Merge tag 'mmc-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[linux-block.git] / fs / btrfs / delayed-inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
16cdcec7
MX
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
16cdcec7
MX
5 */
6
7#include <linux/slab.h>
c7f88c4e 8#include <linux/iversion.h>
ec8eb376
JB
9#include "ctree.h"
10#include "fs.h"
9b569ea0 11#include "messages.h"
602cbe91 12#include "misc.h"
16cdcec7
MX
13#include "delayed-inode.h"
14#include "disk-io.h"
15#include "transaction.h"
4f5427cc 16#include "qgroup.h"
1f95ec01 17#include "locking.h"
26c2c454 18#include "inode-item.h"
f1e5c618 19#include "space-info.h"
07e81dc9 20#include "accessors.h"
7c8ede16 21#include "file-item.h"
16cdcec7 22
de3cb945
CM
23#define BTRFS_DELAYED_WRITEBACK 512
24#define BTRFS_DELAYED_BACKGROUND 128
25#define BTRFS_DELAYED_BATCH 16
16cdcec7
MX
26
27static struct kmem_cache *delayed_node_cache;
28
29int __init btrfs_delayed_inode_init(void)
30{
837e1972 31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
16cdcec7
MX
32 sizeof(struct btrfs_delayed_node),
33 0,
fba4b697 34 SLAB_MEM_SPREAD,
16cdcec7
MX
35 NULL);
36 if (!delayed_node_cache)
37 return -ENOMEM;
38 return 0;
39}
40
e67c718b 41void __cold btrfs_delayed_inode_exit(void)
16cdcec7 42{
5598e900 43 kmem_cache_destroy(delayed_node_cache);
16cdcec7
MX
44}
45
46static inline void btrfs_init_delayed_node(
47 struct btrfs_delayed_node *delayed_node,
48 struct btrfs_root *root, u64 inode_id)
49{
50 delayed_node->root = root;
51 delayed_node->inode_id = inode_id;
6de5f18e 52 refcount_set(&delayed_node->refs, 0);
03a1d4c8
LB
53 delayed_node->ins_root = RB_ROOT_CACHED;
54 delayed_node->del_root = RB_ROOT_CACHED;
16cdcec7 55 mutex_init(&delayed_node->mutex);
16cdcec7
MX
56 INIT_LIST_HEAD(&delayed_node->n_list);
57 INIT_LIST_HEAD(&delayed_node->p_list);
16cdcec7
MX
58}
59
f85b7379
DS
60static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 struct btrfs_inode *btrfs_inode)
16cdcec7 62{
16cdcec7 63 struct btrfs_root *root = btrfs_inode->root;
4a0cc7ca 64 u64 ino = btrfs_ino(btrfs_inode);
2f7e33d4 65 struct btrfs_delayed_node *node;
16cdcec7 66
20c7bcec 67 node = READ_ONCE(btrfs_inode->delayed_node);
16cdcec7 68 if (node) {
6de5f18e 69 refcount_inc(&node->refs);
16cdcec7
MX
70 return node;
71 }
72
73 spin_lock(&root->inode_lock);
6140ba8a 74 node = xa_load(&root->delayed_nodes, ino);
ec35e48b 75
16cdcec7
MX
76 if (node) {
77 if (btrfs_inode->delayed_node) {
6de5f18e 78 refcount_inc(&node->refs); /* can be accessed */
2f7e33d4 79 BUG_ON(btrfs_inode->delayed_node != node);
16cdcec7 80 spin_unlock(&root->inode_lock);
2f7e33d4 81 return node;
16cdcec7 82 }
ec35e48b
CM
83
84 /*
85 * It's possible that we're racing into the middle of removing
6140ba8a 86 * this node from the xarray. In this case, the refcount
ec35e48b 87 * was zero and it should never go back to one. Just return
6140ba8a 88 * NULL like it was never in the xarray at all; our release
ec35e48b
CM
89 * function is in the process of removing it.
90 *
91 * Some implementations of refcount_inc refuse to bump the
92 * refcount once it has hit zero. If we don't do this dance
93 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 * of actually bumping the refcount.
95 *
6140ba8a 96 * If this node is properly in the xarray, we want to bump the
ec35e48b
CM
97 * refcount twice, once for the inode and once for this get
98 * operation.
99 */
100 if (refcount_inc_not_zero(&node->refs)) {
101 refcount_inc(&node->refs);
102 btrfs_inode->delayed_node = node;
103 } else {
104 node = NULL;
105 }
106
16cdcec7
MX
107 spin_unlock(&root->inode_lock);
108 return node;
109 }
110 spin_unlock(&root->inode_lock);
111
2f7e33d4
MX
112 return NULL;
113}
114
79787eaa 115/* Will return either the node or PTR_ERR(-ENOMEM) */
2f7e33d4 116static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
f85b7379 117 struct btrfs_inode *btrfs_inode)
2f7e33d4
MX
118{
119 struct btrfs_delayed_node *node;
2f7e33d4 120 struct btrfs_root *root = btrfs_inode->root;
4a0cc7ca 121 u64 ino = btrfs_ino(btrfs_inode);
2f7e33d4 122 int ret;
6140ba8a 123 void *ptr;
2f7e33d4 124
088aea3b
DS
125again:
126 node = btrfs_get_delayed_node(btrfs_inode);
127 if (node)
128 return node;
2f7e33d4 129
088aea3b
DS
130 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
131 if (!node)
132 return ERR_PTR(-ENOMEM);
133 btrfs_init_delayed_node(node, root, ino);
16cdcec7 134
6140ba8a 135 /* Cached in the inode and can be accessed. */
088aea3b 136 refcount_set(&node->refs, 2);
16cdcec7 137
6140ba8a
DS
138 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
139 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
140 if (ret == -ENOMEM) {
088aea3b 141 kmem_cache_free(delayed_node_cache, node);
6140ba8a 142 return ERR_PTR(-ENOMEM);
088aea3b 143 }
088aea3b 144 spin_lock(&root->inode_lock);
6140ba8a
DS
145 ptr = xa_load(&root->delayed_nodes, ino);
146 if (ptr) {
147 /* Somebody inserted it, go back and read it. */
088aea3b
DS
148 spin_unlock(&root->inode_lock);
149 kmem_cache_free(delayed_node_cache, node);
6140ba8a 150 node = NULL;
088aea3b
DS
151 goto again;
152 }
6140ba8a
DS
153 ptr = xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
154 ASSERT(xa_err(ptr) != -EINVAL);
155 ASSERT(xa_err(ptr) != -ENOMEM);
156 ASSERT(ptr == NULL);
16cdcec7
MX
157 btrfs_inode->delayed_node = node;
158 spin_unlock(&root->inode_lock);
16cdcec7
MX
159
160 return node;
161}
162
163/*
164 * Call it when holding delayed_node->mutex
165 *
166 * If mod = 1, add this node into the prepared list.
167 */
168static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
169 struct btrfs_delayed_node *node,
170 int mod)
171{
172 spin_lock(&root->lock);
7cf35d91 173 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
16cdcec7
MX
174 if (!list_empty(&node->p_list))
175 list_move_tail(&node->p_list, &root->prepare_list);
176 else if (mod)
177 list_add_tail(&node->p_list, &root->prepare_list);
178 } else {
179 list_add_tail(&node->n_list, &root->node_list);
180 list_add_tail(&node->p_list, &root->prepare_list);
6de5f18e 181 refcount_inc(&node->refs); /* inserted into list */
16cdcec7 182 root->nodes++;
7cf35d91 183 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
16cdcec7
MX
184 }
185 spin_unlock(&root->lock);
186}
187
188/* Call it when holding delayed_node->mutex */
189static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
190 struct btrfs_delayed_node *node)
191{
192 spin_lock(&root->lock);
7cf35d91 193 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
16cdcec7 194 root->nodes--;
6de5f18e 195 refcount_dec(&node->refs); /* not in the list */
16cdcec7
MX
196 list_del_init(&node->n_list);
197 if (!list_empty(&node->p_list))
198 list_del_init(&node->p_list);
7cf35d91 199 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
16cdcec7
MX
200 }
201 spin_unlock(&root->lock);
202}
203
48a3b636 204static struct btrfs_delayed_node *btrfs_first_delayed_node(
16cdcec7
MX
205 struct btrfs_delayed_root *delayed_root)
206{
207 struct list_head *p;
208 struct btrfs_delayed_node *node = NULL;
209
210 spin_lock(&delayed_root->lock);
211 if (list_empty(&delayed_root->node_list))
212 goto out;
213
214 p = delayed_root->node_list.next;
215 node = list_entry(p, struct btrfs_delayed_node, n_list);
6de5f18e 216 refcount_inc(&node->refs);
16cdcec7
MX
217out:
218 spin_unlock(&delayed_root->lock);
219
220 return node;
221}
222
48a3b636 223static struct btrfs_delayed_node *btrfs_next_delayed_node(
16cdcec7
MX
224 struct btrfs_delayed_node *node)
225{
226 struct btrfs_delayed_root *delayed_root;
227 struct list_head *p;
228 struct btrfs_delayed_node *next = NULL;
229
230 delayed_root = node->root->fs_info->delayed_root;
231 spin_lock(&delayed_root->lock);
7cf35d91
MX
232 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
233 /* not in the list */
16cdcec7
MX
234 if (list_empty(&delayed_root->node_list))
235 goto out;
236 p = delayed_root->node_list.next;
237 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
238 goto out;
239 else
240 p = node->n_list.next;
241
242 next = list_entry(p, struct btrfs_delayed_node, n_list);
6de5f18e 243 refcount_inc(&next->refs);
16cdcec7
MX
244out:
245 spin_unlock(&delayed_root->lock);
246
247 return next;
248}
249
250static void __btrfs_release_delayed_node(
251 struct btrfs_delayed_node *delayed_node,
252 int mod)
253{
254 struct btrfs_delayed_root *delayed_root;
255
256 if (!delayed_node)
257 return;
258
259 delayed_root = delayed_node->root->fs_info->delayed_root;
260
261 mutex_lock(&delayed_node->mutex);
262 if (delayed_node->count)
263 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
264 else
265 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
266 mutex_unlock(&delayed_node->mutex);
267
6de5f18e 268 if (refcount_dec_and_test(&delayed_node->refs)) {
16cdcec7 269 struct btrfs_root *root = delayed_node->root;
ec35e48b 270
16cdcec7 271 spin_lock(&root->inode_lock);
ec35e48b
CM
272 /*
273 * Once our refcount goes to zero, nobody is allowed to bump it
274 * back up. We can delete it now.
275 */
276 ASSERT(refcount_read(&delayed_node->refs) == 0);
6140ba8a 277 xa_erase(&root->delayed_nodes, delayed_node->inode_id);
16cdcec7 278 spin_unlock(&root->inode_lock);
ec35e48b 279 kmem_cache_free(delayed_node_cache, delayed_node);
16cdcec7
MX
280 }
281}
282
283static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
284{
285 __btrfs_release_delayed_node(node, 0);
286}
287
48a3b636 288static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
16cdcec7
MX
289 struct btrfs_delayed_root *delayed_root)
290{
291 struct list_head *p;
292 struct btrfs_delayed_node *node = NULL;
293
294 spin_lock(&delayed_root->lock);
295 if (list_empty(&delayed_root->prepare_list))
296 goto out;
297
298 p = delayed_root->prepare_list.next;
299 list_del_init(p);
300 node = list_entry(p, struct btrfs_delayed_node, p_list);
6de5f18e 301 refcount_inc(&node->refs);
16cdcec7
MX
302out:
303 spin_unlock(&delayed_root->lock);
304
305 return node;
306}
307
308static inline void btrfs_release_prepared_delayed_node(
309 struct btrfs_delayed_node *node)
310{
311 __btrfs_release_delayed_node(node, 1);
312}
313
4c469798
FM
314static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
315 struct btrfs_delayed_node *node,
316 enum btrfs_delayed_item_type type)
16cdcec7
MX
317{
318 struct btrfs_delayed_item *item;
4c469798 319
75f5f60b 320 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
16cdcec7
MX
321 if (item) {
322 item->data_len = data_len;
4c469798 323 item->type = type;
16cdcec7 324 item->bytes_reserved = 0;
96d89923
FM
325 item->delayed_node = node;
326 RB_CLEAR_NODE(&item->rb_node);
30b80f3c
FM
327 INIT_LIST_HEAD(&item->log_list);
328 item->logged = false;
089e77e1 329 refcount_set(&item->refs, 1);
16cdcec7
MX
330 }
331 return item;
332}
333
334/*
9580503b
DS
335 * Look up the delayed item by key.
336 *
16cdcec7 337 * @delayed_node: pointer to the delayed node
96d89923 338 * @index: the dir index value to lookup (offset of a dir index key)
16cdcec7
MX
339 *
340 * Note: if we don't find the right item, we will return the prev item and
341 * the next item.
342 */
343static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
344 struct rb_root *root,
4cbf37f5 345 u64 index)
16cdcec7 346{
4cbf37f5 347 struct rb_node *node = root->rb_node;
16cdcec7 348 struct btrfs_delayed_item *delayed_item = NULL;
16cdcec7
MX
349
350 while (node) {
351 delayed_item = rb_entry(node, struct btrfs_delayed_item,
352 rb_node);
96d89923 353 if (delayed_item->index < index)
16cdcec7 354 node = node->rb_right;
96d89923 355 else if (delayed_item->index > index)
16cdcec7
MX
356 node = node->rb_left;
357 else
358 return delayed_item;
359 }
360
16cdcec7
MX
361 return NULL;
362}
363
16cdcec7 364static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
c9d02ab4 365 struct btrfs_delayed_item *ins)
16cdcec7
MX
366{
367 struct rb_node **p, *node;
368 struct rb_node *parent_node = NULL;
03a1d4c8 369 struct rb_root_cached *root;
16cdcec7 370 struct btrfs_delayed_item *item;
03a1d4c8 371 bool leftmost = true;
16cdcec7 372
4c469798 373 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
16cdcec7 374 root = &delayed_node->ins_root;
16cdcec7 375 else
4c469798
FM
376 root = &delayed_node->del_root;
377
03a1d4c8 378 p = &root->rb_root.rb_node;
16cdcec7
MX
379 node = &ins->rb_node;
380
381 while (*p) {
382 parent_node = *p;
383 item = rb_entry(parent_node, struct btrfs_delayed_item,
384 rb_node);
385
96d89923 386 if (item->index < ins->index) {
16cdcec7 387 p = &(*p)->rb_right;
03a1d4c8 388 leftmost = false;
96d89923 389 } else if (item->index > ins->index) {
16cdcec7 390 p = &(*p)->rb_left;
03a1d4c8 391 } else {
16cdcec7 392 return -EEXIST;
03a1d4c8 393 }
16cdcec7
MX
394 }
395
396 rb_link_node(node, parent_node, p);
03a1d4c8 397 rb_insert_color_cached(node, root, leftmost);
a176affe 398
4c469798 399 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
96d89923
FM
400 ins->index >= delayed_node->index_cnt)
401 delayed_node->index_cnt = ins->index + 1;
16cdcec7
MX
402
403 delayed_node->count++;
404 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
405 return 0;
406}
407
de3cb945
CM
408static void finish_one_item(struct btrfs_delayed_root *delayed_root)
409{
410 int seq = atomic_inc_return(&delayed_root->items_seq);
ee863954 411
093258e6 412 /* atomic_dec_return implies a barrier */
de3cb945 413 if ((atomic_dec_return(&delayed_root->items) <
093258e6
DS
414 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
415 cond_wake_up_nomb(&delayed_root->wait);
de3cb945
CM
416}
417
16cdcec7
MX
418static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
419{
a57c2d4e 420 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
03a1d4c8 421 struct rb_root_cached *root;
16cdcec7
MX
422 struct btrfs_delayed_root *delayed_root;
423
96d89923
FM
424 /* Not inserted, ignore it. */
425 if (RB_EMPTY_NODE(&delayed_item->rb_node))
933c22a7 426 return;
96d89923 427
a57c2d4e
FM
428 /* If it's in a rbtree, then we need to have delayed node locked. */
429 lockdep_assert_held(&delayed_node->mutex);
430
431 delayed_root = delayed_node->root->fs_info->delayed_root;
16cdcec7
MX
432
433 BUG_ON(!delayed_root);
16cdcec7 434
4c469798 435 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
a57c2d4e 436 root = &delayed_node->ins_root;
16cdcec7 437 else
a57c2d4e 438 root = &delayed_node->del_root;
16cdcec7 439
03a1d4c8 440 rb_erase_cached(&delayed_item->rb_node, root);
96d89923 441 RB_CLEAR_NODE(&delayed_item->rb_node);
a57c2d4e 442 delayed_node->count--;
de3cb945
CM
443
444 finish_one_item(delayed_root);
16cdcec7
MX
445}
446
447static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
448{
449 if (item) {
450 __btrfs_remove_delayed_item(item);
089e77e1 451 if (refcount_dec_and_test(&item->refs))
16cdcec7
MX
452 kfree(item);
453 }
454}
455
48a3b636 456static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
16cdcec7
MX
457 struct btrfs_delayed_node *delayed_node)
458{
459 struct rb_node *p;
460 struct btrfs_delayed_item *item = NULL;
461
03a1d4c8 462 p = rb_first_cached(&delayed_node->ins_root);
16cdcec7
MX
463 if (p)
464 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
465
466 return item;
467}
468
48a3b636 469static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
16cdcec7
MX
470 struct btrfs_delayed_node *delayed_node)
471{
472 struct rb_node *p;
473 struct btrfs_delayed_item *item = NULL;
474
03a1d4c8 475 p = rb_first_cached(&delayed_node->del_root);
16cdcec7
MX
476 if (p)
477 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
478
479 return item;
480}
481
48a3b636 482static struct btrfs_delayed_item *__btrfs_next_delayed_item(
16cdcec7
MX
483 struct btrfs_delayed_item *item)
484{
485 struct rb_node *p;
486 struct btrfs_delayed_item *next = NULL;
487
488 p = rb_next(&item->rb_node);
489 if (p)
490 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
491
492 return next;
493}
494
16cdcec7 495static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
16cdcec7
MX
496 struct btrfs_delayed_item *item)
497{
498 struct btrfs_block_rsv *src_rsv;
499 struct btrfs_block_rsv *dst_rsv;
df492881 500 struct btrfs_fs_info *fs_info = trans->fs_info;
16cdcec7
MX
501 u64 num_bytes;
502 int ret;
503
504 if (!trans->bytes_reserved)
505 return 0;
506
507 src_rsv = trans->block_rsv;
0b246afa 508 dst_rsv = &fs_info->delayed_block_rsv;
16cdcec7 509
2bd36e7b 510 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
f218ea6c
QW
511
512 /*
513 * Here we migrate space rsv from transaction rsv, since have already
514 * reserved space when starting a transaction. So no need to reserve
515 * qgroup space here.
516 */
3a584174 517 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
8c2a3ca2 518 if (!ret) {
0b246afa 519 trace_btrfs_space_reservation(fs_info, "delayed_item",
96d89923 520 item->delayed_node->inode_id,
8c2a3ca2 521 num_bytes, 1);
763748b2
FM
522 /*
523 * For insertions we track reserved metadata space by accounting
524 * for the number of leaves that will be used, based on the delayed
01fc062b 525 * node's curr_index_batch_size and index_item_leaves fields.
763748b2 526 */
4c469798 527 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
763748b2 528 item->bytes_reserved = num_bytes;
8c2a3ca2 529 }
16cdcec7
MX
530
531 return ret;
532}
533
4f5427cc 534static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
16cdcec7
MX
535 struct btrfs_delayed_item *item)
536{
19fd2949 537 struct btrfs_block_rsv *rsv;
4f5427cc 538 struct btrfs_fs_info *fs_info = root->fs_info;
19fd2949 539
16cdcec7
MX
540 if (!item->bytes_reserved)
541 return;
542
0b246afa 543 rsv = &fs_info->delayed_block_rsv;
f218ea6c
QW
544 /*
545 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
546 * to release/reserve qgroup space.
547 */
0b246afa 548 trace_btrfs_space_reservation(fs_info, "delayed_item",
96d89923
FM
549 item->delayed_node->inode_id,
550 item->bytes_reserved, 0);
63f018be 551 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
16cdcec7
MX
552}
553
763748b2
FM
554static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
555 unsigned int num_leaves)
556{
557 struct btrfs_fs_info *fs_info = node->root->fs_info;
558 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
559
560 /* There are no space reservations during log replay, bail out. */
561 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
562 return;
563
564 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
565 bytes, 0);
566 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
567}
568
16cdcec7
MX
569static int btrfs_delayed_inode_reserve_metadata(
570 struct btrfs_trans_handle *trans,
571 struct btrfs_root *root,
572 struct btrfs_delayed_node *node)
573{
0b246afa 574 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
575 struct btrfs_block_rsv *src_rsv;
576 struct btrfs_block_rsv *dst_rsv;
577 u64 num_bytes;
578 int ret;
579
16cdcec7 580 src_rsv = trans->block_rsv;
0b246afa 581 dst_rsv = &fs_info->delayed_block_rsv;
16cdcec7 582
bcacf5f3 583 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
c06a0e12
JB
584
585 /*
586 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
587 * which doesn't reserve space for speed. This is a problem since we
588 * still need to reserve space for this update, so try to reserve the
589 * space.
590 *
591 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
69fe2d75 592 * we always reserve enough to update the inode item.
c06a0e12 593 */
e755d9ab 594 if (!src_rsv || (!trans->bytes_reserved &&
66d8f3dd 595 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
4d14c5cd
NB
596 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
597 BTRFS_QGROUP_RSV_META_PREALLOC, true);
f218ea6c
QW
598 if (ret < 0)
599 return ret;
9270501c 600 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
08e007d2 601 BTRFS_RESERVE_NO_FLUSH);
98686ffc
NB
602 /* NO_FLUSH could only fail with -ENOSPC */
603 ASSERT(ret == 0 || ret == -ENOSPC);
604 if (ret)
0f9c03d8 605 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
98686ffc
NB
606 } else {
607 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
c06a0e12
JB
608 }
609
8c2a3ca2 610 if (!ret) {
0b246afa 611 trace_btrfs_space_reservation(fs_info, "delayed_inode",
8e3c9d3c 612 node->inode_id, num_bytes, 1);
16cdcec7 613 node->bytes_reserved = num_bytes;
8c2a3ca2 614 }
16cdcec7
MX
615
616 return ret;
617}
618
2ff7e61e 619static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
4f5427cc
QW
620 struct btrfs_delayed_node *node,
621 bool qgroup_free)
16cdcec7
MX
622{
623 struct btrfs_block_rsv *rsv;
624
625 if (!node->bytes_reserved)
626 return;
627
0b246afa
JM
628 rsv = &fs_info->delayed_block_rsv;
629 trace_btrfs_space_reservation(fs_info, "delayed_inode",
8c2a3ca2 630 node->inode_id, node->bytes_reserved, 0);
63f018be 631 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
4f5427cc
QW
632 if (qgroup_free)
633 btrfs_qgroup_free_meta_prealloc(node->root,
634 node->bytes_reserved);
635 else
636 btrfs_qgroup_convert_reserved_meta(node->root,
637 node->bytes_reserved);
16cdcec7
MX
638 node->bytes_reserved = 0;
639}
640
641/*
06ac264f
FM
642 * Insert a single delayed item or a batch of delayed items, as many as possible
643 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
644 * in the rbtree, and if there's a gap between two consecutive dir index items,
645 * then it means at some point we had delayed dir indexes to add but they got
646 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
647 * into the subvolume tree. Dir index keys also have their offsets coming from a
648 * monotonically increasing counter, so we can't get new keys with an offset that
649 * fits within a gap between delayed dir index items.
16cdcec7 650 */
506650dc
FM
651static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
652 struct btrfs_root *root,
653 struct btrfs_path *path,
654 struct btrfs_delayed_item *first_item)
16cdcec7 655{
763748b2
FM
656 struct btrfs_fs_info *fs_info = root->fs_info;
657 struct btrfs_delayed_node *node = first_item->delayed_node;
b7ef5f3a 658 LIST_HEAD(item_list);
506650dc
FM
659 struct btrfs_delayed_item *curr;
660 struct btrfs_delayed_item *next;
763748b2 661 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
b7ef5f3a 662 struct btrfs_item_batch batch;
96d89923 663 struct btrfs_key first_key;
4c469798 664 const u32 first_data_size = first_item->data_len;
506650dc 665 int total_size;
506650dc 666 char *ins_data = NULL;
506650dc 667 int ret;
71b68e9e 668 bool continuous_keys_only = false;
16cdcec7 669
763748b2
FM
670 lockdep_assert_held(&node->mutex);
671
71b68e9e
JB
672 /*
673 * During normal operation the delayed index offset is continuously
674 * increasing, so we can batch insert all items as there will not be any
675 * overlapping keys in the tree.
676 *
677 * The exception to this is log replay, where we may have interleaved
678 * offsets in the tree, so our batch needs to be continuous keys only in
679 * order to ensure we do not end up with out of order items in our leaf.
680 */
681 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
682 continuous_keys_only = true;
683
763748b2
FM
684 /*
685 * For delayed items to insert, we track reserved metadata bytes based
686 * on the number of leaves that we will use.
687 * See btrfs_insert_delayed_dir_index() and
688 * btrfs_delayed_item_reserve_metadata()).
689 */
690 ASSERT(first_item->bytes_reserved == 0);
691
b7ef5f3a 692 list_add_tail(&first_item->tree_list, &item_list);
4c469798 693 batch.total_data_size = first_data_size;
b7ef5f3a 694 batch.nr = 1;
4c469798 695 total_size = first_data_size + sizeof(struct btrfs_item);
506650dc 696 curr = first_item;
16cdcec7 697
506650dc
FM
698 while (true) {
699 int next_size;
16cdcec7 700
16cdcec7 701 next = __btrfs_next_delayed_item(curr);
06ac264f 702 if (!next)
16cdcec7
MX
703 break;
704
71b68e9e
JB
705 /*
706 * We cannot allow gaps in the key space if we're doing log
707 * replay.
708 */
96d89923 709 if (continuous_keys_only && (next->index != curr->index + 1))
71b68e9e
JB
710 break;
711
763748b2
FM
712 ASSERT(next->bytes_reserved == 0);
713
506650dc
FM
714 next_size = next->data_len + sizeof(struct btrfs_item);
715 if (total_size + next_size > max_size)
16cdcec7 716 break;
16cdcec7 717
b7ef5f3a
FM
718 list_add_tail(&next->tree_list, &item_list);
719 batch.nr++;
506650dc 720 total_size += next_size;
b7ef5f3a 721 batch.total_data_size += next->data_len;
506650dc 722 curr = next;
16cdcec7
MX
723 }
724
b7ef5f3a 725 if (batch.nr == 1) {
96d89923
FM
726 first_key.objectid = node->inode_id;
727 first_key.type = BTRFS_DIR_INDEX_KEY;
728 first_key.offset = first_item->index;
729 batch.keys = &first_key;
4c469798 730 batch.data_sizes = &first_data_size;
506650dc 731 } else {
b7ef5f3a
FM
732 struct btrfs_key *ins_keys;
733 u32 *ins_sizes;
506650dc 734 int i = 0;
16cdcec7 735
b7ef5f3a
FM
736 ins_data = kmalloc(batch.nr * sizeof(u32) +
737 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
506650dc
FM
738 if (!ins_data) {
739 ret = -ENOMEM;
740 goto out;
741 }
742 ins_sizes = (u32 *)ins_data;
b7ef5f3a
FM
743 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
744 batch.keys = ins_keys;
745 batch.data_sizes = ins_sizes;
746 list_for_each_entry(curr, &item_list, tree_list) {
96d89923
FM
747 ins_keys[i].objectid = node->inode_id;
748 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
749 ins_keys[i].offset = curr->index;
506650dc
FM
750 ins_sizes[i] = curr->data_len;
751 i++;
752 }
16cdcec7
MX
753 }
754
b7ef5f3a 755 ret = btrfs_insert_empty_items(trans, root, path, &batch);
506650dc
FM
756 if (ret)
757 goto out;
16cdcec7 758
b7ef5f3a 759 list_for_each_entry(curr, &item_list, tree_list) {
506650dc 760 char *data_ptr;
16cdcec7 761
506650dc
FM
762 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
763 write_extent_buffer(path->nodes[0], &curr->data,
764 (unsigned long)data_ptr, curr->data_len);
765 path->slots[0]++;
766 }
16cdcec7 767
506650dc
FM
768 /*
769 * Now release our path before releasing the delayed items and their
770 * metadata reservations, so that we don't block other tasks for more
771 * time than needed.
772 */
773 btrfs_release_path(path);
16cdcec7 774
763748b2
FM
775 ASSERT(node->index_item_leaves > 0);
776
71b68e9e
JB
777 /*
778 * For normal operations we will batch an entire leaf's worth of delayed
779 * items, so if there are more items to process we can decrement
780 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
781 *
782 * However for log replay we may not have inserted an entire leaf's
783 * worth of items, we may have not had continuous items, so decrementing
784 * here would mess up the index_item_leaves accounting. For this case
785 * only clean up the accounting when there are no items left.
786 */
787 if (next && !continuous_keys_only) {
763748b2
FM
788 /*
789 * We inserted one batch of items into a leaf a there are more
790 * items to flush in a future batch, now release one unit of
791 * metadata space from the delayed block reserve, corresponding
792 * the leaf we just flushed to.
793 */
794 btrfs_delayed_item_release_leaves(node, 1);
795 node->index_item_leaves--;
71b68e9e 796 } else if (!next) {
763748b2
FM
797 /*
798 * There are no more items to insert. We can have a number of
799 * reserved leaves > 1 here - this happens when many dir index
800 * items are added and then removed before they are flushed (file
801 * names with a very short life, never span a transaction). So
802 * release all remaining leaves.
803 */
804 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
805 node->index_item_leaves = 0;
806 }
807
b7ef5f3a 808 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
16cdcec7
MX
809 list_del(&curr->tree_list);
810 btrfs_release_delayed_item(curr);
811 }
16cdcec7 812out:
506650dc 813 kfree(ins_data);
16cdcec7
MX
814 return ret;
815}
816
16cdcec7
MX
817static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
818 struct btrfs_path *path,
819 struct btrfs_root *root,
820 struct btrfs_delayed_node *node)
821{
16cdcec7
MX
822 int ret = 0;
823
506650dc
FM
824 while (ret == 0) {
825 struct btrfs_delayed_item *curr;
16cdcec7 826
506650dc
FM
827 mutex_lock(&node->mutex);
828 curr = __btrfs_first_delayed_insertion_item(node);
829 if (!curr) {
830 mutex_unlock(&node->mutex);
831 break;
832 }
833 ret = btrfs_insert_delayed_item(trans, root, path, curr);
834 mutex_unlock(&node->mutex);
16cdcec7 835 }
16cdcec7 836
16cdcec7
MX
837 return ret;
838}
839
840static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
841 struct btrfs_root *root,
842 struct btrfs_path *path,
843 struct btrfs_delayed_item *item)
844{
96d89923 845 const u64 ino = item->delayed_node->inode_id;
1f4f639f 846 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7 847 struct btrfs_delayed_item *curr, *next;
659192e6 848 struct extent_buffer *leaf = path->nodes[0];
4bd02d90
FM
849 LIST_HEAD(batch_list);
850 int nitems, slot, last_slot;
851 int ret;
1f4f639f 852 u64 total_reserved_size = item->bytes_reserved;
16cdcec7 853
659192e6 854 ASSERT(leaf != NULL);
16cdcec7 855
4bd02d90
FM
856 slot = path->slots[0];
857 last_slot = btrfs_header_nritems(leaf) - 1;
659192e6
FM
858 /*
859 * Our caller always gives us a path pointing to an existing item, so
860 * this can not happen.
861 */
4bd02d90
FM
862 ASSERT(slot <= last_slot);
863 if (WARN_ON(slot > last_slot))
659192e6 864 return -ENOENT;
16cdcec7 865
4bd02d90
FM
866 nitems = 1;
867 curr = item;
868 list_add_tail(&curr->tree_list, &batch_list);
869
16cdcec7 870 /*
4bd02d90
FM
871 * Keep checking if the next delayed item matches the next item in the
872 * leaf - if so, we can add it to the batch of items to delete from the
873 * leaf.
16cdcec7 874 */
4bd02d90
FM
875 while (slot < last_slot) {
876 struct btrfs_key key;
16cdcec7 877
16cdcec7
MX
878 next = __btrfs_next_delayed_item(curr);
879 if (!next)
880 break;
881
4bd02d90
FM
882 slot++;
883 btrfs_item_key_to_cpu(leaf, &key, slot);
96d89923
FM
884 if (key.objectid != ino ||
885 key.type != BTRFS_DIR_INDEX_KEY ||
886 key.offset != next->index)
16cdcec7 887 break;
4bd02d90
FM
888 nitems++;
889 curr = next;
890 list_add_tail(&curr->tree_list, &batch_list);
1f4f639f 891 total_reserved_size += curr->bytes_reserved;
16cdcec7
MX
892 }
893
16cdcec7
MX
894 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
895 if (ret)
4bd02d90 896 return ret;
16cdcec7 897
1f4f639f
NB
898 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
899 if (total_reserved_size > 0) {
900 /*
901 * Check btrfs_delayed_item_reserve_metadata() to see why we
902 * don't need to release/reserve qgroup space.
903 */
96d89923
FM
904 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
905 total_reserved_size, 0);
1f4f639f
NB
906 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
907 total_reserved_size, NULL);
908 }
909
4bd02d90 910 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
16cdcec7
MX
911 list_del(&curr->tree_list);
912 btrfs_release_delayed_item(curr);
913 }
914
4bd02d90 915 return 0;
16cdcec7
MX
916}
917
918static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
919 struct btrfs_path *path,
920 struct btrfs_root *root,
921 struct btrfs_delayed_node *node)
922{
96d89923 923 struct btrfs_key key;
16cdcec7
MX
924 int ret = 0;
925
96d89923
FM
926 key.objectid = node->inode_id;
927 key.type = BTRFS_DIR_INDEX_KEY;
928
36baa2c7
FM
929 while (ret == 0) {
930 struct btrfs_delayed_item *item;
931
932 mutex_lock(&node->mutex);
933 item = __btrfs_first_delayed_deletion_item(node);
934 if (!item) {
935 mutex_unlock(&node->mutex);
936 break;
937 }
938
96d89923
FM
939 key.offset = item->index;
940 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
36baa2c7
FM
941 if (ret > 0) {
942 /*
943 * There's no matching item in the leaf. This means we
944 * have already deleted this item in a past run of the
945 * delayed items. We ignore errors when running delayed
946 * items from an async context, through a work queue job
947 * running btrfs_async_run_delayed_root(), and don't
948 * release delayed items that failed to complete. This
949 * is because we will retry later, and at transaction
950 * commit time we always run delayed items and will
951 * then deal with errors if they fail to run again.
952 *
953 * So just release delayed items for which we can't find
954 * an item in the tree, and move to the next item.
955 */
956 btrfs_release_path(path);
957 btrfs_release_delayed_item(item);
958 ret = 0;
959 } else if (ret == 0) {
960 ret = btrfs_batch_delete_items(trans, root, path, item);
961 btrfs_release_path(path);
962 }
16cdcec7 963
16cdcec7 964 /*
36baa2c7
FM
965 * We unlock and relock on each iteration, this is to prevent
966 * blocking other tasks for too long while we are being run from
967 * the async context (work queue job). Those tasks are typically
968 * running system calls like creat/mkdir/rename/unlink/etc which
969 * need to add delayed items to this delayed node.
16cdcec7 970 */
36baa2c7 971 mutex_unlock(&node->mutex);
16cdcec7
MX
972 }
973
16cdcec7
MX
974 return ret;
975}
976
977static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
978{
979 struct btrfs_delayed_root *delayed_root;
980
7cf35d91
MX
981 if (delayed_node &&
982 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
16cdcec7 983 BUG_ON(!delayed_node->root);
7cf35d91 984 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
16cdcec7
MX
985 delayed_node->count--;
986
987 delayed_root = delayed_node->root->fs_info->delayed_root;
de3cb945 988 finish_one_item(delayed_root);
16cdcec7
MX
989 }
990}
991
67de1176
MX
992static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
993{
67de1176 994
a4cb90dc
JB
995 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
996 struct btrfs_delayed_root *delayed_root;
67de1176 997
a4cb90dc
JB
998 ASSERT(delayed_node->root);
999 delayed_node->count--;
1000
1001 delayed_root = delayed_node->root->fs_info->delayed_root;
1002 finish_one_item(delayed_root);
1003 }
67de1176
MX
1004}
1005
0e8c36a9
MX
1006static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1007 struct btrfs_root *root,
1008 struct btrfs_path *path,
1009 struct btrfs_delayed_node *node)
16cdcec7 1010{
2ff7e61e 1011 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
1012 struct btrfs_key key;
1013 struct btrfs_inode_item *inode_item;
1014 struct extent_buffer *leaf;
67de1176 1015 int mod;
16cdcec7
MX
1016 int ret;
1017
16cdcec7 1018 key.objectid = node->inode_id;
962a298f 1019 key.type = BTRFS_INODE_ITEM_KEY;
16cdcec7 1020 key.offset = 0;
0e8c36a9 1021
67de1176
MX
1022 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1023 mod = -1;
1024 else
1025 mod = 1;
1026
1027 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
bb385bed
JB
1028 if (ret > 0)
1029 ret = -ENOENT;
1030 if (ret < 0)
1031 goto out;
16cdcec7 1032
16cdcec7
MX
1033 leaf = path->nodes[0];
1034 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1035 struct btrfs_inode_item);
1036 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1037 sizeof(struct btrfs_inode_item));
50564b65 1038 btrfs_mark_buffer_dirty(trans, leaf);
16cdcec7 1039
67de1176 1040 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
a4cb90dc 1041 goto out;
67de1176 1042
9ba7c686
QW
1043 /*
1044 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1045 * only one ref left. Check if the next item is an INODE_REF/EXTREF.
1046 *
1047 * But if we're the last item already, release and search for the last
1048 * INODE_REF/EXTREF.
1049 */
1050 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1051 key.objectid = node->inode_id;
1052 key.type = BTRFS_INODE_EXTREF_KEY;
1053 key.offset = (u64)-1;
1054
1055 btrfs_release_path(path);
1056 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1057 if (ret < 0)
1058 goto err_out;
1059 ASSERT(ret > 0);
1060 ASSERT(path->slots[0] > 0);
1061 ret = 0;
1062 path->slots[0]--;
1063 leaf = path->nodes[0];
1064 } else {
1065 path->slots[0]++;
1066 }
67de1176
MX
1067 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1068 if (key.objectid != node->inode_id)
1069 goto out;
67de1176
MX
1070 if (key.type != BTRFS_INODE_REF_KEY &&
1071 key.type != BTRFS_INODE_EXTREF_KEY)
1072 goto out;
1073
1074 /*
1075 * Delayed iref deletion is for the inode who has only one link,
1076 * so there is only one iref. The case that several irefs are
1077 * in the same item doesn't exist.
1078 */
c06016a0 1079 ret = btrfs_del_item(trans, root, path);
67de1176
MX
1080out:
1081 btrfs_release_delayed_iref(node);
67de1176
MX
1082 btrfs_release_path(path);
1083err_out:
4f5427cc 1084 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
16cdcec7 1085 btrfs_release_delayed_inode(node);
16cdcec7 1086
04587ad9
JB
1087 /*
1088 * If we fail to update the delayed inode we need to abort the
1089 * transaction, because we could leave the inode with the improper
1090 * counts behind.
1091 */
1092 if (ret && ret != -ENOENT)
1093 btrfs_abort_transaction(trans, ret);
1094
67de1176 1095 return ret;
16cdcec7
MX
1096}
1097
0e8c36a9
MX
1098static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1099 struct btrfs_root *root,
1100 struct btrfs_path *path,
1101 struct btrfs_delayed_node *node)
1102{
1103 int ret;
1104
1105 mutex_lock(&node->mutex);
7cf35d91 1106 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
0e8c36a9
MX
1107 mutex_unlock(&node->mutex);
1108 return 0;
1109 }
1110
1111 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1112 mutex_unlock(&node->mutex);
1113 return ret;
1114}
1115
4ea41ce0
MX
1116static inline int
1117__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1118 struct btrfs_path *path,
1119 struct btrfs_delayed_node *node)
1120{
1121 int ret;
1122
1123 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1124 if (ret)
1125 return ret;
1126
1127 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1128 if (ret)
1129 return ret;
1130
1131 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1132 return ret;
1133}
1134
79787eaa
JM
1135/*
1136 * Called when committing the transaction.
1137 * Returns 0 on success.
1138 * Returns < 0 on error and returns with an aborted transaction with any
1139 * outstanding delayed items cleaned up.
1140 */
b84acab3 1141static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
16cdcec7 1142{
b84acab3 1143 struct btrfs_fs_info *fs_info = trans->fs_info;
16cdcec7
MX
1144 struct btrfs_delayed_root *delayed_root;
1145 struct btrfs_delayed_node *curr_node, *prev_node;
1146 struct btrfs_path *path;
19fd2949 1147 struct btrfs_block_rsv *block_rsv;
16cdcec7 1148 int ret = 0;
96c3f433 1149 bool count = (nr > 0);
16cdcec7 1150
bf31f87f 1151 if (TRANS_ABORTED(trans))
79787eaa
JM
1152 return -EIO;
1153
16cdcec7
MX
1154 path = btrfs_alloc_path();
1155 if (!path)
1156 return -ENOMEM;
16cdcec7 1157
19fd2949 1158 block_rsv = trans->block_rsv;
0b246afa 1159 trans->block_rsv = &fs_info->delayed_block_rsv;
19fd2949 1160
ccdf9b30 1161 delayed_root = fs_info->delayed_root;
16cdcec7
MX
1162
1163 curr_node = btrfs_first_delayed_node(delayed_root);
a4559e6f 1164 while (curr_node && (!count || nr--)) {
4ea41ce0
MX
1165 ret = __btrfs_commit_inode_delayed_items(trans, path,
1166 curr_node);
16cdcec7 1167 if (ret) {
66642832 1168 btrfs_abort_transaction(trans, ret);
16cdcec7
MX
1169 break;
1170 }
1171
1172 prev_node = curr_node;
1173 curr_node = btrfs_next_delayed_node(curr_node);
e110f891
FM
1174 /*
1175 * See the comment below about releasing path before releasing
1176 * node. If the commit of delayed items was successful the path
1177 * should always be released, but in case of an error, it may
1178 * point to locked extent buffers (a leaf at the very least).
1179 */
1180 ASSERT(path->nodes[0] == NULL);
16cdcec7
MX
1181 btrfs_release_delayed_node(prev_node);
1182 }
1183
e110f891
FM
1184 /*
1185 * Release the path to avoid a potential deadlock and lockdep splat when
1186 * releasing the delayed node, as that requires taking the delayed node's
1187 * mutex. If another task starts running delayed items before we take
1188 * the mutex, it will first lock the mutex and then it may try to lock
1189 * the same btree path (leaf).
1190 */
1191 btrfs_free_path(path);
1192
96c3f433
JB
1193 if (curr_node)
1194 btrfs_release_delayed_node(curr_node);
19fd2949 1195 trans->block_rsv = block_rsv;
79787eaa 1196
16cdcec7
MX
1197 return ret;
1198}
1199
e5c304e6 1200int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
96c3f433 1201{
b84acab3 1202 return __btrfs_run_delayed_items(trans, -1);
96c3f433
JB
1203}
1204
e5c304e6 1205int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
96c3f433 1206{
b84acab3 1207 return __btrfs_run_delayed_items(trans, nr);
96c3f433
JB
1208}
1209
16cdcec7 1210int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
5f4b32e9 1211 struct btrfs_inode *inode)
16cdcec7 1212{
5f4b32e9 1213 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
4ea41ce0
MX
1214 struct btrfs_path *path;
1215 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1216 int ret;
1217
1218 if (!delayed_node)
1219 return 0;
1220
1221 mutex_lock(&delayed_node->mutex);
1222 if (!delayed_node->count) {
1223 mutex_unlock(&delayed_node->mutex);
1224 btrfs_release_delayed_node(delayed_node);
1225 return 0;
1226 }
1227 mutex_unlock(&delayed_node->mutex);
1228
4ea41ce0 1229 path = btrfs_alloc_path();
3c77bd94
FDBM
1230 if (!path) {
1231 btrfs_release_delayed_node(delayed_node);
4ea41ce0 1232 return -ENOMEM;
3c77bd94 1233 }
4ea41ce0
MX
1234
1235 block_rsv = trans->block_rsv;
1236 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1237
1238 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1239
16cdcec7 1240 btrfs_release_delayed_node(delayed_node);
4ea41ce0
MX
1241 btrfs_free_path(path);
1242 trans->block_rsv = block_rsv;
1243
16cdcec7
MX
1244 return ret;
1245}
1246
aa79021f 1247int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
0e8c36a9 1248{
3ffbd68c 1249 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0e8c36a9 1250 struct btrfs_trans_handle *trans;
aa79021f 1251 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
0e8c36a9
MX
1252 struct btrfs_path *path;
1253 struct btrfs_block_rsv *block_rsv;
1254 int ret;
1255
1256 if (!delayed_node)
1257 return 0;
1258
1259 mutex_lock(&delayed_node->mutex);
7cf35d91 1260 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
0e8c36a9
MX
1261 mutex_unlock(&delayed_node->mutex);
1262 btrfs_release_delayed_node(delayed_node);
1263 return 0;
1264 }
1265 mutex_unlock(&delayed_node->mutex);
1266
1267 trans = btrfs_join_transaction(delayed_node->root);
1268 if (IS_ERR(trans)) {
1269 ret = PTR_ERR(trans);
1270 goto out;
1271 }
1272
1273 path = btrfs_alloc_path();
1274 if (!path) {
1275 ret = -ENOMEM;
1276 goto trans_out;
1277 }
0e8c36a9
MX
1278
1279 block_rsv = trans->block_rsv;
2ff7e61e 1280 trans->block_rsv = &fs_info->delayed_block_rsv;
0e8c36a9
MX
1281
1282 mutex_lock(&delayed_node->mutex);
7cf35d91 1283 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
0e8c36a9
MX
1284 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1285 path, delayed_node);
1286 else
1287 ret = 0;
1288 mutex_unlock(&delayed_node->mutex);
1289
1290 btrfs_free_path(path);
1291 trans->block_rsv = block_rsv;
1292trans_out:
3a45bb20 1293 btrfs_end_transaction(trans);
2ff7e61e 1294 btrfs_btree_balance_dirty(fs_info);
0e8c36a9
MX
1295out:
1296 btrfs_release_delayed_node(delayed_node);
1297
1298 return ret;
1299}
1300
f48d1cf5 1301void btrfs_remove_delayed_node(struct btrfs_inode *inode)
16cdcec7
MX
1302{
1303 struct btrfs_delayed_node *delayed_node;
1304
f48d1cf5 1305 delayed_node = READ_ONCE(inode->delayed_node);
16cdcec7
MX
1306 if (!delayed_node)
1307 return;
1308
f48d1cf5 1309 inode->delayed_node = NULL;
16cdcec7
MX
1310 btrfs_release_delayed_node(delayed_node);
1311}
1312
de3cb945
CM
1313struct btrfs_async_delayed_work {
1314 struct btrfs_delayed_root *delayed_root;
1315 int nr;
d458b054 1316 struct btrfs_work work;
16cdcec7
MX
1317};
1318
d458b054 1319static void btrfs_async_run_delayed_root(struct btrfs_work *work)
16cdcec7 1320{
de3cb945
CM
1321 struct btrfs_async_delayed_work *async_work;
1322 struct btrfs_delayed_root *delayed_root;
16cdcec7
MX
1323 struct btrfs_trans_handle *trans;
1324 struct btrfs_path *path;
1325 struct btrfs_delayed_node *delayed_node = NULL;
1326 struct btrfs_root *root;
19fd2949 1327 struct btrfs_block_rsv *block_rsv;
de3cb945 1328 int total_done = 0;
16cdcec7 1329
de3cb945
CM
1330 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1331 delayed_root = async_work->delayed_root;
16cdcec7
MX
1332
1333 path = btrfs_alloc_path();
1334 if (!path)
1335 goto out;
16cdcec7 1336
617c54a8
NB
1337 do {
1338 if (atomic_read(&delayed_root->items) <
1339 BTRFS_DELAYED_BACKGROUND / 2)
1340 break;
de3cb945 1341
617c54a8
NB
1342 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1343 if (!delayed_node)
1344 break;
de3cb945 1345
617c54a8 1346 root = delayed_node->root;
16cdcec7 1347
617c54a8
NB
1348 trans = btrfs_join_transaction(root);
1349 if (IS_ERR(trans)) {
1350 btrfs_release_path(path);
1351 btrfs_release_prepared_delayed_node(delayed_node);
1352 total_done++;
1353 continue;
1354 }
16cdcec7 1355
617c54a8
NB
1356 block_rsv = trans->block_rsv;
1357 trans->block_rsv = &root->fs_info->delayed_block_rsv;
19fd2949 1358
617c54a8 1359 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
16cdcec7 1360
617c54a8
NB
1361 trans->block_rsv = block_rsv;
1362 btrfs_end_transaction(trans);
1363 btrfs_btree_balance_dirty_nodelay(root->fs_info);
de3cb945 1364
617c54a8
NB
1365 btrfs_release_path(path);
1366 btrfs_release_prepared_delayed_node(delayed_node);
1367 total_done++;
de3cb945 1368
617c54a8
NB
1369 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1370 || total_done < async_work->nr);
de3cb945 1371
16cdcec7
MX
1372 btrfs_free_path(path);
1373out:
de3cb945
CM
1374 wake_up(&delayed_root->wait);
1375 kfree(async_work);
16cdcec7
MX
1376}
1377
de3cb945 1378
16cdcec7 1379static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
a585e948 1380 struct btrfs_fs_info *fs_info, int nr)
16cdcec7 1381{
de3cb945 1382 struct btrfs_async_delayed_work *async_work;
16cdcec7 1383
de3cb945
CM
1384 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1385 if (!async_work)
16cdcec7 1386 return -ENOMEM;
16cdcec7 1387
de3cb945 1388 async_work->delayed_root = delayed_root;
078b8b90 1389 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
de3cb945 1390 async_work->nr = nr;
16cdcec7 1391
a585e948 1392 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
16cdcec7
MX
1393 return 0;
1394}
1395
ccdf9b30 1396void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
e999376f 1397{
ccdf9b30 1398 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
e999376f
CM
1399}
1400
0353808c 1401static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
de3cb945
CM
1402{
1403 int val = atomic_read(&delayed_root->items_seq);
1404
0353808c 1405 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
de3cb945 1406 return 1;
0353808c
MX
1407
1408 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1409 return 1;
1410
de3cb945
CM
1411 return 0;
1412}
1413
2ff7e61e 1414void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
16cdcec7 1415{
2ff7e61e 1416 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
16cdcec7 1417
8577787f
NB
1418 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1419 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
16cdcec7
MX
1420 return;
1421
1422 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
0353808c 1423 int seq;
16cdcec7 1424 int ret;
0353808c
MX
1425
1426 seq = atomic_read(&delayed_root->items_seq);
de3cb945 1427
a585e948 1428 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
16cdcec7
MX
1429 if (ret)
1430 return;
1431
0353808c
MX
1432 wait_event_interruptible(delayed_root->wait,
1433 could_end_wait(delayed_root, seq));
4dd466d3 1434 return;
16cdcec7
MX
1435 }
1436
a585e948 1437 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
16cdcec7
MX
1438}
1439
2c58c393
FM
1440static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1441{
1442 struct btrfs_fs_info *fs_info = trans->fs_info;
1443 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1444
1445 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1446 return;
1447
1448 /*
1449 * Adding the new dir index item does not require touching another
1450 * leaf, so we can release 1 unit of metadata that was previously
1451 * reserved when starting the transaction. This applies only to
1452 * the case where we had a transaction start and excludes the
1453 * transaction join case (when replaying log trees).
1454 */
1455 trace_btrfs_space_reservation(fs_info, "transaction",
1456 trans->transid, bytes, 0);
1457 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1458 ASSERT(trans->bytes_reserved >= bytes);
1459 trans->bytes_reserved -= bytes;
1460}
1461
1462/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
16cdcec7 1463int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
2ff7e61e 1464 const char *name, int name_len,
6f45d185 1465 struct btrfs_inode *dir,
94a48aef 1466 struct btrfs_disk_key *disk_key, u8 flags,
16cdcec7
MX
1467 u64 index)
1468{
763748b2
FM
1469 struct btrfs_fs_info *fs_info = trans->fs_info;
1470 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
16cdcec7
MX
1471 struct btrfs_delayed_node *delayed_node;
1472 struct btrfs_delayed_item *delayed_item;
1473 struct btrfs_dir_item *dir_item;
763748b2
FM
1474 bool reserve_leaf_space;
1475 u32 data_len;
16cdcec7
MX
1476 int ret;
1477
6f45d185 1478 delayed_node = btrfs_get_or_create_delayed_node(dir);
16cdcec7
MX
1479 if (IS_ERR(delayed_node))
1480 return PTR_ERR(delayed_node);
1481
96d89923 1482 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
4c469798
FM
1483 delayed_node,
1484 BTRFS_DELAYED_INSERTION_ITEM);
16cdcec7
MX
1485 if (!delayed_item) {
1486 ret = -ENOMEM;
1487 goto release_node;
1488 }
1489
96d89923 1490 delayed_item->index = index;
16cdcec7
MX
1491
1492 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1493 dir_item->location = *disk_key;
3cae210f
QW
1494 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1495 btrfs_set_stack_dir_data_len(dir_item, 0);
1496 btrfs_set_stack_dir_name_len(dir_item, name_len);
94a48aef 1497 btrfs_set_stack_dir_flags(dir_item, flags);
16cdcec7
MX
1498 memcpy((char *)(dir_item + 1), name, name_len);
1499
763748b2 1500 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
8c2a3ca2 1501
16cdcec7 1502 mutex_lock(&delayed_node->mutex);
763748b2 1503
2c58c393
FM
1504 /*
1505 * First attempt to insert the delayed item. This is to make the error
1506 * handling path simpler in case we fail (-EEXIST). There's no risk of
1507 * any other task coming in and running the delayed item before we do
1508 * the metadata space reservation below, because we are holding the
1509 * delayed node's mutex and that mutex must also be locked before the
1510 * node's delayed items can be run.
1511 */
1512 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1513 if (unlikely(ret)) {
1514 btrfs_err(trans->fs_info,
1515"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1516 name_len, name, index, btrfs_root_id(delayed_node->root),
1517 delayed_node->inode_id, dir->index_cnt,
1518 delayed_node->index_cnt, ret);
1519 btrfs_release_delayed_item(delayed_item);
1520 btrfs_release_dir_index_item_space(trans);
1521 mutex_unlock(&delayed_node->mutex);
1522 goto release_node;
1523 }
1524
763748b2
FM
1525 if (delayed_node->index_item_leaves == 0 ||
1526 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1527 delayed_node->curr_index_batch_size = data_len;
1528 reserve_leaf_space = true;
1529 } else {
1530 delayed_node->curr_index_batch_size += data_len;
1531 reserve_leaf_space = false;
1532 }
1533
1534 if (reserve_leaf_space) {
df492881 1535 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
763748b2
FM
1536 /*
1537 * Space was reserved for a dir index item insertion when we
1538 * started the transaction, so getting a failure here should be
1539 * impossible.
1540 */
1541 if (WARN_ON(ret)) {
763748b2 1542 btrfs_release_delayed_item(delayed_item);
2c58c393 1543 mutex_unlock(&delayed_node->mutex);
763748b2
FM
1544 goto release_node;
1545 }
1546
1547 delayed_node->index_item_leaves++;
2c58c393
FM
1548 } else {
1549 btrfs_release_dir_index_item_space(trans);
16cdcec7
MX
1550 }
1551 mutex_unlock(&delayed_node->mutex);
1552
1553release_node:
1554 btrfs_release_delayed_node(delayed_node);
1555 return ret;
1556}
1557
2ff7e61e 1558static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
16cdcec7 1559 struct btrfs_delayed_node *node,
96d89923 1560 u64 index)
16cdcec7
MX
1561{
1562 struct btrfs_delayed_item *item;
1563
1564 mutex_lock(&node->mutex);
4cbf37f5 1565 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
16cdcec7
MX
1566 if (!item) {
1567 mutex_unlock(&node->mutex);
1568 return 1;
1569 }
1570
763748b2
FM
1571 /*
1572 * For delayed items to insert, we track reserved metadata bytes based
1573 * on the number of leaves that we will use.
1574 * See btrfs_insert_delayed_dir_index() and
1575 * btrfs_delayed_item_reserve_metadata()).
1576 */
1577 ASSERT(item->bytes_reserved == 0);
1578 ASSERT(node->index_item_leaves > 0);
1579
1580 /*
1581 * If there's only one leaf reserved, we can decrement this item from the
1582 * current batch, otherwise we can not because we don't know which leaf
1583 * it belongs to. With the current limit on delayed items, we rarely
1584 * accumulate enough dir index items to fill more than one leaf (even
1585 * when using a leaf size of 4K).
1586 */
1587 if (node->index_item_leaves == 1) {
1588 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1589
1590 ASSERT(node->curr_index_batch_size >= data_len);
1591 node->curr_index_batch_size -= data_len;
1592 }
1593
16cdcec7 1594 btrfs_release_delayed_item(item);
763748b2
FM
1595
1596 /* If we now have no more dir index items, we can release all leaves. */
1597 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1598 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1599 node->index_item_leaves = 0;
1600 }
1601
16cdcec7
MX
1602 mutex_unlock(&node->mutex);
1603 return 0;
1604}
1605
1606int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
e67bbbb9 1607 struct btrfs_inode *dir, u64 index)
16cdcec7
MX
1608{
1609 struct btrfs_delayed_node *node;
1610 struct btrfs_delayed_item *item;
16cdcec7
MX
1611 int ret;
1612
e67bbbb9 1613 node = btrfs_get_or_create_delayed_node(dir);
16cdcec7
MX
1614 if (IS_ERR(node))
1615 return PTR_ERR(node);
1616
96d89923 1617 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
16cdcec7
MX
1618 if (!ret)
1619 goto end;
1620
4c469798 1621 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
16cdcec7
MX
1622 if (!item) {
1623 ret = -ENOMEM;
1624 goto end;
1625 }
1626
96d89923 1627 item->index = index;
16cdcec7 1628
df492881 1629 ret = btrfs_delayed_item_reserve_metadata(trans, item);
16cdcec7
MX
1630 /*
1631 * we have reserved enough space when we start a new transaction,
1632 * so reserving metadata failure is impossible.
1633 */
933c22a7
QW
1634 if (ret < 0) {
1635 btrfs_err(trans->fs_info,
1636"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1637 btrfs_release_delayed_item(item);
1638 goto end;
1639 }
16cdcec7
MX
1640
1641 mutex_lock(&node->mutex);
c9d02ab4 1642 ret = __btrfs_add_delayed_item(node, item);
16cdcec7 1643 if (unlikely(ret)) {
9add2945 1644 btrfs_err(trans->fs_info,
5d163e0e 1645 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
4fd786e6
MT
1646 index, node->root->root_key.objectid,
1647 node->inode_id, ret);
933c22a7
QW
1648 btrfs_delayed_item_release_metadata(dir->root, item);
1649 btrfs_release_delayed_item(item);
16cdcec7
MX
1650 }
1651 mutex_unlock(&node->mutex);
1652end:
1653 btrfs_release_delayed_node(node);
1654 return ret;
1655}
1656
f5cc7b80 1657int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
16cdcec7 1658{
f5cc7b80 1659 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
16cdcec7
MX
1660
1661 if (!delayed_node)
1662 return -ENOENT;
1663
1664 /*
1665 * Since we have held i_mutex of this directory, it is impossible that
1666 * a new directory index is added into the delayed node and index_cnt
1667 * is updated now. So we needn't lock the delayed node.
1668 */
2f7e33d4
MX
1669 if (!delayed_node->index_cnt) {
1670 btrfs_release_delayed_node(delayed_node);
16cdcec7 1671 return -EINVAL;
2f7e33d4 1672 }
16cdcec7 1673
f5cc7b80 1674 inode->index_cnt = delayed_node->index_cnt;
2f7e33d4
MX
1675 btrfs_release_delayed_node(delayed_node);
1676 return 0;
16cdcec7
MX
1677}
1678
02dbfc99 1679bool btrfs_readdir_get_delayed_items(struct inode *inode,
9b378f6a 1680 u64 last_index,
02dbfc99
OS
1681 struct list_head *ins_list,
1682 struct list_head *del_list)
16cdcec7
MX
1683{
1684 struct btrfs_delayed_node *delayed_node;
1685 struct btrfs_delayed_item *item;
1686
340c6ca9 1687 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
16cdcec7 1688 if (!delayed_node)
02dbfc99
OS
1689 return false;
1690
1691 /*
1692 * We can only do one readdir with delayed items at a time because of
1693 * item->readdir_list.
1694 */
e5d4d75b 1695 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
29b6352b 1696 btrfs_inode_lock(BTRFS_I(inode), 0);
16cdcec7
MX
1697
1698 mutex_lock(&delayed_node->mutex);
1699 item = __btrfs_first_delayed_insertion_item(delayed_node);
9b378f6a 1700 while (item && item->index <= last_index) {
089e77e1 1701 refcount_inc(&item->refs);
16cdcec7
MX
1702 list_add_tail(&item->readdir_list, ins_list);
1703 item = __btrfs_next_delayed_item(item);
1704 }
1705
1706 item = __btrfs_first_delayed_deletion_item(delayed_node);
9b378f6a 1707 while (item && item->index <= last_index) {
089e77e1 1708 refcount_inc(&item->refs);
16cdcec7
MX
1709 list_add_tail(&item->readdir_list, del_list);
1710 item = __btrfs_next_delayed_item(item);
1711 }
1712 mutex_unlock(&delayed_node->mutex);
1713 /*
1714 * This delayed node is still cached in the btrfs inode, so refs
1715 * must be > 1 now, and we needn't check it is going to be freed
1716 * or not.
1717 *
1718 * Besides that, this function is used to read dir, we do not
1719 * insert/delete delayed items in this period. So we also needn't
1720 * requeue or dequeue this delayed node.
1721 */
6de5f18e 1722 refcount_dec(&delayed_node->refs);
02dbfc99
OS
1723
1724 return true;
16cdcec7
MX
1725}
1726
02dbfc99
OS
1727void btrfs_readdir_put_delayed_items(struct inode *inode,
1728 struct list_head *ins_list,
1729 struct list_head *del_list)
16cdcec7
MX
1730{
1731 struct btrfs_delayed_item *curr, *next;
1732
1733 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1734 list_del(&curr->readdir_list);
089e77e1 1735 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1736 kfree(curr);
1737 }
1738
1739 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1740 list_del(&curr->readdir_list);
089e77e1 1741 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1742 kfree(curr);
1743 }
02dbfc99
OS
1744
1745 /*
1746 * The VFS is going to do up_read(), so we need to downgrade back to a
1747 * read lock.
1748 */
1749 downgrade_write(&inode->i_rwsem);
16cdcec7
MX
1750}
1751
1752int btrfs_should_delete_dir_index(struct list_head *del_list,
1753 u64 index)
1754{
e4fd493c
JB
1755 struct btrfs_delayed_item *curr;
1756 int ret = 0;
16cdcec7 1757
e4fd493c 1758 list_for_each_entry(curr, del_list, readdir_list) {
96d89923 1759 if (curr->index > index)
16cdcec7 1760 break;
96d89923 1761 if (curr->index == index) {
e4fd493c
JB
1762 ret = 1;
1763 break;
1764 }
16cdcec7 1765 }
e4fd493c 1766 return ret;
16cdcec7
MX
1767}
1768
1769/*
9580503b 1770 * Read dir info stored in the delayed tree.
16cdcec7 1771 */
9cdda8d3 1772int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
d2fbb2b5 1773 struct list_head *ins_list)
16cdcec7
MX
1774{
1775 struct btrfs_dir_item *di;
1776 struct btrfs_delayed_item *curr, *next;
1777 struct btrfs_key location;
1778 char *name;
1779 int name_len;
1780 int over = 0;
1781 unsigned char d_type;
1782
16cdcec7
MX
1783 /*
1784 * Changing the data of the delayed item is impossible. So
1785 * we needn't lock them. And we have held i_mutex of the
1786 * directory, nobody can delete any directory indexes now.
1787 */
1788 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1789 list_del(&curr->readdir_list);
1790
96d89923 1791 if (curr->index < ctx->pos) {
089e77e1 1792 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1793 kfree(curr);
1794 continue;
1795 }
1796
96d89923 1797 ctx->pos = curr->index;
16cdcec7
MX
1798
1799 di = (struct btrfs_dir_item *)curr->data;
1800 name = (char *)(di + 1);
3cae210f 1801 name_len = btrfs_stack_dir_name_len(di);
16cdcec7 1802
94a48aef 1803 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
16cdcec7
MX
1804 btrfs_disk_key_to_cpu(&location, &di->location);
1805
9cdda8d3 1806 over = !dir_emit(ctx, name, name_len,
16cdcec7
MX
1807 location.objectid, d_type);
1808
089e77e1 1809 if (refcount_dec_and_test(&curr->refs))
16cdcec7
MX
1810 kfree(curr);
1811
1812 if (over)
1813 return 1;
42e9cc46 1814 ctx->pos++;
16cdcec7
MX
1815 }
1816 return 0;
1817}
1818
16cdcec7
MX
1819static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1820 struct btrfs_inode_item *inode_item,
1821 struct inode *inode)
1822{
77eea05e
BB
1823 u64 flags;
1824
2f2f43d3
EB
1825 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1826 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
16cdcec7
MX
1827 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1828 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1829 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1830 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1831 btrfs_set_stack_inode_generation(inode_item,
1832 BTRFS_I(inode)->generation);
c7f88c4e
JL
1833 btrfs_set_stack_inode_sequence(inode_item,
1834 inode_peek_iversion(inode));
16cdcec7
MX
1835 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1836 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
77eea05e
BB
1837 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1838 BTRFS_I(inode)->ro_flags);
1839 btrfs_set_stack_inode_flags(inode_item, flags);
ff5714cc 1840 btrfs_set_stack_inode_block_group(inode_item, 0);
16cdcec7 1841
a937b979 1842 btrfs_set_stack_timespec_sec(&inode_item->atime,
b1c38a13 1843 inode_get_atime_sec(inode));
a937b979 1844 btrfs_set_stack_timespec_nsec(&inode_item->atime,
b1c38a13 1845 inode_get_atime_nsec(inode));
16cdcec7 1846
a937b979 1847 btrfs_set_stack_timespec_sec(&inode_item->mtime,
b1c38a13 1848 inode_get_mtime_sec(inode));
a937b979 1849 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
b1c38a13 1850 inode_get_mtime_nsec(inode));
16cdcec7 1851
a937b979 1852 btrfs_set_stack_timespec_sec(&inode_item->ctime,
b1c38a13 1853 inode_get_ctime_sec(inode));
a937b979 1854 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
b1c38a13 1855 inode_get_ctime_nsec(inode));
9cc97d64 1856
c6e8f898
DS
1857 btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec);
1858 btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec);
16cdcec7
MX
1859}
1860
2f7e33d4
MX
1861int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1862{
9ddc959e 1863 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2f7e33d4
MX
1864 struct btrfs_delayed_node *delayed_node;
1865 struct btrfs_inode_item *inode_item;
2f7e33d4 1866
340c6ca9 1867 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
2f7e33d4
MX
1868 if (!delayed_node)
1869 return -ENOENT;
1870
1871 mutex_lock(&delayed_node->mutex);
7cf35d91 1872 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2f7e33d4
MX
1873 mutex_unlock(&delayed_node->mutex);
1874 btrfs_release_delayed_node(delayed_node);
1875 return -ENOENT;
1876 }
1877
1878 inode_item = &delayed_node->inode_item;
1879
2f2f43d3
EB
1880 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1881 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
6ef06d27 1882 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
9ddc959e
JB
1883 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1884 round_up(i_size_read(inode), fs_info->sectorsize));
2f7e33d4 1885 inode->i_mode = btrfs_stack_inode_mode(inode_item);
bfe86848 1886 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
2f7e33d4
MX
1887 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1888 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
6e17d30b
YD
1889 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1890
c7f88c4e
JL
1891 inode_set_iversion_queried(inode,
1892 btrfs_stack_inode_sequence(inode_item));
2f7e33d4
MX
1893 inode->i_rdev = 0;
1894 *rdev = btrfs_stack_inode_rdev(inode_item);
77eea05e
BB
1895 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1896 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
2f7e33d4 1897
b1c38a13
JL
1898 inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime),
1899 btrfs_stack_timespec_nsec(&inode_item->atime));
2f7e33d4 1900
b1c38a13
JL
1901 inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1902 btrfs_stack_timespec_nsec(&inode_item->mtime));
2f7e33d4 1903
2a9462de
JL
1904 inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1905 btrfs_stack_timespec_nsec(&inode_item->ctime));
2f7e33d4 1906
c6e8f898
DS
1907 BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1908 BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
9cc97d64 1909
2f7e33d4
MX
1910 inode->i_generation = BTRFS_I(inode)->generation;
1911 BTRFS_I(inode)->index_cnt = (u64)-1;
1912
1913 mutex_unlock(&delayed_node->mutex);
1914 btrfs_release_delayed_node(delayed_node);
1915 return 0;
1916}
1917
16cdcec7 1918int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
f3fbcaef 1919 struct btrfs_inode *inode)
16cdcec7 1920{
04bd8e94 1921 struct btrfs_root *root = inode->root;
16cdcec7 1922 struct btrfs_delayed_node *delayed_node;
aa0467d8 1923 int ret = 0;
16cdcec7 1924
f3fbcaef 1925 delayed_node = btrfs_get_or_create_delayed_node(inode);
16cdcec7
MX
1926 if (IS_ERR(delayed_node))
1927 return PTR_ERR(delayed_node);
1928
1929 mutex_lock(&delayed_node->mutex);
7cf35d91 1930 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
f3fbcaef
NB
1931 fill_stack_inode_item(trans, &delayed_node->inode_item,
1932 &inode->vfs_inode);
16cdcec7
MX
1933 goto release_node;
1934 }
1935
8e3c9d3c 1936 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
c06a0e12
JB
1937 if (ret)
1938 goto release_node;
16cdcec7 1939
f3fbcaef 1940 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
7cf35d91 1941 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
16cdcec7
MX
1942 delayed_node->count++;
1943 atomic_inc(&root->fs_info->delayed_root->items);
1944release_node:
1945 mutex_unlock(&delayed_node->mutex);
1946 btrfs_release_delayed_node(delayed_node);
1947 return ret;
1948}
1949
e07222c7 1950int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
67de1176 1951{
3ffbd68c 1952 struct btrfs_fs_info *fs_info = inode->root->fs_info;
67de1176
MX
1953 struct btrfs_delayed_node *delayed_node;
1954
6f896054
CM
1955 /*
1956 * we don't do delayed inode updates during log recovery because it
1957 * leads to enospc problems. This means we also can't do
1958 * delayed inode refs
1959 */
0b246afa 1960 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
6f896054
CM
1961 return -EAGAIN;
1962
e07222c7 1963 delayed_node = btrfs_get_or_create_delayed_node(inode);
67de1176
MX
1964 if (IS_ERR(delayed_node))
1965 return PTR_ERR(delayed_node);
1966
1967 /*
1968 * We don't reserve space for inode ref deletion is because:
1969 * - We ONLY do async inode ref deletion for the inode who has only
1970 * one link(i_nlink == 1), it means there is only one inode ref.
1971 * And in most case, the inode ref and the inode item are in the
1972 * same leaf, and we will deal with them at the same time.
1973 * Since we are sure we will reserve the space for the inode item,
1974 * it is unnecessary to reserve space for inode ref deletion.
1975 * - If the inode ref and the inode item are not in the same leaf,
1976 * We also needn't worry about enospc problem, because we reserve
1977 * much more space for the inode update than it needs.
1978 * - At the worst, we can steal some space from the global reservation.
1979 * It is very rare.
1980 */
1981 mutex_lock(&delayed_node->mutex);
1982 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1983 goto release_node;
1984
1985 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1986 delayed_node->count++;
0b246afa 1987 atomic_inc(&fs_info->delayed_root->items);
67de1176
MX
1988release_node:
1989 mutex_unlock(&delayed_node->mutex);
1990 btrfs_release_delayed_node(delayed_node);
1991 return 0;
1992}
1993
16cdcec7
MX
1994static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1995{
1996 struct btrfs_root *root = delayed_node->root;
2ff7e61e 1997 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
1998 struct btrfs_delayed_item *curr_item, *prev_item;
1999
2000 mutex_lock(&delayed_node->mutex);
2001 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2002 while (curr_item) {
16cdcec7
MX
2003 prev_item = curr_item;
2004 curr_item = __btrfs_next_delayed_item(prev_item);
2005 btrfs_release_delayed_item(prev_item);
2006 }
2007
763748b2
FM
2008 if (delayed_node->index_item_leaves > 0) {
2009 btrfs_delayed_item_release_leaves(delayed_node,
2010 delayed_node->index_item_leaves);
2011 delayed_node->index_item_leaves = 0;
2012 }
2013
16cdcec7
MX
2014 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2015 while (curr_item) {
4f5427cc 2016 btrfs_delayed_item_release_metadata(root, curr_item);
16cdcec7
MX
2017 prev_item = curr_item;
2018 curr_item = __btrfs_next_delayed_item(prev_item);
2019 btrfs_release_delayed_item(prev_item);
2020 }
2021
a4cb90dc 2022 btrfs_release_delayed_iref(delayed_node);
67de1176 2023
7cf35d91 2024 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
4f5427cc 2025 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
16cdcec7
MX
2026 btrfs_release_delayed_inode(delayed_node);
2027 }
2028 mutex_unlock(&delayed_node->mutex);
2029}
2030
4ccb5c72 2031void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
16cdcec7
MX
2032{
2033 struct btrfs_delayed_node *delayed_node;
2034
4ccb5c72 2035 delayed_node = btrfs_get_delayed_node(inode);
16cdcec7
MX
2036 if (!delayed_node)
2037 return;
2038
2039 __btrfs_kill_delayed_node(delayed_node);
2040 btrfs_release_delayed_node(delayed_node);
2041}
2042
2043void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2044{
6140ba8a 2045 unsigned long index = 0;
16cdcec7 2046 struct btrfs_delayed_node *delayed_nodes[8];
16cdcec7
MX
2047
2048 while (1) {
6140ba8a
DS
2049 struct btrfs_delayed_node *node;
2050 int count;
2051
16cdcec7 2052 spin_lock(&root->inode_lock);
6140ba8a 2053 if (xa_empty(&root->delayed_nodes)) {
16cdcec7 2054 spin_unlock(&root->inode_lock);
6140ba8a 2055 return;
16cdcec7
MX
2056 }
2057
6140ba8a
DS
2058 count = 0;
2059 xa_for_each_start(&root->delayed_nodes, index, node, index) {
baf320b9
JB
2060 /*
2061 * Don't increase refs in case the node is dead and
2062 * about to be removed from the tree in the loop below
2063 */
6140ba8a
DS
2064 if (refcount_inc_not_zero(&node->refs)) {
2065 delayed_nodes[count] = node;
2066 count++;
2067 }
2068 if (count >= ARRAY_SIZE(delayed_nodes))
2069 break;
baf320b9 2070 }
16cdcec7 2071 spin_unlock(&root->inode_lock);
6140ba8a 2072 index++;
16cdcec7 2073
6140ba8a 2074 for (int i = 0; i < count; i++) {
16cdcec7
MX
2075 __btrfs_kill_delayed_node(delayed_nodes[i]);
2076 btrfs_release_delayed_node(delayed_nodes[i]);
2077 }
2078 }
2079}
67cde344 2080
ccdf9b30 2081void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
67cde344 2082{
67cde344
MX
2083 struct btrfs_delayed_node *curr_node, *prev_node;
2084
ccdf9b30 2085 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
67cde344
MX
2086 while (curr_node) {
2087 __btrfs_kill_delayed_node(curr_node);
2088
2089 prev_node = curr_node;
2090 curr_node = btrfs_next_delayed_node(curr_node);
2091 btrfs_release_delayed_node(prev_node);
2092 }
2093}
2094
30b80f3c
FM
2095void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2096 struct list_head *ins_list,
2097 struct list_head *del_list)
2098{
2099 struct btrfs_delayed_node *node;
2100 struct btrfs_delayed_item *item;
2101
2102 node = btrfs_get_delayed_node(inode);
2103 if (!node)
2104 return;
2105
2106 mutex_lock(&node->mutex);
2107 item = __btrfs_first_delayed_insertion_item(node);
2108 while (item) {
2109 /*
2110 * It's possible that the item is already in a log list. This
2111 * can happen in case two tasks are trying to log the same
2112 * directory. For example if we have tasks A and task B:
2113 *
2114 * Task A collected the delayed items into a log list while
2115 * under the inode's log_mutex (at btrfs_log_inode()), but it
2116 * only releases the items after logging the inodes they point
2117 * to (if they are new inodes), which happens after unlocking
2118 * the log mutex;
2119 *
2120 * Task B enters btrfs_log_inode() and acquires the log_mutex
2121 * of the same directory inode, before task B releases the
2122 * delayed items. This can happen for example when logging some
2123 * inode we need to trigger logging of its parent directory, so
2124 * logging two files that have the same parent directory can
2125 * lead to this.
2126 *
2127 * If this happens, just ignore delayed items already in a log
2128 * list. All the tasks logging the directory are under a log
2129 * transaction and whichever finishes first can not sync the log
2130 * before the other completes and leaves the log transaction.
2131 */
2132 if (!item->logged && list_empty(&item->log_list)) {
2133 refcount_inc(&item->refs);
2134 list_add_tail(&item->log_list, ins_list);
2135 }
2136 item = __btrfs_next_delayed_item(item);
2137 }
2138
2139 item = __btrfs_first_delayed_deletion_item(node);
2140 while (item) {
2141 /* It may be non-empty, for the same reason mentioned above. */
2142 if (!item->logged && list_empty(&item->log_list)) {
2143 refcount_inc(&item->refs);
2144 list_add_tail(&item->log_list, del_list);
2145 }
2146 item = __btrfs_next_delayed_item(item);
2147 }
2148 mutex_unlock(&node->mutex);
2149
2150 /*
2151 * We are called during inode logging, which means the inode is in use
2152 * and can not be evicted before we finish logging the inode. So we never
2153 * have the last reference on the delayed inode.
2154 * Also, we don't use btrfs_release_delayed_node() because that would
2155 * requeue the delayed inode (change its order in the list of prepared
2156 * nodes) and we don't want to do such change because we don't create or
2157 * delete delayed items.
2158 */
2159 ASSERT(refcount_read(&node->refs) > 1);
2160 refcount_dec(&node->refs);
2161}
2162
2163void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2164 struct list_head *ins_list,
2165 struct list_head *del_list)
2166{
2167 struct btrfs_delayed_node *node;
2168 struct btrfs_delayed_item *item;
2169 struct btrfs_delayed_item *next;
2170
2171 node = btrfs_get_delayed_node(inode);
2172 if (!node)
2173 return;
2174
2175 mutex_lock(&node->mutex);
2176
2177 list_for_each_entry_safe(item, next, ins_list, log_list) {
2178 item->logged = true;
2179 list_del_init(&item->log_list);
2180 if (refcount_dec_and_test(&item->refs))
2181 kfree(item);
2182 }
2183
2184 list_for_each_entry_safe(item, next, del_list, log_list) {
2185 item->logged = true;
2186 list_del_init(&item->log_list);
2187 if (refcount_dec_and_test(&item->refs))
2188 kfree(item);
2189 }
2190
2191 mutex_unlock(&node->mutex);
2192
2193 /*
2194 * We are called during inode logging, which means the inode is in use
2195 * and can not be evicted before we finish logging the inode. So we never
2196 * have the last reference on the delayed inode.
2197 * Also, we don't use btrfs_release_delayed_node() because that would
2198 * requeue the delayed inode (change its order in the list of prepared
2199 * nodes) and we don't want to do such change because we don't create or
2200 * delete delayed items.
2201 */
2202 ASSERT(refcount_read(&node->refs) > 1);
2203 refcount_dec(&node->refs);
2204}