btrfs: move the file defrag code into defrag.c
[linux-block.git] / fs / btrfs / defrag.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6702ed49
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6702ed49
CM
4 */
5
6#include <linux/sched.h>
7#include "ctree.h"
8#include "disk-io.h"
9#include "print-tree.h"
10#include "transaction.h"
e7a84565 11#include "locking.h"
07e81dc9 12#include "accessors.h"
a6a01ca6
JB
13#include "messages.h"
14#include "delalloc-space.h"
15#include "subpage.h"
6702ed49 16
6e3df18b
JB
17static struct kmem_cache *btrfs_inode_defrag_cachep;
18
19/*
20 * When auto defrag is enabled we queue up these defrag structs to remember
21 * which inodes need defragging passes.
22 */
23struct inode_defrag {
24 struct rb_node rb_node;
25 /* Inode number */
26 u64 ino;
27 /*
28 * Transid where the defrag was added, we search for extents newer than
29 * this.
30 */
31 u64 transid;
32
33 /* Root objectid */
34 u64 root;
35
36 /*
37 * The extent size threshold for autodefrag.
38 *
39 * This value is different for compressed/non-compressed extents, thus
40 * needs to be passed from higher layer.
41 * (aka, inode_should_defrag())
42 */
43 u32 extent_thresh;
44};
45
46static int __compare_inode_defrag(struct inode_defrag *defrag1,
47 struct inode_defrag *defrag2)
48{
49 if (defrag1->root > defrag2->root)
50 return 1;
51 else if (defrag1->root < defrag2->root)
52 return -1;
53 else if (defrag1->ino > defrag2->ino)
54 return 1;
55 else if (defrag1->ino < defrag2->ino)
56 return -1;
57 else
58 return 0;
59}
60
61/*
62 * Pop a record for an inode into the defrag tree. The lock must be held
63 * already.
64 *
65 * If you're inserting a record for an older transid than an existing record,
66 * the transid already in the tree is lowered.
67 *
68 * If an existing record is found the defrag item you pass in is freed.
69 */
70static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
71 struct inode_defrag *defrag)
72{
73 struct btrfs_fs_info *fs_info = inode->root->fs_info;
74 struct inode_defrag *entry;
75 struct rb_node **p;
76 struct rb_node *parent = NULL;
77 int ret;
78
79 p = &fs_info->defrag_inodes.rb_node;
80 while (*p) {
81 parent = *p;
82 entry = rb_entry(parent, struct inode_defrag, rb_node);
83
84 ret = __compare_inode_defrag(defrag, entry);
85 if (ret < 0)
86 p = &parent->rb_left;
87 else if (ret > 0)
88 p = &parent->rb_right;
89 else {
90 /*
91 * If we're reinserting an entry for an old defrag run,
92 * make sure to lower the transid of our existing
93 * record.
94 */
95 if (defrag->transid < entry->transid)
96 entry->transid = defrag->transid;
97 entry->extent_thresh = min(defrag->extent_thresh,
98 entry->extent_thresh);
99 return -EEXIST;
100 }
101 }
102 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
103 rb_link_node(&defrag->rb_node, parent, p);
104 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
105 return 0;
106}
107
108static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
109{
110 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
111 return 0;
112
113 if (btrfs_fs_closing(fs_info))
114 return 0;
115
116 return 1;
117}
118
119/*
120 * Insert a defrag record for this inode if auto defrag is enabled.
121 */
122int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
123 struct btrfs_inode *inode, u32 extent_thresh)
124{
125 struct btrfs_root *root = inode->root;
126 struct btrfs_fs_info *fs_info = root->fs_info;
127 struct inode_defrag *defrag;
128 u64 transid;
129 int ret;
130
131 if (!__need_auto_defrag(fs_info))
132 return 0;
133
134 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
135 return 0;
136
137 if (trans)
138 transid = trans->transid;
139 else
140 transid = inode->root->last_trans;
141
142 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
143 if (!defrag)
144 return -ENOMEM;
145
146 defrag->ino = btrfs_ino(inode);
147 defrag->transid = transid;
148 defrag->root = root->root_key.objectid;
149 defrag->extent_thresh = extent_thresh;
150
151 spin_lock(&fs_info->defrag_inodes_lock);
152 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
153 /*
154 * If we set IN_DEFRAG flag and evict the inode from memory,
155 * and then re-read this inode, this new inode doesn't have
156 * IN_DEFRAG flag. At the case, we may find the existed defrag.
157 */
158 ret = __btrfs_add_inode_defrag(inode, defrag);
159 if (ret)
160 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
161 } else {
162 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
163 }
164 spin_unlock(&fs_info->defrag_inodes_lock);
165 return 0;
166}
167
168/*
169 * Pick the defragable inode that we want, if it doesn't exist, we will get the
170 * next one.
171 */
172static struct inode_defrag *btrfs_pick_defrag_inode(
173 struct btrfs_fs_info *fs_info, u64 root, u64 ino)
174{
175 struct inode_defrag *entry = NULL;
176 struct inode_defrag tmp;
177 struct rb_node *p;
178 struct rb_node *parent = NULL;
179 int ret;
180
181 tmp.ino = ino;
182 tmp.root = root;
183
184 spin_lock(&fs_info->defrag_inodes_lock);
185 p = fs_info->defrag_inodes.rb_node;
186 while (p) {
187 parent = p;
188 entry = rb_entry(parent, struct inode_defrag, rb_node);
189
190 ret = __compare_inode_defrag(&tmp, entry);
191 if (ret < 0)
192 p = parent->rb_left;
193 else if (ret > 0)
194 p = parent->rb_right;
195 else
196 goto out;
197 }
198
199 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
200 parent = rb_next(parent);
201 if (parent)
202 entry = rb_entry(parent, struct inode_defrag, rb_node);
203 else
204 entry = NULL;
205 }
206out:
207 if (entry)
208 rb_erase(parent, &fs_info->defrag_inodes);
209 spin_unlock(&fs_info->defrag_inodes_lock);
210 return entry;
211}
212
213void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
214{
215 struct inode_defrag *defrag;
216 struct rb_node *node;
217
218 spin_lock(&fs_info->defrag_inodes_lock);
219 node = rb_first(&fs_info->defrag_inodes);
220 while (node) {
221 rb_erase(node, &fs_info->defrag_inodes);
222 defrag = rb_entry(node, struct inode_defrag, rb_node);
223 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
224
225 cond_resched_lock(&fs_info->defrag_inodes_lock);
226
227 node = rb_first(&fs_info->defrag_inodes);
228 }
229 spin_unlock(&fs_info->defrag_inodes_lock);
230}
231
232#define BTRFS_DEFRAG_BATCH 1024
233
234static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
235 struct inode_defrag *defrag)
236{
237 struct btrfs_root *inode_root;
238 struct inode *inode;
239 struct btrfs_ioctl_defrag_range_args range;
240 int ret = 0;
241 u64 cur = 0;
242
243again:
244 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
245 goto cleanup;
246 if (!__need_auto_defrag(fs_info))
247 goto cleanup;
248
249 /* Get the inode */
250 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
251 if (IS_ERR(inode_root)) {
252 ret = PTR_ERR(inode_root);
253 goto cleanup;
254 }
255
256 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
257 btrfs_put_root(inode_root);
258 if (IS_ERR(inode)) {
259 ret = PTR_ERR(inode);
260 goto cleanup;
261 }
262
263 if (cur >= i_size_read(inode)) {
264 iput(inode);
265 goto cleanup;
266 }
267
268 /* Do a chunk of defrag */
269 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
270 memset(&range, 0, sizeof(range));
271 range.len = (u64)-1;
272 range.start = cur;
273 range.extent_thresh = defrag->extent_thresh;
274
275 sb_start_write(fs_info->sb);
276 ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
277 BTRFS_DEFRAG_BATCH);
278 sb_end_write(fs_info->sb);
279 iput(inode);
280
281 if (ret < 0)
282 goto cleanup;
283
284 cur = max(cur + fs_info->sectorsize, range.start);
285 goto again;
286
287cleanup:
288 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
289 return ret;
290}
291
292/*
293 * Run through the list of inodes in the FS that need defragging.
294 */
295int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
296{
297 struct inode_defrag *defrag;
298 u64 first_ino = 0;
299 u64 root_objectid = 0;
300
301 atomic_inc(&fs_info->defrag_running);
302 while (1) {
303 /* Pause the auto defragger. */
304 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
305 break;
306
307 if (!__need_auto_defrag(fs_info))
308 break;
309
310 /* find an inode to defrag */
311 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
312 if (!defrag) {
313 if (root_objectid || first_ino) {
314 root_objectid = 0;
315 first_ino = 0;
316 continue;
317 } else {
318 break;
319 }
320 }
321
322 first_ino = defrag->ino + 1;
323 root_objectid = defrag->root;
324
325 __btrfs_run_defrag_inode(fs_info, defrag);
326 }
327 atomic_dec(&fs_info->defrag_running);
328
329 /*
330 * During unmount, we use the transaction_wait queue to wait for the
331 * defragger to stop.
332 */
333 wake_up(&fs_info->transaction_wait);
334 return 0;
335}
336
de78b51a
ES
337/*
338 * Defrag all the leaves in a given btree.
339 * Read all the leaves and try to get key order to
d352ac68
CM
340 * better reflect disk order
341 */
d397712b 342
6702ed49 343int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
de78b51a 344 struct btrfs_root *root)
6702ed49
CM
345{
346 struct btrfs_path *path = NULL;
e7a84565 347 struct btrfs_key key;
6702ed49
CM
348 int ret = 0;
349 int wret;
350 int level;
e7a84565 351 int next_key_ret = 0;
e9d0b13b 352 u64 last_ret = 0;
3f157a2f 353
92a7cc42 354 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
6702ed49 355 goto out;
5f39d397 356
6702ed49
CM
357 path = btrfs_alloc_path();
358 if (!path)
359 return -ENOMEM;
360
5f39d397 361 level = btrfs_header_level(root->node);
0f1ebbd1 362
d397712b 363 if (level == 0)
6702ed49 364 goto out;
d397712b 365
6702ed49 366 if (root->defrag_progress.objectid == 0) {
e7a84565 367 struct extent_buffer *root_node;
0ef3e66b
CM
368 u32 nritems;
369
e7a84565
CM
370 root_node = btrfs_lock_root_node(root);
371 nritems = btrfs_header_nritems(root_node);
0ef3e66b
CM
372 root->defrag_max.objectid = 0;
373 /* from above we know this is not a leaf */
e7a84565 374 btrfs_node_key_to_cpu(root_node, &root->defrag_max,
0ef3e66b 375 nritems - 1);
e7a84565
CM
376 btrfs_tree_unlock(root_node);
377 free_extent_buffer(root_node);
378 memset(&key, 0, sizeof(key));
6702ed49 379 } else {
e7a84565 380 memcpy(&key, &root->defrag_progress, sizeof(key));
6702ed49
CM
381 }
382
e7a84565 383 path->keep_locks = 1;
3f157a2f 384
7c829b72 385 ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
3f157a2f
CM
386 if (ret < 0)
387 goto out;
388 if (ret > 0) {
389 ret = 0;
390 goto out;
391 }
b3b4aa74 392 btrfs_release_path(path);
0376374a
FM
393 /*
394 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
395 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
396 * a deadlock (attempting to write lock an already write locked leaf).
397 */
398 path->lowest_level = 1;
e7a84565 399 wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
6702ed49 400
e7a84565
CM
401 if (wret < 0) {
402 ret = wret;
403 goto out;
404 }
405 if (!path->nodes[1]) {
406 ret = 0;
407 goto out;
408 }
0376374a
FM
409 /*
410 * The node at level 1 must always be locked when our path has
411 * keep_locks set and lowest_level is 1, regardless of the value of
412 * path->slots[1].
413 */
414 BUG_ON(path->locks[1] == 0);
e7a84565
CM
415 ret = btrfs_realloc_node(trans, root,
416 path->nodes[1], 0,
de78b51a 417 &last_ret,
e7a84565 418 &root->defrag_progress);
8929ecfa
YZ
419 if (ret) {
420 WARN_ON(ret == -EAGAIN);
421 goto out;
422 }
0376374a
FM
423 /*
424 * Now that we reallocated the node we can find the next key. Note that
425 * btrfs_find_next_key() can release our path and do another search
426 * without COWing, this is because even with path->keep_locks = 1,
427 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
428 * node when path->slots[node_level - 1] does not point to the last
429 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
430 * we search for the next key after reallocating our node.
431 */
432 path->slots[1] = btrfs_header_nritems(path->nodes[1]);
433 next_key_ret = btrfs_find_next_key(root, path, &key, 1,
7c829b72 434 BTRFS_OLDEST_GENERATION);
e7a84565
CM
435 if (next_key_ret == 0) {
436 memcpy(&root->defrag_progress, &key, sizeof(key));
437 ret = -EAGAIN;
6702ed49 438 }
6702ed49 439out:
527afb44 440 btrfs_free_path(path);
0ef3e66b
CM
441 if (ret == -EAGAIN) {
442 if (root->defrag_max.objectid > root->defrag_progress.objectid)
443 goto done;
444 if (root->defrag_max.type > root->defrag_progress.type)
445 goto done;
446 if (root->defrag_max.offset > root->defrag_progress.offset)
447 goto done;
448 ret = 0;
449 }
450done:
a2570ef3 451 if (ret != -EAGAIN)
6702ed49
CM
452 memset(&root->defrag_progress, 0,
453 sizeof(root->defrag_progress));
a2570ef3 454
6702ed49
CM
455 return ret;
456}
6e3df18b 457
a6a01ca6
JB
458/*
459 * Defrag specific helper to get an extent map.
460 *
461 * Differences between this and btrfs_get_extent() are:
462 *
463 * - No extent_map will be added to inode->extent_tree
464 * To reduce memory usage in the long run.
465 *
466 * - Extra optimization to skip file extents older than @newer_than
467 * By using btrfs_search_forward() we can skip entire file ranges that
468 * have extents created in past transactions, because btrfs_search_forward()
469 * will not visit leaves and nodes with a generation smaller than given
470 * minimal generation threshold (@newer_than).
471 *
472 * Return valid em if we find a file extent matching the requirement.
473 * Return NULL if we can not find a file extent matching the requirement.
474 *
475 * Return ERR_PTR() for error.
476 */
477static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
478 u64 start, u64 newer_than)
479{
480 struct btrfs_root *root = inode->root;
481 struct btrfs_file_extent_item *fi;
482 struct btrfs_path path = { 0 };
483 struct extent_map *em;
484 struct btrfs_key key;
485 u64 ino = btrfs_ino(inode);
486 int ret;
487
488 em = alloc_extent_map();
489 if (!em) {
490 ret = -ENOMEM;
491 goto err;
492 }
493
494 key.objectid = ino;
495 key.type = BTRFS_EXTENT_DATA_KEY;
496 key.offset = start;
497
498 if (newer_than) {
499 ret = btrfs_search_forward(root, &key, &path, newer_than);
500 if (ret < 0)
501 goto err;
502 /* Can't find anything newer */
503 if (ret > 0)
504 goto not_found;
505 } else {
506 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
507 if (ret < 0)
508 goto err;
509 }
510 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
511 /*
512 * If btrfs_search_slot() makes path to point beyond nritems,
513 * we should not have an empty leaf, as this inode must at
514 * least have its INODE_ITEM.
515 */
516 ASSERT(btrfs_header_nritems(path.nodes[0]));
517 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
518 }
519 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
520 /* Perfect match, no need to go one slot back */
521 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
522 key.offset == start)
523 goto iterate;
524
525 /* We didn't find a perfect match, needs to go one slot back */
526 if (path.slots[0] > 0) {
527 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
528 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
529 path.slots[0]--;
530 }
531
532iterate:
533 /* Iterate through the path to find a file extent covering @start */
534 while (true) {
535 u64 extent_end;
536
537 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
538 goto next;
539
540 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
541
542 /*
543 * We may go one slot back to INODE_REF/XATTR item, then
544 * need to go forward until we reach an EXTENT_DATA.
545 * But we should still has the correct ino as key.objectid.
546 */
547 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
548 goto next;
549
550 /* It's beyond our target range, definitely not extent found */
551 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
552 goto not_found;
553
554 /*
555 * | |<- File extent ->|
556 * \- start
557 *
558 * This means there is a hole between start and key.offset.
559 */
560 if (key.offset > start) {
561 em->start = start;
562 em->orig_start = start;
563 em->block_start = EXTENT_MAP_HOLE;
564 em->len = key.offset - start;
565 break;
566 }
567
568 fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
569 struct btrfs_file_extent_item);
570 extent_end = btrfs_file_extent_end(&path);
571
572 /*
573 * |<- file extent ->| |
574 * \- start
575 *
576 * We haven't reached start, search next slot.
577 */
578 if (extent_end <= start)
579 goto next;
580
581 /* Now this extent covers @start, convert it to em */
582 btrfs_extent_item_to_extent_map(inode, &path, fi, false, em);
583 break;
584next:
585 ret = btrfs_next_item(root, &path);
586 if (ret < 0)
587 goto err;
588 if (ret > 0)
589 goto not_found;
590 }
591 btrfs_release_path(&path);
592 return em;
593
594not_found:
595 btrfs_release_path(&path);
596 free_extent_map(em);
597 return NULL;
598
599err:
600 btrfs_release_path(&path);
601 free_extent_map(em);
602 return ERR_PTR(ret);
603}
604
605static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
606 u64 newer_than, bool locked)
607{
608 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
609 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
610 struct extent_map *em;
611 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
612
613 /*
614 * Hopefully we have this extent in the tree already, try without the
615 * full extent lock.
616 */
617 read_lock(&em_tree->lock);
618 em = lookup_extent_mapping(em_tree, start, sectorsize);
619 read_unlock(&em_tree->lock);
620
621 /*
622 * We can get a merged extent, in that case, we need to re-search
623 * tree to get the original em for defrag.
624 *
625 * If @newer_than is 0 or em::generation < newer_than, we can trust
626 * this em, as either we don't care about the generation, or the
627 * merged extent map will be rejected anyway.
628 */
629 if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
630 newer_than && em->generation >= newer_than) {
631 free_extent_map(em);
632 em = NULL;
633 }
634
635 if (!em) {
636 struct extent_state *cached = NULL;
637 u64 end = start + sectorsize - 1;
638
639 /* Get the big lock and read metadata off disk. */
640 if (!locked)
641 lock_extent(io_tree, start, end, &cached);
642 em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
643 if (!locked)
644 unlock_extent(io_tree, start, end, &cached);
645
646 if (IS_ERR(em))
647 return NULL;
648 }
649
650 return em;
651}
652
653static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
654 const struct extent_map *em)
655{
656 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
657 return BTRFS_MAX_COMPRESSED;
658 return fs_info->max_extent_size;
659}
660
661static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
662 u32 extent_thresh, u64 newer_than, bool locked)
663{
664 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
665 struct extent_map *next;
666 bool ret = false;
667
668 /* This is the last extent */
669 if (em->start + em->len >= i_size_read(inode))
670 return false;
671
672 /*
673 * Here we need to pass @newer_then when checking the next extent, or
674 * we will hit a case we mark current extent for defrag, but the next
675 * one will not be a target.
676 * This will just cause extra IO without really reducing the fragments.
677 */
678 next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
679 /* No more em or hole */
680 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
681 goto out;
682 if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
683 goto out;
684 /*
685 * If the next extent is at its max capacity, defragging current extent
686 * makes no sense, as the total number of extents won't change.
687 */
688 if (next->len >= get_extent_max_capacity(fs_info, em))
689 goto out;
690 /* Skip older extent */
691 if (next->generation < newer_than)
692 goto out;
693 /* Also check extent size */
694 if (next->len >= extent_thresh)
695 goto out;
696
697 ret = true;
698out:
699 free_extent_map(next);
700 return ret;
701}
702
703/*
704 * Prepare one page to be defragged.
705 *
706 * This will ensure:
707 *
708 * - Returned page is locked and has been set up properly.
709 * - No ordered extent exists in the page.
710 * - The page is uptodate.
711 *
712 * NOTE: Caller should also wait for page writeback after the cluster is
713 * prepared, here we don't do writeback wait for each page.
714 */
715static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, pgoff_t index)
716{
717 struct address_space *mapping = inode->vfs_inode.i_mapping;
718 gfp_t mask = btrfs_alloc_write_mask(mapping);
719 u64 page_start = (u64)index << PAGE_SHIFT;
720 u64 page_end = page_start + PAGE_SIZE - 1;
721 struct extent_state *cached_state = NULL;
722 struct page *page;
723 int ret;
724
725again:
726 page = find_or_create_page(mapping, index, mask);
727 if (!page)
728 return ERR_PTR(-ENOMEM);
729
730 /*
731 * Since we can defragment files opened read-only, we can encounter
732 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
733 * can't do I/O using huge pages yet, so return an error for now.
734 * Filesystem transparent huge pages are typically only used for
735 * executables that explicitly enable them, so this isn't very
736 * restrictive.
737 */
738 if (PageCompound(page)) {
739 unlock_page(page);
740 put_page(page);
741 return ERR_PTR(-ETXTBSY);
742 }
743
744 ret = set_page_extent_mapped(page);
745 if (ret < 0) {
746 unlock_page(page);
747 put_page(page);
748 return ERR_PTR(ret);
749 }
750
751 /* Wait for any existing ordered extent in the range */
752 while (1) {
753 struct btrfs_ordered_extent *ordered;
754
755 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
756 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
757 unlock_extent(&inode->io_tree, page_start, page_end,
758 &cached_state);
759 if (!ordered)
760 break;
761
762 unlock_page(page);
763 btrfs_start_ordered_extent(ordered, 1);
764 btrfs_put_ordered_extent(ordered);
765 lock_page(page);
766 /*
767 * We unlocked the page above, so we need check if it was
768 * released or not.
769 */
770 if (page->mapping != mapping || !PagePrivate(page)) {
771 unlock_page(page);
772 put_page(page);
773 goto again;
774 }
775 }
776
777 /*
778 * Now the page range has no ordered extent any more. Read the page to
779 * make it uptodate.
780 */
781 if (!PageUptodate(page)) {
782 btrfs_read_folio(NULL, page_folio(page));
783 lock_page(page);
784 if (page->mapping != mapping || !PagePrivate(page)) {
785 unlock_page(page);
786 put_page(page);
787 goto again;
788 }
789 if (!PageUptodate(page)) {
790 unlock_page(page);
791 put_page(page);
792 return ERR_PTR(-EIO);
793 }
794 }
795 return page;
796}
797
798struct defrag_target_range {
799 struct list_head list;
800 u64 start;
801 u64 len;
802};
803
804/*
805 * Collect all valid target extents.
806 *
807 * @start: file offset to lookup
808 * @len: length to lookup
809 * @extent_thresh: file extent size threshold, any extent size >= this value
810 * will be ignored
811 * @newer_than: only defrag extents newer than this value
812 * @do_compress: whether the defrag is doing compression
813 * if true, @extent_thresh will be ignored and all regular
814 * file extents meeting @newer_than will be targets.
815 * @locked: if the range has already held extent lock
816 * @target_list: list of targets file extents
817 */
818static int defrag_collect_targets(struct btrfs_inode *inode,
819 u64 start, u64 len, u32 extent_thresh,
820 u64 newer_than, bool do_compress,
821 bool locked, struct list_head *target_list,
822 u64 *last_scanned_ret)
823{
824 struct btrfs_fs_info *fs_info = inode->root->fs_info;
825 bool last_is_target = false;
826 u64 cur = start;
827 int ret = 0;
828
829 while (cur < start + len) {
830 struct extent_map *em;
831 struct defrag_target_range *new;
832 bool next_mergeable = true;
833 u64 range_len;
834
835 last_is_target = false;
836 em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
837 if (!em)
838 break;
839
840 /*
841 * If the file extent is an inlined one, we may still want to
842 * defrag it (fallthrough) if it will cause a regular extent.
843 * This is for users who want to convert inline extents to
844 * regular ones through max_inline= mount option.
845 */
846 if (em->block_start == EXTENT_MAP_INLINE &&
847 em->len <= inode->root->fs_info->max_inline)
848 goto next;
849
850 /* Skip hole/delalloc/preallocated extents */
851 if (em->block_start == EXTENT_MAP_HOLE ||
852 em->block_start == EXTENT_MAP_DELALLOC ||
853 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
854 goto next;
855
856 /* Skip older extent */
857 if (em->generation < newer_than)
858 goto next;
859
860 /* This em is under writeback, no need to defrag */
861 if (em->generation == (u64)-1)
862 goto next;
863
864 /*
865 * Our start offset might be in the middle of an existing extent
866 * map, so take that into account.
867 */
868 range_len = em->len - (cur - em->start);
869 /*
870 * If this range of the extent map is already flagged for delalloc,
871 * skip it, because:
872 *
873 * 1) We could deadlock later, when trying to reserve space for
874 * delalloc, because in case we can't immediately reserve space
875 * the flusher can start delalloc and wait for the respective
876 * ordered extents to complete. The deadlock would happen
877 * because we do the space reservation while holding the range
878 * locked, and starting writeback, or finishing an ordered
879 * extent, requires locking the range;
880 *
881 * 2) If there's delalloc there, it means there's dirty pages for
882 * which writeback has not started yet (we clean the delalloc
883 * flag when starting writeback and after creating an ordered
884 * extent). If we mark pages in an adjacent range for defrag,
885 * then we will have a larger contiguous range for delalloc,
886 * very likely resulting in a larger extent after writeback is
887 * triggered (except in a case of free space fragmentation).
888 */
889 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
890 EXTENT_DELALLOC, 0, NULL))
891 goto next;
892
893 /*
894 * For do_compress case, we want to compress all valid file
895 * extents, thus no @extent_thresh or mergeable check.
896 */
897 if (do_compress)
898 goto add;
899
900 /* Skip too large extent */
901 if (range_len >= extent_thresh)
902 goto next;
903
904 /*
905 * Skip extents already at its max capacity, this is mostly for
906 * compressed extents, which max cap is only 128K.
907 */
908 if (em->len >= get_extent_max_capacity(fs_info, em))
909 goto next;
910
911 /*
912 * Normally there are no more extents after an inline one, thus
913 * @next_mergeable will normally be false and not defragged.
914 * So if an inline extent passed all above checks, just add it
915 * for defrag, and be converted to regular extents.
916 */
917 if (em->block_start == EXTENT_MAP_INLINE)
918 goto add;
919
920 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
921 extent_thresh, newer_than, locked);
922 if (!next_mergeable) {
923 struct defrag_target_range *last;
924
925 /* Empty target list, no way to merge with last entry */
926 if (list_empty(target_list))
927 goto next;
928 last = list_entry(target_list->prev,
929 struct defrag_target_range, list);
930 /* Not mergeable with last entry */
931 if (last->start + last->len != cur)
932 goto next;
933
934 /* Mergeable, fall through to add it to @target_list. */
935 }
936
937add:
938 last_is_target = true;
939 range_len = min(extent_map_end(em), start + len) - cur;
940 /*
941 * This one is a good target, check if it can be merged into
942 * last range of the target list.
943 */
944 if (!list_empty(target_list)) {
945 struct defrag_target_range *last;
946
947 last = list_entry(target_list->prev,
948 struct defrag_target_range, list);
949 ASSERT(last->start + last->len <= cur);
950 if (last->start + last->len == cur) {
951 /* Mergeable, enlarge the last entry */
952 last->len += range_len;
953 goto next;
954 }
955 /* Fall through to allocate a new entry */
956 }
957
958 /* Allocate new defrag_target_range */
959 new = kmalloc(sizeof(*new), GFP_NOFS);
960 if (!new) {
961 free_extent_map(em);
962 ret = -ENOMEM;
963 break;
964 }
965 new->start = cur;
966 new->len = range_len;
967 list_add_tail(&new->list, target_list);
968
969next:
970 cur = extent_map_end(em);
971 free_extent_map(em);
972 }
973 if (ret < 0) {
974 struct defrag_target_range *entry;
975 struct defrag_target_range *tmp;
976
977 list_for_each_entry_safe(entry, tmp, target_list, list) {
978 list_del_init(&entry->list);
979 kfree(entry);
980 }
981 }
982 if (!ret && last_scanned_ret) {
983 /*
984 * If the last extent is not a target, the caller can skip to
985 * the end of that extent.
986 * Otherwise, we can only go the end of the specified range.
987 */
988 if (!last_is_target)
989 *last_scanned_ret = max(cur, *last_scanned_ret);
990 else
991 *last_scanned_ret = max(start + len, *last_scanned_ret);
992 }
993 return ret;
994}
995
996#define CLUSTER_SIZE (SZ_256K)
997static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
998
999/*
1000 * Defrag one contiguous target range.
1001 *
1002 * @inode: target inode
1003 * @target: target range to defrag
1004 * @pages: locked pages covering the defrag range
1005 * @nr_pages: number of locked pages
1006 *
1007 * Caller should ensure:
1008 *
1009 * - Pages are prepared
1010 * Pages should be locked, no ordered extent in the pages range,
1011 * no writeback.
1012 *
1013 * - Extent bits are locked
1014 */
1015static int defrag_one_locked_target(struct btrfs_inode *inode,
1016 struct defrag_target_range *target,
1017 struct page **pages, int nr_pages,
1018 struct extent_state **cached_state)
1019{
1020 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1021 struct extent_changeset *data_reserved = NULL;
1022 const u64 start = target->start;
1023 const u64 len = target->len;
1024 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1025 unsigned long start_index = start >> PAGE_SHIFT;
1026 unsigned long first_index = page_index(pages[0]);
1027 int ret = 0;
1028 int i;
1029
1030 ASSERT(last_index - first_index + 1 <= nr_pages);
1031
1032 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1033 if (ret < 0)
1034 return ret;
1035 clear_extent_bit(&inode->io_tree, start, start + len - 1,
1036 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1037 EXTENT_DEFRAG, cached_state);
1038 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1039
1040 /* Update the page status */
1041 for (i = start_index - first_index; i <= last_index - first_index; i++) {
1042 ClearPageChecked(pages[i]);
1043 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1044 }
1045 btrfs_delalloc_release_extents(inode, len);
1046 extent_changeset_free(data_reserved);
1047
1048 return ret;
1049}
1050
1051static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1052 u32 extent_thresh, u64 newer_than, bool do_compress,
1053 u64 *last_scanned_ret)
1054{
1055 struct extent_state *cached_state = NULL;
1056 struct defrag_target_range *entry;
1057 struct defrag_target_range *tmp;
1058 LIST_HEAD(target_list);
1059 struct page **pages;
1060 const u32 sectorsize = inode->root->fs_info->sectorsize;
1061 u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1062 u64 start_index = start >> PAGE_SHIFT;
1063 unsigned int nr_pages = last_index - start_index + 1;
1064 int ret = 0;
1065 int i;
1066
1067 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1068 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1069
1070 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1071 if (!pages)
1072 return -ENOMEM;
1073
1074 /* Prepare all pages */
1075 for (i = 0; i < nr_pages; i++) {
1076 pages[i] = defrag_prepare_one_page(inode, start_index + i);
1077 if (IS_ERR(pages[i])) {
1078 ret = PTR_ERR(pages[i]);
1079 pages[i] = NULL;
1080 goto free_pages;
1081 }
1082 }
1083 for (i = 0; i < nr_pages; i++)
1084 wait_on_page_writeback(pages[i]);
1085
1086 /* Lock the pages range */
1087 lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1088 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1089 &cached_state);
1090 /*
1091 * Now we have a consistent view about the extent map, re-check
1092 * which range really needs to be defragged.
1093 *
1094 * And this time we have extent locked already, pass @locked = true
1095 * so that we won't relock the extent range and cause deadlock.
1096 */
1097 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1098 newer_than, do_compress, true,
1099 &target_list, last_scanned_ret);
1100 if (ret < 0)
1101 goto unlock_extent;
1102
1103 list_for_each_entry(entry, &target_list, list) {
1104 ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1105 &cached_state);
1106 if (ret < 0)
1107 break;
1108 }
1109
1110 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1111 list_del_init(&entry->list);
1112 kfree(entry);
1113 }
1114unlock_extent:
1115 unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1116 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1117 &cached_state);
1118free_pages:
1119 for (i = 0; i < nr_pages; i++) {
1120 if (pages[i]) {
1121 unlock_page(pages[i]);
1122 put_page(pages[i]);
1123 }
1124 }
1125 kfree(pages);
1126 return ret;
1127}
1128
1129static int defrag_one_cluster(struct btrfs_inode *inode,
1130 struct file_ra_state *ra,
1131 u64 start, u32 len, u32 extent_thresh,
1132 u64 newer_than, bool do_compress,
1133 unsigned long *sectors_defragged,
1134 unsigned long max_sectors,
1135 u64 *last_scanned_ret)
1136{
1137 const u32 sectorsize = inode->root->fs_info->sectorsize;
1138 struct defrag_target_range *entry;
1139 struct defrag_target_range *tmp;
1140 LIST_HEAD(target_list);
1141 int ret;
1142
1143 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1144 newer_than, do_compress, false,
1145 &target_list, NULL);
1146 if (ret < 0)
1147 goto out;
1148
1149 list_for_each_entry(entry, &target_list, list) {
1150 u32 range_len = entry->len;
1151
1152 /* Reached or beyond the limit */
1153 if (max_sectors && *sectors_defragged >= max_sectors) {
1154 ret = 1;
1155 break;
1156 }
1157
1158 if (max_sectors)
1159 range_len = min_t(u32, range_len,
1160 (max_sectors - *sectors_defragged) * sectorsize);
1161
1162 /*
1163 * If defrag_one_range() has updated last_scanned_ret,
1164 * our range may already be invalid (e.g. hole punched).
1165 * Skip if our range is before last_scanned_ret, as there is
1166 * no need to defrag the range anymore.
1167 */
1168 if (entry->start + range_len <= *last_scanned_ret)
1169 continue;
1170
1171 if (ra)
1172 page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1173 ra, NULL, entry->start >> PAGE_SHIFT,
1174 ((entry->start + range_len - 1) >> PAGE_SHIFT) -
1175 (entry->start >> PAGE_SHIFT) + 1);
1176 /*
1177 * Here we may not defrag any range if holes are punched before
1178 * we locked the pages.
1179 * But that's fine, it only affects the @sectors_defragged
1180 * accounting.
1181 */
1182 ret = defrag_one_range(inode, entry->start, range_len,
1183 extent_thresh, newer_than, do_compress,
1184 last_scanned_ret);
1185 if (ret < 0)
1186 break;
1187 *sectors_defragged += range_len >>
1188 inode->root->fs_info->sectorsize_bits;
1189 }
1190out:
1191 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1192 list_del_init(&entry->list);
1193 kfree(entry);
1194 }
1195 if (ret >= 0)
1196 *last_scanned_ret = max(*last_scanned_ret, start + len);
1197 return ret;
1198}
1199
1200/*
1201 * Entry point to file defragmentation.
1202 *
1203 * @inode: inode to be defragged
1204 * @ra: readahead state (can be NUL)
1205 * @range: defrag options including range and flags
1206 * @newer_than: minimum transid to defrag
1207 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1208 * will be defragged.
1209 *
1210 * Return <0 for error.
1211 * Return >=0 for the number of sectors defragged, and range->start will be updated
1212 * to indicate the file offset where next defrag should be started at.
1213 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1214 * defragging all the range).
1215 */
1216int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1217 struct btrfs_ioctl_defrag_range_args *range,
1218 u64 newer_than, unsigned long max_to_defrag)
1219{
1220 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1221 unsigned long sectors_defragged = 0;
1222 u64 isize = i_size_read(inode);
1223 u64 cur;
1224 u64 last_byte;
1225 bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1226 bool ra_allocated = false;
1227 int compress_type = BTRFS_COMPRESS_ZLIB;
1228 int ret = 0;
1229 u32 extent_thresh = range->extent_thresh;
1230 pgoff_t start_index;
1231
1232 if (isize == 0)
1233 return 0;
1234
1235 if (range->start >= isize)
1236 return -EINVAL;
1237
1238 if (do_compress) {
1239 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1240 return -EINVAL;
1241 if (range->compress_type)
1242 compress_type = range->compress_type;
1243 }
1244
1245 if (extent_thresh == 0)
1246 extent_thresh = SZ_256K;
1247
1248 if (range->start + range->len > range->start) {
1249 /* Got a specific range */
1250 last_byte = min(isize, range->start + range->len);
1251 } else {
1252 /* Defrag until file end */
1253 last_byte = isize;
1254 }
1255
1256 /* Align the range */
1257 cur = round_down(range->start, fs_info->sectorsize);
1258 last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1259
1260 /*
1261 * If we were not given a ra, allocate a readahead context. As
1262 * readahead is just an optimization, defrag will work without it so
1263 * we don't error out.
1264 */
1265 if (!ra) {
1266 ra_allocated = true;
1267 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1268 if (ra)
1269 file_ra_state_init(ra, inode->i_mapping);
1270 }
1271
1272 /*
1273 * Make writeback start from the beginning of the range, so that the
1274 * defrag range can be written sequentially.
1275 */
1276 start_index = cur >> PAGE_SHIFT;
1277 if (start_index < inode->i_mapping->writeback_index)
1278 inode->i_mapping->writeback_index = start_index;
1279
1280 while (cur < last_byte) {
1281 const unsigned long prev_sectors_defragged = sectors_defragged;
1282 u64 last_scanned = cur;
1283 u64 cluster_end;
1284
1285 if (btrfs_defrag_cancelled(fs_info)) {
1286 ret = -EAGAIN;
1287 break;
1288 }
1289
1290 /* We want the cluster end at page boundary when possible */
1291 cluster_end = (((cur >> PAGE_SHIFT) +
1292 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1293 cluster_end = min(cluster_end, last_byte);
1294
1295 btrfs_inode_lock(inode, 0);
1296 if (IS_SWAPFILE(inode)) {
1297 ret = -ETXTBSY;
1298 btrfs_inode_unlock(inode, 0);
1299 break;
1300 }
1301 if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1302 btrfs_inode_unlock(inode, 0);
1303 break;
1304 }
1305 if (do_compress)
1306 BTRFS_I(inode)->defrag_compress = compress_type;
1307 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1308 cluster_end + 1 - cur, extent_thresh,
1309 newer_than, do_compress, &sectors_defragged,
1310 max_to_defrag, &last_scanned);
1311
1312 if (sectors_defragged > prev_sectors_defragged)
1313 balance_dirty_pages_ratelimited(inode->i_mapping);
1314
1315 btrfs_inode_unlock(inode, 0);
1316 if (ret < 0)
1317 break;
1318 cur = max(cluster_end + 1, last_scanned);
1319 if (ret > 0) {
1320 ret = 0;
1321 break;
1322 }
1323 cond_resched();
1324 }
1325
1326 if (ra_allocated)
1327 kfree(ra);
1328 /*
1329 * Update range.start for autodefrag, this will indicate where to start
1330 * in next run.
1331 */
1332 range->start = cur;
1333 if (sectors_defragged) {
1334 /*
1335 * We have defragged some sectors, for compression case they
1336 * need to be written back immediately.
1337 */
1338 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1339 filemap_flush(inode->i_mapping);
1340 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1341 &BTRFS_I(inode)->runtime_flags))
1342 filemap_flush(inode->i_mapping);
1343 }
1344 if (range->compress_type == BTRFS_COMPRESS_LZO)
1345 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1346 else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1347 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1348 ret = sectors_defragged;
1349 }
1350 if (do_compress) {
1351 btrfs_inode_lock(inode, 0);
1352 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1353 btrfs_inode_unlock(inode, 0);
1354 }
1355 return ret;
1356}
1357
6e3df18b
JB
1358void __cold btrfs_auto_defrag_exit(void)
1359{
1360 kmem_cache_destroy(btrfs_inode_defrag_cachep);
1361}
1362
1363int __init btrfs_auto_defrag_init(void)
1364{
1365 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1366 sizeof(struct inode_defrag), 0,
1367 SLAB_MEM_SPREAD,
1368 NULL);
1369 if (!btrfs_inode_defrag_cachep)
1370 return -ENOMEM;
1371
1372 return 0;
1373}