrfs_delayed_node, p_list);
6de5f18e 297 refcount_inc(&node->refs);
16cdcec7
MX
298out:
299 spin_unlock(&delayed_root->lock);
300
301 return node;
302}
303
304static inline void btrfs_release_prepared_delayed_node(
305 struct btrfs_delayed_node *node)
306{
307 __btrfs_release_delayed_node(node, 1);
308}
309
4c469798
FM
310static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
311 struct btrfs_delayed_node *node,
312 enum btrfs_delayed_item_type type)
16cdcec7
MX
313{
314 struct btrfs_delayed_item *item;
4c469798 315
16cdcec7
MX
316 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
317 if (item) {
318 item->data_len = data_len;
4c469798 319 item->type = type;
16cdcec7 320 item->bytes_reserved = 0;
96d89923
FM
321 item->delayed_node = node;
322 RB_CLEAR_NODE(&item->rb_node);
30b80f3c
FM
323 INIT_LIST_HEAD(&item->log_list);
324 item->logged = false;
089e77e1 325 refcount_set(&item->refs, 1);
16cdcec7
MX
326 }
327 return item;
328}
329
330/*
331 * __btrfs_lookup_delayed_item - look up the delayed item by key
332 * @delayed_node: pointer to the delayed node
96d89923 333 * @index: the dir index value to lookup (offset of a dir index key)
16cdcec7
MX
334 *
335 * Note: if we don't find the right item, we will return the prev item and
336 * the next item.
337 */
338static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 struct rb_root *root,
4cbf37f5 340 u64 index)
16cdcec7 341{
4cbf37f5 342 struct rb_node *node = root->rb_node;
16cdcec7 343 struct btrfs_delayed_item *delayed_item = NULL;
16cdcec7
MX
344
345 while (node) {
346 delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 rb_node);
96d89923 348 if (delayed_item->index < index)
16cdcec7 349 node = node->rb_right;
96d89923 350 else if (delayed_item->index > index)
16cdcec7
MX
351 node = node->rb_left;
352 else
353 return delayed_item;
354 }
355
16cdcec7
MX
356 return NULL;
357}
358
16cdcec7 359static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
c9d02ab4 360 struct btrfs_delayed_item *ins)
16cdcec7
MX
361{
362 struct rb_node **p, *node;
363 struct rb_node *parent_node = NULL;
03a1d4c8 364 struct rb_root_cached *root;
16cdcec7 365 struct btrfs_delayed_item *item;
03a1d4c8 366 bool leftmost = true;
16cdcec7 367
4c469798 368 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
16cdcec7 369 root = &delayed_node->ins_root;
16cdcec7 370 else
4c469798
FM
371 root = &delayed_node->del_root;
372
03a1d4c8 373 p = &root->rb_root.rb_node;
16cdcec7
MX
374 node = &ins->rb_node;
375
376 while (*p) {
377 parent_node = *p;
378 item = rb_entry(parent_node, struct btrfs_delayed_item,
379 rb_node);
380
96d89923 381 if (item->index < ins->index) {
16cdcec7 382 p = &(*p)->rb_right;
03a1d4c8 383 leftmost = false;
96d89923 384 } else if (item->index > ins->index) {
16cdcec7 385 p = &(*p)->rb_left;
03a1d4c8 386 } else {
16cdcec7 387 return -EEXIST;
03a1d4c8 388 }
16cdcec7
MX
389 }
390
391 rb_link_node(node, parent_node, p);
03a1d4c8 392 rb_insert_color_cached(node, root, leftmost);
a176affe 393
4c469798 394 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
96d89923
FM
395 ins->index >= delayed_node->index_cnt)
396 delayed_node->index_cnt = ins->index + 1;
16cdcec7
MX
397
398 delayed_node->count++;
399 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
400 return 0;
401}
402
de3cb945
CM
403static void finish_one_item(struct btrfs_delayed_root *delayed_root)
404{
405 int seq = atomic_inc_return(&delayed_root->items_seq);
ee863954 406
093258e6 407 /* atomic_dec_return implies a barrier */
de3cb945 408 if ((atomic_dec_return(&delayed_root->items) <
093258e6
DS
409 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
410 cond_wake_up_nomb(&delayed_root->wait);
de3cb945
CM
411}
412
16cdcec7
MX
413static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
414{
03a1d4c8 415 struct rb_root_cached *root;
16cdcec7
MX
416 struct btrfs_delayed_root *delayed_root;
417
96d89923
FM
418 /* Not inserted, ignore it. */
419 if (RB_EMPTY_NODE(&delayed_item->rb_node))
933c22a7 420 return;
96d89923 421
16cdcec7
MX
422 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
423
424 BUG_ON(!delayed_root);
16cdcec7 425
4c469798 426 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
16cdcec7
MX
427 root = &delayed_item->delayed_node->ins_root;
428 else
429 root = &delayed_item->delayed_node->del_root;
430
03a1d4c8 431 rb_erase_cached(&delayed_item->rb_node, root);
96d89923 432 RB_CLEAR_NODE(&delayed_item->rb_node);
16cdcec7 433 delayed_item->delayed_node->count--;
de3cb945
CM
434
435 finish_one_item(delayed_root);
16cdcec7
MX
436}
437
438static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
439{
440 if (item) {
441 __btrfs_remove_delayed_item(item);
089e77e1 442 if (refcount_dec_and_test(&item->refs))
16cdcec7
MX
443 kfree(item);
444 }
445}
446
48a3b636 447static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
16cdcec7
MX
448 struct btrfs_delayed_node *delayed_node)
449{
450 struct rb_node *p;
451 struct btrfs_delayed_item *item = NULL;
452
03a1d4c8 453 p = rb_first_cached(&delayed_node->ins_root);
16cdcec7
MX
454 if (p)
455 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
456
457 return item;
458}
459
48a3b636 460static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
16cdcec7
MX
461 struct btrfs_delayed_node *delayed_node)
462{
463 struct rb_node *p;
464 struct btrfs_delayed_item *item = NULL;
465
03a1d4c8 466 p = rb_first_cached(&delayed_node->del_root);
16cdcec7
MX
467 if (p)
468 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
469
470 return item;
471}
472
48a3b636 473static struct btrfs_delayed_item *__btrfs_next_delayed_item(
16cdcec7
MX
474 struct btrfs_delayed_item *item)
475{
476 struct rb_node *p;
477 struct btrfs_delayed_item *next = NULL;
478
479 p = rb_next(&item->rb_node);
480 if (p)
481 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
482
483 return next;
484}
485
16cdcec7 486static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
16cdcec7
MX
487 struct btrfs_delayed_item *item)
488{
489 struct btrfs_block_rsv *src_rsv;
490 struct btrfs_block_rsv *dst_rsv;
df492881 491 struct btrfs_fs_info *fs_info = trans->fs_info;
16cdcec7
MX
492 u64 num_bytes;
493 int ret;
494
495 if (!trans->bytes_reserved)
496 return 0;
497
498 src_rsv = trans->block_rsv;
0b246afa 499 dst_rsv = &fs_info->delayed_block_rsv;
16cdcec7 500
2bd36e7b 501 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
f218ea6c
QW
502
503 /*
504 * Here we migrate space rsv from transaction rsv, since have already
505 * reserved space when starting a transaction. So no need to reserve
506 * qgroup space here.
507 */
3a584174 508 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
8c2a3ca2 509 if (!ret) {
0b246afa 510 trace_btrfs_space_reservation(fs_info, "delayed_item",
96d89923 511 item->delayed_node->inode_id,
8c2a3ca2 512 num_bytes, 1);
763748b2
FM
513 /*
514 * For insertions we track reserved metadata space by accounting
515 * for the number of leaves that will be used, based on the delayed
516 * node's index_items_size field.
517 */
4c469798 518 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
763748b2 519 item->bytes_reserved = num_bytes;
8c2a3ca2 520 }
16cdcec7
MX
521
522 return ret;
523}
524
4f5427cc 525static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
16cdcec7
MX
526 struct btrfs_delayed_item *item)
527{
19fd2949 528 struct btrfs_block_rsv *rsv;
4f5427cc 529 struct btrfs_fs_info *fs_info = root->fs_info;
19fd2949 530
16cdcec7
MX
531 if (!item->bytes_reserved)
532 return;
533
0b246afa 534 rsv = &fs_info->delayed_block_rsv;
f218ea6c
QW
535 /*
536 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
537 * to release/reserve qgroup space.
538 */
0b246afa 539 trace_btrfs_space_reservation(fs_info, "delayed_item",
96d89923
FM
540 item->delayed_node->inode_id,
541 item->bytes_reserved, 0);
63f018be 542 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
16cdcec7
MX
543}
544
763748b2
FM
545static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
546 unsigned int num_leaves)
547{
548 struct btrfs_fs_info *fs_info = node->root->fs_info;
549 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
550
551 /* There are no space reservations during log replay, bail out. */
552 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
553 return;
554
555 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
556 bytes, 0);
557 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
558}
559
16cdcec7
MX
560static int btrfs_delayed_inode_reserve_metadata(
561 struct btrfs_trans_handle *trans,
562 struct btrfs_root *root,
563 struct btrfs_delayed_node *node)
564{
0b246afa 565 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
566 struct btrfs_block_rsv *src_rsv;
567 struct btrfs_block_rsv *dst_rsv;
568 u64 num_bytes;
569 int ret;
570
16cdcec7 571 src_rsv = trans->block_rsv;
0b246afa 572 dst_rsv = &fs_info->delayed_block_rsv;
16cdcec7 573
bcacf5f3 574 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
c06a0e12
JB
575
576 /*
577 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
578 * which doesn't reserve space for speed. This is a problem since we
579 * still need to reserve space for this update, so try to reserve the
580 * space.
581 *
582 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
69fe2d75 583 * we always reserve enough to update the inode item.
c06a0e12 584 */
e755d9ab 585 if (!src_rsv || (!trans->bytes_reserved &&
66d8f3dd 586 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
4d14c5cd
NB
587 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
588 BTRFS_QGROUP_RSV_META_PREALLOC, true);
f218ea6c
QW
589 if (ret < 0)
590 return ret;
9270501c 591 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
08e007d2 592 BTRFS_RESERVE_NO_FLUSH);
98686ffc
NB
593 /* NO_FLUSH could only fail with -ENOSPC */
594 ASSERT(ret == 0 || ret == -ENOSPC);
595 if (ret)
0f9c03d8 596 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
98686ffc
NB
597 } else {
598 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
c06a0e12
JB
599 }
600
8c2a3ca2 601 if (!ret) {
0b246afa 602 trace_btrfs_space_reservation(fs_info, "delayed_inode",
8e3c9d3c 603 node->inode_id, num_bytes, 1);
16cdcec7 604 node->bytes_reserved = num_bytes;
8c2a3ca2 605 }
16cdcec7
MX
606
607 return ret;
608}
609
2ff7e61e 610static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
4f5427cc
QW
611 struct btrfs_delayed_node *node,
612 bool qgroup_free)
16cdcec7
MX
613{
614 struct btrfs_block_rsv *rsv;
615
616 if (!node->bytes_reserved)
617 return;
618
0b246afa
JM
619 rsv = &fs_info->delayed_block_rsv;
620 trace_btrfs_space_reservation(fs_info, "delayed_inode",
8c2a3ca2 621 node->inode_id, node->bytes_reserved, 0);
63f018be 622 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
4f5427cc
QW
623 if (qgroup_free)
624 btrfs_qgroup_free_meta_prealloc(node->root,
625 node->bytes_reserved);
626 else
627 btrfs_qgroup_convert_reserved_meta(node->root,
628 node->bytes_reserved);
16cdcec7
MX
629 node->bytes_reserved = 0;
630}
631
632/*
06ac264f
FM
633 * Insert a single delayed item or a batch of delayed items, as many as possible
634 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
635 * in the rbtree, and if there's a gap between two consecutive dir index items,
636 * then it means at some point we had delayed dir indexes to add but they got
637 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
638 * into the subvolume tree. Dir index keys also have their offsets coming from a
639 * monotonically increasing counter, so we can't get new keys with an offset that
640 * fits within a gap between delayed dir index items.
16cdcec7 641 */
506650dc
FM
642static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
643 struct btrfs_root *root,
644 struct btrfs_path *path,
645 struct btrfs_delayed_item *first_item)
16cdcec7 646{
763748b2
FM
647 struct btrfs_fs_info *fs_info = root->fs_info;
648 struct btrfs_delayed_node *node = first_item->delayed_node;
b7ef5f3a 649 LIST_HEAD(item_list);
506650dc
FM
650 struct btrfs_delayed_item *curr;
651 struct btrfs_delayed_item *next;
763748b2 652 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
b7ef5f3a 653 struct btrfs_item_batch batch;
96d89923 654 struct btrfs_key first_key;
4c469798 655 const u32 first_data_size = first_item->data_len;
506650dc 656 int total_size;
506650dc 657 char *ins_data = NULL;
506650dc 658 int ret;
71b68e9e 659 bool continuous_keys_only = false;
16cdcec7 660
763748b2
FM
661 lockdep_assert_held(&node->mutex);
662
71b68e9e
JB
663 /*
664 * During normal operation the delayed index offset is continuously
665 * increasing, so we can batch insert all items as there will not be any
666 * overlapping keys in the tree.
667 *
668 * The exception to this is log replay, where we may have interleaved
669 * offsets in the tree, so our batch needs to be continuous keys only in
670 * order to ensure we do not end up with out of order items in our leaf.
671 */
672 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
673 continuous_keys_only = true;
674
763748b2
FM
675 /*
676 * For delayed items to insert, we track reserved metadata bytes based
677 * on the number of leaves that we will use.
678 * See btrfs_insert_delayed_dir_index() and
679 * btrfs_delayed_item_reserve_metadata()).
680 */
681 ASSERT(first_item->bytes_reserved == 0);
682
b7ef5f3a 683 list_add_tail(&first_item->tree_list, &item_list);
4c469798 684 batch.total_data_size = first_data_size;
b7ef5f3a 685 batch.nr = 1;
4c469798 686 total_size = first_data_size + sizeof(struct btrfs_item);
506650dc 687 curr = first_item;
16cdcec7 688
506650dc
FM
689 while (true) {
690 int next_size;
16cdcec7 691
16cdcec7 692 next = __btrfs_next_delayed_item(curr);
06ac264f 693 if (!next)
16cdcec7
MX
694 break;
695
71b68e9e
JB
696 /*
697 * We cannot allow gaps in the key space if we're doing log
698 * replay.
699 */
96d89923 700 if (continuous_keys_only && (next->index != curr->index + 1))
71b68e9e
JB
701 break;
702
763748b2
FM
703 ASSERT(next->bytes_reserved == 0);
704
506650dc
FM
705 next_size = next->data_len + sizeof(struct btrfs_item);
706 if (total_size + next_size > max_size)
16cdcec7 707 break;
16cdcec7 708
b7ef5f3a
FM
709 list_add_tail(&next->tree_list, &item_list);
710 batch.nr++;
506650dc 711 total_size += next_size;
b7ef5f3a 712 batch.total_data_size += next->data_len;
506650dc 713 curr = next;
16cdcec7
MX
714 }
715
b7ef5f3a 716 if (batch.nr == 1) {
96d89923
FM
717 first_key.objectid = node->inode_id;
718 first_key.type = BTRFS_DIR_INDEX_KEY;
719 first_key.offset = first_item->index;
720 batch.keys = &first_key;
4c469798 721 batch.data_sizes = &first_data_size;
506650dc 722 } else {
b7ef5f3a
FM
723 struct btrfs_key *ins_keys;
724 u32 *ins_sizes;
506650dc 725 int i = 0;
16cdcec7 726
b7ef5f3a
FM
727 ins_data = kmalloc(batch.nr * sizeof(u32) +
728 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
506650dc
FM
729 if (!ins_data) {
730 ret = -ENOMEM;
731 goto out;
732 }
733 ins_sizes = (u32 *)ins_data;
b7ef5f3a
FM
734 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
735 batch.keys = ins_keys;
736 batch.data_sizes = ins_sizes;
737 list_for_each_entry(curr, &item_list, tree_list) {
96d89923
FM
738 ins_keys[i].objectid = node->inode_id;
739 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
740 ins_keys[i].offset = curr->index;
506650dc
FM
741 ins_sizes[i] = curr->data_len;
742 i++;
743 }
16cdcec7
MX
744 }
745
b7ef5f3a 746 ret = btrfs_insert_empty_items(trans, root, path, &batch);
506650dc
FM
747 if (ret)
748 goto out;
16cdcec7 749
b7ef5f3a 750 list_for_each_entry(curr, &item_list, tree_list) {
506650dc 751 char *data_ptr;
16cdcec7 752
506650dc
FM
753 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
754 write_extent_buffer(path->nodes[0], &curr->data,
755 (unsigned long)data_ptr, curr->data_len);
756 path->slots[0]++;
757 }
16cdcec7 758
506650dc
FM
759 /*
760 * Now release our path before releasing the delayed items and their
761 * metadata reservations, so that we don't block other tasks for more
762 * time than needed.
763 */
764 btrfs_release_path(path);
16cdcec7 765
763748b2
FM
766 ASSERT(node->index_item_leaves > 0);
767
71b68e9e
JB
768 /*
769 * For normal operations we will batch an entire leaf's worth of delayed
770 * items, so if there are more items to process we can decrement
771 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
772 *
773 * However for log replay we may not have inserted an entire leaf's
774 * worth of items, we may have not had continuous items, so decrementing
775 * here would mess up the index_item_leaves accounting. For this case
776 * only clean up the accounting when there are no items left.
777 */
778 if (next && !continuous_keys_only) {
763748b2
FM
779 /*
780 * We inserted one batch of items into a leaf a there are more
781 * items to flush in a future batch, now release one unit of
782 * metadata space from the delayed block reserve, corresponding
783 * the leaf we just flushed to.
784 */
785 btrfs_delayed_item_release_leaves(node, 1);
786 node->index_item_leaves--;
71b68e9e 787 } else if (!next) {
763748b2
FM
788 /*
789 * There are no more items to insert. We can have a number of
790 * reserved leaves > 1 here - this happens when many dir index
791 * items are added and then removed before they are flushed (file
792 * names with a very short life, never span a transaction). So
793 * release all remaining leaves.
794 */
795 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
796 node->index_item_leaves = 0;
797 }
798
b7ef5f3a 799 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
16cdcec7
MX
800 list_del(&curr->tree_list);
801 btrfs_release_delayed_item(curr);
802 }
16cdcec7 803out:
506650dc 804 kfree(ins_data);
16cdcec7
MX
805 return ret;
806}
807
16cdcec7
MX
808static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
809 struct btrfs_path *path,
810 struct btrfs_root *root,
811 struct btrfs_delayed_node *node)
812{
16cdcec7
MX
813 int ret = 0;
814
506650dc
FM
815 while (ret == 0) {
816 struct btrfs_delayed_item *curr;
16cdcec7 817
506650dc
FM
818 mutex_lock(&node->mutex);
819 curr = __btrfs_first_delayed_insertion_item(node);
820 if (!curr) {
821 mutex_unlock(&node->mutex);
822 break;
823 }
824 ret = btrfs_insert_delayed_item(trans, root, path, curr);
825 mutex_unlock(&node->mutex);
16cdcec7 826 }
16cdcec7 827
16cdcec7
MX
828 return ret;
829}
830
831static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
832 struct btrfs_root *root,
833 struct btrfs_path *path,
834 struct btrfs_delayed_item *item)
835{
96d89923 836 const u64 ino = item->delayed_node->inode_id;
1f4f639f 837 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7 838 struct btrfs_delayed_item *curr, *next;
659192e6 839 struct extent_buffer *leaf = path->nodes[0];
4bd02d90
FM
840 LIST_HEAD(batch_list);
841 int nitems, slot, last_slot;
842 int ret;
1f4f639f 843 u64 total_reserved_size = item->bytes_reserved;
16cdcec7 844
659192e6 845 ASSERT(leaf != NULL);
16cdcec7 846
4bd02d90
FM
847 slot = path->slots[0];
848 last_slot = btrfs_header_nritems(leaf) - 1;
659192e6
FM
849 /*
850 * Our caller always gives us a path pointing to an existing item, so
851 * this can not happen.
852 */
4bd02d90
FM
853 ASSERT(slot <= last_slot);
854 if (WARN_ON(slot > last_slot))
659192e6 855 return -ENOENT;
16cdcec7 856
4bd02d90
FM
857 nitems = 1;
858 curr = item;
859 list_add_tail(&curr->tree_list, &batch_list);
860
16cdcec7 861 /*
4bd02d90
FM
862 * Keep checking if the next delayed item matches the next item in the
863 * leaf - if so, we can add it to the batch of items to delete from the
864 * leaf.
16cdcec7 865 */
4bd02d90
FM
866 while (slot < last_slot) {
867 struct btrfs_key key;
16cdcec7 868
16cdcec7
MX
869 next = __btrfs_next_delayed_item(curr);
870 if (!next)
871 break;
872
4bd02d90
FM
873 slot++;
874 btrfs_item_key_to_cpu(leaf, &key, slot);
96d89923
FM
875 if (key.objectid != ino ||
876 key.type != BTRFS_DIR_INDEX_KEY ||
877 key.offset != next->index)
16cdcec7 878 break;
4bd02d90
FM
879 nitems++;
880 curr = next;
881 list_add_tail(&curr->tree_list, &batch_list);
1f4f639f 882 total_reserved_size += curr->bytes_reserved;
16cdcec7
MX
883 }
884
16cdcec7
MX
885 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
886 if (ret)
4bd02d90 887 return ret;
16cdcec7 888
1f4f639f
NB
889 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
890 if (total_reserved_size > 0) {
891 /*
892 * Check btrfs_delayed_item_reserve_metadata() to see why we
893 * don't need to release/reserve qgroup space.
894 */
96d89923
FM
895 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
896 total_reserved_size, 0);
1f4f639f
NB
897 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
898 total_reserved_size, NULL);
899 }
900
4bd02d90 901 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
16cdcec7
MX
902 list_del(&curr->tree_list);
903 btrfs_release_delayed_item(curr);
904 }
905
4bd02d90 906 return 0;
16cdcec7
MX
907}
908
909static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
910 struct btrfs_path *path,
911 struct btrfs_root *root,
912 struct btrfs_delayed_node *node)
913{
96d89923 914 struct btrfs_key key;
16cdcec7
MX
915 int ret = 0;
916
96d89923
FM
917 key.objectid = node->inode_id;
918 key.type = BTRFS_DIR_INDEX_KEY;
919
36baa2c7
FM
920 while (ret == 0) {
921 struct btrfs_delayed_item *item;
922
923 mutex_lock(&node->mutex);
924 item = __btrfs_first_delayed_deletion_item(node);
925 if (!item) {
926 mutex_unlock(&node->mutex);
927 break;
928 }
929
96d89923
FM
930 key.offset = item->index;
931 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
36baa2c7
FM
932 if (ret > 0) {
933 /*
934 * There's no matching item in the leaf. This means we
935 * have already deleted this item in a past run of the
936 * delayed items. We ignore errors when running delayed
937 * items from an async context, through a work queue job
938 * running btrfs_async_run_delayed_root(), and don't
939 * release delayed items that failed to complete. This
940 * is because we will retry later, and at transaction
941 * commit time we always run delayed items and will
942 * then deal with errors if they fail to run again.
943 *
944 * So just release delayed items for which we can't find
945 * an item in the tree, and move to the next item.
946 */
947 btrfs_release_path(path);
948 btrfs_release_delayed_item(item);
949 ret = 0;
950 } else if (ret == 0) {
951 ret = btrfs_batch_delete_items(trans, root, path, item);
952 btrfs_release_path(path);
953 }
16cdcec7 954
16cdcec7 955 /*
36baa2c7
FM
956 * We unlock and relock on each iteration, this is to prevent
957 * blocking other tasks for too long while we are being run from
958 * the async context (work queue job). Those tasks are typically
959 * running system calls like creat/mkdir/rename/unlink/etc which
960 * need to add delayed items to this delayed node.
16cdcec7 961 */
36baa2c7 962 mutex_unlock(&node->mutex);
16cdcec7
MX
963 }
964
16cdcec7
MX
965 return ret;
966}
967
968static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
969{
970 struct btrfs_delayed_root *delayed_root;
971
7cf35d91
MX
972 if (delayed_node &&
973 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
16cdcec7 974 BUG_ON(!delayed_node->root);
7cf35d91 975 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
16cdcec7
MX
976 delayed_node->count--;
977
978 delayed_root = delayed_node->root->fs_info->delayed_root;
de3cb945 979 finish_one_item(delayed_root);
16cdcec7
MX
980 }
981}
982
67de1176
MX
983static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
984{
67de1176 985
a4cb90dc
JB
986 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
987 struct btrfs_delayed_root *delayed_root;
67de1176 988
a4cb90dc
JB
989 ASSERT(delayed_node->root);
990 delayed_node->count--;
991
992 delayed_root = delayed_node->root->fs_info->delayed_root;
993 finish_one_item(delayed_root);
994 }
67de1176
MX
995}
996
0e8c36a9
MX
997static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
998 struct btrfs_root *root,
999 struct btrfs_path *path,
1000 struct btrfs_delayed_node *node)
16cdcec7 1001{
2ff7e61e 1002 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
1003 struct btrfs_key key;
1004 struct btrfs_inode_item *inode_item;
1005 struct extent_buffer *leaf;
67de1176 1006 int mod;
16cdcec7
MX
1007 int ret;
1008
16cdcec7 1009 key.objectid = node->inode_id;
962a298f 1010 key.type = BTRFS_INODE_ITEM_KEY;
16cdcec7 1011 key.offset = 0;
0e8c36a9 1012
67de1176
MX
1013 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1014 mod = -1;
1015 else
1016 mod = 1;
1017
1018 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
bb385bed
JB
1019 if (ret > 0)
1020 ret = -ENOENT;
1021 if (ret < 0)
1022 goto out;
16cdcec7 1023
16cdcec7
MX
1024 leaf = path->nodes[0];
1025 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1026 struct btrfs_inode_item);
1027 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1028 sizeof(struct btrfs_inode_item));
1029 btrfs_mark_buffer_dirty(leaf);
16cdcec7 1030
67de1176 1031 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
a4cb90dc 1032 goto out;
67de1176
MX
1033
1034 path->slots[0]++;
1035 if (path->slots[0] >= btrfs_header_nritems(leaf))
1036 goto search;
1037again:
1038 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1039 if (key.objectid != node->inode_id)
1040 goto out;
1041
1042 if (key.type != BTRFS_INODE_REF_KEY &&
1043 key.type != BTRFS_INODE_EXTREF_KEY)
1044 goto out;
1045
1046 /*
1047 * Delayed iref deletion is for the inode who has only one link,
1048 * so there is only one iref. The case that several irefs are
1049 * in the same item doesn't exist.
1050 */
c06016a0 1051 ret = btrfs_del_item(trans, root, path);
67de1176
MX
1052out:
1053 btrfs_release_delayed_iref(node);
67de1176
MX
1054 btrfs_release_path(path);
1055err_out:
4f5427cc 1056 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
16cdcec7 1057 btrfs_release_delayed_inode(node);
16cdcec7 1058
04587ad9
JB
1059 /*
1060 * If we fail to update the delayed inode we need to abort the
1061 * transaction, because we could leave the inode with the improper
1062 * counts behind.
1063 */
1064 if (ret && ret != -ENOENT)
1065 btrfs_abort_transaction(trans, ret);
1066
67de1176
MX
1067 return ret;
1068
1069search:
1070 btrfs_release_path(path);
1071
962a298f 1072 key.type = BTRFS_INODE_EXTREF_KEY;
67de1176 1073 key.offset = -1;
351cbf6e 1074
67de1176
MX
1075 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1076 if (ret < 0)
1077 goto err_out;
1078 ASSERT(ret);
1079
1080 ret = 0;
1081 leaf = path->nodes[0];
1082 path->slots[0]--;
1083 goto again;
16cdcec7
MX
1084}
1085
0e8c36a9
MX
1086static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1087 struct btrfs_root *root,
1088 struct btrfs_path *path,
1089 struct btrfs_delayed_node *node)
1090{
1091 int ret;
1092
1093 mutex_lock(&node->mutex);
7cf35d91 1094 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
0e8c36a9
MX
1095 mutex_unlock(&node->mutex);
1096 return 0;
1097 }
1098
1099 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1100 mutex_unlock(&node->mutex);
1101 return ret;
1102}
1103
4ea41ce0
MX
1104static inline int
1105__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1106 struct btrfs_path *path,
1107 struct btrfs_delayed_node *node)
1108{
1109 int ret;
1110
1111 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1112 if (ret)
1113 return ret;
1114
1115 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1116 if (ret)
1117 return ret;
1118
1119 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1120 return ret;
1121}
1122
79787eaa
JM
1123/*
1124 * Called when committing the transaction.
1125 * Returns 0 on success.
1126 * Returns < 0 on error and returns with an aborted transaction with any
1127 * outstanding delayed items cleaned up.
1128 */
b84acab3 1129static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
16cdcec7 1130{
b84acab3 1131 struct btrfs_fs_info *fs_info = trans->fs_info;
16cdcec7
MX
1132 struct btrfs_delayed_root *delayed_root;
1133 struct btrfs_delayed_node *curr_node, *prev_node;
1134 struct btrfs_path *path;
19fd2949 1135 struct btrfs_block_rsv *block_rsv;
16cdcec7 1136 int ret = 0;
96c3f433 1137 bool count = (nr > 0);
16cdcec7 1138
bf31f87f 1139 if (TRANS_ABORTED(trans))
79787eaa
JM
1140 return -EIO;
1141
16cdcec7
MX
1142 path = btrfs_alloc_path();
1143 if (!path)
1144 return -ENOMEM;
16cdcec7 1145
19fd2949 1146 block_rsv = trans->block_rsv;
0b246afa 1147 trans->block_rsv = &fs_info->delayed_block_rsv;
19fd2949 1148
ccdf9b30 1149 delayed_root = fs_info->delayed_root;
16cdcec7
MX
1150
1151 curr_node = btrfs_first_delayed_node(delayed_root);
a4559e6f 1152 while (curr_node && (!count || nr--)) {
4ea41ce0
MX
1153 ret = __btrfs_commit_inode_delayed_items(trans, path,
1154 curr_node);
16cdcec7
MX
1155 if (ret) {
1156 btrfs_release_delayed_node(curr_node);
96c3f433 1157 curr_node = NULL;
66642832 1158 btrfs_abort_transaction(trans, ret);
16cdcec7
MX
1159 break;
1160 }
1161
1162 prev_node = curr_node;
1163 curr_node = btrfs_next_delayed_node(curr_node);
1164 btrfs_release_delayed_node(prev_node);
1165 }
1166
96c3f433
JB
1167 if (curr_node)
1168 btrfs_release_delayed_node(curr_node);
16cdcec7 1169 btrfs_free_path(path);
19fd2949 1170 trans->block_rsv = block_rsv;
79787eaa 1171
16cdcec7
MX
1172 return ret;
1173}
1174
e5c304e6 1175int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
96c3f433 1176{
b84acab3 1177 return __btrfs_run_delayed_items(trans, -1);
96c3f433
JB
1178}
1179
e5c304e6 1180int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
96c3f433 1181{
b84acab3 1182 return __btrfs_run_delayed_items(trans, nr);
96c3f433
JB
1183}
1184
16cdcec7 1185int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
5f4b32e9 1186 struct btrfs_inode *inode)
16cdcec7 1187{
5f4b32e9 1188 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
4ea41ce0
MX
1189 struct btrfs_path *path;
1190 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1191 int ret;
1192
1193 if (!delayed_node)
1194 return 0;
1195
1196 mutex_lock(&delayed_node->mutex);
1197 if (!delayed_node->count) {
1198 mutex_unlock(&delayed_node->mutex);
1199 btrfs_release_delayed_node(delayed_node);
1200 return 0;
1201 }
1202 mutex_unlock(&delayed_node->mutex);
1203
4ea41ce0 1204 path = btrfs_alloc_path();
3c77bd94
FDBM
1205 if (!path) {
1206 btrfs_release_delayed_node(delayed_node);
4ea41ce0 1207 return -ENOMEM;
3c77bd94 1208 }
4ea41ce0
MX
1209
1210 block_rsv = trans->block_rsv;
1211 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1212
1213 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1214
16cdcec7 1215 btrfs_release_delayed_node(delayed_node);
4ea41ce0
MX
1216 btrfs_free_path(path);
1217 trans->block_rsv = block_rsv;
1218
16cdcec7
MX
1219 return ret;
1220}
1221
aa79021f 1222int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
0e8c36a9 1223{
3ffbd68c 1224 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0e8c36a9 1225 struct btrfs_trans_handle *trans;
aa79021f 1226 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
0e8c36a9
MX
1227 struct btrfs_path *path;
1228 struct btrfs_block_rsv *block_rsv;
1229 int ret;
1230
1231 if (!delayed_node)
1232 return 0;
1233
1234 mutex_lock(&delayed_node->mutex);
7cf35d91 1235 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
0e8c36a9
MX
1236 mutex_unlock(&delayed_node->mutex);
1237 btrfs_release_delayed_node(delayed_node);
1238 return 0;
1239 }
1240 mutex_unlock(&delayed_node->mutex);
1241
1242 trans = btrfs_join_transaction(delayed_node->root);
1243 if (IS_ERR(trans)) {
1244 ret = PTR_ERR(trans);
1245 goto out;
1246 }
1247
1248 path = btrfs_alloc_path();
1249 if (!path) {
1250 ret = -ENOMEM;
1251 goto trans_out;
1252 }
0e8c36a9
MX
1253
1254 block_rsv = trans->block_rsv;
2ff7e61e 1255 trans->block_rsv = &fs_info->delayed_block_rsv;
0e8c36a9
MX
1256
1257 mutex_lock(&delayed_node->mutex);
7cf35d91 1258 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
0e8c36a9
MX
1259 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1260 path, delayed_node);
1261 else
1262 ret = 0;
1263 mutex_unlock(&delayed_node->mutex);
1264
1265 btrfs_free_path(path);
1266 trans->block_rsv = block_rsv;
1267trans_out:
3a45bb20 1268 btrfs_end_transaction(trans);
2ff7e61e 1269 btrfs_btree_balance_dirty(fs_info);
0e8c36a9
MX
1270out:
1271 btrfs_release_delayed_node(delayed_node);
1272
1273 return ret;
1274}
1275
f48d1cf5 1276void btrfs_remove_delayed_node(struct btrfs_inode *inode)
16cdcec7
MX
1277{
1278 struct btrfs_delayed_node *delayed_node;
1279
f48d1cf5 1280 delayed_node = READ_ONCE(inode->delayed_node);
16cdcec7
MX
1281 if (!delayed_node)
1282 return;
1283
f48d1cf5 1284 inode->delayed_node = NULL;
16cdcec7
MX
1285 btrfs_release_delayed_node(delayed_node);
1286}
1287
de3cb945
CM
1288struct btrfs_async_delayed_work {
1289 struct btrfs_delayed_root *delayed_root;
1290 int nr;
d458b054 1291 struct btrfs_work work;
16cdcec7
MX
1292};
1293
d458b054 1294static void btrfs_async_run_delayed_root(struct btrfs_work *work)
16cdcec7 1295{
de3cb945
CM
1296 struct btrfs_async_delayed_work *async_work;
1297 struct btrfs_delayed_root *delayed_root;
16cdcec7
MX
1298 struct btrfs_trans_handle *trans;
1299 struct btrfs_path *path;
1300 struct btrfs_delayed_node *delayed_node = NULL;
1301 struct btrfs_root *root;
19fd2949 1302 struct btrfs_block_rsv *block_rsv;
de3cb945 1303 int total_done = 0;
16cdcec7 1304
de3cb945
CM
1305 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1306 delayed_root = async_work->delayed_root;
16cdcec7
MX
1307
1308 path = btrfs_alloc_path();
1309 if (!path)
1310 goto out;
16cdcec7 1311
617c54a8
NB
1312 do {
1313 if (atomic_read(&delayed_root->items) <
1314 BTRFS_DELAYED_BACKGROUND / 2)
1315 break;
de3cb945 1316
617c54a8
NB
1317 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1318 if (!delayed_node)
1319 break;
de3cb945 1320
617c54a8 1321 root = delayed_node->root;
16cdcec7 1322
617c54a8
NB
1323 trans = btrfs_join_transaction(root);
1324 if (IS_ERR(trans)) {
1325 btrfs_release_path(path);
1326 btrfs_release_prepared_delayed_node(delayed_node);
1327 total_done++;
1328 continue;
1329 }
16cdcec7 1330
617c54a8
NB
1331 block_rsv = trans->block_rsv;
1332 trans->block_rsv = &root->fs_info->delayed_block_rsv;
19fd2949 1333
617c54a8 1334 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
16cdcec7 1335
617c54a8
NB
1336 trans->block_rsv = block_rsv;
1337 btrfs_end_transaction(trans);
1338 btrfs_btree_balance_dirty_nodelay(root->fs_info);
de3cb945 1339
617c54a8
NB
1340 btrfs_release_path(path);
1341 btrfs_release_prepared_delayed_node(delayed_node);
1342 total_done++;
de3cb945 1343
617c54a8
NB
1344 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1345 || total_done < async_work->nr);
de3cb945 1346
16cdcec7
MX
1347 btrfs_free_path(path);
1348out:
de3cb945
CM
1349 wake_up(&delayed_root->wait);
1350 kfree(async_work);
16cdcec7
MX
1351}
1352
de3cb945 1353
16cdcec7 1354static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
a585e948 1355 struct btrfs_fs_info *fs_info, int nr)
16cdcec7 1356{
de3cb945 1357 struct btrfs_async_delayed_work *async_work;
16cdcec7 1358
de3cb945
CM
1359 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1360 if (!async_work)
16cdcec7 1361 return -ENOMEM;
16cdcec7 1362
de3cb945 1363 async_work->delayed_root = delayed_root;
a0cac0ec
OS
1364 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1365 NULL);
de3cb945 1366 async_work->nr = nr;
16cdcec7 1367
a585e948 1368 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
16cdcec7
MX
1369 return 0;
1370}
1371
ccdf9b30 1372void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
e999376f 1373{
ccdf9b30 1374 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
e999376f
CM
1375}
1376
0353808c 1377static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
de3cb945
CM
1378{
1379 int val = atomic_read(&delayed_root->items_seq);
1380
0353808c 1381 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
de3cb945 1382 return 1;
0353808c
MX
1383
1384 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1385 return 1;
1386
de3cb945
CM
1387 return 0;
1388}
1389
2ff7e61e 1390void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
16cdcec7 1391{
2ff7e61e 1392 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
16cdcec7 1393
8577787f
NB
1394 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1395 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
16cdcec7
MX
1396 return;
1397
1398 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
0353808c 1399 int seq;
16cdcec7 1400 int ret;
0353808c
MX
1401
1402 seq = atomic_read(&delayed_root->items_seq);
de3cb945 1403
a585e948 1404 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
16cdcec7
MX
1405 if (ret)
1406 return;
1407
0353808c
MX
1408 wait_event_interruptible(delayed_root->wait,
1409 could_end_wait(delayed_root, seq));
4dd466d3 1410 return;
16cdcec7
MX
1411 }
1412
a585e948 1413 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
16cdcec7
MX
1414}
1415
79787eaa 1416/* Will return 0 or -ENOMEM */
16cdcec7 1417int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
2ff7e61e 1418 const char *name, int name_len,
6f45d185 1419 struct btrfs_inode *dir,
94a48aef 1420 struct btrfs_disk_key *disk_key, u8 flags,
16cdcec7
MX
1421 u64 index)
1422{
763748b2
FM
1423 struct btrfs_fs_info *fs_info = trans->fs_info;
1424 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
16cdcec7
MX
1425 struct btrfs_delayed_node *delayed_node;
1426 struct btrfs_delayed_item *delayed_item;
1427 struct btrfs_dir_item *dir_item;
763748b2
FM
1428 bool reserve_leaf_space;
1429 u32 data_len;
16cdcec7
MX
1430 int ret;
1431
6f45d185 1432 delayed_node = btrfs_get_or_create_delayed_node(dir);
16cdcec7
MX
1433 if (IS_ERR(delayed_node))
1434 return PTR_ERR(delayed_node);
1435
96d89923 1436 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
4c469798
FM
1437 delayed_node,
1438 BTRFS_DELAYED_INSERTION_ITEM);
16cdcec7
MX
1439 if (!delayed_item) {
1440 ret = -ENOMEM;
1441 goto release_node;
1442 }
1443
96d89923 1444 delayed_item->index = index;
16cdcec7
MX
1445
1446 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1447 dir_item->location = *disk_key;
3cae210f
QW
1448 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1449 btrfs_set_stack_dir_data_len(dir_item, 0);
1450 btrfs_set_stack_dir_name_len(dir_item, name_len);
94a48aef 1451 btrfs_set_stack_dir_flags(dir_item, flags);
16cdcec7
MX
1452 memcpy((char *)(dir_item + 1), name, name_len);
1453
763748b2 1454 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
8c2a3ca2 1455
16cdcec7 1456 mutex_lock(&delayed_node->mutex);
763748b2
FM
1457
1458 if (delayed_node->index_item_leaves == 0 ||
1459 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1460 delayed_node->curr_index_batch_size = data_len;
1461 reserve_leaf_space = true;
1462 } else {
1463 delayed_node->curr_index_batch_size += data_len;
1464 reserve_leaf_space = false;
1465 }
1466
1467 if (reserve_leaf_space) {
df492881 1468 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
763748b2
FM
1469 /*
1470 * Space was reserved for a dir index item insertion when we
1471 * started the transaction, so getting a failure here should be
1472 * impossible.
1473 */
1474 if (WARN_ON(ret)) {
1475 mutex_unlock(&delayed_node->mutex);
1476 btrfs_release_delayed_item(delayed_item);
1477 goto release_node;
1478 }
1479
1480 delayed_node->index_item_leaves++;
1481 } else if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
1482 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1483
1484 /*
1485 * Adding the new dir index item does not require touching another
1486 * leaf, so we can release 1 unit of metadata that was previously
1487 * reserved when starting the transaction. This applies only to
1488 * the case where we had a transaction start and excludes the
1489 * transaction join case (when replaying log trees).
1490 */
1491 trace_btrfs_space_reservation(fs_info, "transaction",
1492 trans->transid, bytes, 0);
1493 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1494 ASSERT(trans->bytes_reserved >= bytes);
1495 trans->bytes_reserved -= bytes;
1496 }
1497
c9d02ab4 1498 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
16cdcec7 1499 if (unlikely(ret)) {
4465c8b4 1500 btrfs_err(trans->fs_info,
5d163e0e 1501 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
4fd786e6 1502 name_len, name, delayed_node->root->root_key.objectid,
5d163e0e 1503 delayed_node->inode_id, ret);
16cdcec7
MX
1504 BUG();
1505 }
1506 mutex_unlock(&delayed_node->mutex);
1507
1508release_node:
1509 btrfs_release_delayed_node(delayed_node);
1510 return ret;
1511}
1512
2ff7e61e 1513static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
16cdcec7 1514 struct btrfs_delayed_node *node,
96d89923 1515 u64 index)
16cdcec7
MX
1516{
1517 struct btrfs_delayed_item *item;
1518
1519 mutex_lock(&node->mutex);
4cbf37f5 1520 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
16cdcec7
MX
1521 if (!item) {
1522 mutex_unlock(&node->mutex);
1523 return 1;
1524 }
1525
763748b2
FM
1526 /*
1527 * For delayed items to insert, we track reserved metadata bytes based
1528 * on the number of leaves that we will use.
1529 * See btrfs_insert_delayed_dir_index() and
1530 * btrfs_delayed_item_reserve_metadata()).
1531 */
1532 ASSERT(item->bytes_reserved == 0);
1533 ASSERT(node->index_item_leaves > 0);
1534
1535 /*
1536 * If there's only one leaf reserved, we can decrement this item from the
1537 * current batch, otherwise we can not because we don't know which leaf
1538 * it belongs to. With the current limit on delayed items, we rarely
1539 * accumulate enough dir index items to fill more than one leaf (even
1540 * when using a leaf size of 4K).
1541 */
1542 if (node->index_item_leaves == 1) {
1543 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1544
1545 ASSERT(node->curr_index_batch_size >= data_len);
1546 node->curr_index_batch_size -= data_len;
1547 }
1548
16cdcec7 1549 btrfs_release_delayed_item(item);
763748b2
FM
1550
1551 /* If we now have no more dir index items, we can release all leaves. */
1552 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1553 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1554 node->index_item_leaves = 0;
1555 }
1556
16cdcec7
MX
1557 mutex_unlock(&node->mutex);
1558 return 0;
1559}
1560
1561int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
e67bbbb9 1562 struct btrfs_inode *dir, u64 index)
16cdcec7
MX
1563{
1564 struct btrfs_delayed_node *node;
1565 struct btrfs_delayed_item *item;
16cdcec7
MX
1566 int ret;
1567
e67bbbb9 1568 node = btrfs_get_or_create_delayed_node(dir);
16cdcec7
MX
1569 if (IS_ERR(node))
1570 return PTR_ERR(node);
1571
96d89923 1572 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
16cdcec7
MX
1573 if (!ret)
1574 goto end;
1575
4c469798 1576 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
16cdcec7
MX
1577 if (!item) {
1578 ret = -ENOMEM;
1579 goto end;
1580 }
1581
96d89923 1582 item->index = index;
16cdcec7 1583
df492881 1584 ret = btrfs_delayed_item_reserve_metadata(trans, item);
16cdcec7
MX
1585 /*
1586 * we have reserved enough space when we start a new transaction,
1587 * so reserving metadata failure is impossible.
1588 */
933c22a7
QW
1589 if (ret < 0) {
1590 btrfs_err(trans->fs_info,
1591"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1592 btrfs_release_delayed_item(item);
1593 goto end;
1594 }
16cdcec7
MX
1595
1596 mutex_lock(&node->mutex);
c9d02ab4 1597 ret = __btrfs_add_delayed_item(node, item);
16cdcec7 1598 if (unlikely(ret)) {
9add2945 1599 btrfs_err(trans->fs_info,
5d163e0e 1600 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
4fd786e6
MT
1601 index, node->root->root_key.objectid,
1602 node->inode_id, ret);
933c22a7
QW
1603 btrfs_delayed_item_release_metadata(dir->root, item);
1604 btrfs_release_delayed_item(item);
16cdcec7
MX
1605 }
1606 mutex_unlock(&node->mutex);
1607end:
1608 btrfs_release_delayed_node(node);
1609 return ret;
1610}
1611
f5cc7b80 1612int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
16cdcec7 1613{
f5cc7b80 1614 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
16cdcec7
MX
1615
1616 if (!delayed_node)
1617 return -ENOENT;
1618
1619 /*
1620 * Since we have held i_mutex of this directory, it is impossible that
1621 * a new directory index is added into the delayed node and index_cnt
1622 * is updated now. So we needn't lock the delayed node.
1623 */
2f7e33d4
MX
1624 if (!delayed_node->index_cnt) {
1625 btrfs_release_delayed_node(delayed_node);
16cdcec7 1626 return -EINVAL;
2f7e33d4 1627 }
16cdcec7 1628
f5cc7b80 1629 inode->index_cnt = delayed_node->index_cnt;
2f7e33d4
MX
1630 btrfs_release_delayed_node(delayed_node);
1631 return 0;
16cdcec7
MX
1632}
1633
02dbfc99 1634bool btrfs_readdir_get_delayed_items(struct inode *inode,
9b378f6a 1635 u64 last_index,
02dbfc99
OS
1636 struct list_head *ins_list,
1637 struct list_head *del_list)
16cdcec7
MX
1638{
1639 struct btrfs_delayed_node *delayed_node;
1640 struct btrfs_delayed_item *item;
1641
340c6ca9 1642 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
16cdcec7 1643 if (!delayed_node)
02dbfc99
OS
1644 return false;
1645
1646 /*
1647 * We can only do one readdir with delayed items at a time because of
1648 * item->readdir_list.
1649 */
e5d4d75b 1650 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
29b6352b 1651 btrfs_inode_lock(BTRFS_I(inode), 0);
16cdcec7
MX
1652
1653 mutex_lock(&delayed_node->mutex);
1654 item = __btrfs_first_delayed_insertion_item(delayed_node);
9b378f6a 1655 while (item && item->index <= last_index) {
089e77e1 1656 refcount_inc(&item->refs);
16cdcec7
MX
1657 list_add_tail(&item->readdir_list, ins_list);
1658 item = __btrfs_next_delayed_item(item);
1659 }
1660
1661 item = __btrfs_first_delayed_deletion_item(delayed_node);
9b378f6a 1662 while (item && item->index <= last_index) {
089e77e1 1663 refcount_inc(&item->refs);
16cdcec7
MX
1664 list_add_tail(&item->readdir_list, del_list);
1665 item = __btrfs_next_delayed_item(item);
1666 }
1667 mutex_unlock(&delayed_node->mutex);
1668 /*
1669 * This delayed node is still cached in the btrfs inode, so refs
1670 * must be > 1 now, and we needn't check it is going to be freed
1671 * or not.
1672 *
1673 * Besides that, this function is used to read dir, we do not
1674 * insert/delete delayed items in this period. So we also needn't
1675 * requeue or dequeue this delayed node.
1676 */
6de5f18e 1677 refcount_dec(&delayed_node->refs);
02dbfc99
OS
1678
1679 return true;
16cdcec7
MX
1680}
1681
02dbfc99
OS
1682void btrfs_readdir_put_delayed_items(struct inode *inode,
1683 struct list_head *ins_list,
1684 struct list_head *del_list)
16cdcec7
MX
1685{
1686 struct btrfs_delayed_item *curr, *next;
1687
1688 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1689 list_del(&curr->readdir_list);
089e77e1 1690 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1691 kfree(curr);
1692 }
1693
1694 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1695 list_del(&curr->readdir_list);
089e77e1 1696 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1697 kfree(curr);
1698 }
02dbfc99
OS
1699
1700 /*
1701 * The VFS is going to do up_read(), so we need to downgrade back to a
1702 * read lock.
1703 */
1704 downgrade_write(&inode->i_rwsem);
16cdcec7
MX
1705}
1706
1707int btrfs_should_delete_dir_index(struct list_head *del_list,
1708 u64 index)
1709{
e4fd493c
JB
1710 struct btrfs_delayed_item *curr;
1711 int ret = 0;
16cdcec7 1712
e4fd493c 1713 list_for_each_entry(curr, del_list, readdir_list) {
96d89923 1714 if (curr->index > index)
16cdcec7 1715 break;
96d89923 1716 if (curr->index == index) {
e4fd493c
JB
1717 ret = 1;
1718 break;
1719 }
16cdcec7 1720 }
e4fd493c 1721 return ret;
16cdcec7
MX
1722}
1723
1724/*
1725 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1726 *
1727 */
9cdda8d3 1728int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
d2fbb2b5 1729 struct list_head *ins_list)
16cdcec7
MX
1730{
1731 struct btrfs_dir_item *di;
1732 struct btrfs_delayed_item *curr, *next;
1733 struct btrfs_key location;
1734 char *name;
1735 int name_len;
1736 int over = 0;
1737 unsigned char d_type;
1738
16cdcec7
MX
1739 /*
1740 * Changing the data of the delayed item is impossible. So
1741 * we needn't lock them. And we have held i_mutex of the
1742 * directory, nobody can delete any directory indexes now.
1743 */
1744 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1745 list_del(&curr->readdir_list);
1746
96d89923 1747 if (curr->index < ctx->pos) {
089e77e1 1748 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1749 kfree(curr);
1750 continue;
1751 }
1752
96d89923 1753 ctx->pos = curr->index;
16cdcec7
MX
1754
1755 di = (struct btrfs_dir_item *)curr->data;
1756 name = (char *)(di + 1);
3cae210f 1757 name_len = btrfs_stack_dir_name_len(di);
16cdcec7 1758
94a48aef 1759 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
16cdcec7
MX
1760 btrfs_disk_key_to_cpu(&location, &di->location);
1761
9cdda8d3 1762 over = !dir_emit(ctx, name, name_len,
16cdcec7
MX
1763 location.objectid, d_type);
1764
089e77e1 1765 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1766 kfree(curr);
1767
1768 if (over)
1769 return 1;
42e9cc46 1770 ctx->pos++;
16cdcec7
MX
1771 }
1772 return 0;
1773}
1774
16cdcec7
MX
1775static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1776 struct btrfs_inode_item *inode_item,
1777 struct inode *inode)
1778{
77eea05e
BB
1779 u64 flags;
1780
2f2f43d3
EB
1781 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1782 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
16cdcec7
MX
1783 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1784 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1785 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1786 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1787 btrfs_set_stack_inode_generation(inode_item,
1788 BTRFS_I(inode)->generation);
c7f88c4e
JL
1789 btrfs_set_stack_inode_sequence(inode_item,
1790 inode_peek_iversion(inode));
16cdcec7
MX
1791 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1792 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
77eea05e
BB
1793 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1794 BTRFS_I(inode)->ro_flags);
1795 btrfs_set_stack_inode_flags(inode_item, flags);
ff5714cc 1796 btrfs_set_stack_inode_block_group(inode_item, 0);
16cdcec7 1797
a937b979 1798 btrfs_set_stack_timespec_sec(&inode_item->atime,
16cdcec7 1799 inode->i_atime.tv_sec);
a937b979 1800 btrfs_set_stack_timespec_nsec(&inode_item->atime,
16cdcec7
MX
1801 inode->i_atime.tv_nsec);
1802
a937b979 1803 btrfs_set_stack_timespec_sec(&inode_item->mtime,
16cdcec7 1804 inode->i_mtime.tv_sec);
a937b979 1805 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
16cdcec7
MX
1806 inode->i_mtime.tv_nsec);
1807
a937b979 1808 btrfs_set_stack_timespec_sec(&inode_item->ctime,
2a9462de 1809 inode_get_ctime(inode).tv_sec);
a937b979 1810 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
2a9462de 1811 inode_get_ctime(inode).tv_nsec);
9cc97d64 1812
1813 btrfs_set_stack_timespec_sec(&inode_item->otime,
1814 BTRFS_I(inode)->i_otime.tv_sec);
1815 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1816 BTRFS_I(inode)->i_otime.tv_nsec);
16cdcec7
MX
1817}
1818
2f7e33d4
MX
1819int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1820{
9ddc959e 1821 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2f7e33d4
MX
1822 struct btrfs_delayed_node *delayed_node;
1823 struct btrfs_inode_item *inode_item;
2f7e33d4 1824
340c6ca9 1825 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
2f7e33d4
MX
1826 if (!delayed_node)
1827 return -ENOENT;
1828
1829 mutex_lock(&delayed_node->mutex);
7cf35d91 1830 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2f7e33d4
MX
1831 mutex_unlock(&delayed_node->mutex);
1832 btrfs_release_delayed_node(delayed_node);
1833 return -ENOENT;
1834 }
1835
1836 inode_item = &delayed_node->inode_item;
1837
2f2f43d3
EB
1838 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1839 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
6ef06d27 1840 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
9ddc959e
JB
1841 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1842 round_up(i_size_read(inode), fs_info->sectorsize));
2f7e33d4 1843 inode->i_mode = btrfs_stack_inode_mode(inode_item);
bfe86848 1844 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
2f7e33d4
MX
1845 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1846 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
6e17d30b
YD
1847 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1848
c7f88c4e
JL
1849 inode_set_iversion_queried(inode,
1850 btrfs_stack_inode_sequence(inode_item));
2f7e33d4
MX
1851 inode->i_rdev = 0;
1852 *rdev = btrfs_stack_inode_rdev(inode_item);
77eea05e
BB
1853 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1854 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
2f7e33d4 1855
a937b979
DS
1856 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1857 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
2f7e33d4 1858
a937b979
DS
1859 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1860 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
2f7e33d4 1861
2a9462de
JL
1862 inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1863 btrfs_stack_timespec_nsec(&inode_item->ctime));
2f7e33d4 1864
9cc97d64 1865 BTRFS_I(inode)->i_otime.tv_sec =
1866 btrfs_stack_timespec_sec(&inode_item->otime);
1867 BTRFS_I(inode)->i_otime.tv_nsec =
1868 btrfs_stack_timespec_nsec(&inode_item->otime);
1869
2f7e33d4
MX
1870 inode->i_generation = BTRFS_I(inode)->generation;
1871 BTRFS_I(inode)->index_cnt = (u64)-1;
1872
1873 mutex_unlock(&delayed_node->mutex);
1874 btrfs_release_delayed_node(delayed_node);
1875 return 0;
1876}
1877
16cdcec7 1878int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
f3fbcaef
NB
1879 struct btrfs_root *root,
1880 struct btrfs_inode *inode)
16cdcec7
MX
1881{
1882 struct btrfs_delayed_node *delayed_node;
aa0467d8 1883 int ret = 0;
16cdcec7 1884
f3fbcaef 1885 delayed_node = btrfs_get_or_create_delayed_node(inode);
16cdcec7
MX
1886 if (IS_ERR(delayed_node))
1887 return PTR_ERR(delayed_node);
1888
1889 mutex_lock(&delayed_node->mutex);
7cf35d91 1890 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
f3fbcaef
NB
1891 fill_stack_inode_item(trans, &delayed_node->inode_item,
1892 &inode->vfs_inode);
16cdcec7
MX
1893 goto release_node;
1894 }
1895
8e3c9d3c 1896 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
c06a0e12
JB
1897 if (ret)
1898 goto release_node;
16cdcec7 1899
f3fbcaef 1900 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
7cf35d91 1901 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
16cdcec7
MX
1902 delayed_node->count++;
1903 atomic_inc(&root->fs_info->delayed_root->items);
1904release_node:
1905 mutex_unlock(&delayed_node->mutex);
1906 btrfs_release_delayed_node(delayed_node);
1907 return ret;
1908}
1909
e07222c7 1910int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
67de1176 1911{
3ffbd68c 1912 struct btrfs_fs_info *fs_info = inode->root->fs_info;
67de1176
MX
1913 struct btrfs_delayed_node *delayed_node;
1914
6f896054
CM
1915 /*
1916 * we don't do delayed inode updates during log recovery because it
1917 * leads to enospc problems. This means we also can't do
1918 * delayed inode refs
1919 */
0b246afa 1920 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
6f896054
CM
1921 return -EAGAIN;
1922
e07222c7 1923 delayed_node = btrfs_get_or_create_delayed_node(inode);
67de1176
MX
1924 if (IS_ERR(delayed_node))
1925 return PTR_ERR(delayed_node);
1926
1927 /*
1928 * We don't reserve space for inode ref deletion is because:
1929 * - We ONLY do async inode ref deletion for the inode who has only
1930 * one link(i_nlink == 1), it means there is only one inode ref.
1931 * And in most case, the inode ref and the inode item are in the
1932 * same leaf, and we will deal with them at the same time.
1933 * Since we are sure we will reserve the space for the inode item,
1934 * it is unnecessary to reserve space for inode ref deletion.
1935 * - If the inode ref and the inode item are not in the same leaf,
1936 * We also needn't worry about enospc problem, because we reserve
1937 * much more space for the inode update than it needs.
1938 * - At the worst, we can steal some space from the global reservation.
1939 * It is very rare.
1940 */
1941 mutex_lock(&delayed_node->mutex);
1942 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1943 goto release_node;
1944
1945 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1946 delayed_node->count++;
0b246afa 1947 atomic_inc(&fs_info->delayed_root->items);
67de1176
MX
1948release_node:
1949 mutex_unlock(&delayed_node->mutex);
1950 btrfs_release_delayed_node(delayed_node);
1951 return 0;
1952}
1953
16cdcec7
MX
1954static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1955{
1956 struct btrfs_root *root = delayed_node->root;
2ff7e61e 1957 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
1958 struct btrfs_delayed_item *curr_item, *prev_item;
1959
1960 mutex_lock(&delayed_node->mutex);
1961 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1962 while (curr_item) {
16cdcec7
MX
1963 prev_item = curr_item;
1964 curr_item = __btrfs_next_delayed_item(prev_item);
1965 btrfs_release_delayed_item(prev_item);
1966 }
1967
763748b2
FM
1968 if (delayed_node->index_item_leaves > 0) {
1969 btrfs_delayed_item_release_leaves(delayed_node,
1970 delayed_node->index_item_leaves);
1971 delayed_node->index_item_leaves = 0;
1972 }
1973
16cdcec7
MX
1974 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1975 while (curr_item) {
4f5427cc 1976 btrfs_delayed_item_release_metadata(root, curr_item);
16cdcec7
MX
1977 prev_item = curr_item;
1978 curr_item = __btrfs_next_delayed_item(prev_item);
1979 btrfs_release_delayed_item(prev_item);
1980 }
1981
a4cb90dc 1982 btrfs_release_delayed_iref(delayed_node);
67de1176 1983
7cf35d91 1984 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
4f5427cc 1985 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
16cdcec7
MX
1986 btrfs_release_delayed_inode(delayed_node);
1987 }
1988 mutex_unlock(&delayed_node->mutex);
1989}
1990
4ccb5c72 1991void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
16cdcec7
MX
1992{
1993 struct btrfs_delayed_node *delayed_node;
1994
4ccb5c72 1995 delayed_node = btrfs_get_delayed_node(inode);
16cdcec7
MX
1996 if (!delayed_node)
1997 return;
1998
1999 __btrfs_kill_delayed_node(delayed_node);
2000 btrfs_release_delayed_node(delayed_node);
2001}
2002
2003void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2004{
088aea3b 2005 u64 inode_id = 0;
16cdcec7 2006 struct btrfs_delayed_node *delayed_nodes[8];
088aea3b 2007 int i, n;
16cdcec7
MX
2008
2009 while (1) {
2010 spin_lock(&root->inode_lock);
088aea3b
DS
2011 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2012 (void **)delayed_nodes, inode_id,
2013 ARRAY_SIZE(delayed_nodes));
2014 if (!n) {
16cdcec7 2015 spin_unlock(&root->inode_lock);
088aea3b 2016 break;
16cdcec7
MX
2017 }
2018
088aea3b
DS
2019 inode_id = delayed_nodes[n - 1]->inode_id + 1;
2020 for (i = 0; i < n; i++) {
baf320b9
JB
2021 /*
2022 * Don't increase refs in case the node is dead and
2023 * about to be removed from the tree in the loop below
2024 */
088aea3b
DS
2025 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
2026 delayed_nodes[i] = NULL;
baf320b9 2027 }
16cdcec7
MX
2028 spin_unlock(&root->inode_lock);
2029
088aea3b
DS
2030 for (i = 0; i < n; i++) {
2031 if (!delayed_nodes[i])
2032 continue;
16cdcec7
MX
2033 __btrfs_kill_delayed_node(delayed_nodes[i]);
2034 btrfs_release_delayed_node(delayed_nodes[i]);
2035 }
2036 }
2037}
67cde344 2038
ccdf9b30 2039void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
67cde344 2040{
67cde344
MX
2041 struct btrfs_delayed_node *curr_node, *prev_node;
2042
ccdf9b30 2043 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
67cde344
MX
2044 while (curr_node) {
2045 __btrfs_kill_delayed_node(curr_node);
2046
2047 prev_node = curr_node;
2048 curr_node = btrfs_next_delayed_node(curr_node);
2049 btrfs_release_delayed_node(prev_node);
2050 }
2051}
2052
30b80f3c
FM
2053void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2054 struct list_head *ins_list,
2055 struct list_head *del_list)
2056{
2057 struct btrfs_delayed_node *node;
2058 struct btrfs_delayed_item *item;
2059
2060 node = btrfs_get_delayed_node(inode);
2061 if (!node)
2062 return;
2063
2064 mutex_lock(&node->mutex);
2065 item = __btrfs_first_delayed_insertion_item(node);
2066 while (item) {
2067 /*
2068 * It's possible that the item is already in a log list. This
2069 * can happen in case two tasks are trying to log the same
2070 * directory. For example if we have tasks A and task B:
2071 *
2072 * Task A collected the delayed items into a log list while
2073 * under the inode's log_mutex (at btrfs_log_inode()), but it
2074 * only releases the items after logging the inodes they point
2075 * to (if they are new inodes), which happens after unlocking
2076 * the log mutex;
2077 *
2078 * Task B enters btrfs_log_inode() and acquires the log_mutex
2079 * of the same directory inode, before task B releases the
2080 * delayed items. This can happen for example when logging some
2081 * inode we need to trigger logging of its parent directory, so
2082 * logging two files that have the same parent directory can
2083 * lead to this.
2084 *
2085 * If this happens, just ignore delayed items already in a log
2086 * list. All the tasks logging the directory are under a log
2087 * transaction and whichever finishes first can not sync the log
2088 * before the other completes and leaves the log transaction.
2089 */
2090 if (!item->logged && list_empty(&item->log_list)) {
2091 refcount_inc(&item->refs);
2092 list_add_tail(&item->log_list, ins_list);
2093 }
2094 item = __btrfs_next_delayed_item(item);
2095 }
2096
2097 item = __btrfs_first_delayed_deletion_item(node);
2098 while (item) {
2099 /* It may be non-empty, for the same reason mentioned above. */
2100 if (!item->logged && list_empty(&item->log_list)) {
2101 refcount_inc(&item->refs);
2102 list_add_tail(&item->log_list, del_list);
2103 }
2104 item = __btrfs_next_delayed_item(item);
2105 }
2106 mutex_unlock(&node->mutex);
2107
2108 /*
2109 * We are called during inode logging, which means the inode is in use
2110 * and can not be evicted before we finish logging the inode. So we never
2111 * have the last reference on the delayed inode.
2112 * Also, we don't use btrfs_release_delayed_node() because that would
2113 * requeue the delayed inode (change its order in the list of prepared
2114 * nodes) and we don't want to do such change because we don't create or
2115 * delete delayed items.
2116 */
2117 ASSERT(refcount_read(&node->refs) > 1);
2118 refcount_dec(&node->refs);
2119}
2120
2121void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2122 struct list_head *ins_list,
2123 struct list_head *del_list)
2124{
2125 struct btrfs_delayed_node *node;
2126 struct btrfs_delayed_item *item;
2127 struct btrfs_delayed_item *next;
2128
2129 node = btrfs_get_delayed_node(inode);
2130 if (!node)
2131 return;
2132
2133 mutex_lock(&node->mutex);
2134
2135 list_for_each_entry_safe(item, next, ins_list, log_list) {
2136 item->logged = true;
2137 list_del_init(&item->log_list);
2138 if (refcount_dec_and_test(&item->refs))
2139 kfree(item);
2140 }
2141
2142 list_for_each_entry_safe(item, next, del_list, log_list) {
2143 item->logged = true;
2144 list_del_init(&item->log_list);
2145 if (refcount_dec_and_test(&item->refs))
2146 kfree(item);
2147 }
2148
2149 mutex_unlock(&node->mutex);
2150
2151 /*
2152 * We are called during inode logging, which means the inode is in use
2153 * and can not be evicted before we finish logging the inode. So we never
2154 * have the last reference on the delayed inode.
2155 * Also, we don't use btrfs_release_delayed_node() because that would
2156 * requeue the delayed inode (change its order in the list of prepared
2157 * nodes) and we don't want to do such change because we don't create or
2158 * delete delayed items.
2159 */
2160 ASSERT(refcount_read(&node->refs) > 1);
2161 refcount_dec(&node->refs);
2162}