btrfs: drop fs_info parameter from __tree_mod_log_oldest_root
[linux-block.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
adf02123 22#include <linux/mm.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
7f5c1516 25#include "transaction.h"
5f39d397 26#include "print-tree.h"
925baedd 27#include "locking.h"
9a8dd150 28
e089f05c
CM
29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
310712b2
OS
31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
5f39d397 34static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
35 struct btrfs_fs_info *fs_info,
36 struct extent_buffer *dst,
971a1f66 37 struct extent_buffer *src, int empty);
5f39d397 38static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 39 struct btrfs_fs_info *fs_info,
5f39d397
CM
40 struct extent_buffer *dst_buf,
41 struct extent_buffer *src_buf);
afe5fea7
TI
42static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 int level, int slot);
d97e63b6 44
df24a2b9 45struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 46{
e2c89907 47 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
2c90e5d6
CM
48}
49
b4ce94de
CM
50/*
51 * set all locked nodes in the path to blocking locks. This should
52 * be done before scheduling
53 */
54noinline void btrfs_set_path_blocking(struct btrfs_path *p)
55{
56 int i;
57 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
58 if (!p->nodes[i] || !p->locks[i])
59 continue;
60 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
61 if (p->locks[i] == BTRFS_READ_LOCK)
62 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
63 else if (p->locks[i] == BTRFS_WRITE_LOCK)
64 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
65 }
66}
67
68/*
69 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
70 *
71 * held is used to keep lockdep happy, when lockdep is enabled
72 * we set held to a blocking lock before we go around and
73 * retake all the spinlocks in the path. You can safely use NULL
74 * for held
b4ce94de 75 */
4008c04a 76noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 77 struct extent_buffer *held, int held_rw)
b4ce94de
CM
78{
79 int i;
4008c04a 80
bd681513
CM
81 if (held) {
82 btrfs_set_lock_blocking_rw(held, held_rw);
83 if (held_rw == BTRFS_WRITE_LOCK)
84 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
85 else if (held_rw == BTRFS_READ_LOCK)
86 held_rw = BTRFS_READ_LOCK_BLOCKING;
87 }
4008c04a 88 btrfs_set_path_blocking(p);
4008c04a
CM
89
90 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
91 if (p->nodes[i] && p->locks[i]) {
92 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
93 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
94 p->locks[i] = BTRFS_WRITE_LOCK;
95 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_READ_LOCK;
97 }
b4ce94de 98 }
4008c04a 99
4008c04a 100 if (held)
bd681513 101 btrfs_clear_lock_blocking_rw(held, held_rw);
b4ce94de
CM
102}
103
d352ac68 104/* this also releases the path */
df24a2b9 105void btrfs_free_path(struct btrfs_path *p)
be0e5c09 106{
ff175d57
JJ
107 if (!p)
108 return;
b3b4aa74 109 btrfs_release_path(p);
df24a2b9 110 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
111}
112
d352ac68
CM
113/*
114 * path release drops references on the extent buffers in the path
115 * and it drops any locks held by this path
116 *
117 * It is safe to call this on paths that no locks or extent buffers held.
118 */
b3b4aa74 119noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
120{
121 int i;
a2135011 122
234b63a0 123 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 124 p->slots[i] = 0;
eb60ceac 125 if (!p->nodes[i])
925baedd
CM
126 continue;
127 if (p->locks[i]) {
bd681513 128 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
129 p->locks[i] = 0;
130 }
5f39d397 131 free_extent_buffer(p->nodes[i]);
3f157a2f 132 p->nodes[i] = NULL;
eb60ceac
CM
133 }
134}
135
d352ac68
CM
136/*
137 * safely gets a reference on the root node of a tree. A lock
138 * is not taken, so a concurrent writer may put a different node
139 * at the root of the tree. See btrfs_lock_root_node for the
140 * looping required.
141 *
142 * The extent buffer returned by this has a reference taken, so
143 * it won't disappear. It may stop being the root of the tree
144 * at any time because there are no locks held.
145 */
925baedd
CM
146struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
147{
148 struct extent_buffer *eb;
240f62c8 149
3083ee2e
JB
150 while (1) {
151 rcu_read_lock();
152 eb = rcu_dereference(root->node);
153
154 /*
155 * RCU really hurts here, we could free up the root node because
01327610 156 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
157 * the inc_not_zero dance and if it doesn't work then
158 * synchronize_rcu and try again.
159 */
160 if (atomic_inc_not_zero(&eb->refs)) {
161 rcu_read_unlock();
162 break;
163 }
164 rcu_read_unlock();
165 synchronize_rcu();
166 }
925baedd
CM
167 return eb;
168}
169
d352ac68
CM
170/* loop around taking references on and locking the root node of the
171 * tree until you end up with a lock on the root. A locked buffer
172 * is returned, with a reference held.
173 */
925baedd
CM
174struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
175{
176 struct extent_buffer *eb;
177
d397712b 178 while (1) {
925baedd
CM
179 eb = btrfs_root_node(root);
180 btrfs_tree_lock(eb);
240f62c8 181 if (eb == root->node)
925baedd 182 break;
925baedd
CM
183 btrfs_tree_unlock(eb);
184 free_extent_buffer(eb);
185 }
186 return eb;
187}
188
bd681513
CM
189/* loop around taking references on and locking the root node of the
190 * tree until you end up with a lock on the root. A locked buffer
191 * is returned, with a reference held.
192 */
84f7d8e6 193struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
194{
195 struct extent_buffer *eb;
196
197 while (1) {
198 eb = btrfs_root_node(root);
199 btrfs_tree_read_lock(eb);
200 if (eb == root->node)
201 break;
202 btrfs_tree_read_unlock(eb);
203 free_extent_buffer(eb);
204 }
205 return eb;
206}
207
d352ac68
CM
208/* cowonly root (everything not a reference counted cow subvolume), just get
209 * put onto a simple dirty list. transaction.c walks this to make sure they
210 * get properly updated on disk.
211 */
0b86a832
CM
212static void add_root_to_dirty_list(struct btrfs_root *root)
213{
0b246afa
JM
214 struct btrfs_fs_info *fs_info = root->fs_info;
215
e7070be1
JB
216 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
217 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
218 return;
219
0b246afa 220 spin_lock(&fs_info->trans_lock);
e7070be1
JB
221 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
222 /* Want the extent tree to be the last on the list */
223 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
224 list_move_tail(&root->dirty_list,
0b246afa 225 &fs_info->dirty_cowonly_roots);
e7070be1
JB
226 else
227 list_move(&root->dirty_list,
0b246afa 228 &fs_info->dirty_cowonly_roots);
0b86a832 229 }
0b246afa 230 spin_unlock(&fs_info->trans_lock);
0b86a832
CM
231}
232
d352ac68
CM
233/*
234 * used by snapshot creation to make a copy of a root for a tree with
235 * a given objectid. The buffer with the new root node is returned in
236 * cow_ret, and this func returns zero on success or a negative error code.
237 */
be20aa9d
CM
238int btrfs_copy_root(struct btrfs_trans_handle *trans,
239 struct btrfs_root *root,
240 struct extent_buffer *buf,
241 struct extent_buffer **cow_ret, u64 new_root_objectid)
242{
0b246afa 243 struct btrfs_fs_info *fs_info = root->fs_info;
be20aa9d 244 struct extent_buffer *cow;
be20aa9d
CM
245 int ret = 0;
246 int level;
5d4f98a2 247 struct btrfs_disk_key disk_key;
be20aa9d 248
27cdeb70 249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 250 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 trans->transid != root->last_trans);
be20aa9d
CM
253
254 level = btrfs_header_level(buf);
5d4f98a2
YZ
255 if (level == 0)
256 btrfs_item_key(buf, &disk_key, 0);
257 else
258 btrfs_node_key(buf, &disk_key, 0);
31840ae1 259
4d75f8a9
DS
260 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
261 &disk_key, level, buf->start, 0);
5d4f98a2 262 if (IS_ERR(cow))
be20aa9d
CM
263 return PTR_ERR(cow);
264
58e8012c 265 copy_extent_buffer_full(cow, buf);
be20aa9d
CM
266 btrfs_set_header_bytenr(cow, cow->start);
267 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
268 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270 BTRFS_HEADER_FLAG_RELOC);
271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273 else
274 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 275
0b246afa 276 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 277
be20aa9d 278 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 280 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 281 else
e339a6b0 282 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 283
be20aa9d
CM
284 if (ret)
285 return ret;
286
287 btrfs_mark_buffer_dirty(cow);
288 *cow_ret = cow;
289 return 0;
290}
291
bd989ba3
JS
292enum mod_log_op {
293 MOD_LOG_KEY_REPLACE,
294 MOD_LOG_KEY_ADD,
295 MOD_LOG_KEY_REMOVE,
296 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
297 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
298 MOD_LOG_MOVE_KEYS,
299 MOD_LOG_ROOT_REPLACE,
300};
301
bd989ba3
JS
302struct tree_mod_root {
303 u64 logical;
304 u8 level;
305};
306
307struct tree_mod_elem {
308 struct rb_node node;
298cfd36 309 u64 logical;
097b8a7c 310 u64 seq;
bd989ba3
JS
311 enum mod_log_op op;
312
313 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
314 int slot;
315
316 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
317 u64 generation;
318
319 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
320 struct btrfs_disk_key key;
321 u64 blockptr;
322
323 /* this is used for op == MOD_LOG_MOVE_KEYS */
b6dfa35b
DS
324 struct {
325 int dst_slot;
326 int nr_items;
327 } move;
bd989ba3
JS
328
329 /* this is used for op == MOD_LOG_ROOT_REPLACE */
330 struct tree_mod_root old_root;
331};
332
097b8a7c 333static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 334{
097b8a7c 335 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
336}
337
097b8a7c
JS
338static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
339{
340 read_unlock(&fs_info->tree_mod_log_lock);
341}
342
343static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
344{
345 write_lock(&fs_info->tree_mod_log_lock);
346}
347
348static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
349{
350 write_unlock(&fs_info->tree_mod_log_lock);
351}
352
fc36ed7e 353/*
fcebe456 354 * Pull a new tree mod seq number for our operation.
fc36ed7e 355 */
fcebe456 356static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
357{
358 return atomic64_inc_return(&fs_info->tree_mod_seq);
359}
360
097b8a7c
JS
361/*
362 * This adds a new blocker to the tree mod log's blocker list if the @elem
363 * passed does not already have a sequence number set. So when a caller expects
364 * to record tree modifications, it should ensure to set elem->seq to zero
365 * before calling btrfs_get_tree_mod_seq.
366 * Returns a fresh, unused tree log modification sequence number, even if no new
367 * blocker was added.
368 */
369u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
370 struct seq_list *elem)
bd989ba3 371{
097b8a7c 372 tree_mod_log_write_lock(fs_info);
bd989ba3 373 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 374 if (!elem->seq) {
fcebe456 375 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
376 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
377 }
bd989ba3 378 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
379 tree_mod_log_write_unlock(fs_info);
380
fcebe456 381 return elem->seq;
bd989ba3
JS
382}
383
384void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
385 struct seq_list *elem)
386{
387 struct rb_root *tm_root;
388 struct rb_node *node;
389 struct rb_node *next;
390 struct seq_list *cur_elem;
391 struct tree_mod_elem *tm;
392 u64 min_seq = (u64)-1;
393 u64 seq_putting = elem->seq;
394
395 if (!seq_putting)
396 return;
397
bd989ba3
JS
398 spin_lock(&fs_info->tree_mod_seq_lock);
399 list_del(&elem->list);
097b8a7c 400 elem->seq = 0;
bd989ba3
JS
401
402 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 403 if (cur_elem->seq < min_seq) {
bd989ba3
JS
404 if (seq_putting > cur_elem->seq) {
405 /*
406 * blocker with lower sequence number exists, we
407 * cannot remove anything from the log
408 */
097b8a7c
JS
409 spin_unlock(&fs_info->tree_mod_seq_lock);
410 return;
bd989ba3
JS
411 }
412 min_seq = cur_elem->seq;
413 }
414 }
097b8a7c
JS
415 spin_unlock(&fs_info->tree_mod_seq_lock);
416
bd989ba3
JS
417 /*
418 * anything that's lower than the lowest existing (read: blocked)
419 * sequence number can be removed from the tree.
420 */
097b8a7c 421 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
422 tm_root = &fs_info->tree_mod_log;
423 for (node = rb_first(tm_root); node; node = next) {
424 next = rb_next(node);
6b4df8b6 425 tm = rb_entry(node, struct tree_mod_elem, node);
097b8a7c 426 if (tm->seq > min_seq)
bd989ba3
JS
427 continue;
428 rb_erase(node, tm_root);
bd989ba3
JS
429 kfree(tm);
430 }
097b8a7c 431 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
432}
433
434/*
435 * key order of the log:
298cfd36 436 * node/leaf start address -> sequence
bd989ba3 437 *
298cfd36
CR
438 * The 'start address' is the logical address of the *new* root node
439 * for root replace operations, or the logical address of the affected
440 * block for all other operations.
5de865ee
FDBM
441 *
442 * Note: must be called with write lock (tree_mod_log_write_lock).
bd989ba3
JS
443 */
444static noinline int
445__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
446{
447 struct rb_root *tm_root;
448 struct rb_node **new;
449 struct rb_node *parent = NULL;
450 struct tree_mod_elem *cur;
c8cc6341 451
fcebe456 452 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 453
bd989ba3
JS
454 tm_root = &fs_info->tree_mod_log;
455 new = &tm_root->rb_node;
456 while (*new) {
6b4df8b6 457 cur = rb_entry(*new, struct tree_mod_elem, node);
bd989ba3 458 parent = *new;
298cfd36 459 if (cur->logical < tm->logical)
bd989ba3 460 new = &((*new)->rb_left);
298cfd36 461 else if (cur->logical > tm->logical)
bd989ba3 462 new = &((*new)->rb_right);
097b8a7c 463 else if (cur->seq < tm->seq)
bd989ba3 464 new = &((*new)->rb_left);
097b8a7c 465 else if (cur->seq > tm->seq)
bd989ba3 466 new = &((*new)->rb_right);
5de865ee
FDBM
467 else
468 return -EEXIST;
bd989ba3
JS
469 }
470
471 rb_link_node(&tm->node, parent, new);
472 rb_insert_color(&tm->node, tm_root);
5de865ee 473 return 0;
bd989ba3
JS
474}
475
097b8a7c
JS
476/*
477 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
478 * returns zero with the tree_mod_log_lock acquired. The caller must hold
479 * this until all tree mod log insertions are recorded in the rb tree and then
480 * call tree_mod_log_write_unlock() to release.
481 */
e9b7fd4d
JS
482static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
483 struct extent_buffer *eb) {
484 smp_mb();
485 if (list_empty(&(fs_info)->tree_mod_seq_list))
486 return 1;
097b8a7c
JS
487 if (eb && btrfs_header_level(eb) == 0)
488 return 1;
5de865ee
FDBM
489
490 tree_mod_log_write_lock(fs_info);
491 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
492 tree_mod_log_write_unlock(fs_info);
493 return 1;
494 }
495
e9b7fd4d
JS
496 return 0;
497}
498
5de865ee
FDBM
499/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
500static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
501 struct extent_buffer *eb)
502{
503 smp_mb();
504 if (list_empty(&(fs_info)->tree_mod_seq_list))
505 return 0;
506 if (eb && btrfs_header_level(eb) == 0)
507 return 0;
508
509 return 1;
510}
511
512static struct tree_mod_elem *
513alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
514 enum mod_log_op op, gfp_t flags)
bd989ba3 515{
097b8a7c 516 struct tree_mod_elem *tm;
bd989ba3 517
c8cc6341
JB
518 tm = kzalloc(sizeof(*tm), flags);
519 if (!tm)
5de865ee 520 return NULL;
bd989ba3 521
298cfd36 522 tm->logical = eb->start;
bd989ba3
JS
523 if (op != MOD_LOG_KEY_ADD) {
524 btrfs_node_key(eb, &tm->key, slot);
525 tm->blockptr = btrfs_node_blockptr(eb, slot);
526 }
527 tm->op = op;
528 tm->slot = slot;
529 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 530 RB_CLEAR_NODE(&tm->node);
bd989ba3 531
5de865ee 532 return tm;
097b8a7c
JS
533}
534
e09c2efe
DS
535static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
536 enum mod_log_op op, gfp_t flags)
097b8a7c 537{
5de865ee
FDBM
538 struct tree_mod_elem *tm;
539 int ret;
540
e09c2efe 541 if (!tree_mod_need_log(eb->fs_info, eb))
5de865ee
FDBM
542 return 0;
543
544 tm = alloc_tree_mod_elem(eb, slot, op, flags);
545 if (!tm)
546 return -ENOMEM;
547
e09c2efe 548 if (tree_mod_dont_log(eb->fs_info, eb)) {
5de865ee 549 kfree(tm);
097b8a7c 550 return 0;
5de865ee
FDBM
551 }
552
e09c2efe
DS
553 ret = __tree_mod_log_insert(eb->fs_info, tm);
554 tree_mod_log_write_unlock(eb->fs_info);
5de865ee
FDBM
555 if (ret)
556 kfree(tm);
097b8a7c 557
5de865ee 558 return ret;
097b8a7c
JS
559}
560
6074d45f
DS
561static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
562 int dst_slot, int src_slot, int nr_items)
bd989ba3 563{
5de865ee
FDBM
564 struct tree_mod_elem *tm = NULL;
565 struct tree_mod_elem **tm_list = NULL;
566 int ret = 0;
bd989ba3 567 int i;
5de865ee 568 int locked = 0;
bd989ba3 569
6074d45f 570 if (!tree_mod_need_log(eb->fs_info, eb))
f395694c 571 return 0;
bd989ba3 572
176ef8f5 573 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
574 if (!tm_list)
575 return -ENOMEM;
576
176ef8f5 577 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
578 if (!tm) {
579 ret = -ENOMEM;
580 goto free_tms;
581 }
582
298cfd36 583 tm->logical = eb->start;
5de865ee
FDBM
584 tm->slot = src_slot;
585 tm->move.dst_slot = dst_slot;
586 tm->move.nr_items = nr_items;
587 tm->op = MOD_LOG_MOVE_KEYS;
588
589 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
590 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
176ef8f5 591 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
5de865ee
FDBM
592 if (!tm_list[i]) {
593 ret = -ENOMEM;
594 goto free_tms;
595 }
596 }
597
6074d45f 598 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
599 goto free_tms;
600 locked = 1;
601
01763a2e
JS
602 /*
603 * When we override something during the move, we log these removals.
604 * This can only happen when we move towards the beginning of the
605 * buffer, i.e. dst_slot < src_slot.
606 */
bd989ba3 607 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
6074d45f 608 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
5de865ee
FDBM
609 if (ret)
610 goto free_tms;
bd989ba3
JS
611 }
612
6074d45f 613 ret = __tree_mod_log_insert(eb->fs_info, tm);
5de865ee
FDBM
614 if (ret)
615 goto free_tms;
6074d45f 616 tree_mod_log_write_unlock(eb->fs_info);
5de865ee 617 kfree(tm_list);
f395694c 618
5de865ee
FDBM
619 return 0;
620free_tms:
621 for (i = 0; i < nr_items; i++) {
622 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
6074d45f 623 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
5de865ee
FDBM
624 kfree(tm_list[i]);
625 }
626 if (locked)
6074d45f 627 tree_mod_log_write_unlock(eb->fs_info);
5de865ee
FDBM
628 kfree(tm_list);
629 kfree(tm);
bd989ba3 630
5de865ee 631 return ret;
bd989ba3
JS
632}
633
5de865ee
FDBM
634static inline int
635__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
636 struct tree_mod_elem **tm_list,
637 int nritems)
097b8a7c 638{
5de865ee 639 int i, j;
097b8a7c
JS
640 int ret;
641
097b8a7c 642 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
643 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
644 if (ret) {
645 for (j = nritems - 1; j > i; j--)
646 rb_erase(&tm_list[j]->node,
647 &fs_info->tree_mod_log);
648 return ret;
649 }
097b8a7c 650 }
5de865ee
FDBM
651
652 return 0;
097b8a7c
JS
653}
654
95b757c1
DS
655static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
656 struct extent_buffer *new_root, int log_removal)
bd989ba3 657{
95b757c1 658 struct btrfs_fs_info *fs_info = old_root->fs_info;
5de865ee
FDBM
659 struct tree_mod_elem *tm = NULL;
660 struct tree_mod_elem **tm_list = NULL;
661 int nritems = 0;
662 int ret = 0;
663 int i;
bd989ba3 664
5de865ee 665 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
666 return 0;
667
5de865ee
FDBM
668 if (log_removal && btrfs_header_level(old_root) > 0) {
669 nritems = btrfs_header_nritems(old_root);
31e818fe 670 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
bcc8e07f 671 GFP_NOFS);
5de865ee
FDBM
672 if (!tm_list) {
673 ret = -ENOMEM;
674 goto free_tms;
675 }
676 for (i = 0; i < nritems; i++) {
677 tm_list[i] = alloc_tree_mod_elem(old_root, i,
bcc8e07f 678 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
5de865ee
FDBM
679 if (!tm_list[i]) {
680 ret = -ENOMEM;
681 goto free_tms;
682 }
683 }
684 }
d9abbf1c 685
bcc8e07f 686 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
687 if (!tm) {
688 ret = -ENOMEM;
689 goto free_tms;
690 }
bd989ba3 691
298cfd36 692 tm->logical = new_root->start;
bd989ba3
JS
693 tm->old_root.logical = old_root->start;
694 tm->old_root.level = btrfs_header_level(old_root);
695 tm->generation = btrfs_header_generation(old_root);
696 tm->op = MOD_LOG_ROOT_REPLACE;
697
5de865ee
FDBM
698 if (tree_mod_dont_log(fs_info, NULL))
699 goto free_tms;
700
701 if (tm_list)
702 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
703 if (!ret)
704 ret = __tree_mod_log_insert(fs_info, tm);
705
706 tree_mod_log_write_unlock(fs_info);
707 if (ret)
708 goto free_tms;
709 kfree(tm_list);
710
711 return ret;
712
713free_tms:
714 if (tm_list) {
715 for (i = 0; i < nritems; i++)
716 kfree(tm_list[i]);
717 kfree(tm_list);
718 }
719 kfree(tm);
720
721 return ret;
bd989ba3
JS
722}
723
724static struct tree_mod_elem *
725__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
726 int smallest)
727{
728 struct rb_root *tm_root;
729 struct rb_node *node;
730 struct tree_mod_elem *cur = NULL;
731 struct tree_mod_elem *found = NULL;
bd989ba3 732
097b8a7c 733 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
734 tm_root = &fs_info->tree_mod_log;
735 node = tm_root->rb_node;
736 while (node) {
6b4df8b6 737 cur = rb_entry(node, struct tree_mod_elem, node);
298cfd36 738 if (cur->logical < start) {
bd989ba3 739 node = node->rb_left;
298cfd36 740 } else if (cur->logical > start) {
bd989ba3 741 node = node->rb_right;
097b8a7c 742 } else if (cur->seq < min_seq) {
bd989ba3
JS
743 node = node->rb_left;
744 } else if (!smallest) {
745 /* we want the node with the highest seq */
746 if (found)
097b8a7c 747 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
748 found = cur;
749 node = node->rb_left;
097b8a7c 750 } else if (cur->seq > min_seq) {
bd989ba3
JS
751 /* we want the node with the smallest seq */
752 if (found)
097b8a7c 753 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
754 found = cur;
755 node = node->rb_right;
756 } else {
757 found = cur;
758 break;
759 }
760 }
097b8a7c 761 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
762
763 return found;
764}
765
766/*
767 * this returns the element from the log with the smallest time sequence
768 * value that's in the log (the oldest log item). any element with a time
769 * sequence lower than min_seq will be ignored.
770 */
771static struct tree_mod_elem *
772tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
773 u64 min_seq)
774{
775 return __tree_mod_log_search(fs_info, start, min_seq, 1);
776}
777
778/*
779 * this returns the element from the log with the largest time sequence
780 * value that's in the log (the most recent log item). any element with
781 * a time sequence lower than min_seq will be ignored.
782 */
783static struct tree_mod_elem *
784tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
785{
786 return __tree_mod_log_search(fs_info, start, min_seq, 0);
787}
788
5de865ee 789static noinline int
bd989ba3
JS
790tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
791 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 792 unsigned long src_offset, int nr_items)
bd989ba3 793{
5de865ee
FDBM
794 int ret = 0;
795 struct tree_mod_elem **tm_list = NULL;
796 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 797 int i;
5de865ee 798 int locked = 0;
bd989ba3 799
5de865ee
FDBM
800 if (!tree_mod_need_log(fs_info, NULL))
801 return 0;
bd989ba3 802
c8cc6341 803 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
804 return 0;
805
31e818fe 806 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
807 GFP_NOFS);
808 if (!tm_list)
809 return -ENOMEM;
bd989ba3 810
5de865ee
FDBM
811 tm_list_add = tm_list;
812 tm_list_rem = tm_list + nr_items;
bd989ba3 813 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
814 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
815 MOD_LOG_KEY_REMOVE, GFP_NOFS);
816 if (!tm_list_rem[i]) {
817 ret = -ENOMEM;
818 goto free_tms;
819 }
820
821 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
822 MOD_LOG_KEY_ADD, GFP_NOFS);
823 if (!tm_list_add[i]) {
824 ret = -ENOMEM;
825 goto free_tms;
826 }
827 }
828
829 if (tree_mod_dont_log(fs_info, NULL))
830 goto free_tms;
831 locked = 1;
832
833 for (i = 0; i < nr_items; i++) {
834 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
835 if (ret)
836 goto free_tms;
837 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
838 if (ret)
839 goto free_tms;
bd989ba3 840 }
5de865ee
FDBM
841
842 tree_mod_log_write_unlock(fs_info);
843 kfree(tm_list);
844
845 return 0;
846
847free_tms:
848 for (i = 0; i < nr_items * 2; i++) {
849 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
850 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
851 kfree(tm_list[i]);
852 }
853 if (locked)
854 tree_mod_log_write_unlock(fs_info);
855 kfree(tm_list);
856
857 return ret;
bd989ba3
JS
858}
859
a446a979 860static inline void tree_mod_log_eb_move(struct extent_buffer *dst,
bd989ba3
JS
861 int dst_offset, int src_offset, int nr_items)
862{
863 int ret;
6074d45f 864 ret = tree_mod_log_insert_move(dst, dst_offset, src_offset, nr_items);
bd989ba3
JS
865 BUG_ON(ret < 0);
866}
867
3ac6de1a
DS
868static noinline void tree_mod_log_set_node_key(struct extent_buffer *eb,
869 int slot, int atomic)
bd989ba3
JS
870{
871 int ret;
872
e09c2efe 873 ret = tree_mod_log_insert_key(eb, slot, MOD_LOG_KEY_REPLACE,
c8cc6341 874 atomic ? GFP_ATOMIC : GFP_NOFS);
bd989ba3
JS
875 BUG_ON(ret < 0);
876}
877
db7279a2 878static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
bd989ba3 879{
5de865ee
FDBM
880 struct tree_mod_elem **tm_list = NULL;
881 int nritems = 0;
882 int i;
883 int ret = 0;
884
885 if (btrfs_header_level(eb) == 0)
886 return 0;
887
db7279a2 888 if (!tree_mod_need_log(eb->fs_info, NULL))
5de865ee
FDBM
889 return 0;
890
891 nritems = btrfs_header_nritems(eb);
31e818fe 892 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
893 if (!tm_list)
894 return -ENOMEM;
895
896 for (i = 0; i < nritems; i++) {
897 tm_list[i] = alloc_tree_mod_elem(eb, i,
898 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
899 if (!tm_list[i]) {
900 ret = -ENOMEM;
901 goto free_tms;
902 }
903 }
904
db7279a2 905 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
906 goto free_tms;
907
db7279a2
DS
908 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
909 tree_mod_log_write_unlock(eb->fs_info);
5de865ee
FDBM
910 if (ret)
911 goto free_tms;
912 kfree(tm_list);
913
914 return 0;
915
916free_tms:
917 for (i = 0; i < nritems; i++)
918 kfree(tm_list[i]);
919 kfree(tm_list);
920
921 return ret;
bd989ba3
JS
922}
923
097b8a7c 924static noinline void
bd989ba3 925tree_mod_log_set_root_pointer(struct btrfs_root *root,
90f8d62e
JS
926 struct extent_buffer *new_root_node,
927 int log_removal)
bd989ba3
JS
928{
929 int ret;
95b757c1 930 ret = tree_mod_log_insert_root(root->node, new_root_node, log_removal);
bd989ba3
JS
931 BUG_ON(ret < 0);
932}
933
5d4f98a2
YZ
934/*
935 * check if the tree block can be shared by multiple trees
936 */
937int btrfs_block_can_be_shared(struct btrfs_root *root,
938 struct extent_buffer *buf)
939{
940 /*
01327610 941 * Tree blocks not in reference counted trees and tree roots
5d4f98a2
YZ
942 * are never shared. If a block was allocated after the last
943 * snapshot and the block was not allocated by tree relocation,
944 * we know the block is not shared.
945 */
27cdeb70 946 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
947 buf != root->node && buf != root->commit_root &&
948 (btrfs_header_generation(buf) <=
949 btrfs_root_last_snapshot(&root->root_item) ||
950 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
951 return 1;
952#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
27cdeb70 953 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
954 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
955 return 1;
956#endif
957 return 0;
958}
959
960static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
961 struct btrfs_root *root,
962 struct extent_buffer *buf,
f0486c68
YZ
963 struct extent_buffer *cow,
964 int *last_ref)
5d4f98a2 965{
0b246afa 966 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
967 u64 refs;
968 u64 owner;
969 u64 flags;
970 u64 new_flags = 0;
971 int ret;
972
973 /*
974 * Backrefs update rules:
975 *
976 * Always use full backrefs for extent pointers in tree block
977 * allocated by tree relocation.
978 *
979 * If a shared tree block is no longer referenced by its owner
980 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
981 * use full backrefs for extent pointers in tree block.
982 *
983 * If a tree block is been relocating
984 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
985 * use full backrefs for extent pointers in tree block.
986 * The reason for this is some operations (such as drop tree)
987 * are only allowed for blocks use full backrefs.
988 */
989
990 if (btrfs_block_can_be_shared(root, buf)) {
2ff7e61e 991 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
3173a18f
JB
992 btrfs_header_level(buf), 1,
993 &refs, &flags);
be1a5564
MF
994 if (ret)
995 return ret;
e5df9573
MF
996 if (refs == 0) {
997 ret = -EROFS;
0b246afa 998 btrfs_handle_fs_error(fs_info, ret, NULL);
e5df9573
MF
999 return ret;
1000 }
5d4f98a2
YZ
1001 } else {
1002 refs = 1;
1003 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1004 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1005 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1006 else
1007 flags = 0;
1008 }
1009
1010 owner = btrfs_header_owner(buf);
1011 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1012 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1013
1014 if (refs > 1) {
1015 if ((owner == root->root_key.objectid ||
1016 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1017 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 1018 ret = btrfs_inc_ref(trans, root, buf, 1);
692826b2
JM
1019 if (ret)
1020 return ret;
5d4f98a2
YZ
1021
1022 if (root->root_key.objectid ==
1023 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 1024 ret = btrfs_dec_ref(trans, root, buf, 0);
692826b2
JM
1025 if (ret)
1026 return ret;
e339a6b0 1027 ret = btrfs_inc_ref(trans, root, cow, 1);
692826b2
JM
1028 if (ret)
1029 return ret;
5d4f98a2
YZ
1030 }
1031 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1032 } else {
1033
1034 if (root->root_key.objectid ==
1035 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1036 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1037 else
e339a6b0 1038 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
1039 if (ret)
1040 return ret;
5d4f98a2
YZ
1041 }
1042 if (new_flags != 0) {
b1c79e09
JB
1043 int level = btrfs_header_level(buf);
1044
2ff7e61e 1045 ret = btrfs_set_disk_extent_flags(trans, fs_info,
5d4f98a2
YZ
1046 buf->start,
1047 buf->len,
b1c79e09 1048 new_flags, level, 0);
be1a5564
MF
1049 if (ret)
1050 return ret;
5d4f98a2
YZ
1051 }
1052 } else {
1053 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1054 if (root->root_key.objectid ==
1055 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1056 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1057 else
e339a6b0 1058 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
1059 if (ret)
1060 return ret;
e339a6b0 1061 ret = btrfs_dec_ref(trans, root, buf, 1);
692826b2
JM
1062 if (ret)
1063 return ret;
5d4f98a2 1064 }
7c302b49 1065 clean_tree_block(fs_info, buf);
f0486c68 1066 *last_ref = 1;
5d4f98a2
YZ
1067 }
1068 return 0;
1069}
1070
d352ac68 1071/*
d397712b
CM
1072 * does the dirty work in cow of a single block. The parent block (if
1073 * supplied) is updated to point to the new cow copy. The new buffer is marked
1074 * dirty and returned locked. If you modify the block it needs to be marked
1075 * dirty again.
d352ac68
CM
1076 *
1077 * search_start -- an allocation hint for the new block
1078 *
d397712b
CM
1079 * empty_size -- a hint that you plan on doing more cow. This is the size in
1080 * bytes the allocator should try to find free next to the block it returns.
1081 * This is just a hint and may be ignored by the allocator.
d352ac68 1082 */
d397712b 1083static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1084 struct btrfs_root *root,
1085 struct extent_buffer *buf,
1086 struct extent_buffer *parent, int parent_slot,
1087 struct extent_buffer **cow_ret,
9fa8cfe7 1088 u64 search_start, u64 empty_size)
02217ed2 1089{
0b246afa 1090 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2 1091 struct btrfs_disk_key disk_key;
5f39d397 1092 struct extent_buffer *cow;
be1a5564 1093 int level, ret;
f0486c68 1094 int last_ref = 0;
925baedd 1095 int unlock_orig = 0;
0f5053eb 1096 u64 parent_start = 0;
7bb86316 1097
925baedd
CM
1098 if (*cow_ret == buf)
1099 unlock_orig = 1;
1100
b9447ef8 1101 btrfs_assert_tree_locked(buf);
925baedd 1102
27cdeb70 1103 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 1104 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
1105 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1106 trans->transid != root->last_trans);
5f39d397 1107
7bb86316 1108 level = btrfs_header_level(buf);
31840ae1 1109
5d4f98a2
YZ
1110 if (level == 0)
1111 btrfs_item_key(buf, &disk_key, 0);
1112 else
1113 btrfs_node_key(buf, &disk_key, 0);
1114
0f5053eb
GR
1115 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1116 parent_start = parent->start;
5d4f98a2 1117
4d75f8a9
DS
1118 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1119 root->root_key.objectid, &disk_key, level,
1120 search_start, empty_size);
54aa1f4d
CM
1121 if (IS_ERR(cow))
1122 return PTR_ERR(cow);
6702ed49 1123
b4ce94de
CM
1124 /* cow is set to blocking by btrfs_init_new_buffer */
1125
58e8012c 1126 copy_extent_buffer_full(cow, buf);
db94535d 1127 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1128 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1129 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1130 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1131 BTRFS_HEADER_FLAG_RELOC);
1132 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1133 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1134 else
1135 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1136
0b246afa 1137 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 1138
be1a5564 1139 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1140 if (ret) {
66642832 1141 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1142 return ret;
1143 }
1a40e23b 1144
27cdeb70 1145 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1146 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1147 if (ret) {
66642832 1148 btrfs_abort_transaction(trans, ret);
83d4cfd4 1149 return ret;
93314e3b 1150 }
83d4cfd4 1151 }
3fd0a558 1152
02217ed2 1153 if (buf == root->node) {
925baedd 1154 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1155 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1156 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1157 parent_start = buf->start;
925baedd 1158
5f39d397 1159 extent_buffer_get(cow);
90f8d62e 1160 tree_mod_log_set_root_pointer(root, cow, 1);
240f62c8 1161 rcu_assign_pointer(root->node, cow);
925baedd 1162
f0486c68 1163 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1164 last_ref);
5f39d397 1165 free_extent_buffer(buf);
0b86a832 1166 add_root_to_dirty_list(root);
02217ed2 1167 } else {
5d4f98a2 1168 WARN_ON(trans->transid != btrfs_header_generation(parent));
e09c2efe 1169 tree_mod_log_insert_key(parent, parent_slot,
c8cc6341 1170 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1171 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1172 cow->start);
74493f7a
CM
1173 btrfs_set_node_ptr_generation(parent, parent_slot,
1174 trans->transid);
d6025579 1175 btrfs_mark_buffer_dirty(parent);
5de865ee 1176 if (last_ref) {
db7279a2 1177 ret = tree_mod_log_free_eb(buf);
5de865ee 1178 if (ret) {
66642832 1179 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1180 return ret;
1181 }
1182 }
f0486c68 1183 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1184 last_ref);
02217ed2 1185 }
925baedd
CM
1186 if (unlock_orig)
1187 btrfs_tree_unlock(buf);
3083ee2e 1188 free_extent_buffer_stale(buf);
ccd467d6 1189 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1190 *cow_ret = cow;
02217ed2
CM
1191 return 0;
1192}
1193
5d9e75c4
JS
1194/*
1195 * returns the logical address of the oldest predecessor of the given root.
1196 * entries older than time_seq are ignored.
1197 */
bcd24dab
DS
1198static struct tree_mod_elem *__tree_mod_log_oldest_root(
1199 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1200{
1201 struct tree_mod_elem *tm;
1202 struct tree_mod_elem *found = NULL;
30b0463a 1203 u64 root_logical = eb_root->start;
5d9e75c4
JS
1204 int looped = 0;
1205
1206 if (!time_seq)
35a3621b 1207 return NULL;
5d9e75c4
JS
1208
1209 /*
298cfd36
CR
1210 * the very last operation that's logged for a root is the
1211 * replacement operation (if it is replaced at all). this has
1212 * the logical address of the *new* root, making it the very
1213 * first operation that's logged for this root.
5d9e75c4
JS
1214 */
1215 while (1) {
bcd24dab 1216 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
5d9e75c4
JS
1217 time_seq);
1218 if (!looped && !tm)
35a3621b 1219 return NULL;
5d9e75c4 1220 /*
28da9fb4
JS
1221 * if there are no tree operation for the oldest root, we simply
1222 * return it. this should only happen if that (old) root is at
1223 * level 0.
5d9e75c4 1224 */
28da9fb4
JS
1225 if (!tm)
1226 break;
5d9e75c4 1227
28da9fb4
JS
1228 /*
1229 * if there's an operation that's not a root replacement, we
1230 * found the oldest version of our root. normally, we'll find a
1231 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1232 */
5d9e75c4
JS
1233 if (tm->op != MOD_LOG_ROOT_REPLACE)
1234 break;
1235
1236 found = tm;
1237 root_logical = tm->old_root.logical;
5d9e75c4
JS
1238 looped = 1;
1239 }
1240
a95236d9
JS
1241 /* if there's no old root to return, return what we found instead */
1242 if (!found)
1243 found = tm;
1244
5d9e75c4
JS
1245 return found;
1246}
1247
1248/*
1249 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1250 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1251 * time_seq).
1252 */
1253static void
f1ca7e98
JB
1254__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1255 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1256{
1257 u32 n;
1258 struct rb_node *next;
1259 struct tree_mod_elem *tm = first_tm;
1260 unsigned long o_dst;
1261 unsigned long o_src;
1262 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1263
1264 n = btrfs_header_nritems(eb);
f1ca7e98 1265 tree_mod_log_read_lock(fs_info);
097b8a7c 1266 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1267 /*
1268 * all the operations are recorded with the operator used for
1269 * the modification. as we're going backwards, we do the
1270 * opposite of each operation here.
1271 */
1272 switch (tm->op) {
1273 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1274 BUG_ON(tm->slot < n);
1c697d4a 1275 /* Fallthrough */
95c80bb1 1276 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1277 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1278 btrfs_set_node_key(eb, &tm->key, tm->slot);
1279 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1280 btrfs_set_node_ptr_generation(eb, tm->slot,
1281 tm->generation);
4c3e6969 1282 n++;
5d9e75c4
JS
1283 break;
1284 case MOD_LOG_KEY_REPLACE:
1285 BUG_ON(tm->slot >= n);
1286 btrfs_set_node_key(eb, &tm->key, tm->slot);
1287 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1288 btrfs_set_node_ptr_generation(eb, tm->slot,
1289 tm->generation);
1290 break;
1291 case MOD_LOG_KEY_ADD:
19956c7e 1292 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1293 n--;
1294 break;
1295 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1296 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1297 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1298 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1299 tm->move.nr_items * p_size);
1300 break;
1301 case MOD_LOG_ROOT_REPLACE:
1302 /*
1303 * this operation is special. for roots, this must be
1304 * handled explicitly before rewinding.
1305 * for non-roots, this operation may exist if the node
1306 * was a root: root A -> child B; then A gets empty and
1307 * B is promoted to the new root. in the mod log, we'll
1308 * have a root-replace operation for B, a tree block
1309 * that is no root. we simply ignore that operation.
1310 */
1311 break;
1312 }
1313 next = rb_next(&tm->node);
1314 if (!next)
1315 break;
6b4df8b6 1316 tm = rb_entry(next, struct tree_mod_elem, node);
298cfd36 1317 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1318 break;
1319 }
f1ca7e98 1320 tree_mod_log_read_unlock(fs_info);
5d9e75c4
JS
1321 btrfs_set_header_nritems(eb, n);
1322}
1323
47fb091f 1324/*
01327610 1325 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1326 * is returned. If rewind operations happen, a fresh buffer is returned. The
1327 * returned buffer is always read-locked. If the returned buffer is not the
1328 * input buffer, the lock on the input buffer is released and the input buffer
1329 * is freed (its refcount is decremented).
1330 */
5d9e75c4 1331static struct extent_buffer *
9ec72677
JB
1332tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1333 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1334{
1335 struct extent_buffer *eb_rewin;
1336 struct tree_mod_elem *tm;
1337
1338 if (!time_seq)
1339 return eb;
1340
1341 if (btrfs_header_level(eb) == 0)
1342 return eb;
1343
1344 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1345 if (!tm)
1346 return eb;
1347
9ec72677
JB
1348 btrfs_set_path_blocking(path);
1349 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1350
5d9e75c4
JS
1351 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1352 BUG_ON(tm->slot != 0);
da17066c 1353 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1354 if (!eb_rewin) {
9ec72677 1355 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1356 free_extent_buffer(eb);
1357 return NULL;
1358 }
5d9e75c4
JS
1359 btrfs_set_header_bytenr(eb_rewin, eb->start);
1360 btrfs_set_header_backref_rev(eb_rewin,
1361 btrfs_header_backref_rev(eb));
1362 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1363 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1364 } else {
1365 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1366 if (!eb_rewin) {
9ec72677 1367 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1368 free_extent_buffer(eb);
1369 return NULL;
1370 }
5d9e75c4
JS
1371 }
1372
9ec72677
JB
1373 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1374 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1375 free_extent_buffer(eb);
1376
47fb091f
JS
1377 extent_buffer_get(eb_rewin);
1378 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1379 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1380 WARN_ON(btrfs_header_nritems(eb_rewin) >
da17066c 1381 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1382
1383 return eb_rewin;
1384}
1385
8ba97a15
JS
1386/*
1387 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1388 * value. If there are no changes, the current root->root_node is returned. If
1389 * anything changed in between, there's a fresh buffer allocated on which the
1390 * rewind operations are done. In any case, the returned buffer is read locked.
1391 * Returns NULL on error (with no locks held).
1392 */
5d9e75c4
JS
1393static inline struct extent_buffer *
1394get_old_root(struct btrfs_root *root, u64 time_seq)
1395{
0b246afa 1396 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4 1397 struct tree_mod_elem *tm;
30b0463a
JS
1398 struct extent_buffer *eb = NULL;
1399 struct extent_buffer *eb_root;
7bfdcf7f 1400 struct extent_buffer *old;
a95236d9 1401 struct tree_mod_root *old_root = NULL;
4325edd0 1402 u64 old_generation = 0;
a95236d9 1403 u64 logical;
5d9e75c4 1404
30b0463a 1405 eb_root = btrfs_read_lock_root_node(root);
bcd24dab 1406 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5d9e75c4 1407 if (!tm)
30b0463a 1408 return eb_root;
5d9e75c4 1409
a95236d9
JS
1410 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1411 old_root = &tm->old_root;
1412 old_generation = tm->generation;
1413 logical = old_root->logical;
1414 } else {
30b0463a 1415 logical = eb_root->start;
a95236d9 1416 }
5d9e75c4 1417
0b246afa 1418 tm = tree_mod_log_search(fs_info, logical, time_seq);
834328a8 1419 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1420 btrfs_tree_read_unlock(eb_root);
1421 free_extent_buffer(eb_root);
2ff7e61e 1422 old = read_tree_block(fs_info, logical, 0);
64c043de
LB
1423 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1424 if (!IS_ERR(old))
1425 free_extent_buffer(old);
0b246afa
JM
1426 btrfs_warn(fs_info,
1427 "failed to read tree block %llu from get_old_root",
1428 logical);
834328a8 1429 } else {
7bfdcf7f
LB
1430 eb = btrfs_clone_extent_buffer(old);
1431 free_extent_buffer(old);
834328a8
JS
1432 }
1433 } else if (old_root) {
30b0463a
JS
1434 btrfs_tree_read_unlock(eb_root);
1435 free_extent_buffer(eb_root);
0b246afa 1436 eb = alloc_dummy_extent_buffer(fs_info, logical);
834328a8 1437 } else {
9ec72677 1438 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1439 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1440 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1441 free_extent_buffer(eb_root);
834328a8
JS
1442 }
1443
8ba97a15
JS
1444 if (!eb)
1445 return NULL;
d6381084 1446 extent_buffer_get(eb);
8ba97a15 1447 btrfs_tree_read_lock(eb);
a95236d9 1448 if (old_root) {
5d9e75c4
JS
1449 btrfs_set_header_bytenr(eb, eb->start);
1450 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1451 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1452 btrfs_set_header_level(eb, old_root->level);
1453 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1454 }
28da9fb4 1455 if (tm)
0b246afa 1456 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
28da9fb4
JS
1457 else
1458 WARN_ON(btrfs_header_level(eb) != 0);
0b246afa 1459 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1460
1461 return eb;
1462}
1463
5b6602e7
JS
1464int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1465{
1466 struct tree_mod_elem *tm;
1467 int level;
30b0463a 1468 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1469
bcd24dab 1470 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5b6602e7
JS
1471 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1472 level = tm->old_root.level;
1473 } else {
30b0463a 1474 level = btrfs_header_level(eb_root);
5b6602e7 1475 }
30b0463a 1476 free_extent_buffer(eb_root);
5b6602e7
JS
1477
1478 return level;
1479}
1480
5d4f98a2
YZ
1481static inline int should_cow_block(struct btrfs_trans_handle *trans,
1482 struct btrfs_root *root,
1483 struct extent_buffer *buf)
1484{
f5ee5c9a 1485 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1486 return 0;
fccb84c9 1487
f1ebcc74
LB
1488 /* ensure we can see the force_cow */
1489 smp_rmb();
1490
1491 /*
1492 * We do not need to cow a block if
1493 * 1) this block is not created or changed in this transaction;
1494 * 2) this block does not belong to TREE_RELOC tree;
1495 * 3) the root is not forced COW.
1496 *
1497 * What is forced COW:
01327610 1498 * when we create snapshot during committing the transaction,
f1ebcc74
LB
1499 * after we've finished coping src root, we must COW the shared
1500 * block to ensure the metadata consistency.
1501 */
5d4f98a2
YZ
1502 if (btrfs_header_generation(buf) == trans->transid &&
1503 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1504 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1505 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1506 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1507 return 0;
1508 return 1;
1509}
1510
d352ac68
CM
1511/*
1512 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1513 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1514 * once per transaction, as long as it hasn't been written yet
1515 */
d397712b 1516noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1517 struct btrfs_root *root, struct extent_buffer *buf,
1518 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1519 struct extent_buffer **cow_ret)
6702ed49 1520{
0b246afa 1521 struct btrfs_fs_info *fs_info = root->fs_info;
6702ed49 1522 u64 search_start;
f510cfec 1523 int ret;
dc17ff8f 1524
0b246afa 1525 if (trans->transaction != fs_info->running_transaction)
31b1a2bd 1526 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1527 trans->transid,
0b246afa 1528 fs_info->running_transaction->transid);
31b1a2bd 1529
0b246afa 1530 if (trans->transid != fs_info->generation)
31b1a2bd 1531 WARN(1, KERN_CRIT "trans %llu running %llu\n",
0b246afa 1532 trans->transid, fs_info->generation);
dc17ff8f 1533
5d4f98a2 1534 if (!should_cow_block(trans, root, buf)) {
64c12921 1535 trans->dirty = true;
6702ed49
CM
1536 *cow_ret = buf;
1537 return 0;
1538 }
c487685d 1539
ee22184b 1540 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1541
1542 if (parent)
1543 btrfs_set_lock_blocking(parent);
1544 btrfs_set_lock_blocking(buf);
1545
f510cfec 1546 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1547 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1548
1549 trace_btrfs_cow_block(root, buf, *cow_ret);
1550
f510cfec 1551 return ret;
6702ed49
CM
1552}
1553
d352ac68
CM
1554/*
1555 * helper function for defrag to decide if two blocks pointed to by a
1556 * node are actually close by
1557 */
6b80053d 1558static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1559{
6b80053d 1560 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1561 return 1;
6b80053d 1562 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1563 return 1;
1564 return 0;
1565}
1566
081e9573
CM
1567/*
1568 * compare two keys in a memcmp fashion
1569 */
310712b2
OS
1570static int comp_keys(const struct btrfs_disk_key *disk,
1571 const struct btrfs_key *k2)
081e9573
CM
1572{
1573 struct btrfs_key k1;
1574
1575 btrfs_disk_key_to_cpu(&k1, disk);
1576
20736aba 1577 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1578}
1579
f3465ca4
JB
1580/*
1581 * same as comp_keys only with two btrfs_key's
1582 */
310712b2 1583int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
f3465ca4
JB
1584{
1585 if (k1->objectid > k2->objectid)
1586 return 1;
1587 if (k1->objectid < k2->objectid)
1588 return -1;
1589 if (k1->type > k2->type)
1590 return 1;
1591 if (k1->type < k2->type)
1592 return -1;
1593 if (k1->offset > k2->offset)
1594 return 1;
1595 if (k1->offset < k2->offset)
1596 return -1;
1597 return 0;
1598}
081e9573 1599
d352ac68
CM
1600/*
1601 * this is used by the defrag code to go through all the
1602 * leaves pointed to by a node and reallocate them so that
1603 * disk order is close to key order
1604 */
6702ed49 1605int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1606 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1607 int start_slot, u64 *last_ret,
a6b6e75e 1608 struct btrfs_key *progress)
6702ed49 1609{
0b246afa 1610 struct btrfs_fs_info *fs_info = root->fs_info;
6b80053d 1611 struct extent_buffer *cur;
6702ed49 1612 u64 blocknr;
ca7a79ad 1613 u64 gen;
e9d0b13b
CM
1614 u64 search_start = *last_ret;
1615 u64 last_block = 0;
6702ed49
CM
1616 u64 other;
1617 u32 parent_nritems;
6702ed49
CM
1618 int end_slot;
1619 int i;
1620 int err = 0;
f2183bde 1621 int parent_level;
6b80053d
CM
1622 int uptodate;
1623 u32 blocksize;
081e9573
CM
1624 int progress_passed = 0;
1625 struct btrfs_disk_key disk_key;
6702ed49 1626
5708b959 1627 parent_level = btrfs_header_level(parent);
5708b959 1628
0b246afa
JM
1629 WARN_ON(trans->transaction != fs_info->running_transaction);
1630 WARN_ON(trans->transid != fs_info->generation);
86479a04 1631
6b80053d 1632 parent_nritems = btrfs_header_nritems(parent);
0b246afa 1633 blocksize = fs_info->nodesize;
5dfe2be7 1634 end_slot = parent_nritems - 1;
6702ed49 1635
5dfe2be7 1636 if (parent_nritems <= 1)
6702ed49
CM
1637 return 0;
1638
b4ce94de
CM
1639 btrfs_set_lock_blocking(parent);
1640
5dfe2be7 1641 for (i = start_slot; i <= end_slot; i++) {
6702ed49 1642 int close = 1;
a6b6e75e 1643
081e9573
CM
1644 btrfs_node_key(parent, &disk_key, i);
1645 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1646 continue;
1647
1648 progress_passed = 1;
6b80053d 1649 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1650 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1651 if (last_block == 0)
1652 last_block = blocknr;
5708b959 1653
6702ed49 1654 if (i > 0) {
6b80053d
CM
1655 other = btrfs_node_blockptr(parent, i - 1);
1656 close = close_blocks(blocknr, other, blocksize);
6702ed49 1657 }
5dfe2be7 1658 if (!close && i < end_slot) {
6b80053d
CM
1659 other = btrfs_node_blockptr(parent, i + 1);
1660 close = close_blocks(blocknr, other, blocksize);
6702ed49 1661 }
e9d0b13b
CM
1662 if (close) {
1663 last_block = blocknr;
6702ed49 1664 continue;
e9d0b13b 1665 }
6702ed49 1666
0b246afa 1667 cur = find_extent_buffer(fs_info, blocknr);
6b80053d 1668 if (cur)
b9fab919 1669 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1670 else
1671 uptodate = 0;
5708b959 1672 if (!cur || !uptodate) {
6b80053d 1673 if (!cur) {
2ff7e61e 1674 cur = read_tree_block(fs_info, blocknr, gen);
64c043de
LB
1675 if (IS_ERR(cur)) {
1676 return PTR_ERR(cur);
1677 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1678 free_extent_buffer(cur);
97d9a8a4 1679 return -EIO;
416bc658 1680 }
6b80053d 1681 } else if (!uptodate) {
018642a1
TI
1682 err = btrfs_read_buffer(cur, gen);
1683 if (err) {
1684 free_extent_buffer(cur);
1685 return err;
1686 }
f2183bde 1687 }
6702ed49 1688 }
e9d0b13b 1689 if (search_start == 0)
6b80053d 1690 search_start = last_block;
e9d0b13b 1691
e7a84565 1692 btrfs_tree_lock(cur);
b4ce94de 1693 btrfs_set_lock_blocking(cur);
6b80053d 1694 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1695 &cur, search_start,
6b80053d 1696 min(16 * blocksize,
9fa8cfe7 1697 (end_slot - i) * blocksize));
252c38f0 1698 if (err) {
e7a84565 1699 btrfs_tree_unlock(cur);
6b80053d 1700 free_extent_buffer(cur);
6702ed49 1701 break;
252c38f0 1702 }
e7a84565
CM
1703 search_start = cur->start;
1704 last_block = cur->start;
f2183bde 1705 *last_ret = search_start;
e7a84565
CM
1706 btrfs_tree_unlock(cur);
1707 free_extent_buffer(cur);
6702ed49
CM
1708 }
1709 return err;
1710}
1711
74123bd7 1712/*
5f39d397
CM
1713 * search for key in the extent_buffer. The items start at offset p,
1714 * and they are item_size apart. There are 'max' items in p.
1715 *
74123bd7
CM
1716 * the slot in the array is returned via slot, and it points to
1717 * the place where you would insert key if it is not found in
1718 * the array.
1719 *
1720 * slot may point to max if the key is bigger than all of the keys
1721 */
e02119d5 1722static noinline int generic_bin_search(struct extent_buffer *eb,
310712b2
OS
1723 unsigned long p, int item_size,
1724 const struct btrfs_key *key,
e02119d5 1725 int max, int *slot)
be0e5c09
CM
1726{
1727 int low = 0;
1728 int high = max;
1729 int mid;
1730 int ret;
479965d6 1731 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1732 struct btrfs_disk_key unaligned;
1733 unsigned long offset;
5f39d397
CM
1734 char *kaddr = NULL;
1735 unsigned long map_start = 0;
1736 unsigned long map_len = 0;
479965d6 1737 int err;
be0e5c09 1738
5e24e9af
LB
1739 if (low > high) {
1740 btrfs_err(eb->fs_info,
1741 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1742 __func__, low, high, eb->start,
1743 btrfs_header_owner(eb), btrfs_header_level(eb));
1744 return -EINVAL;
1745 }
1746
d397712b 1747 while (low < high) {
be0e5c09 1748 mid = (low + high) / 2;
5f39d397
CM
1749 offset = p + mid * item_size;
1750
a6591715 1751 if (!kaddr || offset < map_start ||
5f39d397
CM
1752 (offset + sizeof(struct btrfs_disk_key)) >
1753 map_start + map_len) {
934d375b
CM
1754
1755 err = map_private_extent_buffer(eb, offset,
479965d6 1756 sizeof(struct btrfs_disk_key),
a6591715 1757 &kaddr, &map_start, &map_len);
479965d6
CM
1758
1759 if (!err) {
1760 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1761 map_start);
415b35a5 1762 } else if (err == 1) {
479965d6
CM
1763 read_extent_buffer(eb, &unaligned,
1764 offset, sizeof(unaligned));
1765 tmp = &unaligned;
415b35a5
LB
1766 } else {
1767 return err;
479965d6 1768 }
5f39d397 1769
5f39d397
CM
1770 } else {
1771 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1772 map_start);
1773 }
be0e5c09
CM
1774 ret = comp_keys(tmp, key);
1775
1776 if (ret < 0)
1777 low = mid + 1;
1778 else if (ret > 0)
1779 high = mid;
1780 else {
1781 *slot = mid;
1782 return 0;
1783 }
1784 }
1785 *slot = low;
1786 return 1;
1787}
1788
97571fd0
CM
1789/*
1790 * simple bin_search frontend that does the right thing for
1791 * leaves vs nodes
1792 */
a74b35ec
NB
1793int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1794 int level, int *slot)
be0e5c09 1795{
f775738f 1796 if (level == 0)
5f39d397
CM
1797 return generic_bin_search(eb,
1798 offsetof(struct btrfs_leaf, items),
0783fcfc 1799 sizeof(struct btrfs_item),
5f39d397 1800 key, btrfs_header_nritems(eb),
7518a238 1801 slot);
f775738f 1802 else
5f39d397
CM
1803 return generic_bin_search(eb,
1804 offsetof(struct btrfs_node, ptrs),
123abc88 1805 sizeof(struct btrfs_key_ptr),
5f39d397 1806 key, btrfs_header_nritems(eb),
7518a238 1807 slot);
be0e5c09
CM
1808}
1809
f0486c68
YZ
1810static void root_add_used(struct btrfs_root *root, u32 size)
1811{
1812 spin_lock(&root->accounting_lock);
1813 btrfs_set_root_used(&root->root_item,
1814 btrfs_root_used(&root->root_item) + size);
1815 spin_unlock(&root->accounting_lock);
1816}
1817
1818static void root_sub_used(struct btrfs_root *root, u32 size)
1819{
1820 spin_lock(&root->accounting_lock);
1821 btrfs_set_root_used(&root->root_item,
1822 btrfs_root_used(&root->root_item) - size);
1823 spin_unlock(&root->accounting_lock);
1824}
1825
d352ac68
CM
1826/* given a node and slot number, this reads the blocks it points to. The
1827 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1828 */
2ff7e61e
JM
1829static noinline struct extent_buffer *
1830read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1831 int slot)
bb803951 1832{
ca7a79ad 1833 int level = btrfs_header_level(parent);
416bc658
JB
1834 struct extent_buffer *eb;
1835
fb770ae4
LB
1836 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1837 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1838
1839 BUG_ON(level == 0);
1840
2ff7e61e 1841 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
416bc658 1842 btrfs_node_ptr_generation(parent, slot));
fb770ae4
LB
1843 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1844 free_extent_buffer(eb);
1845 eb = ERR_PTR(-EIO);
416bc658
JB
1846 }
1847
1848 return eb;
bb803951
CM
1849}
1850
d352ac68
CM
1851/*
1852 * node level balancing, used to make sure nodes are in proper order for
1853 * item deletion. We balance from the top down, so we have to make sure
1854 * that a deletion won't leave an node completely empty later on.
1855 */
e02119d5 1856static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1857 struct btrfs_root *root,
1858 struct btrfs_path *path, int level)
bb803951 1859{
0b246afa 1860 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
1861 struct extent_buffer *right = NULL;
1862 struct extent_buffer *mid;
1863 struct extent_buffer *left = NULL;
1864 struct extent_buffer *parent = NULL;
bb803951
CM
1865 int ret = 0;
1866 int wret;
1867 int pslot;
bb803951 1868 int orig_slot = path->slots[level];
79f95c82 1869 u64 orig_ptr;
bb803951
CM
1870
1871 if (level == 0)
1872 return 0;
1873
5f39d397 1874 mid = path->nodes[level];
b4ce94de 1875
bd681513
CM
1876 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1877 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1878 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1879
1d4f8a0c 1880 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1881
a05a9bb1 1882 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1883 parent = path->nodes[level + 1];
a05a9bb1
LZ
1884 pslot = path->slots[level + 1];
1885 }
bb803951 1886
40689478
CM
1887 /*
1888 * deal with the case where there is only one pointer in the root
1889 * by promoting the node below to a root
1890 */
5f39d397
CM
1891 if (!parent) {
1892 struct extent_buffer *child;
bb803951 1893
5f39d397 1894 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1895 return 0;
1896
1897 /* promote the child to a root */
2ff7e61e 1898 child = read_node_slot(fs_info, mid, 0);
fb770ae4
LB
1899 if (IS_ERR(child)) {
1900 ret = PTR_ERR(child);
0b246afa 1901 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1902 goto enospc;
1903 }
1904
925baedd 1905 btrfs_tree_lock(child);
b4ce94de 1906 btrfs_set_lock_blocking(child);
9fa8cfe7 1907 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1908 if (ret) {
1909 btrfs_tree_unlock(child);
1910 free_extent_buffer(child);
1911 goto enospc;
1912 }
2f375ab9 1913
90f8d62e 1914 tree_mod_log_set_root_pointer(root, child, 1);
240f62c8 1915 rcu_assign_pointer(root->node, child);
925baedd 1916
0b86a832 1917 add_root_to_dirty_list(root);
925baedd 1918 btrfs_tree_unlock(child);
b4ce94de 1919
925baedd 1920 path->locks[level] = 0;
bb803951 1921 path->nodes[level] = NULL;
7c302b49 1922 clean_tree_block(fs_info, mid);
925baedd 1923 btrfs_tree_unlock(mid);
bb803951 1924 /* once for the path */
5f39d397 1925 free_extent_buffer(mid);
f0486c68
YZ
1926
1927 root_sub_used(root, mid->len);
5581a51a 1928 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1929 /* once for the root ptr */
3083ee2e 1930 free_extent_buffer_stale(mid);
f0486c68 1931 return 0;
bb803951 1932 }
5f39d397 1933 if (btrfs_header_nritems(mid) >
0b246afa 1934 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
bb803951
CM
1935 return 0;
1936
2ff7e61e 1937 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
1938 if (IS_ERR(left))
1939 left = NULL;
1940
5f39d397 1941 if (left) {
925baedd 1942 btrfs_tree_lock(left);
b4ce94de 1943 btrfs_set_lock_blocking(left);
5f39d397 1944 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1945 parent, pslot - 1, &left);
54aa1f4d
CM
1946 if (wret) {
1947 ret = wret;
1948 goto enospc;
1949 }
2cc58cf2 1950 }
fb770ae4 1951
2ff7e61e 1952 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
1953 if (IS_ERR(right))
1954 right = NULL;
1955
5f39d397 1956 if (right) {
925baedd 1957 btrfs_tree_lock(right);
b4ce94de 1958 btrfs_set_lock_blocking(right);
5f39d397 1959 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1960 parent, pslot + 1, &right);
2cc58cf2
CM
1961 if (wret) {
1962 ret = wret;
1963 goto enospc;
1964 }
1965 }
1966
1967 /* first, try to make some room in the middle buffer */
5f39d397
CM
1968 if (left) {
1969 orig_slot += btrfs_header_nritems(left);
2ff7e61e 1970 wret = push_node_left(trans, fs_info, left, mid, 1);
79f95c82
CM
1971 if (wret < 0)
1972 ret = wret;
bb803951 1973 }
79f95c82
CM
1974
1975 /*
1976 * then try to empty the right most buffer into the middle
1977 */
5f39d397 1978 if (right) {
2ff7e61e 1979 wret = push_node_left(trans, fs_info, mid, right, 1);
54aa1f4d 1980 if (wret < 0 && wret != -ENOSPC)
79f95c82 1981 ret = wret;
5f39d397 1982 if (btrfs_header_nritems(right) == 0) {
7c302b49 1983 clean_tree_block(fs_info, right);
925baedd 1984 btrfs_tree_unlock(right);
afe5fea7 1985 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 1986 root_sub_used(root, right->len);
5581a51a 1987 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1988 free_extent_buffer_stale(right);
f0486c68 1989 right = NULL;
bb803951 1990 } else {
5f39d397
CM
1991 struct btrfs_disk_key right_key;
1992 btrfs_node_key(right, &right_key, 0);
3ac6de1a 1993 tree_mod_log_set_node_key(parent, pslot + 1, 0);
5f39d397
CM
1994 btrfs_set_node_key(parent, &right_key, pslot + 1);
1995 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1996 }
1997 }
5f39d397 1998 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1999 /*
2000 * we're not allowed to leave a node with one item in the
2001 * tree during a delete. A deletion from lower in the tree
2002 * could try to delete the only pointer in this node.
2003 * So, pull some keys from the left.
2004 * There has to be a left pointer at this point because
2005 * otherwise we would have pulled some pointers from the
2006 * right
2007 */
305a26af
MF
2008 if (!left) {
2009 ret = -EROFS;
0b246afa 2010 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
2011 goto enospc;
2012 }
2ff7e61e 2013 wret = balance_node_right(trans, fs_info, mid, left);
54aa1f4d 2014 if (wret < 0) {
79f95c82 2015 ret = wret;
54aa1f4d
CM
2016 goto enospc;
2017 }
bce4eae9 2018 if (wret == 1) {
2ff7e61e 2019 wret = push_node_left(trans, fs_info, left, mid, 1);
bce4eae9
CM
2020 if (wret < 0)
2021 ret = wret;
2022 }
79f95c82
CM
2023 BUG_ON(wret == 1);
2024 }
5f39d397 2025 if (btrfs_header_nritems(mid) == 0) {
7c302b49 2026 clean_tree_block(fs_info, mid);
925baedd 2027 btrfs_tree_unlock(mid);
afe5fea7 2028 del_ptr(root, path, level + 1, pslot);
f0486c68 2029 root_sub_used(root, mid->len);
5581a51a 2030 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 2031 free_extent_buffer_stale(mid);
f0486c68 2032 mid = NULL;
79f95c82
CM
2033 } else {
2034 /* update the parent key to reflect our changes */
5f39d397
CM
2035 struct btrfs_disk_key mid_key;
2036 btrfs_node_key(mid, &mid_key, 0);
3ac6de1a 2037 tree_mod_log_set_node_key(parent, pslot, 0);
5f39d397
CM
2038 btrfs_set_node_key(parent, &mid_key, pslot);
2039 btrfs_mark_buffer_dirty(parent);
79f95c82 2040 }
bb803951 2041
79f95c82 2042 /* update the path */
5f39d397
CM
2043 if (left) {
2044 if (btrfs_header_nritems(left) > orig_slot) {
2045 extent_buffer_get(left);
925baedd 2046 /* left was locked after cow */
5f39d397 2047 path->nodes[level] = left;
bb803951
CM
2048 path->slots[level + 1] -= 1;
2049 path->slots[level] = orig_slot;
925baedd
CM
2050 if (mid) {
2051 btrfs_tree_unlock(mid);
5f39d397 2052 free_extent_buffer(mid);
925baedd 2053 }
bb803951 2054 } else {
5f39d397 2055 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2056 path->slots[level] = orig_slot;
2057 }
2058 }
79f95c82 2059 /* double check we haven't messed things up */
e20d96d6 2060 if (orig_ptr !=
5f39d397 2061 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2062 BUG();
54aa1f4d 2063enospc:
925baedd
CM
2064 if (right) {
2065 btrfs_tree_unlock(right);
5f39d397 2066 free_extent_buffer(right);
925baedd
CM
2067 }
2068 if (left) {
2069 if (path->nodes[level] != left)
2070 btrfs_tree_unlock(left);
5f39d397 2071 free_extent_buffer(left);
925baedd 2072 }
bb803951
CM
2073 return ret;
2074}
2075
d352ac68
CM
2076/* Node balancing for insertion. Here we only split or push nodes around
2077 * when they are completely full. This is also done top down, so we
2078 * have to be pessimistic.
2079 */
d397712b 2080static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2081 struct btrfs_root *root,
2082 struct btrfs_path *path, int level)
e66f709b 2083{
0b246afa 2084 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
2085 struct extent_buffer *right = NULL;
2086 struct extent_buffer *mid;
2087 struct extent_buffer *left = NULL;
2088 struct extent_buffer *parent = NULL;
e66f709b
CM
2089 int ret = 0;
2090 int wret;
2091 int pslot;
2092 int orig_slot = path->slots[level];
e66f709b
CM
2093
2094 if (level == 0)
2095 return 1;
2096
5f39d397 2097 mid = path->nodes[level];
7bb86316 2098 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2099
a05a9bb1 2100 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2101 parent = path->nodes[level + 1];
a05a9bb1
LZ
2102 pslot = path->slots[level + 1];
2103 }
e66f709b 2104
5f39d397 2105 if (!parent)
e66f709b 2106 return 1;
e66f709b 2107
2ff7e61e 2108 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
2109 if (IS_ERR(left))
2110 left = NULL;
e66f709b
CM
2111
2112 /* first, try to make some room in the middle buffer */
5f39d397 2113 if (left) {
e66f709b 2114 u32 left_nr;
925baedd
CM
2115
2116 btrfs_tree_lock(left);
b4ce94de
CM
2117 btrfs_set_lock_blocking(left);
2118
5f39d397 2119 left_nr = btrfs_header_nritems(left);
0b246afa 2120 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2121 wret = 1;
2122 } else {
5f39d397 2123 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2124 pslot - 1, &left);
54aa1f4d
CM
2125 if (ret)
2126 wret = 1;
2127 else {
2ff7e61e 2128 wret = push_node_left(trans, fs_info,
971a1f66 2129 left, mid, 0);
54aa1f4d 2130 }
33ade1f8 2131 }
e66f709b
CM
2132 if (wret < 0)
2133 ret = wret;
2134 if (wret == 0) {
5f39d397 2135 struct btrfs_disk_key disk_key;
e66f709b 2136 orig_slot += left_nr;
5f39d397 2137 btrfs_node_key(mid, &disk_key, 0);
3ac6de1a 2138 tree_mod_log_set_node_key(parent, pslot, 0);
5f39d397
CM
2139 btrfs_set_node_key(parent, &disk_key, pslot);
2140 btrfs_mark_buffer_dirty(parent);
2141 if (btrfs_header_nritems(left) > orig_slot) {
2142 path->nodes[level] = left;
e66f709b
CM
2143 path->slots[level + 1] -= 1;
2144 path->slots[level] = orig_slot;
925baedd 2145 btrfs_tree_unlock(mid);
5f39d397 2146 free_extent_buffer(mid);
e66f709b
CM
2147 } else {
2148 orig_slot -=
5f39d397 2149 btrfs_header_nritems(left);
e66f709b 2150 path->slots[level] = orig_slot;
925baedd 2151 btrfs_tree_unlock(left);
5f39d397 2152 free_extent_buffer(left);
e66f709b 2153 }
e66f709b
CM
2154 return 0;
2155 }
925baedd 2156 btrfs_tree_unlock(left);
5f39d397 2157 free_extent_buffer(left);
e66f709b 2158 }
2ff7e61e 2159 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
2160 if (IS_ERR(right))
2161 right = NULL;
e66f709b
CM
2162
2163 /*
2164 * then try to empty the right most buffer into the middle
2165 */
5f39d397 2166 if (right) {
33ade1f8 2167 u32 right_nr;
b4ce94de 2168
925baedd 2169 btrfs_tree_lock(right);
b4ce94de
CM
2170 btrfs_set_lock_blocking(right);
2171
5f39d397 2172 right_nr = btrfs_header_nritems(right);
0b246afa 2173 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2174 wret = 1;
2175 } else {
5f39d397
CM
2176 ret = btrfs_cow_block(trans, root, right,
2177 parent, pslot + 1,
9fa8cfe7 2178 &right);
54aa1f4d
CM
2179 if (ret)
2180 wret = 1;
2181 else {
2ff7e61e 2182 wret = balance_node_right(trans, fs_info,
5f39d397 2183 right, mid);
54aa1f4d 2184 }
33ade1f8 2185 }
e66f709b
CM
2186 if (wret < 0)
2187 ret = wret;
2188 if (wret == 0) {
5f39d397
CM
2189 struct btrfs_disk_key disk_key;
2190
2191 btrfs_node_key(right, &disk_key, 0);
3ac6de1a 2192 tree_mod_log_set_node_key(parent, pslot + 1, 0);
5f39d397
CM
2193 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2194 btrfs_mark_buffer_dirty(parent);
2195
2196 if (btrfs_header_nritems(mid) <= orig_slot) {
2197 path->nodes[level] = right;
e66f709b
CM
2198 path->slots[level + 1] += 1;
2199 path->slots[level] = orig_slot -
5f39d397 2200 btrfs_header_nritems(mid);
925baedd 2201 btrfs_tree_unlock(mid);
5f39d397 2202 free_extent_buffer(mid);
e66f709b 2203 } else {
925baedd 2204 btrfs_tree_unlock(right);
5f39d397 2205 free_extent_buffer(right);
e66f709b 2206 }
e66f709b
CM
2207 return 0;
2208 }
925baedd 2209 btrfs_tree_unlock(right);
5f39d397 2210 free_extent_buffer(right);
e66f709b 2211 }
e66f709b
CM
2212 return 1;
2213}
2214
3c69faec 2215/*
d352ac68
CM
2216 * readahead one full node of leaves, finding things that are close
2217 * to the block in 'slot', and triggering ra on them.
3c69faec 2218 */
2ff7e61e 2219static void reada_for_search(struct btrfs_fs_info *fs_info,
c8c42864
CM
2220 struct btrfs_path *path,
2221 int level, int slot, u64 objectid)
3c69faec 2222{
5f39d397 2223 struct extent_buffer *node;
01f46658 2224 struct btrfs_disk_key disk_key;
3c69faec 2225 u32 nritems;
3c69faec 2226 u64 search;
a7175319 2227 u64 target;
6b80053d 2228 u64 nread = 0;
5f39d397 2229 struct extent_buffer *eb;
6b80053d
CM
2230 u32 nr;
2231 u32 blocksize;
2232 u32 nscan = 0;
db94535d 2233
a6b6e75e 2234 if (level != 1)
6702ed49
CM
2235 return;
2236
2237 if (!path->nodes[level])
3c69faec
CM
2238 return;
2239
5f39d397 2240 node = path->nodes[level];
925baedd 2241
3c69faec 2242 search = btrfs_node_blockptr(node, slot);
0b246afa
JM
2243 blocksize = fs_info->nodesize;
2244 eb = find_extent_buffer(fs_info, search);
5f39d397
CM
2245 if (eb) {
2246 free_extent_buffer(eb);
3c69faec
CM
2247 return;
2248 }
2249
a7175319 2250 target = search;
6b80053d 2251
5f39d397 2252 nritems = btrfs_header_nritems(node);
6b80053d 2253 nr = slot;
25b8b936 2254
d397712b 2255 while (1) {
e4058b54 2256 if (path->reada == READA_BACK) {
6b80053d
CM
2257 if (nr == 0)
2258 break;
2259 nr--;
e4058b54 2260 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2261 nr++;
2262 if (nr >= nritems)
2263 break;
3c69faec 2264 }
e4058b54 2265 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2266 btrfs_node_key(node, &disk_key, nr);
2267 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2268 break;
2269 }
6b80053d 2270 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2271 if ((search <= target && target - search <= 65536) ||
2272 (search > target && search - target <= 65536)) {
2ff7e61e 2273 readahead_tree_block(fs_info, search);
6b80053d
CM
2274 nread += blocksize;
2275 }
2276 nscan++;
a7175319 2277 if ((nread > 65536 || nscan > 32))
6b80053d 2278 break;
3c69faec
CM
2279 }
2280}
925baedd 2281
2ff7e61e 2282static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
0b08851f 2283 struct btrfs_path *path, int level)
b4ce94de
CM
2284{
2285 int slot;
2286 int nritems;
2287 struct extent_buffer *parent;
2288 struct extent_buffer *eb;
2289 u64 gen;
2290 u64 block1 = 0;
2291 u64 block2 = 0;
b4ce94de 2292
8c594ea8 2293 parent = path->nodes[level + 1];
b4ce94de 2294 if (!parent)
0b08851f 2295 return;
b4ce94de
CM
2296
2297 nritems = btrfs_header_nritems(parent);
8c594ea8 2298 slot = path->slots[level + 1];
b4ce94de
CM
2299
2300 if (slot > 0) {
2301 block1 = btrfs_node_blockptr(parent, slot - 1);
2302 gen = btrfs_node_ptr_generation(parent, slot - 1);
0b246afa 2303 eb = find_extent_buffer(fs_info, block1);
b9fab919
CM
2304 /*
2305 * if we get -eagain from btrfs_buffer_uptodate, we
2306 * don't want to return eagain here. That will loop
2307 * forever
2308 */
2309 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2310 block1 = 0;
2311 free_extent_buffer(eb);
2312 }
8c594ea8 2313 if (slot + 1 < nritems) {
b4ce94de
CM
2314 block2 = btrfs_node_blockptr(parent, slot + 1);
2315 gen = btrfs_node_ptr_generation(parent, slot + 1);
0b246afa 2316 eb = find_extent_buffer(fs_info, block2);
b9fab919 2317 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2318 block2 = 0;
2319 free_extent_buffer(eb);
2320 }
8c594ea8 2321
0b08851f 2322 if (block1)
2ff7e61e 2323 readahead_tree_block(fs_info, block1);
0b08851f 2324 if (block2)
2ff7e61e 2325 readahead_tree_block(fs_info, block2);
b4ce94de
CM
2326}
2327
2328
d352ac68 2329/*
d397712b
CM
2330 * when we walk down the tree, it is usually safe to unlock the higher layers
2331 * in the tree. The exceptions are when our path goes through slot 0, because
2332 * operations on the tree might require changing key pointers higher up in the
2333 * tree.
d352ac68 2334 *
d397712b
CM
2335 * callers might also have set path->keep_locks, which tells this code to keep
2336 * the lock if the path points to the last slot in the block. This is part of
2337 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2338 *
d397712b
CM
2339 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2340 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2341 */
e02119d5 2342static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2343 int lowest_unlock, int min_write_lock_level,
2344 int *write_lock_level)
925baedd
CM
2345{
2346 int i;
2347 int skip_level = level;
051e1b9f 2348 int no_skips = 0;
925baedd
CM
2349 struct extent_buffer *t;
2350
2351 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2352 if (!path->nodes[i])
2353 break;
2354 if (!path->locks[i])
2355 break;
051e1b9f 2356 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2357 skip_level = i + 1;
2358 continue;
2359 }
051e1b9f 2360 if (!no_skips && path->keep_locks) {
925baedd
CM
2361 u32 nritems;
2362 t = path->nodes[i];
2363 nritems = btrfs_header_nritems(t);
051e1b9f 2364 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2365 skip_level = i + 1;
2366 continue;
2367 }
2368 }
051e1b9f
CM
2369 if (skip_level < i && i >= lowest_unlock)
2370 no_skips = 1;
2371
925baedd
CM
2372 t = path->nodes[i];
2373 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2374 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2375 path->locks[i] = 0;
f7c79f30
CM
2376 if (write_lock_level &&
2377 i > min_write_lock_level &&
2378 i <= *write_lock_level) {
2379 *write_lock_level = i - 1;
2380 }
925baedd
CM
2381 }
2382 }
2383}
2384
b4ce94de
CM
2385/*
2386 * This releases any locks held in the path starting at level and
2387 * going all the way up to the root.
2388 *
2389 * btrfs_search_slot will keep the lock held on higher nodes in a few
2390 * corner cases, such as COW of the block at slot zero in the node. This
2391 * ignores those rules, and it should only be called when there are no
2392 * more updates to be done higher up in the tree.
2393 */
2394noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2395{
2396 int i;
2397
09a2a8f9 2398 if (path->keep_locks)
b4ce94de
CM
2399 return;
2400
2401 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2402 if (!path->nodes[i])
12f4dacc 2403 continue;
b4ce94de 2404 if (!path->locks[i])
12f4dacc 2405 continue;
bd681513 2406 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2407 path->locks[i] = 0;
2408 }
2409}
2410
c8c42864
CM
2411/*
2412 * helper function for btrfs_search_slot. The goal is to find a block
2413 * in cache without setting the path to blocking. If we find the block
2414 * we return zero and the path is unchanged.
2415 *
2416 * If we can't find the block, we set the path blocking and do some
2417 * reada. -EAGAIN is returned and the search must be repeated.
2418 */
2419static int
d07b8528
LB
2420read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2421 struct extent_buffer **eb_ret, int level, int slot,
cda79c54 2422 const struct btrfs_key *key)
c8c42864 2423{
0b246afa 2424 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864
CM
2425 u64 blocknr;
2426 u64 gen;
c8c42864
CM
2427 struct extent_buffer *b = *eb_ret;
2428 struct extent_buffer *tmp;
76a05b35 2429 int ret;
c8c42864
CM
2430
2431 blocknr = btrfs_node_blockptr(b, slot);
2432 gen = btrfs_node_ptr_generation(b, slot);
c8c42864 2433
0b246afa 2434 tmp = find_extent_buffer(fs_info, blocknr);
cb44921a 2435 if (tmp) {
b9fab919 2436 /* first we do an atomic uptodate check */
bdf7c00e
JB
2437 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2438 *eb_ret = tmp;
2439 return 0;
2440 }
2441
2442 /* the pages were up to date, but we failed
2443 * the generation number check. Do a full
2444 * read for the generation number that is correct.
2445 * We must do this without dropping locks so
2446 * we can trust our generation number
2447 */
2448 btrfs_set_path_blocking(p);
2449
2450 /* now we're allowed to do a blocking uptodate check */
2451 ret = btrfs_read_buffer(tmp, gen);
2452 if (!ret) {
2453 *eb_ret = tmp;
2454 return 0;
cb44921a 2455 }
bdf7c00e
JB
2456 free_extent_buffer(tmp);
2457 btrfs_release_path(p);
2458 return -EIO;
c8c42864
CM
2459 }
2460
2461 /*
2462 * reduce lock contention at high levels
2463 * of the btree by dropping locks before
76a05b35
CM
2464 * we read. Don't release the lock on the current
2465 * level because we need to walk this node to figure
2466 * out which blocks to read.
c8c42864 2467 */
8c594ea8
CM
2468 btrfs_unlock_up_safe(p, level + 1);
2469 btrfs_set_path_blocking(p);
2470
cb44921a 2471 free_extent_buffer(tmp);
e4058b54 2472 if (p->reada != READA_NONE)
2ff7e61e 2473 reada_for_search(fs_info, p, level, slot, key->objectid);
c8c42864 2474
b3b4aa74 2475 btrfs_release_path(p);
76a05b35
CM
2476
2477 ret = -EAGAIN;
2ff7e61e 2478 tmp = read_tree_block(fs_info, blocknr, 0);
64c043de 2479 if (!IS_ERR(tmp)) {
76a05b35
CM
2480 /*
2481 * If the read above didn't mark this buffer up to date,
2482 * it will never end up being up to date. Set ret to EIO now
2483 * and give up so that our caller doesn't loop forever
2484 * on our EAGAINs.
2485 */
b9fab919 2486 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2487 ret = -EIO;
c8c42864 2488 free_extent_buffer(tmp);
c871b0f2
LB
2489 } else {
2490 ret = PTR_ERR(tmp);
76a05b35
CM
2491 }
2492 return ret;
c8c42864
CM
2493}
2494
2495/*
2496 * helper function for btrfs_search_slot. This does all of the checks
2497 * for node-level blocks and does any balancing required based on
2498 * the ins_len.
2499 *
2500 * If no extra work was required, zero is returned. If we had to
2501 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2502 * start over
2503 */
2504static int
2505setup_nodes_for_search(struct btrfs_trans_handle *trans,
2506 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2507 struct extent_buffer *b, int level, int ins_len,
2508 int *write_lock_level)
c8c42864 2509{
0b246afa 2510 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864 2511 int ret;
0b246afa 2512
c8c42864 2513 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
0b246afa 2514 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
c8c42864
CM
2515 int sret;
2516
bd681513
CM
2517 if (*write_lock_level < level + 1) {
2518 *write_lock_level = level + 1;
2519 btrfs_release_path(p);
2520 goto again;
2521 }
2522
c8c42864 2523 btrfs_set_path_blocking(p);
2ff7e61e 2524 reada_for_balance(fs_info, p, level);
c8c42864 2525 sret = split_node(trans, root, p, level);
bd681513 2526 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2527
2528 BUG_ON(sret > 0);
2529 if (sret) {
2530 ret = sret;
2531 goto done;
2532 }
2533 b = p->nodes[level];
2534 } else if (ins_len < 0 && btrfs_header_nritems(b) <
0b246afa 2535 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
c8c42864
CM
2536 int sret;
2537
bd681513
CM
2538 if (*write_lock_level < level + 1) {
2539 *write_lock_level = level + 1;
2540 btrfs_release_path(p);
2541 goto again;
2542 }
2543
c8c42864 2544 btrfs_set_path_blocking(p);
2ff7e61e 2545 reada_for_balance(fs_info, p, level);
c8c42864 2546 sret = balance_level(trans, root, p, level);
bd681513 2547 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2548
2549 if (sret) {
2550 ret = sret;
2551 goto done;
2552 }
2553 b = p->nodes[level];
2554 if (!b) {
b3b4aa74 2555 btrfs_release_path(p);
c8c42864
CM
2556 goto again;
2557 }
2558 BUG_ON(btrfs_header_nritems(b) == 1);
2559 }
2560 return 0;
2561
2562again:
2563 ret = -EAGAIN;
2564done:
2565 return ret;
2566}
2567
d7396f07 2568static void key_search_validate(struct extent_buffer *b,
310712b2 2569 const struct btrfs_key *key,
d7396f07
FDBM
2570 int level)
2571{
2572#ifdef CONFIG_BTRFS_ASSERT
2573 struct btrfs_disk_key disk_key;
2574
2575 btrfs_cpu_key_to_disk(&disk_key, key);
2576
2577 if (level == 0)
2578 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2579 offsetof(struct btrfs_leaf, items[0].key),
2580 sizeof(disk_key)));
2581 else
2582 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2583 offsetof(struct btrfs_node, ptrs[0].key),
2584 sizeof(disk_key)));
2585#endif
2586}
2587
310712b2 2588static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
d7396f07
FDBM
2589 int level, int *prev_cmp, int *slot)
2590{
2591 if (*prev_cmp != 0) {
a74b35ec 2592 *prev_cmp = btrfs_bin_search(b, key, level, slot);
d7396f07
FDBM
2593 return *prev_cmp;
2594 }
2595
2596 key_search_validate(b, key, level);
2597 *slot = 0;
2598
2599 return 0;
2600}
2601
381cf658 2602int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2603 u64 iobjectid, u64 ioff, u8 key_type,
2604 struct btrfs_key *found_key)
2605{
2606 int ret;
2607 struct btrfs_key key;
2608 struct extent_buffer *eb;
381cf658
DS
2609
2610 ASSERT(path);
1d4c08e0 2611 ASSERT(found_key);
e33d5c3d
KN
2612
2613 key.type = key_type;
2614 key.objectid = iobjectid;
2615 key.offset = ioff;
2616
2617 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2618 if (ret < 0)
e33d5c3d
KN
2619 return ret;
2620
2621 eb = path->nodes[0];
2622 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2623 ret = btrfs_next_leaf(fs_root, path);
2624 if (ret)
2625 return ret;
2626 eb = path->nodes[0];
2627 }
2628
2629 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2630 if (found_key->type != key.type ||
2631 found_key->objectid != key.objectid)
2632 return 1;
2633
2634 return 0;
2635}
2636
74123bd7 2637/*
4271ecea
NB
2638 * btrfs_search_slot - look for a key in a tree and perform necessary
2639 * modifications to preserve tree invariants.
74123bd7 2640 *
4271ecea
NB
2641 * @trans: Handle of transaction, used when modifying the tree
2642 * @p: Holds all btree nodes along the search path
2643 * @root: The root node of the tree
2644 * @key: The key we are looking for
2645 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2646 * deletions it's -1. 0 for plain searches
2647 * @cow: boolean should CoW operations be performed. Must always be 1
2648 * when modifying the tree.
97571fd0 2649 *
4271ecea
NB
2650 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2651 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2652 *
2653 * If @key is found, 0 is returned and you can find the item in the leaf level
2654 * of the path (level 0)
2655 *
2656 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2657 * points to the slot where it should be inserted
2658 *
2659 * If an error is encountered while searching the tree a negative error number
2660 * is returned
74123bd7 2661 */
310712b2
OS
2662int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2663 const struct btrfs_key *key, struct btrfs_path *p,
2664 int ins_len, int cow)
be0e5c09 2665{
0b246afa 2666 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 2667 struct extent_buffer *b;
be0e5c09
CM
2668 int slot;
2669 int ret;
33c66f43 2670 int err;
be0e5c09 2671 int level;
925baedd 2672 int lowest_unlock = 1;
bd681513
CM
2673 int root_lock;
2674 /* everything at write_lock_level or lower must be write locked */
2675 int write_lock_level = 0;
9f3a7427 2676 u8 lowest_level = 0;
f7c79f30 2677 int min_write_lock_level;
d7396f07 2678 int prev_cmp;
9f3a7427 2679
6702ed49 2680 lowest_level = p->lowest_level;
323ac95b 2681 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2682 WARN_ON(p->nodes[0] != NULL);
eb653de1 2683 BUG_ON(!cow && ins_len);
25179201 2684
bd681513 2685 if (ins_len < 0) {
925baedd 2686 lowest_unlock = 2;
65b51a00 2687
bd681513
CM
2688 /* when we are removing items, we might have to go up to level
2689 * two as we update tree pointers Make sure we keep write
2690 * for those levels as well
2691 */
2692 write_lock_level = 2;
2693 } else if (ins_len > 0) {
2694 /*
2695 * for inserting items, make sure we have a write lock on
2696 * level 1 so we can update keys
2697 */
2698 write_lock_level = 1;
2699 }
2700
2701 if (!cow)
2702 write_lock_level = -1;
2703
09a2a8f9 2704 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2705 write_lock_level = BTRFS_MAX_LEVEL;
2706
f7c79f30
CM
2707 min_write_lock_level = write_lock_level;
2708
bb803951 2709again:
d7396f07 2710 prev_cmp = -1;
bd681513
CM
2711 /*
2712 * we try very hard to do read locks on the root
2713 */
2714 root_lock = BTRFS_READ_LOCK;
2715 level = 0;
5d4f98a2 2716 if (p->search_commit_root) {
bd681513
CM
2717 /*
2718 * the commit roots are read only
2719 * so we always do read locks
2720 */
3f8a18cc 2721 if (p->need_commit_sem)
0b246afa 2722 down_read(&fs_info->commit_root_sem);
5d4f98a2
YZ
2723 b = root->commit_root;
2724 extent_buffer_get(b);
bd681513 2725 level = btrfs_header_level(b);
3f8a18cc 2726 if (p->need_commit_sem)
0b246afa 2727 up_read(&fs_info->commit_root_sem);
5d4f98a2 2728 if (!p->skip_locking)
bd681513 2729 btrfs_tree_read_lock(b);
5d4f98a2 2730 } else {
bd681513 2731 if (p->skip_locking) {
5d4f98a2 2732 b = btrfs_root_node(root);
bd681513
CM
2733 level = btrfs_header_level(b);
2734 } else {
2735 /* we don't know the level of the root node
2736 * until we actually have it read locked
2737 */
2738 b = btrfs_read_lock_root_node(root);
2739 level = btrfs_header_level(b);
2740 if (level <= write_lock_level) {
2741 /* whoops, must trade for write lock */
2742 btrfs_tree_read_unlock(b);
2743 free_extent_buffer(b);
2744 b = btrfs_lock_root_node(root);
2745 root_lock = BTRFS_WRITE_LOCK;
2746
2747 /* the level might have changed, check again */
2748 level = btrfs_header_level(b);
2749 }
2750 }
5d4f98a2 2751 }
bd681513
CM
2752 p->nodes[level] = b;
2753 if (!p->skip_locking)
2754 p->locks[level] = root_lock;
925baedd 2755
eb60ceac 2756 while (b) {
5f39d397 2757 level = btrfs_header_level(b);
65b51a00
CM
2758
2759 /*
2760 * setup the path here so we can release it under lock
2761 * contention with the cow code
2762 */
02217ed2 2763 if (cow) {
9ea2c7c9
NB
2764 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2765
c8c42864
CM
2766 /*
2767 * if we don't really need to cow this block
2768 * then we don't want to set the path blocking,
2769 * so we test it here
2770 */
64c12921
JM
2771 if (!should_cow_block(trans, root, b)) {
2772 trans->dirty = true;
65b51a00 2773 goto cow_done;
64c12921 2774 }
5d4f98a2 2775
bd681513
CM
2776 /*
2777 * must have write locks on this node and the
2778 * parent
2779 */
5124e00e
JB
2780 if (level > write_lock_level ||
2781 (level + 1 > write_lock_level &&
2782 level + 1 < BTRFS_MAX_LEVEL &&
2783 p->nodes[level + 1])) {
bd681513
CM
2784 write_lock_level = level + 1;
2785 btrfs_release_path(p);
2786 goto again;
2787 }
2788
160f4089 2789 btrfs_set_path_blocking(p);
9ea2c7c9
NB
2790 if (last_level)
2791 err = btrfs_cow_block(trans, root, b, NULL, 0,
2792 &b);
2793 else
2794 err = btrfs_cow_block(trans, root, b,
2795 p->nodes[level + 1],
2796 p->slots[level + 1], &b);
33c66f43 2797 if (err) {
33c66f43 2798 ret = err;
65b51a00 2799 goto done;
54aa1f4d 2800 }
02217ed2 2801 }
65b51a00 2802cow_done:
eb60ceac 2803 p->nodes[level] = b;
bd681513 2804 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2805
2806 /*
2807 * we have a lock on b and as long as we aren't changing
2808 * the tree, there is no way to for the items in b to change.
2809 * It is safe to drop the lock on our parent before we
2810 * go through the expensive btree search on b.
2811 *
eb653de1
FDBM
2812 * If we're inserting or deleting (ins_len != 0), then we might
2813 * be changing slot zero, which may require changing the parent.
2814 * So, we can't drop the lock until after we know which slot
2815 * we're operating on.
b4ce94de 2816 */
eb653de1
FDBM
2817 if (!ins_len && !p->keep_locks) {
2818 int u = level + 1;
2819
2820 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2821 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2822 p->locks[u] = 0;
2823 }
2824 }
b4ce94de 2825
d7396f07 2826 ret = key_search(b, key, level, &prev_cmp, &slot);
415b35a5
LB
2827 if (ret < 0)
2828 goto done;
b4ce94de 2829
5f39d397 2830 if (level != 0) {
33c66f43
YZ
2831 int dec = 0;
2832 if (ret && slot > 0) {
2833 dec = 1;
be0e5c09 2834 slot -= 1;
33c66f43 2835 }
be0e5c09 2836 p->slots[level] = slot;
33c66f43 2837 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2838 ins_len, &write_lock_level);
33c66f43 2839 if (err == -EAGAIN)
c8c42864 2840 goto again;
33c66f43
YZ
2841 if (err) {
2842 ret = err;
c8c42864 2843 goto done;
33c66f43 2844 }
c8c42864
CM
2845 b = p->nodes[level];
2846 slot = p->slots[level];
b4ce94de 2847
bd681513
CM
2848 /*
2849 * slot 0 is special, if we change the key
2850 * we have to update the parent pointer
2851 * which means we must have a write lock
2852 * on the parent
2853 */
eb653de1 2854 if (slot == 0 && ins_len &&
bd681513
CM
2855 write_lock_level < level + 1) {
2856 write_lock_level = level + 1;
2857 btrfs_release_path(p);
2858 goto again;
2859 }
2860
f7c79f30
CM
2861 unlock_up(p, level, lowest_unlock,
2862 min_write_lock_level, &write_lock_level);
f9efa9c7 2863
925baedd 2864 if (level == lowest_level) {
33c66f43
YZ
2865 if (dec)
2866 p->slots[level]++;
5b21f2ed 2867 goto done;
925baedd 2868 }
ca7a79ad 2869
d07b8528 2870 err = read_block_for_search(root, p, &b, level,
cda79c54 2871 slot, key);
33c66f43 2872 if (err == -EAGAIN)
c8c42864 2873 goto again;
33c66f43
YZ
2874 if (err) {
2875 ret = err;
76a05b35 2876 goto done;
33c66f43 2877 }
76a05b35 2878
b4ce94de 2879 if (!p->skip_locking) {
bd681513
CM
2880 level = btrfs_header_level(b);
2881 if (level <= write_lock_level) {
2882 err = btrfs_try_tree_write_lock(b);
2883 if (!err) {
2884 btrfs_set_path_blocking(p);
2885 btrfs_tree_lock(b);
2886 btrfs_clear_path_blocking(p, b,
2887 BTRFS_WRITE_LOCK);
2888 }
2889 p->locks[level] = BTRFS_WRITE_LOCK;
2890 } else {
f82c458a 2891 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2892 if (!err) {
2893 btrfs_set_path_blocking(p);
2894 btrfs_tree_read_lock(b);
2895 btrfs_clear_path_blocking(p, b,
2896 BTRFS_READ_LOCK);
2897 }
2898 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2899 }
bd681513 2900 p->nodes[level] = b;
b4ce94de 2901 }
be0e5c09
CM
2902 } else {
2903 p->slots[level] = slot;
87b29b20 2904 if (ins_len > 0 &&
2ff7e61e 2905 btrfs_leaf_free_space(fs_info, b) < ins_len) {
bd681513
CM
2906 if (write_lock_level < 1) {
2907 write_lock_level = 1;
2908 btrfs_release_path(p);
2909 goto again;
2910 }
2911
b4ce94de 2912 btrfs_set_path_blocking(p);
33c66f43
YZ
2913 err = split_leaf(trans, root, key,
2914 p, ins_len, ret == 0);
bd681513 2915 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2916
33c66f43
YZ
2917 BUG_ON(err > 0);
2918 if (err) {
2919 ret = err;
65b51a00
CM
2920 goto done;
2921 }
5c680ed6 2922 }
459931ec 2923 if (!p->search_for_split)
f7c79f30
CM
2924 unlock_up(p, level, lowest_unlock,
2925 min_write_lock_level, &write_lock_level);
65b51a00 2926 goto done;
be0e5c09
CM
2927 }
2928 }
65b51a00
CM
2929 ret = 1;
2930done:
b4ce94de
CM
2931 /*
2932 * we don't really know what they plan on doing with the path
2933 * from here on, so for now just mark it as blocking
2934 */
b9473439
CM
2935 if (!p->leave_spinning)
2936 btrfs_set_path_blocking(p);
5f5bc6b1 2937 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2938 btrfs_release_path(p);
65b51a00 2939 return ret;
be0e5c09
CM
2940}
2941
5d9e75c4
JS
2942/*
2943 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2944 * current state of the tree together with the operations recorded in the tree
2945 * modification log to search for the key in a previous version of this tree, as
2946 * denoted by the time_seq parameter.
2947 *
2948 * Naturally, there is no support for insert, delete or cow operations.
2949 *
2950 * The resulting path and return value will be set up as if we called
2951 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2952 */
310712b2 2953int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
5d9e75c4
JS
2954 struct btrfs_path *p, u64 time_seq)
2955{
0b246afa 2956 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4
JS
2957 struct extent_buffer *b;
2958 int slot;
2959 int ret;
2960 int err;
2961 int level;
2962 int lowest_unlock = 1;
2963 u8 lowest_level = 0;
d4b4087c 2964 int prev_cmp = -1;
5d9e75c4
JS
2965
2966 lowest_level = p->lowest_level;
2967 WARN_ON(p->nodes[0] != NULL);
2968
2969 if (p->search_commit_root) {
2970 BUG_ON(time_seq);
2971 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2972 }
2973
2974again:
5d9e75c4 2975 b = get_old_root(root, time_seq);
5d9e75c4 2976 level = btrfs_header_level(b);
5d9e75c4
JS
2977 p->locks[level] = BTRFS_READ_LOCK;
2978
2979 while (b) {
2980 level = btrfs_header_level(b);
2981 p->nodes[level] = b;
2982 btrfs_clear_path_blocking(p, NULL, 0);
2983
2984 /*
2985 * we have a lock on b and as long as we aren't changing
2986 * the tree, there is no way to for the items in b to change.
2987 * It is safe to drop the lock on our parent before we
2988 * go through the expensive btree search on b.
2989 */
2990 btrfs_unlock_up_safe(p, level + 1);
2991
d4b4087c 2992 /*
01327610 2993 * Since we can unwind ebs we want to do a real search every
d4b4087c
JB
2994 * time.
2995 */
2996 prev_cmp = -1;
d7396f07 2997 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
2998
2999 if (level != 0) {
3000 int dec = 0;
3001 if (ret && slot > 0) {
3002 dec = 1;
3003 slot -= 1;
3004 }
3005 p->slots[level] = slot;
3006 unlock_up(p, level, lowest_unlock, 0, NULL);
3007
3008 if (level == lowest_level) {
3009 if (dec)
3010 p->slots[level]++;
3011 goto done;
3012 }
3013
d07b8528 3014 err = read_block_for_search(root, p, &b, level,
cda79c54 3015 slot, key);
5d9e75c4
JS
3016 if (err == -EAGAIN)
3017 goto again;
3018 if (err) {
3019 ret = err;
3020 goto done;
3021 }
3022
3023 level = btrfs_header_level(b);
f82c458a 3024 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
3025 if (!err) {
3026 btrfs_set_path_blocking(p);
3027 btrfs_tree_read_lock(b);
3028 btrfs_clear_path_blocking(p, b,
3029 BTRFS_READ_LOCK);
3030 }
0b246afa 3031 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
db7f3436
JB
3032 if (!b) {
3033 ret = -ENOMEM;
3034 goto done;
3035 }
5d9e75c4
JS
3036 p->locks[level] = BTRFS_READ_LOCK;
3037 p->nodes[level] = b;
5d9e75c4
JS
3038 } else {
3039 p->slots[level] = slot;
3040 unlock_up(p, level, lowest_unlock, 0, NULL);
3041 goto done;
3042 }
3043 }
3044 ret = 1;
3045done:
3046 if (!p->leave_spinning)
3047 btrfs_set_path_blocking(p);
3048 if (ret < 0)
3049 btrfs_release_path(p);
3050
3051 return ret;
3052}
3053
2f38b3e1
AJ
3054/*
3055 * helper to use instead of search slot if no exact match is needed but
3056 * instead the next or previous item should be returned.
3057 * When find_higher is true, the next higher item is returned, the next lower
3058 * otherwise.
3059 * When return_any and find_higher are both true, and no higher item is found,
3060 * return the next lower instead.
3061 * When return_any is true and find_higher is false, and no lower item is found,
3062 * return the next higher instead.
3063 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3064 * < 0 on error
3065 */
3066int btrfs_search_slot_for_read(struct btrfs_root *root,
310712b2
OS
3067 const struct btrfs_key *key,
3068 struct btrfs_path *p, int find_higher,
3069 int return_any)
2f38b3e1
AJ
3070{
3071 int ret;
3072 struct extent_buffer *leaf;
3073
3074again:
3075 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3076 if (ret <= 0)
3077 return ret;
3078 /*
3079 * a return value of 1 means the path is at the position where the
3080 * item should be inserted. Normally this is the next bigger item,
3081 * but in case the previous item is the last in a leaf, path points
3082 * to the first free slot in the previous leaf, i.e. at an invalid
3083 * item.
3084 */
3085 leaf = p->nodes[0];
3086
3087 if (find_higher) {
3088 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3089 ret = btrfs_next_leaf(root, p);
3090 if (ret <= 0)
3091 return ret;
3092 if (!return_any)
3093 return 1;
3094 /*
3095 * no higher item found, return the next
3096 * lower instead
3097 */
3098 return_any = 0;
3099 find_higher = 0;
3100 btrfs_release_path(p);
3101 goto again;
3102 }
3103 } else {
e6793769
AJ
3104 if (p->slots[0] == 0) {
3105 ret = btrfs_prev_leaf(root, p);
3106 if (ret < 0)
3107 return ret;
3108 if (!ret) {
23c6bf6a
FDBM
3109 leaf = p->nodes[0];
3110 if (p->slots[0] == btrfs_header_nritems(leaf))
3111 p->slots[0]--;
e6793769 3112 return 0;
2f38b3e1 3113 }
e6793769
AJ
3114 if (!return_any)
3115 return 1;
3116 /*
3117 * no lower item found, return the next
3118 * higher instead
3119 */
3120 return_any = 0;
3121 find_higher = 1;
3122 btrfs_release_path(p);
3123 goto again;
3124 } else {
2f38b3e1
AJ
3125 --p->slots[0];
3126 }
3127 }
3128 return 0;
3129}
3130
74123bd7
CM
3131/*
3132 * adjust the pointers going up the tree, starting at level
3133 * making sure the right key of each node is points to 'key'.
3134 * This is used after shifting pointers to the left, so it stops
3135 * fixing up pointers when a given leaf/node is not in slot 0 of the
3136 * higher levels
aa5d6bed 3137 *
74123bd7 3138 */
b7a0365e
DD
3139static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3140 struct btrfs_path *path,
143bede5 3141 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3142{
3143 int i;
5f39d397
CM
3144 struct extent_buffer *t;
3145
234b63a0 3146 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3147 int tslot = path->slots[i];
eb60ceac 3148 if (!path->nodes[i])
be0e5c09 3149 break;
5f39d397 3150 t = path->nodes[i];
3ac6de1a 3151 tree_mod_log_set_node_key(t, tslot, 1);
5f39d397 3152 btrfs_set_node_key(t, key, tslot);
d6025579 3153 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3154 if (tslot != 0)
3155 break;
3156 }
3157}
3158
31840ae1
ZY
3159/*
3160 * update item key.
3161 *
3162 * This function isn't completely safe. It's the caller's responsibility
3163 * that the new key won't break the order
3164 */
b7a0365e
DD
3165void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3166 struct btrfs_path *path,
310712b2 3167 const struct btrfs_key *new_key)
31840ae1
ZY
3168{
3169 struct btrfs_disk_key disk_key;
3170 struct extent_buffer *eb;
3171 int slot;
3172
3173 eb = path->nodes[0];
3174 slot = path->slots[0];
3175 if (slot > 0) {
3176 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3177 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3178 }
3179 if (slot < btrfs_header_nritems(eb) - 1) {
3180 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3181 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3182 }
3183
3184 btrfs_cpu_key_to_disk(&disk_key, new_key);
3185 btrfs_set_item_key(eb, &disk_key, slot);
3186 btrfs_mark_buffer_dirty(eb);
3187 if (slot == 0)
b7a0365e 3188 fixup_low_keys(fs_info, path, &disk_key, 1);
31840ae1
ZY
3189}
3190
74123bd7
CM
3191/*
3192 * try to push data from one node into the next node left in the
79f95c82 3193 * tree.
aa5d6bed
CM
3194 *
3195 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3196 * error, and > 0 if there was no room in the left hand block.
74123bd7 3197 */
98ed5174 3198static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
3199 struct btrfs_fs_info *fs_info,
3200 struct extent_buffer *dst,
971a1f66 3201 struct extent_buffer *src, int empty)
be0e5c09 3202{
be0e5c09 3203 int push_items = 0;
bb803951
CM
3204 int src_nritems;
3205 int dst_nritems;
aa5d6bed 3206 int ret = 0;
be0e5c09 3207
5f39d397
CM
3208 src_nritems = btrfs_header_nritems(src);
3209 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3210 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
7bb86316
CM
3211 WARN_ON(btrfs_header_generation(src) != trans->transid);
3212 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3213
bce4eae9 3214 if (!empty && src_nritems <= 8)
971a1f66
CM
3215 return 1;
3216
d397712b 3217 if (push_items <= 0)
be0e5c09
CM
3218 return 1;
3219
bce4eae9 3220 if (empty) {
971a1f66 3221 push_items = min(src_nritems, push_items);
bce4eae9
CM
3222 if (push_items < src_nritems) {
3223 /* leave at least 8 pointers in the node if
3224 * we aren't going to empty it
3225 */
3226 if (src_nritems - push_items < 8) {
3227 if (push_items <= 8)
3228 return 1;
3229 push_items -= 8;
3230 }
3231 }
3232 } else
3233 push_items = min(src_nritems - 8, push_items);
79f95c82 3234
0b246afa 3235 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
5de865ee
FDBM
3236 push_items);
3237 if (ret) {
66642832 3238 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3239 return ret;
3240 }
5f39d397
CM
3241 copy_extent_buffer(dst, src,
3242 btrfs_node_key_ptr_offset(dst_nritems),
3243 btrfs_node_key_ptr_offset(0),
d397712b 3244 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3245
bb803951 3246 if (push_items < src_nritems) {
57911b8b
JS
3247 /*
3248 * don't call tree_mod_log_eb_move here, key removal was already
3249 * fully logged by tree_mod_log_eb_copy above.
3250 */
5f39d397
CM
3251 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3252 btrfs_node_key_ptr_offset(push_items),
3253 (src_nritems - push_items) *
3254 sizeof(struct btrfs_key_ptr));
3255 }
3256 btrfs_set_header_nritems(src, src_nritems - push_items);
3257 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3258 btrfs_mark_buffer_dirty(src);
3259 btrfs_mark_buffer_dirty(dst);
31840ae1 3260
79f95c82
CM
3261 return ret;
3262}
3263
3264/*
3265 * try to push data from one node into the next node right in the
3266 * tree.
3267 *
3268 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3269 * error, and > 0 if there was no room in the right hand block.
3270 *
3271 * this will only push up to 1/2 the contents of the left node over
3272 */
5f39d397 3273static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 3274 struct btrfs_fs_info *fs_info,
5f39d397
CM
3275 struct extent_buffer *dst,
3276 struct extent_buffer *src)
79f95c82 3277{
79f95c82
CM
3278 int push_items = 0;
3279 int max_push;
3280 int src_nritems;
3281 int dst_nritems;
3282 int ret = 0;
79f95c82 3283
7bb86316
CM
3284 WARN_ON(btrfs_header_generation(src) != trans->transid);
3285 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3286
5f39d397
CM
3287 src_nritems = btrfs_header_nritems(src);
3288 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3289 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
d397712b 3290 if (push_items <= 0)
79f95c82 3291 return 1;
bce4eae9 3292
d397712b 3293 if (src_nritems < 4)
bce4eae9 3294 return 1;
79f95c82
CM
3295
3296 max_push = src_nritems / 2 + 1;
3297 /* don't try to empty the node */
d397712b 3298 if (max_push >= src_nritems)
79f95c82 3299 return 1;
252c38f0 3300
79f95c82
CM
3301 if (max_push < push_items)
3302 push_items = max_push;
3303
a446a979 3304 tree_mod_log_eb_move(dst, push_items, 0, dst_nritems);
5f39d397
CM
3305 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3306 btrfs_node_key_ptr_offset(0),
3307 (dst_nritems) *
3308 sizeof(struct btrfs_key_ptr));
d6025579 3309
0b246afa 3310 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
5de865ee
FDBM
3311 src_nritems - push_items, push_items);
3312 if (ret) {
66642832 3313 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3314 return ret;
3315 }
5f39d397
CM
3316 copy_extent_buffer(dst, src,
3317 btrfs_node_key_ptr_offset(0),
3318 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3319 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3320
5f39d397
CM
3321 btrfs_set_header_nritems(src, src_nritems - push_items);
3322 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3323
5f39d397
CM
3324 btrfs_mark_buffer_dirty(src);
3325 btrfs_mark_buffer_dirty(dst);
31840ae1 3326
aa5d6bed 3327 return ret;
be0e5c09
CM
3328}
3329
97571fd0
CM
3330/*
3331 * helper function to insert a new root level in the tree.
3332 * A new node is allocated, and a single item is inserted to
3333 * point to the existing root
aa5d6bed
CM
3334 *
3335 * returns zero on success or < 0 on failure.
97571fd0 3336 */
d397712b 3337static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3338 struct btrfs_root *root,
fdd99c72 3339 struct btrfs_path *path, int level)
5c680ed6 3340{
0b246afa 3341 struct btrfs_fs_info *fs_info = root->fs_info;
7bb86316 3342 u64 lower_gen;
5f39d397
CM
3343 struct extent_buffer *lower;
3344 struct extent_buffer *c;
925baedd 3345 struct extent_buffer *old;
5f39d397 3346 struct btrfs_disk_key lower_key;
5c680ed6
CM
3347
3348 BUG_ON(path->nodes[level]);
3349 BUG_ON(path->nodes[level-1] != root->node);
3350
7bb86316
CM
3351 lower = path->nodes[level-1];
3352 if (level == 1)
3353 btrfs_item_key(lower, &lower_key, 0);
3354 else
3355 btrfs_node_key(lower, &lower_key, 0);
3356
4d75f8a9
DS
3357 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3358 &lower_key, level, root->node->start, 0);
5f39d397
CM
3359 if (IS_ERR(c))
3360 return PTR_ERR(c);
925baedd 3361
0b246afa 3362 root_add_used(root, fs_info->nodesize);
f0486c68 3363
b159fa28 3364 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
5f39d397
CM
3365 btrfs_set_header_nritems(c, 1);
3366 btrfs_set_header_level(c, level);
db94535d 3367 btrfs_set_header_bytenr(c, c->start);
5f39d397 3368 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3369 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3370 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397 3371
0b246afa
JM
3372 write_extent_buffer_fsid(c, fs_info->fsid);
3373 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
e17cade2 3374
5f39d397 3375 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3376 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3377 lower_gen = btrfs_header_generation(lower);
31840ae1 3378 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3379
3380 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3381
5f39d397 3382 btrfs_mark_buffer_dirty(c);
d5719762 3383
925baedd 3384 old = root->node;
fdd99c72 3385 tree_mod_log_set_root_pointer(root, c, 0);
240f62c8 3386 rcu_assign_pointer(root->node, c);
925baedd
CM
3387
3388 /* the super has an extra ref to root->node */
3389 free_extent_buffer(old);
3390
0b86a832 3391 add_root_to_dirty_list(root);
5f39d397
CM
3392 extent_buffer_get(c);
3393 path->nodes[level] = c;
95449a16 3394 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3395 path->slots[level] = 0;
3396 return 0;
3397}
3398
74123bd7
CM
3399/*
3400 * worker function to insert a single pointer in a node.
3401 * the node should have enough room for the pointer already
97571fd0 3402 *
74123bd7
CM
3403 * slot and level indicate where you want the key to go, and
3404 * blocknr is the block the key points to.
3405 */
143bede5 3406static void insert_ptr(struct btrfs_trans_handle *trans,
2ff7e61e 3407 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 3408 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3409 int slot, int level)
74123bd7 3410{
5f39d397 3411 struct extent_buffer *lower;
74123bd7 3412 int nritems;
f3ea38da 3413 int ret;
5c680ed6
CM
3414
3415 BUG_ON(!path->nodes[level]);
f0486c68 3416 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3417 lower = path->nodes[level];
3418 nritems = btrfs_header_nritems(lower);
c293498b 3419 BUG_ON(slot > nritems);
0b246afa 3420 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
74123bd7 3421 if (slot != nritems) {
c3e06965 3422 if (level)
a446a979
DS
3423 tree_mod_log_eb_move(lower, slot + 1, slot,
3424 nritems - slot);
5f39d397
CM
3425 memmove_extent_buffer(lower,
3426 btrfs_node_key_ptr_offset(slot + 1),
3427 btrfs_node_key_ptr_offset(slot),
d6025579 3428 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3429 }
c3e06965 3430 if (level) {
e09c2efe
DS
3431 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3432 GFP_NOFS);
f3ea38da
JS
3433 BUG_ON(ret < 0);
3434 }
5f39d397 3435 btrfs_set_node_key(lower, key, slot);
db94535d 3436 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3437 WARN_ON(trans->transid == 0);
3438 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3439 btrfs_set_header_nritems(lower, nritems + 1);
3440 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3441}
3442
97571fd0
CM
3443/*
3444 * split the node at the specified level in path in two.
3445 * The path is corrected to point to the appropriate node after the split
3446 *
3447 * Before splitting this tries to make some room in the node by pushing
3448 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3449 *
3450 * returns 0 on success and < 0 on failure
97571fd0 3451 */
e02119d5
CM
3452static noinline int split_node(struct btrfs_trans_handle *trans,
3453 struct btrfs_root *root,
3454 struct btrfs_path *path, int level)
be0e5c09 3455{
0b246afa 3456 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
3457 struct extent_buffer *c;
3458 struct extent_buffer *split;
3459 struct btrfs_disk_key disk_key;
be0e5c09 3460 int mid;
5c680ed6 3461 int ret;
7518a238 3462 u32 c_nritems;
eb60ceac 3463
5f39d397 3464 c = path->nodes[level];
7bb86316 3465 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3466 if (c == root->node) {
d9abbf1c 3467 /*
90f8d62e
JS
3468 * trying to split the root, lets make a new one
3469 *
fdd99c72 3470 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3471 * insert_new_root, because that root buffer will be kept as a
3472 * normal node. We are going to log removal of half of the
3473 * elements below with tree_mod_log_eb_copy. We're holding a
3474 * tree lock on the buffer, which is why we cannot race with
3475 * other tree_mod_log users.
d9abbf1c 3476 */
fdd99c72 3477 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3478 if (ret)
3479 return ret;
b3612421 3480 } else {
e66f709b 3481 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3482 c = path->nodes[level];
3483 if (!ret && btrfs_header_nritems(c) <
0b246afa 3484 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
e66f709b 3485 return 0;
54aa1f4d
CM
3486 if (ret < 0)
3487 return ret;
be0e5c09 3488 }
e66f709b 3489
5f39d397 3490 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3491 mid = (c_nritems + 1) / 2;
3492 btrfs_node_key(c, &disk_key, mid);
7bb86316 3493
4d75f8a9
DS
3494 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3495 &disk_key, level, c->start, 0);
5f39d397
CM
3496 if (IS_ERR(split))
3497 return PTR_ERR(split);
3498
0b246afa 3499 root_add_used(root, fs_info->nodesize);
f0486c68 3500
b159fa28 3501 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
5f39d397 3502 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3503 btrfs_set_header_bytenr(split, split->start);
5f39d397 3504 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3505 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397 3506 btrfs_set_header_owner(split, root->root_key.objectid);
0b246afa
JM
3507 write_extent_buffer_fsid(split, fs_info->fsid);
3508 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
54aa1f4d 3509
0b246afa 3510 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
5de865ee 3511 if (ret) {
66642832 3512 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3513 return ret;
3514 }
5f39d397
CM
3515 copy_extent_buffer(split, c,
3516 btrfs_node_key_ptr_offset(0),
3517 btrfs_node_key_ptr_offset(mid),
3518 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3519 btrfs_set_header_nritems(split, c_nritems - mid);
3520 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3521 ret = 0;
3522
5f39d397
CM
3523 btrfs_mark_buffer_dirty(c);
3524 btrfs_mark_buffer_dirty(split);
3525
2ff7e61e 3526 insert_ptr(trans, fs_info, path, &disk_key, split->start,
c3e06965 3527 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3528
5de08d7d 3529 if (path->slots[level] >= mid) {
5c680ed6 3530 path->slots[level] -= mid;
925baedd 3531 btrfs_tree_unlock(c);
5f39d397
CM
3532 free_extent_buffer(c);
3533 path->nodes[level] = split;
5c680ed6
CM
3534 path->slots[level + 1] += 1;
3535 } else {
925baedd 3536 btrfs_tree_unlock(split);
5f39d397 3537 free_extent_buffer(split);
be0e5c09 3538 }
aa5d6bed 3539 return ret;
be0e5c09
CM
3540}
3541
74123bd7
CM
3542/*
3543 * how many bytes are required to store the items in a leaf. start
3544 * and nr indicate which items in the leaf to check. This totals up the
3545 * space used both by the item structs and the item data
3546 */
5f39d397 3547static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3548{
41be1f3b
JB
3549 struct btrfs_item *start_item;
3550 struct btrfs_item *end_item;
3551 struct btrfs_map_token token;
be0e5c09 3552 int data_len;
5f39d397 3553 int nritems = btrfs_header_nritems(l);
d4dbff95 3554 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3555
3556 if (!nr)
3557 return 0;
41be1f3b 3558 btrfs_init_map_token(&token);
dd3cc16b
RK
3559 start_item = btrfs_item_nr(start);
3560 end_item = btrfs_item_nr(end);
41be1f3b
JB
3561 data_len = btrfs_token_item_offset(l, start_item, &token) +
3562 btrfs_token_item_size(l, start_item, &token);
3563 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3564 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3565 WARN_ON(data_len < 0);
be0e5c09
CM
3566 return data_len;
3567}
3568
d4dbff95
CM
3569/*
3570 * The space between the end of the leaf items and
3571 * the start of the leaf data. IOW, how much room
3572 * the leaf has left for both items and data
3573 */
2ff7e61e 3574noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
e02119d5 3575 struct extent_buffer *leaf)
d4dbff95 3576{
5f39d397
CM
3577 int nritems = btrfs_header_nritems(leaf);
3578 int ret;
0b246afa
JM
3579
3580 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
5f39d397 3581 if (ret < 0) {
0b246afa
JM
3582 btrfs_crit(fs_info,
3583 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3584 ret,
3585 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3586 leaf_space_used(leaf, 0, nritems), nritems);
5f39d397
CM
3587 }
3588 return ret;
d4dbff95
CM
3589}
3590
99d8f83c
CM
3591/*
3592 * min slot controls the lowest index we're willing to push to the
3593 * right. We'll push up to and including min_slot, but no lower
3594 */
1e47eef2 3595static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
44871b1b
CM
3596 struct btrfs_path *path,
3597 int data_size, int empty,
3598 struct extent_buffer *right,
99d8f83c
CM
3599 int free_space, u32 left_nritems,
3600 u32 min_slot)
00ec4c51 3601{
5f39d397 3602 struct extent_buffer *left = path->nodes[0];
44871b1b 3603 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3604 struct btrfs_map_token token;
5f39d397 3605 struct btrfs_disk_key disk_key;
00ec4c51 3606 int slot;
34a38218 3607 u32 i;
00ec4c51
CM
3608 int push_space = 0;
3609 int push_items = 0;
0783fcfc 3610 struct btrfs_item *item;
34a38218 3611 u32 nr;
7518a238 3612 u32 right_nritems;
5f39d397 3613 u32 data_end;
db94535d 3614 u32 this_item_size;
00ec4c51 3615
cfed81a0
CM
3616 btrfs_init_map_token(&token);
3617
34a38218
CM
3618 if (empty)
3619 nr = 0;
3620 else
99d8f83c 3621 nr = max_t(u32, 1, min_slot);
34a38218 3622
31840ae1 3623 if (path->slots[0] >= left_nritems)
87b29b20 3624 push_space += data_size;
31840ae1 3625
44871b1b 3626 slot = path->slots[1];
34a38218
CM
3627 i = left_nritems - 1;
3628 while (i >= nr) {
dd3cc16b 3629 item = btrfs_item_nr(i);
db94535d 3630
31840ae1
ZY
3631 if (!empty && push_items > 0) {
3632 if (path->slots[0] > i)
3633 break;
3634 if (path->slots[0] == i) {
2ff7e61e 3635 int space = btrfs_leaf_free_space(fs_info, left);
31840ae1
ZY
3636 if (space + push_space * 2 > free_space)
3637 break;
3638 }
3639 }
3640
00ec4c51 3641 if (path->slots[0] == i)
87b29b20 3642 push_space += data_size;
db94535d 3643
db94535d
CM
3644 this_item_size = btrfs_item_size(left, item);
3645 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3646 break;
31840ae1 3647
00ec4c51 3648 push_items++;
db94535d 3649 push_space += this_item_size + sizeof(*item);
34a38218
CM
3650 if (i == 0)
3651 break;
3652 i--;
db94535d 3653 }
5f39d397 3654
925baedd
CM
3655 if (push_items == 0)
3656 goto out_unlock;
5f39d397 3657
6c1500f2 3658 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3659
00ec4c51 3660 /* push left to right */
5f39d397 3661 right_nritems = btrfs_header_nritems(right);
34a38218 3662
5f39d397 3663 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2ff7e61e 3664 push_space -= leaf_data_end(fs_info, left);
5f39d397 3665
00ec4c51 3666 /* make room in the right data area */
2ff7e61e 3667 data_end = leaf_data_end(fs_info, right);
5f39d397 3668 memmove_extent_buffer(right,
3d9ec8c4
NB
3669 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3670 BTRFS_LEAF_DATA_OFFSET + data_end,
0b246afa 3671 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
5f39d397 3672
00ec4c51 3673 /* copy from the left data area */
3d9ec8c4 3674 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3675 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3676 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
d6025579 3677 push_space);
5f39d397
CM
3678
3679 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3680 btrfs_item_nr_offset(0),
3681 right_nritems * sizeof(struct btrfs_item));
3682
00ec4c51 3683 /* copy the items from left to right */
5f39d397
CM
3684 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3685 btrfs_item_nr_offset(left_nritems - push_items),
3686 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3687
3688 /* update the item pointers */
7518a238 3689 right_nritems += push_items;
5f39d397 3690 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3691 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
7518a238 3692 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3693 item = btrfs_item_nr(i);
cfed81a0
CM
3694 push_space -= btrfs_token_item_size(right, item, &token);
3695 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3696 }
3697
7518a238 3698 left_nritems -= push_items;
5f39d397 3699 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3700
34a38218
CM
3701 if (left_nritems)
3702 btrfs_mark_buffer_dirty(left);
f0486c68 3703 else
7c302b49 3704 clean_tree_block(fs_info, left);
f0486c68 3705
5f39d397 3706 btrfs_mark_buffer_dirty(right);
a429e513 3707
5f39d397
CM
3708 btrfs_item_key(right, &disk_key, 0);
3709 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3710 btrfs_mark_buffer_dirty(upper);
02217ed2 3711
00ec4c51 3712 /* then fixup the leaf pointer in the path */
7518a238
CM
3713 if (path->slots[0] >= left_nritems) {
3714 path->slots[0] -= left_nritems;
925baedd 3715 if (btrfs_header_nritems(path->nodes[0]) == 0)
7c302b49 3716 clean_tree_block(fs_info, path->nodes[0]);
925baedd 3717 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3718 free_extent_buffer(path->nodes[0]);
3719 path->nodes[0] = right;
00ec4c51
CM
3720 path->slots[1] += 1;
3721 } else {
925baedd 3722 btrfs_tree_unlock(right);
5f39d397 3723 free_extent_buffer(right);
00ec4c51
CM
3724 }
3725 return 0;
925baedd
CM
3726
3727out_unlock:
3728 btrfs_tree_unlock(right);
3729 free_extent_buffer(right);
3730 return 1;
00ec4c51 3731}
925baedd 3732
44871b1b
CM
3733/*
3734 * push some data in the path leaf to the right, trying to free up at
3735 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3736 *
3737 * returns 1 if the push failed because the other node didn't have enough
3738 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3739 *
3740 * this will push starting from min_slot to the end of the leaf. It won't
3741 * push any slot lower than min_slot
44871b1b
CM
3742 */
3743static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3744 *root, struct btrfs_path *path,
3745 int min_data_size, int data_size,
3746 int empty, u32 min_slot)
44871b1b 3747{
2ff7e61e 3748 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3749 struct extent_buffer *left = path->nodes[0];
3750 struct extent_buffer *right;
3751 struct extent_buffer *upper;
3752 int slot;
3753 int free_space;
3754 u32 left_nritems;
3755 int ret;
3756
3757 if (!path->nodes[1])
3758 return 1;
3759
3760 slot = path->slots[1];
3761 upper = path->nodes[1];
3762 if (slot >= btrfs_header_nritems(upper) - 1)
3763 return 1;
3764
3765 btrfs_assert_tree_locked(path->nodes[1]);
3766
2ff7e61e 3767 right = read_node_slot(fs_info, upper, slot + 1);
fb770ae4
LB
3768 /*
3769 * slot + 1 is not valid or we fail to read the right node,
3770 * no big deal, just return.
3771 */
3772 if (IS_ERR(right))
91ca338d
TI
3773 return 1;
3774
44871b1b
CM
3775 btrfs_tree_lock(right);
3776 btrfs_set_lock_blocking(right);
3777
2ff7e61e 3778 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3779 if (free_space < data_size)
3780 goto out_unlock;
3781
3782 /* cow and double check */
3783 ret = btrfs_cow_block(trans, root, right, upper,
3784 slot + 1, &right);
3785 if (ret)
3786 goto out_unlock;
3787
2ff7e61e 3788 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3789 if (free_space < data_size)
3790 goto out_unlock;
3791
3792 left_nritems = btrfs_header_nritems(left);
3793 if (left_nritems == 0)
3794 goto out_unlock;
3795
2ef1fed2
FDBM
3796 if (path->slots[0] == left_nritems && !empty) {
3797 /* Key greater than all keys in the leaf, right neighbor has
3798 * enough room for it and we're not emptying our leaf to delete
3799 * it, therefore use right neighbor to insert the new item and
3800 * no need to touch/dirty our left leaft. */
3801 btrfs_tree_unlock(left);
3802 free_extent_buffer(left);
3803 path->nodes[0] = right;
3804 path->slots[0] = 0;
3805 path->slots[1]++;
3806 return 0;
3807 }
3808
1e47eef2 3809 return __push_leaf_right(fs_info, path, min_data_size, empty,
99d8f83c 3810 right, free_space, left_nritems, min_slot);
44871b1b
CM
3811out_unlock:
3812 btrfs_tree_unlock(right);
3813 free_extent_buffer(right);
3814 return 1;
3815}
3816
74123bd7
CM
3817/*
3818 * push some data in the path leaf to the left, trying to free up at
3819 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3820 *
3821 * max_slot can put a limit on how far into the leaf we'll push items. The
3822 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3823 * items
74123bd7 3824 */
66cb7ddb 3825static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
44871b1b
CM
3826 struct btrfs_path *path, int data_size,
3827 int empty, struct extent_buffer *left,
99d8f83c
CM
3828 int free_space, u32 right_nritems,
3829 u32 max_slot)
be0e5c09 3830{
5f39d397
CM
3831 struct btrfs_disk_key disk_key;
3832 struct extent_buffer *right = path->nodes[0];
be0e5c09 3833 int i;
be0e5c09
CM
3834 int push_space = 0;
3835 int push_items = 0;
0783fcfc 3836 struct btrfs_item *item;
7518a238 3837 u32 old_left_nritems;
34a38218 3838 u32 nr;
aa5d6bed 3839 int ret = 0;
db94535d
CM
3840 u32 this_item_size;
3841 u32 old_left_item_size;
cfed81a0
CM
3842 struct btrfs_map_token token;
3843
3844 btrfs_init_map_token(&token);
be0e5c09 3845
34a38218 3846 if (empty)
99d8f83c 3847 nr = min(right_nritems, max_slot);
34a38218 3848 else
99d8f83c 3849 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3850
3851 for (i = 0; i < nr; i++) {
dd3cc16b 3852 item = btrfs_item_nr(i);
db94535d 3853
31840ae1
ZY
3854 if (!empty && push_items > 0) {
3855 if (path->slots[0] < i)
3856 break;
3857 if (path->slots[0] == i) {
2ff7e61e 3858 int space = btrfs_leaf_free_space(fs_info, right);
31840ae1
ZY
3859 if (space + push_space * 2 > free_space)
3860 break;
3861 }
3862 }
3863
be0e5c09 3864 if (path->slots[0] == i)
87b29b20 3865 push_space += data_size;
db94535d
CM
3866
3867 this_item_size = btrfs_item_size(right, item);
3868 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3869 break;
db94535d 3870
be0e5c09 3871 push_items++;
db94535d
CM
3872 push_space += this_item_size + sizeof(*item);
3873 }
3874
be0e5c09 3875 if (push_items == 0) {
925baedd
CM
3876 ret = 1;
3877 goto out;
be0e5c09 3878 }
fae7f21c 3879 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3880
be0e5c09 3881 /* push data from right to left */
5f39d397
CM
3882 copy_extent_buffer(left, right,
3883 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3884 btrfs_item_nr_offset(0),
3885 push_items * sizeof(struct btrfs_item));
3886
0b246afa 3887 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
d397712b 3888 btrfs_item_offset_nr(right, push_items - 1);
5f39d397 3889
3d9ec8c4 3890 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3891 leaf_data_end(fs_info, left) - push_space,
3d9ec8c4 3892 BTRFS_LEAF_DATA_OFFSET +
5f39d397 3893 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3894 push_space);
5f39d397 3895 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3896 BUG_ON(old_left_nritems <= 0);
eb60ceac 3897
db94535d 3898 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3899 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3900 u32 ioff;
db94535d 3901
dd3cc16b 3902 item = btrfs_item_nr(i);
db94535d 3903
cfed81a0
CM
3904 ioff = btrfs_token_item_offset(left, item, &token);
3905 btrfs_set_token_item_offset(left, item,
0b246afa 3906 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
cfed81a0 3907 &token);
be0e5c09 3908 }
5f39d397 3909 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3910
3911 /* fixup right node */
31b1a2bd
JL
3912 if (push_items > right_nritems)
3913 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3914 right_nritems);
34a38218
CM
3915
3916 if (push_items < right_nritems) {
3917 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2ff7e61e 3918 leaf_data_end(fs_info, right);
3d9ec8c4 3919 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3920 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3921 BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3922 leaf_data_end(fs_info, right), push_space);
34a38218
CM
3923
3924 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3925 btrfs_item_nr_offset(push_items),
3926 (btrfs_header_nritems(right) - push_items) *
3927 sizeof(struct btrfs_item));
34a38218 3928 }
eef1c494
Y
3929 right_nritems -= push_items;
3930 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3931 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
5f39d397 3932 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3933 item = btrfs_item_nr(i);
db94535d 3934
cfed81a0
CM
3935 push_space = push_space - btrfs_token_item_size(right,
3936 item, &token);
3937 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3938 }
eb60ceac 3939
5f39d397 3940 btrfs_mark_buffer_dirty(left);
34a38218
CM
3941 if (right_nritems)
3942 btrfs_mark_buffer_dirty(right);
f0486c68 3943 else
7c302b49 3944 clean_tree_block(fs_info, right);
098f59c2 3945
5f39d397 3946 btrfs_item_key(right, &disk_key, 0);
0b246afa 3947 fixup_low_keys(fs_info, path, &disk_key, 1);
be0e5c09
CM
3948
3949 /* then fixup the leaf pointer in the path */
3950 if (path->slots[0] < push_items) {
3951 path->slots[0] += old_left_nritems;
925baedd 3952 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3953 free_extent_buffer(path->nodes[0]);
3954 path->nodes[0] = left;
be0e5c09
CM
3955 path->slots[1] -= 1;
3956 } else {
925baedd 3957 btrfs_tree_unlock(left);
5f39d397 3958 free_extent_buffer(left);
be0e5c09
CM
3959 path->slots[0] -= push_items;
3960 }
eb60ceac 3961 BUG_ON(path->slots[0] < 0);
aa5d6bed 3962 return ret;
925baedd
CM
3963out:
3964 btrfs_tree_unlock(left);
3965 free_extent_buffer(left);
3966 return ret;
be0e5c09
CM
3967}
3968
44871b1b
CM
3969/*
3970 * push some data in the path leaf to the left, trying to free up at
3971 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3972 *
3973 * max_slot can put a limit on how far into the leaf we'll push items. The
3974 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3975 * items
44871b1b
CM
3976 */
3977static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3978 *root, struct btrfs_path *path, int min_data_size,
3979 int data_size, int empty, u32 max_slot)
44871b1b 3980{
2ff7e61e 3981 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3982 struct extent_buffer *right = path->nodes[0];
3983 struct extent_buffer *left;
3984 int slot;
3985 int free_space;
3986 u32 right_nritems;
3987 int ret = 0;
3988
3989 slot = path->slots[1];
3990 if (slot == 0)
3991 return 1;
3992 if (!path->nodes[1])
3993 return 1;
3994
3995 right_nritems = btrfs_header_nritems(right);
3996 if (right_nritems == 0)
3997 return 1;
3998
3999 btrfs_assert_tree_locked(path->nodes[1]);
4000
2ff7e61e 4001 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
fb770ae4
LB
4002 /*
4003 * slot - 1 is not valid or we fail to read the left node,
4004 * no big deal, just return.
4005 */
4006 if (IS_ERR(left))
91ca338d
TI
4007 return 1;
4008
44871b1b
CM
4009 btrfs_tree_lock(left);
4010 btrfs_set_lock_blocking(left);
4011
2ff7e61e 4012 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4013 if (free_space < data_size) {
4014 ret = 1;
4015 goto out;
4016 }
4017
4018 /* cow and double check */
4019 ret = btrfs_cow_block(trans, root, left,
4020 path->nodes[1], slot - 1, &left);
4021 if (ret) {
4022 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4023 if (ret == -ENOSPC)
4024 ret = 1;
44871b1b
CM
4025 goto out;
4026 }
4027
2ff7e61e 4028 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4029 if (free_space < data_size) {
4030 ret = 1;
4031 goto out;
4032 }
4033
66cb7ddb 4034 return __push_leaf_left(fs_info, path, min_data_size,
99d8f83c
CM
4035 empty, left, free_space, right_nritems,
4036 max_slot);
44871b1b
CM
4037out:
4038 btrfs_tree_unlock(left);
4039 free_extent_buffer(left);
4040 return ret;
4041}
4042
4043/*
4044 * split the path's leaf in two, making sure there is at least data_size
4045 * available for the resulting leaf level of the path.
44871b1b 4046 */
143bede5 4047static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2ff7e61e 4048 struct btrfs_fs_info *fs_info,
143bede5
JM
4049 struct btrfs_path *path,
4050 struct extent_buffer *l,
4051 struct extent_buffer *right,
4052 int slot, int mid, int nritems)
44871b1b
CM
4053{
4054 int data_copy_size;
4055 int rt_data_off;
4056 int i;
44871b1b 4057 struct btrfs_disk_key disk_key;
cfed81a0
CM
4058 struct btrfs_map_token token;
4059
4060 btrfs_init_map_token(&token);
44871b1b
CM
4061
4062 nritems = nritems - mid;
4063 btrfs_set_header_nritems(right, nritems);
2ff7e61e 4064 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
44871b1b
CM
4065
4066 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4067 btrfs_item_nr_offset(mid),
4068 nritems * sizeof(struct btrfs_item));
4069
4070 copy_extent_buffer(right, l,
3d9ec8c4
NB
4071 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4072 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 4073 leaf_data_end(fs_info, l), data_copy_size);
44871b1b 4074
0b246afa 4075 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
44871b1b
CM
4076
4077 for (i = 0; i < nritems; i++) {
dd3cc16b 4078 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4079 u32 ioff;
4080
cfed81a0
CM
4081 ioff = btrfs_token_item_offset(right, item, &token);
4082 btrfs_set_token_item_offset(right, item,
4083 ioff + rt_data_off, &token);
44871b1b
CM
4084 }
4085
44871b1b 4086 btrfs_set_header_nritems(l, mid);
44871b1b 4087 btrfs_item_key(right, &disk_key, 0);
2ff7e61e 4088 insert_ptr(trans, fs_info, path, &disk_key, right->start,
c3e06965 4089 path->slots[1] + 1, 1);
44871b1b
CM
4090
4091 btrfs_mark_buffer_dirty(right);
4092 btrfs_mark_buffer_dirty(l);
4093 BUG_ON(path->slots[0] != slot);
4094
44871b1b
CM
4095 if (mid <= slot) {
4096 btrfs_tree_unlock(path->nodes[0]);
4097 free_extent_buffer(path->nodes[0]);
4098 path->nodes[0] = right;
4099 path->slots[0] -= mid;
4100 path->slots[1] += 1;
4101 } else {
4102 btrfs_tree_unlock(right);
4103 free_extent_buffer(right);
4104 }
4105
4106 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4107}
4108
99d8f83c
CM
4109/*
4110 * double splits happen when we need to insert a big item in the middle
4111 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4112 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4113 * A B C
4114 *
4115 * We avoid this by trying to push the items on either side of our target
4116 * into the adjacent leaves. If all goes well we can avoid the double split
4117 * completely.
4118 */
4119static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4120 struct btrfs_root *root,
4121 struct btrfs_path *path,
4122 int data_size)
4123{
2ff7e61e 4124 struct btrfs_fs_info *fs_info = root->fs_info;
99d8f83c
CM
4125 int ret;
4126 int progress = 0;
4127 int slot;
4128 u32 nritems;
5a4267ca 4129 int space_needed = data_size;
99d8f83c
CM
4130
4131 slot = path->slots[0];
5a4267ca 4132 if (slot < btrfs_header_nritems(path->nodes[0]))
2ff7e61e 4133 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
99d8f83c
CM
4134
4135 /*
4136 * try to push all the items after our slot into the
4137 * right leaf
4138 */
5a4267ca 4139 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4140 if (ret < 0)
4141 return ret;
4142
4143 if (ret == 0)
4144 progress++;
4145
4146 nritems = btrfs_header_nritems(path->nodes[0]);
4147 /*
4148 * our goal is to get our slot at the start or end of a leaf. If
4149 * we've done so we're done
4150 */
4151 if (path->slots[0] == 0 || path->slots[0] == nritems)
4152 return 0;
4153
2ff7e61e 4154 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4155 return 0;
4156
4157 /* try to push all the items before our slot into the next leaf */
4158 slot = path->slots[0];
263d3995
FM
4159 space_needed = data_size;
4160 if (slot > 0)
4161 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
5a4267ca 4162 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4163 if (ret < 0)
4164 return ret;
4165
4166 if (ret == 0)
4167 progress++;
4168
4169 if (progress)
4170 return 0;
4171 return 1;
4172}
4173
74123bd7
CM
4174/*
4175 * split the path's leaf in two, making sure there is at least data_size
4176 * available for the resulting leaf level of the path.
aa5d6bed
CM
4177 *
4178 * returns 0 if all went well and < 0 on failure.
74123bd7 4179 */
e02119d5
CM
4180static noinline int split_leaf(struct btrfs_trans_handle *trans,
4181 struct btrfs_root *root,
310712b2 4182 const struct btrfs_key *ins_key,
e02119d5
CM
4183 struct btrfs_path *path, int data_size,
4184 int extend)
be0e5c09 4185{
5d4f98a2 4186 struct btrfs_disk_key disk_key;
5f39d397 4187 struct extent_buffer *l;
7518a238 4188 u32 nritems;
eb60ceac
CM
4189 int mid;
4190 int slot;
5f39d397 4191 struct extent_buffer *right;
b7a0365e 4192 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4193 int ret = 0;
aa5d6bed 4194 int wret;
5d4f98a2 4195 int split;
cc0c5538 4196 int num_doubles = 0;
99d8f83c 4197 int tried_avoid_double = 0;
aa5d6bed 4198
a5719521
YZ
4199 l = path->nodes[0];
4200 slot = path->slots[0];
4201 if (extend && data_size + btrfs_item_size_nr(l, slot) +
0b246afa 4202 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
a5719521
YZ
4203 return -EOVERFLOW;
4204
40689478 4205 /* first try to make some room by pushing left and right */
33157e05 4206 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4207 int space_needed = data_size;
4208
4209 if (slot < btrfs_header_nritems(l))
2ff7e61e 4210 space_needed -= btrfs_leaf_free_space(fs_info, l);
5a4267ca
FDBM
4211
4212 wret = push_leaf_right(trans, root, path, space_needed,
4213 space_needed, 0, 0);
d397712b 4214 if (wret < 0)
eaee50e8 4215 return wret;
3685f791 4216 if (wret) {
263d3995
FM
4217 space_needed = data_size;
4218 if (slot > 0)
4219 space_needed -= btrfs_leaf_free_space(fs_info,
4220 l);
5a4267ca
FDBM
4221 wret = push_leaf_left(trans, root, path, space_needed,
4222 space_needed, 0, (u32)-1);
3685f791
CM
4223 if (wret < 0)
4224 return wret;
4225 }
4226 l = path->nodes[0];
aa5d6bed 4227
3685f791 4228 /* did the pushes work? */
2ff7e61e 4229 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
3685f791 4230 return 0;
3326d1b0 4231 }
aa5d6bed 4232
5c680ed6 4233 if (!path->nodes[1]) {
fdd99c72 4234 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4235 if (ret)
4236 return ret;
4237 }
cc0c5538 4238again:
5d4f98a2 4239 split = 1;
cc0c5538 4240 l = path->nodes[0];
eb60ceac 4241 slot = path->slots[0];
5f39d397 4242 nritems = btrfs_header_nritems(l);
d397712b 4243 mid = (nritems + 1) / 2;
54aa1f4d 4244
5d4f98a2
YZ
4245 if (mid <= slot) {
4246 if (nritems == 1 ||
4247 leaf_space_used(l, mid, nritems - mid) + data_size >
0b246afa 4248 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4249 if (slot >= nritems) {
4250 split = 0;
4251 } else {
4252 mid = slot;
4253 if (mid != nritems &&
4254 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4255 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4256 if (data_size && !tried_avoid_double)
4257 goto push_for_double;
5d4f98a2
YZ
4258 split = 2;
4259 }
4260 }
4261 }
4262 } else {
4263 if (leaf_space_used(l, 0, mid) + data_size >
0b246afa 4264 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4265 if (!extend && data_size && slot == 0) {
4266 split = 0;
4267 } else if ((extend || !data_size) && slot == 0) {
4268 mid = 1;
4269 } else {
4270 mid = slot;
4271 if (mid != nritems &&
4272 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4273 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4274 if (data_size && !tried_avoid_double)
4275 goto push_for_double;
67871254 4276 split = 2;
5d4f98a2
YZ
4277 }
4278 }
4279 }
4280 }
4281
4282 if (split == 0)
4283 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4284 else
4285 btrfs_item_key(l, &disk_key, mid);
4286
4d75f8a9
DS
4287 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4288 &disk_key, 0, l->start, 0);
f0486c68 4289 if (IS_ERR(right))
5f39d397 4290 return PTR_ERR(right);
f0486c68 4291
0b246afa 4292 root_add_used(root, fs_info->nodesize);
5f39d397 4293
b159fa28 4294 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
db94535d 4295 btrfs_set_header_bytenr(right, right->start);
5f39d397 4296 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4297 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4298 btrfs_set_header_owner(right, root->root_key.objectid);
4299 btrfs_set_header_level(right, 0);
d24ee97b
DS
4300 write_extent_buffer_fsid(right, fs_info->fsid);
4301 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
44871b1b 4302
5d4f98a2
YZ
4303 if (split == 0) {
4304 if (mid <= slot) {
4305 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4306 insert_ptr(trans, fs_info, path, &disk_key,
4307 right->start, path->slots[1] + 1, 1);
5d4f98a2
YZ
4308 btrfs_tree_unlock(path->nodes[0]);
4309 free_extent_buffer(path->nodes[0]);
4310 path->nodes[0] = right;
4311 path->slots[0] = 0;
4312 path->slots[1] += 1;
4313 } else {
4314 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4315 insert_ptr(trans, fs_info, path, &disk_key,
4316 right->start, path->slots[1], 1);
5d4f98a2
YZ
4317 btrfs_tree_unlock(path->nodes[0]);
4318 free_extent_buffer(path->nodes[0]);
4319 path->nodes[0] = right;
4320 path->slots[0] = 0;
143bede5 4321 if (path->slots[1] == 0)
b7a0365e 4322 fixup_low_keys(fs_info, path, &disk_key, 1);
d4dbff95 4323 }
196e0249
LB
4324 /*
4325 * We create a new leaf 'right' for the required ins_len and
4326 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4327 * the content of ins_len to 'right'.
4328 */
5d4f98a2 4329 return ret;
d4dbff95 4330 }
74123bd7 4331
2ff7e61e 4332 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
31840ae1 4333
5d4f98a2 4334 if (split == 2) {
cc0c5538
CM
4335 BUG_ON(num_doubles != 0);
4336 num_doubles++;
4337 goto again;
a429e513 4338 }
44871b1b 4339
143bede5 4340 return 0;
99d8f83c
CM
4341
4342push_for_double:
4343 push_for_double_split(trans, root, path, data_size);
4344 tried_avoid_double = 1;
2ff7e61e 4345 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4346 return 0;
4347 goto again;
be0e5c09
CM
4348}
4349
ad48fd75
YZ
4350static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4351 struct btrfs_root *root,
4352 struct btrfs_path *path, int ins_len)
459931ec 4353{
2ff7e61e 4354 struct btrfs_fs_info *fs_info = root->fs_info;
ad48fd75 4355 struct btrfs_key key;
459931ec 4356 struct extent_buffer *leaf;
ad48fd75
YZ
4357 struct btrfs_file_extent_item *fi;
4358 u64 extent_len = 0;
4359 u32 item_size;
4360 int ret;
459931ec
CM
4361
4362 leaf = path->nodes[0];
ad48fd75
YZ
4363 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4364
4365 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4366 key.type != BTRFS_EXTENT_CSUM_KEY);
4367
2ff7e61e 4368 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
ad48fd75 4369 return 0;
459931ec
CM
4370
4371 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4372 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4373 fi = btrfs_item_ptr(leaf, path->slots[0],
4374 struct btrfs_file_extent_item);
4375 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4376 }
b3b4aa74 4377 btrfs_release_path(path);
459931ec 4378
459931ec 4379 path->keep_locks = 1;
ad48fd75
YZ
4380 path->search_for_split = 1;
4381 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4382 path->search_for_split = 0;
a8df6fe6
FM
4383 if (ret > 0)
4384 ret = -EAGAIN;
ad48fd75
YZ
4385 if (ret < 0)
4386 goto err;
459931ec 4387
ad48fd75
YZ
4388 ret = -EAGAIN;
4389 leaf = path->nodes[0];
a8df6fe6
FM
4390 /* if our item isn't there, return now */
4391 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4392 goto err;
4393
109f6aef 4394 /* the leaf has changed, it now has room. return now */
2ff7e61e 4395 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
109f6aef
CM
4396 goto err;
4397
ad48fd75
YZ
4398 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4399 fi = btrfs_item_ptr(leaf, path->slots[0],
4400 struct btrfs_file_extent_item);
4401 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4402 goto err;
459931ec
CM
4403 }
4404
b9473439 4405 btrfs_set_path_blocking(path);
ad48fd75 4406 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4407 if (ret)
4408 goto err;
459931ec 4409
ad48fd75 4410 path->keep_locks = 0;
b9473439 4411 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4412 return 0;
4413err:
4414 path->keep_locks = 0;
4415 return ret;
4416}
4417
4961e293 4418static noinline int split_item(struct btrfs_fs_info *fs_info,
ad48fd75 4419 struct btrfs_path *path,
310712b2 4420 const struct btrfs_key *new_key,
ad48fd75
YZ
4421 unsigned long split_offset)
4422{
4423 struct extent_buffer *leaf;
4424 struct btrfs_item *item;
4425 struct btrfs_item *new_item;
4426 int slot;
4427 char *buf;
4428 u32 nritems;
4429 u32 item_size;
4430 u32 orig_offset;
4431 struct btrfs_disk_key disk_key;
4432
b9473439 4433 leaf = path->nodes[0];
2ff7e61e 4434 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
b9473439 4435
b4ce94de
CM
4436 btrfs_set_path_blocking(path);
4437
dd3cc16b 4438 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4439 orig_offset = btrfs_item_offset(leaf, item);
4440 item_size = btrfs_item_size(leaf, item);
4441
459931ec 4442 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4443 if (!buf)
4444 return -ENOMEM;
4445
459931ec
CM
4446 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4447 path->slots[0]), item_size);
459931ec 4448
ad48fd75 4449 slot = path->slots[0] + 1;
459931ec 4450 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4451 if (slot != nritems) {
4452 /* shift the items */
4453 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4454 btrfs_item_nr_offset(slot),
4455 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4456 }
4457
4458 btrfs_cpu_key_to_disk(&disk_key, new_key);
4459 btrfs_set_item_key(leaf, &disk_key, slot);
4460
dd3cc16b 4461 new_item = btrfs_item_nr(slot);
459931ec
CM
4462
4463 btrfs_set_item_offset(leaf, new_item, orig_offset);
4464 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4465
4466 btrfs_set_item_offset(leaf, item,
4467 orig_offset + item_size - split_offset);
4468 btrfs_set_item_size(leaf, item, split_offset);
4469
4470 btrfs_set_header_nritems(leaf, nritems + 1);
4471
4472 /* write the data for the start of the original item */
4473 write_extent_buffer(leaf, buf,
4474 btrfs_item_ptr_offset(leaf, path->slots[0]),
4475 split_offset);
4476
4477 /* write the data for the new item */
4478 write_extent_buffer(leaf, buf + split_offset,
4479 btrfs_item_ptr_offset(leaf, slot),
4480 item_size - split_offset);
4481 btrfs_mark_buffer_dirty(leaf);
4482
2ff7e61e 4483 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
459931ec 4484 kfree(buf);
ad48fd75
YZ
4485 return 0;
4486}
4487
4488/*
4489 * This function splits a single item into two items,
4490 * giving 'new_key' to the new item and splitting the
4491 * old one at split_offset (from the start of the item).
4492 *
4493 * The path may be released by this operation. After
4494 * the split, the path is pointing to the old item. The
4495 * new item is going to be in the same node as the old one.
4496 *
4497 * Note, the item being split must be smaller enough to live alone on
4498 * a tree block with room for one extra struct btrfs_item
4499 *
4500 * This allows us to split the item in place, keeping a lock on the
4501 * leaf the entire time.
4502 */
4503int btrfs_split_item(struct btrfs_trans_handle *trans,
4504 struct btrfs_root *root,
4505 struct btrfs_path *path,
310712b2 4506 const struct btrfs_key *new_key,
ad48fd75
YZ
4507 unsigned long split_offset)
4508{
4509 int ret;
4510 ret = setup_leaf_for_split(trans, root, path,
4511 sizeof(struct btrfs_item));
4512 if (ret)
4513 return ret;
4514
4961e293 4515 ret = split_item(root->fs_info, path, new_key, split_offset);
459931ec
CM
4516 return ret;
4517}
4518
ad48fd75
YZ
4519/*
4520 * This function duplicate a item, giving 'new_key' to the new item.
4521 * It guarantees both items live in the same tree leaf and the new item
4522 * is contiguous with the original item.
4523 *
4524 * This allows us to split file extent in place, keeping a lock on the
4525 * leaf the entire time.
4526 */
4527int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4528 struct btrfs_root *root,
4529 struct btrfs_path *path,
310712b2 4530 const struct btrfs_key *new_key)
ad48fd75
YZ
4531{
4532 struct extent_buffer *leaf;
4533 int ret;
4534 u32 item_size;
4535
4536 leaf = path->nodes[0];
4537 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4538 ret = setup_leaf_for_split(trans, root, path,
4539 item_size + sizeof(struct btrfs_item));
4540 if (ret)
4541 return ret;
4542
4543 path->slots[0]++;
afe5fea7 4544 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4545 item_size, item_size +
4546 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4547 leaf = path->nodes[0];
4548 memcpy_extent_buffer(leaf,
4549 btrfs_item_ptr_offset(leaf, path->slots[0]),
4550 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4551 item_size);
4552 return 0;
4553}
4554
d352ac68
CM
4555/*
4556 * make the item pointed to by the path smaller. new_size indicates
4557 * how small to make it, and from_end tells us if we just chop bytes
4558 * off the end of the item or if we shift the item to chop bytes off
4559 * the front.
4560 */
2ff7e61e
JM
4561void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4562 struct btrfs_path *path, u32 new_size, int from_end)
b18c6685 4563{
b18c6685 4564 int slot;
5f39d397
CM
4565 struct extent_buffer *leaf;
4566 struct btrfs_item *item;
b18c6685
CM
4567 u32 nritems;
4568 unsigned int data_end;
4569 unsigned int old_data_start;
4570 unsigned int old_size;
4571 unsigned int size_diff;
4572 int i;
cfed81a0
CM
4573 struct btrfs_map_token token;
4574
4575 btrfs_init_map_token(&token);
b18c6685 4576
5f39d397 4577 leaf = path->nodes[0];
179e29e4
CM
4578 slot = path->slots[0];
4579
4580 old_size = btrfs_item_size_nr(leaf, slot);
4581 if (old_size == new_size)
143bede5 4582 return;
b18c6685 4583
5f39d397 4584 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4585 data_end = leaf_data_end(fs_info, leaf);
b18c6685 4586
5f39d397 4587 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4588
b18c6685
CM
4589 size_diff = old_size - new_size;
4590
4591 BUG_ON(slot < 0);
4592 BUG_ON(slot >= nritems);
4593
4594 /*
4595 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4596 */
4597 /* first correct the data pointers */
4598 for (i = slot; i < nritems; i++) {
5f39d397 4599 u32 ioff;
dd3cc16b 4600 item = btrfs_item_nr(i);
db94535d 4601
cfed81a0
CM
4602 ioff = btrfs_token_item_offset(leaf, item, &token);
4603 btrfs_set_token_item_offset(leaf, item,
4604 ioff + size_diff, &token);
b18c6685 4605 }
db94535d 4606
b18c6685 4607 /* shift the data */
179e29e4 4608 if (from_end) {
3d9ec8c4
NB
4609 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4610 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4611 data_end, old_data_start + new_size - data_end);
4612 } else {
4613 struct btrfs_disk_key disk_key;
4614 u64 offset;
4615
4616 btrfs_item_key(leaf, &disk_key, slot);
4617
4618 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4619 unsigned long ptr;
4620 struct btrfs_file_extent_item *fi;
4621
4622 fi = btrfs_item_ptr(leaf, slot,
4623 struct btrfs_file_extent_item);
4624 fi = (struct btrfs_file_extent_item *)(
4625 (unsigned long)fi - size_diff);
4626
4627 if (btrfs_file_extent_type(leaf, fi) ==
4628 BTRFS_FILE_EXTENT_INLINE) {
4629 ptr = btrfs_item_ptr_offset(leaf, slot);
4630 memmove_extent_buffer(leaf, ptr,
d397712b 4631 (unsigned long)fi,
7ec20afb 4632 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4633 }
4634 }
4635
3d9ec8c4
NB
4636 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4637 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4638 data_end, old_data_start - data_end);
4639
4640 offset = btrfs_disk_key_offset(&disk_key);
4641 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4642 btrfs_set_item_key(leaf, &disk_key, slot);
4643 if (slot == 0)
0b246afa 4644 fixup_low_keys(fs_info, path, &disk_key, 1);
179e29e4 4645 }
5f39d397 4646
dd3cc16b 4647 item = btrfs_item_nr(slot);
5f39d397
CM
4648 btrfs_set_item_size(leaf, item, new_size);
4649 btrfs_mark_buffer_dirty(leaf);
b18c6685 4650
2ff7e61e 4651 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4652 btrfs_print_leaf(leaf);
b18c6685 4653 BUG();
5f39d397 4654 }
b18c6685
CM
4655}
4656
d352ac68 4657/*
8f69dbd2 4658 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4659 */
2ff7e61e 4660void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 4661 u32 data_size)
6567e837 4662{
6567e837 4663 int slot;
5f39d397
CM
4664 struct extent_buffer *leaf;
4665 struct btrfs_item *item;
6567e837
CM
4666 u32 nritems;
4667 unsigned int data_end;
4668 unsigned int old_data;
4669 unsigned int old_size;
4670 int i;
cfed81a0
CM
4671 struct btrfs_map_token token;
4672
4673 btrfs_init_map_token(&token);
6567e837 4674
5f39d397 4675 leaf = path->nodes[0];
6567e837 4676
5f39d397 4677 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4678 data_end = leaf_data_end(fs_info, leaf);
6567e837 4679
2ff7e61e 4680 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
a4f78750 4681 btrfs_print_leaf(leaf);
6567e837 4682 BUG();
5f39d397 4683 }
6567e837 4684 slot = path->slots[0];
5f39d397 4685 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4686
4687 BUG_ON(slot < 0);
3326d1b0 4688 if (slot >= nritems) {
a4f78750 4689 btrfs_print_leaf(leaf);
0b246afa
JM
4690 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4691 slot, nritems);
3326d1b0
CM
4692 BUG_ON(1);
4693 }
6567e837
CM
4694
4695 /*
4696 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4697 */
4698 /* first correct the data pointers */
4699 for (i = slot; i < nritems; i++) {
5f39d397 4700 u32 ioff;
dd3cc16b 4701 item = btrfs_item_nr(i);
db94535d 4702
cfed81a0
CM
4703 ioff = btrfs_token_item_offset(leaf, item, &token);
4704 btrfs_set_token_item_offset(leaf, item,
4705 ioff - data_size, &token);
6567e837 4706 }
5f39d397 4707
6567e837 4708 /* shift the data */
3d9ec8c4
NB
4709 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4710 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
6567e837 4711 data_end, old_data - data_end);
5f39d397 4712
6567e837 4713 data_end = old_data;
5f39d397 4714 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4715 item = btrfs_item_nr(slot);
5f39d397
CM
4716 btrfs_set_item_size(leaf, item, old_size + data_size);
4717 btrfs_mark_buffer_dirty(leaf);
6567e837 4718
2ff7e61e 4719 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4720 btrfs_print_leaf(leaf);
6567e837 4721 BUG();
5f39d397 4722 }
6567e837
CM
4723}
4724
74123bd7 4725/*
44871b1b
CM
4726 * this is a helper for btrfs_insert_empty_items, the main goal here is
4727 * to save stack depth by doing the bulk of the work in a function
4728 * that doesn't call btrfs_search_slot
74123bd7 4729 */
afe5fea7 4730void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
310712b2 4731 const struct btrfs_key *cpu_key, u32 *data_size,
143bede5 4732 u32 total_data, u32 total_size, int nr)
be0e5c09 4733{
0b246afa 4734 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4735 struct btrfs_item *item;
9c58309d 4736 int i;
7518a238 4737 u32 nritems;
be0e5c09 4738 unsigned int data_end;
e2fa7227 4739 struct btrfs_disk_key disk_key;
44871b1b
CM
4740 struct extent_buffer *leaf;
4741 int slot;
cfed81a0
CM
4742 struct btrfs_map_token token;
4743
24cdc847
FM
4744 if (path->slots[0] == 0) {
4745 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
0b246afa 4746 fixup_low_keys(fs_info, path, &disk_key, 1);
24cdc847
FM
4747 }
4748 btrfs_unlock_up_safe(path, 1);
4749
cfed81a0 4750 btrfs_init_map_token(&token);
e2fa7227 4751
5f39d397 4752 leaf = path->nodes[0];
44871b1b 4753 slot = path->slots[0];
74123bd7 4754
5f39d397 4755 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4756 data_end = leaf_data_end(fs_info, leaf);
eb60ceac 4757
2ff7e61e 4758 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
a4f78750 4759 btrfs_print_leaf(leaf);
0b246afa 4760 btrfs_crit(fs_info, "not enough freespace need %u have %d",
2ff7e61e 4761 total_size, btrfs_leaf_free_space(fs_info, leaf));
be0e5c09 4762 BUG();
d4dbff95 4763 }
5f39d397 4764
be0e5c09 4765 if (slot != nritems) {
5f39d397 4766 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4767
5f39d397 4768 if (old_data < data_end) {
a4f78750 4769 btrfs_print_leaf(leaf);
0b246afa 4770 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
5d163e0e 4771 slot, old_data, data_end);
5f39d397
CM
4772 BUG_ON(1);
4773 }
be0e5c09
CM
4774 /*
4775 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4776 */
4777 /* first correct the data pointers */
0783fcfc 4778 for (i = slot; i < nritems; i++) {
5f39d397 4779 u32 ioff;
db94535d 4780
62e85577 4781 item = btrfs_item_nr(i);
cfed81a0
CM
4782 ioff = btrfs_token_item_offset(leaf, item, &token);
4783 btrfs_set_token_item_offset(leaf, item,
4784 ioff - total_data, &token);
0783fcfc 4785 }
be0e5c09 4786 /* shift the items */
9c58309d 4787 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4788 btrfs_item_nr_offset(slot),
d6025579 4789 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4790
4791 /* shift the data */
3d9ec8c4
NB
4792 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4793 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
d6025579 4794 data_end, old_data - data_end);
be0e5c09
CM
4795 data_end = old_data;
4796 }
5f39d397 4797
62e2749e 4798 /* setup the item for the new data */
9c58309d
CM
4799 for (i = 0; i < nr; i++) {
4800 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4801 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4802 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4803 btrfs_set_token_item_offset(leaf, item,
4804 data_end - data_size[i], &token);
9c58309d 4805 data_end -= data_size[i];
cfed81a0 4806 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4807 }
44871b1b 4808
9c58309d 4809 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4810 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4811
2ff7e61e 4812 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4813 btrfs_print_leaf(leaf);
be0e5c09 4814 BUG();
5f39d397 4815 }
44871b1b
CM
4816}
4817
4818/*
4819 * Given a key and some data, insert items into the tree.
4820 * This does all the path init required, making room in the tree if needed.
4821 */
4822int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4823 struct btrfs_root *root,
4824 struct btrfs_path *path,
310712b2 4825 const struct btrfs_key *cpu_key, u32 *data_size,
44871b1b
CM
4826 int nr)
4827{
44871b1b
CM
4828 int ret = 0;
4829 int slot;
4830 int i;
4831 u32 total_size = 0;
4832 u32 total_data = 0;
4833
4834 for (i = 0; i < nr; i++)
4835 total_data += data_size[i];
4836
4837 total_size = total_data + (nr * sizeof(struct btrfs_item));
4838 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4839 if (ret == 0)
4840 return -EEXIST;
4841 if (ret < 0)
143bede5 4842 return ret;
44871b1b 4843
44871b1b
CM
4844 slot = path->slots[0];
4845 BUG_ON(slot < 0);
4846
afe5fea7 4847 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4848 total_data, total_size, nr);
143bede5 4849 return 0;
62e2749e
CM
4850}
4851
4852/*
4853 * Given a key and some data, insert an item into the tree.
4854 * This does all the path init required, making room in the tree if needed.
4855 */
310712b2
OS
4856int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4857 const struct btrfs_key *cpu_key, void *data,
4858 u32 data_size)
62e2749e
CM
4859{
4860 int ret = 0;
2c90e5d6 4861 struct btrfs_path *path;
5f39d397
CM
4862 struct extent_buffer *leaf;
4863 unsigned long ptr;
62e2749e 4864
2c90e5d6 4865 path = btrfs_alloc_path();
db5b493a
TI
4866 if (!path)
4867 return -ENOMEM;
2c90e5d6 4868 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4869 if (!ret) {
5f39d397
CM
4870 leaf = path->nodes[0];
4871 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4872 write_extent_buffer(leaf, data, ptr, data_size);
4873 btrfs_mark_buffer_dirty(leaf);
62e2749e 4874 }
2c90e5d6 4875 btrfs_free_path(path);
aa5d6bed 4876 return ret;
be0e5c09
CM
4877}
4878
74123bd7 4879/*
5de08d7d 4880 * delete the pointer from a given node.
74123bd7 4881 *
d352ac68
CM
4882 * the tree should have been previously balanced so the deletion does not
4883 * empty a node.
74123bd7 4884 */
afe5fea7
TI
4885static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4886 int level, int slot)
be0e5c09 4887{
0b246afa 4888 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4889 struct extent_buffer *parent = path->nodes[level];
7518a238 4890 u32 nritems;
f3ea38da 4891 int ret;
be0e5c09 4892
5f39d397 4893 nritems = btrfs_header_nritems(parent);
d397712b 4894 if (slot != nritems - 1) {
0e411ece 4895 if (level)
a446a979
DS
4896 tree_mod_log_eb_move(parent, slot, slot + 1,
4897 nritems - slot - 1);
5f39d397
CM
4898 memmove_extent_buffer(parent,
4899 btrfs_node_key_ptr_offset(slot),
4900 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4901 sizeof(struct btrfs_key_ptr) *
4902 (nritems - slot - 1));
57ba86c0 4903 } else if (level) {
e09c2efe
DS
4904 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4905 GFP_NOFS);
57ba86c0 4906 BUG_ON(ret < 0);
bb803951 4907 }
f3ea38da 4908
7518a238 4909 nritems--;
5f39d397 4910 btrfs_set_header_nritems(parent, nritems);
7518a238 4911 if (nritems == 0 && parent == root->node) {
5f39d397 4912 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4913 /* just turn the root into a leaf and break */
5f39d397 4914 btrfs_set_header_level(root->node, 0);
bb803951 4915 } else if (slot == 0) {
5f39d397
CM
4916 struct btrfs_disk_key disk_key;
4917
4918 btrfs_node_key(parent, &disk_key, 0);
0b246afa 4919 fixup_low_keys(fs_info, path, &disk_key, level + 1);
be0e5c09 4920 }
d6025579 4921 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4922}
4923
323ac95b
CM
4924/*
4925 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4926 * path->nodes[1].
323ac95b
CM
4927 *
4928 * This deletes the pointer in path->nodes[1] and frees the leaf
4929 * block extent. zero is returned if it all worked out, < 0 otherwise.
4930 *
4931 * The path must have already been setup for deleting the leaf, including
4932 * all the proper balancing. path->nodes[1] must be locked.
4933 */
143bede5
JM
4934static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4935 struct btrfs_root *root,
4936 struct btrfs_path *path,
4937 struct extent_buffer *leaf)
323ac95b 4938{
5d4f98a2 4939 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4940 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4941
4d081c41
CM
4942 /*
4943 * btrfs_free_extent is expensive, we want to make sure we
4944 * aren't holding any locks when we call it
4945 */
4946 btrfs_unlock_up_safe(path, 0);
4947
f0486c68
YZ
4948 root_sub_used(root, leaf->len);
4949
3083ee2e 4950 extent_buffer_get(leaf);
5581a51a 4951 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4952 free_extent_buffer_stale(leaf);
323ac95b 4953}
74123bd7
CM
4954/*
4955 * delete the item at the leaf level in path. If that empties
4956 * the leaf, remove it from the tree
4957 */
85e21bac
CM
4958int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4959 struct btrfs_path *path, int slot, int nr)
be0e5c09 4960{
0b246afa 4961 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
4962 struct extent_buffer *leaf;
4963 struct btrfs_item *item;
ce0eac2a
AM
4964 u32 last_off;
4965 u32 dsize = 0;
aa5d6bed
CM
4966 int ret = 0;
4967 int wret;
85e21bac 4968 int i;
7518a238 4969 u32 nritems;
cfed81a0
CM
4970 struct btrfs_map_token token;
4971
4972 btrfs_init_map_token(&token);
be0e5c09 4973
5f39d397 4974 leaf = path->nodes[0];
85e21bac
CM
4975 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4976
4977 for (i = 0; i < nr; i++)
4978 dsize += btrfs_item_size_nr(leaf, slot + i);
4979
5f39d397 4980 nritems = btrfs_header_nritems(leaf);
be0e5c09 4981
85e21bac 4982 if (slot + nr != nritems) {
2ff7e61e 4983 int data_end = leaf_data_end(fs_info, leaf);
5f39d397 4984
3d9ec8c4 4985 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
d6025579 4986 data_end + dsize,
3d9ec8c4 4987 BTRFS_LEAF_DATA_OFFSET + data_end,
85e21bac 4988 last_off - data_end);
5f39d397 4989
85e21bac 4990 for (i = slot + nr; i < nritems; i++) {
5f39d397 4991 u32 ioff;
db94535d 4992
dd3cc16b 4993 item = btrfs_item_nr(i);
cfed81a0
CM
4994 ioff = btrfs_token_item_offset(leaf, item, &token);
4995 btrfs_set_token_item_offset(leaf, item,
4996 ioff + dsize, &token);
0783fcfc 4997 }
db94535d 4998
5f39d397 4999 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 5000 btrfs_item_nr_offset(slot + nr),
d6025579 5001 sizeof(struct btrfs_item) *
85e21bac 5002 (nritems - slot - nr));
be0e5c09 5003 }
85e21bac
CM
5004 btrfs_set_header_nritems(leaf, nritems - nr);
5005 nritems -= nr;
5f39d397 5006
74123bd7 5007 /* delete the leaf if we've emptied it */
7518a238 5008 if (nritems == 0) {
5f39d397
CM
5009 if (leaf == root->node) {
5010 btrfs_set_header_level(leaf, 0);
9a8dd150 5011 } else {
f0486c68 5012 btrfs_set_path_blocking(path);
7c302b49 5013 clean_tree_block(fs_info, leaf);
143bede5 5014 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 5015 }
be0e5c09 5016 } else {
7518a238 5017 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 5018 if (slot == 0) {
5f39d397
CM
5019 struct btrfs_disk_key disk_key;
5020
5021 btrfs_item_key(leaf, &disk_key, 0);
0b246afa 5022 fixup_low_keys(fs_info, path, &disk_key, 1);
aa5d6bed 5023 }
aa5d6bed 5024
74123bd7 5025 /* delete the leaf if it is mostly empty */
0b246afa 5026 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
be0e5c09
CM
5027 /* push_leaf_left fixes the path.
5028 * make sure the path still points to our leaf
5029 * for possible call to del_ptr below
5030 */
4920c9ac 5031 slot = path->slots[1];
5f39d397
CM
5032 extent_buffer_get(leaf);
5033
b9473439 5034 btrfs_set_path_blocking(path);
99d8f83c
CM
5035 wret = push_leaf_left(trans, root, path, 1, 1,
5036 1, (u32)-1);
54aa1f4d 5037 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5038 ret = wret;
5f39d397
CM
5039
5040 if (path->nodes[0] == leaf &&
5041 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5042 wret = push_leaf_right(trans, root, path, 1,
5043 1, 1, 0);
54aa1f4d 5044 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5045 ret = wret;
5046 }
5f39d397
CM
5047
5048 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5049 path->slots[1] = slot;
143bede5 5050 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5051 free_extent_buffer(leaf);
143bede5 5052 ret = 0;
5de08d7d 5053 } else {
925baedd
CM
5054 /* if we're still in the path, make sure
5055 * we're dirty. Otherwise, one of the
5056 * push_leaf functions must have already
5057 * dirtied this buffer
5058 */
5059 if (path->nodes[0] == leaf)
5060 btrfs_mark_buffer_dirty(leaf);
5f39d397 5061 free_extent_buffer(leaf);
be0e5c09 5062 }
d5719762 5063 } else {
5f39d397 5064 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5065 }
5066 }
aa5d6bed 5067 return ret;
be0e5c09
CM
5068}
5069
7bb86316 5070/*
925baedd 5071 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5072 * returns 0 if it found something or 1 if there are no lesser leaves.
5073 * returns < 0 on io errors.
d352ac68
CM
5074 *
5075 * This may release the path, and so you may lose any locks held at the
5076 * time you call it.
7bb86316 5077 */
16e7549f 5078int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5079{
925baedd
CM
5080 struct btrfs_key key;
5081 struct btrfs_disk_key found_key;
5082 int ret;
7bb86316 5083
925baedd 5084 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5085
e8b0d724 5086 if (key.offset > 0) {
925baedd 5087 key.offset--;
e8b0d724 5088 } else if (key.type > 0) {
925baedd 5089 key.type--;
e8b0d724
FDBM
5090 key.offset = (u64)-1;
5091 } else if (key.objectid > 0) {
925baedd 5092 key.objectid--;
e8b0d724
FDBM
5093 key.type = (u8)-1;
5094 key.offset = (u64)-1;
5095 } else {
925baedd 5096 return 1;
e8b0d724 5097 }
7bb86316 5098
b3b4aa74 5099 btrfs_release_path(path);
925baedd
CM
5100 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5101 if (ret < 0)
5102 return ret;
5103 btrfs_item_key(path->nodes[0], &found_key, 0);
5104 ret = comp_keys(&found_key, &key);
337c6f68
FM
5105 /*
5106 * We might have had an item with the previous key in the tree right
5107 * before we released our path. And after we released our path, that
5108 * item might have been pushed to the first slot (0) of the leaf we
5109 * were holding due to a tree balance. Alternatively, an item with the
5110 * previous key can exist as the only element of a leaf (big fat item).
5111 * Therefore account for these 2 cases, so that our callers (like
5112 * btrfs_previous_item) don't miss an existing item with a key matching
5113 * the previous key we computed above.
5114 */
5115 if (ret <= 0)
925baedd
CM
5116 return 0;
5117 return 1;
7bb86316
CM
5118}
5119
3f157a2f
CM
5120/*
5121 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5122 * for nodes or leaves that are have a minimum transaction id.
5123 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5124 *
5125 * This does not cow, but it does stuff the starting key it finds back
5126 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5127 * key and get a writable path.
5128 *
3f157a2f
CM
5129 * This honors path->lowest_level to prevent descent past a given level
5130 * of the tree.
5131 *
d352ac68
CM
5132 * min_trans indicates the oldest transaction that you are interested
5133 * in walking through. Any nodes or leaves older than min_trans are
5134 * skipped over (without reading them).
5135 *
3f157a2f
CM
5136 * returns zero if something useful was found, < 0 on error and 1 if there
5137 * was nothing in the tree that matched the search criteria.
5138 */
5139int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5140 struct btrfs_path *path,
3f157a2f
CM
5141 u64 min_trans)
5142{
2ff7e61e 5143 struct btrfs_fs_info *fs_info = root->fs_info;
3f157a2f
CM
5144 struct extent_buffer *cur;
5145 struct btrfs_key found_key;
5146 int slot;
9652480b 5147 int sret;
3f157a2f
CM
5148 u32 nritems;
5149 int level;
5150 int ret = 1;
f98de9b9 5151 int keep_locks = path->keep_locks;
3f157a2f 5152
f98de9b9 5153 path->keep_locks = 1;
3f157a2f 5154again:
bd681513 5155 cur = btrfs_read_lock_root_node(root);
3f157a2f 5156 level = btrfs_header_level(cur);
e02119d5 5157 WARN_ON(path->nodes[level]);
3f157a2f 5158 path->nodes[level] = cur;
bd681513 5159 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5160
5161 if (btrfs_header_generation(cur) < min_trans) {
5162 ret = 1;
5163 goto out;
5164 }
d397712b 5165 while (1) {
3f157a2f
CM
5166 nritems = btrfs_header_nritems(cur);
5167 level = btrfs_header_level(cur);
a74b35ec 5168 sret = btrfs_bin_search(cur, min_key, level, &slot);
3f157a2f 5169
323ac95b
CM
5170 /* at the lowest level, we're done, setup the path and exit */
5171 if (level == path->lowest_level) {
e02119d5
CM
5172 if (slot >= nritems)
5173 goto find_next_key;
3f157a2f
CM
5174 ret = 0;
5175 path->slots[level] = slot;
5176 btrfs_item_key_to_cpu(cur, &found_key, slot);
5177 goto out;
5178 }
9652480b
Y
5179 if (sret && slot > 0)
5180 slot--;
3f157a2f 5181 /*
de78b51a
ES
5182 * check this node pointer against the min_trans parameters.
5183 * If it is too old, old, skip to the next one.
3f157a2f 5184 */
d397712b 5185 while (slot < nritems) {
3f157a2f 5186 u64 gen;
e02119d5 5187
3f157a2f
CM
5188 gen = btrfs_node_ptr_generation(cur, slot);
5189 if (gen < min_trans) {
5190 slot++;
5191 continue;
5192 }
de78b51a 5193 break;
3f157a2f 5194 }
e02119d5 5195find_next_key:
3f157a2f
CM
5196 /*
5197 * we didn't find a candidate key in this node, walk forward
5198 * and find another one
5199 */
5200 if (slot >= nritems) {
e02119d5 5201 path->slots[level] = slot;
b4ce94de 5202 btrfs_set_path_blocking(path);
e02119d5 5203 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5204 min_trans);
e02119d5 5205 if (sret == 0) {
b3b4aa74 5206 btrfs_release_path(path);
3f157a2f
CM
5207 goto again;
5208 } else {
5209 goto out;
5210 }
5211 }
5212 /* save our key for returning back */
5213 btrfs_node_key_to_cpu(cur, &found_key, slot);
5214 path->slots[level] = slot;
5215 if (level == path->lowest_level) {
5216 ret = 0;
3f157a2f
CM
5217 goto out;
5218 }
b4ce94de 5219 btrfs_set_path_blocking(path);
2ff7e61e 5220 cur = read_node_slot(fs_info, cur, slot);
fb770ae4
LB
5221 if (IS_ERR(cur)) {
5222 ret = PTR_ERR(cur);
5223 goto out;
5224 }
3f157a2f 5225
bd681513 5226 btrfs_tree_read_lock(cur);
b4ce94de 5227
bd681513 5228 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5229 path->nodes[level - 1] = cur;
f7c79f30 5230 unlock_up(path, level, 1, 0, NULL);
bd681513 5231 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
5232 }
5233out:
f98de9b9
FM
5234 path->keep_locks = keep_locks;
5235 if (ret == 0) {
5236 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5237 btrfs_set_path_blocking(path);
3f157a2f 5238 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5239 }
3f157a2f
CM
5240 return ret;
5241}
5242
2ff7e61e 5243static int tree_move_down(struct btrfs_fs_info *fs_info,
7069830a 5244 struct btrfs_path *path,
ab6a43e1 5245 int *level)
7069830a 5246{
fb770ae4
LB
5247 struct extent_buffer *eb;
5248
74dd17fb 5249 BUG_ON(*level == 0);
2ff7e61e 5250 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
fb770ae4
LB
5251 if (IS_ERR(eb))
5252 return PTR_ERR(eb);
5253
5254 path->nodes[*level - 1] = eb;
7069830a
AB
5255 path->slots[*level - 1] = 0;
5256 (*level)--;
fb770ae4 5257 return 0;
7069830a
AB
5258}
5259
f1e30261 5260static int tree_move_next_or_upnext(struct btrfs_path *path,
7069830a
AB
5261 int *level, int root_level)
5262{
5263 int ret = 0;
5264 int nritems;
5265 nritems = btrfs_header_nritems(path->nodes[*level]);
5266
5267 path->slots[*level]++;
5268
74dd17fb 5269 while (path->slots[*level] >= nritems) {
7069830a
AB
5270 if (*level == root_level)
5271 return -1;
5272
5273 /* move upnext */
5274 path->slots[*level] = 0;
5275 free_extent_buffer(path->nodes[*level]);
5276 path->nodes[*level] = NULL;
5277 (*level)++;
5278 path->slots[*level]++;
5279
5280 nritems = btrfs_header_nritems(path->nodes[*level]);
5281 ret = 1;
5282 }
5283 return ret;
5284}
5285
5286/*
5287 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5288 * or down.
5289 */
2ff7e61e 5290static int tree_advance(struct btrfs_fs_info *fs_info,
7069830a
AB
5291 struct btrfs_path *path,
5292 int *level, int root_level,
5293 int allow_down,
5294 struct btrfs_key *key)
5295{
5296 int ret;
5297
5298 if (*level == 0 || !allow_down) {
f1e30261 5299 ret = tree_move_next_or_upnext(path, level, root_level);
7069830a 5300 } else {
ab6a43e1 5301 ret = tree_move_down(fs_info, path, level);
7069830a
AB
5302 }
5303 if (ret >= 0) {
5304 if (*level == 0)
5305 btrfs_item_key_to_cpu(path->nodes[*level], key,
5306 path->slots[*level]);
5307 else
5308 btrfs_node_key_to_cpu(path->nodes[*level], key,
5309 path->slots[*level]);
5310 }
5311 return ret;
5312}
5313
2ff7e61e 5314static int tree_compare_item(struct btrfs_path *left_path,
7069830a
AB
5315 struct btrfs_path *right_path,
5316 char *tmp_buf)
5317{
5318 int cmp;
5319 int len1, len2;
5320 unsigned long off1, off2;
5321
5322 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5323 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5324 if (len1 != len2)
5325 return 1;
5326
5327 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5328 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5329 right_path->slots[0]);
5330
5331 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5332
5333 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5334 if (cmp)
5335 return 1;
5336 return 0;
5337}
5338
5339#define ADVANCE 1
5340#define ADVANCE_ONLY_NEXT -1
5341
5342/*
5343 * This function compares two trees and calls the provided callback for
5344 * every changed/new/deleted item it finds.
5345 * If shared tree blocks are encountered, whole subtrees are skipped, making
5346 * the compare pretty fast on snapshotted subvolumes.
5347 *
5348 * This currently works on commit roots only. As commit roots are read only,
5349 * we don't do any locking. The commit roots are protected with transactions.
5350 * Transactions are ended and rejoined when a commit is tried in between.
5351 *
5352 * This function checks for modifications done to the trees while comparing.
5353 * If it detects a change, it aborts immediately.
5354 */
5355int btrfs_compare_trees(struct btrfs_root *left_root,
5356 struct btrfs_root *right_root,
5357 btrfs_changed_cb_t changed_cb, void *ctx)
5358{
0b246afa 5359 struct btrfs_fs_info *fs_info = left_root->fs_info;
7069830a
AB
5360 int ret;
5361 int cmp;
7069830a
AB
5362 struct btrfs_path *left_path = NULL;
5363 struct btrfs_path *right_path = NULL;
5364 struct btrfs_key left_key;
5365 struct btrfs_key right_key;
5366 char *tmp_buf = NULL;
5367 int left_root_level;
5368 int right_root_level;
5369 int left_level;
5370 int right_level;
5371 int left_end_reached;
5372 int right_end_reached;
5373 int advance_left;
5374 int advance_right;
5375 u64 left_blockptr;
5376 u64 right_blockptr;
6baa4293
FM
5377 u64 left_gen;
5378 u64 right_gen;
7069830a
AB
5379
5380 left_path = btrfs_alloc_path();
5381 if (!left_path) {
5382 ret = -ENOMEM;
5383 goto out;
5384 }
5385 right_path = btrfs_alloc_path();
5386 if (!right_path) {
5387 ret = -ENOMEM;
5388 goto out;
5389 }
5390
752ade68 5391 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7069830a 5392 if (!tmp_buf) {
752ade68
MH
5393 ret = -ENOMEM;
5394 goto out;
7069830a
AB
5395 }
5396
5397 left_path->search_commit_root = 1;
5398 left_path->skip_locking = 1;
5399 right_path->search_commit_root = 1;
5400 right_path->skip_locking = 1;
5401
7069830a
AB
5402 /*
5403 * Strategy: Go to the first items of both trees. Then do
5404 *
5405 * If both trees are at level 0
5406 * Compare keys of current items
5407 * If left < right treat left item as new, advance left tree
5408 * and repeat
5409 * If left > right treat right item as deleted, advance right tree
5410 * and repeat
5411 * If left == right do deep compare of items, treat as changed if
5412 * needed, advance both trees and repeat
5413 * If both trees are at the same level but not at level 0
5414 * Compare keys of current nodes/leafs
5415 * If left < right advance left tree and repeat
5416 * If left > right advance right tree and repeat
5417 * If left == right compare blockptrs of the next nodes/leafs
5418 * If they match advance both trees but stay at the same level
5419 * and repeat
5420 * If they don't match advance both trees while allowing to go
5421 * deeper and repeat
5422 * If tree levels are different
5423 * Advance the tree that needs it and repeat
5424 *
5425 * Advancing a tree means:
5426 * If we are at level 0, try to go to the next slot. If that's not
5427 * possible, go one level up and repeat. Stop when we found a level
5428 * where we could go to the next slot. We may at this point be on a
5429 * node or a leaf.
5430 *
5431 * If we are not at level 0 and not on shared tree blocks, go one
5432 * level deeper.
5433 *
5434 * If we are not at level 0 and on shared tree blocks, go one slot to
5435 * the right if possible or go up and right.
5436 */
5437
0b246afa 5438 down_read(&fs_info->commit_root_sem);
7069830a
AB
5439 left_level = btrfs_header_level(left_root->commit_root);
5440 left_root_level = left_level;
5441 left_path->nodes[left_level] = left_root->commit_root;
5442 extent_buffer_get(left_path->nodes[left_level]);
5443
5444 right_level = btrfs_header_level(right_root->commit_root);
5445 right_root_level = right_level;
5446 right_path->nodes[right_level] = right_root->commit_root;
5447 extent_buffer_get(right_path->nodes[right_level]);
0b246afa 5448 up_read(&fs_info->commit_root_sem);
7069830a
AB
5449
5450 if (left_level == 0)
5451 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5452 &left_key, left_path->slots[left_level]);
5453 else
5454 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5455 &left_key, left_path->slots[left_level]);
5456 if (right_level == 0)
5457 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5458 &right_key, right_path->slots[right_level]);
5459 else
5460 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5461 &right_key, right_path->slots[right_level]);
5462
5463 left_end_reached = right_end_reached = 0;
5464 advance_left = advance_right = 0;
5465
5466 while (1) {
7069830a 5467 if (advance_left && !left_end_reached) {
2ff7e61e 5468 ret = tree_advance(fs_info, left_path, &left_level,
7069830a
AB
5469 left_root_level,
5470 advance_left != ADVANCE_ONLY_NEXT,
5471 &left_key);
fb770ae4 5472 if (ret == -1)
7069830a 5473 left_end_reached = ADVANCE;
fb770ae4
LB
5474 else if (ret < 0)
5475 goto out;
7069830a
AB
5476 advance_left = 0;
5477 }
5478 if (advance_right && !right_end_reached) {
2ff7e61e 5479 ret = tree_advance(fs_info, right_path, &right_level,
7069830a
AB
5480 right_root_level,
5481 advance_right != ADVANCE_ONLY_NEXT,
5482 &right_key);
fb770ae4 5483 if (ret == -1)
7069830a 5484 right_end_reached = ADVANCE;
fb770ae4
LB
5485 else if (ret < 0)
5486 goto out;
7069830a
AB
5487 advance_right = 0;
5488 }
5489
5490 if (left_end_reached && right_end_reached) {
5491 ret = 0;
5492 goto out;
5493 } else if (left_end_reached) {
5494 if (right_level == 0) {
ee8c494f 5495 ret = changed_cb(left_path, right_path,
7069830a
AB
5496 &right_key,
5497 BTRFS_COMPARE_TREE_DELETED,
5498 ctx);
5499 if (ret < 0)
5500 goto out;
5501 }
5502 advance_right = ADVANCE;
5503 continue;
5504 } else if (right_end_reached) {
5505 if (left_level == 0) {
ee8c494f 5506 ret = changed_cb(left_path, right_path,
7069830a
AB
5507 &left_key,
5508 BTRFS_COMPARE_TREE_NEW,
5509 ctx);
5510 if (ret < 0)
5511 goto out;
5512 }
5513 advance_left = ADVANCE;
5514 continue;
5515 }
5516
5517 if (left_level == 0 && right_level == 0) {
5518 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5519 if (cmp < 0) {
ee8c494f 5520 ret = changed_cb(left_path, right_path,
7069830a
AB
5521 &left_key,
5522 BTRFS_COMPARE_TREE_NEW,
5523 ctx);
5524 if (ret < 0)
5525 goto out;
5526 advance_left = ADVANCE;
5527 } else if (cmp > 0) {
ee8c494f 5528 ret = changed_cb(left_path, right_path,
7069830a
AB
5529 &right_key,
5530 BTRFS_COMPARE_TREE_DELETED,
5531 ctx);
5532 if (ret < 0)
5533 goto out;
5534 advance_right = ADVANCE;
5535 } else {
b99d9a6a 5536 enum btrfs_compare_tree_result result;
ba5e8f2e 5537
74dd17fb 5538 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
2ff7e61e
JM
5539 ret = tree_compare_item(left_path, right_path,
5540 tmp_buf);
ba5e8f2e 5541 if (ret)
b99d9a6a 5542 result = BTRFS_COMPARE_TREE_CHANGED;
ba5e8f2e 5543 else
b99d9a6a 5544 result = BTRFS_COMPARE_TREE_SAME;
ee8c494f 5545 ret = changed_cb(left_path, right_path,
b99d9a6a 5546 &left_key, result, ctx);
ba5e8f2e
JB
5547 if (ret < 0)
5548 goto out;
7069830a
AB
5549 advance_left = ADVANCE;
5550 advance_right = ADVANCE;
5551 }
5552 } else if (left_level == right_level) {
5553 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5554 if (cmp < 0) {
5555 advance_left = ADVANCE;
5556 } else if (cmp > 0) {
5557 advance_right = ADVANCE;
5558 } else {
5559 left_blockptr = btrfs_node_blockptr(
5560 left_path->nodes[left_level],
5561 left_path->slots[left_level]);
5562 right_blockptr = btrfs_node_blockptr(
5563 right_path->nodes[right_level],
5564 right_path->slots[right_level]);
6baa4293
FM
5565 left_gen = btrfs_node_ptr_generation(
5566 left_path->nodes[left_level],
5567 left_path->slots[left_level]);
5568 right_gen = btrfs_node_ptr_generation(
5569 right_path->nodes[right_level],
5570 right_path->slots[right_level]);
5571 if (left_blockptr == right_blockptr &&
5572 left_gen == right_gen) {
7069830a
AB
5573 /*
5574 * As we're on a shared block, don't
5575 * allow to go deeper.
5576 */
5577 advance_left = ADVANCE_ONLY_NEXT;
5578 advance_right = ADVANCE_ONLY_NEXT;
5579 } else {
5580 advance_left = ADVANCE;
5581 advance_right = ADVANCE;
5582 }
5583 }
5584 } else if (left_level < right_level) {
5585 advance_right = ADVANCE;
5586 } else {
5587 advance_left = ADVANCE;
5588 }
5589 }
5590
5591out:
5592 btrfs_free_path(left_path);
5593 btrfs_free_path(right_path);
8f282f71 5594 kvfree(tmp_buf);
7069830a
AB
5595 return ret;
5596}
5597
3f157a2f
CM
5598/*
5599 * this is similar to btrfs_next_leaf, but does not try to preserve
5600 * and fixup the path. It looks for and returns the next key in the
de78b51a 5601 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5602 *
5603 * 0 is returned if another key is found, < 0 if there are any errors
5604 * and 1 is returned if there are no higher keys in the tree
5605 *
5606 * path->keep_locks should be set to 1 on the search made before
5607 * calling this function.
5608 */
e7a84565 5609int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5610 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5611{
e7a84565
CM
5612 int slot;
5613 struct extent_buffer *c;
5614
934d375b 5615 WARN_ON(!path->keep_locks);
d397712b 5616 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5617 if (!path->nodes[level])
5618 return 1;
5619
5620 slot = path->slots[level] + 1;
5621 c = path->nodes[level];
3f157a2f 5622next:
e7a84565 5623 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5624 int ret;
5625 int orig_lowest;
5626 struct btrfs_key cur_key;
5627 if (level + 1 >= BTRFS_MAX_LEVEL ||
5628 !path->nodes[level + 1])
e7a84565 5629 return 1;
33c66f43
YZ
5630
5631 if (path->locks[level + 1]) {
5632 level++;
5633 continue;
5634 }
5635
5636 slot = btrfs_header_nritems(c) - 1;
5637 if (level == 0)
5638 btrfs_item_key_to_cpu(c, &cur_key, slot);
5639 else
5640 btrfs_node_key_to_cpu(c, &cur_key, slot);
5641
5642 orig_lowest = path->lowest_level;
b3b4aa74 5643 btrfs_release_path(path);
33c66f43
YZ
5644 path->lowest_level = level;
5645 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5646 0, 0);
5647 path->lowest_level = orig_lowest;
5648 if (ret < 0)
5649 return ret;
5650
5651 c = path->nodes[level];
5652 slot = path->slots[level];
5653 if (ret == 0)
5654 slot++;
5655 goto next;
e7a84565 5656 }
33c66f43 5657
e7a84565
CM
5658 if (level == 0)
5659 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5660 else {
3f157a2f
CM
5661 u64 gen = btrfs_node_ptr_generation(c, slot);
5662
3f157a2f
CM
5663 if (gen < min_trans) {
5664 slot++;
5665 goto next;
5666 }
e7a84565 5667 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5668 }
e7a84565
CM
5669 return 0;
5670 }
5671 return 1;
5672}
5673
97571fd0 5674/*
925baedd 5675 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5676 * returns 0 if it found something or 1 if there are no greater leaves.
5677 * returns < 0 on io errors.
97571fd0 5678 */
234b63a0 5679int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5680{
5681 return btrfs_next_old_leaf(root, path, 0);
5682}
5683
5684int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5685 u64 time_seq)
d97e63b6
CM
5686{
5687 int slot;
8e73f275 5688 int level;
5f39d397 5689 struct extent_buffer *c;
8e73f275 5690 struct extent_buffer *next;
925baedd
CM
5691 struct btrfs_key key;
5692 u32 nritems;
5693 int ret;
8e73f275 5694 int old_spinning = path->leave_spinning;
bd681513 5695 int next_rw_lock = 0;
925baedd
CM
5696
5697 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5698 if (nritems == 0)
925baedd 5699 return 1;
925baedd 5700
8e73f275
CM
5701 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5702again:
5703 level = 1;
5704 next = NULL;
bd681513 5705 next_rw_lock = 0;
b3b4aa74 5706 btrfs_release_path(path);
8e73f275 5707
a2135011 5708 path->keep_locks = 1;
31533fb2 5709 path->leave_spinning = 1;
8e73f275 5710
3d7806ec
JS
5711 if (time_seq)
5712 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5713 else
5714 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5715 path->keep_locks = 0;
5716
5717 if (ret < 0)
5718 return ret;
5719
a2135011 5720 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5721 /*
5722 * by releasing the path above we dropped all our locks. A balance
5723 * could have added more items next to the key that used to be
5724 * at the very end of the block. So, check again here and
5725 * advance the path if there are now more items available.
5726 */
a2135011 5727 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5728 if (ret == 0)
5729 path->slots[0]++;
8e73f275 5730 ret = 0;
925baedd
CM
5731 goto done;
5732 }
0b43e04f
LB
5733 /*
5734 * So the above check misses one case:
5735 * - after releasing the path above, someone has removed the item that
5736 * used to be at the very end of the block, and balance between leafs
5737 * gets another one with bigger key.offset to replace it.
5738 *
5739 * This one should be returned as well, or we can get leaf corruption
5740 * later(esp. in __btrfs_drop_extents()).
5741 *
5742 * And a bit more explanation about this check,
5743 * with ret > 0, the key isn't found, the path points to the slot
5744 * where it should be inserted, so the path->slots[0] item must be the
5745 * bigger one.
5746 */
5747 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5748 ret = 0;
5749 goto done;
5750 }
d97e63b6 5751
d397712b 5752 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5753 if (!path->nodes[level]) {
5754 ret = 1;
5755 goto done;
5756 }
5f39d397 5757
d97e63b6
CM
5758 slot = path->slots[level] + 1;
5759 c = path->nodes[level];
5f39d397 5760 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5761 level++;
8e73f275
CM
5762 if (level == BTRFS_MAX_LEVEL) {
5763 ret = 1;
5764 goto done;
5765 }
d97e63b6
CM
5766 continue;
5767 }
5f39d397 5768
925baedd 5769 if (next) {
bd681513 5770 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5771 free_extent_buffer(next);
925baedd 5772 }
5f39d397 5773
8e73f275 5774 next = c;
bd681513 5775 next_rw_lock = path->locks[level];
d07b8528 5776 ret = read_block_for_search(root, path, &next, level,
cda79c54 5777 slot, &key);
8e73f275
CM
5778 if (ret == -EAGAIN)
5779 goto again;
5f39d397 5780
76a05b35 5781 if (ret < 0) {
b3b4aa74 5782 btrfs_release_path(path);
76a05b35
CM
5783 goto done;
5784 }
5785
5cd57b2c 5786 if (!path->skip_locking) {
bd681513 5787 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5788 if (!ret && time_seq) {
5789 /*
5790 * If we don't get the lock, we may be racing
5791 * with push_leaf_left, holding that lock while
5792 * itself waiting for the leaf we've currently
5793 * locked. To solve this situation, we give up
5794 * on our lock and cycle.
5795 */
cf538830 5796 free_extent_buffer(next);
d42244a0
JS
5797 btrfs_release_path(path);
5798 cond_resched();
5799 goto again;
5800 }
8e73f275
CM
5801 if (!ret) {
5802 btrfs_set_path_blocking(path);
bd681513 5803 btrfs_tree_read_lock(next);
31533fb2 5804 btrfs_clear_path_blocking(path, next,
bd681513 5805 BTRFS_READ_LOCK);
8e73f275 5806 }
31533fb2 5807 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5808 }
d97e63b6
CM
5809 break;
5810 }
5811 path->slots[level] = slot;
d397712b 5812 while (1) {
d97e63b6
CM
5813 level--;
5814 c = path->nodes[level];
925baedd 5815 if (path->locks[level])
bd681513 5816 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5817
5f39d397 5818 free_extent_buffer(c);
d97e63b6
CM
5819 path->nodes[level] = next;
5820 path->slots[level] = 0;
a74a4b97 5821 if (!path->skip_locking)
bd681513 5822 path->locks[level] = next_rw_lock;
d97e63b6
CM
5823 if (!level)
5824 break;
b4ce94de 5825
d07b8528 5826 ret = read_block_for_search(root, path, &next, level,
cda79c54 5827 0, &key);
8e73f275
CM
5828 if (ret == -EAGAIN)
5829 goto again;
5830
76a05b35 5831 if (ret < 0) {
b3b4aa74 5832 btrfs_release_path(path);
76a05b35
CM
5833 goto done;
5834 }
5835
5cd57b2c 5836 if (!path->skip_locking) {
bd681513 5837 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5838 if (!ret) {
5839 btrfs_set_path_blocking(path);
bd681513 5840 btrfs_tree_read_lock(next);
31533fb2 5841 btrfs_clear_path_blocking(path, next,
bd681513
CM
5842 BTRFS_READ_LOCK);
5843 }
31533fb2 5844 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5845 }
d97e63b6 5846 }
8e73f275 5847 ret = 0;
925baedd 5848done:
f7c79f30 5849 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5850 path->leave_spinning = old_spinning;
5851 if (!old_spinning)
5852 btrfs_set_path_blocking(path);
5853
5854 return ret;
d97e63b6 5855}
0b86a832 5856
3f157a2f
CM
5857/*
5858 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5859 * searching until it gets past min_objectid or finds an item of 'type'
5860 *
5861 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5862 */
0b86a832
CM
5863int btrfs_previous_item(struct btrfs_root *root,
5864 struct btrfs_path *path, u64 min_objectid,
5865 int type)
5866{
5867 struct btrfs_key found_key;
5868 struct extent_buffer *leaf;
e02119d5 5869 u32 nritems;
0b86a832
CM
5870 int ret;
5871
d397712b 5872 while (1) {
0b86a832 5873 if (path->slots[0] == 0) {
b4ce94de 5874 btrfs_set_path_blocking(path);
0b86a832
CM
5875 ret = btrfs_prev_leaf(root, path);
5876 if (ret != 0)
5877 return ret;
5878 } else {
5879 path->slots[0]--;
5880 }
5881 leaf = path->nodes[0];
e02119d5
CM
5882 nritems = btrfs_header_nritems(leaf);
5883 if (nritems == 0)
5884 return 1;
5885 if (path->slots[0] == nritems)
5886 path->slots[0]--;
5887
0b86a832 5888 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5889 if (found_key.objectid < min_objectid)
5890 break;
0a4eefbb
YZ
5891 if (found_key.type == type)
5892 return 0;
e02119d5
CM
5893 if (found_key.objectid == min_objectid &&
5894 found_key.type < type)
5895 break;
0b86a832
CM
5896 }
5897 return 1;
5898}
ade2e0b3
WS
5899
5900/*
5901 * search in extent tree to find a previous Metadata/Data extent item with
5902 * min objecitd.
5903 *
5904 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5905 */
5906int btrfs_previous_extent_item(struct btrfs_root *root,
5907 struct btrfs_path *path, u64 min_objectid)
5908{
5909 struct btrfs_key found_key;
5910 struct extent_buffer *leaf;
5911 u32 nritems;
5912 int ret;
5913
5914 while (1) {
5915 if (path->slots[0] == 0) {
5916 btrfs_set_path_blocking(path);
5917 ret = btrfs_prev_leaf(root, path);
5918 if (ret != 0)
5919 return ret;
5920 } else {
5921 path->slots[0]--;
5922 }
5923 leaf = path->nodes[0];
5924 nritems = btrfs_header_nritems(leaf);
5925 if (nritems == 0)
5926 return 1;
5927 if (path->slots[0] == nritems)
5928 path->slots[0]--;
5929
5930 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5931 if (found_key.objectid < min_objectid)
5932 break;
5933 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5934 found_key.type == BTRFS_METADATA_ITEM_KEY)
5935 return 0;
5936 if (found_key.objectid == min_objectid &&
5937 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5938 break;
5939 }
5940 return 1;
5941}