btrfs: introduce BTRFS_NESTING_COW for cow'ing blocks
[linux-block.git] / fs / btrfs / ctree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570 2/*
d352ac68 3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
a6b6e75e 6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
bd989ba3 8#include <linux/rbtree.h>
adf02123 9#include <linux/mm.h>
eb60ceac
CM
10#include "ctree.h"
11#include "disk-io.h"
7f5c1516 12#include "transaction.h"
5f39d397 13#include "print-tree.h"
925baedd 14#include "locking.h"
de37aa51 15#include "volumes.h"
f616f5cd 16#include "qgroup.h"
9a8dd150 17
e089f05c
CM
18static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 *root, struct btrfs_path *path, int level);
310712b2
OS
20static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 const struct btrfs_key *ins_key, struct btrfs_path *path,
22 int data_size, int extend);
5f39d397 23static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e 24 struct extent_buffer *dst,
971a1f66 25 struct extent_buffer *src, int empty);
5f39d397 26static int balance_node_right(struct btrfs_trans_handle *trans,
5f39d397
CM
27 struct extent_buffer *dst_buf,
28 struct extent_buffer *src_buf);
afe5fea7
TI
29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 int level, int slot);
d97e63b6 31
af024ed2
JT
32static const struct btrfs_csums {
33 u16 size;
59a0fcdb
DS
34 const char name[10];
35 const char driver[12];
af024ed2
JT
36} btrfs_csums[] = {
37 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
3951e7f0 38 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
3831bf00 39 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
352ae07b
DS
40 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
41 .driver = "blake2b-256" },
af024ed2
JT
42};
43
44int btrfs_super_csum_size(const struct btrfs_super_block *s)
45{
46 u16 t = btrfs_super_csum_type(s);
47 /*
48 * csum type is validated at mount time
49 */
50 return btrfs_csums[t].size;
51}
52
53const char *btrfs_super_csum_name(u16 csum_type)
54{
55 /* csum type is validated at mount time */
56 return btrfs_csums[csum_type].name;
57}
58
b4e967be
DS
59/*
60 * Return driver name if defined, otherwise the name that's also a valid driver
61 * name
62 */
63const char *btrfs_super_csum_driver(u16 csum_type)
64{
65 /* csum type is validated at mount time */
59a0fcdb
DS
66 return btrfs_csums[csum_type].driver[0] ?
67 btrfs_csums[csum_type].driver :
b4e967be
DS
68 btrfs_csums[csum_type].name;
69}
70
604997b4 71size_t __attribute_const__ btrfs_get_num_csums(void)
f7cea56c
DS
72{
73 return ARRAY_SIZE(btrfs_csums);
74}
75
df24a2b9 76struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 77{
e2c89907 78 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
2c90e5d6
CM
79}
80
d352ac68 81/* this also releases the path */
df24a2b9 82void btrfs_free_path(struct btrfs_path *p)
be0e5c09 83{
ff175d57
JJ
84 if (!p)
85 return;
b3b4aa74 86 btrfs_release_path(p);
df24a2b9 87 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
88}
89
d352ac68
CM
90/*
91 * path release drops references on the extent buffers in the path
92 * and it drops any locks held by this path
93 *
94 * It is safe to call this on paths that no locks or extent buffers held.
95 */
b3b4aa74 96noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
97{
98 int i;
a2135011 99
234b63a0 100 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 101 p->slots[i] = 0;
eb60ceac 102 if (!p->nodes[i])
925baedd
CM
103 continue;
104 if (p->locks[i]) {
bd681513 105 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
106 p->locks[i] = 0;
107 }
5f39d397 108 free_extent_buffer(p->nodes[i]);
3f157a2f 109 p->nodes[i] = NULL;
eb60ceac
CM
110 }
111}
112
d352ac68
CM
113/*
114 * safely gets a reference on the root node of a tree. A lock
115 * is not taken, so a concurrent writer may put a different node
116 * at the root of the tree. See btrfs_lock_root_node for the
117 * looping required.
118 *
119 * The extent buffer returned by this has a reference taken, so
120 * it won't disappear. It may stop being the root of the tree
121 * at any time because there are no locks held.
122 */
925baedd
CM
123struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
124{
125 struct extent_buffer *eb;
240f62c8 126
3083ee2e
JB
127 while (1) {
128 rcu_read_lock();
129 eb = rcu_dereference(root->node);
130
131 /*
132 * RCU really hurts here, we could free up the root node because
01327610 133 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
134 * the inc_not_zero dance and if it doesn't work then
135 * synchronize_rcu and try again.
136 */
137 if (atomic_inc_not_zero(&eb->refs)) {
138 rcu_read_unlock();
139 break;
140 }
141 rcu_read_unlock();
142 synchronize_rcu();
143 }
925baedd
CM
144 return eb;
145}
146
92a7cc42
QW
147/*
148 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
149 * just get put onto a simple dirty list. Transaction walks this list to make
150 * sure they get properly updated on disk.
d352ac68 151 */
0b86a832
CM
152static void add_root_to_dirty_list(struct btrfs_root *root)
153{
0b246afa
JM
154 struct btrfs_fs_info *fs_info = root->fs_info;
155
e7070be1
JB
156 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
157 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
158 return;
159
0b246afa 160 spin_lock(&fs_info->trans_lock);
e7070be1
JB
161 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
162 /* Want the extent tree to be the last on the list */
4fd786e6 163 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
e7070be1 164 list_move_tail(&root->dirty_list,
0b246afa 165 &fs_info->dirty_cowonly_roots);
e7070be1
JB
166 else
167 list_move(&root->dirty_list,
0b246afa 168 &fs_info->dirty_cowonly_roots);
0b86a832 169 }
0b246afa 170 spin_unlock(&fs_info->trans_lock);
0b86a832
CM
171}
172
d352ac68
CM
173/*
174 * used by snapshot creation to make a copy of a root for a tree with
175 * a given objectid. The buffer with the new root node is returned in
176 * cow_ret, and this func returns zero on success or a negative error code.
177 */
be20aa9d
CM
178int btrfs_copy_root(struct btrfs_trans_handle *trans,
179 struct btrfs_root *root,
180 struct extent_buffer *buf,
181 struct extent_buffer **cow_ret, u64 new_root_objectid)
182{
0b246afa 183 struct btrfs_fs_info *fs_info = root->fs_info;
be20aa9d 184 struct extent_buffer *cow;
be20aa9d
CM
185 int ret = 0;
186 int level;
5d4f98a2 187 struct btrfs_disk_key disk_key;
be20aa9d 188
92a7cc42 189 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
0b246afa 190 trans->transid != fs_info->running_transaction->transid);
92a7cc42 191 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
27cdeb70 192 trans->transid != root->last_trans);
be20aa9d
CM
193
194 level = btrfs_header_level(buf);
5d4f98a2
YZ
195 if (level == 0)
196 btrfs_item_key(buf, &disk_key, 0);
197 else
198 btrfs_node_key(buf, &disk_key, 0);
31840ae1 199
4d75f8a9 200 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
9631e4cc 201 &disk_key, level, buf->start, 0, BTRFS_NESTING_NORMAL);
5d4f98a2 202 if (IS_ERR(cow))
be20aa9d
CM
203 return PTR_ERR(cow);
204
58e8012c 205 copy_extent_buffer_full(cow, buf);
be20aa9d
CM
206 btrfs_set_header_bytenr(cow, cow->start);
207 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
208 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
209 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
210 BTRFS_HEADER_FLAG_RELOC);
211 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
212 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
213 else
214 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 215
de37aa51 216 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
2b82032c 217
be20aa9d 218 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 219 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 220 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 221 else
e339a6b0 222 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 223
be20aa9d
CM
224 if (ret)
225 return ret;
226
227 btrfs_mark_buffer_dirty(cow);
228 *cow_ret = cow;
229 return 0;
230}
231
bd989ba3
JS
232enum mod_log_op {
233 MOD_LOG_KEY_REPLACE,
234 MOD_LOG_KEY_ADD,
235 MOD_LOG_KEY_REMOVE,
236 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
237 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
238 MOD_LOG_MOVE_KEYS,
239 MOD_LOG_ROOT_REPLACE,
240};
241
bd989ba3
JS
242struct tree_mod_root {
243 u64 logical;
244 u8 level;
245};
246
247struct tree_mod_elem {
248 struct rb_node node;
298cfd36 249 u64 logical;
097b8a7c 250 u64 seq;
bd989ba3
JS
251 enum mod_log_op op;
252
253 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
254 int slot;
255
256 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
257 u64 generation;
258
259 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
260 struct btrfs_disk_key key;
261 u64 blockptr;
262
263 /* this is used for op == MOD_LOG_MOVE_KEYS */
b6dfa35b
DS
264 struct {
265 int dst_slot;
266 int nr_items;
267 } move;
bd989ba3
JS
268
269 /* this is used for op == MOD_LOG_ROOT_REPLACE */
270 struct tree_mod_root old_root;
271};
272
fc36ed7e 273/*
fcebe456 274 * Pull a new tree mod seq number for our operation.
fc36ed7e 275 */
fcebe456 276static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
277{
278 return atomic64_inc_return(&fs_info->tree_mod_seq);
279}
280
097b8a7c
JS
281/*
282 * This adds a new blocker to the tree mod log's blocker list if the @elem
283 * passed does not already have a sequence number set. So when a caller expects
284 * to record tree modifications, it should ensure to set elem->seq to zero
285 * before calling btrfs_get_tree_mod_seq.
286 * Returns a fresh, unused tree log modification sequence number, even if no new
287 * blocker was added.
288 */
289u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
290 struct seq_list *elem)
bd989ba3 291{
b1a09f1e 292 write_lock(&fs_info->tree_mod_log_lock);
097b8a7c 293 if (!elem->seq) {
fcebe456 294 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
295 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
296 }
b1a09f1e 297 write_unlock(&fs_info->tree_mod_log_lock);
097b8a7c 298
fcebe456 299 return elem->seq;
bd989ba3
JS
300}
301
302void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
303 struct seq_list *elem)
304{
305 struct rb_root *tm_root;
306 struct rb_node *node;
307 struct rb_node *next;
bd989ba3
JS
308 struct tree_mod_elem *tm;
309 u64 min_seq = (u64)-1;
310 u64 seq_putting = elem->seq;
311
312 if (!seq_putting)
313 return;
314
7227ff4d 315 write_lock(&fs_info->tree_mod_log_lock);
bd989ba3 316 list_del(&elem->list);
097b8a7c 317 elem->seq = 0;
bd989ba3 318
42836cf4
FM
319 if (!list_empty(&fs_info->tree_mod_seq_list)) {
320 struct seq_list *first;
321
322 first = list_first_entry(&fs_info->tree_mod_seq_list,
323 struct seq_list, list);
324 if (seq_putting > first->seq) {
325 /*
326 * Blocker with lower sequence number exists, we
327 * cannot remove anything from the log.
328 */
329 write_unlock(&fs_info->tree_mod_log_lock);
330 return;
bd989ba3 331 }
42836cf4 332 min_seq = first->seq;
bd989ba3 333 }
097b8a7c 334
bd989ba3
JS
335 /*
336 * anything that's lower than the lowest existing (read: blocked)
337 * sequence number can be removed from the tree.
338 */
bd989ba3
JS
339 tm_root = &fs_info->tree_mod_log;
340 for (node = rb_first(tm_root); node; node = next) {
341 next = rb_next(node);
6b4df8b6 342 tm = rb_entry(node, struct tree_mod_elem, node);
6609fee8 343 if (tm->seq >= min_seq)
bd989ba3
JS
344 continue;
345 rb_erase(node, tm_root);
bd989ba3
JS
346 kfree(tm);
347 }
b1a09f1e 348 write_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
349}
350
351/*
352 * key order of the log:
298cfd36 353 * node/leaf start address -> sequence
bd989ba3 354 *
298cfd36
CR
355 * The 'start address' is the logical address of the *new* root node
356 * for root replace operations, or the logical address of the affected
357 * block for all other operations.
bd989ba3
JS
358 */
359static noinline int
360__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
361{
362 struct rb_root *tm_root;
363 struct rb_node **new;
364 struct rb_node *parent = NULL;
365 struct tree_mod_elem *cur;
c8cc6341 366
73e82fe4
DS
367 lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
368
fcebe456 369 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 370
bd989ba3
JS
371 tm_root = &fs_info->tree_mod_log;
372 new = &tm_root->rb_node;
373 while (*new) {
6b4df8b6 374 cur = rb_entry(*new, struct tree_mod_elem, node);
bd989ba3 375 parent = *new;
298cfd36 376 if (cur->logical < tm->logical)
bd989ba3 377 new = &((*new)->rb_left);
298cfd36 378 else if (cur->logical > tm->logical)
bd989ba3 379 new = &((*new)->rb_right);
097b8a7c 380 else if (cur->seq < tm->seq)
bd989ba3 381 new = &((*new)->rb_left);
097b8a7c 382 else if (cur->seq > tm->seq)
bd989ba3 383 new = &((*new)->rb_right);
5de865ee
FDBM
384 else
385 return -EEXIST;
bd989ba3
JS
386 }
387
388 rb_link_node(&tm->node, parent, new);
389 rb_insert_color(&tm->node, tm_root);
5de865ee 390 return 0;
bd989ba3
JS
391}
392
097b8a7c
JS
393/*
394 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
395 * returns zero with the tree_mod_log_lock acquired. The caller must hold
396 * this until all tree mod log insertions are recorded in the rb tree and then
b1a09f1e 397 * write unlock fs_info::tree_mod_log_lock.
097b8a7c 398 */
e9b7fd4d
JS
399static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
400 struct extent_buffer *eb) {
401 smp_mb();
402 if (list_empty(&(fs_info)->tree_mod_seq_list))
403 return 1;
097b8a7c
JS
404 if (eb && btrfs_header_level(eb) == 0)
405 return 1;
5de865ee 406
b1a09f1e 407 write_lock(&fs_info->tree_mod_log_lock);
5de865ee 408 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
b1a09f1e 409 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
410 return 1;
411 }
412
e9b7fd4d
JS
413 return 0;
414}
415
5de865ee
FDBM
416/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
417static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
418 struct extent_buffer *eb)
419{
420 smp_mb();
421 if (list_empty(&(fs_info)->tree_mod_seq_list))
422 return 0;
423 if (eb && btrfs_header_level(eb) == 0)
424 return 0;
425
426 return 1;
427}
428
429static struct tree_mod_elem *
430alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
431 enum mod_log_op op, gfp_t flags)
bd989ba3 432{
097b8a7c 433 struct tree_mod_elem *tm;
bd989ba3 434
c8cc6341
JB
435 tm = kzalloc(sizeof(*tm), flags);
436 if (!tm)
5de865ee 437 return NULL;
bd989ba3 438
298cfd36 439 tm->logical = eb->start;
bd989ba3
JS
440 if (op != MOD_LOG_KEY_ADD) {
441 btrfs_node_key(eb, &tm->key, slot);
442 tm->blockptr = btrfs_node_blockptr(eb, slot);
443 }
444 tm->op = op;
445 tm->slot = slot;
446 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 447 RB_CLEAR_NODE(&tm->node);
bd989ba3 448
5de865ee 449 return tm;
097b8a7c
JS
450}
451
e09c2efe
DS
452static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
453 enum mod_log_op op, gfp_t flags)
097b8a7c 454{
5de865ee
FDBM
455 struct tree_mod_elem *tm;
456 int ret;
457
e09c2efe 458 if (!tree_mod_need_log(eb->fs_info, eb))
5de865ee
FDBM
459 return 0;
460
461 tm = alloc_tree_mod_elem(eb, slot, op, flags);
462 if (!tm)
463 return -ENOMEM;
464
e09c2efe 465 if (tree_mod_dont_log(eb->fs_info, eb)) {
5de865ee 466 kfree(tm);
097b8a7c 467 return 0;
5de865ee
FDBM
468 }
469
e09c2efe 470 ret = __tree_mod_log_insert(eb->fs_info, tm);
b1a09f1e 471 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
472 if (ret)
473 kfree(tm);
097b8a7c 474
5de865ee 475 return ret;
097b8a7c
JS
476}
477
6074d45f
DS
478static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
479 int dst_slot, int src_slot, int nr_items)
bd989ba3 480{
5de865ee
FDBM
481 struct tree_mod_elem *tm = NULL;
482 struct tree_mod_elem **tm_list = NULL;
483 int ret = 0;
bd989ba3 484 int i;
5de865ee 485 int locked = 0;
bd989ba3 486
6074d45f 487 if (!tree_mod_need_log(eb->fs_info, eb))
f395694c 488 return 0;
bd989ba3 489
176ef8f5 490 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
491 if (!tm_list)
492 return -ENOMEM;
493
176ef8f5 494 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
495 if (!tm) {
496 ret = -ENOMEM;
497 goto free_tms;
498 }
499
298cfd36 500 tm->logical = eb->start;
5de865ee
FDBM
501 tm->slot = src_slot;
502 tm->move.dst_slot = dst_slot;
503 tm->move.nr_items = nr_items;
504 tm->op = MOD_LOG_MOVE_KEYS;
505
506 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
507 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
176ef8f5 508 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
5de865ee
FDBM
509 if (!tm_list[i]) {
510 ret = -ENOMEM;
511 goto free_tms;
512 }
513 }
514
6074d45f 515 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
516 goto free_tms;
517 locked = 1;
518
01763a2e
JS
519 /*
520 * When we override something during the move, we log these removals.
521 * This can only happen when we move towards the beginning of the
522 * buffer, i.e. dst_slot < src_slot.
523 */
bd989ba3 524 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
6074d45f 525 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
5de865ee
FDBM
526 if (ret)
527 goto free_tms;
bd989ba3
JS
528 }
529
6074d45f 530 ret = __tree_mod_log_insert(eb->fs_info, tm);
5de865ee
FDBM
531 if (ret)
532 goto free_tms;
b1a09f1e 533 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee 534 kfree(tm_list);
f395694c 535
5de865ee
FDBM
536 return 0;
537free_tms:
538 for (i = 0; i < nr_items; i++) {
539 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
6074d45f 540 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
5de865ee
FDBM
541 kfree(tm_list[i]);
542 }
543 if (locked)
b1a09f1e 544 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
545 kfree(tm_list);
546 kfree(tm);
bd989ba3 547
5de865ee 548 return ret;
bd989ba3
JS
549}
550
5de865ee
FDBM
551static inline int
552__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
553 struct tree_mod_elem **tm_list,
554 int nritems)
097b8a7c 555{
5de865ee 556 int i, j;
097b8a7c
JS
557 int ret;
558
097b8a7c 559 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
560 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
561 if (ret) {
562 for (j = nritems - 1; j > i; j--)
563 rb_erase(&tm_list[j]->node,
564 &fs_info->tree_mod_log);
565 return ret;
566 }
097b8a7c 567 }
5de865ee
FDBM
568
569 return 0;
097b8a7c
JS
570}
571
95b757c1
DS
572static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
573 struct extent_buffer *new_root, int log_removal)
bd989ba3 574{
95b757c1 575 struct btrfs_fs_info *fs_info = old_root->fs_info;
5de865ee
FDBM
576 struct tree_mod_elem *tm = NULL;
577 struct tree_mod_elem **tm_list = NULL;
578 int nritems = 0;
579 int ret = 0;
580 int i;
bd989ba3 581
5de865ee 582 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
583 return 0;
584
5de865ee
FDBM
585 if (log_removal && btrfs_header_level(old_root) > 0) {
586 nritems = btrfs_header_nritems(old_root);
31e818fe 587 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
bcc8e07f 588 GFP_NOFS);
5de865ee
FDBM
589 if (!tm_list) {
590 ret = -ENOMEM;
591 goto free_tms;
592 }
593 for (i = 0; i < nritems; i++) {
594 tm_list[i] = alloc_tree_mod_elem(old_root, i,
bcc8e07f 595 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
5de865ee
FDBM
596 if (!tm_list[i]) {
597 ret = -ENOMEM;
598 goto free_tms;
599 }
600 }
601 }
d9abbf1c 602
bcc8e07f 603 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
604 if (!tm) {
605 ret = -ENOMEM;
606 goto free_tms;
607 }
bd989ba3 608
298cfd36 609 tm->logical = new_root->start;
bd989ba3
JS
610 tm->old_root.logical = old_root->start;
611 tm->old_root.level = btrfs_header_level(old_root);
612 tm->generation = btrfs_header_generation(old_root);
613 tm->op = MOD_LOG_ROOT_REPLACE;
614
5de865ee
FDBM
615 if (tree_mod_dont_log(fs_info, NULL))
616 goto free_tms;
617
618 if (tm_list)
619 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
620 if (!ret)
621 ret = __tree_mod_log_insert(fs_info, tm);
622
b1a09f1e 623 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
624 if (ret)
625 goto free_tms;
626 kfree(tm_list);
627
628 return ret;
629
630free_tms:
631 if (tm_list) {
632 for (i = 0; i < nritems; i++)
633 kfree(tm_list[i]);
634 kfree(tm_list);
635 }
636 kfree(tm);
637
638 return ret;
bd989ba3
JS
639}
640
641static struct tree_mod_elem *
642__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
643 int smallest)
644{
645 struct rb_root *tm_root;
646 struct rb_node *node;
647 struct tree_mod_elem *cur = NULL;
648 struct tree_mod_elem *found = NULL;
bd989ba3 649
b1a09f1e 650 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
651 tm_root = &fs_info->tree_mod_log;
652 node = tm_root->rb_node;
653 while (node) {
6b4df8b6 654 cur = rb_entry(node, struct tree_mod_elem, node);
298cfd36 655 if (cur->logical < start) {
bd989ba3 656 node = node->rb_left;
298cfd36 657 } else if (cur->logical > start) {
bd989ba3 658 node = node->rb_right;
097b8a7c 659 } else if (cur->seq < min_seq) {
bd989ba3
JS
660 node = node->rb_left;
661 } else if (!smallest) {
662 /* we want the node with the highest seq */
663 if (found)
097b8a7c 664 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
665 found = cur;
666 node = node->rb_left;
097b8a7c 667 } else if (cur->seq > min_seq) {
bd989ba3
JS
668 /* we want the node with the smallest seq */
669 if (found)
097b8a7c 670 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
671 found = cur;
672 node = node->rb_right;
673 } else {
674 found = cur;
675 break;
676 }
677 }
b1a09f1e 678 read_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
679
680 return found;
681}
682
683/*
684 * this returns the element from the log with the smallest time sequence
685 * value that's in the log (the oldest log item). any element with a time
686 * sequence lower than min_seq will be ignored.
687 */
688static struct tree_mod_elem *
689tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
690 u64 min_seq)
691{
692 return __tree_mod_log_search(fs_info, start, min_seq, 1);
693}
694
695/*
696 * this returns the element from the log with the largest time sequence
697 * value that's in the log (the most recent log item). any element with
698 * a time sequence lower than min_seq will be ignored.
699 */
700static struct tree_mod_elem *
701tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
702{
703 return __tree_mod_log_search(fs_info, start, min_seq, 0);
704}
705
ed874f0d 706static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
bd989ba3 707 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 708 unsigned long src_offset, int nr_items)
bd989ba3 709{
ed874f0d 710 struct btrfs_fs_info *fs_info = dst->fs_info;
5de865ee
FDBM
711 int ret = 0;
712 struct tree_mod_elem **tm_list = NULL;
713 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 714 int i;
5de865ee 715 int locked = 0;
bd989ba3 716
5de865ee
FDBM
717 if (!tree_mod_need_log(fs_info, NULL))
718 return 0;
bd989ba3 719
c8cc6341 720 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
721 return 0;
722
31e818fe 723 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
724 GFP_NOFS);
725 if (!tm_list)
726 return -ENOMEM;
bd989ba3 727
5de865ee
FDBM
728 tm_list_add = tm_list;
729 tm_list_rem = tm_list + nr_items;
bd989ba3 730 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
731 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
732 MOD_LOG_KEY_REMOVE, GFP_NOFS);
733 if (!tm_list_rem[i]) {
734 ret = -ENOMEM;
735 goto free_tms;
736 }
737
738 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
739 MOD_LOG_KEY_ADD, GFP_NOFS);
740 if (!tm_list_add[i]) {
741 ret = -ENOMEM;
742 goto free_tms;
743 }
744 }
745
746 if (tree_mod_dont_log(fs_info, NULL))
747 goto free_tms;
748 locked = 1;
749
750 for (i = 0; i < nr_items; i++) {
751 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
752 if (ret)
753 goto free_tms;
754 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
755 if (ret)
756 goto free_tms;
bd989ba3 757 }
5de865ee 758
b1a09f1e 759 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
760 kfree(tm_list);
761
762 return 0;
763
764free_tms:
765 for (i = 0; i < nr_items * 2; i++) {
766 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
767 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
768 kfree(tm_list[i]);
769 }
770 if (locked)
b1a09f1e 771 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
772 kfree(tm_list);
773
774 return ret;
bd989ba3
JS
775}
776
db7279a2 777static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
bd989ba3 778{
5de865ee
FDBM
779 struct tree_mod_elem **tm_list = NULL;
780 int nritems = 0;
781 int i;
782 int ret = 0;
783
784 if (btrfs_header_level(eb) == 0)
785 return 0;
786
db7279a2 787 if (!tree_mod_need_log(eb->fs_info, NULL))
5de865ee
FDBM
788 return 0;
789
790 nritems = btrfs_header_nritems(eb);
31e818fe 791 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
792 if (!tm_list)
793 return -ENOMEM;
794
795 for (i = 0; i < nritems; i++) {
796 tm_list[i] = alloc_tree_mod_elem(eb, i,
797 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
798 if (!tm_list[i]) {
799 ret = -ENOMEM;
800 goto free_tms;
801 }
802 }
803
db7279a2 804 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
805 goto free_tms;
806
db7279a2 807 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
b1a09f1e 808 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
809 if (ret)
810 goto free_tms;
811 kfree(tm_list);
812
813 return 0;
814
815free_tms:
816 for (i = 0; i < nritems; i++)
817 kfree(tm_list[i]);
818 kfree(tm_list);
819
820 return ret;
bd989ba3
JS
821}
822
5d4f98a2
YZ
823/*
824 * check if the tree block can be shared by multiple trees
825 */
826int btrfs_block_can_be_shared(struct btrfs_root *root,
827 struct extent_buffer *buf)
828{
829 /*
92a7cc42
QW
830 * Tree blocks not in shareable trees and tree roots are never shared.
831 * If a block was allocated after the last snapshot and the block was
832 * not allocated by tree relocation, we know the block is not shared.
5d4f98a2 833 */
92a7cc42 834 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
5d4f98a2
YZ
835 buf != root->node && buf != root->commit_root &&
836 (btrfs_header_generation(buf) <=
837 btrfs_root_last_snapshot(&root->root_item) ||
838 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
839 return 1;
a79865c6 840
5d4f98a2
YZ
841 return 0;
842}
843
844static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
845 struct btrfs_root *root,
846 struct extent_buffer *buf,
f0486c68
YZ
847 struct extent_buffer *cow,
848 int *last_ref)
5d4f98a2 849{
0b246afa 850 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
851 u64 refs;
852 u64 owner;
853 u64 flags;
854 u64 new_flags = 0;
855 int ret;
856
857 /*
858 * Backrefs update rules:
859 *
860 * Always use full backrefs for extent pointers in tree block
861 * allocated by tree relocation.
862 *
863 * If a shared tree block is no longer referenced by its owner
864 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
865 * use full backrefs for extent pointers in tree block.
866 *
867 * If a tree block is been relocating
868 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
869 * use full backrefs for extent pointers in tree block.
870 * The reason for this is some operations (such as drop tree)
871 * are only allowed for blocks use full backrefs.
872 */
873
874 if (btrfs_block_can_be_shared(root, buf)) {
2ff7e61e 875 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
3173a18f
JB
876 btrfs_header_level(buf), 1,
877 &refs, &flags);
be1a5564
MF
878 if (ret)
879 return ret;
e5df9573
MF
880 if (refs == 0) {
881 ret = -EROFS;
0b246afa 882 btrfs_handle_fs_error(fs_info, ret, NULL);
e5df9573
MF
883 return ret;
884 }
5d4f98a2
YZ
885 } else {
886 refs = 1;
887 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
888 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
889 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
890 else
891 flags = 0;
892 }
893
894 owner = btrfs_header_owner(buf);
895 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
896 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
897
898 if (refs > 1) {
899 if ((owner == root->root_key.objectid ||
900 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
901 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 902 ret = btrfs_inc_ref(trans, root, buf, 1);
692826b2
JM
903 if (ret)
904 return ret;
5d4f98a2
YZ
905
906 if (root->root_key.objectid ==
907 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 908 ret = btrfs_dec_ref(trans, root, buf, 0);
692826b2
JM
909 if (ret)
910 return ret;
e339a6b0 911 ret = btrfs_inc_ref(trans, root, cow, 1);
692826b2
JM
912 if (ret)
913 return ret;
5d4f98a2
YZ
914 }
915 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
916 } else {
917
918 if (root->root_key.objectid ==
919 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 920 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 921 else
e339a6b0 922 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
923 if (ret)
924 return ret;
5d4f98a2
YZ
925 }
926 if (new_flags != 0) {
b1c79e09
JB
927 int level = btrfs_header_level(buf);
928
42c9d0b5 929 ret = btrfs_set_disk_extent_flags(trans, buf,
b1c79e09 930 new_flags, level, 0);
be1a5564
MF
931 if (ret)
932 return ret;
5d4f98a2
YZ
933 }
934 } else {
935 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
936 if (root->root_key.objectid ==
937 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 938 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 939 else
e339a6b0 940 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
941 if (ret)
942 return ret;
e339a6b0 943 ret = btrfs_dec_ref(trans, root, buf, 1);
692826b2
JM
944 if (ret)
945 return ret;
5d4f98a2 946 }
6a884d7d 947 btrfs_clean_tree_block(buf);
f0486c68 948 *last_ref = 1;
5d4f98a2
YZ
949 }
950 return 0;
951}
952
a6279470
FM
953static struct extent_buffer *alloc_tree_block_no_bg_flush(
954 struct btrfs_trans_handle *trans,
955 struct btrfs_root *root,
956 u64 parent_start,
957 const struct btrfs_disk_key *disk_key,
958 int level,
959 u64 hint,
9631e4cc
JB
960 u64 empty_size,
961 enum btrfs_lock_nesting nest)
a6279470
FM
962{
963 struct btrfs_fs_info *fs_info = root->fs_info;
964 struct extent_buffer *ret;
965
966 /*
967 * If we are COWing a node/leaf from the extent, chunk, device or free
968 * space trees, make sure that we do not finish block group creation of
969 * pending block groups. We do this to avoid a deadlock.
970 * COWing can result in allocation of a new chunk, and flushing pending
971 * block groups (btrfs_create_pending_block_groups()) can be triggered
972 * when finishing allocation of a new chunk. Creation of a pending block
973 * group modifies the extent, chunk, device and free space trees,
974 * therefore we could deadlock with ourselves since we are holding a
975 * lock on an extent buffer that btrfs_create_pending_block_groups() may
976 * try to COW later.
977 * For similar reasons, we also need to delay flushing pending block
978 * groups when splitting a leaf or node, from one of those trees, since
979 * we are holding a write lock on it and its parent or when inserting a
980 * new root node for one of those trees.
981 */
982 if (root == fs_info->extent_root ||
983 root == fs_info->chunk_root ||
984 root == fs_info->dev_root ||
985 root == fs_info->free_space_root)
986 trans->can_flush_pending_bgs = false;
987
988 ret = btrfs_alloc_tree_block(trans, root, parent_start,
989 root->root_key.objectid, disk_key, level,
9631e4cc 990 hint, empty_size, nest);
a6279470
FM
991 trans->can_flush_pending_bgs = true;
992
993 return ret;
994}
995
d352ac68 996/*
d397712b
CM
997 * does the dirty work in cow of a single block. The parent block (if
998 * supplied) is updated to point to the new cow copy. The new buffer is marked
999 * dirty and returned locked. If you modify the block it needs to be marked
1000 * dirty again.
d352ac68
CM
1001 *
1002 * search_start -- an allocation hint for the new block
1003 *
d397712b
CM
1004 * empty_size -- a hint that you plan on doing more cow. This is the size in
1005 * bytes the allocator should try to find free next to the block it returns.
1006 * This is just a hint and may be ignored by the allocator.
d352ac68 1007 */
d397712b 1008static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1009 struct btrfs_root *root,
1010 struct extent_buffer *buf,
1011 struct extent_buffer *parent, int parent_slot,
1012 struct extent_buffer **cow_ret,
9631e4cc
JB
1013 u64 search_start, u64 empty_size,
1014 enum btrfs_lock_nesting nest)
02217ed2 1015{
0b246afa 1016 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2 1017 struct btrfs_disk_key disk_key;
5f39d397 1018 struct extent_buffer *cow;
be1a5564 1019 int level, ret;
f0486c68 1020 int last_ref = 0;
925baedd 1021 int unlock_orig = 0;
0f5053eb 1022 u64 parent_start = 0;
7bb86316 1023
925baedd
CM
1024 if (*cow_ret == buf)
1025 unlock_orig = 1;
1026
b9447ef8 1027 btrfs_assert_tree_locked(buf);
925baedd 1028
92a7cc42 1029 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
0b246afa 1030 trans->transid != fs_info->running_transaction->transid);
92a7cc42 1031 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
27cdeb70 1032 trans->transid != root->last_trans);
5f39d397 1033
7bb86316 1034 level = btrfs_header_level(buf);
31840ae1 1035
5d4f98a2
YZ
1036 if (level == 0)
1037 btrfs_item_key(buf, &disk_key, 0);
1038 else
1039 btrfs_node_key(buf, &disk_key, 0);
1040
0f5053eb
GR
1041 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1042 parent_start = parent->start;
5d4f98a2 1043
a6279470 1044 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
9631e4cc 1045 level, search_start, empty_size, nest);
54aa1f4d
CM
1046 if (IS_ERR(cow))
1047 return PTR_ERR(cow);
6702ed49 1048
b4ce94de
CM
1049 /* cow is set to blocking by btrfs_init_new_buffer */
1050
58e8012c 1051 copy_extent_buffer_full(cow, buf);
db94535d 1052 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1053 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1054 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1055 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1056 BTRFS_HEADER_FLAG_RELOC);
1057 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1058 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1059 else
1060 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1061
de37aa51 1062 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
2b82032c 1063
be1a5564 1064 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1065 if (ret) {
66642832 1066 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1067 return ret;
1068 }
1a40e23b 1069
92a7cc42 1070 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
83d4cfd4 1071 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1072 if (ret) {
66642832 1073 btrfs_abort_transaction(trans, ret);
83d4cfd4 1074 return ret;
93314e3b 1075 }
83d4cfd4 1076 }
3fd0a558 1077
02217ed2 1078 if (buf == root->node) {
925baedd 1079 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1080 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1081 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1082 parent_start = buf->start;
925baedd 1083
67439dad 1084 atomic_inc(&cow->refs);
d9d19a01
DS
1085 ret = tree_mod_log_insert_root(root->node, cow, 1);
1086 BUG_ON(ret < 0);
240f62c8 1087 rcu_assign_pointer(root->node, cow);
925baedd 1088
f0486c68 1089 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1090 last_ref);
5f39d397 1091 free_extent_buffer(buf);
0b86a832 1092 add_root_to_dirty_list(root);
02217ed2 1093 } else {
5d4f98a2 1094 WARN_ON(trans->transid != btrfs_header_generation(parent));
e09c2efe 1095 tree_mod_log_insert_key(parent, parent_slot,
c8cc6341 1096 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1097 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1098 cow->start);
74493f7a
CM
1099 btrfs_set_node_ptr_generation(parent, parent_slot,
1100 trans->transid);
d6025579 1101 btrfs_mark_buffer_dirty(parent);
5de865ee 1102 if (last_ref) {
db7279a2 1103 ret = tree_mod_log_free_eb(buf);
5de865ee 1104 if (ret) {
66642832 1105 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1106 return ret;
1107 }
1108 }
f0486c68 1109 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1110 last_ref);
02217ed2 1111 }
925baedd
CM
1112 if (unlock_orig)
1113 btrfs_tree_unlock(buf);
3083ee2e 1114 free_extent_buffer_stale(buf);
ccd467d6 1115 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1116 *cow_ret = cow;
02217ed2
CM
1117 return 0;
1118}
1119
5d9e75c4
JS
1120/*
1121 * returns the logical address of the oldest predecessor of the given root.
1122 * entries older than time_seq are ignored.
1123 */
bcd24dab
DS
1124static struct tree_mod_elem *__tree_mod_log_oldest_root(
1125 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1126{
1127 struct tree_mod_elem *tm;
1128 struct tree_mod_elem *found = NULL;
30b0463a 1129 u64 root_logical = eb_root->start;
5d9e75c4
JS
1130 int looped = 0;
1131
1132 if (!time_seq)
35a3621b 1133 return NULL;
5d9e75c4
JS
1134
1135 /*
298cfd36
CR
1136 * the very last operation that's logged for a root is the
1137 * replacement operation (if it is replaced at all). this has
1138 * the logical address of the *new* root, making it the very
1139 * first operation that's logged for this root.
5d9e75c4
JS
1140 */
1141 while (1) {
bcd24dab 1142 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
5d9e75c4
JS
1143 time_seq);
1144 if (!looped && !tm)
35a3621b 1145 return NULL;
5d9e75c4 1146 /*
28da9fb4
JS
1147 * if there are no tree operation for the oldest root, we simply
1148 * return it. this should only happen if that (old) root is at
1149 * level 0.
5d9e75c4 1150 */
28da9fb4
JS
1151 if (!tm)
1152 break;
5d9e75c4 1153
28da9fb4
JS
1154 /*
1155 * if there's an operation that's not a root replacement, we
1156 * found the oldest version of our root. normally, we'll find a
1157 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1158 */
5d9e75c4
JS
1159 if (tm->op != MOD_LOG_ROOT_REPLACE)
1160 break;
1161
1162 found = tm;
1163 root_logical = tm->old_root.logical;
5d9e75c4
JS
1164 looped = 1;
1165 }
1166
a95236d9
JS
1167 /* if there's no old root to return, return what we found instead */
1168 if (!found)
1169 found = tm;
1170
5d9e75c4
JS
1171 return found;
1172}
1173
1174/*
1175 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1176 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1177 * time_seq).
1178 */
1179static void
f1ca7e98
JB
1180__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1181 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1182{
1183 u32 n;
1184 struct rb_node *next;
1185 struct tree_mod_elem *tm = first_tm;
1186 unsigned long o_dst;
1187 unsigned long o_src;
1188 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1189
1190 n = btrfs_header_nritems(eb);
b1a09f1e 1191 read_lock(&fs_info->tree_mod_log_lock);
097b8a7c 1192 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1193 /*
1194 * all the operations are recorded with the operator used for
1195 * the modification. as we're going backwards, we do the
1196 * opposite of each operation here.
1197 */
1198 switch (tm->op) {
1199 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1200 BUG_ON(tm->slot < n);
c730ae0c 1201 fallthrough;
95c80bb1 1202 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1203 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1204 btrfs_set_node_key(eb, &tm->key, tm->slot);
1205 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1206 btrfs_set_node_ptr_generation(eb, tm->slot,
1207 tm->generation);
4c3e6969 1208 n++;
5d9e75c4
JS
1209 break;
1210 case MOD_LOG_KEY_REPLACE:
1211 BUG_ON(tm->slot >= n);
1212 btrfs_set_node_key(eb, &tm->key, tm->slot);
1213 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1214 btrfs_set_node_ptr_generation(eb, tm->slot,
1215 tm->generation);
1216 break;
1217 case MOD_LOG_KEY_ADD:
19956c7e 1218 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1219 n--;
1220 break;
1221 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1222 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1223 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1224 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1225 tm->move.nr_items * p_size);
1226 break;
1227 case MOD_LOG_ROOT_REPLACE:
1228 /*
1229 * this operation is special. for roots, this must be
1230 * handled explicitly before rewinding.
1231 * for non-roots, this operation may exist if the node
1232 * was a root: root A -> child B; then A gets empty and
1233 * B is promoted to the new root. in the mod log, we'll
1234 * have a root-replace operation for B, a tree block
1235 * that is no root. we simply ignore that operation.
1236 */
1237 break;
1238 }
1239 next = rb_next(&tm->node);
1240 if (!next)
1241 break;
6b4df8b6 1242 tm = rb_entry(next, struct tree_mod_elem, node);
298cfd36 1243 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1244 break;
1245 }
b1a09f1e 1246 read_unlock(&fs_info->tree_mod_log_lock);
5d9e75c4
JS
1247 btrfs_set_header_nritems(eb, n);
1248}
1249
47fb091f 1250/*
01327610 1251 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1252 * is returned. If rewind operations happen, a fresh buffer is returned. The
1253 * returned buffer is always read-locked. If the returned buffer is not the
1254 * input buffer, the lock on the input buffer is released and the input buffer
1255 * is freed (its refcount is decremented).
1256 */
5d9e75c4 1257static struct extent_buffer *
9ec72677
JB
1258tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1259 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1260{
1261 struct extent_buffer *eb_rewin;
1262 struct tree_mod_elem *tm;
1263
1264 if (!time_seq)
1265 return eb;
1266
1267 if (btrfs_header_level(eb) == 0)
1268 return eb;
1269
1270 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1271 if (!tm)
1272 return eb;
1273
9ec72677 1274 btrfs_set_path_blocking(path);
300aa896 1275 btrfs_set_lock_blocking_read(eb);
9ec72677 1276
5d9e75c4
JS
1277 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1278 BUG_ON(tm->slot != 0);
da17066c 1279 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1280 if (!eb_rewin) {
9ec72677 1281 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1282 free_extent_buffer(eb);
1283 return NULL;
1284 }
5d9e75c4
JS
1285 btrfs_set_header_bytenr(eb_rewin, eb->start);
1286 btrfs_set_header_backref_rev(eb_rewin,
1287 btrfs_header_backref_rev(eb));
1288 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1289 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1290 } else {
1291 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1292 if (!eb_rewin) {
9ec72677 1293 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1294 free_extent_buffer(eb);
1295 return NULL;
1296 }
5d9e75c4
JS
1297 }
1298
9ec72677 1299 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1300 free_extent_buffer(eb);
1301
d3beaa25
JB
1302 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
1303 eb_rewin, btrfs_header_level(eb_rewin));
47fb091f 1304 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1305 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1306 WARN_ON(btrfs_header_nritems(eb_rewin) >
da17066c 1307 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1308
1309 return eb_rewin;
1310}
1311
8ba97a15
JS
1312/*
1313 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1314 * value. If there are no changes, the current root->root_node is returned. If
1315 * anything changed in between, there's a fresh buffer allocated on which the
1316 * rewind operations are done. In any case, the returned buffer is read locked.
1317 * Returns NULL on error (with no locks held).
1318 */
5d9e75c4
JS
1319static inline struct extent_buffer *
1320get_old_root(struct btrfs_root *root, u64 time_seq)
1321{
0b246afa 1322 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4 1323 struct tree_mod_elem *tm;
30b0463a
JS
1324 struct extent_buffer *eb = NULL;
1325 struct extent_buffer *eb_root;
efad8a85 1326 u64 eb_root_owner = 0;
7bfdcf7f 1327 struct extent_buffer *old;
a95236d9 1328 struct tree_mod_root *old_root = NULL;
4325edd0 1329 u64 old_generation = 0;
a95236d9 1330 u64 logical;
581c1760 1331 int level;
5d9e75c4 1332
30b0463a 1333 eb_root = btrfs_read_lock_root_node(root);
bcd24dab 1334 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5d9e75c4 1335 if (!tm)
30b0463a 1336 return eb_root;
5d9e75c4 1337
a95236d9
JS
1338 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1339 old_root = &tm->old_root;
1340 old_generation = tm->generation;
1341 logical = old_root->logical;
581c1760 1342 level = old_root->level;
a95236d9 1343 } else {
30b0463a 1344 logical = eb_root->start;
581c1760 1345 level = btrfs_header_level(eb_root);
a95236d9 1346 }
5d9e75c4 1347
0b246afa 1348 tm = tree_mod_log_search(fs_info, logical, time_seq);
834328a8 1349 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1350 btrfs_tree_read_unlock(eb_root);
1351 free_extent_buffer(eb_root);
581c1760 1352 old = read_tree_block(fs_info, logical, 0, level, NULL);
64c043de
LB
1353 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1354 if (!IS_ERR(old))
1355 free_extent_buffer(old);
0b246afa
JM
1356 btrfs_warn(fs_info,
1357 "failed to read tree block %llu from get_old_root",
1358 logical);
834328a8 1359 } else {
7bfdcf7f
LB
1360 eb = btrfs_clone_extent_buffer(old);
1361 free_extent_buffer(old);
834328a8
JS
1362 }
1363 } else if (old_root) {
efad8a85 1364 eb_root_owner = btrfs_header_owner(eb_root);
30b0463a
JS
1365 btrfs_tree_read_unlock(eb_root);
1366 free_extent_buffer(eb_root);
0b246afa 1367 eb = alloc_dummy_extent_buffer(fs_info, logical);
834328a8 1368 } else {
300aa896 1369 btrfs_set_lock_blocking_read(eb_root);
30b0463a 1370 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1371 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1372 free_extent_buffer(eb_root);
834328a8
JS
1373 }
1374
8ba97a15
JS
1375 if (!eb)
1376 return NULL;
a95236d9 1377 if (old_root) {
5d9e75c4
JS
1378 btrfs_set_header_bytenr(eb, eb->start);
1379 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
efad8a85 1380 btrfs_set_header_owner(eb, eb_root_owner);
a95236d9
JS
1381 btrfs_set_header_level(eb, old_root->level);
1382 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1383 }
d3beaa25
JB
1384 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1385 btrfs_header_level(eb));
1386 btrfs_tree_read_lock(eb);
28da9fb4 1387 if (tm)
0b246afa 1388 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
28da9fb4
JS
1389 else
1390 WARN_ON(btrfs_header_level(eb) != 0);
0b246afa 1391 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1392
1393 return eb;
1394}
1395
5b6602e7
JS
1396int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1397{
1398 struct tree_mod_elem *tm;
1399 int level;
30b0463a 1400 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1401
bcd24dab 1402 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5b6602e7
JS
1403 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1404 level = tm->old_root.level;
1405 } else {
30b0463a 1406 level = btrfs_header_level(eb_root);
5b6602e7 1407 }
30b0463a 1408 free_extent_buffer(eb_root);
5b6602e7
JS
1409
1410 return level;
1411}
1412
5d4f98a2
YZ
1413static inline int should_cow_block(struct btrfs_trans_handle *trans,
1414 struct btrfs_root *root,
1415 struct extent_buffer *buf)
1416{
f5ee5c9a 1417 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1418 return 0;
fccb84c9 1419
d1980131
DS
1420 /* Ensure we can see the FORCE_COW bit */
1421 smp_mb__before_atomic();
f1ebcc74
LB
1422
1423 /*
1424 * We do not need to cow a block if
1425 * 1) this block is not created or changed in this transaction;
1426 * 2) this block does not belong to TREE_RELOC tree;
1427 * 3) the root is not forced COW.
1428 *
1429 * What is forced COW:
01327610 1430 * when we create snapshot during committing the transaction,
52042d8e 1431 * after we've finished copying src root, we must COW the shared
f1ebcc74
LB
1432 * block to ensure the metadata consistency.
1433 */
5d4f98a2
YZ
1434 if (btrfs_header_generation(buf) == trans->transid &&
1435 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1436 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1437 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1438 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1439 return 0;
1440 return 1;
1441}
1442
d352ac68
CM
1443/*
1444 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1445 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1446 * once per transaction, as long as it hasn't been written yet
1447 */
d397712b 1448noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1449 struct btrfs_root *root, struct extent_buffer *buf,
1450 struct extent_buffer *parent, int parent_slot,
9631e4cc
JB
1451 struct extent_buffer **cow_ret,
1452 enum btrfs_lock_nesting nest)
6702ed49 1453{
0b246afa 1454 struct btrfs_fs_info *fs_info = root->fs_info;
6702ed49 1455 u64 search_start;
f510cfec 1456 int ret;
dc17ff8f 1457
83354f07
JB
1458 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1459 btrfs_err(fs_info,
1460 "COW'ing blocks on a fs root that's being dropped");
1461
0b246afa 1462 if (trans->transaction != fs_info->running_transaction)
31b1a2bd 1463 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1464 trans->transid,
0b246afa 1465 fs_info->running_transaction->transid);
31b1a2bd 1466
0b246afa 1467 if (trans->transid != fs_info->generation)
31b1a2bd 1468 WARN(1, KERN_CRIT "trans %llu running %llu\n",
0b246afa 1469 trans->transid, fs_info->generation);
dc17ff8f 1470
5d4f98a2 1471 if (!should_cow_block(trans, root, buf)) {
64c12921 1472 trans->dirty = true;
6702ed49
CM
1473 *cow_ret = buf;
1474 return 0;
1475 }
c487685d 1476
ee22184b 1477 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1478
1479 if (parent)
8bead258
DS
1480 btrfs_set_lock_blocking_write(parent);
1481 btrfs_set_lock_blocking_write(buf);
b4ce94de 1482
f616f5cd
QW
1483 /*
1484 * Before CoWing this block for later modification, check if it's
1485 * the subtree root and do the delayed subtree trace if needed.
1486 *
1487 * Also We don't care about the error, as it's handled internally.
1488 */
1489 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
f510cfec 1490 ret = __btrfs_cow_block(trans, root, buf, parent,
9631e4cc 1491 parent_slot, cow_ret, search_start, 0, nest);
1abe9b8a 1492
1493 trace_btrfs_cow_block(root, buf, *cow_ret);
1494
f510cfec 1495 return ret;
6702ed49
CM
1496}
1497
d352ac68
CM
1498/*
1499 * helper function for defrag to decide if two blocks pointed to by a
1500 * node are actually close by
1501 */
6b80053d 1502static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1503{
6b80053d 1504 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1505 return 1;
6b80053d 1506 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1507 return 1;
1508 return 0;
1509}
1510
ce6ef5ab
DS
1511#ifdef __LITTLE_ENDIAN
1512
1513/*
1514 * Compare two keys, on little-endian the disk order is same as CPU order and
1515 * we can avoid the conversion.
1516 */
1517static int comp_keys(const struct btrfs_disk_key *disk_key,
1518 const struct btrfs_key *k2)
1519{
1520 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
1521
1522 return btrfs_comp_cpu_keys(k1, k2);
1523}
1524
1525#else
1526
081e9573
CM
1527/*
1528 * compare two keys in a memcmp fashion
1529 */
310712b2
OS
1530static int comp_keys(const struct btrfs_disk_key *disk,
1531 const struct btrfs_key *k2)
081e9573
CM
1532{
1533 struct btrfs_key k1;
1534
1535 btrfs_disk_key_to_cpu(&k1, disk);
1536
20736aba 1537 return btrfs_comp_cpu_keys(&k1, k2);
081e9573 1538}
ce6ef5ab 1539#endif
081e9573 1540
f3465ca4
JB
1541/*
1542 * same as comp_keys only with two btrfs_key's
1543 */
e1f60a65 1544int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
f3465ca4
JB
1545{
1546 if (k1->objectid > k2->objectid)
1547 return 1;
1548 if (k1->objectid < k2->objectid)
1549 return -1;
1550 if (k1->type > k2->type)
1551 return 1;
1552 if (k1->type < k2->type)
1553 return -1;
1554 if (k1->offset > k2->offset)
1555 return 1;
1556 if (k1->offset < k2->offset)
1557 return -1;
1558 return 0;
1559}
081e9573 1560
d352ac68
CM
1561/*
1562 * this is used by the defrag code to go through all the
1563 * leaves pointed to by a node and reallocate them so that
1564 * disk order is close to key order
1565 */
6702ed49 1566int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1567 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1568 int start_slot, u64 *last_ret,
a6b6e75e 1569 struct btrfs_key *progress)
6702ed49 1570{
0b246afa 1571 struct btrfs_fs_info *fs_info = root->fs_info;
6b80053d 1572 struct extent_buffer *cur;
6702ed49 1573 u64 blocknr;
ca7a79ad 1574 u64 gen;
e9d0b13b
CM
1575 u64 search_start = *last_ret;
1576 u64 last_block = 0;
6702ed49
CM
1577 u64 other;
1578 u32 parent_nritems;
6702ed49
CM
1579 int end_slot;
1580 int i;
1581 int err = 0;
f2183bde 1582 int parent_level;
6b80053d
CM
1583 int uptodate;
1584 u32 blocksize;
081e9573
CM
1585 int progress_passed = 0;
1586 struct btrfs_disk_key disk_key;
6702ed49 1587
5708b959 1588 parent_level = btrfs_header_level(parent);
5708b959 1589
0b246afa
JM
1590 WARN_ON(trans->transaction != fs_info->running_transaction);
1591 WARN_ON(trans->transid != fs_info->generation);
86479a04 1592
6b80053d 1593 parent_nritems = btrfs_header_nritems(parent);
0b246afa 1594 blocksize = fs_info->nodesize;
5dfe2be7 1595 end_slot = parent_nritems - 1;
6702ed49 1596
5dfe2be7 1597 if (parent_nritems <= 1)
6702ed49
CM
1598 return 0;
1599
8bead258 1600 btrfs_set_lock_blocking_write(parent);
b4ce94de 1601
5dfe2be7 1602 for (i = start_slot; i <= end_slot; i++) {
581c1760 1603 struct btrfs_key first_key;
6702ed49 1604 int close = 1;
a6b6e75e 1605
081e9573
CM
1606 btrfs_node_key(parent, &disk_key, i);
1607 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1608 continue;
1609
1610 progress_passed = 1;
6b80053d 1611 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1612 gen = btrfs_node_ptr_generation(parent, i);
581c1760 1613 btrfs_node_key_to_cpu(parent, &first_key, i);
e9d0b13b
CM
1614 if (last_block == 0)
1615 last_block = blocknr;
5708b959 1616
6702ed49 1617 if (i > 0) {
6b80053d
CM
1618 other = btrfs_node_blockptr(parent, i - 1);
1619 close = close_blocks(blocknr, other, blocksize);
6702ed49 1620 }
5dfe2be7 1621 if (!close && i < end_slot) {
6b80053d
CM
1622 other = btrfs_node_blockptr(parent, i + 1);
1623 close = close_blocks(blocknr, other, blocksize);
6702ed49 1624 }
e9d0b13b
CM
1625 if (close) {
1626 last_block = blocknr;
6702ed49 1627 continue;
e9d0b13b 1628 }
6702ed49 1629
0b246afa 1630 cur = find_extent_buffer(fs_info, blocknr);
6b80053d 1631 if (cur)
b9fab919 1632 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1633 else
1634 uptodate = 0;
5708b959 1635 if (!cur || !uptodate) {
6b80053d 1636 if (!cur) {
581c1760
QW
1637 cur = read_tree_block(fs_info, blocknr, gen,
1638 parent_level - 1,
1639 &first_key);
64c043de
LB
1640 if (IS_ERR(cur)) {
1641 return PTR_ERR(cur);
1642 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1643 free_extent_buffer(cur);
97d9a8a4 1644 return -EIO;
416bc658 1645 }
6b80053d 1646 } else if (!uptodate) {
581c1760
QW
1647 err = btrfs_read_buffer(cur, gen,
1648 parent_level - 1,&first_key);
018642a1
TI
1649 if (err) {
1650 free_extent_buffer(cur);
1651 return err;
1652 }
f2183bde 1653 }
6702ed49 1654 }
e9d0b13b 1655 if (search_start == 0)
6b80053d 1656 search_start = last_block;
e9d0b13b 1657
e7a84565 1658 btrfs_tree_lock(cur);
8bead258 1659 btrfs_set_lock_blocking_write(cur);
6b80053d 1660 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1661 &cur, search_start,
6b80053d 1662 min(16 * blocksize,
9631e4cc
JB
1663 (end_slot - i) * blocksize),
1664 BTRFS_NESTING_COW);
252c38f0 1665 if (err) {
e7a84565 1666 btrfs_tree_unlock(cur);
6b80053d 1667 free_extent_buffer(cur);
6702ed49 1668 break;
252c38f0 1669 }
e7a84565
CM
1670 search_start = cur->start;
1671 last_block = cur->start;
f2183bde 1672 *last_ret = search_start;
e7a84565
CM
1673 btrfs_tree_unlock(cur);
1674 free_extent_buffer(cur);
6702ed49
CM
1675 }
1676 return err;
1677}
1678
74123bd7 1679/*
5f39d397
CM
1680 * search for key in the extent_buffer. The items start at offset p,
1681 * and they are item_size apart. There are 'max' items in p.
1682 *
74123bd7
CM
1683 * the slot in the array is returned via slot, and it points to
1684 * the place where you would insert key if it is not found in
1685 * the array.
1686 *
1687 * slot may point to max if the key is bigger than all of the keys
1688 */
e02119d5 1689static noinline int generic_bin_search(struct extent_buffer *eb,
310712b2
OS
1690 unsigned long p, int item_size,
1691 const struct btrfs_key *key,
e02119d5 1692 int max, int *slot)
be0e5c09
CM
1693{
1694 int low = 0;
1695 int high = max;
be0e5c09 1696 int ret;
5cd17f34 1697 const int key_size = sizeof(struct btrfs_disk_key);
be0e5c09 1698
5e24e9af
LB
1699 if (low > high) {
1700 btrfs_err(eb->fs_info,
1701 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1702 __func__, low, high, eb->start,
1703 btrfs_header_owner(eb), btrfs_header_level(eb));
1704 return -EINVAL;
1705 }
1706
d397712b 1707 while (low < high) {
5cd17f34
DS
1708 unsigned long oip;
1709 unsigned long offset;
1710 struct btrfs_disk_key *tmp;
1711 struct btrfs_disk_key unaligned;
1712 int mid;
1713
be0e5c09 1714 mid = (low + high) / 2;
5f39d397 1715 offset = p + mid * item_size;
5cd17f34 1716 oip = offset_in_page(offset);
5f39d397 1717
5cd17f34
DS
1718 if (oip + key_size <= PAGE_SIZE) {
1719 const unsigned long idx = offset >> PAGE_SHIFT;
1720 char *kaddr = page_address(eb->pages[idx]);
5f39d397 1721
5cd17f34 1722 tmp = (struct btrfs_disk_key *)(kaddr + oip);
5f39d397 1723 } else {
5cd17f34
DS
1724 read_extent_buffer(eb, &unaligned, offset, key_size);
1725 tmp = &unaligned;
5f39d397 1726 }
5cd17f34 1727
be0e5c09
CM
1728 ret = comp_keys(tmp, key);
1729
1730 if (ret < 0)
1731 low = mid + 1;
1732 else if (ret > 0)
1733 high = mid;
1734 else {
1735 *slot = mid;
1736 return 0;
1737 }
1738 }
1739 *slot = low;
1740 return 1;
1741}
1742
97571fd0
CM
1743/*
1744 * simple bin_search frontend that does the right thing for
1745 * leaves vs nodes
1746 */
a74b35ec 1747int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
e3b83361 1748 int *slot)
be0e5c09 1749{
e3b83361 1750 if (btrfs_header_level(eb) == 0)
5f39d397
CM
1751 return generic_bin_search(eb,
1752 offsetof(struct btrfs_leaf, items),
0783fcfc 1753 sizeof(struct btrfs_item),
5f39d397 1754 key, btrfs_header_nritems(eb),
7518a238 1755 slot);
f775738f 1756 else
5f39d397
CM
1757 return generic_bin_search(eb,
1758 offsetof(struct btrfs_node, ptrs),
123abc88 1759 sizeof(struct btrfs_key_ptr),
5f39d397 1760 key, btrfs_header_nritems(eb),
7518a238 1761 slot);
be0e5c09
CM
1762}
1763
f0486c68
YZ
1764static void root_add_used(struct btrfs_root *root, u32 size)
1765{
1766 spin_lock(&root->accounting_lock);
1767 btrfs_set_root_used(&root->root_item,
1768 btrfs_root_used(&root->root_item) + size);
1769 spin_unlock(&root->accounting_lock);
1770}
1771
1772static void root_sub_used(struct btrfs_root *root, u32 size)
1773{
1774 spin_lock(&root->accounting_lock);
1775 btrfs_set_root_used(&root->root_item,
1776 btrfs_root_used(&root->root_item) - size);
1777 spin_unlock(&root->accounting_lock);
1778}
1779
d352ac68
CM
1780/* given a node and slot number, this reads the blocks it points to. The
1781 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1782 */
4b231ae4
DS
1783struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1784 int slot)
bb803951 1785{
ca7a79ad 1786 int level = btrfs_header_level(parent);
416bc658 1787 struct extent_buffer *eb;
581c1760 1788 struct btrfs_key first_key;
416bc658 1789
fb770ae4
LB
1790 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1791 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1792
1793 BUG_ON(level == 0);
1794
581c1760 1795 btrfs_node_key_to_cpu(parent, &first_key, slot);
d0d20b0f 1796 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
581c1760
QW
1797 btrfs_node_ptr_generation(parent, slot),
1798 level - 1, &first_key);
fb770ae4
LB
1799 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1800 free_extent_buffer(eb);
1801 eb = ERR_PTR(-EIO);
416bc658
JB
1802 }
1803
1804 return eb;
bb803951
CM
1805}
1806
d352ac68
CM
1807/*
1808 * node level balancing, used to make sure nodes are in proper order for
1809 * item deletion. We balance from the top down, so we have to make sure
1810 * that a deletion won't leave an node completely empty later on.
1811 */
e02119d5 1812static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1813 struct btrfs_root *root,
1814 struct btrfs_path *path, int level)
bb803951 1815{
0b246afa 1816 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
1817 struct extent_buffer *right = NULL;
1818 struct extent_buffer *mid;
1819 struct extent_buffer *left = NULL;
1820 struct extent_buffer *parent = NULL;
bb803951
CM
1821 int ret = 0;
1822 int wret;
1823 int pslot;
bb803951 1824 int orig_slot = path->slots[level];
79f95c82 1825 u64 orig_ptr;
bb803951 1826
98e6b1eb 1827 ASSERT(level > 0);
bb803951 1828
5f39d397 1829 mid = path->nodes[level];
b4ce94de 1830
bd681513
CM
1831 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1832 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1833 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1834
1d4f8a0c 1835 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1836
a05a9bb1 1837 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1838 parent = path->nodes[level + 1];
a05a9bb1
LZ
1839 pslot = path->slots[level + 1];
1840 }
bb803951 1841
40689478
CM
1842 /*
1843 * deal with the case where there is only one pointer in the root
1844 * by promoting the node below to a root
1845 */
5f39d397
CM
1846 if (!parent) {
1847 struct extent_buffer *child;
bb803951 1848
5f39d397 1849 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1850 return 0;
1851
1852 /* promote the child to a root */
4b231ae4 1853 child = btrfs_read_node_slot(mid, 0);
fb770ae4
LB
1854 if (IS_ERR(child)) {
1855 ret = PTR_ERR(child);
0b246afa 1856 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1857 goto enospc;
1858 }
1859
925baedd 1860 btrfs_tree_lock(child);
8bead258 1861 btrfs_set_lock_blocking_write(child);
9631e4cc
JB
1862 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1863 BTRFS_NESTING_COW);
f0486c68
YZ
1864 if (ret) {
1865 btrfs_tree_unlock(child);
1866 free_extent_buffer(child);
1867 goto enospc;
1868 }
2f375ab9 1869
d9d19a01
DS
1870 ret = tree_mod_log_insert_root(root->node, child, 1);
1871 BUG_ON(ret < 0);
240f62c8 1872 rcu_assign_pointer(root->node, child);
925baedd 1873
0b86a832 1874 add_root_to_dirty_list(root);
925baedd 1875 btrfs_tree_unlock(child);
b4ce94de 1876
925baedd 1877 path->locks[level] = 0;
bb803951 1878 path->nodes[level] = NULL;
6a884d7d 1879 btrfs_clean_tree_block(mid);
925baedd 1880 btrfs_tree_unlock(mid);
bb803951 1881 /* once for the path */
5f39d397 1882 free_extent_buffer(mid);
f0486c68
YZ
1883
1884 root_sub_used(root, mid->len);
5581a51a 1885 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1886 /* once for the root ptr */
3083ee2e 1887 free_extent_buffer_stale(mid);
f0486c68 1888 return 0;
bb803951 1889 }
5f39d397 1890 if (btrfs_header_nritems(mid) >
0b246afa 1891 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
bb803951
CM
1892 return 0;
1893
4b231ae4 1894 left = btrfs_read_node_slot(parent, pslot - 1);
fb770ae4
LB
1895 if (IS_ERR(left))
1896 left = NULL;
1897
5f39d397 1898 if (left) {
925baedd 1899 btrfs_tree_lock(left);
8bead258 1900 btrfs_set_lock_blocking_write(left);
5f39d397 1901 wret = btrfs_cow_block(trans, root, left,
9631e4cc
JB
1902 parent, pslot - 1, &left,
1903 BTRFS_NESTING_COW);
54aa1f4d
CM
1904 if (wret) {
1905 ret = wret;
1906 goto enospc;
1907 }
2cc58cf2 1908 }
fb770ae4 1909
4b231ae4 1910 right = btrfs_read_node_slot(parent, pslot + 1);
fb770ae4
LB
1911 if (IS_ERR(right))
1912 right = NULL;
1913
5f39d397 1914 if (right) {
925baedd 1915 btrfs_tree_lock(right);
8bead258 1916 btrfs_set_lock_blocking_write(right);
5f39d397 1917 wret = btrfs_cow_block(trans, root, right,
9631e4cc
JB
1918 parent, pslot + 1, &right,
1919 BTRFS_NESTING_COW);
2cc58cf2
CM
1920 if (wret) {
1921 ret = wret;
1922 goto enospc;
1923 }
1924 }
1925
1926 /* first, try to make some room in the middle buffer */
5f39d397
CM
1927 if (left) {
1928 orig_slot += btrfs_header_nritems(left);
d30a668f 1929 wret = push_node_left(trans, left, mid, 1);
79f95c82
CM
1930 if (wret < 0)
1931 ret = wret;
bb803951 1932 }
79f95c82
CM
1933
1934 /*
1935 * then try to empty the right most buffer into the middle
1936 */
5f39d397 1937 if (right) {
d30a668f 1938 wret = push_node_left(trans, mid, right, 1);
54aa1f4d 1939 if (wret < 0 && wret != -ENOSPC)
79f95c82 1940 ret = wret;
5f39d397 1941 if (btrfs_header_nritems(right) == 0) {
6a884d7d 1942 btrfs_clean_tree_block(right);
925baedd 1943 btrfs_tree_unlock(right);
afe5fea7 1944 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 1945 root_sub_used(root, right->len);
5581a51a 1946 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1947 free_extent_buffer_stale(right);
f0486c68 1948 right = NULL;
bb803951 1949 } else {
5f39d397
CM
1950 struct btrfs_disk_key right_key;
1951 btrfs_node_key(right, &right_key, 0);
0e82bcfe
DS
1952 ret = tree_mod_log_insert_key(parent, pslot + 1,
1953 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1954 BUG_ON(ret < 0);
5f39d397
CM
1955 btrfs_set_node_key(parent, &right_key, pslot + 1);
1956 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1957 }
1958 }
5f39d397 1959 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1960 /*
1961 * we're not allowed to leave a node with one item in the
1962 * tree during a delete. A deletion from lower in the tree
1963 * could try to delete the only pointer in this node.
1964 * So, pull some keys from the left.
1965 * There has to be a left pointer at this point because
1966 * otherwise we would have pulled some pointers from the
1967 * right
1968 */
305a26af
MF
1969 if (!left) {
1970 ret = -EROFS;
0b246afa 1971 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1972 goto enospc;
1973 }
55d32ed8 1974 wret = balance_node_right(trans, mid, left);
54aa1f4d 1975 if (wret < 0) {
79f95c82 1976 ret = wret;
54aa1f4d
CM
1977 goto enospc;
1978 }
bce4eae9 1979 if (wret == 1) {
d30a668f 1980 wret = push_node_left(trans, left, mid, 1);
bce4eae9
CM
1981 if (wret < 0)
1982 ret = wret;
1983 }
79f95c82
CM
1984 BUG_ON(wret == 1);
1985 }
5f39d397 1986 if (btrfs_header_nritems(mid) == 0) {
6a884d7d 1987 btrfs_clean_tree_block(mid);
925baedd 1988 btrfs_tree_unlock(mid);
afe5fea7 1989 del_ptr(root, path, level + 1, pslot);
f0486c68 1990 root_sub_used(root, mid->len);
5581a51a 1991 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 1992 free_extent_buffer_stale(mid);
f0486c68 1993 mid = NULL;
79f95c82
CM
1994 } else {
1995 /* update the parent key to reflect our changes */
5f39d397
CM
1996 struct btrfs_disk_key mid_key;
1997 btrfs_node_key(mid, &mid_key, 0);
0e82bcfe
DS
1998 ret = tree_mod_log_insert_key(parent, pslot,
1999 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2000 BUG_ON(ret < 0);
5f39d397
CM
2001 btrfs_set_node_key(parent, &mid_key, pslot);
2002 btrfs_mark_buffer_dirty(parent);
79f95c82 2003 }
bb803951 2004
79f95c82 2005 /* update the path */
5f39d397
CM
2006 if (left) {
2007 if (btrfs_header_nritems(left) > orig_slot) {
67439dad 2008 atomic_inc(&left->refs);
925baedd 2009 /* left was locked after cow */
5f39d397 2010 path->nodes[level] = left;
bb803951
CM
2011 path->slots[level + 1] -= 1;
2012 path->slots[level] = orig_slot;
925baedd
CM
2013 if (mid) {
2014 btrfs_tree_unlock(mid);
5f39d397 2015 free_extent_buffer(mid);
925baedd 2016 }
bb803951 2017 } else {
5f39d397 2018 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2019 path->slots[level] = orig_slot;
2020 }
2021 }
79f95c82 2022 /* double check we haven't messed things up */
e20d96d6 2023 if (orig_ptr !=
5f39d397 2024 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2025 BUG();
54aa1f4d 2026enospc:
925baedd
CM
2027 if (right) {
2028 btrfs_tree_unlock(right);
5f39d397 2029 free_extent_buffer(right);
925baedd
CM
2030 }
2031 if (left) {
2032 if (path->nodes[level] != left)
2033 btrfs_tree_unlock(left);
5f39d397 2034 free_extent_buffer(left);
925baedd 2035 }
bb803951
CM
2036 return ret;
2037}
2038
d352ac68
CM
2039/* Node balancing for insertion. Here we only split or push nodes around
2040 * when they are completely full. This is also done top down, so we
2041 * have to be pessimistic.
2042 */
d397712b 2043static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2044 struct btrfs_root *root,
2045 struct btrfs_path *path, int level)
e66f709b 2046{
0b246afa 2047 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
2048 struct extent_buffer *right = NULL;
2049 struct extent_buffer *mid;
2050 struct extent_buffer *left = NULL;
2051 struct extent_buffer *parent = NULL;
e66f709b
CM
2052 int ret = 0;
2053 int wret;
2054 int pslot;
2055 int orig_slot = path->slots[level];
e66f709b
CM
2056
2057 if (level == 0)
2058 return 1;
2059
5f39d397 2060 mid = path->nodes[level];
7bb86316 2061 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2062
a05a9bb1 2063 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2064 parent = path->nodes[level + 1];
a05a9bb1
LZ
2065 pslot = path->slots[level + 1];
2066 }
e66f709b 2067
5f39d397 2068 if (!parent)
e66f709b 2069 return 1;
e66f709b 2070
4b231ae4 2071 left = btrfs_read_node_slot(parent, pslot - 1);
fb770ae4
LB
2072 if (IS_ERR(left))
2073 left = NULL;
e66f709b
CM
2074
2075 /* first, try to make some room in the middle buffer */
5f39d397 2076 if (left) {
e66f709b 2077 u32 left_nr;
925baedd
CM
2078
2079 btrfs_tree_lock(left);
8bead258 2080 btrfs_set_lock_blocking_write(left);
b4ce94de 2081
5f39d397 2082 left_nr = btrfs_header_nritems(left);
0b246afa 2083 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2084 wret = 1;
2085 } else {
5f39d397 2086 ret = btrfs_cow_block(trans, root, left, parent,
9631e4cc
JB
2087 pslot - 1, &left,
2088 BTRFS_NESTING_COW);
54aa1f4d
CM
2089 if (ret)
2090 wret = 1;
2091 else {
d30a668f 2092 wret = push_node_left(trans, left, mid, 0);
54aa1f4d 2093 }
33ade1f8 2094 }
e66f709b
CM
2095 if (wret < 0)
2096 ret = wret;
2097 if (wret == 0) {
5f39d397 2098 struct btrfs_disk_key disk_key;
e66f709b 2099 orig_slot += left_nr;
5f39d397 2100 btrfs_node_key(mid, &disk_key, 0);
0e82bcfe
DS
2101 ret = tree_mod_log_insert_key(parent, pslot,
2102 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2103 BUG_ON(ret < 0);
5f39d397
CM
2104 btrfs_set_node_key(parent, &disk_key, pslot);
2105 btrfs_mark_buffer_dirty(parent);
2106 if (btrfs_header_nritems(left) > orig_slot) {
2107 path->nodes[level] = left;
e66f709b
CM
2108 path->slots[level + 1] -= 1;
2109 path->slots[level] = orig_slot;
925baedd 2110 btrfs_tree_unlock(mid);
5f39d397 2111 free_extent_buffer(mid);
e66f709b
CM
2112 } else {
2113 orig_slot -=
5f39d397 2114 btrfs_header_nritems(left);
e66f709b 2115 path->slots[level] = orig_slot;
925baedd 2116 btrfs_tree_unlock(left);
5f39d397 2117 free_extent_buffer(left);
e66f709b 2118 }
e66f709b
CM
2119 return 0;
2120 }
925baedd 2121 btrfs_tree_unlock(left);
5f39d397 2122 free_extent_buffer(left);
e66f709b 2123 }
4b231ae4 2124 right = btrfs_read_node_slot(parent, pslot + 1);
fb770ae4
LB
2125 if (IS_ERR(right))
2126 right = NULL;
e66f709b
CM
2127
2128 /*
2129 * then try to empty the right most buffer into the middle
2130 */
5f39d397 2131 if (right) {
33ade1f8 2132 u32 right_nr;
b4ce94de 2133
925baedd 2134 btrfs_tree_lock(right);
8bead258 2135 btrfs_set_lock_blocking_write(right);
b4ce94de 2136
5f39d397 2137 right_nr = btrfs_header_nritems(right);
0b246afa 2138 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2139 wret = 1;
2140 } else {
5f39d397
CM
2141 ret = btrfs_cow_block(trans, root, right,
2142 parent, pslot + 1,
9631e4cc 2143 &right, BTRFS_NESTING_COW);
54aa1f4d
CM
2144 if (ret)
2145 wret = 1;
2146 else {
55d32ed8 2147 wret = balance_node_right(trans, right, mid);
54aa1f4d 2148 }
33ade1f8 2149 }
e66f709b
CM
2150 if (wret < 0)
2151 ret = wret;
2152 if (wret == 0) {
5f39d397
CM
2153 struct btrfs_disk_key disk_key;
2154
2155 btrfs_node_key(right, &disk_key, 0);
0e82bcfe
DS
2156 ret = tree_mod_log_insert_key(parent, pslot + 1,
2157 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2158 BUG_ON(ret < 0);
5f39d397
CM
2159 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2160 btrfs_mark_buffer_dirty(parent);
2161
2162 if (btrfs_header_nritems(mid) <= orig_slot) {
2163 path->nodes[level] = right;
e66f709b
CM
2164 path->slots[level + 1] += 1;
2165 path->slots[level] = orig_slot -
5f39d397 2166 btrfs_header_nritems(mid);
925baedd 2167 btrfs_tree_unlock(mid);
5f39d397 2168 free_extent_buffer(mid);
e66f709b 2169 } else {
925baedd 2170 btrfs_tree_unlock(right);
5f39d397 2171 free_extent_buffer(right);
e66f709b 2172 }
e66f709b
CM
2173 return 0;
2174 }
925baedd 2175 btrfs_tree_unlock(right);
5f39d397 2176 free_extent_buffer(right);
e66f709b 2177 }
e66f709b
CM
2178 return 1;
2179}
2180
3c69faec 2181/*
d352ac68
CM
2182 * readahead one full node of leaves, finding things that are close
2183 * to the block in 'slot', and triggering ra on them.
3c69faec 2184 */
2ff7e61e 2185static void reada_for_search(struct btrfs_fs_info *fs_info,
c8c42864
CM
2186 struct btrfs_path *path,
2187 int level, int slot, u64 objectid)
3c69faec 2188{
5f39d397 2189 struct extent_buffer *node;
01f46658 2190 struct btrfs_disk_key disk_key;
3c69faec 2191 u32 nritems;
3c69faec 2192 u64 search;
a7175319 2193 u64 target;
6b80053d 2194 u64 nread = 0;
5f39d397 2195 struct extent_buffer *eb;
6b80053d
CM
2196 u32 nr;
2197 u32 blocksize;
2198 u32 nscan = 0;
db94535d 2199
a6b6e75e 2200 if (level != 1)
6702ed49
CM
2201 return;
2202
2203 if (!path->nodes[level])
3c69faec
CM
2204 return;
2205
5f39d397 2206 node = path->nodes[level];
925baedd 2207
3c69faec 2208 search = btrfs_node_blockptr(node, slot);
0b246afa
JM
2209 blocksize = fs_info->nodesize;
2210 eb = find_extent_buffer(fs_info, search);
5f39d397
CM
2211 if (eb) {
2212 free_extent_buffer(eb);
3c69faec
CM
2213 return;
2214 }
2215
a7175319 2216 target = search;
6b80053d 2217
5f39d397 2218 nritems = btrfs_header_nritems(node);
6b80053d 2219 nr = slot;
25b8b936 2220
d397712b 2221 while (1) {
e4058b54 2222 if (path->reada == READA_BACK) {
6b80053d
CM
2223 if (nr == 0)
2224 break;
2225 nr--;
e4058b54 2226 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2227 nr++;
2228 if (nr >= nritems)
2229 break;
3c69faec 2230 }
e4058b54 2231 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2232 btrfs_node_key(node, &disk_key, nr);
2233 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2234 break;
2235 }
6b80053d 2236 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2237 if ((search <= target && target - search <= 65536) ||
2238 (search > target && search - target <= 65536)) {
2ff7e61e 2239 readahead_tree_block(fs_info, search);
6b80053d
CM
2240 nread += blocksize;
2241 }
2242 nscan++;
a7175319 2243 if ((nread > 65536 || nscan > 32))
6b80053d 2244 break;
3c69faec
CM
2245 }
2246}
925baedd 2247
2ff7e61e 2248static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
0b08851f 2249 struct btrfs_path *path, int level)
b4ce94de
CM
2250{
2251 int slot;
2252 int nritems;
2253 struct extent_buffer *parent;
2254 struct extent_buffer *eb;
2255 u64 gen;
2256 u64 block1 = 0;
2257 u64 block2 = 0;
b4ce94de 2258
8c594ea8 2259 parent = path->nodes[level + 1];
b4ce94de 2260 if (!parent)
0b08851f 2261 return;
b4ce94de
CM
2262
2263 nritems = btrfs_header_nritems(parent);
8c594ea8 2264 slot = path->slots[level + 1];
b4ce94de
CM
2265
2266 if (slot > 0) {
2267 block1 = btrfs_node_blockptr(parent, slot - 1);
2268 gen = btrfs_node_ptr_generation(parent, slot - 1);
0b246afa 2269 eb = find_extent_buffer(fs_info, block1);
b9fab919
CM
2270 /*
2271 * if we get -eagain from btrfs_buffer_uptodate, we
2272 * don't want to return eagain here. That will loop
2273 * forever
2274 */
2275 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2276 block1 = 0;
2277 free_extent_buffer(eb);
2278 }
8c594ea8 2279 if (slot + 1 < nritems) {
b4ce94de
CM
2280 block2 = btrfs_node_blockptr(parent, slot + 1);
2281 gen = btrfs_node_ptr_generation(parent, slot + 1);
0b246afa 2282 eb = find_extent_buffer(fs_info, block2);
b9fab919 2283 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2284 block2 = 0;
2285 free_extent_buffer(eb);
2286 }
8c594ea8 2287
0b08851f 2288 if (block1)
2ff7e61e 2289 readahead_tree_block(fs_info, block1);
0b08851f 2290 if (block2)
2ff7e61e 2291 readahead_tree_block(fs_info, block2);
b4ce94de
CM
2292}
2293
2294
d352ac68 2295/*
d397712b
CM
2296 * when we walk down the tree, it is usually safe to unlock the higher layers
2297 * in the tree. The exceptions are when our path goes through slot 0, because
2298 * operations on the tree might require changing key pointers higher up in the
2299 * tree.
d352ac68 2300 *
d397712b
CM
2301 * callers might also have set path->keep_locks, which tells this code to keep
2302 * the lock if the path points to the last slot in the block. This is part of
2303 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2304 *
d397712b
CM
2305 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2306 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2307 */
e02119d5 2308static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2309 int lowest_unlock, int min_write_lock_level,
2310 int *write_lock_level)
925baedd
CM
2311{
2312 int i;
2313 int skip_level = level;
051e1b9f 2314 int no_skips = 0;
925baedd
CM
2315 struct extent_buffer *t;
2316
2317 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2318 if (!path->nodes[i])
2319 break;
2320 if (!path->locks[i])
2321 break;
051e1b9f 2322 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2323 skip_level = i + 1;
2324 continue;
2325 }
051e1b9f 2326 if (!no_skips && path->keep_locks) {
925baedd
CM
2327 u32 nritems;
2328 t = path->nodes[i];
2329 nritems = btrfs_header_nritems(t);
051e1b9f 2330 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2331 skip_level = i + 1;
2332 continue;
2333 }
2334 }
051e1b9f
CM
2335 if (skip_level < i && i >= lowest_unlock)
2336 no_skips = 1;
2337
925baedd 2338 t = path->nodes[i];
d80bb3f9 2339 if (i >= lowest_unlock && i > skip_level) {
bd681513 2340 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2341 path->locks[i] = 0;
f7c79f30
CM
2342 if (write_lock_level &&
2343 i > min_write_lock_level &&
2344 i <= *write_lock_level) {
2345 *write_lock_level = i - 1;
2346 }
925baedd
CM
2347 }
2348 }
2349}
2350
c8c42864
CM
2351/*
2352 * helper function for btrfs_search_slot. The goal is to find a block
2353 * in cache without setting the path to blocking. If we find the block
2354 * we return zero and the path is unchanged.
2355 *
2356 * If we can't find the block, we set the path blocking and do some
2357 * reada. -EAGAIN is returned and the search must be repeated.
2358 */
2359static int
d07b8528
LB
2360read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2361 struct extent_buffer **eb_ret, int level, int slot,
cda79c54 2362 const struct btrfs_key *key)
c8c42864 2363{
0b246afa 2364 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864
CM
2365 u64 blocknr;
2366 u64 gen;
c8c42864 2367 struct extent_buffer *tmp;
581c1760 2368 struct btrfs_key first_key;
76a05b35 2369 int ret;
581c1760 2370 int parent_level;
c8c42864 2371
213ff4b7
NB
2372 blocknr = btrfs_node_blockptr(*eb_ret, slot);
2373 gen = btrfs_node_ptr_generation(*eb_ret, slot);
2374 parent_level = btrfs_header_level(*eb_ret);
2375 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
c8c42864 2376
0b246afa 2377 tmp = find_extent_buffer(fs_info, blocknr);
cb44921a 2378 if (tmp) {
b9fab919 2379 /* first we do an atomic uptodate check */
bdf7c00e 2380 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
448de471
QW
2381 /*
2382 * Do extra check for first_key, eb can be stale due to
2383 * being cached, read from scrub, or have multiple
2384 * parents (shared tree blocks).
2385 */
e064d5e9 2386 if (btrfs_verify_level_key(tmp,
448de471
QW
2387 parent_level - 1, &first_key, gen)) {
2388 free_extent_buffer(tmp);
2389 return -EUCLEAN;
2390 }
bdf7c00e
JB
2391 *eb_ret = tmp;
2392 return 0;
2393 }
2394
2395 /* the pages were up to date, but we failed
2396 * the generation number check. Do a full
2397 * read for the generation number that is correct.
2398 * We must do this without dropping locks so
2399 * we can trust our generation number
2400 */
2401 btrfs_set_path_blocking(p);
2402
2403 /* now we're allowed to do a blocking uptodate check */
581c1760 2404 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
bdf7c00e
JB
2405 if (!ret) {
2406 *eb_ret = tmp;
2407 return 0;
cb44921a 2408 }
bdf7c00e
JB
2409 free_extent_buffer(tmp);
2410 btrfs_release_path(p);
2411 return -EIO;
c8c42864
CM
2412 }
2413
2414 /*
2415 * reduce lock contention at high levels
2416 * of the btree by dropping locks before
76a05b35
CM
2417 * we read. Don't release the lock on the current
2418 * level because we need to walk this node to figure
2419 * out which blocks to read.
c8c42864 2420 */
8c594ea8
CM
2421 btrfs_unlock_up_safe(p, level + 1);
2422 btrfs_set_path_blocking(p);
2423
e4058b54 2424 if (p->reada != READA_NONE)
2ff7e61e 2425 reada_for_search(fs_info, p, level, slot, key->objectid);
c8c42864 2426
76a05b35 2427 ret = -EAGAIN;
02a3307a 2428 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
581c1760 2429 &first_key);
64c043de 2430 if (!IS_ERR(tmp)) {
76a05b35
CM
2431 /*
2432 * If the read above didn't mark this buffer up to date,
2433 * it will never end up being up to date. Set ret to EIO now
2434 * and give up so that our caller doesn't loop forever
2435 * on our EAGAINs.
2436 */
e6a1d6fd 2437 if (!extent_buffer_uptodate(tmp))
76a05b35 2438 ret = -EIO;
c8c42864 2439 free_extent_buffer(tmp);
c871b0f2
LB
2440 } else {
2441 ret = PTR_ERR(tmp);
76a05b35 2442 }
02a3307a
LB
2443
2444 btrfs_release_path(p);
76a05b35 2445 return ret;
c8c42864
CM
2446}
2447
2448/*
2449 * helper function for btrfs_search_slot. This does all of the checks
2450 * for node-level blocks and does any balancing required based on
2451 * the ins_len.
2452 *
2453 * If no extra work was required, zero is returned. If we had to
2454 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2455 * start over
2456 */
2457static int
2458setup_nodes_for_search(struct btrfs_trans_handle *trans,
2459 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2460 struct extent_buffer *b, int level, int ins_len,
2461 int *write_lock_level)
c8c42864 2462{
0b246afa 2463 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864 2464 int ret;
0b246afa 2465
c8c42864 2466 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
0b246afa 2467 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
c8c42864
CM
2468 int sret;
2469
bd681513
CM
2470 if (*write_lock_level < level + 1) {
2471 *write_lock_level = level + 1;
2472 btrfs_release_path(p);
2473 goto again;
2474 }
2475
c8c42864 2476 btrfs_set_path_blocking(p);
2ff7e61e 2477 reada_for_balance(fs_info, p, level);
c8c42864 2478 sret = split_node(trans, root, p, level);
c8c42864
CM
2479
2480 BUG_ON(sret > 0);
2481 if (sret) {
2482 ret = sret;
2483 goto done;
2484 }
2485 b = p->nodes[level];
2486 } else if (ins_len < 0 && btrfs_header_nritems(b) <
0b246afa 2487 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
c8c42864
CM
2488 int sret;
2489
bd681513
CM
2490 if (*write_lock_level < level + 1) {
2491 *write_lock_level = level + 1;
2492 btrfs_release_path(p);
2493 goto again;
2494 }
2495
c8c42864 2496 btrfs_set_path_blocking(p);
2ff7e61e 2497 reada_for_balance(fs_info, p, level);
c8c42864 2498 sret = balance_level(trans, root, p, level);
c8c42864
CM
2499
2500 if (sret) {
2501 ret = sret;
2502 goto done;
2503 }
2504 b = p->nodes[level];
2505 if (!b) {
b3b4aa74 2506 btrfs_release_path(p);
c8c42864
CM
2507 goto again;
2508 }
2509 BUG_ON(btrfs_header_nritems(b) == 1);
2510 }
2511 return 0;
2512
2513again:
2514 ret = -EAGAIN;
2515done:
2516 return ret;
2517}
2518
381cf658 2519int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2520 u64 iobjectid, u64 ioff, u8 key_type,
2521 struct btrfs_key *found_key)
2522{
2523 int ret;
2524 struct btrfs_key key;
2525 struct extent_buffer *eb;
381cf658
DS
2526
2527 ASSERT(path);
1d4c08e0 2528 ASSERT(found_key);
e33d5c3d
KN
2529
2530 key.type = key_type;
2531 key.objectid = iobjectid;
2532 key.offset = ioff;
2533
2534 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2535 if (ret < 0)
e33d5c3d
KN
2536 return ret;
2537
2538 eb = path->nodes[0];
2539 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2540 ret = btrfs_next_leaf(fs_root, path);
2541 if (ret)
2542 return ret;
2543 eb = path->nodes[0];
2544 }
2545
2546 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2547 if (found_key->type != key.type ||
2548 found_key->objectid != key.objectid)
2549 return 1;
2550
2551 return 0;
2552}
2553
1fc28d8e
LB
2554static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2555 struct btrfs_path *p,
2556 int write_lock_level)
2557{
2558 struct btrfs_fs_info *fs_info = root->fs_info;
2559 struct extent_buffer *b;
2560 int root_lock;
2561 int level = 0;
2562
2563 /* We try very hard to do read locks on the root */
2564 root_lock = BTRFS_READ_LOCK;
2565
2566 if (p->search_commit_root) {
be6821f8
FM
2567 /*
2568 * The commit roots are read only so we always do read locks,
2569 * and we always must hold the commit_root_sem when doing
2570 * searches on them, the only exception is send where we don't
2571 * want to block transaction commits for a long time, so
2572 * we need to clone the commit root in order to avoid races
2573 * with transaction commits that create a snapshot of one of
2574 * the roots used by a send operation.
2575 */
2576 if (p->need_commit_sem) {
1fc28d8e 2577 down_read(&fs_info->commit_root_sem);
be6821f8 2578 b = btrfs_clone_extent_buffer(root->commit_root);
1fc28d8e 2579 up_read(&fs_info->commit_root_sem);
be6821f8
FM
2580 if (!b)
2581 return ERR_PTR(-ENOMEM);
2582
2583 } else {
2584 b = root->commit_root;
67439dad 2585 atomic_inc(&b->refs);
be6821f8
FM
2586 }
2587 level = btrfs_header_level(b);
f9ddfd05
LB
2588 /*
2589 * Ensure that all callers have set skip_locking when
2590 * p->search_commit_root = 1.
2591 */
2592 ASSERT(p->skip_locking == 1);
1fc28d8e
LB
2593
2594 goto out;
2595 }
2596
2597 if (p->skip_locking) {
2598 b = btrfs_root_node(root);
2599 level = btrfs_header_level(b);
2600 goto out;
2601 }
2602
2603 /*
662c653b
LB
2604 * If the level is set to maximum, we can skip trying to get the read
2605 * lock.
1fc28d8e 2606 */
662c653b
LB
2607 if (write_lock_level < BTRFS_MAX_LEVEL) {
2608 /*
2609 * We don't know the level of the root node until we actually
2610 * have it read locked
2611 */
51899412 2612 b = __btrfs_read_lock_root_node(root, p->recurse);
662c653b
LB
2613 level = btrfs_header_level(b);
2614 if (level > write_lock_level)
2615 goto out;
2616
2617 /* Whoops, must trade for write lock */
2618 btrfs_tree_read_unlock(b);
2619 free_extent_buffer(b);
2620 }
1fc28d8e 2621
1fc28d8e
LB
2622 b = btrfs_lock_root_node(root);
2623 root_lock = BTRFS_WRITE_LOCK;
2624
2625 /* The level might have changed, check again */
2626 level = btrfs_header_level(b);
2627
2628out:
2629 p->nodes[level] = b;
2630 if (!p->skip_locking)
2631 p->locks[level] = root_lock;
2632 /*
2633 * Callers are responsible for dropping b's references.
2634 */
2635 return b;
2636}
2637
2638
74123bd7 2639/*
4271ecea
NB
2640 * btrfs_search_slot - look for a key in a tree and perform necessary
2641 * modifications to preserve tree invariants.
74123bd7 2642 *
4271ecea
NB
2643 * @trans: Handle of transaction, used when modifying the tree
2644 * @p: Holds all btree nodes along the search path
2645 * @root: The root node of the tree
2646 * @key: The key we are looking for
2647 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2648 * deletions it's -1. 0 for plain searches
2649 * @cow: boolean should CoW operations be performed. Must always be 1
2650 * when modifying the tree.
97571fd0 2651 *
4271ecea
NB
2652 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2653 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2654 *
2655 * If @key is found, 0 is returned and you can find the item in the leaf level
2656 * of the path (level 0)
2657 *
2658 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2659 * points to the slot where it should be inserted
2660 *
2661 * If an error is encountered while searching the tree a negative error number
2662 * is returned
74123bd7 2663 */
310712b2
OS
2664int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2665 const struct btrfs_key *key, struct btrfs_path *p,
2666 int ins_len, int cow)
be0e5c09 2667{
5f39d397 2668 struct extent_buffer *b;
be0e5c09
CM
2669 int slot;
2670 int ret;
33c66f43 2671 int err;
be0e5c09 2672 int level;
925baedd 2673 int lowest_unlock = 1;
bd681513
CM
2674 /* everything at write_lock_level or lower must be write locked */
2675 int write_lock_level = 0;
9f3a7427 2676 u8 lowest_level = 0;
f7c79f30 2677 int min_write_lock_level;
d7396f07 2678 int prev_cmp;
9f3a7427 2679
6702ed49 2680 lowest_level = p->lowest_level;
323ac95b 2681 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2682 WARN_ON(p->nodes[0] != NULL);
eb653de1 2683 BUG_ON(!cow && ins_len);
25179201 2684
bd681513 2685 if (ins_len < 0) {
925baedd 2686 lowest_unlock = 2;
65b51a00 2687
bd681513
CM
2688 /* when we are removing items, we might have to go up to level
2689 * two as we update tree pointers Make sure we keep write
2690 * for those levels as well
2691 */
2692 write_lock_level = 2;
2693 } else if (ins_len > 0) {
2694 /*
2695 * for inserting items, make sure we have a write lock on
2696 * level 1 so we can update keys
2697 */
2698 write_lock_level = 1;
2699 }
2700
2701 if (!cow)
2702 write_lock_level = -1;
2703
09a2a8f9 2704 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2705 write_lock_level = BTRFS_MAX_LEVEL;
2706
f7c79f30
CM
2707 min_write_lock_level = write_lock_level;
2708
bb803951 2709again:
d7396f07 2710 prev_cmp = -1;
1fc28d8e 2711 b = btrfs_search_slot_get_root(root, p, write_lock_level);
be6821f8
FM
2712 if (IS_ERR(b)) {
2713 ret = PTR_ERR(b);
2714 goto done;
2715 }
925baedd 2716
eb60ceac 2717 while (b) {
f624d976
QW
2718 int dec = 0;
2719
5f39d397 2720 level = btrfs_header_level(b);
65b51a00 2721
02217ed2 2722 if (cow) {
9ea2c7c9
NB
2723 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2724
c8c42864
CM
2725 /*
2726 * if we don't really need to cow this block
2727 * then we don't want to set the path blocking,
2728 * so we test it here
2729 */
64c12921
JM
2730 if (!should_cow_block(trans, root, b)) {
2731 trans->dirty = true;
65b51a00 2732 goto cow_done;
64c12921 2733 }
5d4f98a2 2734
bd681513
CM
2735 /*
2736 * must have write locks on this node and the
2737 * parent
2738 */
5124e00e
JB
2739 if (level > write_lock_level ||
2740 (level + 1 > write_lock_level &&
2741 level + 1 < BTRFS_MAX_LEVEL &&
2742 p->nodes[level + 1])) {
bd681513
CM
2743 write_lock_level = level + 1;
2744 btrfs_release_path(p);
2745 goto again;
2746 }
2747
160f4089 2748 btrfs_set_path_blocking(p);
9ea2c7c9
NB
2749 if (last_level)
2750 err = btrfs_cow_block(trans, root, b, NULL, 0,
9631e4cc
JB
2751 &b,
2752 BTRFS_NESTING_COW);
9ea2c7c9
NB
2753 else
2754 err = btrfs_cow_block(trans, root, b,
2755 p->nodes[level + 1],
9631e4cc
JB
2756 p->slots[level + 1], &b,
2757 BTRFS_NESTING_COW);
33c66f43 2758 if (err) {
33c66f43 2759 ret = err;
65b51a00 2760 goto done;
54aa1f4d 2761 }
02217ed2 2762 }
65b51a00 2763cow_done:
eb60ceac 2764 p->nodes[level] = b;
52398340
LB
2765 /*
2766 * Leave path with blocking locks to avoid massive
2767 * lock context switch, this is made on purpose.
2768 */
b4ce94de
CM
2769
2770 /*
2771 * we have a lock on b and as long as we aren't changing
2772 * the tree, there is no way to for the items in b to change.
2773 * It is safe to drop the lock on our parent before we
2774 * go through the expensive btree search on b.
2775 *
eb653de1
FDBM
2776 * If we're inserting or deleting (ins_len != 0), then we might
2777 * be changing slot zero, which may require changing the parent.
2778 * So, we can't drop the lock until after we know which slot
2779 * we're operating on.
b4ce94de 2780 */
eb653de1
FDBM
2781 if (!ins_len && !p->keep_locks) {
2782 int u = level + 1;
2783
2784 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2785 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2786 p->locks[u] = 0;
2787 }
2788 }
b4ce94de 2789
995e9a16
NB
2790 /*
2791 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
2792 * we can safely assume the target key will always be in slot 0
2793 * on lower levels due to the invariants BTRFS' btree provides,
2794 * namely that a btrfs_key_ptr entry always points to the
2795 * lowest key in the child node, thus we can skip searching
2796 * lower levels
2797 */
2798 if (prev_cmp == 0) {
2799 slot = 0;
2800 ret = 0;
2801 } else {
2802 ret = btrfs_bin_search(b, key, &slot);
2803 prev_cmp = ret;
2804 if (ret < 0)
2805 goto done;
2806 }
b4ce94de 2807
f624d976 2808 if (level == 0) {
be0e5c09 2809 p->slots[level] = slot;
87b29b20 2810 if (ins_len > 0 &&
e902baac 2811 btrfs_leaf_free_space(b) < ins_len) {
bd681513
CM
2812 if (write_lock_level < 1) {
2813 write_lock_level = 1;
2814 btrfs_release_path(p);
2815 goto again;
2816 }
2817
b4ce94de 2818 btrfs_set_path_blocking(p);
33c66f43
YZ
2819 err = split_leaf(trans, root, key,
2820 p, ins_len, ret == 0);
b4ce94de 2821
33c66f43
YZ
2822 BUG_ON(err > 0);
2823 if (err) {
2824 ret = err;
65b51a00
CM
2825 goto done;
2826 }
5c680ed6 2827 }
459931ec 2828 if (!p->search_for_split)
f7c79f30 2829 unlock_up(p, level, lowest_unlock,
4b6f8e96 2830 min_write_lock_level, NULL);
65b51a00 2831 goto done;
be0e5c09 2832 }
f624d976
QW
2833 if (ret && slot > 0) {
2834 dec = 1;
2835 slot--;
2836 }
2837 p->slots[level] = slot;
2838 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2839 &write_lock_level);
2840 if (err == -EAGAIN)
2841 goto again;
2842 if (err) {
2843 ret = err;
2844 goto done;
2845 }
2846 b = p->nodes[level];
2847 slot = p->slots[level];
2848
2849 /*
2850 * Slot 0 is special, if we change the key we have to update
2851 * the parent pointer which means we must have a write lock on
2852 * the parent
2853 */
2854 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2855 write_lock_level = level + 1;
2856 btrfs_release_path(p);
2857 goto again;
2858 }
2859
2860 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2861 &write_lock_level);
2862
2863 if (level == lowest_level) {
2864 if (dec)
2865 p->slots[level]++;
2866 goto done;
2867 }
2868
2869 err = read_block_for_search(root, p, &b, level, slot, key);
2870 if (err == -EAGAIN)
2871 goto again;
2872 if (err) {
2873 ret = err;
2874 goto done;
2875 }
2876
2877 if (!p->skip_locking) {
2878 level = btrfs_header_level(b);
2879 if (level <= write_lock_level) {
2880 if (!btrfs_try_tree_write_lock(b)) {
2881 btrfs_set_path_blocking(p);
2882 btrfs_tree_lock(b);
2883 }
2884 p->locks[level] = BTRFS_WRITE_LOCK;
2885 } else {
2886 if (!btrfs_tree_read_lock_atomic(b)) {
2887 btrfs_set_path_blocking(p);
fd7ba1c1
JB
2888 __btrfs_tree_read_lock(b, BTRFS_NESTING_NORMAL,
2889 p->recurse);
f624d976
QW
2890 }
2891 p->locks[level] = BTRFS_READ_LOCK;
2892 }
2893 p->nodes[level] = b;
2894 }
be0e5c09 2895 }
65b51a00
CM
2896 ret = 1;
2897done:
b4ce94de
CM
2898 /*
2899 * we don't really know what they plan on doing with the path
2900 * from here on, so for now just mark it as blocking
2901 */
b9473439
CM
2902 if (!p->leave_spinning)
2903 btrfs_set_path_blocking(p);
5f5bc6b1 2904 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2905 btrfs_release_path(p);
65b51a00 2906 return ret;
be0e5c09
CM
2907}
2908
5d9e75c4
JS
2909/*
2910 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2911 * current state of the tree together with the operations recorded in the tree
2912 * modification log to search for the key in a previous version of this tree, as
2913 * denoted by the time_seq parameter.
2914 *
2915 * Naturally, there is no support for insert, delete or cow operations.
2916 *
2917 * The resulting path and return value will be set up as if we called
2918 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2919 */
310712b2 2920int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
5d9e75c4
JS
2921 struct btrfs_path *p, u64 time_seq)
2922{
0b246afa 2923 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4
JS
2924 struct extent_buffer *b;
2925 int slot;
2926 int ret;
2927 int err;
2928 int level;
2929 int lowest_unlock = 1;
2930 u8 lowest_level = 0;
2931
2932 lowest_level = p->lowest_level;
2933 WARN_ON(p->nodes[0] != NULL);
2934
2935 if (p->search_commit_root) {
2936 BUG_ON(time_seq);
2937 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2938 }
2939
2940again:
5d9e75c4 2941 b = get_old_root(root, time_seq);
315bed43
NB
2942 if (!b) {
2943 ret = -EIO;
2944 goto done;
2945 }
5d9e75c4 2946 level = btrfs_header_level(b);
5d9e75c4
JS
2947 p->locks[level] = BTRFS_READ_LOCK;
2948
2949 while (b) {
abe9339d
QW
2950 int dec = 0;
2951
5d9e75c4
JS
2952 level = btrfs_header_level(b);
2953 p->nodes[level] = b;
5d9e75c4
JS
2954
2955 /*
2956 * we have a lock on b and as long as we aren't changing
2957 * the tree, there is no way to for the items in b to change.
2958 * It is safe to drop the lock on our parent before we
2959 * go through the expensive btree search on b.
2960 */
2961 btrfs_unlock_up_safe(p, level + 1);
2962
995e9a16 2963 ret = btrfs_bin_search(b, key, &slot);
cbca7d59
FM
2964 if (ret < 0)
2965 goto done;
5d9e75c4 2966
abe9339d 2967 if (level == 0) {
5d9e75c4
JS
2968 p->slots[level] = slot;
2969 unlock_up(p, level, lowest_unlock, 0, NULL);
abe9339d
QW
2970 goto done;
2971 }
5d9e75c4 2972
abe9339d
QW
2973 if (ret && slot > 0) {
2974 dec = 1;
2975 slot--;
2976 }
2977 p->slots[level] = slot;
2978 unlock_up(p, level, lowest_unlock, 0, NULL);
5d9e75c4 2979
abe9339d
QW
2980 if (level == lowest_level) {
2981 if (dec)
2982 p->slots[level]++;
2983 goto done;
2984 }
5d9e75c4 2985
abe9339d
QW
2986 err = read_block_for_search(root, p, &b, level, slot, key);
2987 if (err == -EAGAIN)
2988 goto again;
2989 if (err) {
2990 ret = err;
5d9e75c4
JS
2991 goto done;
2992 }
abe9339d
QW
2993
2994 level = btrfs_header_level(b);
2995 if (!btrfs_tree_read_lock_atomic(b)) {
2996 btrfs_set_path_blocking(p);
2997 btrfs_tree_read_lock(b);
2998 }
2999 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3000 if (!b) {
3001 ret = -ENOMEM;
3002 goto done;
3003 }
3004 p->locks[level] = BTRFS_READ_LOCK;
3005 p->nodes[level] = b;
5d9e75c4
JS
3006 }
3007 ret = 1;
3008done:
3009 if (!p->leave_spinning)
3010 btrfs_set_path_blocking(p);
3011 if (ret < 0)
3012 btrfs_release_path(p);
3013
3014 return ret;
3015}
3016
2f38b3e1
AJ
3017/*
3018 * helper to use instead of search slot if no exact match is needed but
3019 * instead the next or previous item should be returned.
3020 * When find_higher is true, the next higher item is returned, the next lower
3021 * otherwise.
3022 * When return_any and find_higher are both true, and no higher item is found,
3023 * return the next lower instead.
3024 * When return_any is true and find_higher is false, and no lower item is found,
3025 * return the next higher instead.
3026 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3027 * < 0 on error
3028 */
3029int btrfs_search_slot_for_read(struct btrfs_root *root,
310712b2
OS
3030 const struct btrfs_key *key,
3031 struct btrfs_path *p, int find_higher,
3032 int return_any)
2f38b3e1
AJ
3033{
3034 int ret;
3035 struct extent_buffer *leaf;
3036
3037again:
3038 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3039 if (ret <= 0)
3040 return ret;
3041 /*
3042 * a return value of 1 means the path is at the position where the
3043 * item should be inserted. Normally this is the next bigger item,
3044 * but in case the previous item is the last in a leaf, path points
3045 * to the first free slot in the previous leaf, i.e. at an invalid
3046 * item.
3047 */
3048 leaf = p->nodes[0];
3049
3050 if (find_higher) {
3051 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3052 ret = btrfs_next_leaf(root, p);
3053 if (ret <= 0)
3054 return ret;
3055 if (!return_any)
3056 return 1;
3057 /*
3058 * no higher item found, return the next
3059 * lower instead
3060 */
3061 return_any = 0;
3062 find_higher = 0;
3063 btrfs_release_path(p);
3064 goto again;
3065 }
3066 } else {
e6793769
AJ
3067 if (p->slots[0] == 0) {
3068 ret = btrfs_prev_leaf(root, p);
3069 if (ret < 0)
3070 return ret;
3071 if (!ret) {
23c6bf6a
FDBM
3072 leaf = p->nodes[0];
3073 if (p->slots[0] == btrfs_header_nritems(leaf))
3074 p->slots[0]--;
e6793769 3075 return 0;
2f38b3e1 3076 }
e6793769
AJ
3077 if (!return_any)
3078 return 1;
3079 /*
3080 * no lower item found, return the next
3081 * higher instead
3082 */
3083 return_any = 0;
3084 find_higher = 1;
3085 btrfs_release_path(p);
3086 goto again;
3087 } else {
2f38b3e1
AJ
3088 --p->slots[0];
3089 }
3090 }
3091 return 0;
3092}
3093
74123bd7
CM
3094/*
3095 * adjust the pointers going up the tree, starting at level
3096 * making sure the right key of each node is points to 'key'.
3097 * This is used after shifting pointers to the left, so it stops
3098 * fixing up pointers when a given leaf/node is not in slot 0 of the
3099 * higher levels
aa5d6bed 3100 *
74123bd7 3101 */
b167fa91 3102static void fixup_low_keys(struct btrfs_path *path,
143bede5 3103 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3104{
3105 int i;
5f39d397 3106 struct extent_buffer *t;
0e82bcfe 3107 int ret;
5f39d397 3108
234b63a0 3109 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3110 int tslot = path->slots[i];
0e82bcfe 3111
eb60ceac 3112 if (!path->nodes[i])
be0e5c09 3113 break;
5f39d397 3114 t = path->nodes[i];
0e82bcfe
DS
3115 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3116 GFP_ATOMIC);
3117 BUG_ON(ret < 0);
5f39d397 3118 btrfs_set_node_key(t, key, tslot);
d6025579 3119 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3120 if (tslot != 0)
3121 break;
3122 }
3123}
3124
31840ae1
ZY
3125/*
3126 * update item key.
3127 *
3128 * This function isn't completely safe. It's the caller's responsibility
3129 * that the new key won't break the order
3130 */
b7a0365e
DD
3131void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3132 struct btrfs_path *path,
310712b2 3133 const struct btrfs_key *new_key)
31840ae1
ZY
3134{
3135 struct btrfs_disk_key disk_key;
3136 struct extent_buffer *eb;
3137 int slot;
3138
3139 eb = path->nodes[0];
3140 slot = path->slots[0];
3141 if (slot > 0) {
3142 btrfs_item_key(eb, &disk_key, slot - 1);
7c15d410
QW
3143 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3144 btrfs_crit(fs_info,
3145 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3146 slot, btrfs_disk_key_objectid(&disk_key),
3147 btrfs_disk_key_type(&disk_key),
3148 btrfs_disk_key_offset(&disk_key),
3149 new_key->objectid, new_key->type,
3150 new_key->offset);
3151 btrfs_print_leaf(eb);
3152 BUG();
3153 }
31840ae1
ZY
3154 }
3155 if (slot < btrfs_header_nritems(eb) - 1) {
3156 btrfs_item_key(eb, &disk_key, slot + 1);
7c15d410
QW
3157 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3158 btrfs_crit(fs_info,
3159 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3160 slot, btrfs_disk_key_objectid(&disk_key),
3161 btrfs_disk_key_type(&disk_key),
3162 btrfs_disk_key_offset(&disk_key),
3163 new_key->objectid, new_key->type,
3164 new_key->offset);
3165 btrfs_print_leaf(eb);
3166 BUG();
3167 }
31840ae1
ZY
3168 }
3169
3170 btrfs_cpu_key_to_disk(&disk_key, new_key);
3171 btrfs_set_item_key(eb, &disk_key, slot);
3172 btrfs_mark_buffer_dirty(eb);
3173 if (slot == 0)
b167fa91 3174 fixup_low_keys(path, &disk_key, 1);
31840ae1
ZY
3175}
3176
d16c702f
QW
3177/*
3178 * Check key order of two sibling extent buffers.
3179 *
3180 * Return true if something is wrong.
3181 * Return false if everything is fine.
3182 *
3183 * Tree-checker only works inside one tree block, thus the following
3184 * corruption can not be detected by tree-checker:
3185 *
3186 * Leaf @left | Leaf @right
3187 * --------------------------------------------------------------
3188 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
3189 *
3190 * Key f6 in leaf @left itself is valid, but not valid when the next
3191 * key in leaf @right is 7.
3192 * This can only be checked at tree block merge time.
3193 * And since tree checker has ensured all key order in each tree block
3194 * is correct, we only need to bother the last key of @left and the first
3195 * key of @right.
3196 */
3197static bool check_sibling_keys(struct extent_buffer *left,
3198 struct extent_buffer *right)
3199{
3200 struct btrfs_key left_last;
3201 struct btrfs_key right_first;
3202 int level = btrfs_header_level(left);
3203 int nr_left = btrfs_header_nritems(left);
3204 int nr_right = btrfs_header_nritems(right);
3205
3206 /* No key to check in one of the tree blocks */
3207 if (!nr_left || !nr_right)
3208 return false;
3209
3210 if (level) {
3211 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
3212 btrfs_node_key_to_cpu(right, &right_first, 0);
3213 } else {
3214 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
3215 btrfs_item_key_to_cpu(right, &right_first, 0);
3216 }
3217
3218 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
3219 btrfs_crit(left->fs_info,
3220"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
3221 left_last.objectid, left_last.type,
3222 left_last.offset, right_first.objectid,
3223 right_first.type, right_first.offset);
3224 return true;
3225 }
3226 return false;
3227}
3228
74123bd7
CM
3229/*
3230 * try to push data from one node into the next node left in the
79f95c82 3231 * tree.
aa5d6bed
CM
3232 *
3233 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3234 * error, and > 0 if there was no room in the left hand block.
74123bd7 3235 */
98ed5174 3236static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e 3237 struct extent_buffer *dst,
971a1f66 3238 struct extent_buffer *src, int empty)
be0e5c09 3239{
d30a668f 3240 struct btrfs_fs_info *fs_info = trans->fs_info;
be0e5c09 3241 int push_items = 0;
bb803951
CM
3242 int src_nritems;
3243 int dst_nritems;
aa5d6bed 3244 int ret = 0;
be0e5c09 3245
5f39d397
CM
3246 src_nritems = btrfs_header_nritems(src);
3247 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3248 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
7bb86316
CM
3249 WARN_ON(btrfs_header_generation(src) != trans->transid);
3250 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3251
bce4eae9 3252 if (!empty && src_nritems <= 8)
971a1f66
CM
3253 return 1;
3254
d397712b 3255 if (push_items <= 0)
be0e5c09
CM
3256 return 1;
3257
bce4eae9 3258 if (empty) {
971a1f66 3259 push_items = min(src_nritems, push_items);
bce4eae9
CM
3260 if (push_items < src_nritems) {
3261 /* leave at least 8 pointers in the node if
3262 * we aren't going to empty it
3263 */
3264 if (src_nritems - push_items < 8) {
3265 if (push_items <= 8)
3266 return 1;
3267 push_items -= 8;
3268 }
3269 }
3270 } else
3271 push_items = min(src_nritems - 8, push_items);
79f95c82 3272
d16c702f
QW
3273 /* dst is the left eb, src is the middle eb */
3274 if (check_sibling_keys(dst, src)) {
3275 ret = -EUCLEAN;
3276 btrfs_abort_transaction(trans, ret);
3277 return ret;
3278 }
ed874f0d 3279 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
5de865ee 3280 if (ret) {
66642832 3281 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3282 return ret;
3283 }
5f39d397
CM
3284 copy_extent_buffer(dst, src,
3285 btrfs_node_key_ptr_offset(dst_nritems),
3286 btrfs_node_key_ptr_offset(0),
d397712b 3287 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3288
bb803951 3289 if (push_items < src_nritems) {
57911b8b 3290 /*
bf1d3425
DS
3291 * Don't call tree_mod_log_insert_move here, key removal was
3292 * already fully logged by tree_mod_log_eb_copy above.
57911b8b 3293 */
5f39d397
CM
3294 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3295 btrfs_node_key_ptr_offset(push_items),
3296 (src_nritems - push_items) *
3297 sizeof(struct btrfs_key_ptr));
3298 }
3299 btrfs_set_header_nritems(src, src_nritems - push_items);
3300 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3301 btrfs_mark_buffer_dirty(src);
3302 btrfs_mark_buffer_dirty(dst);
31840ae1 3303
79f95c82
CM
3304 return ret;
3305}
3306
3307/*
3308 * try to push data from one node into the next node right in the
3309 * tree.
3310 *
3311 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3312 * error, and > 0 if there was no room in the right hand block.
3313 *
3314 * this will only push up to 1/2 the contents of the left node over
3315 */
5f39d397 3316static int balance_node_right(struct btrfs_trans_handle *trans,
5f39d397
CM
3317 struct extent_buffer *dst,
3318 struct extent_buffer *src)
79f95c82 3319{
55d32ed8 3320 struct btrfs_fs_info *fs_info = trans->fs_info;
79f95c82
CM
3321 int push_items = 0;
3322 int max_push;
3323 int src_nritems;
3324 int dst_nritems;
3325 int ret = 0;
79f95c82 3326
7bb86316
CM
3327 WARN_ON(btrfs_header_generation(src) != trans->transid);
3328 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3329
5f39d397
CM
3330 src_nritems = btrfs_header_nritems(src);
3331 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3332 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
d397712b 3333 if (push_items <= 0)
79f95c82 3334 return 1;
bce4eae9 3335
d397712b 3336 if (src_nritems < 4)
bce4eae9 3337 return 1;
79f95c82
CM
3338
3339 max_push = src_nritems / 2 + 1;
3340 /* don't try to empty the node */
d397712b 3341 if (max_push >= src_nritems)
79f95c82 3342 return 1;
252c38f0 3343
79f95c82
CM
3344 if (max_push < push_items)
3345 push_items = max_push;
3346
d16c702f
QW
3347 /* dst is the right eb, src is the middle eb */
3348 if (check_sibling_keys(src, dst)) {
3349 ret = -EUCLEAN;
3350 btrfs_abort_transaction(trans, ret);
3351 return ret;
3352 }
bf1d3425
DS
3353 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3354 BUG_ON(ret < 0);
5f39d397
CM
3355 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3356 btrfs_node_key_ptr_offset(0),
3357 (dst_nritems) *
3358 sizeof(struct btrfs_key_ptr));
d6025579 3359
ed874f0d
DS
3360 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3361 push_items);
5de865ee 3362 if (ret) {
66642832 3363 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3364 return ret;
3365 }
5f39d397
CM
3366 copy_extent_buffer(dst, src,
3367 btrfs_node_key_ptr_offset(0),
3368 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3369 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3370
5f39d397
CM
3371 btrfs_set_header_nritems(src, src_nritems - push_items);
3372 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3373
5f39d397
CM
3374 btrfs_mark_buffer_dirty(src);
3375 btrfs_mark_buffer_dirty(dst);
31840ae1 3376
aa5d6bed 3377 return ret;
be0e5c09
CM
3378}
3379
97571fd0
CM
3380/*
3381 * helper function to insert a new root level in the tree.
3382 * A new node is allocated, and a single item is inserted to
3383 * point to the existing root
aa5d6bed
CM
3384 *
3385 * returns zero on success or < 0 on failure.
97571fd0 3386 */
d397712b 3387static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3388 struct btrfs_root *root,
fdd99c72 3389 struct btrfs_path *path, int level)
5c680ed6 3390{
0b246afa 3391 struct btrfs_fs_info *fs_info = root->fs_info;
7bb86316 3392 u64 lower_gen;
5f39d397
CM
3393 struct extent_buffer *lower;
3394 struct extent_buffer *c;
925baedd 3395 struct extent_buffer *old;
5f39d397 3396 struct btrfs_disk_key lower_key;
d9d19a01 3397 int ret;
5c680ed6
CM
3398
3399 BUG_ON(path->nodes[level]);
3400 BUG_ON(path->nodes[level-1] != root->node);
3401
7bb86316
CM
3402 lower = path->nodes[level-1];
3403 if (level == 1)
3404 btrfs_item_key(lower, &lower_key, 0);
3405 else
3406 btrfs_node_key(lower, &lower_key, 0);
3407
a6279470 3408 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
9631e4cc
JB
3409 root->node->start, 0,
3410 BTRFS_NESTING_NORMAL);
5f39d397
CM
3411 if (IS_ERR(c))
3412 return PTR_ERR(c);
925baedd 3413
0b246afa 3414 root_add_used(root, fs_info->nodesize);
f0486c68 3415
5f39d397 3416 btrfs_set_header_nritems(c, 1);
5f39d397 3417 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3418 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3419 lower_gen = btrfs_header_generation(lower);
31840ae1 3420 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3421
3422 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3423
5f39d397 3424 btrfs_mark_buffer_dirty(c);
d5719762 3425
925baedd 3426 old = root->node;
d9d19a01
DS
3427 ret = tree_mod_log_insert_root(root->node, c, 0);
3428 BUG_ON(ret < 0);
240f62c8 3429 rcu_assign_pointer(root->node, c);
925baedd
CM
3430
3431 /* the super has an extra ref to root->node */
3432 free_extent_buffer(old);
3433
0b86a832 3434 add_root_to_dirty_list(root);
67439dad 3435 atomic_inc(&c->refs);
5f39d397 3436 path->nodes[level] = c;
95449a16 3437 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3438 path->slots[level] = 0;
3439 return 0;
3440}
3441
74123bd7
CM
3442/*
3443 * worker function to insert a single pointer in a node.
3444 * the node should have enough room for the pointer already
97571fd0 3445 *
74123bd7
CM
3446 * slot and level indicate where you want the key to go, and
3447 * blocknr is the block the key points to.
3448 */
143bede5 3449static void insert_ptr(struct btrfs_trans_handle *trans,
6ad3cf6d 3450 struct btrfs_path *path,
143bede5 3451 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3452 int slot, int level)
74123bd7 3453{
5f39d397 3454 struct extent_buffer *lower;
74123bd7 3455 int nritems;
f3ea38da 3456 int ret;
5c680ed6
CM
3457
3458 BUG_ON(!path->nodes[level]);
f0486c68 3459 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3460 lower = path->nodes[level];
3461 nritems = btrfs_header_nritems(lower);
c293498b 3462 BUG_ON(slot > nritems);
6ad3cf6d 3463 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
74123bd7 3464 if (slot != nritems) {
bf1d3425
DS
3465 if (level) {
3466 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
a446a979 3467 nritems - slot);
bf1d3425
DS
3468 BUG_ON(ret < 0);
3469 }
5f39d397
CM
3470 memmove_extent_buffer(lower,
3471 btrfs_node_key_ptr_offset(slot + 1),
3472 btrfs_node_key_ptr_offset(slot),
d6025579 3473 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3474 }
c3e06965 3475 if (level) {
e09c2efe
DS
3476 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3477 GFP_NOFS);
f3ea38da
JS
3478 BUG_ON(ret < 0);
3479 }
5f39d397 3480 btrfs_set_node_key(lower, key, slot);
db94535d 3481 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3482 WARN_ON(trans->transid == 0);
3483 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3484 btrfs_set_header_nritems(lower, nritems + 1);
3485 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3486}
3487
97571fd0
CM
3488/*
3489 * split the node at the specified level in path in two.
3490 * The path is corrected to point to the appropriate node after the split
3491 *
3492 * Before splitting this tries to make some room in the node by pushing
3493 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3494 *
3495 * returns 0 on success and < 0 on failure
97571fd0 3496 */
e02119d5
CM
3497static noinline int split_node(struct btrfs_trans_handle *trans,
3498 struct btrfs_root *root,
3499 struct btrfs_path *path, int level)
be0e5c09 3500{
0b246afa 3501 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
3502 struct extent_buffer *c;
3503 struct extent_buffer *split;
3504 struct btrfs_disk_key disk_key;
be0e5c09 3505 int mid;
5c680ed6 3506 int ret;
7518a238 3507 u32 c_nritems;
eb60ceac 3508
5f39d397 3509 c = path->nodes[level];
7bb86316 3510 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3511 if (c == root->node) {
d9abbf1c 3512 /*
90f8d62e
JS
3513 * trying to split the root, lets make a new one
3514 *
fdd99c72 3515 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3516 * insert_new_root, because that root buffer will be kept as a
3517 * normal node. We are going to log removal of half of the
3518 * elements below with tree_mod_log_eb_copy. We're holding a
3519 * tree lock on the buffer, which is why we cannot race with
3520 * other tree_mod_log users.
d9abbf1c 3521 */
fdd99c72 3522 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3523 if (ret)
3524 return ret;
b3612421 3525 } else {
e66f709b 3526 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3527 c = path->nodes[level];
3528 if (!ret && btrfs_header_nritems(c) <
0b246afa 3529 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
e66f709b 3530 return 0;
54aa1f4d
CM
3531 if (ret < 0)
3532 return ret;
be0e5c09 3533 }
e66f709b 3534
5f39d397 3535 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3536 mid = (c_nritems + 1) / 2;
3537 btrfs_node_key(c, &disk_key, mid);
7bb86316 3538
a6279470 3539 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
9631e4cc 3540 c->start, 0, BTRFS_NESTING_NORMAL);
5f39d397
CM
3541 if (IS_ERR(split))
3542 return PTR_ERR(split);
3543
0b246afa 3544 root_add_used(root, fs_info->nodesize);
bc877d28 3545 ASSERT(btrfs_header_level(c) == level);
54aa1f4d 3546
ed874f0d 3547 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
5de865ee 3548 if (ret) {
66642832 3549 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3550 return ret;
3551 }
5f39d397
CM
3552 copy_extent_buffer(split, c,
3553 btrfs_node_key_ptr_offset(0),
3554 btrfs_node_key_ptr_offset(mid),
3555 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3556 btrfs_set_header_nritems(split, c_nritems - mid);
3557 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3558 ret = 0;
3559
5f39d397
CM
3560 btrfs_mark_buffer_dirty(c);
3561 btrfs_mark_buffer_dirty(split);
3562
6ad3cf6d 3563 insert_ptr(trans, path, &disk_key, split->start,
c3e06965 3564 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3565
5de08d7d 3566 if (path->slots[level] >= mid) {
5c680ed6 3567 path->slots[level] -= mid;
925baedd 3568 btrfs_tree_unlock(c);
5f39d397
CM
3569 free_extent_buffer(c);
3570 path->nodes[level] = split;
5c680ed6
CM
3571 path->slots[level + 1] += 1;
3572 } else {
925baedd 3573 btrfs_tree_unlock(split);
5f39d397 3574 free_extent_buffer(split);
be0e5c09 3575 }
aa5d6bed 3576 return ret;
be0e5c09
CM
3577}
3578
74123bd7
CM
3579/*
3580 * how many bytes are required to store the items in a leaf. start
3581 * and nr indicate which items in the leaf to check. This totals up the
3582 * space used both by the item structs and the item data
3583 */
5f39d397 3584static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3585{
41be1f3b
JB
3586 struct btrfs_item *start_item;
3587 struct btrfs_item *end_item;
be0e5c09 3588 int data_len;
5f39d397 3589 int nritems = btrfs_header_nritems(l);
d4dbff95 3590 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3591
3592 if (!nr)
3593 return 0;
dd3cc16b
RK
3594 start_item = btrfs_item_nr(start);
3595 end_item = btrfs_item_nr(end);
a31356b9
DS
3596 data_len = btrfs_item_offset(l, start_item) +
3597 btrfs_item_size(l, start_item);
3598 data_len = data_len - btrfs_item_offset(l, end_item);
0783fcfc 3599 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3600 WARN_ON(data_len < 0);
be0e5c09
CM
3601 return data_len;
3602}
3603
d4dbff95
CM
3604/*
3605 * The space between the end of the leaf items and
3606 * the start of the leaf data. IOW, how much room
3607 * the leaf has left for both items and data
3608 */
e902baac 3609noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
d4dbff95 3610{
e902baac 3611 struct btrfs_fs_info *fs_info = leaf->fs_info;
5f39d397
CM
3612 int nritems = btrfs_header_nritems(leaf);
3613 int ret;
0b246afa
JM
3614
3615 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
5f39d397 3616 if (ret < 0) {
0b246afa
JM
3617 btrfs_crit(fs_info,
3618 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3619 ret,
3620 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3621 leaf_space_used(leaf, 0, nritems), nritems);
5f39d397
CM
3622 }
3623 return ret;
d4dbff95
CM
3624}
3625
99d8f83c
CM
3626/*
3627 * min slot controls the lowest index we're willing to push to the
3628 * right. We'll push up to and including min_slot, but no lower
3629 */
f72f0010 3630static noinline int __push_leaf_right(struct btrfs_path *path,
44871b1b
CM
3631 int data_size, int empty,
3632 struct extent_buffer *right,
99d8f83c
CM
3633 int free_space, u32 left_nritems,
3634 u32 min_slot)
00ec4c51 3635{
f72f0010 3636 struct btrfs_fs_info *fs_info = right->fs_info;
5f39d397 3637 struct extent_buffer *left = path->nodes[0];
44871b1b 3638 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3639 struct btrfs_map_token token;
5f39d397 3640 struct btrfs_disk_key disk_key;
00ec4c51 3641 int slot;
34a38218 3642 u32 i;
00ec4c51
CM
3643 int push_space = 0;
3644 int push_items = 0;
0783fcfc 3645 struct btrfs_item *item;
34a38218 3646 u32 nr;
7518a238 3647 u32 right_nritems;
5f39d397 3648 u32 data_end;
db94535d 3649 u32 this_item_size;
00ec4c51 3650
34a38218
CM
3651 if (empty)
3652 nr = 0;
3653 else
99d8f83c 3654 nr = max_t(u32, 1, min_slot);
34a38218 3655
31840ae1 3656 if (path->slots[0] >= left_nritems)
87b29b20 3657 push_space += data_size;
31840ae1 3658
44871b1b 3659 slot = path->slots[1];
34a38218
CM
3660 i = left_nritems - 1;
3661 while (i >= nr) {
dd3cc16b 3662 item = btrfs_item_nr(i);
db94535d 3663
31840ae1
ZY
3664 if (!empty && push_items > 0) {
3665 if (path->slots[0] > i)
3666 break;
3667 if (path->slots[0] == i) {
e902baac
DS
3668 int space = btrfs_leaf_free_space(left);
3669
31840ae1
ZY
3670 if (space + push_space * 2 > free_space)
3671 break;
3672 }
3673 }
3674
00ec4c51 3675 if (path->slots[0] == i)
87b29b20 3676 push_space += data_size;
db94535d 3677
db94535d
CM
3678 this_item_size = btrfs_item_size(left, item);
3679 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3680 break;
31840ae1 3681
00ec4c51 3682 push_items++;
db94535d 3683 push_space += this_item_size + sizeof(*item);
34a38218
CM
3684 if (i == 0)
3685 break;
3686 i--;
db94535d 3687 }
5f39d397 3688
925baedd
CM
3689 if (push_items == 0)
3690 goto out_unlock;
5f39d397 3691
6c1500f2 3692 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3693
00ec4c51 3694 /* push left to right */
5f39d397 3695 right_nritems = btrfs_header_nritems(right);
34a38218 3696
5f39d397 3697 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
8f881e8c 3698 push_space -= leaf_data_end(left);
5f39d397 3699
00ec4c51 3700 /* make room in the right data area */
8f881e8c 3701 data_end = leaf_data_end(right);
5f39d397 3702 memmove_extent_buffer(right,
3d9ec8c4
NB
3703 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3704 BTRFS_LEAF_DATA_OFFSET + data_end,
0b246afa 3705 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
5f39d397 3706
00ec4c51 3707 /* copy from the left data area */
3d9ec8c4 3708 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3709 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
8f881e8c 3710 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
d6025579 3711 push_space);
5f39d397
CM
3712
3713 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3714 btrfs_item_nr_offset(0),
3715 right_nritems * sizeof(struct btrfs_item));
3716
00ec4c51 3717 /* copy the items from left to right */
5f39d397
CM
3718 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3719 btrfs_item_nr_offset(left_nritems - push_items),
3720 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3721
3722 /* update the item pointers */
c82f823c 3723 btrfs_init_map_token(&token, right);
7518a238 3724 right_nritems += push_items;
5f39d397 3725 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3726 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
7518a238 3727 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3728 item = btrfs_item_nr(i);
cc4c13d5
DS
3729 push_space -= btrfs_token_item_size(&token, item);
3730 btrfs_set_token_item_offset(&token, item, push_space);
db94535d
CM
3731 }
3732
7518a238 3733 left_nritems -= push_items;
5f39d397 3734 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3735
34a38218
CM
3736 if (left_nritems)
3737 btrfs_mark_buffer_dirty(left);
f0486c68 3738 else
6a884d7d 3739 btrfs_clean_tree_block(left);
f0486c68 3740
5f39d397 3741 btrfs_mark_buffer_dirty(right);
a429e513 3742
5f39d397
CM
3743 btrfs_item_key(right, &disk_key, 0);
3744 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3745 btrfs_mark_buffer_dirty(upper);
02217ed2 3746
00ec4c51 3747 /* then fixup the leaf pointer in the path */
7518a238
CM
3748 if (path->slots[0] >= left_nritems) {
3749 path->slots[0] -= left_nritems;
925baedd 3750 if (btrfs_header_nritems(path->nodes[0]) == 0)
6a884d7d 3751 btrfs_clean_tree_block(path->nodes[0]);
925baedd 3752 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3753 free_extent_buffer(path->nodes[0]);
3754 path->nodes[0] = right;
00ec4c51
CM
3755 path->slots[1] += 1;
3756 } else {
925baedd 3757 btrfs_tree_unlock(right);
5f39d397 3758 free_extent_buffer(right);
00ec4c51
CM
3759 }
3760 return 0;
925baedd
CM
3761
3762out_unlock:
3763 btrfs_tree_unlock(right);
3764 free_extent_buffer(right);
3765 return 1;
00ec4c51 3766}
925baedd 3767
44871b1b
CM
3768/*
3769 * push some data in the path leaf to the right, trying to free up at
3770 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3771 *
3772 * returns 1 if the push failed because the other node didn't have enough
3773 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3774 *
3775 * this will push starting from min_slot to the end of the leaf. It won't
3776 * push any slot lower than min_slot
44871b1b
CM
3777 */
3778static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3779 *root, struct btrfs_path *path,
3780 int min_data_size, int data_size,
3781 int empty, u32 min_slot)
44871b1b
CM
3782{
3783 struct extent_buffer *left = path->nodes[0];
3784 struct extent_buffer *right;
3785 struct extent_buffer *upper;
3786 int slot;
3787 int free_space;
3788 u32 left_nritems;
3789 int ret;
3790
3791 if (!path->nodes[1])
3792 return 1;
3793
3794 slot = path->slots[1];
3795 upper = path->nodes[1];
3796 if (slot >= btrfs_header_nritems(upper) - 1)
3797 return 1;
3798
3799 btrfs_assert_tree_locked(path->nodes[1]);
3800
4b231ae4 3801 right = btrfs_read_node_slot(upper, slot + 1);
fb770ae4
LB
3802 /*
3803 * slot + 1 is not valid or we fail to read the right node,
3804 * no big deal, just return.
3805 */
3806 if (IS_ERR(right))
91ca338d
TI
3807 return 1;
3808
44871b1b 3809 btrfs_tree_lock(right);
8bead258 3810 btrfs_set_lock_blocking_write(right);
44871b1b 3811
e902baac 3812 free_space = btrfs_leaf_free_space(right);
44871b1b
CM
3813 if (free_space < data_size)
3814 goto out_unlock;
3815
3816 /* cow and double check */
3817 ret = btrfs_cow_block(trans, root, right, upper,
9631e4cc 3818 slot + 1, &right, BTRFS_NESTING_COW);
44871b1b
CM
3819 if (ret)
3820 goto out_unlock;
3821
e902baac 3822 free_space = btrfs_leaf_free_space(right);
44871b1b
CM
3823 if (free_space < data_size)
3824 goto out_unlock;
3825
3826 left_nritems = btrfs_header_nritems(left);
3827 if (left_nritems == 0)
3828 goto out_unlock;
3829
d16c702f
QW
3830 if (check_sibling_keys(left, right)) {
3831 ret = -EUCLEAN;
3832 btrfs_tree_unlock(right);
3833 free_extent_buffer(right);
3834 return ret;
3835 }
2ef1fed2
FDBM
3836 if (path->slots[0] == left_nritems && !empty) {
3837 /* Key greater than all keys in the leaf, right neighbor has
3838 * enough room for it and we're not emptying our leaf to delete
3839 * it, therefore use right neighbor to insert the new item and
52042d8e 3840 * no need to touch/dirty our left leaf. */
2ef1fed2
FDBM
3841 btrfs_tree_unlock(left);
3842 free_extent_buffer(left);
3843 path->nodes[0] = right;
3844 path->slots[0] = 0;
3845 path->slots[1]++;
3846 return 0;
3847 }
3848
f72f0010 3849 return __push_leaf_right(path, min_data_size, empty,
99d8f83c 3850 right, free_space, left_nritems, min_slot);
44871b1b
CM
3851out_unlock:
3852 btrfs_tree_unlock(right);
3853 free_extent_buffer(right);
3854 return 1;
3855}
3856
74123bd7
CM
3857/*
3858 * push some data in the path leaf to the left, trying to free up at
3859 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3860 *
3861 * max_slot can put a limit on how far into the leaf we'll push items. The
3862 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3863 * items
74123bd7 3864 */
8087c193 3865static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
44871b1b 3866 int empty, struct extent_buffer *left,
99d8f83c
CM
3867 int free_space, u32 right_nritems,
3868 u32 max_slot)
be0e5c09 3869{
8087c193 3870 struct btrfs_fs_info *fs_info = left->fs_info;
5f39d397
CM
3871 struct btrfs_disk_key disk_key;
3872 struct extent_buffer *right = path->nodes[0];
be0e5c09 3873 int i;
be0e5c09
CM
3874 int push_space = 0;
3875 int push_items = 0;
0783fcfc 3876 struct btrfs_item *item;
7518a238 3877 u32 old_left_nritems;
34a38218 3878 u32 nr;
aa5d6bed 3879 int ret = 0;
db94535d
CM
3880 u32 this_item_size;
3881 u32 old_left_item_size;
cfed81a0
CM
3882 struct btrfs_map_token token;
3883
34a38218 3884 if (empty)
99d8f83c 3885 nr = min(right_nritems, max_slot);
34a38218 3886 else
99d8f83c 3887 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3888
3889 for (i = 0; i < nr; i++) {
dd3cc16b 3890 item = btrfs_item_nr(i);
db94535d 3891
31840ae1
ZY
3892 if (!empty && push_items > 0) {
3893 if (path->slots[0] < i)
3894 break;
3895 if (path->slots[0] == i) {
e902baac
DS
3896 int space = btrfs_leaf_free_space(right);
3897
31840ae1
ZY
3898 if (space + push_space * 2 > free_space)
3899 break;
3900 }
3901 }
3902
be0e5c09 3903 if (path->slots[0] == i)
87b29b20 3904 push_space += data_size;
db94535d
CM
3905
3906 this_item_size = btrfs_item_size(right, item);
3907 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3908 break;
db94535d 3909
be0e5c09 3910 push_items++;
db94535d
CM
3911 push_space += this_item_size + sizeof(*item);
3912 }
3913
be0e5c09 3914 if (push_items == 0) {
925baedd
CM
3915 ret = 1;
3916 goto out;
be0e5c09 3917 }
fae7f21c 3918 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3919
be0e5c09 3920 /* push data from right to left */
5f39d397
CM
3921 copy_extent_buffer(left, right,
3922 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3923 btrfs_item_nr_offset(0),
3924 push_items * sizeof(struct btrfs_item));
3925
0b246afa 3926 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
d397712b 3927 btrfs_item_offset_nr(right, push_items - 1);
5f39d397 3928
3d9ec8c4 3929 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
8f881e8c 3930 leaf_data_end(left) - push_space,
3d9ec8c4 3931 BTRFS_LEAF_DATA_OFFSET +
5f39d397 3932 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3933 push_space);
5f39d397 3934 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3935 BUG_ON(old_left_nritems <= 0);
eb60ceac 3936
c82f823c 3937 btrfs_init_map_token(&token, left);
db94535d 3938 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3939 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3940 u32 ioff;
db94535d 3941
dd3cc16b 3942 item = btrfs_item_nr(i);
db94535d 3943
cc4c13d5
DS
3944 ioff = btrfs_token_item_offset(&token, item);
3945 btrfs_set_token_item_offset(&token, item,
3946 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
be0e5c09 3947 }
5f39d397 3948 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3949
3950 /* fixup right node */
31b1a2bd
JL
3951 if (push_items > right_nritems)
3952 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3953 right_nritems);
34a38218
CM
3954
3955 if (push_items < right_nritems) {
3956 push_space = btrfs_item_offset_nr(right, push_items - 1) -
8f881e8c 3957 leaf_data_end(right);
3d9ec8c4 3958 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3959 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3960 BTRFS_LEAF_DATA_OFFSET +
8f881e8c 3961 leaf_data_end(right), push_space);
34a38218
CM
3962
3963 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3964 btrfs_item_nr_offset(push_items),
3965 (btrfs_header_nritems(right) - push_items) *
3966 sizeof(struct btrfs_item));
34a38218 3967 }
c82f823c
DS
3968
3969 btrfs_init_map_token(&token, right);
eef1c494
Y
3970 right_nritems -= push_items;
3971 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3972 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
5f39d397 3973 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3974 item = btrfs_item_nr(i);
db94535d 3975
cc4c13d5
DS
3976 push_space = push_space - btrfs_token_item_size(&token, item);
3977 btrfs_set_token_item_offset(&token, item, push_space);
db94535d 3978 }
eb60ceac 3979
5f39d397 3980 btrfs_mark_buffer_dirty(left);
34a38218
CM
3981 if (right_nritems)
3982 btrfs_mark_buffer_dirty(right);
f0486c68 3983 else
6a884d7d 3984 btrfs_clean_tree_block(right);
098f59c2 3985
5f39d397 3986 btrfs_item_key(right, &disk_key, 0);
b167fa91 3987 fixup_low_keys(path, &disk_key, 1);
be0e5c09
CM
3988
3989 /* then fixup the leaf pointer in the path */
3990 if (path->slots[0] < push_items) {
3991 path->slots[0] += old_left_nritems;
925baedd 3992 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3993 free_extent_buffer(path->nodes[0]);
3994 path->nodes[0] = left;
be0e5c09
CM
3995 path->slots[1] -= 1;
3996 } else {
925baedd 3997 btrfs_tree_unlock(left);
5f39d397 3998 free_extent_buffer(left);
be0e5c09
CM
3999 path->slots[0] -= push_items;
4000 }
eb60ceac 4001 BUG_ON(path->slots[0] < 0);
aa5d6bed 4002 return ret;
925baedd
CM
4003out:
4004 btrfs_tree_unlock(left);
4005 free_extent_buffer(left);
4006 return ret;
be0e5c09
CM
4007}
4008
44871b1b
CM
4009/*
4010 * push some data in the path leaf to the left, trying to free up at
4011 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
4012 *
4013 * max_slot can put a limit on how far into the leaf we'll push items. The
4014 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
4015 * items
44871b1b
CM
4016 */
4017static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
4018 *root, struct btrfs_path *path, int min_data_size,
4019 int data_size, int empty, u32 max_slot)
44871b1b
CM
4020{
4021 struct extent_buffer *right = path->nodes[0];
4022 struct extent_buffer *left;
4023 int slot;
4024 int free_space;
4025 u32 right_nritems;
4026 int ret = 0;
4027
4028 slot = path->slots[1];
4029 if (slot == 0)
4030 return 1;
4031 if (!path->nodes[1])
4032 return 1;
4033
4034 right_nritems = btrfs_header_nritems(right);
4035 if (right_nritems == 0)
4036 return 1;
4037
4038 btrfs_assert_tree_locked(path->nodes[1]);
4039
4b231ae4 4040 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
fb770ae4
LB
4041 /*
4042 * slot - 1 is not valid or we fail to read the left node,
4043 * no big deal, just return.
4044 */
4045 if (IS_ERR(left))
91ca338d
TI
4046 return 1;
4047
44871b1b 4048 btrfs_tree_lock(left);
8bead258 4049 btrfs_set_lock_blocking_write(left);
44871b1b 4050
e902baac 4051 free_space = btrfs_leaf_free_space(left);
44871b1b
CM
4052 if (free_space < data_size) {
4053 ret = 1;
4054 goto out;
4055 }
4056
4057 /* cow and double check */
4058 ret = btrfs_cow_block(trans, root, left,
9631e4cc
JB
4059 path->nodes[1], slot - 1, &left,
4060 BTRFS_NESTING_COW);
44871b1b
CM
4061 if (ret) {
4062 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4063 if (ret == -ENOSPC)
4064 ret = 1;
44871b1b
CM
4065 goto out;
4066 }
4067
e902baac 4068 free_space = btrfs_leaf_free_space(left);
44871b1b
CM
4069 if (free_space < data_size) {
4070 ret = 1;
4071 goto out;
4072 }
4073
d16c702f
QW
4074 if (check_sibling_keys(left, right)) {
4075 ret = -EUCLEAN;
4076 goto out;
4077 }
8087c193 4078 return __push_leaf_left(path, min_data_size,
99d8f83c
CM
4079 empty, left, free_space, right_nritems,
4080 max_slot);
44871b1b
CM
4081out:
4082 btrfs_tree_unlock(left);
4083 free_extent_buffer(left);
4084 return ret;
4085}
4086
4087/*
4088 * split the path's leaf in two, making sure there is at least data_size
4089 * available for the resulting leaf level of the path.
44871b1b 4090 */
143bede5 4091static noinline void copy_for_split(struct btrfs_trans_handle *trans,
143bede5
JM
4092 struct btrfs_path *path,
4093 struct extent_buffer *l,
4094 struct extent_buffer *right,
4095 int slot, int mid, int nritems)
44871b1b 4096{
94f94ad9 4097 struct btrfs_fs_info *fs_info = trans->fs_info;
44871b1b
CM
4098 int data_copy_size;
4099 int rt_data_off;
4100 int i;
44871b1b 4101 struct btrfs_disk_key disk_key;
cfed81a0
CM
4102 struct btrfs_map_token token;
4103
44871b1b
CM
4104 nritems = nritems - mid;
4105 btrfs_set_header_nritems(right, nritems);
8f881e8c 4106 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
44871b1b
CM
4107
4108 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4109 btrfs_item_nr_offset(mid),
4110 nritems * sizeof(struct btrfs_item));
4111
4112 copy_extent_buffer(right, l,
3d9ec8c4
NB
4113 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4114 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
8f881e8c 4115 leaf_data_end(l), data_copy_size);
44871b1b 4116
0b246afa 4117 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
44871b1b 4118
c82f823c 4119 btrfs_init_map_token(&token, right);
44871b1b 4120 for (i = 0; i < nritems; i++) {
dd3cc16b 4121 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4122 u32 ioff;
4123
cc4c13d5
DS
4124 ioff = btrfs_token_item_offset(&token, item);
4125 btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
44871b1b
CM
4126 }
4127
44871b1b 4128 btrfs_set_header_nritems(l, mid);
44871b1b 4129 btrfs_item_key(right, &disk_key, 0);
6ad3cf6d 4130 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
44871b1b
CM
4131
4132 btrfs_mark_buffer_dirty(right);
4133 btrfs_mark_buffer_dirty(l);
4134 BUG_ON(path->slots[0] != slot);
4135
44871b1b
CM
4136 if (mid <= slot) {
4137 btrfs_tree_unlock(path->nodes[0]);
4138 free_extent_buffer(path->nodes[0]);
4139 path->nodes[0] = right;
4140 path->slots[0] -= mid;
4141 path->slots[1] += 1;
4142 } else {
4143 btrfs_tree_unlock(right);
4144 free_extent_buffer(right);
4145 }
4146
4147 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4148}
4149
99d8f83c
CM
4150/*
4151 * double splits happen when we need to insert a big item in the middle
4152 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4153 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4154 * A B C
4155 *
4156 * We avoid this by trying to push the items on either side of our target
4157 * into the adjacent leaves. If all goes well we can avoid the double split
4158 * completely.
4159 */
4160static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4161 struct btrfs_root *root,
4162 struct btrfs_path *path,
4163 int data_size)
4164{
4165 int ret;
4166 int progress = 0;
4167 int slot;
4168 u32 nritems;
5a4267ca 4169 int space_needed = data_size;
99d8f83c
CM
4170
4171 slot = path->slots[0];
5a4267ca 4172 if (slot < btrfs_header_nritems(path->nodes[0]))
e902baac 4173 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
99d8f83c
CM
4174
4175 /*
4176 * try to push all the items after our slot into the
4177 * right leaf
4178 */
5a4267ca 4179 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4180 if (ret < 0)
4181 return ret;
4182
4183 if (ret == 0)
4184 progress++;
4185
4186 nritems = btrfs_header_nritems(path->nodes[0]);
4187 /*
4188 * our goal is to get our slot at the start or end of a leaf. If
4189 * we've done so we're done
4190 */
4191 if (path->slots[0] == 0 || path->slots[0] == nritems)
4192 return 0;
4193
e902baac 4194 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
99d8f83c
CM
4195 return 0;
4196
4197 /* try to push all the items before our slot into the next leaf */
4198 slot = path->slots[0];
263d3995
FM
4199 space_needed = data_size;
4200 if (slot > 0)
e902baac 4201 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
5a4267ca 4202 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4203 if (ret < 0)
4204 return ret;
4205
4206 if (ret == 0)
4207 progress++;
4208
4209 if (progress)
4210 return 0;
4211 return 1;
4212}
4213
74123bd7
CM
4214/*
4215 * split the path's leaf in two, making sure there is at least data_size
4216 * available for the resulting leaf level of the path.
aa5d6bed
CM
4217 *
4218 * returns 0 if all went well and < 0 on failure.
74123bd7 4219 */
e02119d5
CM
4220static noinline int split_leaf(struct btrfs_trans_handle *trans,
4221 struct btrfs_root *root,
310712b2 4222 const struct btrfs_key *ins_key,
e02119d5
CM
4223 struct btrfs_path *path, int data_size,
4224 int extend)
be0e5c09 4225{
5d4f98a2 4226 struct btrfs_disk_key disk_key;
5f39d397 4227 struct extent_buffer *l;
7518a238 4228 u32 nritems;
eb60ceac
CM
4229 int mid;
4230 int slot;
5f39d397 4231 struct extent_buffer *right;
b7a0365e 4232 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4233 int ret = 0;
aa5d6bed 4234 int wret;
5d4f98a2 4235 int split;
cc0c5538 4236 int num_doubles = 0;
99d8f83c 4237 int tried_avoid_double = 0;
aa5d6bed 4238
a5719521
YZ
4239 l = path->nodes[0];
4240 slot = path->slots[0];
4241 if (extend && data_size + btrfs_item_size_nr(l, slot) +
0b246afa 4242 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
a5719521
YZ
4243 return -EOVERFLOW;
4244
40689478 4245 /* first try to make some room by pushing left and right */
33157e05 4246 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4247 int space_needed = data_size;
4248
4249 if (slot < btrfs_header_nritems(l))
e902baac 4250 space_needed -= btrfs_leaf_free_space(l);
5a4267ca
FDBM
4251
4252 wret = push_leaf_right(trans, root, path, space_needed,
4253 space_needed, 0, 0);
d397712b 4254 if (wret < 0)
eaee50e8 4255 return wret;
3685f791 4256 if (wret) {
263d3995
FM
4257 space_needed = data_size;
4258 if (slot > 0)
e902baac 4259 space_needed -= btrfs_leaf_free_space(l);
5a4267ca
FDBM
4260 wret = push_leaf_left(trans, root, path, space_needed,
4261 space_needed, 0, (u32)-1);
3685f791
CM
4262 if (wret < 0)
4263 return wret;
4264 }
4265 l = path->nodes[0];
aa5d6bed 4266
3685f791 4267 /* did the pushes work? */
e902baac 4268 if (btrfs_leaf_free_space(l) >= data_size)
3685f791 4269 return 0;
3326d1b0 4270 }
aa5d6bed 4271
5c680ed6 4272 if (!path->nodes[1]) {
fdd99c72 4273 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4274 if (ret)
4275 return ret;
4276 }
cc0c5538 4277again:
5d4f98a2 4278 split = 1;
cc0c5538 4279 l = path->nodes[0];
eb60ceac 4280 slot = path->slots[0];
5f39d397 4281 nritems = btrfs_header_nritems(l);
d397712b 4282 mid = (nritems + 1) / 2;
54aa1f4d 4283
5d4f98a2
YZ
4284 if (mid <= slot) {
4285 if (nritems == 1 ||
4286 leaf_space_used(l, mid, nritems - mid) + data_size >
0b246afa 4287 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4288 if (slot >= nritems) {
4289 split = 0;
4290 } else {
4291 mid = slot;
4292 if (mid != nritems &&
4293 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4294 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4295 if (data_size && !tried_avoid_double)
4296 goto push_for_double;
5d4f98a2
YZ
4297 split = 2;
4298 }
4299 }
4300 }
4301 } else {
4302 if (leaf_space_used(l, 0, mid) + data_size >
0b246afa 4303 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4304 if (!extend && data_size && slot == 0) {
4305 split = 0;
4306 } else if ((extend || !data_size) && slot == 0) {
4307 mid = 1;
4308 } else {
4309 mid = slot;
4310 if (mid != nritems &&
4311 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4312 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4313 if (data_size && !tried_avoid_double)
4314 goto push_for_double;
67871254 4315 split = 2;
5d4f98a2
YZ
4316 }
4317 }
4318 }
4319 }
4320
4321 if (split == 0)
4322 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4323 else
4324 btrfs_item_key(l, &disk_key, mid);
4325
a6279470 4326 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
9631e4cc 4327 l->start, 0, BTRFS_NESTING_NORMAL);
f0486c68 4328 if (IS_ERR(right))
5f39d397 4329 return PTR_ERR(right);
f0486c68 4330
0b246afa 4331 root_add_used(root, fs_info->nodesize);
5f39d397 4332
5d4f98a2
YZ
4333 if (split == 0) {
4334 if (mid <= slot) {
4335 btrfs_set_header_nritems(right, 0);
6ad3cf6d 4336 insert_ptr(trans, path, &disk_key,
2ff7e61e 4337 right->start, path->slots[1] + 1, 1);
5d4f98a2
YZ
4338 btrfs_tree_unlock(path->nodes[0]);
4339 free_extent_buffer(path->nodes[0]);
4340 path->nodes[0] = right;
4341 path->slots[0] = 0;
4342 path->slots[1] += 1;
4343 } else {
4344 btrfs_set_header_nritems(right, 0);
6ad3cf6d 4345 insert_ptr(trans, path, &disk_key,
2ff7e61e 4346 right->start, path->slots[1], 1);
5d4f98a2
YZ
4347 btrfs_tree_unlock(path->nodes[0]);
4348 free_extent_buffer(path->nodes[0]);
4349 path->nodes[0] = right;
4350 path->slots[0] = 0;
143bede5 4351 if (path->slots[1] == 0)
b167fa91 4352 fixup_low_keys(path, &disk_key, 1);
d4dbff95 4353 }
196e0249
LB
4354 /*
4355 * We create a new leaf 'right' for the required ins_len and
4356 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4357 * the content of ins_len to 'right'.
4358 */
5d4f98a2 4359 return ret;
d4dbff95 4360 }
74123bd7 4361
94f94ad9 4362 copy_for_split(trans, path, l, right, slot, mid, nritems);
31840ae1 4363
5d4f98a2 4364 if (split == 2) {
cc0c5538
CM
4365 BUG_ON(num_doubles != 0);
4366 num_doubles++;
4367 goto again;
a429e513 4368 }
44871b1b 4369
143bede5 4370 return 0;
99d8f83c
CM
4371
4372push_for_double:
4373 push_for_double_split(trans, root, path, data_size);
4374 tried_avoid_double = 1;
e902baac 4375 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
99d8f83c
CM
4376 return 0;
4377 goto again;
be0e5c09
CM
4378}
4379
ad48fd75
YZ
4380static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4381 struct btrfs_root *root,
4382 struct btrfs_path *path, int ins_len)
459931ec 4383{
ad48fd75 4384 struct btrfs_key key;
459931ec 4385 struct extent_buffer *leaf;
ad48fd75
YZ
4386 struct btrfs_file_extent_item *fi;
4387 u64 extent_len = 0;
4388 u32 item_size;
4389 int ret;
459931ec
CM
4390
4391 leaf = path->nodes[0];
ad48fd75
YZ
4392 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4393
4394 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4395 key.type != BTRFS_EXTENT_CSUM_KEY);
4396
e902baac 4397 if (btrfs_leaf_free_space(leaf) >= ins_len)
ad48fd75 4398 return 0;
459931ec
CM
4399
4400 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4401 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4402 fi = btrfs_item_ptr(leaf, path->slots[0],
4403 struct btrfs_file_extent_item);
4404 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4405 }
b3b4aa74 4406 btrfs_release_path(path);
459931ec 4407
459931ec 4408 path->keep_locks = 1;
ad48fd75
YZ
4409 path->search_for_split = 1;
4410 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4411 path->search_for_split = 0;
a8df6fe6
FM
4412 if (ret > 0)
4413 ret = -EAGAIN;
ad48fd75
YZ
4414 if (ret < 0)
4415 goto err;
459931ec 4416
ad48fd75
YZ
4417 ret = -EAGAIN;
4418 leaf = path->nodes[0];
a8df6fe6
FM
4419 /* if our item isn't there, return now */
4420 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4421 goto err;
4422
109f6aef 4423 /* the leaf has changed, it now has room. return now */
e902baac 4424 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
109f6aef
CM
4425 goto err;
4426
ad48fd75
YZ
4427 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4428 fi = btrfs_item_ptr(leaf, path->slots[0],
4429 struct btrfs_file_extent_item);
4430 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4431 goto err;
459931ec
CM
4432 }
4433
b9473439 4434 btrfs_set_path_blocking(path);
ad48fd75 4435 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4436 if (ret)
4437 goto err;
459931ec 4438
ad48fd75 4439 path->keep_locks = 0;
b9473439 4440 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4441 return 0;
4442err:
4443 path->keep_locks = 0;
4444 return ret;
4445}
4446
25263cd7 4447static noinline int split_item(struct btrfs_path *path,
310712b2 4448 const struct btrfs_key *new_key,
ad48fd75
YZ
4449 unsigned long split_offset)
4450{
4451 struct extent_buffer *leaf;
4452 struct btrfs_item *item;
4453 struct btrfs_item *new_item;
4454 int slot;
4455 char *buf;
4456 u32 nritems;
4457 u32 item_size;
4458 u32 orig_offset;
4459 struct btrfs_disk_key disk_key;
4460
b9473439 4461 leaf = path->nodes[0];
e902baac 4462 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
b9473439 4463
b4ce94de
CM
4464 btrfs_set_path_blocking(path);
4465
dd3cc16b 4466 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4467 orig_offset = btrfs_item_offset(leaf, item);
4468 item_size = btrfs_item_size(leaf, item);
4469
459931ec 4470 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4471 if (!buf)
4472 return -ENOMEM;
4473
459931ec
CM
4474 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4475 path->slots[0]), item_size);
459931ec 4476
ad48fd75 4477 slot = path->slots[0] + 1;
459931ec 4478 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4479 if (slot != nritems) {
4480 /* shift the items */
4481 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4482 btrfs_item_nr_offset(slot),
4483 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4484 }
4485
4486 btrfs_cpu_key_to_disk(&disk_key, new_key);
4487 btrfs_set_item_key(leaf, &disk_key, slot);
4488
dd3cc16b 4489 new_item = btrfs_item_nr(slot);
459931ec
CM
4490
4491 btrfs_set_item_offset(leaf, new_item, orig_offset);
4492 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4493
4494 btrfs_set_item_offset(leaf, item,
4495 orig_offset + item_size - split_offset);
4496 btrfs_set_item_size(leaf, item, split_offset);
4497
4498 btrfs_set_header_nritems(leaf, nritems + 1);
4499
4500 /* write the data for the start of the original item */
4501 write_extent_buffer(leaf, buf,
4502 btrfs_item_ptr_offset(leaf, path->slots[0]),
4503 split_offset);
4504
4505 /* write the data for the new item */
4506 write_extent_buffer(leaf, buf + split_offset,
4507 btrfs_item_ptr_offset(leaf, slot),
4508 item_size - split_offset);
4509 btrfs_mark_buffer_dirty(leaf);
4510
e902baac 4511 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
459931ec 4512 kfree(buf);
ad48fd75
YZ
4513 return 0;
4514}
4515
4516/*
4517 * This function splits a single item into two items,
4518 * giving 'new_key' to the new item and splitting the
4519 * old one at split_offset (from the start of the item).
4520 *
4521 * The path may be released by this operation. After
4522 * the split, the path is pointing to the old item. The
4523 * new item is going to be in the same node as the old one.
4524 *
4525 * Note, the item being split must be smaller enough to live alone on
4526 * a tree block with room for one extra struct btrfs_item
4527 *
4528 * This allows us to split the item in place, keeping a lock on the
4529 * leaf the entire time.
4530 */
4531int btrfs_split_item(struct btrfs_trans_handle *trans,
4532 struct btrfs_root *root,
4533 struct btrfs_path *path,
310712b2 4534 const struct btrfs_key *new_key,
ad48fd75
YZ
4535 unsigned long split_offset)
4536{
4537 int ret;
4538 ret = setup_leaf_for_split(trans, root, path,
4539 sizeof(struct btrfs_item));
4540 if (ret)
4541 return ret;
4542
25263cd7 4543 ret = split_item(path, new_key, split_offset);
459931ec
CM
4544 return ret;
4545}
4546
ad48fd75
YZ
4547/*
4548 * This function duplicate a item, giving 'new_key' to the new item.
4549 * It guarantees both items live in the same tree leaf and the new item
4550 * is contiguous with the original item.
4551 *
4552 * This allows us to split file extent in place, keeping a lock on the
4553 * leaf the entire time.
4554 */
4555int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4556 struct btrfs_root *root,
4557 struct btrfs_path *path,
310712b2 4558 const struct btrfs_key *new_key)
ad48fd75
YZ
4559{
4560 struct extent_buffer *leaf;
4561 int ret;
4562 u32 item_size;
4563
4564 leaf = path->nodes[0];
4565 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4566 ret = setup_leaf_for_split(trans, root, path,
4567 item_size + sizeof(struct btrfs_item));
4568 if (ret)
4569 return ret;
4570
4571 path->slots[0]++;
afe5fea7 4572 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4573 item_size, item_size +
4574 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4575 leaf = path->nodes[0];
4576 memcpy_extent_buffer(leaf,
4577 btrfs_item_ptr_offset(leaf, path->slots[0]),
4578 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4579 item_size);
4580 return 0;
4581}
4582
d352ac68
CM
4583/*
4584 * make the item pointed to by the path smaller. new_size indicates
4585 * how small to make it, and from_end tells us if we just chop bytes
4586 * off the end of the item or if we shift the item to chop bytes off
4587 * the front.
4588 */
78ac4f9e 4589void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
b18c6685 4590{
b18c6685 4591 int slot;
5f39d397
CM
4592 struct extent_buffer *leaf;
4593 struct btrfs_item *item;
b18c6685
CM
4594 u32 nritems;
4595 unsigned int data_end;
4596 unsigned int old_data_start;
4597 unsigned int old_size;
4598 unsigned int size_diff;
4599 int i;
cfed81a0
CM
4600 struct btrfs_map_token token;
4601
5f39d397 4602 leaf = path->nodes[0];
179e29e4
CM
4603 slot = path->slots[0];
4604
4605 old_size = btrfs_item_size_nr(leaf, slot);
4606 if (old_size == new_size)
143bede5 4607 return;
b18c6685 4608
5f39d397 4609 nritems = btrfs_header_nritems(leaf);
8f881e8c 4610 data_end = leaf_data_end(leaf);
b18c6685 4611
5f39d397 4612 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4613
b18c6685
CM
4614 size_diff = old_size - new_size;
4615
4616 BUG_ON(slot < 0);
4617 BUG_ON(slot >= nritems);
4618
4619 /*
4620 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4621 */
4622 /* first correct the data pointers */
c82f823c 4623 btrfs_init_map_token(&token, leaf);
b18c6685 4624 for (i = slot; i < nritems; i++) {
5f39d397 4625 u32 ioff;
dd3cc16b 4626 item = btrfs_item_nr(i);
db94535d 4627
cc4c13d5
DS
4628 ioff = btrfs_token_item_offset(&token, item);
4629 btrfs_set_token_item_offset(&token, item, ioff + size_diff);
b18c6685 4630 }
db94535d 4631
b18c6685 4632 /* shift the data */
179e29e4 4633 if (from_end) {
3d9ec8c4
NB
4634 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4635 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4636 data_end, old_data_start + new_size - data_end);
4637 } else {
4638 struct btrfs_disk_key disk_key;
4639 u64 offset;
4640
4641 btrfs_item_key(leaf, &disk_key, slot);
4642
4643 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4644 unsigned long ptr;
4645 struct btrfs_file_extent_item *fi;
4646
4647 fi = btrfs_item_ptr(leaf, slot,
4648 struct btrfs_file_extent_item);
4649 fi = (struct btrfs_file_extent_item *)(
4650 (unsigned long)fi - size_diff);
4651
4652 if (btrfs_file_extent_type(leaf, fi) ==
4653 BTRFS_FILE_EXTENT_INLINE) {
4654 ptr = btrfs_item_ptr_offset(leaf, slot);
4655 memmove_extent_buffer(leaf, ptr,
d397712b 4656 (unsigned long)fi,
7ec20afb 4657 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4658 }
4659 }
4660
3d9ec8c4
NB
4661 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4662 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4663 data_end, old_data_start - data_end);
4664
4665 offset = btrfs_disk_key_offset(&disk_key);
4666 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4667 btrfs_set_item_key(leaf, &disk_key, slot);
4668 if (slot == 0)
b167fa91 4669 fixup_low_keys(path, &disk_key, 1);
179e29e4 4670 }
5f39d397 4671
dd3cc16b 4672 item = btrfs_item_nr(slot);
5f39d397
CM
4673 btrfs_set_item_size(leaf, item, new_size);
4674 btrfs_mark_buffer_dirty(leaf);
b18c6685 4675
e902baac 4676 if (btrfs_leaf_free_space(leaf) < 0) {
a4f78750 4677 btrfs_print_leaf(leaf);
b18c6685 4678 BUG();
5f39d397 4679 }
b18c6685
CM
4680}
4681
d352ac68 4682/*
8f69dbd2 4683 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4684 */
c71dd880 4685void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
6567e837 4686{
6567e837 4687 int slot;
5f39d397
CM
4688 struct extent_buffer *leaf;
4689 struct btrfs_item *item;
6567e837
CM
4690 u32 nritems;
4691 unsigned int data_end;
4692 unsigned int old_data;
4693 unsigned int old_size;
4694 int i;
cfed81a0
CM
4695 struct btrfs_map_token token;
4696
5f39d397 4697 leaf = path->nodes[0];
6567e837 4698
5f39d397 4699 nritems = btrfs_header_nritems(leaf);
8f881e8c 4700 data_end = leaf_data_end(leaf);
6567e837 4701
e902baac 4702 if (btrfs_leaf_free_space(leaf) < data_size) {
a4f78750 4703 btrfs_print_leaf(leaf);
6567e837 4704 BUG();
5f39d397 4705 }
6567e837 4706 slot = path->slots[0];
5f39d397 4707 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4708
4709 BUG_ON(slot < 0);
3326d1b0 4710 if (slot >= nritems) {
a4f78750 4711 btrfs_print_leaf(leaf);
c71dd880 4712 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
0b246afa 4713 slot, nritems);
290342f6 4714 BUG();
3326d1b0 4715 }
6567e837
CM
4716
4717 /*
4718 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4719 */
4720 /* first correct the data pointers */
c82f823c 4721 btrfs_init_map_token(&token, leaf);
6567e837 4722 for (i = slot; i < nritems; i++) {
5f39d397 4723 u32 ioff;
dd3cc16b 4724 item = btrfs_item_nr(i);
db94535d 4725
cc4c13d5
DS
4726 ioff = btrfs_token_item_offset(&token, item);
4727 btrfs_set_token_item_offset(&token, item, ioff - data_size);
6567e837 4728 }
5f39d397 4729
6567e837 4730 /* shift the data */
3d9ec8c4
NB
4731 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4732 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
6567e837 4733 data_end, old_data - data_end);
5f39d397 4734
6567e837 4735 data_end = old_data;
5f39d397 4736 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4737 item = btrfs_item_nr(slot);
5f39d397
CM
4738 btrfs_set_item_size(leaf, item, old_size + data_size);
4739 btrfs_mark_buffer_dirty(leaf);
6567e837 4740
e902baac 4741 if (btrfs_leaf_free_space(leaf) < 0) {
a4f78750 4742 btrfs_print_leaf(leaf);
6567e837 4743 BUG();
5f39d397 4744 }
6567e837
CM
4745}
4746
74123bd7 4747/*
44871b1b
CM
4748 * this is a helper for btrfs_insert_empty_items, the main goal here is
4749 * to save stack depth by doing the bulk of the work in a function
4750 * that doesn't call btrfs_search_slot
74123bd7 4751 */
afe5fea7 4752void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
310712b2 4753 const struct btrfs_key *cpu_key, u32 *data_size,
143bede5 4754 u32 total_data, u32 total_size, int nr)
be0e5c09 4755{
0b246afa 4756 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4757 struct btrfs_item *item;
9c58309d 4758 int i;
7518a238 4759 u32 nritems;
be0e5c09 4760 unsigned int data_end;
e2fa7227 4761 struct btrfs_disk_key disk_key;
44871b1b
CM
4762 struct extent_buffer *leaf;
4763 int slot;
cfed81a0
CM
4764 struct btrfs_map_token token;
4765
24cdc847
FM
4766 if (path->slots[0] == 0) {
4767 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
b167fa91 4768 fixup_low_keys(path, &disk_key, 1);
24cdc847
FM
4769 }
4770 btrfs_unlock_up_safe(path, 1);
4771
5f39d397 4772 leaf = path->nodes[0];
44871b1b 4773 slot = path->slots[0];
74123bd7 4774
5f39d397 4775 nritems = btrfs_header_nritems(leaf);
8f881e8c 4776 data_end = leaf_data_end(leaf);
eb60ceac 4777
e902baac 4778 if (btrfs_leaf_free_space(leaf) < total_size) {
a4f78750 4779 btrfs_print_leaf(leaf);
0b246afa 4780 btrfs_crit(fs_info, "not enough freespace need %u have %d",
e902baac 4781 total_size, btrfs_leaf_free_space(leaf));
be0e5c09 4782 BUG();
d4dbff95 4783 }
5f39d397 4784
c82f823c 4785 btrfs_init_map_token(&token, leaf);
be0e5c09 4786 if (slot != nritems) {
5f39d397 4787 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4788
5f39d397 4789 if (old_data < data_end) {
a4f78750 4790 btrfs_print_leaf(leaf);
0b246afa 4791 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
5d163e0e 4792 slot, old_data, data_end);
290342f6 4793 BUG();
5f39d397 4794 }
be0e5c09
CM
4795 /*
4796 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4797 */
4798 /* first correct the data pointers */
0783fcfc 4799 for (i = slot; i < nritems; i++) {
5f39d397 4800 u32 ioff;
db94535d 4801
62e85577 4802 item = btrfs_item_nr(i);
cc4c13d5
DS
4803 ioff = btrfs_token_item_offset(&token, item);
4804 btrfs_set_token_item_offset(&token, item,
4805 ioff - total_data);
0783fcfc 4806 }
be0e5c09 4807 /* shift the items */
9c58309d 4808 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4809 btrfs_item_nr_offset(slot),
d6025579 4810 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4811
4812 /* shift the data */
3d9ec8c4
NB
4813 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4814 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
d6025579 4815 data_end, old_data - data_end);
be0e5c09
CM
4816 data_end = old_data;
4817 }
5f39d397 4818
62e2749e 4819 /* setup the item for the new data */
9c58309d
CM
4820 for (i = 0; i < nr; i++) {
4821 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4822 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4823 item = btrfs_item_nr(slot + i);
cc4c13d5 4824 btrfs_set_token_item_offset(&token, item, data_end - data_size[i]);
9c58309d 4825 data_end -= data_size[i];
cc4c13d5 4826 btrfs_set_token_item_size(&token, item, data_size[i]);
9c58309d 4827 }
44871b1b 4828
9c58309d 4829 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4830 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4831
e902baac 4832 if (btrfs_leaf_free_space(leaf) < 0) {
a4f78750 4833 btrfs_print_leaf(leaf);
be0e5c09 4834 BUG();
5f39d397 4835 }
44871b1b
CM
4836}
4837
4838/*
4839 * Given a key and some data, insert items into the tree.
4840 * This does all the path init required, making room in the tree if needed.
4841 */
4842int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4843 struct btrfs_root *root,
4844 struct btrfs_path *path,
310712b2 4845 const struct btrfs_key *cpu_key, u32 *data_size,
44871b1b
CM
4846 int nr)
4847{
44871b1b
CM
4848 int ret = 0;
4849 int slot;
4850 int i;
4851 u32 total_size = 0;
4852 u32 total_data = 0;
4853
4854 for (i = 0; i < nr; i++)
4855 total_data += data_size[i];
4856
4857 total_size = total_data + (nr * sizeof(struct btrfs_item));
4858 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4859 if (ret == 0)
4860 return -EEXIST;
4861 if (ret < 0)
143bede5 4862 return ret;
44871b1b 4863
44871b1b
CM
4864 slot = path->slots[0];
4865 BUG_ON(slot < 0);
4866
afe5fea7 4867 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4868 total_data, total_size, nr);
143bede5 4869 return 0;
62e2749e
CM
4870}
4871
4872/*
4873 * Given a key and some data, insert an item into the tree.
4874 * This does all the path init required, making room in the tree if needed.
4875 */
310712b2
OS
4876int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4877 const struct btrfs_key *cpu_key, void *data,
4878 u32 data_size)
62e2749e
CM
4879{
4880 int ret = 0;
2c90e5d6 4881 struct btrfs_path *path;
5f39d397
CM
4882 struct extent_buffer *leaf;
4883 unsigned long ptr;
62e2749e 4884
2c90e5d6 4885 path = btrfs_alloc_path();
db5b493a
TI
4886 if (!path)
4887 return -ENOMEM;
2c90e5d6 4888 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4889 if (!ret) {
5f39d397
CM
4890 leaf = path->nodes[0];
4891 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4892 write_extent_buffer(leaf, data, ptr, data_size);
4893 btrfs_mark_buffer_dirty(leaf);
62e2749e 4894 }
2c90e5d6 4895 btrfs_free_path(path);
aa5d6bed 4896 return ret;
be0e5c09
CM
4897}
4898
74123bd7 4899/*
5de08d7d 4900 * delete the pointer from a given node.
74123bd7 4901 *
d352ac68
CM
4902 * the tree should have been previously balanced so the deletion does not
4903 * empty a node.
74123bd7 4904 */
afe5fea7
TI
4905static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4906 int level, int slot)
be0e5c09 4907{
5f39d397 4908 struct extent_buffer *parent = path->nodes[level];
7518a238 4909 u32 nritems;
f3ea38da 4910 int ret;
be0e5c09 4911
5f39d397 4912 nritems = btrfs_header_nritems(parent);
d397712b 4913 if (slot != nritems - 1) {
bf1d3425
DS
4914 if (level) {
4915 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
a446a979 4916 nritems - slot - 1);
bf1d3425
DS
4917 BUG_ON(ret < 0);
4918 }
5f39d397
CM
4919 memmove_extent_buffer(parent,
4920 btrfs_node_key_ptr_offset(slot),
4921 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4922 sizeof(struct btrfs_key_ptr) *
4923 (nritems - slot - 1));
57ba86c0 4924 } else if (level) {
e09c2efe
DS
4925 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4926 GFP_NOFS);
57ba86c0 4927 BUG_ON(ret < 0);
bb803951 4928 }
f3ea38da 4929
7518a238 4930 nritems--;
5f39d397 4931 btrfs_set_header_nritems(parent, nritems);
7518a238 4932 if (nritems == 0 && parent == root->node) {
5f39d397 4933 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4934 /* just turn the root into a leaf and break */
5f39d397 4935 btrfs_set_header_level(root->node, 0);
bb803951 4936 } else if (slot == 0) {
5f39d397
CM
4937 struct btrfs_disk_key disk_key;
4938
4939 btrfs_node_key(parent, &disk_key, 0);
b167fa91 4940 fixup_low_keys(path, &disk_key, level + 1);
be0e5c09 4941 }
d6025579 4942 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4943}
4944
323ac95b
CM
4945/*
4946 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4947 * path->nodes[1].
323ac95b
CM
4948 *
4949 * This deletes the pointer in path->nodes[1] and frees the leaf
4950 * block extent. zero is returned if it all worked out, < 0 otherwise.
4951 *
4952 * The path must have already been setup for deleting the leaf, including
4953 * all the proper balancing. path->nodes[1] must be locked.
4954 */
143bede5
JM
4955static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4956 struct btrfs_root *root,
4957 struct btrfs_path *path,
4958 struct extent_buffer *leaf)
323ac95b 4959{
5d4f98a2 4960 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4961 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4962
4d081c41
CM
4963 /*
4964 * btrfs_free_extent is expensive, we want to make sure we
4965 * aren't holding any locks when we call it
4966 */
4967 btrfs_unlock_up_safe(path, 0);
4968
f0486c68
YZ
4969 root_sub_used(root, leaf->len);
4970
67439dad 4971 atomic_inc(&leaf->refs);
5581a51a 4972 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4973 free_extent_buffer_stale(leaf);
323ac95b 4974}
74123bd7
CM
4975/*
4976 * delete the item at the leaf level in path. If that empties
4977 * the leaf, remove it from the tree
4978 */
85e21bac
CM
4979int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4980 struct btrfs_path *path, int slot, int nr)
be0e5c09 4981{
0b246afa 4982 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
4983 struct extent_buffer *leaf;
4984 struct btrfs_item *item;
ce0eac2a
AM
4985 u32 last_off;
4986 u32 dsize = 0;
aa5d6bed
CM
4987 int ret = 0;
4988 int wret;
85e21bac 4989 int i;
7518a238 4990 u32 nritems;
be0e5c09 4991
5f39d397 4992 leaf = path->nodes[0];
85e21bac
CM
4993 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4994
4995 for (i = 0; i < nr; i++)
4996 dsize += btrfs_item_size_nr(leaf, slot + i);
4997
5f39d397 4998 nritems = btrfs_header_nritems(leaf);
be0e5c09 4999
85e21bac 5000 if (slot + nr != nritems) {
8f881e8c 5001 int data_end = leaf_data_end(leaf);
c82f823c 5002 struct btrfs_map_token token;
5f39d397 5003
3d9ec8c4 5004 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
d6025579 5005 data_end + dsize,
3d9ec8c4 5006 BTRFS_LEAF_DATA_OFFSET + data_end,
85e21bac 5007 last_off - data_end);
5f39d397 5008
c82f823c 5009 btrfs_init_map_token(&token, leaf);
85e21bac 5010 for (i = slot + nr; i < nritems; i++) {
5f39d397 5011 u32 ioff;
db94535d 5012
dd3cc16b 5013 item = btrfs_item_nr(i);
cc4c13d5
DS
5014 ioff = btrfs_token_item_offset(&token, item);
5015 btrfs_set_token_item_offset(&token, item, ioff + dsize);
0783fcfc 5016 }
db94535d 5017
5f39d397 5018 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 5019 btrfs_item_nr_offset(slot + nr),
d6025579 5020 sizeof(struct btrfs_item) *
85e21bac 5021 (nritems - slot - nr));
be0e5c09 5022 }
85e21bac
CM
5023 btrfs_set_header_nritems(leaf, nritems - nr);
5024 nritems -= nr;
5f39d397 5025
74123bd7 5026 /* delete the leaf if we've emptied it */
7518a238 5027 if (nritems == 0) {
5f39d397
CM
5028 if (leaf == root->node) {
5029 btrfs_set_header_level(leaf, 0);
9a8dd150 5030 } else {
f0486c68 5031 btrfs_set_path_blocking(path);
6a884d7d 5032 btrfs_clean_tree_block(leaf);
143bede5 5033 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 5034 }
be0e5c09 5035 } else {
7518a238 5036 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 5037 if (slot == 0) {
5f39d397
CM
5038 struct btrfs_disk_key disk_key;
5039
5040 btrfs_item_key(leaf, &disk_key, 0);
b167fa91 5041 fixup_low_keys(path, &disk_key, 1);
aa5d6bed 5042 }
aa5d6bed 5043
74123bd7 5044 /* delete the leaf if it is mostly empty */
0b246afa 5045 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
be0e5c09
CM
5046 /* push_leaf_left fixes the path.
5047 * make sure the path still points to our leaf
5048 * for possible call to del_ptr below
5049 */
4920c9ac 5050 slot = path->slots[1];
67439dad 5051 atomic_inc(&leaf->refs);
5f39d397 5052
b9473439 5053 btrfs_set_path_blocking(path);
99d8f83c
CM
5054 wret = push_leaf_left(trans, root, path, 1, 1,
5055 1, (u32)-1);
54aa1f4d 5056 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5057 ret = wret;
5f39d397
CM
5058
5059 if (path->nodes[0] == leaf &&
5060 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5061 wret = push_leaf_right(trans, root, path, 1,
5062 1, 1, 0);
54aa1f4d 5063 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5064 ret = wret;
5065 }
5f39d397
CM
5066
5067 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5068 path->slots[1] = slot;
143bede5 5069 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5070 free_extent_buffer(leaf);
143bede5 5071 ret = 0;
5de08d7d 5072 } else {
925baedd
CM
5073 /* if we're still in the path, make sure
5074 * we're dirty. Otherwise, one of the
5075 * push_leaf functions must have already
5076 * dirtied this buffer
5077 */
5078 if (path->nodes[0] == leaf)
5079 btrfs_mark_buffer_dirty(leaf);
5f39d397 5080 free_extent_buffer(leaf);
be0e5c09 5081 }
d5719762 5082 } else {
5f39d397 5083 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5084 }
5085 }
aa5d6bed 5086 return ret;
be0e5c09
CM
5087}
5088
7bb86316 5089/*
925baedd 5090 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5091 * returns 0 if it found something or 1 if there are no lesser leaves.
5092 * returns < 0 on io errors.
d352ac68
CM
5093 *
5094 * This may release the path, and so you may lose any locks held at the
5095 * time you call it.
7bb86316 5096 */
16e7549f 5097int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5098{
925baedd
CM
5099 struct btrfs_key key;
5100 struct btrfs_disk_key found_key;
5101 int ret;
7bb86316 5102
925baedd 5103 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5104
e8b0d724 5105 if (key.offset > 0) {
925baedd 5106 key.offset--;
e8b0d724 5107 } else if (key.type > 0) {
925baedd 5108 key.type--;
e8b0d724
FDBM
5109 key.offset = (u64)-1;
5110 } else if (key.objectid > 0) {
925baedd 5111 key.objectid--;
e8b0d724
FDBM
5112 key.type = (u8)-1;
5113 key.offset = (u64)-1;
5114 } else {
925baedd 5115 return 1;
e8b0d724 5116 }
7bb86316 5117
b3b4aa74 5118 btrfs_release_path(path);
925baedd
CM
5119 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5120 if (ret < 0)
5121 return ret;
5122 btrfs_item_key(path->nodes[0], &found_key, 0);
5123 ret = comp_keys(&found_key, &key);
337c6f68
FM
5124 /*
5125 * We might have had an item with the previous key in the tree right
5126 * before we released our path. And after we released our path, that
5127 * item might have been pushed to the first slot (0) of the leaf we
5128 * were holding due to a tree balance. Alternatively, an item with the
5129 * previous key can exist as the only element of a leaf (big fat item).
5130 * Therefore account for these 2 cases, so that our callers (like
5131 * btrfs_previous_item) don't miss an existing item with a key matching
5132 * the previous key we computed above.
5133 */
5134 if (ret <= 0)
925baedd
CM
5135 return 0;
5136 return 1;
7bb86316
CM
5137}
5138
3f157a2f
CM
5139/*
5140 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5141 * for nodes or leaves that are have a minimum transaction id.
5142 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5143 *
5144 * This does not cow, but it does stuff the starting key it finds back
5145 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5146 * key and get a writable path.
5147 *
3f157a2f
CM
5148 * This honors path->lowest_level to prevent descent past a given level
5149 * of the tree.
5150 *
d352ac68
CM
5151 * min_trans indicates the oldest transaction that you are interested
5152 * in walking through. Any nodes or leaves older than min_trans are
5153 * skipped over (without reading them).
5154 *
3f157a2f
CM
5155 * returns zero if something useful was found, < 0 on error and 1 if there
5156 * was nothing in the tree that matched the search criteria.
5157 */
5158int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5159 struct btrfs_path *path,
3f157a2f
CM
5160 u64 min_trans)
5161{
5162 struct extent_buffer *cur;
5163 struct btrfs_key found_key;
5164 int slot;
9652480b 5165 int sret;
3f157a2f
CM
5166 u32 nritems;
5167 int level;
5168 int ret = 1;
f98de9b9 5169 int keep_locks = path->keep_locks;
3f157a2f 5170
f98de9b9 5171 path->keep_locks = 1;
3f157a2f 5172again:
bd681513 5173 cur = btrfs_read_lock_root_node(root);
3f157a2f 5174 level = btrfs_header_level(cur);
e02119d5 5175 WARN_ON(path->nodes[level]);
3f157a2f 5176 path->nodes[level] = cur;
bd681513 5177 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5178
5179 if (btrfs_header_generation(cur) < min_trans) {
5180 ret = 1;
5181 goto out;
5182 }
d397712b 5183 while (1) {
3f157a2f
CM
5184 nritems = btrfs_header_nritems(cur);
5185 level = btrfs_header_level(cur);
e3b83361 5186 sret = btrfs_bin_search(cur, min_key, &slot);
cbca7d59
FM
5187 if (sret < 0) {
5188 ret = sret;
5189 goto out;
5190 }
3f157a2f 5191
323ac95b
CM
5192 /* at the lowest level, we're done, setup the path and exit */
5193 if (level == path->lowest_level) {
e02119d5
CM
5194 if (slot >= nritems)
5195 goto find_next_key;
3f157a2f
CM
5196 ret = 0;
5197 path->slots[level] = slot;
5198 btrfs_item_key_to_cpu(cur, &found_key, slot);
5199 goto out;
5200 }
9652480b
Y
5201 if (sret && slot > 0)
5202 slot--;
3f157a2f 5203 /*
de78b51a 5204 * check this node pointer against the min_trans parameters.
260db43c 5205 * If it is too old, skip to the next one.
3f157a2f 5206 */
d397712b 5207 while (slot < nritems) {
3f157a2f 5208 u64 gen;
e02119d5 5209
3f157a2f
CM
5210 gen = btrfs_node_ptr_generation(cur, slot);
5211 if (gen < min_trans) {
5212 slot++;
5213 continue;
5214 }
de78b51a 5215 break;
3f157a2f 5216 }
e02119d5 5217find_next_key:
3f157a2f
CM
5218 /*
5219 * we didn't find a candidate key in this node, walk forward
5220 * and find another one
5221 */
5222 if (slot >= nritems) {
e02119d5 5223 path->slots[level] = slot;
b4ce94de 5224 btrfs_set_path_blocking(path);
e02119d5 5225 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5226 min_trans);
e02119d5 5227 if (sret == 0) {
b3b4aa74 5228 btrfs_release_path(path);
3f157a2f
CM
5229 goto again;
5230 } else {
5231 goto out;
5232 }
5233 }
5234 /* save our key for returning back */
5235 btrfs_node_key_to_cpu(cur, &found_key, slot);
5236 path->slots[level] = slot;
5237 if (level == path->lowest_level) {
5238 ret = 0;
3f157a2f
CM
5239 goto out;
5240 }
b4ce94de 5241 btrfs_set_path_blocking(path);
4b231ae4 5242 cur = btrfs_read_node_slot(cur, slot);
fb770ae4
LB
5243 if (IS_ERR(cur)) {
5244 ret = PTR_ERR(cur);
5245 goto out;
5246 }
3f157a2f 5247
bd681513 5248 btrfs_tree_read_lock(cur);
b4ce94de 5249
bd681513 5250 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5251 path->nodes[level - 1] = cur;
f7c79f30 5252 unlock_up(path, level, 1, 0, NULL);
3f157a2f
CM
5253 }
5254out:
f98de9b9
FM
5255 path->keep_locks = keep_locks;
5256 if (ret == 0) {
5257 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5258 btrfs_set_path_blocking(path);
3f157a2f 5259 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5260 }
3f157a2f
CM
5261 return ret;
5262}
5263
5264/*
5265 * this is similar to btrfs_next_leaf, but does not try to preserve
5266 * and fixup the path. It looks for and returns the next key in the
de78b51a 5267 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5268 *
5269 * 0 is returned if another key is found, < 0 if there are any errors
5270 * and 1 is returned if there are no higher keys in the tree
5271 *
5272 * path->keep_locks should be set to 1 on the search made before
5273 * calling this function.
5274 */
e7a84565 5275int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5276 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5277{
e7a84565
CM
5278 int slot;
5279 struct extent_buffer *c;
5280
6a9fb468 5281 WARN_ON(!path->keep_locks && !path->skip_locking);
d397712b 5282 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5283 if (!path->nodes[level])
5284 return 1;
5285
5286 slot = path->slots[level] + 1;
5287 c = path->nodes[level];
3f157a2f 5288next:
e7a84565 5289 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5290 int ret;
5291 int orig_lowest;
5292 struct btrfs_key cur_key;
5293 if (level + 1 >= BTRFS_MAX_LEVEL ||
5294 !path->nodes[level + 1])
e7a84565 5295 return 1;
33c66f43 5296
6a9fb468 5297 if (path->locks[level + 1] || path->skip_locking) {
33c66f43
YZ
5298 level++;
5299 continue;
5300 }
5301
5302 slot = btrfs_header_nritems(c) - 1;
5303 if (level == 0)
5304 btrfs_item_key_to_cpu(c, &cur_key, slot);
5305 else
5306 btrfs_node_key_to_cpu(c, &cur_key, slot);
5307
5308 orig_lowest = path->lowest_level;
b3b4aa74 5309 btrfs_release_path(path);
33c66f43
YZ
5310 path->lowest_level = level;
5311 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5312 0, 0);
5313 path->lowest_level = orig_lowest;
5314 if (ret < 0)
5315 return ret;
5316
5317 c = path->nodes[level];
5318 slot = path->slots[level];
5319 if (ret == 0)
5320 slot++;
5321 goto next;
e7a84565 5322 }
33c66f43 5323
e7a84565
CM
5324 if (level == 0)
5325 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5326 else {
3f157a2f
CM
5327 u64 gen = btrfs_node_ptr_generation(c, slot);
5328
3f157a2f
CM
5329 if (gen < min_trans) {
5330 slot++;
5331 goto next;
5332 }
e7a84565 5333 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5334 }
e7a84565
CM
5335 return 0;
5336 }
5337 return 1;
5338}
5339
97571fd0 5340/*
925baedd 5341 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5342 * returns 0 if it found something or 1 if there are no greater leaves.
5343 * returns < 0 on io errors.
97571fd0 5344 */
234b63a0 5345int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5346{
5347 return btrfs_next_old_leaf(root, path, 0);
5348}
5349
5350int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5351 u64 time_seq)
d97e63b6
CM
5352{
5353 int slot;
8e73f275 5354 int level;
5f39d397 5355 struct extent_buffer *c;
8e73f275 5356 struct extent_buffer *next;
925baedd
CM
5357 struct btrfs_key key;
5358 u32 nritems;
5359 int ret;
8e73f275 5360 int old_spinning = path->leave_spinning;
bd681513 5361 int next_rw_lock = 0;
925baedd
CM
5362
5363 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5364 if (nritems == 0)
925baedd 5365 return 1;
925baedd 5366
8e73f275
CM
5367 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5368again:
5369 level = 1;
5370 next = NULL;
bd681513 5371 next_rw_lock = 0;
b3b4aa74 5372 btrfs_release_path(path);
8e73f275 5373
a2135011 5374 path->keep_locks = 1;
31533fb2 5375 path->leave_spinning = 1;
8e73f275 5376
3d7806ec
JS
5377 if (time_seq)
5378 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5379 else
5380 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5381 path->keep_locks = 0;
5382
5383 if (ret < 0)
5384 return ret;
5385
a2135011 5386 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5387 /*
5388 * by releasing the path above we dropped all our locks. A balance
5389 * could have added more items next to the key that used to be
5390 * at the very end of the block. So, check again here and
5391 * advance the path if there are now more items available.
5392 */
a2135011 5393 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5394 if (ret == 0)
5395 path->slots[0]++;
8e73f275 5396 ret = 0;
925baedd
CM
5397 goto done;
5398 }
0b43e04f
LB
5399 /*
5400 * So the above check misses one case:
5401 * - after releasing the path above, someone has removed the item that
5402 * used to be at the very end of the block, and balance between leafs
5403 * gets another one with bigger key.offset to replace it.
5404 *
5405 * This one should be returned as well, or we can get leaf corruption
5406 * later(esp. in __btrfs_drop_extents()).
5407 *
5408 * And a bit more explanation about this check,
5409 * with ret > 0, the key isn't found, the path points to the slot
5410 * where it should be inserted, so the path->slots[0] item must be the
5411 * bigger one.
5412 */
5413 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5414 ret = 0;
5415 goto done;
5416 }
d97e63b6 5417
d397712b 5418 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5419 if (!path->nodes[level]) {
5420 ret = 1;
5421 goto done;
5422 }
5f39d397 5423
d97e63b6
CM
5424 slot = path->slots[level] + 1;
5425 c = path->nodes[level];
5f39d397 5426 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5427 level++;
8e73f275
CM
5428 if (level == BTRFS_MAX_LEVEL) {
5429 ret = 1;
5430 goto done;
5431 }
d97e63b6
CM
5432 continue;
5433 }
5f39d397 5434
925baedd 5435 if (next) {
bd681513 5436 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5437 free_extent_buffer(next);
925baedd 5438 }
5f39d397 5439
8e73f275 5440 next = c;
bd681513 5441 next_rw_lock = path->locks[level];
d07b8528 5442 ret = read_block_for_search(root, path, &next, level,
cda79c54 5443 slot, &key);
8e73f275
CM
5444 if (ret == -EAGAIN)
5445 goto again;
5f39d397 5446
76a05b35 5447 if (ret < 0) {
b3b4aa74 5448 btrfs_release_path(path);
76a05b35
CM
5449 goto done;
5450 }
5451
5cd57b2c 5452 if (!path->skip_locking) {
bd681513 5453 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5454 if (!ret && time_seq) {
5455 /*
5456 * If we don't get the lock, we may be racing
5457 * with push_leaf_left, holding that lock while
5458 * itself waiting for the leaf we've currently
5459 * locked. To solve this situation, we give up
5460 * on our lock and cycle.
5461 */
cf538830 5462 free_extent_buffer(next);
d42244a0
JS
5463 btrfs_release_path(path);
5464 cond_resched();
5465 goto again;
5466 }
8e73f275
CM
5467 if (!ret) {
5468 btrfs_set_path_blocking(path);
fd7ba1c1
JB
5469 __btrfs_tree_read_lock(next,
5470 BTRFS_NESTING_NORMAL,
5471 path->recurse);
8e73f275 5472 }
31533fb2 5473 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5474 }
d97e63b6
CM
5475 break;
5476 }
5477 path->slots[level] = slot;
d397712b 5478 while (1) {
d97e63b6
CM
5479 level--;
5480 c = path->nodes[level];
925baedd 5481 if (path->locks[level])
bd681513 5482 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5483
5f39d397 5484 free_extent_buffer(c);
d97e63b6
CM
5485 path->nodes[level] = next;
5486 path->slots[level] = 0;
a74a4b97 5487 if (!path->skip_locking)
bd681513 5488 path->locks[level] = next_rw_lock;
d97e63b6
CM
5489 if (!level)
5490 break;
b4ce94de 5491
d07b8528 5492 ret = read_block_for_search(root, path, &next, level,
cda79c54 5493 0, &key);
8e73f275
CM
5494 if (ret == -EAGAIN)
5495 goto again;
5496
76a05b35 5497 if (ret < 0) {
b3b4aa74 5498 btrfs_release_path(path);
76a05b35
CM
5499 goto done;
5500 }
5501
5cd57b2c 5502 if (!path->skip_locking) {
bd681513 5503 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5504 if (!ret) {
5505 btrfs_set_path_blocking(path);
fd7ba1c1
JB
5506 __btrfs_tree_read_lock(next,
5507 BTRFS_NESTING_NORMAL,
5508 path->recurse);
bd681513 5509 }
31533fb2 5510 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5511 }
d97e63b6 5512 }
8e73f275 5513 ret = 0;
925baedd 5514done:
f7c79f30 5515 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5516 path->leave_spinning = old_spinning;
5517 if (!old_spinning)
5518 btrfs_set_path_blocking(path);
5519
5520 return ret;
d97e63b6 5521}
0b86a832 5522
3f157a2f
CM
5523/*
5524 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5525 * searching until it gets past min_objectid or finds an item of 'type'
5526 *
5527 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5528 */
0b86a832
CM
5529int btrfs_previous_item(struct btrfs_root *root,
5530 struct btrfs_path *path, u64 min_objectid,
5531 int type)
5532{
5533 struct btrfs_key found_key;
5534 struct extent_buffer *leaf;
e02119d5 5535 u32 nritems;
0b86a832
CM
5536 int ret;
5537
d397712b 5538 while (1) {
0b86a832 5539 if (path->slots[0] == 0) {
b4ce94de 5540 btrfs_set_path_blocking(path);
0b86a832
CM
5541 ret = btrfs_prev_leaf(root, path);
5542 if (ret != 0)
5543 return ret;
5544 } else {
5545 path->slots[0]--;
5546 }
5547 leaf = path->nodes[0];
e02119d5
CM
5548 nritems = btrfs_header_nritems(leaf);
5549 if (nritems == 0)
5550 return 1;
5551 if (path->slots[0] == nritems)
5552 path->slots[0]--;
5553
0b86a832 5554 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5555 if (found_key.objectid < min_objectid)
5556 break;
0a4eefbb
YZ
5557 if (found_key.type == type)
5558 return 0;
e02119d5
CM
5559 if (found_key.objectid == min_objectid &&
5560 found_key.type < type)
5561 break;
0b86a832
CM
5562 }
5563 return 1;
5564}
ade2e0b3
WS
5565
5566/*
5567 * search in extent tree to find a previous Metadata/Data extent item with
5568 * min objecitd.
5569 *
5570 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5571 */
5572int btrfs_previous_extent_item(struct btrfs_root *root,
5573 struct btrfs_path *path, u64 min_objectid)
5574{
5575 struct btrfs_key found_key;
5576 struct extent_buffer *leaf;
5577 u32 nritems;
5578 int ret;
5579
5580 while (1) {
5581 if (path->slots[0] == 0) {
5582 btrfs_set_path_blocking(path);
5583 ret = btrfs_prev_leaf(root, path);
5584 if (ret != 0)
5585 return ret;
5586 } else {
5587 path->slots[0]--;
5588 }
5589 leaf = path->nodes[0];
5590 nritems = btrfs_header_nritems(leaf);
5591 if (nritems == 0)
5592 return 1;
5593 if (path->slots[0] == nritems)
5594 path->slots[0]--;
5595
5596 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5597 if (found_key.objectid < min_objectid)
5598 break;
5599 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5600 found_key.type == BTRFS_METADATA_ITEM_KEY)
5601 return 0;
5602 if (found_key.objectid == min_objectid &&
5603 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5604 break;
5605 }
5606 return 1;
5607}