Btrfs: introduce subvol uuids and times
[linux-block.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
7f5c1516 24#include "transaction.h"
5f39d397 25#include "print-tree.h"
925baedd 26#include "locking.h"
9a8dd150 27
e089f05c
CM
28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
d4dbff95 31 *root, struct btrfs_key *ins_key,
cc0c5538 32 struct btrfs_path *path, int data_size, int extend);
5f39d397
CM
33static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 35 struct extent_buffer *src, int empty);
5f39d397
CM
36static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
143bede5 40static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
f3ea38da
JS
41 struct btrfs_path *path, int level, int slot,
42 int tree_mod_log);
f230475e
JS
43static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 struct extent_buffer *eb);
45struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46 u32 blocksize, u64 parent_transid,
47 u64 time_seq);
48struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49 u64 bytenr, u32 blocksize,
50 u64 time_seq);
d97e63b6 51
df24a2b9 52struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 53{
df24a2b9 54 struct btrfs_path *path;
e00f7308 55 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
df24a2b9 56 return path;
2c90e5d6
CM
57}
58
b4ce94de
CM
59/*
60 * set all locked nodes in the path to blocking locks. This should
61 * be done before scheduling
62 */
63noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64{
65 int i;
66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
67 if (!p->nodes[i] || !p->locks[i])
68 continue;
69 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70 if (p->locks[i] == BTRFS_READ_LOCK)
71 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72 else if (p->locks[i] == BTRFS_WRITE_LOCK)
73 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
74 }
75}
76
77/*
78 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
79 *
80 * held is used to keep lockdep happy, when lockdep is enabled
81 * we set held to a blocking lock before we go around and
82 * retake all the spinlocks in the path. You can safely use NULL
83 * for held
b4ce94de 84 */
4008c04a 85noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 86 struct extent_buffer *held, int held_rw)
b4ce94de
CM
87{
88 int i;
4008c04a
CM
89
90#ifdef CONFIG_DEBUG_LOCK_ALLOC
91 /* lockdep really cares that we take all of these spinlocks
92 * in the right order. If any of the locks in the path are not
93 * currently blocking, it is going to complain. So, make really
94 * really sure by forcing the path to blocking before we clear
95 * the path blocking.
96 */
bd681513
CM
97 if (held) {
98 btrfs_set_lock_blocking_rw(held, held_rw);
99 if (held_rw == BTRFS_WRITE_LOCK)
100 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101 else if (held_rw == BTRFS_READ_LOCK)
102 held_rw = BTRFS_READ_LOCK_BLOCKING;
103 }
4008c04a
CM
104 btrfs_set_path_blocking(p);
105#endif
106
107 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
108 if (p->nodes[i] && p->locks[i]) {
109 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111 p->locks[i] = BTRFS_WRITE_LOCK;
112 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113 p->locks[i] = BTRFS_READ_LOCK;
114 }
b4ce94de 115 }
4008c04a
CM
116
117#ifdef CONFIG_DEBUG_LOCK_ALLOC
118 if (held)
bd681513 119 btrfs_clear_lock_blocking_rw(held, held_rw);
4008c04a 120#endif
b4ce94de
CM
121}
122
d352ac68 123/* this also releases the path */
df24a2b9 124void btrfs_free_path(struct btrfs_path *p)
be0e5c09 125{
ff175d57
JJ
126 if (!p)
127 return;
b3b4aa74 128 btrfs_release_path(p);
df24a2b9 129 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
130}
131
d352ac68
CM
132/*
133 * path release drops references on the extent buffers in the path
134 * and it drops any locks held by this path
135 *
136 * It is safe to call this on paths that no locks or extent buffers held.
137 */
b3b4aa74 138noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
139{
140 int i;
a2135011 141
234b63a0 142 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 143 p->slots[i] = 0;
eb60ceac 144 if (!p->nodes[i])
925baedd
CM
145 continue;
146 if (p->locks[i]) {
bd681513 147 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
148 p->locks[i] = 0;
149 }
5f39d397 150 free_extent_buffer(p->nodes[i]);
3f157a2f 151 p->nodes[i] = NULL;
eb60ceac
CM
152 }
153}
154
d352ac68
CM
155/*
156 * safely gets a reference on the root node of a tree. A lock
157 * is not taken, so a concurrent writer may put a different node
158 * at the root of the tree. See btrfs_lock_root_node for the
159 * looping required.
160 *
161 * The extent buffer returned by this has a reference taken, so
162 * it won't disappear. It may stop being the root of the tree
163 * at any time because there are no locks held.
164 */
925baedd
CM
165struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166{
167 struct extent_buffer *eb;
240f62c8 168
3083ee2e
JB
169 while (1) {
170 rcu_read_lock();
171 eb = rcu_dereference(root->node);
172
173 /*
174 * RCU really hurts here, we could free up the root node because
175 * it was cow'ed but we may not get the new root node yet so do
176 * the inc_not_zero dance and if it doesn't work then
177 * synchronize_rcu and try again.
178 */
179 if (atomic_inc_not_zero(&eb->refs)) {
180 rcu_read_unlock();
181 break;
182 }
183 rcu_read_unlock();
184 synchronize_rcu();
185 }
925baedd
CM
186 return eb;
187}
188
d352ac68
CM
189/* loop around taking references on and locking the root node of the
190 * tree until you end up with a lock on the root. A locked buffer
191 * is returned, with a reference held.
192 */
925baedd
CM
193struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194{
195 struct extent_buffer *eb;
196
d397712b 197 while (1) {
925baedd
CM
198 eb = btrfs_root_node(root);
199 btrfs_tree_lock(eb);
240f62c8 200 if (eb == root->node)
925baedd 201 break;
925baedd
CM
202 btrfs_tree_unlock(eb);
203 free_extent_buffer(eb);
204 }
205 return eb;
206}
207
bd681513
CM
208/* loop around taking references on and locking the root node of the
209 * tree until you end up with a lock on the root. A locked buffer
210 * is returned, with a reference held.
211 */
212struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213{
214 struct extent_buffer *eb;
215
216 while (1) {
217 eb = btrfs_root_node(root);
218 btrfs_tree_read_lock(eb);
219 if (eb == root->node)
220 break;
221 btrfs_tree_read_unlock(eb);
222 free_extent_buffer(eb);
223 }
224 return eb;
225}
226
d352ac68
CM
227/* cowonly root (everything not a reference counted cow subvolume), just get
228 * put onto a simple dirty list. transaction.c walks this to make sure they
229 * get properly updated on disk.
230 */
0b86a832
CM
231static void add_root_to_dirty_list(struct btrfs_root *root)
232{
e5846fc6 233 spin_lock(&root->fs_info->trans_lock);
0b86a832
CM
234 if (root->track_dirty && list_empty(&root->dirty_list)) {
235 list_add(&root->dirty_list,
236 &root->fs_info->dirty_cowonly_roots);
237 }
e5846fc6 238 spin_unlock(&root->fs_info->trans_lock);
0b86a832
CM
239}
240
d352ac68
CM
241/*
242 * used by snapshot creation to make a copy of a root for a tree with
243 * a given objectid. The buffer with the new root node is returned in
244 * cow_ret, and this func returns zero on success or a negative error code.
245 */
be20aa9d
CM
246int btrfs_copy_root(struct btrfs_trans_handle *trans,
247 struct btrfs_root *root,
248 struct extent_buffer *buf,
249 struct extent_buffer **cow_ret, u64 new_root_objectid)
250{
251 struct extent_buffer *cow;
be20aa9d
CM
252 int ret = 0;
253 int level;
5d4f98a2 254 struct btrfs_disk_key disk_key;
be20aa9d
CM
255
256 WARN_ON(root->ref_cows && trans->transid !=
257 root->fs_info->running_transaction->transid);
258 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259
260 level = btrfs_header_level(buf);
5d4f98a2
YZ
261 if (level == 0)
262 btrfs_item_key(buf, &disk_key, 0);
263 else
264 btrfs_node_key(buf, &disk_key, 0);
31840ae1 265
5d4f98a2
YZ
266 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267 new_root_objectid, &disk_key, level,
5581a51a 268 buf->start, 0);
5d4f98a2 269 if (IS_ERR(cow))
be20aa9d
CM
270 return PTR_ERR(cow);
271
272 copy_extent_buffer(cow, buf, 0, 0, cow->len);
273 btrfs_set_header_bytenr(cow, cow->start);
274 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
275 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277 BTRFS_HEADER_FLAG_RELOC);
278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280 else
281 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 282
2b82032c
YZ
283 write_extent_buffer(cow, root->fs_info->fsid,
284 (unsigned long)btrfs_header_fsid(cow),
285 BTRFS_FSID_SIZE);
286
be20aa9d 287 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 288 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 289 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 290 else
66d7e7f0 291 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
4aec2b52 292
be20aa9d
CM
293 if (ret)
294 return ret;
295
296 btrfs_mark_buffer_dirty(cow);
297 *cow_ret = cow;
298 return 0;
299}
300
bd989ba3
JS
301enum mod_log_op {
302 MOD_LOG_KEY_REPLACE,
303 MOD_LOG_KEY_ADD,
304 MOD_LOG_KEY_REMOVE,
305 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307 MOD_LOG_MOVE_KEYS,
308 MOD_LOG_ROOT_REPLACE,
309};
310
311struct tree_mod_move {
312 int dst_slot;
313 int nr_items;
314};
315
316struct tree_mod_root {
317 u64 logical;
318 u8 level;
319};
320
321struct tree_mod_elem {
322 struct rb_node node;
323 u64 index; /* shifted logical */
324 struct seq_list elem;
325 enum mod_log_op op;
326
327 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328 int slot;
329
330 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331 u64 generation;
332
333 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334 struct btrfs_disk_key key;
335 u64 blockptr;
336
337 /* this is used for op == MOD_LOG_MOVE_KEYS */
338 struct tree_mod_move move;
339
340 /* this is used for op == MOD_LOG_ROOT_REPLACE */
341 struct tree_mod_root old_root;
342};
343
344static inline void
345__get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct seq_list *elem)
346{
347 elem->seq = atomic_inc_return(&fs_info->tree_mod_seq);
348 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
349}
350
351void btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
352 struct seq_list *elem)
353{
354 elem->flags = 1;
355 spin_lock(&fs_info->tree_mod_seq_lock);
356 __get_tree_mod_seq(fs_info, elem);
357 spin_unlock(&fs_info->tree_mod_seq_lock);
358}
359
360void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
361 struct seq_list *elem)
362{
363 struct rb_root *tm_root;
364 struct rb_node *node;
365 struct rb_node *next;
366 struct seq_list *cur_elem;
367 struct tree_mod_elem *tm;
368 u64 min_seq = (u64)-1;
369 u64 seq_putting = elem->seq;
370
371 if (!seq_putting)
372 return;
373
374 BUG_ON(!(elem->flags & 1));
375 spin_lock(&fs_info->tree_mod_seq_lock);
376 list_del(&elem->list);
377
378 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
379 if ((cur_elem->flags & 1) && cur_elem->seq < min_seq) {
380 if (seq_putting > cur_elem->seq) {
381 /*
382 * blocker with lower sequence number exists, we
383 * cannot remove anything from the log
384 */
385 goto out;
386 }
387 min_seq = cur_elem->seq;
388 }
389 }
390
391 /*
392 * anything that's lower than the lowest existing (read: blocked)
393 * sequence number can be removed from the tree.
394 */
395 write_lock(&fs_info->tree_mod_log_lock);
396 tm_root = &fs_info->tree_mod_log;
397 for (node = rb_first(tm_root); node; node = next) {
398 next = rb_next(node);
399 tm = container_of(node, struct tree_mod_elem, node);
400 if (tm->elem.seq > min_seq)
401 continue;
402 rb_erase(node, tm_root);
403 list_del(&tm->elem.list);
404 kfree(tm);
405 }
406 write_unlock(&fs_info->tree_mod_log_lock);
407out:
408 spin_unlock(&fs_info->tree_mod_seq_lock);
409}
410
411/*
412 * key order of the log:
413 * index -> sequence
414 *
415 * the index is the shifted logical of the *new* root node for root replace
416 * operations, or the shifted logical of the affected block for all other
417 * operations.
418 */
419static noinline int
420__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
421{
422 struct rb_root *tm_root;
423 struct rb_node **new;
424 struct rb_node *parent = NULL;
425 struct tree_mod_elem *cur;
426 int ret = 0;
427
428 BUG_ON(!tm || !tm->elem.seq);
429
430 write_lock(&fs_info->tree_mod_log_lock);
431 tm_root = &fs_info->tree_mod_log;
432 new = &tm_root->rb_node;
433 while (*new) {
434 cur = container_of(*new, struct tree_mod_elem, node);
435 parent = *new;
436 if (cur->index < tm->index)
437 new = &((*new)->rb_left);
438 else if (cur->index > tm->index)
439 new = &((*new)->rb_right);
440 else if (cur->elem.seq < tm->elem.seq)
441 new = &((*new)->rb_left);
442 else if (cur->elem.seq > tm->elem.seq)
443 new = &((*new)->rb_right);
444 else {
445 kfree(tm);
446 ret = -EEXIST;
447 goto unlock;
448 }
449 }
450
451 rb_link_node(&tm->node, parent, new);
452 rb_insert_color(&tm->node, tm_root);
453unlock:
454 write_unlock(&fs_info->tree_mod_log_lock);
455 return ret;
456}
457
e9b7fd4d
JS
458static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
459 struct extent_buffer *eb) {
460 smp_mb();
461 if (list_empty(&(fs_info)->tree_mod_seq_list))
462 return 1;
463 if (!eb)
464 return 0;
465 if (btrfs_header_level(eb) == 0)
466 return 1;
467 return 0;
468}
469
3310c36e
JS
470/*
471 * This allocates memory and gets a tree modification sequence number when
472 * needed.
473 *
474 * Returns 0 when no sequence number is needed, < 0 on error.
475 * Returns 1 when a sequence number was added. In this case,
476 * fs_info->tree_mod_seq_lock was acquired and must be released by the caller
477 * after inserting into the rb tree.
478 */
926dd8a6
JS
479static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
480 struct tree_mod_elem **tm_ret)
bd989ba3
JS
481{
482 struct tree_mod_elem *tm;
926dd8a6 483 int seq;
bd989ba3 484
e9b7fd4d 485 if (tree_mod_dont_log(fs_info, NULL))
bd989ba3
JS
486 return 0;
487
488 tm = *tm_ret = kzalloc(sizeof(*tm), flags);
489 if (!tm)
490 return -ENOMEM;
491
bd989ba3 492 tm->elem.flags = 0;
926dd8a6
JS
493 spin_lock(&fs_info->tree_mod_seq_lock);
494 if (list_empty(&fs_info->tree_mod_seq_list)) {
495 /*
496 * someone emptied the list while we were waiting for the lock.
497 * we must not add to the list, because no blocker exists. items
498 * are removed from the list only when the existing blocker is
499 * removed from the list.
500 */
501 kfree(tm);
502 seq = 0;
3310c36e 503 spin_unlock(&fs_info->tree_mod_seq_lock);
926dd8a6
JS
504 } else {
505 __get_tree_mod_seq(fs_info, &tm->elem);
506 seq = tm->elem.seq;
507 }
bd989ba3
JS
508
509 return seq;
510}
511
512static noinline int
513tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
514 struct extent_buffer *eb, int slot,
515 enum mod_log_op op, gfp_t flags)
516{
517 struct tree_mod_elem *tm;
518 int ret;
519
520 ret = tree_mod_alloc(fs_info, flags, &tm);
521 if (ret <= 0)
522 return ret;
523
524 tm->index = eb->start >> PAGE_CACHE_SHIFT;
525 if (op != MOD_LOG_KEY_ADD) {
526 btrfs_node_key(eb, &tm->key, slot);
527 tm->blockptr = btrfs_node_blockptr(eb, slot);
528 }
529 tm->op = op;
530 tm->slot = slot;
531 tm->generation = btrfs_node_ptr_generation(eb, slot);
532
3310c36e
JS
533 ret = __tree_mod_log_insert(fs_info, tm);
534 spin_unlock(&fs_info->tree_mod_seq_lock);
535 return ret;
bd989ba3
JS
536}
537
538static noinline int
539tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
540 int slot, enum mod_log_op op)
541{
542 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
543}
544
545static noinline int
546tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
547 struct extent_buffer *eb, int dst_slot, int src_slot,
548 int nr_items, gfp_t flags)
549{
550 struct tree_mod_elem *tm;
551 int ret;
552 int i;
553
f395694c
JS
554 if (tree_mod_dont_log(fs_info, eb))
555 return 0;
bd989ba3
JS
556
557 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
558 ret = tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
559 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
560 BUG_ON(ret < 0);
561 }
562
f395694c
JS
563 ret = tree_mod_alloc(fs_info, flags, &tm);
564 if (ret <= 0)
565 return ret;
566
bd989ba3
JS
567 tm->index = eb->start >> PAGE_CACHE_SHIFT;
568 tm->slot = src_slot;
569 tm->move.dst_slot = dst_slot;
570 tm->move.nr_items = nr_items;
571 tm->op = MOD_LOG_MOVE_KEYS;
572
3310c36e
JS
573 ret = __tree_mod_log_insert(fs_info, tm);
574 spin_unlock(&fs_info->tree_mod_seq_lock);
575 return ret;
bd989ba3
JS
576}
577
578static noinline int
579tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
580 struct extent_buffer *old_root,
581 struct extent_buffer *new_root, gfp_t flags)
582{
583 struct tree_mod_elem *tm;
584 int ret;
585
586 ret = tree_mod_alloc(fs_info, flags, &tm);
587 if (ret <= 0)
588 return ret;
589
590 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
591 tm->old_root.logical = old_root->start;
592 tm->old_root.level = btrfs_header_level(old_root);
593 tm->generation = btrfs_header_generation(old_root);
594 tm->op = MOD_LOG_ROOT_REPLACE;
595
3310c36e
JS
596 ret = __tree_mod_log_insert(fs_info, tm);
597 spin_unlock(&fs_info->tree_mod_seq_lock);
598 return ret;
bd989ba3
JS
599}
600
601static struct tree_mod_elem *
602__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
603 int smallest)
604{
605 struct rb_root *tm_root;
606 struct rb_node *node;
607 struct tree_mod_elem *cur = NULL;
608 struct tree_mod_elem *found = NULL;
609 u64 index = start >> PAGE_CACHE_SHIFT;
610
611 read_lock(&fs_info->tree_mod_log_lock);
612 tm_root = &fs_info->tree_mod_log;
613 node = tm_root->rb_node;
614 while (node) {
615 cur = container_of(node, struct tree_mod_elem, node);
616 if (cur->index < index) {
617 node = node->rb_left;
618 } else if (cur->index > index) {
619 node = node->rb_right;
620 } else if (cur->elem.seq < min_seq) {
621 node = node->rb_left;
622 } else if (!smallest) {
623 /* we want the node with the highest seq */
624 if (found)
625 BUG_ON(found->elem.seq > cur->elem.seq);
626 found = cur;
627 node = node->rb_left;
628 } else if (cur->elem.seq > min_seq) {
629 /* we want the node with the smallest seq */
630 if (found)
631 BUG_ON(found->elem.seq < cur->elem.seq);
632 found = cur;
633 node = node->rb_right;
634 } else {
635 found = cur;
636 break;
637 }
638 }
639 read_unlock(&fs_info->tree_mod_log_lock);
640
641 return found;
642}
643
644/*
645 * this returns the element from the log with the smallest time sequence
646 * value that's in the log (the oldest log item). any element with a time
647 * sequence lower than min_seq will be ignored.
648 */
649static struct tree_mod_elem *
650tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
651 u64 min_seq)
652{
653 return __tree_mod_log_search(fs_info, start, min_seq, 1);
654}
655
656/*
657 * this returns the element from the log with the largest time sequence
658 * value that's in the log (the most recent log item). any element with
659 * a time sequence lower than min_seq will be ignored.
660 */
661static struct tree_mod_elem *
662tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
663{
664 return __tree_mod_log_search(fs_info, start, min_seq, 0);
665}
666
667static inline void
668tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
669 struct extent_buffer *src, unsigned long dst_offset,
670 unsigned long src_offset, int nr_items)
671{
672 int ret;
673 int i;
674
e9b7fd4d 675 if (tree_mod_dont_log(fs_info, NULL))
bd989ba3
JS
676 return;
677
678 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
679 return;
680
681 /* speed this up by single seq for all operations? */
682 for (i = 0; i < nr_items; i++) {
683 ret = tree_mod_log_insert_key(fs_info, src, i + src_offset,
684 MOD_LOG_KEY_REMOVE);
685 BUG_ON(ret < 0);
686 ret = tree_mod_log_insert_key(fs_info, dst, i + dst_offset,
687 MOD_LOG_KEY_ADD);
688 BUG_ON(ret < 0);
689 }
690}
691
692static inline void
693tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
694 int dst_offset, int src_offset, int nr_items)
695{
696 int ret;
697 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
698 nr_items, GFP_NOFS);
699 BUG_ON(ret < 0);
700}
701
702static inline void
703tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
704 struct extent_buffer *eb,
705 struct btrfs_disk_key *disk_key, int slot, int atomic)
706{
707 int ret;
708
709 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
710 MOD_LOG_KEY_REPLACE,
711 atomic ? GFP_ATOMIC : GFP_NOFS);
712 BUG_ON(ret < 0);
713}
714
715static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
716 struct extent_buffer *eb)
717{
718 int i;
719 int ret;
720 u32 nritems;
721
e9b7fd4d 722 if (tree_mod_dont_log(fs_info, eb))
bd989ba3
JS
723 return;
724
725 nritems = btrfs_header_nritems(eb);
726 for (i = nritems - 1; i >= 0; i--) {
727 ret = tree_mod_log_insert_key(fs_info, eb, i,
728 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
729 BUG_ON(ret < 0);
730 }
731}
732
733static inline void
734tree_mod_log_set_root_pointer(struct btrfs_root *root,
735 struct extent_buffer *new_root_node)
736{
737 int ret;
738 tree_mod_log_free_eb(root->fs_info, root->node);
739 ret = tree_mod_log_insert_root(root->fs_info, root->node,
740 new_root_node, GFP_NOFS);
741 BUG_ON(ret < 0);
742}
743
5d4f98a2
YZ
744/*
745 * check if the tree block can be shared by multiple trees
746 */
747int btrfs_block_can_be_shared(struct btrfs_root *root,
748 struct extent_buffer *buf)
749{
750 /*
751 * Tree blocks not in refernece counted trees and tree roots
752 * are never shared. If a block was allocated after the last
753 * snapshot and the block was not allocated by tree relocation,
754 * we know the block is not shared.
755 */
756 if (root->ref_cows &&
757 buf != root->node && buf != root->commit_root &&
758 (btrfs_header_generation(buf) <=
759 btrfs_root_last_snapshot(&root->root_item) ||
760 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
761 return 1;
762#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
763 if (root->ref_cows &&
764 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
765 return 1;
766#endif
767 return 0;
768}
769
770static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
771 struct btrfs_root *root,
772 struct extent_buffer *buf,
f0486c68
YZ
773 struct extent_buffer *cow,
774 int *last_ref)
5d4f98a2
YZ
775{
776 u64 refs;
777 u64 owner;
778 u64 flags;
779 u64 new_flags = 0;
780 int ret;
781
782 /*
783 * Backrefs update rules:
784 *
785 * Always use full backrefs for extent pointers in tree block
786 * allocated by tree relocation.
787 *
788 * If a shared tree block is no longer referenced by its owner
789 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
790 * use full backrefs for extent pointers in tree block.
791 *
792 * If a tree block is been relocating
793 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
794 * use full backrefs for extent pointers in tree block.
795 * The reason for this is some operations (such as drop tree)
796 * are only allowed for blocks use full backrefs.
797 */
798
799 if (btrfs_block_can_be_shared(root, buf)) {
800 ret = btrfs_lookup_extent_info(trans, root, buf->start,
801 buf->len, &refs, &flags);
be1a5564
MF
802 if (ret)
803 return ret;
e5df9573
MF
804 if (refs == 0) {
805 ret = -EROFS;
806 btrfs_std_error(root->fs_info, ret);
807 return ret;
808 }
5d4f98a2
YZ
809 } else {
810 refs = 1;
811 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
812 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
813 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
814 else
815 flags = 0;
816 }
817
818 owner = btrfs_header_owner(buf);
819 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
820 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
821
822 if (refs > 1) {
823 if ((owner == root->root_key.objectid ||
824 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
825 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
66d7e7f0 826 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
79787eaa 827 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
828
829 if (root->root_key.objectid ==
830 BTRFS_TREE_RELOC_OBJECTID) {
66d7e7f0 831 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
79787eaa 832 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 833 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
79787eaa 834 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
835 }
836 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
837 } else {
838
839 if (root->root_key.objectid ==
840 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 841 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 842 else
66d7e7f0 843 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 844 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
845 }
846 if (new_flags != 0) {
847 ret = btrfs_set_disk_extent_flags(trans, root,
848 buf->start,
849 buf->len,
850 new_flags, 0);
be1a5564
MF
851 if (ret)
852 return ret;
5d4f98a2
YZ
853 }
854 } else {
855 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
856 if (root->root_key.objectid ==
857 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 858 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 859 else
66d7e7f0 860 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 861 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 862 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
79787eaa 863 BUG_ON(ret); /* -ENOMEM */
5d4f98a2 864 }
f230475e
JS
865 /*
866 * don't log freeing in case we're freeing the root node, this
867 * is done by tree_mod_log_set_root_pointer later
868 */
869 if (buf != root->node && btrfs_header_level(buf) != 0)
870 tree_mod_log_free_eb(root->fs_info, buf);
5d4f98a2 871 clean_tree_block(trans, root, buf);
f0486c68 872 *last_ref = 1;
5d4f98a2
YZ
873 }
874 return 0;
875}
876
d352ac68 877/*
d397712b
CM
878 * does the dirty work in cow of a single block. The parent block (if
879 * supplied) is updated to point to the new cow copy. The new buffer is marked
880 * dirty and returned locked. If you modify the block it needs to be marked
881 * dirty again.
d352ac68
CM
882 *
883 * search_start -- an allocation hint for the new block
884 *
d397712b
CM
885 * empty_size -- a hint that you plan on doing more cow. This is the size in
886 * bytes the allocator should try to find free next to the block it returns.
887 * This is just a hint and may be ignored by the allocator.
d352ac68 888 */
d397712b 889static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
890 struct btrfs_root *root,
891 struct extent_buffer *buf,
892 struct extent_buffer *parent, int parent_slot,
893 struct extent_buffer **cow_ret,
9fa8cfe7 894 u64 search_start, u64 empty_size)
02217ed2 895{
5d4f98a2 896 struct btrfs_disk_key disk_key;
5f39d397 897 struct extent_buffer *cow;
be1a5564 898 int level, ret;
f0486c68 899 int last_ref = 0;
925baedd 900 int unlock_orig = 0;
5d4f98a2 901 u64 parent_start;
7bb86316 902
925baedd
CM
903 if (*cow_ret == buf)
904 unlock_orig = 1;
905
b9447ef8 906 btrfs_assert_tree_locked(buf);
925baedd 907
7bb86316
CM
908 WARN_ON(root->ref_cows && trans->transid !=
909 root->fs_info->running_transaction->transid);
6702ed49 910 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
5f39d397 911
7bb86316 912 level = btrfs_header_level(buf);
31840ae1 913
5d4f98a2
YZ
914 if (level == 0)
915 btrfs_item_key(buf, &disk_key, 0);
916 else
917 btrfs_node_key(buf, &disk_key, 0);
918
919 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
920 if (parent)
921 parent_start = parent->start;
922 else
923 parent_start = 0;
924 } else
925 parent_start = 0;
926
927 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
928 root->root_key.objectid, &disk_key,
5581a51a 929 level, search_start, empty_size);
54aa1f4d
CM
930 if (IS_ERR(cow))
931 return PTR_ERR(cow);
6702ed49 932
b4ce94de
CM
933 /* cow is set to blocking by btrfs_init_new_buffer */
934
5f39d397 935 copy_extent_buffer(cow, buf, 0, 0, cow->len);
db94535d 936 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 937 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
938 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
939 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
940 BTRFS_HEADER_FLAG_RELOC);
941 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
942 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
943 else
944 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 945
2b82032c
YZ
946 write_extent_buffer(cow, root->fs_info->fsid,
947 (unsigned long)btrfs_header_fsid(cow),
948 BTRFS_FSID_SIZE);
949
be1a5564 950 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 951 if (ret) {
79787eaa 952 btrfs_abort_transaction(trans, root, ret);
b68dc2a9
MF
953 return ret;
954 }
1a40e23b 955
3fd0a558
YZ
956 if (root->ref_cows)
957 btrfs_reloc_cow_block(trans, root, buf, cow);
958
02217ed2 959 if (buf == root->node) {
925baedd 960 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
961 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
962 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
963 parent_start = buf->start;
964 else
965 parent_start = 0;
925baedd 966
5f39d397 967 extent_buffer_get(cow);
f230475e 968 tree_mod_log_set_root_pointer(root, cow);
240f62c8 969 rcu_assign_pointer(root->node, cow);
925baedd 970
f0486c68 971 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 972 last_ref);
5f39d397 973 free_extent_buffer(buf);
0b86a832 974 add_root_to_dirty_list(root);
02217ed2 975 } else {
5d4f98a2
YZ
976 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
977 parent_start = parent->start;
978 else
979 parent_start = 0;
980
981 WARN_ON(trans->transid != btrfs_header_generation(parent));
f230475e
JS
982 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
983 MOD_LOG_KEY_REPLACE);
5f39d397 984 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 985 cow->start);
74493f7a
CM
986 btrfs_set_node_ptr_generation(parent, parent_slot,
987 trans->transid);
d6025579 988 btrfs_mark_buffer_dirty(parent);
f0486c68 989 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 990 last_ref);
02217ed2 991 }
925baedd
CM
992 if (unlock_orig)
993 btrfs_tree_unlock(buf);
3083ee2e 994 free_extent_buffer_stale(buf);
ccd467d6 995 btrfs_mark_buffer_dirty(cow);
2c90e5d6 996 *cow_ret = cow;
02217ed2
CM
997 return 0;
998}
999
5d9e75c4
JS
1000/*
1001 * returns the logical address of the oldest predecessor of the given root.
1002 * entries older than time_seq are ignored.
1003 */
1004static struct tree_mod_elem *
1005__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1006 struct btrfs_root *root, u64 time_seq)
1007{
1008 struct tree_mod_elem *tm;
1009 struct tree_mod_elem *found = NULL;
1010 u64 root_logical = root->node->start;
1011 int looped = 0;
1012
1013 if (!time_seq)
1014 return 0;
1015
1016 /*
1017 * the very last operation that's logged for a root is the replacement
1018 * operation (if it is replaced at all). this has the index of the *new*
1019 * root, making it the very first operation that's logged for this root.
1020 */
1021 while (1) {
1022 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1023 time_seq);
1024 if (!looped && !tm)
1025 return 0;
1026 /*
28da9fb4
JS
1027 * if there are no tree operation for the oldest root, we simply
1028 * return it. this should only happen if that (old) root is at
1029 * level 0.
5d9e75c4 1030 */
28da9fb4
JS
1031 if (!tm)
1032 break;
5d9e75c4 1033
28da9fb4
JS
1034 /*
1035 * if there's an operation that's not a root replacement, we
1036 * found the oldest version of our root. normally, we'll find a
1037 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1038 */
5d9e75c4
JS
1039 if (tm->op != MOD_LOG_ROOT_REPLACE)
1040 break;
1041
1042 found = tm;
1043 root_logical = tm->old_root.logical;
1044 BUG_ON(root_logical == root->node->start);
1045 looped = 1;
1046 }
1047
a95236d9
JS
1048 /* if there's no old root to return, return what we found instead */
1049 if (!found)
1050 found = tm;
1051
5d9e75c4
JS
1052 return found;
1053}
1054
1055/*
1056 * tm is a pointer to the first operation to rewind within eb. then, all
1057 * previous operations will be rewinded (until we reach something older than
1058 * time_seq).
1059 */
1060static void
1061__tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1062 struct tree_mod_elem *first_tm)
1063{
1064 u32 n;
1065 struct rb_node *next;
1066 struct tree_mod_elem *tm = first_tm;
1067 unsigned long o_dst;
1068 unsigned long o_src;
1069 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1070
1071 n = btrfs_header_nritems(eb);
1072 while (tm && tm->elem.seq >= time_seq) {
1073 /*
1074 * all the operations are recorded with the operator used for
1075 * the modification. as we're going backwards, we do the
1076 * opposite of each operation here.
1077 */
1078 switch (tm->op) {
1079 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1080 BUG_ON(tm->slot < n);
1081 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1082 case MOD_LOG_KEY_REMOVE:
1083 btrfs_set_node_key(eb, &tm->key, tm->slot);
1084 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1085 btrfs_set_node_ptr_generation(eb, tm->slot,
1086 tm->generation);
1087 n++;
1088 break;
1089 case MOD_LOG_KEY_REPLACE:
1090 BUG_ON(tm->slot >= n);
1091 btrfs_set_node_key(eb, &tm->key, tm->slot);
1092 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1093 btrfs_set_node_ptr_generation(eb, tm->slot,
1094 tm->generation);
1095 break;
1096 case MOD_LOG_KEY_ADD:
19956c7e 1097 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1098 n--;
1099 break;
1100 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1101 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1102 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1103 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1104 tm->move.nr_items * p_size);
1105 break;
1106 case MOD_LOG_ROOT_REPLACE:
1107 /*
1108 * this operation is special. for roots, this must be
1109 * handled explicitly before rewinding.
1110 * for non-roots, this operation may exist if the node
1111 * was a root: root A -> child B; then A gets empty and
1112 * B is promoted to the new root. in the mod log, we'll
1113 * have a root-replace operation for B, a tree block
1114 * that is no root. we simply ignore that operation.
1115 */
1116 break;
1117 }
1118 next = rb_next(&tm->node);
1119 if (!next)
1120 break;
1121 tm = container_of(next, struct tree_mod_elem, node);
1122 if (tm->index != first_tm->index)
1123 break;
1124 }
1125 btrfs_set_header_nritems(eb, n);
1126}
1127
1128static struct extent_buffer *
1129tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1130 u64 time_seq)
1131{
1132 struct extent_buffer *eb_rewin;
1133 struct tree_mod_elem *tm;
1134
1135 if (!time_seq)
1136 return eb;
1137
1138 if (btrfs_header_level(eb) == 0)
1139 return eb;
1140
1141 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1142 if (!tm)
1143 return eb;
1144
1145 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1146 BUG_ON(tm->slot != 0);
1147 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1148 fs_info->tree_root->nodesize);
1149 BUG_ON(!eb_rewin);
1150 btrfs_set_header_bytenr(eb_rewin, eb->start);
1151 btrfs_set_header_backref_rev(eb_rewin,
1152 btrfs_header_backref_rev(eb));
1153 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1154 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1155 } else {
1156 eb_rewin = btrfs_clone_extent_buffer(eb);
1157 BUG_ON(!eb_rewin);
1158 }
1159
1160 extent_buffer_get(eb_rewin);
1161 free_extent_buffer(eb);
1162
1163 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1164
1165 return eb_rewin;
1166}
1167
8ba97a15
JS
1168/*
1169 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1170 * value. If there are no changes, the current root->root_node is returned. If
1171 * anything changed in between, there's a fresh buffer allocated on which the
1172 * rewind operations are done. In any case, the returned buffer is read locked.
1173 * Returns NULL on error (with no locks held).
1174 */
5d9e75c4
JS
1175static inline struct extent_buffer *
1176get_old_root(struct btrfs_root *root, u64 time_seq)
1177{
1178 struct tree_mod_elem *tm;
1179 struct extent_buffer *eb;
a95236d9 1180 struct tree_mod_root *old_root = NULL;
4325edd0 1181 u64 old_generation = 0;
a95236d9 1182 u64 logical;
5d9e75c4 1183
8ba97a15 1184 eb = btrfs_read_lock_root_node(root);
5d9e75c4
JS
1185 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1186 if (!tm)
1187 return root->node;
1188
a95236d9
JS
1189 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1190 old_root = &tm->old_root;
1191 old_generation = tm->generation;
1192 logical = old_root->logical;
1193 } else {
1194 logical = root->node->start;
1195 }
5d9e75c4 1196
a95236d9 1197 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
a95236d9 1198 if (old_root)
28da9fb4 1199 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
a95236d9
JS
1200 else
1201 eb = btrfs_clone_extent_buffer(root->node);
8ba97a15
JS
1202 btrfs_tree_read_unlock(root->node);
1203 free_extent_buffer(root->node);
1204 if (!eb)
1205 return NULL;
1206 btrfs_tree_read_lock(eb);
a95236d9 1207 if (old_root) {
5d9e75c4
JS
1208 btrfs_set_header_bytenr(eb, eb->start);
1209 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1210 btrfs_set_header_owner(eb, root->root_key.objectid);
a95236d9
JS
1211 btrfs_set_header_level(eb, old_root->level);
1212 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1213 }
28da9fb4
JS
1214 if (tm)
1215 __tree_mod_log_rewind(eb, time_seq, tm);
1216 else
1217 WARN_ON(btrfs_header_level(eb) != 0);
8ba97a15 1218 extent_buffer_get(eb);
5d9e75c4
JS
1219
1220 return eb;
1221}
1222
5d4f98a2
YZ
1223static inline int should_cow_block(struct btrfs_trans_handle *trans,
1224 struct btrfs_root *root,
1225 struct extent_buffer *buf)
1226{
f1ebcc74
LB
1227 /* ensure we can see the force_cow */
1228 smp_rmb();
1229
1230 /*
1231 * We do not need to cow a block if
1232 * 1) this block is not created or changed in this transaction;
1233 * 2) this block does not belong to TREE_RELOC tree;
1234 * 3) the root is not forced COW.
1235 *
1236 * What is forced COW:
1237 * when we create snapshot during commiting the transaction,
1238 * after we've finished coping src root, we must COW the shared
1239 * block to ensure the metadata consistency.
1240 */
5d4f98a2
YZ
1241 if (btrfs_header_generation(buf) == trans->transid &&
1242 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1243 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74
LB
1244 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1245 !root->force_cow)
5d4f98a2
YZ
1246 return 0;
1247 return 1;
1248}
1249
d352ac68
CM
1250/*
1251 * cows a single block, see __btrfs_cow_block for the real work.
1252 * This version of it has extra checks so that a block isn't cow'd more than
1253 * once per transaction, as long as it hasn't been written yet
1254 */
d397712b 1255noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1256 struct btrfs_root *root, struct extent_buffer *buf,
1257 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1258 struct extent_buffer **cow_ret)
6702ed49
CM
1259{
1260 u64 search_start;
f510cfec 1261 int ret;
dc17ff8f 1262
6702ed49 1263 if (trans->transaction != root->fs_info->running_transaction) {
d397712b
CM
1264 printk(KERN_CRIT "trans %llu running %llu\n",
1265 (unsigned long long)trans->transid,
1266 (unsigned long long)
6702ed49
CM
1267 root->fs_info->running_transaction->transid);
1268 WARN_ON(1);
1269 }
1270 if (trans->transid != root->fs_info->generation) {
d397712b
CM
1271 printk(KERN_CRIT "trans %llu running %llu\n",
1272 (unsigned long long)trans->transid,
1273 (unsigned long long)root->fs_info->generation);
6702ed49
CM
1274 WARN_ON(1);
1275 }
dc17ff8f 1276
5d4f98a2 1277 if (!should_cow_block(trans, root, buf)) {
6702ed49
CM
1278 *cow_ret = buf;
1279 return 0;
1280 }
c487685d 1281
0b86a832 1282 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
b4ce94de
CM
1283
1284 if (parent)
1285 btrfs_set_lock_blocking(parent);
1286 btrfs_set_lock_blocking(buf);
1287
f510cfec 1288 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1289 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1290
1291 trace_btrfs_cow_block(root, buf, *cow_ret);
1292
f510cfec 1293 return ret;
6702ed49
CM
1294}
1295
d352ac68
CM
1296/*
1297 * helper function for defrag to decide if two blocks pointed to by a
1298 * node are actually close by
1299 */
6b80053d 1300static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1301{
6b80053d 1302 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1303 return 1;
6b80053d 1304 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1305 return 1;
1306 return 0;
1307}
1308
081e9573
CM
1309/*
1310 * compare two keys in a memcmp fashion
1311 */
1312static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1313{
1314 struct btrfs_key k1;
1315
1316 btrfs_disk_key_to_cpu(&k1, disk);
1317
20736aba 1318 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1319}
1320
f3465ca4
JB
1321/*
1322 * same as comp_keys only with two btrfs_key's
1323 */
5d4f98a2 1324int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
f3465ca4
JB
1325{
1326 if (k1->objectid > k2->objectid)
1327 return 1;
1328 if (k1->objectid < k2->objectid)
1329 return -1;
1330 if (k1->type > k2->type)
1331 return 1;
1332 if (k1->type < k2->type)
1333 return -1;
1334 if (k1->offset > k2->offset)
1335 return 1;
1336 if (k1->offset < k2->offset)
1337 return -1;
1338 return 0;
1339}
081e9573 1340
d352ac68
CM
1341/*
1342 * this is used by the defrag code to go through all the
1343 * leaves pointed to by a node and reallocate them so that
1344 * disk order is close to key order
1345 */
6702ed49 1346int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1347 struct btrfs_root *root, struct extent_buffer *parent,
a6b6e75e
CM
1348 int start_slot, int cache_only, u64 *last_ret,
1349 struct btrfs_key *progress)
6702ed49 1350{
6b80053d 1351 struct extent_buffer *cur;
6702ed49 1352 u64 blocknr;
ca7a79ad 1353 u64 gen;
e9d0b13b
CM
1354 u64 search_start = *last_ret;
1355 u64 last_block = 0;
6702ed49
CM
1356 u64 other;
1357 u32 parent_nritems;
6702ed49
CM
1358 int end_slot;
1359 int i;
1360 int err = 0;
f2183bde 1361 int parent_level;
6b80053d
CM
1362 int uptodate;
1363 u32 blocksize;
081e9573
CM
1364 int progress_passed = 0;
1365 struct btrfs_disk_key disk_key;
6702ed49 1366
5708b959
CM
1367 parent_level = btrfs_header_level(parent);
1368 if (cache_only && parent_level != 1)
1369 return 0;
1370
d397712b 1371 if (trans->transaction != root->fs_info->running_transaction)
6702ed49 1372 WARN_ON(1);
d397712b 1373 if (trans->transid != root->fs_info->generation)
6702ed49 1374 WARN_ON(1);
86479a04 1375
6b80053d 1376 parent_nritems = btrfs_header_nritems(parent);
6b80053d 1377 blocksize = btrfs_level_size(root, parent_level - 1);
6702ed49
CM
1378 end_slot = parent_nritems;
1379
1380 if (parent_nritems == 1)
1381 return 0;
1382
b4ce94de
CM
1383 btrfs_set_lock_blocking(parent);
1384
6702ed49
CM
1385 for (i = start_slot; i < end_slot; i++) {
1386 int close = 1;
a6b6e75e 1387
081e9573
CM
1388 btrfs_node_key(parent, &disk_key, i);
1389 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1390 continue;
1391
1392 progress_passed = 1;
6b80053d 1393 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1394 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1395 if (last_block == 0)
1396 last_block = blocknr;
5708b959 1397
6702ed49 1398 if (i > 0) {
6b80053d
CM
1399 other = btrfs_node_blockptr(parent, i - 1);
1400 close = close_blocks(blocknr, other, blocksize);
6702ed49 1401 }
0ef3e66b 1402 if (!close && i < end_slot - 2) {
6b80053d
CM
1403 other = btrfs_node_blockptr(parent, i + 1);
1404 close = close_blocks(blocknr, other, blocksize);
6702ed49 1405 }
e9d0b13b
CM
1406 if (close) {
1407 last_block = blocknr;
6702ed49 1408 continue;
e9d0b13b 1409 }
6702ed49 1410
6b80053d
CM
1411 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1412 if (cur)
b9fab919 1413 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1414 else
1415 uptodate = 0;
5708b959 1416 if (!cur || !uptodate) {
6702ed49 1417 if (cache_only) {
6b80053d 1418 free_extent_buffer(cur);
6702ed49
CM
1419 continue;
1420 }
6b80053d
CM
1421 if (!cur) {
1422 cur = read_tree_block(root, blocknr,
ca7a79ad 1423 blocksize, gen);
97d9a8a4
TI
1424 if (!cur)
1425 return -EIO;
6b80053d 1426 } else if (!uptodate) {
018642a1
TI
1427 err = btrfs_read_buffer(cur, gen);
1428 if (err) {
1429 free_extent_buffer(cur);
1430 return err;
1431 }
f2183bde 1432 }
6702ed49 1433 }
e9d0b13b 1434 if (search_start == 0)
6b80053d 1435 search_start = last_block;
e9d0b13b 1436
e7a84565 1437 btrfs_tree_lock(cur);
b4ce94de 1438 btrfs_set_lock_blocking(cur);
6b80053d 1439 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1440 &cur, search_start,
6b80053d 1441 min(16 * blocksize,
9fa8cfe7 1442 (end_slot - i) * blocksize));
252c38f0 1443 if (err) {
e7a84565 1444 btrfs_tree_unlock(cur);
6b80053d 1445 free_extent_buffer(cur);
6702ed49 1446 break;
252c38f0 1447 }
e7a84565
CM
1448 search_start = cur->start;
1449 last_block = cur->start;
f2183bde 1450 *last_ret = search_start;
e7a84565
CM
1451 btrfs_tree_unlock(cur);
1452 free_extent_buffer(cur);
6702ed49
CM
1453 }
1454 return err;
1455}
1456
74123bd7
CM
1457/*
1458 * The leaf data grows from end-to-front in the node.
1459 * this returns the address of the start of the last item,
1460 * which is the stop of the leaf data stack
1461 */
123abc88 1462static inline unsigned int leaf_data_end(struct btrfs_root *root,
5f39d397 1463 struct extent_buffer *leaf)
be0e5c09 1464{
5f39d397 1465 u32 nr = btrfs_header_nritems(leaf);
be0e5c09 1466 if (nr == 0)
123abc88 1467 return BTRFS_LEAF_DATA_SIZE(root);
5f39d397 1468 return btrfs_item_offset_nr(leaf, nr - 1);
be0e5c09
CM
1469}
1470
aa5d6bed 1471
74123bd7 1472/*
5f39d397
CM
1473 * search for key in the extent_buffer. The items start at offset p,
1474 * and they are item_size apart. There are 'max' items in p.
1475 *
74123bd7
CM
1476 * the slot in the array is returned via slot, and it points to
1477 * the place where you would insert key if it is not found in
1478 * the array.
1479 *
1480 * slot may point to max if the key is bigger than all of the keys
1481 */
e02119d5
CM
1482static noinline int generic_bin_search(struct extent_buffer *eb,
1483 unsigned long p,
1484 int item_size, struct btrfs_key *key,
1485 int max, int *slot)
be0e5c09
CM
1486{
1487 int low = 0;
1488 int high = max;
1489 int mid;
1490 int ret;
479965d6 1491 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1492 struct btrfs_disk_key unaligned;
1493 unsigned long offset;
5f39d397
CM
1494 char *kaddr = NULL;
1495 unsigned long map_start = 0;
1496 unsigned long map_len = 0;
479965d6 1497 int err;
be0e5c09 1498
d397712b 1499 while (low < high) {
be0e5c09 1500 mid = (low + high) / 2;
5f39d397
CM
1501 offset = p + mid * item_size;
1502
a6591715 1503 if (!kaddr || offset < map_start ||
5f39d397
CM
1504 (offset + sizeof(struct btrfs_disk_key)) >
1505 map_start + map_len) {
934d375b
CM
1506
1507 err = map_private_extent_buffer(eb, offset,
479965d6 1508 sizeof(struct btrfs_disk_key),
a6591715 1509 &kaddr, &map_start, &map_len);
479965d6
CM
1510
1511 if (!err) {
1512 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1513 map_start);
1514 } else {
1515 read_extent_buffer(eb, &unaligned,
1516 offset, sizeof(unaligned));
1517 tmp = &unaligned;
1518 }
5f39d397 1519
5f39d397
CM
1520 } else {
1521 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1522 map_start);
1523 }
be0e5c09
CM
1524 ret = comp_keys(tmp, key);
1525
1526 if (ret < 0)
1527 low = mid + 1;
1528 else if (ret > 0)
1529 high = mid;
1530 else {
1531 *slot = mid;
1532 return 0;
1533 }
1534 }
1535 *slot = low;
1536 return 1;
1537}
1538
97571fd0
CM
1539/*
1540 * simple bin_search frontend that does the right thing for
1541 * leaves vs nodes
1542 */
5f39d397
CM
1543static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1544 int level, int *slot)
be0e5c09 1545{
f775738f 1546 if (level == 0)
5f39d397
CM
1547 return generic_bin_search(eb,
1548 offsetof(struct btrfs_leaf, items),
0783fcfc 1549 sizeof(struct btrfs_item),
5f39d397 1550 key, btrfs_header_nritems(eb),
7518a238 1551 slot);
f775738f 1552 else
5f39d397
CM
1553 return generic_bin_search(eb,
1554 offsetof(struct btrfs_node, ptrs),
123abc88 1555 sizeof(struct btrfs_key_ptr),
5f39d397 1556 key, btrfs_header_nritems(eb),
7518a238 1557 slot);
be0e5c09
CM
1558}
1559
5d4f98a2
YZ
1560int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1561 int level, int *slot)
1562{
1563 return bin_search(eb, key, level, slot);
1564}
1565
f0486c68
YZ
1566static void root_add_used(struct btrfs_root *root, u32 size)
1567{
1568 spin_lock(&root->accounting_lock);
1569 btrfs_set_root_used(&root->root_item,
1570 btrfs_root_used(&root->root_item) + size);
1571 spin_unlock(&root->accounting_lock);
1572}
1573
1574static void root_sub_used(struct btrfs_root *root, u32 size)
1575{
1576 spin_lock(&root->accounting_lock);
1577 btrfs_set_root_used(&root->root_item,
1578 btrfs_root_used(&root->root_item) - size);
1579 spin_unlock(&root->accounting_lock);
1580}
1581
d352ac68
CM
1582/* given a node and slot number, this reads the blocks it points to. The
1583 * extent buffer is returned with a reference taken (but unlocked).
1584 * NULL is returned on error.
1585 */
e02119d5 1586static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
5f39d397 1587 struct extent_buffer *parent, int slot)
bb803951 1588{
ca7a79ad 1589 int level = btrfs_header_level(parent);
bb803951
CM
1590 if (slot < 0)
1591 return NULL;
5f39d397 1592 if (slot >= btrfs_header_nritems(parent))
bb803951 1593 return NULL;
ca7a79ad
CM
1594
1595 BUG_ON(level == 0);
1596
db94535d 1597 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
ca7a79ad
CM
1598 btrfs_level_size(root, level - 1),
1599 btrfs_node_ptr_generation(parent, slot));
bb803951
CM
1600}
1601
d352ac68
CM
1602/*
1603 * node level balancing, used to make sure nodes are in proper order for
1604 * item deletion. We balance from the top down, so we have to make sure
1605 * that a deletion won't leave an node completely empty later on.
1606 */
e02119d5 1607static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1608 struct btrfs_root *root,
1609 struct btrfs_path *path, int level)
bb803951 1610{
5f39d397
CM
1611 struct extent_buffer *right = NULL;
1612 struct extent_buffer *mid;
1613 struct extent_buffer *left = NULL;
1614 struct extent_buffer *parent = NULL;
bb803951
CM
1615 int ret = 0;
1616 int wret;
1617 int pslot;
bb803951 1618 int orig_slot = path->slots[level];
79f95c82 1619 u64 orig_ptr;
bb803951
CM
1620
1621 if (level == 0)
1622 return 0;
1623
5f39d397 1624 mid = path->nodes[level];
b4ce94de 1625
bd681513
CM
1626 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1627 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1628 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1629
1d4f8a0c 1630 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1631
a05a9bb1 1632 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1633 parent = path->nodes[level + 1];
a05a9bb1
LZ
1634 pslot = path->slots[level + 1];
1635 }
bb803951 1636
40689478
CM
1637 /*
1638 * deal with the case where there is only one pointer in the root
1639 * by promoting the node below to a root
1640 */
5f39d397
CM
1641 if (!parent) {
1642 struct extent_buffer *child;
bb803951 1643
5f39d397 1644 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1645 return 0;
1646
1647 /* promote the child to a root */
5f39d397 1648 child = read_node_slot(root, mid, 0);
305a26af
MF
1649 if (!child) {
1650 ret = -EROFS;
1651 btrfs_std_error(root->fs_info, ret);
1652 goto enospc;
1653 }
1654
925baedd 1655 btrfs_tree_lock(child);
b4ce94de 1656 btrfs_set_lock_blocking(child);
9fa8cfe7 1657 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1658 if (ret) {
1659 btrfs_tree_unlock(child);
1660 free_extent_buffer(child);
1661 goto enospc;
1662 }
2f375ab9 1663
f230475e 1664 tree_mod_log_set_root_pointer(root, child);
240f62c8 1665 rcu_assign_pointer(root->node, child);
925baedd 1666
0b86a832 1667 add_root_to_dirty_list(root);
925baedd 1668 btrfs_tree_unlock(child);
b4ce94de 1669
925baedd 1670 path->locks[level] = 0;
bb803951 1671 path->nodes[level] = NULL;
5f39d397 1672 clean_tree_block(trans, root, mid);
925baedd 1673 btrfs_tree_unlock(mid);
bb803951 1674 /* once for the path */
5f39d397 1675 free_extent_buffer(mid);
f0486c68
YZ
1676
1677 root_sub_used(root, mid->len);
5581a51a 1678 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1679 /* once for the root ptr */
3083ee2e 1680 free_extent_buffer_stale(mid);
f0486c68 1681 return 0;
bb803951 1682 }
5f39d397 1683 if (btrfs_header_nritems(mid) >
123abc88 1684 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
bb803951
CM
1685 return 0;
1686
5f39d397
CM
1687 left = read_node_slot(root, parent, pslot - 1);
1688 if (left) {
925baedd 1689 btrfs_tree_lock(left);
b4ce94de 1690 btrfs_set_lock_blocking(left);
5f39d397 1691 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1692 parent, pslot - 1, &left);
54aa1f4d
CM
1693 if (wret) {
1694 ret = wret;
1695 goto enospc;
1696 }
2cc58cf2 1697 }
5f39d397
CM
1698 right = read_node_slot(root, parent, pslot + 1);
1699 if (right) {
925baedd 1700 btrfs_tree_lock(right);
b4ce94de 1701 btrfs_set_lock_blocking(right);
5f39d397 1702 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1703 parent, pslot + 1, &right);
2cc58cf2
CM
1704 if (wret) {
1705 ret = wret;
1706 goto enospc;
1707 }
1708 }
1709
1710 /* first, try to make some room in the middle buffer */
5f39d397
CM
1711 if (left) {
1712 orig_slot += btrfs_header_nritems(left);
bce4eae9 1713 wret = push_node_left(trans, root, left, mid, 1);
79f95c82
CM
1714 if (wret < 0)
1715 ret = wret;
bb803951 1716 }
79f95c82
CM
1717
1718 /*
1719 * then try to empty the right most buffer into the middle
1720 */
5f39d397 1721 if (right) {
971a1f66 1722 wret = push_node_left(trans, root, mid, right, 1);
54aa1f4d 1723 if (wret < 0 && wret != -ENOSPC)
79f95c82 1724 ret = wret;
5f39d397 1725 if (btrfs_header_nritems(right) == 0) {
5f39d397 1726 clean_tree_block(trans, root, right);
925baedd 1727 btrfs_tree_unlock(right);
f3ea38da 1728 del_ptr(trans, root, path, level + 1, pslot + 1, 1);
f0486c68 1729 root_sub_used(root, right->len);
5581a51a 1730 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1731 free_extent_buffer_stale(right);
f0486c68 1732 right = NULL;
bb803951 1733 } else {
5f39d397
CM
1734 struct btrfs_disk_key right_key;
1735 btrfs_node_key(right, &right_key, 0);
f230475e
JS
1736 tree_mod_log_set_node_key(root->fs_info, parent,
1737 &right_key, pslot + 1, 0);
5f39d397
CM
1738 btrfs_set_node_key(parent, &right_key, pslot + 1);
1739 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1740 }
1741 }
5f39d397 1742 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1743 /*
1744 * we're not allowed to leave a node with one item in the
1745 * tree during a delete. A deletion from lower in the tree
1746 * could try to delete the only pointer in this node.
1747 * So, pull some keys from the left.
1748 * There has to be a left pointer at this point because
1749 * otherwise we would have pulled some pointers from the
1750 * right
1751 */
305a26af
MF
1752 if (!left) {
1753 ret = -EROFS;
1754 btrfs_std_error(root->fs_info, ret);
1755 goto enospc;
1756 }
5f39d397 1757 wret = balance_node_right(trans, root, mid, left);
54aa1f4d 1758 if (wret < 0) {
79f95c82 1759 ret = wret;
54aa1f4d
CM
1760 goto enospc;
1761 }
bce4eae9
CM
1762 if (wret == 1) {
1763 wret = push_node_left(trans, root, left, mid, 1);
1764 if (wret < 0)
1765 ret = wret;
1766 }
79f95c82
CM
1767 BUG_ON(wret == 1);
1768 }
5f39d397 1769 if (btrfs_header_nritems(mid) == 0) {
5f39d397 1770 clean_tree_block(trans, root, mid);
925baedd 1771 btrfs_tree_unlock(mid);
f3ea38da 1772 del_ptr(trans, root, path, level + 1, pslot, 1);
f0486c68 1773 root_sub_used(root, mid->len);
5581a51a 1774 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 1775 free_extent_buffer_stale(mid);
f0486c68 1776 mid = NULL;
79f95c82
CM
1777 } else {
1778 /* update the parent key to reflect our changes */
5f39d397
CM
1779 struct btrfs_disk_key mid_key;
1780 btrfs_node_key(mid, &mid_key, 0);
f230475e
JS
1781 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1782 pslot, 0);
5f39d397
CM
1783 btrfs_set_node_key(parent, &mid_key, pslot);
1784 btrfs_mark_buffer_dirty(parent);
79f95c82 1785 }
bb803951 1786
79f95c82 1787 /* update the path */
5f39d397
CM
1788 if (left) {
1789 if (btrfs_header_nritems(left) > orig_slot) {
1790 extent_buffer_get(left);
925baedd 1791 /* left was locked after cow */
5f39d397 1792 path->nodes[level] = left;
bb803951
CM
1793 path->slots[level + 1] -= 1;
1794 path->slots[level] = orig_slot;
925baedd
CM
1795 if (mid) {
1796 btrfs_tree_unlock(mid);
5f39d397 1797 free_extent_buffer(mid);
925baedd 1798 }
bb803951 1799 } else {
5f39d397 1800 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
1801 path->slots[level] = orig_slot;
1802 }
1803 }
79f95c82 1804 /* double check we haven't messed things up */
e20d96d6 1805 if (orig_ptr !=
5f39d397 1806 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 1807 BUG();
54aa1f4d 1808enospc:
925baedd
CM
1809 if (right) {
1810 btrfs_tree_unlock(right);
5f39d397 1811 free_extent_buffer(right);
925baedd
CM
1812 }
1813 if (left) {
1814 if (path->nodes[level] != left)
1815 btrfs_tree_unlock(left);
5f39d397 1816 free_extent_buffer(left);
925baedd 1817 }
bb803951
CM
1818 return ret;
1819}
1820
d352ac68
CM
1821/* Node balancing for insertion. Here we only split or push nodes around
1822 * when they are completely full. This is also done top down, so we
1823 * have to be pessimistic.
1824 */
d397712b 1825static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
1826 struct btrfs_root *root,
1827 struct btrfs_path *path, int level)
e66f709b 1828{
5f39d397
CM
1829 struct extent_buffer *right = NULL;
1830 struct extent_buffer *mid;
1831 struct extent_buffer *left = NULL;
1832 struct extent_buffer *parent = NULL;
e66f709b
CM
1833 int ret = 0;
1834 int wret;
1835 int pslot;
1836 int orig_slot = path->slots[level];
e66f709b
CM
1837
1838 if (level == 0)
1839 return 1;
1840
5f39d397 1841 mid = path->nodes[level];
7bb86316 1842 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 1843
a05a9bb1 1844 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1845 parent = path->nodes[level + 1];
a05a9bb1
LZ
1846 pslot = path->slots[level + 1];
1847 }
e66f709b 1848
5f39d397 1849 if (!parent)
e66f709b 1850 return 1;
e66f709b 1851
5f39d397 1852 left = read_node_slot(root, parent, pslot - 1);
e66f709b
CM
1853
1854 /* first, try to make some room in the middle buffer */
5f39d397 1855 if (left) {
e66f709b 1856 u32 left_nr;
925baedd
CM
1857
1858 btrfs_tree_lock(left);
b4ce94de
CM
1859 btrfs_set_lock_blocking(left);
1860
5f39d397 1861 left_nr = btrfs_header_nritems(left);
33ade1f8
CM
1862 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1863 wret = 1;
1864 } else {
5f39d397 1865 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 1866 pslot - 1, &left);
54aa1f4d
CM
1867 if (ret)
1868 wret = 1;
1869 else {
54aa1f4d 1870 wret = push_node_left(trans, root,
971a1f66 1871 left, mid, 0);
54aa1f4d 1872 }
33ade1f8 1873 }
e66f709b
CM
1874 if (wret < 0)
1875 ret = wret;
1876 if (wret == 0) {
5f39d397 1877 struct btrfs_disk_key disk_key;
e66f709b 1878 orig_slot += left_nr;
5f39d397 1879 btrfs_node_key(mid, &disk_key, 0);
f230475e
JS
1880 tree_mod_log_set_node_key(root->fs_info, parent,
1881 &disk_key, pslot, 0);
5f39d397
CM
1882 btrfs_set_node_key(parent, &disk_key, pslot);
1883 btrfs_mark_buffer_dirty(parent);
1884 if (btrfs_header_nritems(left) > orig_slot) {
1885 path->nodes[level] = left;
e66f709b
CM
1886 path->slots[level + 1] -= 1;
1887 path->slots[level] = orig_slot;
925baedd 1888 btrfs_tree_unlock(mid);
5f39d397 1889 free_extent_buffer(mid);
e66f709b
CM
1890 } else {
1891 orig_slot -=
5f39d397 1892 btrfs_header_nritems(left);
e66f709b 1893 path->slots[level] = orig_slot;
925baedd 1894 btrfs_tree_unlock(left);
5f39d397 1895 free_extent_buffer(left);
e66f709b 1896 }
e66f709b
CM
1897 return 0;
1898 }
925baedd 1899 btrfs_tree_unlock(left);
5f39d397 1900 free_extent_buffer(left);
e66f709b 1901 }
925baedd 1902 right = read_node_slot(root, parent, pslot + 1);
e66f709b
CM
1903
1904 /*
1905 * then try to empty the right most buffer into the middle
1906 */
5f39d397 1907 if (right) {
33ade1f8 1908 u32 right_nr;
b4ce94de 1909
925baedd 1910 btrfs_tree_lock(right);
b4ce94de
CM
1911 btrfs_set_lock_blocking(right);
1912
5f39d397 1913 right_nr = btrfs_header_nritems(right);
33ade1f8
CM
1914 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1915 wret = 1;
1916 } else {
5f39d397
CM
1917 ret = btrfs_cow_block(trans, root, right,
1918 parent, pslot + 1,
9fa8cfe7 1919 &right);
54aa1f4d
CM
1920 if (ret)
1921 wret = 1;
1922 else {
54aa1f4d 1923 wret = balance_node_right(trans, root,
5f39d397 1924 right, mid);
54aa1f4d 1925 }
33ade1f8 1926 }
e66f709b
CM
1927 if (wret < 0)
1928 ret = wret;
1929 if (wret == 0) {
5f39d397
CM
1930 struct btrfs_disk_key disk_key;
1931
1932 btrfs_node_key(right, &disk_key, 0);
f230475e
JS
1933 tree_mod_log_set_node_key(root->fs_info, parent,
1934 &disk_key, pslot + 1, 0);
5f39d397
CM
1935 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1936 btrfs_mark_buffer_dirty(parent);
1937
1938 if (btrfs_header_nritems(mid) <= orig_slot) {
1939 path->nodes[level] = right;
e66f709b
CM
1940 path->slots[level + 1] += 1;
1941 path->slots[level] = orig_slot -
5f39d397 1942 btrfs_header_nritems(mid);
925baedd 1943 btrfs_tree_unlock(mid);
5f39d397 1944 free_extent_buffer(mid);
e66f709b 1945 } else {
925baedd 1946 btrfs_tree_unlock(right);
5f39d397 1947 free_extent_buffer(right);
e66f709b 1948 }
e66f709b
CM
1949 return 0;
1950 }
925baedd 1951 btrfs_tree_unlock(right);
5f39d397 1952 free_extent_buffer(right);
e66f709b 1953 }
e66f709b
CM
1954 return 1;
1955}
1956
3c69faec 1957/*
d352ac68
CM
1958 * readahead one full node of leaves, finding things that are close
1959 * to the block in 'slot', and triggering ra on them.
3c69faec 1960 */
c8c42864
CM
1961static void reada_for_search(struct btrfs_root *root,
1962 struct btrfs_path *path,
1963 int level, int slot, u64 objectid)
3c69faec 1964{
5f39d397 1965 struct extent_buffer *node;
01f46658 1966 struct btrfs_disk_key disk_key;
3c69faec 1967 u32 nritems;
3c69faec 1968 u64 search;
a7175319 1969 u64 target;
6b80053d 1970 u64 nread = 0;
cb25c2ea 1971 u64 gen;
3c69faec 1972 int direction = path->reada;
5f39d397 1973 struct extent_buffer *eb;
6b80053d
CM
1974 u32 nr;
1975 u32 blocksize;
1976 u32 nscan = 0;
db94535d 1977
a6b6e75e 1978 if (level != 1)
6702ed49
CM
1979 return;
1980
1981 if (!path->nodes[level])
3c69faec
CM
1982 return;
1983
5f39d397 1984 node = path->nodes[level];
925baedd 1985
3c69faec 1986 search = btrfs_node_blockptr(node, slot);
6b80053d
CM
1987 blocksize = btrfs_level_size(root, level - 1);
1988 eb = btrfs_find_tree_block(root, search, blocksize);
5f39d397
CM
1989 if (eb) {
1990 free_extent_buffer(eb);
3c69faec
CM
1991 return;
1992 }
1993
a7175319 1994 target = search;
6b80053d 1995
5f39d397 1996 nritems = btrfs_header_nritems(node);
6b80053d 1997 nr = slot;
25b8b936 1998
d397712b 1999 while (1) {
6b80053d
CM
2000 if (direction < 0) {
2001 if (nr == 0)
2002 break;
2003 nr--;
2004 } else if (direction > 0) {
2005 nr++;
2006 if (nr >= nritems)
2007 break;
3c69faec 2008 }
01f46658
CM
2009 if (path->reada < 0 && objectid) {
2010 btrfs_node_key(node, &disk_key, nr);
2011 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2012 break;
2013 }
6b80053d 2014 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2015 if ((search <= target && target - search <= 65536) ||
2016 (search > target && search - target <= 65536)) {
cb25c2ea 2017 gen = btrfs_node_ptr_generation(node, nr);
cb25c2ea 2018 readahead_tree_block(root, search, blocksize, gen);
6b80053d
CM
2019 nread += blocksize;
2020 }
2021 nscan++;
a7175319 2022 if ((nread > 65536 || nscan > 32))
6b80053d 2023 break;
3c69faec
CM
2024 }
2025}
925baedd 2026
b4ce94de
CM
2027/*
2028 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2029 * cache
2030 */
2031static noinline int reada_for_balance(struct btrfs_root *root,
2032 struct btrfs_path *path, int level)
2033{
2034 int slot;
2035 int nritems;
2036 struct extent_buffer *parent;
2037 struct extent_buffer *eb;
2038 u64 gen;
2039 u64 block1 = 0;
2040 u64 block2 = 0;
2041 int ret = 0;
2042 int blocksize;
2043
8c594ea8 2044 parent = path->nodes[level + 1];
b4ce94de
CM
2045 if (!parent)
2046 return 0;
2047
2048 nritems = btrfs_header_nritems(parent);
8c594ea8 2049 slot = path->slots[level + 1];
b4ce94de
CM
2050 blocksize = btrfs_level_size(root, level);
2051
2052 if (slot > 0) {
2053 block1 = btrfs_node_blockptr(parent, slot - 1);
2054 gen = btrfs_node_ptr_generation(parent, slot - 1);
2055 eb = btrfs_find_tree_block(root, block1, blocksize);
b9fab919
CM
2056 /*
2057 * if we get -eagain from btrfs_buffer_uptodate, we
2058 * don't want to return eagain here. That will loop
2059 * forever
2060 */
2061 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2062 block1 = 0;
2063 free_extent_buffer(eb);
2064 }
8c594ea8 2065 if (slot + 1 < nritems) {
b4ce94de
CM
2066 block2 = btrfs_node_blockptr(parent, slot + 1);
2067 gen = btrfs_node_ptr_generation(parent, slot + 1);
2068 eb = btrfs_find_tree_block(root, block2, blocksize);
b9fab919 2069 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2070 block2 = 0;
2071 free_extent_buffer(eb);
2072 }
2073 if (block1 || block2) {
2074 ret = -EAGAIN;
8c594ea8
CM
2075
2076 /* release the whole path */
b3b4aa74 2077 btrfs_release_path(path);
8c594ea8
CM
2078
2079 /* read the blocks */
b4ce94de
CM
2080 if (block1)
2081 readahead_tree_block(root, block1, blocksize, 0);
2082 if (block2)
2083 readahead_tree_block(root, block2, blocksize, 0);
2084
2085 if (block1) {
2086 eb = read_tree_block(root, block1, blocksize, 0);
2087 free_extent_buffer(eb);
2088 }
8c594ea8 2089 if (block2) {
b4ce94de
CM
2090 eb = read_tree_block(root, block2, blocksize, 0);
2091 free_extent_buffer(eb);
2092 }
2093 }
2094 return ret;
2095}
2096
2097
d352ac68 2098/*
d397712b
CM
2099 * when we walk down the tree, it is usually safe to unlock the higher layers
2100 * in the tree. The exceptions are when our path goes through slot 0, because
2101 * operations on the tree might require changing key pointers higher up in the
2102 * tree.
d352ac68 2103 *
d397712b
CM
2104 * callers might also have set path->keep_locks, which tells this code to keep
2105 * the lock if the path points to the last slot in the block. This is part of
2106 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2107 *
d397712b
CM
2108 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2109 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2110 */
e02119d5 2111static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2112 int lowest_unlock, int min_write_lock_level,
2113 int *write_lock_level)
925baedd
CM
2114{
2115 int i;
2116 int skip_level = level;
051e1b9f 2117 int no_skips = 0;
925baedd
CM
2118 struct extent_buffer *t;
2119
2120 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2121 if (!path->nodes[i])
2122 break;
2123 if (!path->locks[i])
2124 break;
051e1b9f 2125 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2126 skip_level = i + 1;
2127 continue;
2128 }
051e1b9f 2129 if (!no_skips && path->keep_locks) {
925baedd
CM
2130 u32 nritems;
2131 t = path->nodes[i];
2132 nritems = btrfs_header_nritems(t);
051e1b9f 2133 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2134 skip_level = i + 1;
2135 continue;
2136 }
2137 }
051e1b9f
CM
2138 if (skip_level < i && i >= lowest_unlock)
2139 no_skips = 1;
2140
925baedd
CM
2141 t = path->nodes[i];
2142 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2143 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2144 path->locks[i] = 0;
f7c79f30
CM
2145 if (write_lock_level &&
2146 i > min_write_lock_level &&
2147 i <= *write_lock_level) {
2148 *write_lock_level = i - 1;
2149 }
925baedd
CM
2150 }
2151 }
2152}
2153
b4ce94de
CM
2154/*
2155 * This releases any locks held in the path starting at level and
2156 * going all the way up to the root.
2157 *
2158 * btrfs_search_slot will keep the lock held on higher nodes in a few
2159 * corner cases, such as COW of the block at slot zero in the node. This
2160 * ignores those rules, and it should only be called when there are no
2161 * more updates to be done higher up in the tree.
2162 */
2163noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2164{
2165 int i;
2166
5d4f98a2 2167 if (path->keep_locks)
b4ce94de
CM
2168 return;
2169
2170 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2171 if (!path->nodes[i])
12f4dacc 2172 continue;
b4ce94de 2173 if (!path->locks[i])
12f4dacc 2174 continue;
bd681513 2175 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2176 path->locks[i] = 0;
2177 }
2178}
2179
c8c42864
CM
2180/*
2181 * helper function for btrfs_search_slot. The goal is to find a block
2182 * in cache without setting the path to blocking. If we find the block
2183 * we return zero and the path is unchanged.
2184 *
2185 * If we can't find the block, we set the path blocking and do some
2186 * reada. -EAGAIN is returned and the search must be repeated.
2187 */
2188static int
2189read_block_for_search(struct btrfs_trans_handle *trans,
2190 struct btrfs_root *root, struct btrfs_path *p,
2191 struct extent_buffer **eb_ret, int level, int slot,
5d9e75c4 2192 struct btrfs_key *key, u64 time_seq)
c8c42864
CM
2193{
2194 u64 blocknr;
2195 u64 gen;
2196 u32 blocksize;
2197 struct extent_buffer *b = *eb_ret;
2198 struct extent_buffer *tmp;
76a05b35 2199 int ret;
c8c42864
CM
2200
2201 blocknr = btrfs_node_blockptr(b, slot);
2202 gen = btrfs_node_ptr_generation(b, slot);
2203 blocksize = btrfs_level_size(root, level - 1);
2204
2205 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
cb44921a 2206 if (tmp) {
b9fab919
CM
2207 /* first we do an atomic uptodate check */
2208 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2209 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
cb44921a
CM
2210 /*
2211 * we found an up to date block without
2212 * sleeping, return
2213 * right away
2214 */
2215 *eb_ret = tmp;
2216 return 0;
2217 }
2218 /* the pages were up to date, but we failed
2219 * the generation number check. Do a full
2220 * read for the generation number that is correct.
2221 * We must do this without dropping locks so
2222 * we can trust our generation number
2223 */
2224 free_extent_buffer(tmp);
bd681513
CM
2225 btrfs_set_path_blocking(p);
2226
b9fab919 2227 /* now we're allowed to do a blocking uptodate check */
cb44921a 2228 tmp = read_tree_block(root, blocknr, blocksize, gen);
b9fab919 2229 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
cb44921a
CM
2230 *eb_ret = tmp;
2231 return 0;
2232 }
2233 free_extent_buffer(tmp);
b3b4aa74 2234 btrfs_release_path(p);
cb44921a
CM
2235 return -EIO;
2236 }
c8c42864
CM
2237 }
2238
2239 /*
2240 * reduce lock contention at high levels
2241 * of the btree by dropping locks before
76a05b35
CM
2242 * we read. Don't release the lock on the current
2243 * level because we need to walk this node to figure
2244 * out which blocks to read.
c8c42864 2245 */
8c594ea8
CM
2246 btrfs_unlock_up_safe(p, level + 1);
2247 btrfs_set_path_blocking(p);
2248
cb44921a 2249 free_extent_buffer(tmp);
c8c42864
CM
2250 if (p->reada)
2251 reada_for_search(root, p, level, slot, key->objectid);
2252
b3b4aa74 2253 btrfs_release_path(p);
76a05b35
CM
2254
2255 ret = -EAGAIN;
5bdd3536 2256 tmp = read_tree_block(root, blocknr, blocksize, 0);
76a05b35
CM
2257 if (tmp) {
2258 /*
2259 * If the read above didn't mark this buffer up to date,
2260 * it will never end up being up to date. Set ret to EIO now
2261 * and give up so that our caller doesn't loop forever
2262 * on our EAGAINs.
2263 */
b9fab919 2264 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2265 ret = -EIO;
c8c42864 2266 free_extent_buffer(tmp);
76a05b35
CM
2267 }
2268 return ret;
c8c42864
CM
2269}
2270
2271/*
2272 * helper function for btrfs_search_slot. This does all of the checks
2273 * for node-level blocks and does any balancing required based on
2274 * the ins_len.
2275 *
2276 * If no extra work was required, zero is returned. If we had to
2277 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2278 * start over
2279 */
2280static int
2281setup_nodes_for_search(struct btrfs_trans_handle *trans,
2282 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2283 struct extent_buffer *b, int level, int ins_len,
2284 int *write_lock_level)
c8c42864
CM
2285{
2286 int ret;
2287 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2288 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2289 int sret;
2290
bd681513
CM
2291 if (*write_lock_level < level + 1) {
2292 *write_lock_level = level + 1;
2293 btrfs_release_path(p);
2294 goto again;
2295 }
2296
c8c42864
CM
2297 sret = reada_for_balance(root, p, level);
2298 if (sret)
2299 goto again;
2300
2301 btrfs_set_path_blocking(p);
2302 sret = split_node(trans, root, p, level);
bd681513 2303 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2304
2305 BUG_ON(sret > 0);
2306 if (sret) {
2307 ret = sret;
2308 goto done;
2309 }
2310 b = p->nodes[level];
2311 } else if (ins_len < 0 && btrfs_header_nritems(b) <
cfbb9308 2312 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
c8c42864
CM
2313 int sret;
2314
bd681513
CM
2315 if (*write_lock_level < level + 1) {
2316 *write_lock_level = level + 1;
2317 btrfs_release_path(p);
2318 goto again;
2319 }
2320
c8c42864
CM
2321 sret = reada_for_balance(root, p, level);
2322 if (sret)
2323 goto again;
2324
2325 btrfs_set_path_blocking(p);
2326 sret = balance_level(trans, root, p, level);
bd681513 2327 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2328
2329 if (sret) {
2330 ret = sret;
2331 goto done;
2332 }
2333 b = p->nodes[level];
2334 if (!b) {
b3b4aa74 2335 btrfs_release_path(p);
c8c42864
CM
2336 goto again;
2337 }
2338 BUG_ON(btrfs_header_nritems(b) == 1);
2339 }
2340 return 0;
2341
2342again:
2343 ret = -EAGAIN;
2344done:
2345 return ret;
2346}
2347
74123bd7
CM
2348/*
2349 * look for key in the tree. path is filled in with nodes along the way
2350 * if key is found, we return zero and you can find the item in the leaf
2351 * level of the path (level 0)
2352 *
2353 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2354 * be inserted, and 1 is returned. If there are other errors during the
2355 * search a negative error number is returned.
97571fd0
CM
2356 *
2357 * if ins_len > 0, nodes and leaves will be split as we walk down the
2358 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2359 * possible)
74123bd7 2360 */
e089f05c
CM
2361int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2362 *root, struct btrfs_key *key, struct btrfs_path *p, int
2363 ins_len, int cow)
be0e5c09 2364{
5f39d397 2365 struct extent_buffer *b;
be0e5c09
CM
2366 int slot;
2367 int ret;
33c66f43 2368 int err;
be0e5c09 2369 int level;
925baedd 2370 int lowest_unlock = 1;
bd681513
CM
2371 int root_lock;
2372 /* everything at write_lock_level or lower must be write locked */
2373 int write_lock_level = 0;
9f3a7427 2374 u8 lowest_level = 0;
f7c79f30 2375 int min_write_lock_level;
9f3a7427 2376
6702ed49 2377 lowest_level = p->lowest_level;
323ac95b 2378 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2379 WARN_ON(p->nodes[0] != NULL);
25179201 2380
bd681513 2381 if (ins_len < 0) {
925baedd 2382 lowest_unlock = 2;
65b51a00 2383
bd681513
CM
2384 /* when we are removing items, we might have to go up to level
2385 * two as we update tree pointers Make sure we keep write
2386 * for those levels as well
2387 */
2388 write_lock_level = 2;
2389 } else if (ins_len > 0) {
2390 /*
2391 * for inserting items, make sure we have a write lock on
2392 * level 1 so we can update keys
2393 */
2394 write_lock_level = 1;
2395 }
2396
2397 if (!cow)
2398 write_lock_level = -1;
2399
2400 if (cow && (p->keep_locks || p->lowest_level))
2401 write_lock_level = BTRFS_MAX_LEVEL;
2402
f7c79f30
CM
2403 min_write_lock_level = write_lock_level;
2404
bb803951 2405again:
bd681513
CM
2406 /*
2407 * we try very hard to do read locks on the root
2408 */
2409 root_lock = BTRFS_READ_LOCK;
2410 level = 0;
5d4f98a2 2411 if (p->search_commit_root) {
bd681513
CM
2412 /*
2413 * the commit roots are read only
2414 * so we always do read locks
2415 */
5d4f98a2
YZ
2416 b = root->commit_root;
2417 extent_buffer_get(b);
bd681513 2418 level = btrfs_header_level(b);
5d4f98a2 2419 if (!p->skip_locking)
bd681513 2420 btrfs_tree_read_lock(b);
5d4f98a2 2421 } else {
bd681513 2422 if (p->skip_locking) {
5d4f98a2 2423 b = btrfs_root_node(root);
bd681513
CM
2424 level = btrfs_header_level(b);
2425 } else {
2426 /* we don't know the level of the root node
2427 * until we actually have it read locked
2428 */
2429 b = btrfs_read_lock_root_node(root);
2430 level = btrfs_header_level(b);
2431 if (level <= write_lock_level) {
2432 /* whoops, must trade for write lock */
2433 btrfs_tree_read_unlock(b);
2434 free_extent_buffer(b);
2435 b = btrfs_lock_root_node(root);
2436 root_lock = BTRFS_WRITE_LOCK;
2437
2438 /* the level might have changed, check again */
2439 level = btrfs_header_level(b);
2440 }
2441 }
5d4f98a2 2442 }
bd681513
CM
2443 p->nodes[level] = b;
2444 if (!p->skip_locking)
2445 p->locks[level] = root_lock;
925baedd 2446
eb60ceac 2447 while (b) {
5f39d397 2448 level = btrfs_header_level(b);
65b51a00
CM
2449
2450 /*
2451 * setup the path here so we can release it under lock
2452 * contention with the cow code
2453 */
02217ed2 2454 if (cow) {
c8c42864
CM
2455 /*
2456 * if we don't really need to cow this block
2457 * then we don't want to set the path blocking,
2458 * so we test it here
2459 */
5d4f98a2 2460 if (!should_cow_block(trans, root, b))
65b51a00 2461 goto cow_done;
5d4f98a2 2462
b4ce94de
CM
2463 btrfs_set_path_blocking(p);
2464
bd681513
CM
2465 /*
2466 * must have write locks on this node and the
2467 * parent
2468 */
2469 if (level + 1 > write_lock_level) {
2470 write_lock_level = level + 1;
2471 btrfs_release_path(p);
2472 goto again;
2473 }
2474
33c66f43
YZ
2475 err = btrfs_cow_block(trans, root, b,
2476 p->nodes[level + 1],
2477 p->slots[level + 1], &b);
2478 if (err) {
33c66f43 2479 ret = err;
65b51a00 2480 goto done;
54aa1f4d 2481 }
02217ed2 2482 }
65b51a00 2483cow_done:
02217ed2 2484 BUG_ON(!cow && ins_len);
65b51a00 2485
eb60ceac 2486 p->nodes[level] = b;
bd681513 2487 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2488
2489 /*
2490 * we have a lock on b and as long as we aren't changing
2491 * the tree, there is no way to for the items in b to change.
2492 * It is safe to drop the lock on our parent before we
2493 * go through the expensive btree search on b.
2494 *
2495 * If cow is true, then we might be changing slot zero,
2496 * which may require changing the parent. So, we can't
2497 * drop the lock until after we know which slot we're
2498 * operating on.
2499 */
2500 if (!cow)
2501 btrfs_unlock_up_safe(p, level + 1);
2502
5f39d397 2503 ret = bin_search(b, key, level, &slot);
b4ce94de 2504
5f39d397 2505 if (level != 0) {
33c66f43
YZ
2506 int dec = 0;
2507 if (ret && slot > 0) {
2508 dec = 1;
be0e5c09 2509 slot -= 1;
33c66f43 2510 }
be0e5c09 2511 p->slots[level] = slot;
33c66f43 2512 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2513 ins_len, &write_lock_level);
33c66f43 2514 if (err == -EAGAIN)
c8c42864 2515 goto again;
33c66f43
YZ
2516 if (err) {
2517 ret = err;
c8c42864 2518 goto done;
33c66f43 2519 }
c8c42864
CM
2520 b = p->nodes[level];
2521 slot = p->slots[level];
b4ce94de 2522
bd681513
CM
2523 /*
2524 * slot 0 is special, if we change the key
2525 * we have to update the parent pointer
2526 * which means we must have a write lock
2527 * on the parent
2528 */
2529 if (slot == 0 && cow &&
2530 write_lock_level < level + 1) {
2531 write_lock_level = level + 1;
2532 btrfs_release_path(p);
2533 goto again;
2534 }
2535
f7c79f30
CM
2536 unlock_up(p, level, lowest_unlock,
2537 min_write_lock_level, &write_lock_level);
f9efa9c7 2538
925baedd 2539 if (level == lowest_level) {
33c66f43
YZ
2540 if (dec)
2541 p->slots[level]++;
5b21f2ed 2542 goto done;
925baedd 2543 }
ca7a79ad 2544
33c66f43 2545 err = read_block_for_search(trans, root, p,
5d9e75c4 2546 &b, level, slot, key, 0);
33c66f43 2547 if (err == -EAGAIN)
c8c42864 2548 goto again;
33c66f43
YZ
2549 if (err) {
2550 ret = err;
76a05b35 2551 goto done;
33c66f43 2552 }
76a05b35 2553
b4ce94de 2554 if (!p->skip_locking) {
bd681513
CM
2555 level = btrfs_header_level(b);
2556 if (level <= write_lock_level) {
2557 err = btrfs_try_tree_write_lock(b);
2558 if (!err) {
2559 btrfs_set_path_blocking(p);
2560 btrfs_tree_lock(b);
2561 btrfs_clear_path_blocking(p, b,
2562 BTRFS_WRITE_LOCK);
2563 }
2564 p->locks[level] = BTRFS_WRITE_LOCK;
2565 } else {
2566 err = btrfs_try_tree_read_lock(b);
2567 if (!err) {
2568 btrfs_set_path_blocking(p);
2569 btrfs_tree_read_lock(b);
2570 btrfs_clear_path_blocking(p, b,
2571 BTRFS_READ_LOCK);
2572 }
2573 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2574 }
bd681513 2575 p->nodes[level] = b;
b4ce94de 2576 }
be0e5c09
CM
2577 } else {
2578 p->slots[level] = slot;
87b29b20
YZ
2579 if (ins_len > 0 &&
2580 btrfs_leaf_free_space(root, b) < ins_len) {
bd681513
CM
2581 if (write_lock_level < 1) {
2582 write_lock_level = 1;
2583 btrfs_release_path(p);
2584 goto again;
2585 }
2586
b4ce94de 2587 btrfs_set_path_blocking(p);
33c66f43
YZ
2588 err = split_leaf(trans, root, key,
2589 p, ins_len, ret == 0);
bd681513 2590 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2591
33c66f43
YZ
2592 BUG_ON(err > 0);
2593 if (err) {
2594 ret = err;
65b51a00
CM
2595 goto done;
2596 }
5c680ed6 2597 }
459931ec 2598 if (!p->search_for_split)
f7c79f30
CM
2599 unlock_up(p, level, lowest_unlock,
2600 min_write_lock_level, &write_lock_level);
65b51a00 2601 goto done;
be0e5c09
CM
2602 }
2603 }
65b51a00
CM
2604 ret = 1;
2605done:
b4ce94de
CM
2606 /*
2607 * we don't really know what they plan on doing with the path
2608 * from here on, so for now just mark it as blocking
2609 */
b9473439
CM
2610 if (!p->leave_spinning)
2611 btrfs_set_path_blocking(p);
76a05b35 2612 if (ret < 0)
b3b4aa74 2613 btrfs_release_path(p);
65b51a00 2614 return ret;
be0e5c09
CM
2615}
2616
5d9e75c4
JS
2617/*
2618 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2619 * current state of the tree together with the operations recorded in the tree
2620 * modification log to search for the key in a previous version of this tree, as
2621 * denoted by the time_seq parameter.
2622 *
2623 * Naturally, there is no support for insert, delete or cow operations.
2624 *
2625 * The resulting path and return value will be set up as if we called
2626 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2627 */
2628int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2629 struct btrfs_path *p, u64 time_seq)
2630{
2631 struct extent_buffer *b;
2632 int slot;
2633 int ret;
2634 int err;
2635 int level;
2636 int lowest_unlock = 1;
2637 u8 lowest_level = 0;
2638
2639 lowest_level = p->lowest_level;
2640 WARN_ON(p->nodes[0] != NULL);
2641
2642 if (p->search_commit_root) {
2643 BUG_ON(time_seq);
2644 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2645 }
2646
2647again:
5d9e75c4 2648 b = get_old_root(root, time_seq);
5d9e75c4 2649 level = btrfs_header_level(b);
5d9e75c4
JS
2650 p->locks[level] = BTRFS_READ_LOCK;
2651
2652 while (b) {
2653 level = btrfs_header_level(b);
2654 p->nodes[level] = b;
2655 btrfs_clear_path_blocking(p, NULL, 0);
2656
2657 /*
2658 * we have a lock on b and as long as we aren't changing
2659 * the tree, there is no way to for the items in b to change.
2660 * It is safe to drop the lock on our parent before we
2661 * go through the expensive btree search on b.
2662 */
2663 btrfs_unlock_up_safe(p, level + 1);
2664
2665 ret = bin_search(b, key, level, &slot);
2666
2667 if (level != 0) {
2668 int dec = 0;
2669 if (ret && slot > 0) {
2670 dec = 1;
2671 slot -= 1;
2672 }
2673 p->slots[level] = slot;
2674 unlock_up(p, level, lowest_unlock, 0, NULL);
2675
2676 if (level == lowest_level) {
2677 if (dec)
2678 p->slots[level]++;
2679 goto done;
2680 }
2681
2682 err = read_block_for_search(NULL, root, p, &b, level,
2683 slot, key, time_seq);
2684 if (err == -EAGAIN)
2685 goto again;
2686 if (err) {
2687 ret = err;
2688 goto done;
2689 }
2690
2691 level = btrfs_header_level(b);
2692 err = btrfs_try_tree_read_lock(b);
2693 if (!err) {
2694 btrfs_set_path_blocking(p);
2695 btrfs_tree_read_lock(b);
2696 btrfs_clear_path_blocking(p, b,
2697 BTRFS_READ_LOCK);
2698 }
2699 p->locks[level] = BTRFS_READ_LOCK;
2700 p->nodes[level] = b;
2701 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2702 if (b != p->nodes[level]) {
2703 btrfs_tree_unlock_rw(p->nodes[level],
2704 p->locks[level]);
2705 p->locks[level] = 0;
2706 p->nodes[level] = b;
2707 }
2708 } else {
2709 p->slots[level] = slot;
2710 unlock_up(p, level, lowest_unlock, 0, NULL);
2711 goto done;
2712 }
2713 }
2714 ret = 1;
2715done:
2716 if (!p->leave_spinning)
2717 btrfs_set_path_blocking(p);
2718 if (ret < 0)
2719 btrfs_release_path(p);
2720
2721 return ret;
2722}
2723
e6793769
AJ
2724/*
2725 * helper to use instead of search slot if no exact match is needed but
2726 * instead the next or previous item should be returned.
2727 * When find_higher is true, the next higher item is returned, the next lower
2728 * otherwise.
2729 * When return_any and find_higher are both true, and no higher item is found,
2730 * return the next lower instead.
2731 * When return_any is true and find_higher is false, and no lower item is found,
2732 * return the next higher instead.
2733 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2734 * < 0 on error
2735 */
2736int btrfs_search_slot_for_read(struct btrfs_root *root,
2737 struct btrfs_key *key, struct btrfs_path *p,
2738 int find_higher, int return_any)
2739{
2740 int ret;
2741 struct extent_buffer *leaf;
2742
2743again:
2744 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2745 if (ret <= 0)
2746 return ret;
2747 /*
2748 * a return value of 1 means the path is at the position where the
2749 * item should be inserted. Normally this is the next bigger item,
2750 * but in case the previous item is the last in a leaf, path points
2751 * to the first free slot in the previous leaf, i.e. at an invalid
2752 * item.
2753 */
2754 leaf = p->nodes[0];
2755
2756 if (find_higher) {
2757 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2758 ret = btrfs_next_leaf(root, p);
2759 if (ret <= 0)
2760 return ret;
2761 if (!return_any)
2762 return 1;
2763 /*
2764 * no higher item found, return the next
2765 * lower instead
2766 */
2767 return_any = 0;
2768 find_higher = 0;
2769 btrfs_release_path(p);
2770 goto again;
2771 }
2772 } else {
2773 if (p->slots[0] == 0) {
2774 ret = btrfs_prev_leaf(root, p);
2775 if (ret < 0)
2776 return ret;
2777 if (!ret) {
2778 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2779 return 0;
2780 }
2781 if (!return_any)
2782 return 1;
2783 /*
2784 * no lower item found, return the next
2785 * higher instead
2786 */
2787 return_any = 0;
2788 find_higher = 1;
2789 btrfs_release_path(p);
2790 goto again;
2791 } else {
2792 --p->slots[0];
2793 }
2794 }
2795 return 0;
2796}
2797
74123bd7
CM
2798/*
2799 * adjust the pointers going up the tree, starting at level
2800 * making sure the right key of each node is points to 'key'.
2801 * This is used after shifting pointers to the left, so it stops
2802 * fixing up pointers when a given leaf/node is not in slot 0 of the
2803 * higher levels
aa5d6bed 2804 *
74123bd7 2805 */
143bede5
JM
2806static void fixup_low_keys(struct btrfs_trans_handle *trans,
2807 struct btrfs_root *root, struct btrfs_path *path,
2808 struct btrfs_disk_key *key, int level)
be0e5c09
CM
2809{
2810 int i;
5f39d397
CM
2811 struct extent_buffer *t;
2812
234b63a0 2813 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 2814 int tslot = path->slots[i];
eb60ceac 2815 if (!path->nodes[i])
be0e5c09 2816 break;
5f39d397 2817 t = path->nodes[i];
f230475e 2818 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
5f39d397 2819 btrfs_set_node_key(t, key, tslot);
d6025579 2820 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
2821 if (tslot != 0)
2822 break;
2823 }
2824}
2825
31840ae1
ZY
2826/*
2827 * update item key.
2828 *
2829 * This function isn't completely safe. It's the caller's responsibility
2830 * that the new key won't break the order
2831 */
143bede5
JM
2832void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2833 struct btrfs_root *root, struct btrfs_path *path,
2834 struct btrfs_key *new_key)
31840ae1
ZY
2835{
2836 struct btrfs_disk_key disk_key;
2837 struct extent_buffer *eb;
2838 int slot;
2839
2840 eb = path->nodes[0];
2841 slot = path->slots[0];
2842 if (slot > 0) {
2843 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 2844 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
2845 }
2846 if (slot < btrfs_header_nritems(eb) - 1) {
2847 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 2848 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
2849 }
2850
2851 btrfs_cpu_key_to_disk(&disk_key, new_key);
2852 btrfs_set_item_key(eb, &disk_key, slot);
2853 btrfs_mark_buffer_dirty(eb);
2854 if (slot == 0)
2855 fixup_low_keys(trans, root, path, &disk_key, 1);
31840ae1
ZY
2856}
2857
74123bd7
CM
2858/*
2859 * try to push data from one node into the next node left in the
79f95c82 2860 * tree.
aa5d6bed
CM
2861 *
2862 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2863 * error, and > 0 if there was no room in the left hand block.
74123bd7 2864 */
98ed5174
CM
2865static int push_node_left(struct btrfs_trans_handle *trans,
2866 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 2867 struct extent_buffer *src, int empty)
be0e5c09 2868{
be0e5c09 2869 int push_items = 0;
bb803951
CM
2870 int src_nritems;
2871 int dst_nritems;
aa5d6bed 2872 int ret = 0;
be0e5c09 2873
5f39d397
CM
2874 src_nritems = btrfs_header_nritems(src);
2875 dst_nritems = btrfs_header_nritems(dst);
123abc88 2876 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
7bb86316
CM
2877 WARN_ON(btrfs_header_generation(src) != trans->transid);
2878 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 2879
bce4eae9 2880 if (!empty && src_nritems <= 8)
971a1f66
CM
2881 return 1;
2882
d397712b 2883 if (push_items <= 0)
be0e5c09
CM
2884 return 1;
2885
bce4eae9 2886 if (empty) {
971a1f66 2887 push_items = min(src_nritems, push_items);
bce4eae9
CM
2888 if (push_items < src_nritems) {
2889 /* leave at least 8 pointers in the node if
2890 * we aren't going to empty it
2891 */
2892 if (src_nritems - push_items < 8) {
2893 if (push_items <= 8)
2894 return 1;
2895 push_items -= 8;
2896 }
2897 }
2898 } else
2899 push_items = min(src_nritems - 8, push_items);
79f95c82 2900
f230475e
JS
2901 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2902 push_items);
5f39d397
CM
2903 copy_extent_buffer(dst, src,
2904 btrfs_node_key_ptr_offset(dst_nritems),
2905 btrfs_node_key_ptr_offset(0),
d397712b 2906 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 2907
bb803951 2908 if (push_items < src_nritems) {
f230475e
JS
2909 tree_mod_log_eb_move(root->fs_info, src, 0, push_items,
2910 src_nritems - push_items);
5f39d397
CM
2911 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2912 btrfs_node_key_ptr_offset(push_items),
2913 (src_nritems - push_items) *
2914 sizeof(struct btrfs_key_ptr));
2915 }
2916 btrfs_set_header_nritems(src, src_nritems - push_items);
2917 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2918 btrfs_mark_buffer_dirty(src);
2919 btrfs_mark_buffer_dirty(dst);
31840ae1 2920
79f95c82
CM
2921 return ret;
2922}
2923
2924/*
2925 * try to push data from one node into the next node right in the
2926 * tree.
2927 *
2928 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2929 * error, and > 0 if there was no room in the right hand block.
2930 *
2931 * this will only push up to 1/2 the contents of the left node over
2932 */
5f39d397
CM
2933static int balance_node_right(struct btrfs_trans_handle *trans,
2934 struct btrfs_root *root,
2935 struct extent_buffer *dst,
2936 struct extent_buffer *src)
79f95c82 2937{
79f95c82
CM
2938 int push_items = 0;
2939 int max_push;
2940 int src_nritems;
2941 int dst_nritems;
2942 int ret = 0;
79f95c82 2943
7bb86316
CM
2944 WARN_ON(btrfs_header_generation(src) != trans->transid);
2945 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2946
5f39d397
CM
2947 src_nritems = btrfs_header_nritems(src);
2948 dst_nritems = btrfs_header_nritems(dst);
123abc88 2949 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
d397712b 2950 if (push_items <= 0)
79f95c82 2951 return 1;
bce4eae9 2952
d397712b 2953 if (src_nritems < 4)
bce4eae9 2954 return 1;
79f95c82
CM
2955
2956 max_push = src_nritems / 2 + 1;
2957 /* don't try to empty the node */
d397712b 2958 if (max_push >= src_nritems)
79f95c82 2959 return 1;
252c38f0 2960
79f95c82
CM
2961 if (max_push < push_items)
2962 push_items = max_push;
2963
f230475e 2964 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
2965 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2966 btrfs_node_key_ptr_offset(0),
2967 (dst_nritems) *
2968 sizeof(struct btrfs_key_ptr));
d6025579 2969
f230475e
JS
2970 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
2971 src_nritems - push_items, push_items);
5f39d397
CM
2972 copy_extent_buffer(dst, src,
2973 btrfs_node_key_ptr_offset(0),
2974 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 2975 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 2976
5f39d397
CM
2977 btrfs_set_header_nritems(src, src_nritems - push_items);
2978 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 2979
5f39d397
CM
2980 btrfs_mark_buffer_dirty(src);
2981 btrfs_mark_buffer_dirty(dst);
31840ae1 2982
aa5d6bed 2983 return ret;
be0e5c09
CM
2984}
2985
97571fd0
CM
2986/*
2987 * helper function to insert a new root level in the tree.
2988 * A new node is allocated, and a single item is inserted to
2989 * point to the existing root
aa5d6bed
CM
2990 *
2991 * returns zero on success or < 0 on failure.
97571fd0 2992 */
d397712b 2993static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397
CM
2994 struct btrfs_root *root,
2995 struct btrfs_path *path, int level)
5c680ed6 2996{
7bb86316 2997 u64 lower_gen;
5f39d397
CM
2998 struct extent_buffer *lower;
2999 struct extent_buffer *c;
925baedd 3000 struct extent_buffer *old;
5f39d397 3001 struct btrfs_disk_key lower_key;
5c680ed6
CM
3002
3003 BUG_ON(path->nodes[level]);
3004 BUG_ON(path->nodes[level-1] != root->node);
3005
7bb86316
CM
3006 lower = path->nodes[level-1];
3007 if (level == 1)
3008 btrfs_item_key(lower, &lower_key, 0);
3009 else
3010 btrfs_node_key(lower, &lower_key, 0);
3011
31840ae1 3012 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
5d4f98a2 3013 root->root_key.objectid, &lower_key,
5581a51a 3014 level, root->node->start, 0);
5f39d397
CM
3015 if (IS_ERR(c))
3016 return PTR_ERR(c);
925baedd 3017
f0486c68
YZ
3018 root_add_used(root, root->nodesize);
3019
5d4f98a2 3020 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
5f39d397
CM
3021 btrfs_set_header_nritems(c, 1);
3022 btrfs_set_header_level(c, level);
db94535d 3023 btrfs_set_header_bytenr(c, c->start);
5f39d397 3024 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3025 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3026 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397
CM
3027
3028 write_extent_buffer(c, root->fs_info->fsid,
3029 (unsigned long)btrfs_header_fsid(c),
3030 BTRFS_FSID_SIZE);
e17cade2
CM
3031
3032 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3033 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3034 BTRFS_UUID_SIZE);
3035
5f39d397 3036 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3037 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3038 lower_gen = btrfs_header_generation(lower);
31840ae1 3039 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3040
3041 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3042
5f39d397 3043 btrfs_mark_buffer_dirty(c);
d5719762 3044
925baedd 3045 old = root->node;
f230475e 3046 tree_mod_log_set_root_pointer(root, c);
240f62c8 3047 rcu_assign_pointer(root->node, c);
925baedd
CM
3048
3049 /* the super has an extra ref to root->node */
3050 free_extent_buffer(old);
3051
0b86a832 3052 add_root_to_dirty_list(root);
5f39d397
CM
3053 extent_buffer_get(c);
3054 path->nodes[level] = c;
bd681513 3055 path->locks[level] = BTRFS_WRITE_LOCK;
5c680ed6
CM
3056 path->slots[level] = 0;
3057 return 0;
3058}
3059
74123bd7
CM
3060/*
3061 * worker function to insert a single pointer in a node.
3062 * the node should have enough room for the pointer already
97571fd0 3063 *
74123bd7
CM
3064 * slot and level indicate where you want the key to go, and
3065 * blocknr is the block the key points to.
3066 */
143bede5
JM
3067static void insert_ptr(struct btrfs_trans_handle *trans,
3068 struct btrfs_root *root, struct btrfs_path *path,
3069 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3070 int slot, int level)
74123bd7 3071{
5f39d397 3072 struct extent_buffer *lower;
74123bd7 3073 int nritems;
f3ea38da 3074 int ret;
5c680ed6
CM
3075
3076 BUG_ON(!path->nodes[level]);
f0486c68 3077 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3078 lower = path->nodes[level];
3079 nritems = btrfs_header_nritems(lower);
c293498b 3080 BUG_ON(slot > nritems);
143bede5 3081 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
74123bd7 3082 if (slot != nritems) {
c3e06965 3083 if (level)
f3ea38da
JS
3084 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3085 slot, nritems - slot);
5f39d397
CM
3086 memmove_extent_buffer(lower,
3087 btrfs_node_key_ptr_offset(slot + 1),
3088 btrfs_node_key_ptr_offset(slot),
d6025579 3089 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3090 }
c3e06965 3091 if (level) {
f3ea38da
JS
3092 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3093 MOD_LOG_KEY_ADD);
3094 BUG_ON(ret < 0);
3095 }
5f39d397 3096 btrfs_set_node_key(lower, key, slot);
db94535d 3097 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3098 WARN_ON(trans->transid == 0);
3099 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3100 btrfs_set_header_nritems(lower, nritems + 1);
3101 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3102}
3103
97571fd0
CM
3104/*
3105 * split the node at the specified level in path in two.
3106 * The path is corrected to point to the appropriate node after the split
3107 *
3108 * Before splitting this tries to make some room in the node by pushing
3109 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3110 *
3111 * returns 0 on success and < 0 on failure
97571fd0 3112 */
e02119d5
CM
3113static noinline int split_node(struct btrfs_trans_handle *trans,
3114 struct btrfs_root *root,
3115 struct btrfs_path *path, int level)
be0e5c09 3116{
5f39d397
CM
3117 struct extent_buffer *c;
3118 struct extent_buffer *split;
3119 struct btrfs_disk_key disk_key;
be0e5c09 3120 int mid;
5c680ed6 3121 int ret;
7518a238 3122 u32 c_nritems;
eb60ceac 3123
5f39d397 3124 c = path->nodes[level];
7bb86316 3125 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3126 if (c == root->node) {
5c680ed6 3127 /* trying to split the root, lets make a new one */
e089f05c 3128 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3129 if (ret)
3130 return ret;
b3612421 3131 } else {
e66f709b 3132 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3133 c = path->nodes[level];
3134 if (!ret && btrfs_header_nritems(c) <
c448acf0 3135 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
e66f709b 3136 return 0;
54aa1f4d
CM
3137 if (ret < 0)
3138 return ret;
be0e5c09 3139 }
e66f709b 3140
5f39d397 3141 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3142 mid = (c_nritems + 1) / 2;
3143 btrfs_node_key(c, &disk_key, mid);
7bb86316 3144
5d4f98a2 3145 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
31840ae1 3146 root->root_key.objectid,
5581a51a 3147 &disk_key, level, c->start, 0);
5f39d397
CM
3148 if (IS_ERR(split))
3149 return PTR_ERR(split);
3150
f0486c68
YZ
3151 root_add_used(root, root->nodesize);
3152
5d4f98a2 3153 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
5f39d397 3154 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3155 btrfs_set_header_bytenr(split, split->start);
5f39d397 3156 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3157 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
3158 btrfs_set_header_owner(split, root->root_key.objectid);
3159 write_extent_buffer(split, root->fs_info->fsid,
3160 (unsigned long)btrfs_header_fsid(split),
3161 BTRFS_FSID_SIZE);
e17cade2
CM
3162 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3163 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3164 BTRFS_UUID_SIZE);
54aa1f4d 3165
f230475e 3166 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
5f39d397
CM
3167 copy_extent_buffer(split, c,
3168 btrfs_node_key_ptr_offset(0),
3169 btrfs_node_key_ptr_offset(mid),
3170 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3171 btrfs_set_header_nritems(split, c_nritems - mid);
3172 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3173 ret = 0;
3174
5f39d397
CM
3175 btrfs_mark_buffer_dirty(c);
3176 btrfs_mark_buffer_dirty(split);
3177
143bede5 3178 insert_ptr(trans, root, path, &disk_key, split->start,
c3e06965 3179 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3180
5de08d7d 3181 if (path->slots[level] >= mid) {
5c680ed6 3182 path->slots[level] -= mid;
925baedd 3183 btrfs_tree_unlock(c);
5f39d397
CM
3184 free_extent_buffer(c);
3185 path->nodes[level] = split;
5c680ed6
CM
3186 path->slots[level + 1] += 1;
3187 } else {
925baedd 3188 btrfs_tree_unlock(split);
5f39d397 3189 free_extent_buffer(split);
be0e5c09 3190 }
aa5d6bed 3191 return ret;
be0e5c09
CM
3192}
3193
74123bd7
CM
3194/*
3195 * how many bytes are required to store the items in a leaf. start
3196 * and nr indicate which items in the leaf to check. This totals up the
3197 * space used both by the item structs and the item data
3198 */
5f39d397 3199static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09
CM
3200{
3201 int data_len;
5f39d397 3202 int nritems = btrfs_header_nritems(l);
d4dbff95 3203 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3204
3205 if (!nr)
3206 return 0;
5f39d397
CM
3207 data_len = btrfs_item_end_nr(l, start);
3208 data_len = data_len - btrfs_item_offset_nr(l, end);
0783fcfc 3209 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3210 WARN_ON(data_len < 0);
be0e5c09
CM
3211 return data_len;
3212}
3213
d4dbff95
CM
3214/*
3215 * The space between the end of the leaf items and
3216 * the start of the leaf data. IOW, how much room
3217 * the leaf has left for both items and data
3218 */
d397712b 3219noinline int btrfs_leaf_free_space(struct btrfs_root *root,
e02119d5 3220 struct extent_buffer *leaf)
d4dbff95 3221{
5f39d397
CM
3222 int nritems = btrfs_header_nritems(leaf);
3223 int ret;
3224 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3225 if (ret < 0) {
d397712b
CM
3226 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3227 "used %d nritems %d\n",
ae2f5411 3228 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
5f39d397
CM
3229 leaf_space_used(leaf, 0, nritems), nritems);
3230 }
3231 return ret;
d4dbff95
CM
3232}
3233
99d8f83c
CM
3234/*
3235 * min slot controls the lowest index we're willing to push to the
3236 * right. We'll push up to and including min_slot, but no lower
3237 */
44871b1b
CM
3238static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3239 struct btrfs_root *root,
3240 struct btrfs_path *path,
3241 int data_size, int empty,
3242 struct extent_buffer *right,
99d8f83c
CM
3243 int free_space, u32 left_nritems,
3244 u32 min_slot)
00ec4c51 3245{
5f39d397 3246 struct extent_buffer *left = path->nodes[0];
44871b1b 3247 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3248 struct btrfs_map_token token;
5f39d397 3249 struct btrfs_disk_key disk_key;
00ec4c51 3250 int slot;
34a38218 3251 u32 i;
00ec4c51
CM
3252 int push_space = 0;
3253 int push_items = 0;
0783fcfc 3254 struct btrfs_item *item;
34a38218 3255 u32 nr;
7518a238 3256 u32 right_nritems;
5f39d397 3257 u32 data_end;
db94535d 3258 u32 this_item_size;
00ec4c51 3259
cfed81a0
CM
3260 btrfs_init_map_token(&token);
3261
34a38218
CM
3262 if (empty)
3263 nr = 0;
3264 else
99d8f83c 3265 nr = max_t(u32, 1, min_slot);
34a38218 3266
31840ae1 3267 if (path->slots[0] >= left_nritems)
87b29b20 3268 push_space += data_size;
31840ae1 3269
44871b1b 3270 slot = path->slots[1];
34a38218
CM
3271 i = left_nritems - 1;
3272 while (i >= nr) {
5f39d397 3273 item = btrfs_item_nr(left, i);
db94535d 3274
31840ae1
ZY
3275 if (!empty && push_items > 0) {
3276 if (path->slots[0] > i)
3277 break;
3278 if (path->slots[0] == i) {
3279 int space = btrfs_leaf_free_space(root, left);
3280 if (space + push_space * 2 > free_space)
3281 break;
3282 }
3283 }
3284
00ec4c51 3285 if (path->slots[0] == i)
87b29b20 3286 push_space += data_size;
db94535d 3287
db94535d
CM
3288 this_item_size = btrfs_item_size(left, item);
3289 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3290 break;
31840ae1 3291
00ec4c51 3292 push_items++;
db94535d 3293 push_space += this_item_size + sizeof(*item);
34a38218
CM
3294 if (i == 0)
3295 break;
3296 i--;
db94535d 3297 }
5f39d397 3298
925baedd
CM
3299 if (push_items == 0)
3300 goto out_unlock;
5f39d397 3301
34a38218 3302 if (!empty && push_items == left_nritems)
a429e513 3303 WARN_ON(1);
5f39d397 3304
00ec4c51 3305 /* push left to right */
5f39d397 3306 right_nritems = btrfs_header_nritems(right);
34a38218 3307
5f39d397 3308 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
123abc88 3309 push_space -= leaf_data_end(root, left);
5f39d397 3310
00ec4c51 3311 /* make room in the right data area */
5f39d397
CM
3312 data_end = leaf_data_end(root, right);
3313 memmove_extent_buffer(right,
3314 btrfs_leaf_data(right) + data_end - push_space,
3315 btrfs_leaf_data(right) + data_end,
3316 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3317
00ec4c51 3318 /* copy from the left data area */
5f39d397 3319 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
d6025579
CM
3320 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3321 btrfs_leaf_data(left) + leaf_data_end(root, left),
3322 push_space);
5f39d397
CM
3323
3324 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3325 btrfs_item_nr_offset(0),
3326 right_nritems * sizeof(struct btrfs_item));
3327
00ec4c51 3328 /* copy the items from left to right */
5f39d397
CM
3329 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3330 btrfs_item_nr_offset(left_nritems - push_items),
3331 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3332
3333 /* update the item pointers */
7518a238 3334 right_nritems += push_items;
5f39d397 3335 btrfs_set_header_nritems(right, right_nritems);
123abc88 3336 push_space = BTRFS_LEAF_DATA_SIZE(root);
7518a238 3337 for (i = 0; i < right_nritems; i++) {
5f39d397 3338 item = btrfs_item_nr(right, i);
cfed81a0
CM
3339 push_space -= btrfs_token_item_size(right, item, &token);
3340 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3341 }
3342
7518a238 3343 left_nritems -= push_items;
5f39d397 3344 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3345
34a38218
CM
3346 if (left_nritems)
3347 btrfs_mark_buffer_dirty(left);
f0486c68
YZ
3348 else
3349 clean_tree_block(trans, root, left);
3350
5f39d397 3351 btrfs_mark_buffer_dirty(right);
a429e513 3352
5f39d397
CM
3353 btrfs_item_key(right, &disk_key, 0);
3354 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3355 btrfs_mark_buffer_dirty(upper);
02217ed2 3356
00ec4c51 3357 /* then fixup the leaf pointer in the path */
7518a238
CM
3358 if (path->slots[0] >= left_nritems) {
3359 path->slots[0] -= left_nritems;
925baedd
CM
3360 if (btrfs_header_nritems(path->nodes[0]) == 0)
3361 clean_tree_block(trans, root, path->nodes[0]);
3362 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3363 free_extent_buffer(path->nodes[0]);
3364 path->nodes[0] = right;
00ec4c51
CM
3365 path->slots[1] += 1;
3366 } else {
925baedd 3367 btrfs_tree_unlock(right);
5f39d397 3368 free_extent_buffer(right);
00ec4c51
CM
3369 }
3370 return 0;
925baedd
CM
3371
3372out_unlock:
3373 btrfs_tree_unlock(right);
3374 free_extent_buffer(right);
3375 return 1;
00ec4c51 3376}
925baedd 3377
44871b1b
CM
3378/*
3379 * push some data in the path leaf to the right, trying to free up at
3380 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3381 *
3382 * returns 1 if the push failed because the other node didn't have enough
3383 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3384 *
3385 * this will push starting from min_slot to the end of the leaf. It won't
3386 * push any slot lower than min_slot
44871b1b
CM
3387 */
3388static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3389 *root, struct btrfs_path *path,
3390 int min_data_size, int data_size,
3391 int empty, u32 min_slot)
44871b1b
CM
3392{
3393 struct extent_buffer *left = path->nodes[0];
3394 struct extent_buffer *right;
3395 struct extent_buffer *upper;
3396 int slot;
3397 int free_space;
3398 u32 left_nritems;
3399 int ret;
3400
3401 if (!path->nodes[1])
3402 return 1;
3403
3404 slot = path->slots[1];
3405 upper = path->nodes[1];
3406 if (slot >= btrfs_header_nritems(upper) - 1)
3407 return 1;
3408
3409 btrfs_assert_tree_locked(path->nodes[1]);
3410
3411 right = read_node_slot(root, upper, slot + 1);
91ca338d
TI
3412 if (right == NULL)
3413 return 1;
3414
44871b1b
CM
3415 btrfs_tree_lock(right);
3416 btrfs_set_lock_blocking(right);
3417
3418 free_space = btrfs_leaf_free_space(root, right);
3419 if (free_space < data_size)
3420 goto out_unlock;
3421
3422 /* cow and double check */
3423 ret = btrfs_cow_block(trans, root, right, upper,
3424 slot + 1, &right);
3425 if (ret)
3426 goto out_unlock;
3427
3428 free_space = btrfs_leaf_free_space(root, right);
3429 if (free_space < data_size)
3430 goto out_unlock;
3431
3432 left_nritems = btrfs_header_nritems(left);
3433 if (left_nritems == 0)
3434 goto out_unlock;
3435
99d8f83c
CM
3436 return __push_leaf_right(trans, root, path, min_data_size, empty,
3437 right, free_space, left_nritems, min_slot);
44871b1b
CM
3438out_unlock:
3439 btrfs_tree_unlock(right);
3440 free_extent_buffer(right);
3441 return 1;
3442}
3443
74123bd7
CM
3444/*
3445 * push some data in the path leaf to the left, trying to free up at
3446 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3447 *
3448 * max_slot can put a limit on how far into the leaf we'll push items. The
3449 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3450 * items
74123bd7 3451 */
44871b1b
CM
3452static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3453 struct btrfs_root *root,
3454 struct btrfs_path *path, int data_size,
3455 int empty, struct extent_buffer *left,
99d8f83c
CM
3456 int free_space, u32 right_nritems,
3457 u32 max_slot)
be0e5c09 3458{
5f39d397
CM
3459 struct btrfs_disk_key disk_key;
3460 struct extent_buffer *right = path->nodes[0];
be0e5c09 3461 int i;
be0e5c09
CM
3462 int push_space = 0;
3463 int push_items = 0;
0783fcfc 3464 struct btrfs_item *item;
7518a238 3465 u32 old_left_nritems;
34a38218 3466 u32 nr;
aa5d6bed 3467 int ret = 0;
db94535d
CM
3468 u32 this_item_size;
3469 u32 old_left_item_size;
cfed81a0
CM
3470 struct btrfs_map_token token;
3471
3472 btrfs_init_map_token(&token);
be0e5c09 3473
34a38218 3474 if (empty)
99d8f83c 3475 nr = min(right_nritems, max_slot);
34a38218 3476 else
99d8f83c 3477 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3478
3479 for (i = 0; i < nr; i++) {
5f39d397 3480 item = btrfs_item_nr(right, i);
db94535d 3481
31840ae1
ZY
3482 if (!empty && push_items > 0) {
3483 if (path->slots[0] < i)
3484 break;
3485 if (path->slots[0] == i) {
3486 int space = btrfs_leaf_free_space(root, right);
3487 if (space + push_space * 2 > free_space)
3488 break;
3489 }
3490 }
3491
be0e5c09 3492 if (path->slots[0] == i)
87b29b20 3493 push_space += data_size;
db94535d
CM
3494
3495 this_item_size = btrfs_item_size(right, item);
3496 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3497 break;
db94535d 3498
be0e5c09 3499 push_items++;
db94535d
CM
3500 push_space += this_item_size + sizeof(*item);
3501 }
3502
be0e5c09 3503 if (push_items == 0) {
925baedd
CM
3504 ret = 1;
3505 goto out;
be0e5c09 3506 }
34a38218 3507 if (!empty && push_items == btrfs_header_nritems(right))
a429e513 3508 WARN_ON(1);
5f39d397 3509
be0e5c09 3510 /* push data from right to left */
5f39d397
CM
3511 copy_extent_buffer(left, right,
3512 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3513 btrfs_item_nr_offset(0),
3514 push_items * sizeof(struct btrfs_item));
3515
123abc88 3516 push_space = BTRFS_LEAF_DATA_SIZE(root) -
d397712b 3517 btrfs_item_offset_nr(right, push_items - 1);
5f39d397
CM
3518
3519 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
d6025579
CM
3520 leaf_data_end(root, left) - push_space,
3521 btrfs_leaf_data(right) +
5f39d397 3522 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3523 push_space);
5f39d397 3524 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3525 BUG_ON(old_left_nritems <= 0);
eb60ceac 3526
db94535d 3527 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3528 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3529 u32 ioff;
db94535d 3530
5f39d397 3531 item = btrfs_item_nr(left, i);
db94535d 3532
cfed81a0
CM
3533 ioff = btrfs_token_item_offset(left, item, &token);
3534 btrfs_set_token_item_offset(left, item,
3535 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3536 &token);
be0e5c09 3537 }
5f39d397 3538 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3539
3540 /* fixup right node */
34a38218 3541 if (push_items > right_nritems) {
d397712b
CM
3542 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3543 right_nritems);
34a38218
CM
3544 WARN_ON(1);
3545 }
3546
3547 if (push_items < right_nritems) {
3548 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3549 leaf_data_end(root, right);
3550 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3551 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3552 btrfs_leaf_data(right) +
3553 leaf_data_end(root, right), push_space);
3554
3555 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3556 btrfs_item_nr_offset(push_items),
3557 (btrfs_header_nritems(right) - push_items) *
3558 sizeof(struct btrfs_item));
34a38218 3559 }
eef1c494
Y
3560 right_nritems -= push_items;
3561 btrfs_set_header_nritems(right, right_nritems);
123abc88 3562 push_space = BTRFS_LEAF_DATA_SIZE(root);
5f39d397
CM
3563 for (i = 0; i < right_nritems; i++) {
3564 item = btrfs_item_nr(right, i);
db94535d 3565
cfed81a0
CM
3566 push_space = push_space - btrfs_token_item_size(right,
3567 item, &token);
3568 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3569 }
eb60ceac 3570
5f39d397 3571 btrfs_mark_buffer_dirty(left);
34a38218
CM
3572 if (right_nritems)
3573 btrfs_mark_buffer_dirty(right);
f0486c68
YZ
3574 else
3575 clean_tree_block(trans, root, right);
098f59c2 3576
5f39d397 3577 btrfs_item_key(right, &disk_key, 0);
143bede5 3578 fixup_low_keys(trans, root, path, &disk_key, 1);
be0e5c09
CM
3579
3580 /* then fixup the leaf pointer in the path */
3581 if (path->slots[0] < push_items) {
3582 path->slots[0] += old_left_nritems;
925baedd 3583 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3584 free_extent_buffer(path->nodes[0]);
3585 path->nodes[0] = left;
be0e5c09
CM
3586 path->slots[1] -= 1;
3587 } else {
925baedd 3588 btrfs_tree_unlock(left);
5f39d397 3589 free_extent_buffer(left);
be0e5c09
CM
3590 path->slots[0] -= push_items;
3591 }
eb60ceac 3592 BUG_ON(path->slots[0] < 0);
aa5d6bed 3593 return ret;
925baedd
CM
3594out:
3595 btrfs_tree_unlock(left);
3596 free_extent_buffer(left);
3597 return ret;
be0e5c09
CM
3598}
3599
44871b1b
CM
3600/*
3601 * push some data in the path leaf to the left, trying to free up at
3602 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3603 *
3604 * max_slot can put a limit on how far into the leaf we'll push items. The
3605 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3606 * items
44871b1b
CM
3607 */
3608static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3609 *root, struct btrfs_path *path, int min_data_size,
3610 int data_size, int empty, u32 max_slot)
44871b1b
CM
3611{
3612 struct extent_buffer *right = path->nodes[0];
3613 struct extent_buffer *left;
3614 int slot;
3615 int free_space;
3616 u32 right_nritems;
3617 int ret = 0;
3618
3619 slot = path->slots[1];
3620 if (slot == 0)
3621 return 1;
3622 if (!path->nodes[1])
3623 return 1;
3624
3625 right_nritems = btrfs_header_nritems(right);
3626 if (right_nritems == 0)
3627 return 1;
3628
3629 btrfs_assert_tree_locked(path->nodes[1]);
3630
3631 left = read_node_slot(root, path->nodes[1], slot - 1);
91ca338d
TI
3632 if (left == NULL)
3633 return 1;
3634
44871b1b
CM
3635 btrfs_tree_lock(left);
3636 btrfs_set_lock_blocking(left);
3637
3638 free_space = btrfs_leaf_free_space(root, left);
3639 if (free_space < data_size) {
3640 ret = 1;
3641 goto out;
3642 }
3643
3644 /* cow and double check */
3645 ret = btrfs_cow_block(trans, root, left,
3646 path->nodes[1], slot - 1, &left);
3647 if (ret) {
3648 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
3649 if (ret == -ENOSPC)
3650 ret = 1;
44871b1b
CM
3651 goto out;
3652 }
3653
3654 free_space = btrfs_leaf_free_space(root, left);
3655 if (free_space < data_size) {
3656 ret = 1;
3657 goto out;
3658 }
3659
99d8f83c
CM
3660 return __push_leaf_left(trans, root, path, min_data_size,
3661 empty, left, free_space, right_nritems,
3662 max_slot);
44871b1b
CM
3663out:
3664 btrfs_tree_unlock(left);
3665 free_extent_buffer(left);
3666 return ret;
3667}
3668
3669/*
3670 * split the path's leaf in two, making sure there is at least data_size
3671 * available for the resulting leaf level of the path.
44871b1b 3672 */
143bede5
JM
3673static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3674 struct btrfs_root *root,
3675 struct btrfs_path *path,
3676 struct extent_buffer *l,
3677 struct extent_buffer *right,
3678 int slot, int mid, int nritems)
44871b1b
CM
3679{
3680 int data_copy_size;
3681 int rt_data_off;
3682 int i;
44871b1b 3683 struct btrfs_disk_key disk_key;
cfed81a0
CM
3684 struct btrfs_map_token token;
3685
3686 btrfs_init_map_token(&token);
44871b1b
CM
3687
3688 nritems = nritems - mid;
3689 btrfs_set_header_nritems(right, nritems);
3690 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3691
3692 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3693 btrfs_item_nr_offset(mid),
3694 nritems * sizeof(struct btrfs_item));
3695
3696 copy_extent_buffer(right, l,
3697 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3698 data_copy_size, btrfs_leaf_data(l) +
3699 leaf_data_end(root, l), data_copy_size);
3700
3701 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3702 btrfs_item_end_nr(l, mid);
3703
3704 for (i = 0; i < nritems; i++) {
3705 struct btrfs_item *item = btrfs_item_nr(right, i);
3706 u32 ioff;
3707
cfed81a0
CM
3708 ioff = btrfs_token_item_offset(right, item, &token);
3709 btrfs_set_token_item_offset(right, item,
3710 ioff + rt_data_off, &token);
44871b1b
CM
3711 }
3712
44871b1b 3713 btrfs_set_header_nritems(l, mid);
44871b1b 3714 btrfs_item_key(right, &disk_key, 0);
143bede5 3715 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 3716 path->slots[1] + 1, 1);
44871b1b
CM
3717
3718 btrfs_mark_buffer_dirty(right);
3719 btrfs_mark_buffer_dirty(l);
3720 BUG_ON(path->slots[0] != slot);
3721
44871b1b
CM
3722 if (mid <= slot) {
3723 btrfs_tree_unlock(path->nodes[0]);
3724 free_extent_buffer(path->nodes[0]);
3725 path->nodes[0] = right;
3726 path->slots[0] -= mid;
3727 path->slots[1] += 1;
3728 } else {
3729 btrfs_tree_unlock(right);
3730 free_extent_buffer(right);
3731 }
3732
3733 BUG_ON(path->slots[0] < 0);
44871b1b
CM
3734}
3735
99d8f83c
CM
3736/*
3737 * double splits happen when we need to insert a big item in the middle
3738 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3739 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3740 * A B C
3741 *
3742 * We avoid this by trying to push the items on either side of our target
3743 * into the adjacent leaves. If all goes well we can avoid the double split
3744 * completely.
3745 */
3746static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3747 struct btrfs_root *root,
3748 struct btrfs_path *path,
3749 int data_size)
3750{
3751 int ret;
3752 int progress = 0;
3753 int slot;
3754 u32 nritems;
3755
3756 slot = path->slots[0];
3757
3758 /*
3759 * try to push all the items after our slot into the
3760 * right leaf
3761 */
3762 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3763 if (ret < 0)
3764 return ret;
3765
3766 if (ret == 0)
3767 progress++;
3768
3769 nritems = btrfs_header_nritems(path->nodes[0]);
3770 /*
3771 * our goal is to get our slot at the start or end of a leaf. If
3772 * we've done so we're done
3773 */
3774 if (path->slots[0] == 0 || path->slots[0] == nritems)
3775 return 0;
3776
3777 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3778 return 0;
3779
3780 /* try to push all the items before our slot into the next leaf */
3781 slot = path->slots[0];
3782 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3783 if (ret < 0)
3784 return ret;
3785
3786 if (ret == 0)
3787 progress++;
3788
3789 if (progress)
3790 return 0;
3791 return 1;
3792}
3793
74123bd7
CM
3794/*
3795 * split the path's leaf in two, making sure there is at least data_size
3796 * available for the resulting leaf level of the path.
aa5d6bed
CM
3797 *
3798 * returns 0 if all went well and < 0 on failure.
74123bd7 3799 */
e02119d5
CM
3800static noinline int split_leaf(struct btrfs_trans_handle *trans,
3801 struct btrfs_root *root,
3802 struct btrfs_key *ins_key,
3803 struct btrfs_path *path, int data_size,
3804 int extend)
be0e5c09 3805{
5d4f98a2 3806 struct btrfs_disk_key disk_key;
5f39d397 3807 struct extent_buffer *l;
7518a238 3808 u32 nritems;
eb60ceac
CM
3809 int mid;
3810 int slot;
5f39d397 3811 struct extent_buffer *right;
d4dbff95 3812 int ret = 0;
aa5d6bed 3813 int wret;
5d4f98a2 3814 int split;
cc0c5538 3815 int num_doubles = 0;
99d8f83c 3816 int tried_avoid_double = 0;
aa5d6bed 3817
a5719521
YZ
3818 l = path->nodes[0];
3819 slot = path->slots[0];
3820 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3821 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3822 return -EOVERFLOW;
3823
40689478 3824 /* first try to make some room by pushing left and right */
99d8f83c
CM
3825 if (data_size) {
3826 wret = push_leaf_right(trans, root, path, data_size,
3827 data_size, 0, 0);
d397712b 3828 if (wret < 0)
eaee50e8 3829 return wret;
3685f791 3830 if (wret) {
99d8f83c
CM
3831 wret = push_leaf_left(trans, root, path, data_size,
3832 data_size, 0, (u32)-1);
3685f791
CM
3833 if (wret < 0)
3834 return wret;
3835 }
3836 l = path->nodes[0];
aa5d6bed 3837
3685f791 3838 /* did the pushes work? */
87b29b20 3839 if (btrfs_leaf_free_space(root, l) >= data_size)
3685f791 3840 return 0;
3326d1b0 3841 }
aa5d6bed 3842
5c680ed6 3843 if (!path->nodes[1]) {
e089f05c 3844 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
3845 if (ret)
3846 return ret;
3847 }
cc0c5538 3848again:
5d4f98a2 3849 split = 1;
cc0c5538 3850 l = path->nodes[0];
eb60ceac 3851 slot = path->slots[0];
5f39d397 3852 nritems = btrfs_header_nritems(l);
d397712b 3853 mid = (nritems + 1) / 2;
54aa1f4d 3854
5d4f98a2
YZ
3855 if (mid <= slot) {
3856 if (nritems == 1 ||
3857 leaf_space_used(l, mid, nritems - mid) + data_size >
3858 BTRFS_LEAF_DATA_SIZE(root)) {
3859 if (slot >= nritems) {
3860 split = 0;
3861 } else {
3862 mid = slot;
3863 if (mid != nritems &&
3864 leaf_space_used(l, mid, nritems - mid) +
3865 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3866 if (data_size && !tried_avoid_double)
3867 goto push_for_double;
5d4f98a2
YZ
3868 split = 2;
3869 }
3870 }
3871 }
3872 } else {
3873 if (leaf_space_used(l, 0, mid) + data_size >
3874 BTRFS_LEAF_DATA_SIZE(root)) {
3875 if (!extend && data_size && slot == 0) {
3876 split = 0;
3877 } else if ((extend || !data_size) && slot == 0) {
3878 mid = 1;
3879 } else {
3880 mid = slot;
3881 if (mid != nritems &&
3882 leaf_space_used(l, mid, nritems - mid) +
3883 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3884 if (data_size && !tried_avoid_double)
3885 goto push_for_double;
5d4f98a2
YZ
3886 split = 2 ;
3887 }
3888 }
3889 }
3890 }
3891
3892 if (split == 0)
3893 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3894 else
3895 btrfs_item_key(l, &disk_key, mid);
3896
3897 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
31840ae1 3898 root->root_key.objectid,
5581a51a 3899 &disk_key, 0, l->start, 0);
f0486c68 3900 if (IS_ERR(right))
5f39d397 3901 return PTR_ERR(right);
f0486c68
YZ
3902
3903 root_add_used(root, root->leafsize);
5f39d397
CM
3904
3905 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
db94535d 3906 btrfs_set_header_bytenr(right, right->start);
5f39d397 3907 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 3908 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
3909 btrfs_set_header_owner(right, root->root_key.objectid);
3910 btrfs_set_header_level(right, 0);
3911 write_extent_buffer(right, root->fs_info->fsid,
3912 (unsigned long)btrfs_header_fsid(right),
3913 BTRFS_FSID_SIZE);
e17cade2
CM
3914
3915 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3916 (unsigned long)btrfs_header_chunk_tree_uuid(right),
3917 BTRFS_UUID_SIZE);
44871b1b 3918
5d4f98a2
YZ
3919 if (split == 0) {
3920 if (mid <= slot) {
3921 btrfs_set_header_nritems(right, 0);
143bede5 3922 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 3923 path->slots[1] + 1, 1);
5d4f98a2
YZ
3924 btrfs_tree_unlock(path->nodes[0]);
3925 free_extent_buffer(path->nodes[0]);
3926 path->nodes[0] = right;
3927 path->slots[0] = 0;
3928 path->slots[1] += 1;
3929 } else {
3930 btrfs_set_header_nritems(right, 0);
143bede5 3931 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 3932 path->slots[1], 1);
5d4f98a2
YZ
3933 btrfs_tree_unlock(path->nodes[0]);
3934 free_extent_buffer(path->nodes[0]);
3935 path->nodes[0] = right;
3936 path->slots[0] = 0;
143bede5
JM
3937 if (path->slots[1] == 0)
3938 fixup_low_keys(trans, root, path,
3939 &disk_key, 1);
d4dbff95 3940 }
5d4f98a2
YZ
3941 btrfs_mark_buffer_dirty(right);
3942 return ret;
d4dbff95 3943 }
74123bd7 3944
143bede5 3945 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
31840ae1 3946
5d4f98a2 3947 if (split == 2) {
cc0c5538
CM
3948 BUG_ON(num_doubles != 0);
3949 num_doubles++;
3950 goto again;
a429e513 3951 }
44871b1b 3952
143bede5 3953 return 0;
99d8f83c
CM
3954
3955push_for_double:
3956 push_for_double_split(trans, root, path, data_size);
3957 tried_avoid_double = 1;
3958 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3959 return 0;
3960 goto again;
be0e5c09
CM
3961}
3962
ad48fd75
YZ
3963static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3964 struct btrfs_root *root,
3965 struct btrfs_path *path, int ins_len)
459931ec 3966{
ad48fd75 3967 struct btrfs_key key;
459931ec 3968 struct extent_buffer *leaf;
ad48fd75
YZ
3969 struct btrfs_file_extent_item *fi;
3970 u64 extent_len = 0;
3971 u32 item_size;
3972 int ret;
459931ec
CM
3973
3974 leaf = path->nodes[0];
ad48fd75
YZ
3975 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3976
3977 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3978 key.type != BTRFS_EXTENT_CSUM_KEY);
3979
3980 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3981 return 0;
459931ec
CM
3982
3983 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
3984 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3985 fi = btrfs_item_ptr(leaf, path->slots[0],
3986 struct btrfs_file_extent_item);
3987 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3988 }
b3b4aa74 3989 btrfs_release_path(path);
459931ec 3990
459931ec 3991 path->keep_locks = 1;
ad48fd75
YZ
3992 path->search_for_split = 1;
3993 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 3994 path->search_for_split = 0;
ad48fd75
YZ
3995 if (ret < 0)
3996 goto err;
459931ec 3997
ad48fd75
YZ
3998 ret = -EAGAIN;
3999 leaf = path->nodes[0];
459931ec 4000 /* if our item isn't there or got smaller, return now */
ad48fd75
YZ
4001 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4002 goto err;
4003
109f6aef
CM
4004 /* the leaf has changed, it now has room. return now */
4005 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4006 goto err;
4007
ad48fd75
YZ
4008 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4009 fi = btrfs_item_ptr(leaf, path->slots[0],
4010 struct btrfs_file_extent_item);
4011 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4012 goto err;
459931ec
CM
4013 }
4014
b9473439 4015 btrfs_set_path_blocking(path);
ad48fd75 4016 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4017 if (ret)
4018 goto err;
459931ec 4019
ad48fd75 4020 path->keep_locks = 0;
b9473439 4021 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4022 return 0;
4023err:
4024 path->keep_locks = 0;
4025 return ret;
4026}
4027
4028static noinline int split_item(struct btrfs_trans_handle *trans,
4029 struct btrfs_root *root,
4030 struct btrfs_path *path,
4031 struct btrfs_key *new_key,
4032 unsigned long split_offset)
4033{
4034 struct extent_buffer *leaf;
4035 struct btrfs_item *item;
4036 struct btrfs_item *new_item;
4037 int slot;
4038 char *buf;
4039 u32 nritems;
4040 u32 item_size;
4041 u32 orig_offset;
4042 struct btrfs_disk_key disk_key;
4043
b9473439
CM
4044 leaf = path->nodes[0];
4045 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4046
b4ce94de
CM
4047 btrfs_set_path_blocking(path);
4048
459931ec
CM
4049 item = btrfs_item_nr(leaf, path->slots[0]);
4050 orig_offset = btrfs_item_offset(leaf, item);
4051 item_size = btrfs_item_size(leaf, item);
4052
459931ec 4053 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4054 if (!buf)
4055 return -ENOMEM;
4056
459931ec
CM
4057 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4058 path->slots[0]), item_size);
459931ec 4059
ad48fd75 4060 slot = path->slots[0] + 1;
459931ec 4061 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4062 if (slot != nritems) {
4063 /* shift the items */
4064 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4065 btrfs_item_nr_offset(slot),
4066 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4067 }
4068
4069 btrfs_cpu_key_to_disk(&disk_key, new_key);
4070 btrfs_set_item_key(leaf, &disk_key, slot);
4071
4072 new_item = btrfs_item_nr(leaf, slot);
4073
4074 btrfs_set_item_offset(leaf, new_item, orig_offset);
4075 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4076
4077 btrfs_set_item_offset(leaf, item,
4078 orig_offset + item_size - split_offset);
4079 btrfs_set_item_size(leaf, item, split_offset);
4080
4081 btrfs_set_header_nritems(leaf, nritems + 1);
4082
4083 /* write the data for the start of the original item */
4084 write_extent_buffer(leaf, buf,
4085 btrfs_item_ptr_offset(leaf, path->slots[0]),
4086 split_offset);
4087
4088 /* write the data for the new item */
4089 write_extent_buffer(leaf, buf + split_offset,
4090 btrfs_item_ptr_offset(leaf, slot),
4091 item_size - split_offset);
4092 btrfs_mark_buffer_dirty(leaf);
4093
ad48fd75 4094 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
459931ec 4095 kfree(buf);
ad48fd75
YZ
4096 return 0;
4097}
4098
4099/*
4100 * This function splits a single item into two items,
4101 * giving 'new_key' to the new item and splitting the
4102 * old one at split_offset (from the start of the item).
4103 *
4104 * The path may be released by this operation. After
4105 * the split, the path is pointing to the old item. The
4106 * new item is going to be in the same node as the old one.
4107 *
4108 * Note, the item being split must be smaller enough to live alone on
4109 * a tree block with room for one extra struct btrfs_item
4110 *
4111 * This allows us to split the item in place, keeping a lock on the
4112 * leaf the entire time.
4113 */
4114int btrfs_split_item(struct btrfs_trans_handle *trans,
4115 struct btrfs_root *root,
4116 struct btrfs_path *path,
4117 struct btrfs_key *new_key,
4118 unsigned long split_offset)
4119{
4120 int ret;
4121 ret = setup_leaf_for_split(trans, root, path,
4122 sizeof(struct btrfs_item));
4123 if (ret)
4124 return ret;
4125
4126 ret = split_item(trans, root, path, new_key, split_offset);
459931ec
CM
4127 return ret;
4128}
4129
ad48fd75
YZ
4130/*
4131 * This function duplicate a item, giving 'new_key' to the new item.
4132 * It guarantees both items live in the same tree leaf and the new item
4133 * is contiguous with the original item.
4134 *
4135 * This allows us to split file extent in place, keeping a lock on the
4136 * leaf the entire time.
4137 */
4138int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4139 struct btrfs_root *root,
4140 struct btrfs_path *path,
4141 struct btrfs_key *new_key)
4142{
4143 struct extent_buffer *leaf;
4144 int ret;
4145 u32 item_size;
4146
4147 leaf = path->nodes[0];
4148 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4149 ret = setup_leaf_for_split(trans, root, path,
4150 item_size + sizeof(struct btrfs_item));
4151 if (ret)
4152 return ret;
4153
4154 path->slots[0]++;
143bede5
JM
4155 setup_items_for_insert(trans, root, path, new_key, &item_size,
4156 item_size, item_size +
4157 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4158 leaf = path->nodes[0];
4159 memcpy_extent_buffer(leaf,
4160 btrfs_item_ptr_offset(leaf, path->slots[0]),
4161 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4162 item_size);
4163 return 0;
4164}
4165
d352ac68
CM
4166/*
4167 * make the item pointed to by the path smaller. new_size indicates
4168 * how small to make it, and from_end tells us if we just chop bytes
4169 * off the end of the item or if we shift the item to chop bytes off
4170 * the front.
4171 */
143bede5
JM
4172void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4173 struct btrfs_root *root,
4174 struct btrfs_path *path,
4175 u32 new_size, int from_end)
b18c6685 4176{
b18c6685 4177 int slot;
5f39d397
CM
4178 struct extent_buffer *leaf;
4179 struct btrfs_item *item;
b18c6685
CM
4180 u32 nritems;
4181 unsigned int data_end;
4182 unsigned int old_data_start;
4183 unsigned int old_size;
4184 unsigned int size_diff;
4185 int i;
cfed81a0
CM
4186 struct btrfs_map_token token;
4187
4188 btrfs_init_map_token(&token);
b18c6685 4189
5f39d397 4190 leaf = path->nodes[0];
179e29e4
CM
4191 slot = path->slots[0];
4192
4193 old_size = btrfs_item_size_nr(leaf, slot);
4194 if (old_size == new_size)
143bede5 4195 return;
b18c6685 4196
5f39d397 4197 nritems = btrfs_header_nritems(leaf);
b18c6685
CM
4198 data_end = leaf_data_end(root, leaf);
4199
5f39d397 4200 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4201
b18c6685
CM
4202 size_diff = old_size - new_size;
4203
4204 BUG_ON(slot < 0);
4205 BUG_ON(slot >= nritems);
4206
4207 /*
4208 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4209 */
4210 /* first correct the data pointers */
4211 for (i = slot; i < nritems; i++) {
5f39d397
CM
4212 u32 ioff;
4213 item = btrfs_item_nr(leaf, i);
db94535d 4214
cfed81a0
CM
4215 ioff = btrfs_token_item_offset(leaf, item, &token);
4216 btrfs_set_token_item_offset(leaf, item,
4217 ioff + size_diff, &token);
b18c6685 4218 }
db94535d 4219
b18c6685 4220 /* shift the data */
179e29e4
CM
4221 if (from_end) {
4222 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4223 data_end + size_diff, btrfs_leaf_data(leaf) +
4224 data_end, old_data_start + new_size - data_end);
4225 } else {
4226 struct btrfs_disk_key disk_key;
4227 u64 offset;
4228
4229 btrfs_item_key(leaf, &disk_key, slot);
4230
4231 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4232 unsigned long ptr;
4233 struct btrfs_file_extent_item *fi;
4234
4235 fi = btrfs_item_ptr(leaf, slot,
4236 struct btrfs_file_extent_item);
4237 fi = (struct btrfs_file_extent_item *)(
4238 (unsigned long)fi - size_diff);
4239
4240 if (btrfs_file_extent_type(leaf, fi) ==
4241 BTRFS_FILE_EXTENT_INLINE) {
4242 ptr = btrfs_item_ptr_offset(leaf, slot);
4243 memmove_extent_buffer(leaf, ptr,
d397712b
CM
4244 (unsigned long)fi,
4245 offsetof(struct btrfs_file_extent_item,
179e29e4
CM
4246 disk_bytenr));
4247 }
4248 }
4249
4250 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4251 data_end + size_diff, btrfs_leaf_data(leaf) +
4252 data_end, old_data_start - data_end);
4253
4254 offset = btrfs_disk_key_offset(&disk_key);
4255 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4256 btrfs_set_item_key(leaf, &disk_key, slot);
4257 if (slot == 0)
4258 fixup_low_keys(trans, root, path, &disk_key, 1);
4259 }
5f39d397
CM
4260
4261 item = btrfs_item_nr(leaf, slot);
4262 btrfs_set_item_size(leaf, item, new_size);
4263 btrfs_mark_buffer_dirty(leaf);
b18c6685 4264
5f39d397
CM
4265 if (btrfs_leaf_free_space(root, leaf) < 0) {
4266 btrfs_print_leaf(root, leaf);
b18c6685 4267 BUG();
5f39d397 4268 }
b18c6685
CM
4269}
4270
d352ac68
CM
4271/*
4272 * make the item pointed to by the path bigger, data_size is the new size.
4273 */
143bede5
JM
4274void btrfs_extend_item(struct btrfs_trans_handle *trans,
4275 struct btrfs_root *root, struct btrfs_path *path,
4276 u32 data_size)
6567e837 4277{
6567e837 4278 int slot;
5f39d397
CM
4279 struct extent_buffer *leaf;
4280 struct btrfs_item *item;
6567e837
CM
4281 u32 nritems;
4282 unsigned int data_end;
4283 unsigned int old_data;
4284 unsigned int old_size;
4285 int i;
cfed81a0
CM
4286 struct btrfs_map_token token;
4287
4288 btrfs_init_map_token(&token);
6567e837 4289
5f39d397 4290 leaf = path->nodes[0];
6567e837 4291
5f39d397 4292 nritems = btrfs_header_nritems(leaf);
6567e837
CM
4293 data_end = leaf_data_end(root, leaf);
4294
5f39d397
CM
4295 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4296 btrfs_print_leaf(root, leaf);
6567e837 4297 BUG();
5f39d397 4298 }
6567e837 4299 slot = path->slots[0];
5f39d397 4300 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4301
4302 BUG_ON(slot < 0);
3326d1b0
CM
4303 if (slot >= nritems) {
4304 btrfs_print_leaf(root, leaf);
d397712b
CM
4305 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4306 slot, nritems);
3326d1b0
CM
4307 BUG_ON(1);
4308 }
6567e837
CM
4309
4310 /*
4311 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4312 */
4313 /* first correct the data pointers */
4314 for (i = slot; i < nritems; i++) {
5f39d397
CM
4315 u32 ioff;
4316 item = btrfs_item_nr(leaf, i);
db94535d 4317
cfed81a0
CM
4318 ioff = btrfs_token_item_offset(leaf, item, &token);
4319 btrfs_set_token_item_offset(leaf, item,
4320 ioff - data_size, &token);
6567e837 4321 }
5f39d397 4322
6567e837 4323 /* shift the data */
5f39d397 4324 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
6567e837
CM
4325 data_end - data_size, btrfs_leaf_data(leaf) +
4326 data_end, old_data - data_end);
5f39d397 4327
6567e837 4328 data_end = old_data;
5f39d397
CM
4329 old_size = btrfs_item_size_nr(leaf, slot);
4330 item = btrfs_item_nr(leaf, slot);
4331 btrfs_set_item_size(leaf, item, old_size + data_size);
4332 btrfs_mark_buffer_dirty(leaf);
6567e837 4333
5f39d397
CM
4334 if (btrfs_leaf_free_space(root, leaf) < 0) {
4335 btrfs_print_leaf(root, leaf);
6567e837 4336 BUG();
5f39d397 4337 }
6567e837
CM
4338}
4339
f3465ca4
JB
4340/*
4341 * Given a key and some data, insert items into the tree.
4342 * This does all the path init required, making room in the tree if needed.
4343 * Returns the number of keys that were inserted.
4344 */
4345int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
4346 struct btrfs_root *root,
4347 struct btrfs_path *path,
4348 struct btrfs_key *cpu_key, u32 *data_size,
4349 int nr)
4350{
4351 struct extent_buffer *leaf;
4352 struct btrfs_item *item;
4353 int ret = 0;
4354 int slot;
f3465ca4
JB
4355 int i;
4356 u32 nritems;
4357 u32 total_data = 0;
4358 u32 total_size = 0;
4359 unsigned int data_end;
4360 struct btrfs_disk_key disk_key;
4361 struct btrfs_key found_key;
cfed81a0
CM
4362 struct btrfs_map_token token;
4363
4364 btrfs_init_map_token(&token);
f3465ca4 4365
87b29b20
YZ
4366 for (i = 0; i < nr; i++) {
4367 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
4368 BTRFS_LEAF_DATA_SIZE(root)) {
4369 break;
4370 nr = i;
4371 }
f3465ca4 4372 total_data += data_size[i];
87b29b20
YZ
4373 total_size += data_size[i] + sizeof(struct btrfs_item);
4374 }
4375 BUG_ON(nr == 0);
f3465ca4 4376
f3465ca4
JB
4377 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4378 if (ret == 0)
4379 return -EEXIST;
4380 if (ret < 0)
4381 goto out;
4382
f3465ca4
JB
4383 leaf = path->nodes[0];
4384
4385 nritems = btrfs_header_nritems(leaf);
4386 data_end = leaf_data_end(root, leaf);
4387
4388 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4389 for (i = nr; i >= 0; i--) {
4390 total_data -= data_size[i];
4391 total_size -= data_size[i] + sizeof(struct btrfs_item);
4392 if (total_size < btrfs_leaf_free_space(root, leaf))
4393 break;
4394 }
4395 nr = i;
4396 }
4397
4398 slot = path->slots[0];
4399 BUG_ON(slot < 0);
4400
4401 if (slot != nritems) {
4402 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4403
4404 item = btrfs_item_nr(leaf, slot);
4405 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4406
4407 /* figure out how many keys we can insert in here */
4408 total_data = data_size[0];
4409 for (i = 1; i < nr; i++) {
5d4f98a2 4410 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
f3465ca4
JB
4411 break;
4412 total_data += data_size[i];
4413 }
4414 nr = i;
4415
4416 if (old_data < data_end) {
4417 btrfs_print_leaf(root, leaf);
d397712b 4418 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
f3465ca4
JB
4419 slot, old_data, data_end);
4420 BUG_ON(1);
4421 }
4422 /*
4423 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4424 */
4425 /* first correct the data pointers */
f3465ca4
JB
4426 for (i = slot; i < nritems; i++) {
4427 u32 ioff;
4428
4429 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4430 ioff = btrfs_token_item_offset(leaf, item, &token);
4431 btrfs_set_token_item_offset(leaf, item,
4432 ioff - total_data, &token);
f3465ca4 4433 }
f3465ca4
JB
4434 /* shift the items */
4435 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4436 btrfs_item_nr_offset(slot),
4437 (nritems - slot) * sizeof(struct btrfs_item));
4438
4439 /* shift the data */
4440 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4441 data_end - total_data, btrfs_leaf_data(leaf) +
4442 data_end, old_data - data_end);
4443 data_end = old_data;
4444 } else {
4445 /*
4446 * this sucks but it has to be done, if we are inserting at
4447 * the end of the leaf only insert 1 of the items, since we
4448 * have no way of knowing whats on the next leaf and we'd have
4449 * to drop our current locks to figure it out
4450 */
4451 nr = 1;
4452 }
4453
4454 /* setup the item for the new data */
4455 for (i = 0; i < nr; i++) {
4456 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4457 btrfs_set_item_key(leaf, &disk_key, slot + i);
4458 item = btrfs_item_nr(leaf, slot + i);
cfed81a0
CM
4459 btrfs_set_token_item_offset(leaf, item,
4460 data_end - data_size[i], &token);
f3465ca4 4461 data_end -= data_size[i];
cfed81a0 4462 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
f3465ca4
JB
4463 }
4464 btrfs_set_header_nritems(leaf, nritems + nr);
4465 btrfs_mark_buffer_dirty(leaf);
4466
4467 ret = 0;
4468 if (slot == 0) {
4469 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
143bede5 4470 fixup_low_keys(trans, root, path, &disk_key, 1);
f3465ca4
JB
4471 }
4472
4473 if (btrfs_leaf_free_space(root, leaf) < 0) {
4474 btrfs_print_leaf(root, leaf);
4475 BUG();
4476 }
4477out:
4478 if (!ret)
4479 ret = nr;
4480 return ret;
4481}
4482
74123bd7 4483/*
44871b1b
CM
4484 * this is a helper for btrfs_insert_empty_items, the main goal here is
4485 * to save stack depth by doing the bulk of the work in a function
4486 * that doesn't call btrfs_search_slot
74123bd7 4487 */
143bede5
JM
4488void setup_items_for_insert(struct btrfs_trans_handle *trans,
4489 struct btrfs_root *root, struct btrfs_path *path,
4490 struct btrfs_key *cpu_key, u32 *data_size,
4491 u32 total_data, u32 total_size, int nr)
be0e5c09 4492{
5f39d397 4493 struct btrfs_item *item;
9c58309d 4494 int i;
7518a238 4495 u32 nritems;
be0e5c09 4496 unsigned int data_end;
e2fa7227 4497 struct btrfs_disk_key disk_key;
44871b1b
CM
4498 struct extent_buffer *leaf;
4499 int slot;
cfed81a0
CM
4500 struct btrfs_map_token token;
4501
4502 btrfs_init_map_token(&token);
e2fa7227 4503
5f39d397 4504 leaf = path->nodes[0];
44871b1b 4505 slot = path->slots[0];
74123bd7 4506
5f39d397 4507 nritems = btrfs_header_nritems(leaf);
123abc88 4508 data_end = leaf_data_end(root, leaf);
eb60ceac 4509
f25956cc 4510 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3326d1b0 4511 btrfs_print_leaf(root, leaf);
d397712b 4512 printk(KERN_CRIT "not enough freespace need %u have %d\n",
9c58309d 4513 total_size, btrfs_leaf_free_space(root, leaf));
be0e5c09 4514 BUG();
d4dbff95 4515 }
5f39d397 4516
be0e5c09 4517 if (slot != nritems) {
5f39d397 4518 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4519
5f39d397
CM
4520 if (old_data < data_end) {
4521 btrfs_print_leaf(root, leaf);
d397712b 4522 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
5f39d397
CM
4523 slot, old_data, data_end);
4524 BUG_ON(1);
4525 }
be0e5c09
CM
4526 /*
4527 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4528 */
4529 /* first correct the data pointers */
0783fcfc 4530 for (i = slot; i < nritems; i++) {
5f39d397 4531 u32 ioff;
db94535d 4532
5f39d397 4533 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4534 ioff = btrfs_token_item_offset(leaf, item, &token);
4535 btrfs_set_token_item_offset(leaf, item,
4536 ioff - total_data, &token);
0783fcfc 4537 }
be0e5c09 4538 /* shift the items */
9c58309d 4539 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4540 btrfs_item_nr_offset(slot),
d6025579 4541 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4542
4543 /* shift the data */
5f39d397 4544 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
9c58309d 4545 data_end - total_data, btrfs_leaf_data(leaf) +
d6025579 4546 data_end, old_data - data_end);
be0e5c09
CM
4547 data_end = old_data;
4548 }
5f39d397 4549
62e2749e 4550 /* setup the item for the new data */
9c58309d
CM
4551 for (i = 0; i < nr; i++) {
4552 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4553 btrfs_set_item_key(leaf, &disk_key, slot + i);
4554 item = btrfs_item_nr(leaf, slot + i);
cfed81a0
CM
4555 btrfs_set_token_item_offset(leaf, item,
4556 data_end - data_size[i], &token);
9c58309d 4557 data_end -= data_size[i];
cfed81a0 4558 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4559 }
44871b1b 4560
9c58309d 4561 btrfs_set_header_nritems(leaf, nritems + nr);
aa5d6bed 4562
5a01a2e3
CM
4563 if (slot == 0) {
4564 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
143bede5 4565 fixup_low_keys(trans, root, path, &disk_key, 1);
5a01a2e3 4566 }
b9473439
CM
4567 btrfs_unlock_up_safe(path, 1);
4568 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4569
5f39d397
CM
4570 if (btrfs_leaf_free_space(root, leaf) < 0) {
4571 btrfs_print_leaf(root, leaf);
be0e5c09 4572 BUG();
5f39d397 4573 }
44871b1b
CM
4574}
4575
4576/*
4577 * Given a key and some data, insert items into the tree.
4578 * This does all the path init required, making room in the tree if needed.
4579 */
4580int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4581 struct btrfs_root *root,
4582 struct btrfs_path *path,
4583 struct btrfs_key *cpu_key, u32 *data_size,
4584 int nr)
4585{
44871b1b
CM
4586 int ret = 0;
4587 int slot;
4588 int i;
4589 u32 total_size = 0;
4590 u32 total_data = 0;
4591
4592 for (i = 0; i < nr; i++)
4593 total_data += data_size[i];
4594
4595 total_size = total_data + (nr * sizeof(struct btrfs_item));
4596 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4597 if (ret == 0)
4598 return -EEXIST;
4599 if (ret < 0)
143bede5 4600 return ret;
44871b1b 4601
44871b1b
CM
4602 slot = path->slots[0];
4603 BUG_ON(slot < 0);
4604
143bede5 4605 setup_items_for_insert(trans, root, path, cpu_key, data_size,
44871b1b 4606 total_data, total_size, nr);
143bede5 4607 return 0;
62e2749e
CM
4608}
4609
4610/*
4611 * Given a key and some data, insert an item into the tree.
4612 * This does all the path init required, making room in the tree if needed.
4613 */
e089f05c
CM
4614int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4615 *root, struct btrfs_key *cpu_key, void *data, u32
4616 data_size)
62e2749e
CM
4617{
4618 int ret = 0;
2c90e5d6 4619 struct btrfs_path *path;
5f39d397
CM
4620 struct extent_buffer *leaf;
4621 unsigned long ptr;
62e2749e 4622
2c90e5d6 4623 path = btrfs_alloc_path();
db5b493a
TI
4624 if (!path)
4625 return -ENOMEM;
2c90e5d6 4626 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4627 if (!ret) {
5f39d397
CM
4628 leaf = path->nodes[0];
4629 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4630 write_extent_buffer(leaf, data, ptr, data_size);
4631 btrfs_mark_buffer_dirty(leaf);
62e2749e 4632 }
2c90e5d6 4633 btrfs_free_path(path);
aa5d6bed 4634 return ret;
be0e5c09
CM
4635}
4636
74123bd7 4637/*
5de08d7d 4638 * delete the pointer from a given node.
74123bd7 4639 *
d352ac68
CM
4640 * the tree should have been previously balanced so the deletion does not
4641 * empty a node.
74123bd7 4642 */
143bede5 4643static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
f3ea38da
JS
4644 struct btrfs_path *path, int level, int slot,
4645 int tree_mod_log)
be0e5c09 4646{
5f39d397 4647 struct extent_buffer *parent = path->nodes[level];
7518a238 4648 u32 nritems;
f3ea38da 4649 int ret;
be0e5c09 4650
5f39d397 4651 nritems = btrfs_header_nritems(parent);
d397712b 4652 if (slot != nritems - 1) {
f3ea38da
JS
4653 if (tree_mod_log && level)
4654 tree_mod_log_eb_move(root->fs_info, parent, slot,
4655 slot + 1, nritems - slot - 1);
5f39d397
CM
4656 memmove_extent_buffer(parent,
4657 btrfs_node_key_ptr_offset(slot),
4658 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4659 sizeof(struct btrfs_key_ptr) *
4660 (nritems - slot - 1));
f395694c 4661 } else if (tree_mod_log && level) {
f3ea38da
JS
4662 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4663 MOD_LOG_KEY_REMOVE);
4664 BUG_ON(ret < 0);
bb803951 4665 }
f3ea38da 4666
7518a238 4667 nritems--;
5f39d397 4668 btrfs_set_header_nritems(parent, nritems);
7518a238 4669 if (nritems == 0 && parent == root->node) {
5f39d397 4670 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4671 /* just turn the root into a leaf and break */
5f39d397 4672 btrfs_set_header_level(root->node, 0);
bb803951 4673 } else if (slot == 0) {
5f39d397
CM
4674 struct btrfs_disk_key disk_key;
4675
4676 btrfs_node_key(parent, &disk_key, 0);
143bede5 4677 fixup_low_keys(trans, root, path, &disk_key, level + 1);
be0e5c09 4678 }
d6025579 4679 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4680}
4681
323ac95b
CM
4682/*
4683 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4684 * path->nodes[1].
323ac95b
CM
4685 *
4686 * This deletes the pointer in path->nodes[1] and frees the leaf
4687 * block extent. zero is returned if it all worked out, < 0 otherwise.
4688 *
4689 * The path must have already been setup for deleting the leaf, including
4690 * all the proper balancing. path->nodes[1] must be locked.
4691 */
143bede5
JM
4692static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4693 struct btrfs_root *root,
4694 struct btrfs_path *path,
4695 struct extent_buffer *leaf)
323ac95b 4696{
5d4f98a2 4697 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
f3ea38da 4698 del_ptr(trans, root, path, 1, path->slots[1], 1);
323ac95b 4699
4d081c41
CM
4700 /*
4701 * btrfs_free_extent is expensive, we want to make sure we
4702 * aren't holding any locks when we call it
4703 */
4704 btrfs_unlock_up_safe(path, 0);
4705
f0486c68
YZ
4706 root_sub_used(root, leaf->len);
4707
3083ee2e 4708 extent_buffer_get(leaf);
5581a51a 4709 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4710 free_extent_buffer_stale(leaf);
323ac95b 4711}
74123bd7
CM
4712/*
4713 * delete the item at the leaf level in path. If that empties
4714 * the leaf, remove it from the tree
4715 */
85e21bac
CM
4716int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4717 struct btrfs_path *path, int slot, int nr)
be0e5c09 4718{
5f39d397
CM
4719 struct extent_buffer *leaf;
4720 struct btrfs_item *item;
85e21bac
CM
4721 int last_off;
4722 int dsize = 0;
aa5d6bed
CM
4723 int ret = 0;
4724 int wret;
85e21bac 4725 int i;
7518a238 4726 u32 nritems;
cfed81a0
CM
4727 struct btrfs_map_token token;
4728
4729 btrfs_init_map_token(&token);
be0e5c09 4730
5f39d397 4731 leaf = path->nodes[0];
85e21bac
CM
4732 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4733
4734 for (i = 0; i < nr; i++)
4735 dsize += btrfs_item_size_nr(leaf, slot + i);
4736
5f39d397 4737 nritems = btrfs_header_nritems(leaf);
be0e5c09 4738
85e21bac 4739 if (slot + nr != nritems) {
123abc88 4740 int data_end = leaf_data_end(root, leaf);
5f39d397
CM
4741
4742 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
d6025579
CM
4743 data_end + dsize,
4744 btrfs_leaf_data(leaf) + data_end,
85e21bac 4745 last_off - data_end);
5f39d397 4746
85e21bac 4747 for (i = slot + nr; i < nritems; i++) {
5f39d397 4748 u32 ioff;
db94535d 4749
5f39d397 4750 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4751 ioff = btrfs_token_item_offset(leaf, item, &token);
4752 btrfs_set_token_item_offset(leaf, item,
4753 ioff + dsize, &token);
0783fcfc 4754 }
db94535d 4755
5f39d397 4756 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4757 btrfs_item_nr_offset(slot + nr),
d6025579 4758 sizeof(struct btrfs_item) *
85e21bac 4759 (nritems - slot - nr));
be0e5c09 4760 }
85e21bac
CM
4761 btrfs_set_header_nritems(leaf, nritems - nr);
4762 nritems -= nr;
5f39d397 4763
74123bd7 4764 /* delete the leaf if we've emptied it */
7518a238 4765 if (nritems == 0) {
5f39d397
CM
4766 if (leaf == root->node) {
4767 btrfs_set_header_level(leaf, 0);
9a8dd150 4768 } else {
f0486c68
YZ
4769 btrfs_set_path_blocking(path);
4770 clean_tree_block(trans, root, leaf);
143bede5 4771 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 4772 }
be0e5c09 4773 } else {
7518a238 4774 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 4775 if (slot == 0) {
5f39d397
CM
4776 struct btrfs_disk_key disk_key;
4777
4778 btrfs_item_key(leaf, &disk_key, 0);
143bede5 4779 fixup_low_keys(trans, root, path, &disk_key, 1);
aa5d6bed 4780 }
aa5d6bed 4781
74123bd7 4782 /* delete the leaf if it is mostly empty */
d717aa1d 4783 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
be0e5c09
CM
4784 /* push_leaf_left fixes the path.
4785 * make sure the path still points to our leaf
4786 * for possible call to del_ptr below
4787 */
4920c9ac 4788 slot = path->slots[1];
5f39d397
CM
4789 extent_buffer_get(leaf);
4790
b9473439 4791 btrfs_set_path_blocking(path);
99d8f83c
CM
4792 wret = push_leaf_left(trans, root, path, 1, 1,
4793 1, (u32)-1);
54aa1f4d 4794 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 4795 ret = wret;
5f39d397
CM
4796
4797 if (path->nodes[0] == leaf &&
4798 btrfs_header_nritems(leaf)) {
99d8f83c
CM
4799 wret = push_leaf_right(trans, root, path, 1,
4800 1, 1, 0);
54aa1f4d 4801 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
4802 ret = wret;
4803 }
5f39d397
CM
4804
4805 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 4806 path->slots[1] = slot;
143bede5 4807 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 4808 free_extent_buffer(leaf);
143bede5 4809 ret = 0;
5de08d7d 4810 } else {
925baedd
CM
4811 /* if we're still in the path, make sure
4812 * we're dirty. Otherwise, one of the
4813 * push_leaf functions must have already
4814 * dirtied this buffer
4815 */
4816 if (path->nodes[0] == leaf)
4817 btrfs_mark_buffer_dirty(leaf);
5f39d397 4818 free_extent_buffer(leaf);
be0e5c09 4819 }
d5719762 4820 } else {
5f39d397 4821 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
4822 }
4823 }
aa5d6bed 4824 return ret;
be0e5c09
CM
4825}
4826
7bb86316 4827/*
925baedd 4828 * search the tree again to find a leaf with lesser keys
7bb86316
CM
4829 * returns 0 if it found something or 1 if there are no lesser leaves.
4830 * returns < 0 on io errors.
d352ac68
CM
4831 *
4832 * This may release the path, and so you may lose any locks held at the
4833 * time you call it.
7bb86316
CM
4834 */
4835int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4836{
925baedd
CM
4837 struct btrfs_key key;
4838 struct btrfs_disk_key found_key;
4839 int ret;
7bb86316 4840
925baedd 4841 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 4842
925baedd
CM
4843 if (key.offset > 0)
4844 key.offset--;
4845 else if (key.type > 0)
4846 key.type--;
4847 else if (key.objectid > 0)
4848 key.objectid--;
4849 else
4850 return 1;
7bb86316 4851
b3b4aa74 4852 btrfs_release_path(path);
925baedd
CM
4853 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4854 if (ret < 0)
4855 return ret;
4856 btrfs_item_key(path->nodes[0], &found_key, 0);
4857 ret = comp_keys(&found_key, &key);
4858 if (ret < 0)
4859 return 0;
4860 return 1;
7bb86316
CM
4861}
4862
3f157a2f
CM
4863/*
4864 * A helper function to walk down the tree starting at min_key, and looking
4865 * for nodes or leaves that are either in cache or have a minimum
d352ac68 4866 * transaction id. This is used by the btree defrag code, and tree logging
3f157a2f
CM
4867 *
4868 * This does not cow, but it does stuff the starting key it finds back
4869 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4870 * key and get a writable path.
4871 *
4872 * This does lock as it descends, and path->keep_locks should be set
4873 * to 1 by the caller.
4874 *
4875 * This honors path->lowest_level to prevent descent past a given level
4876 * of the tree.
4877 *
d352ac68
CM
4878 * min_trans indicates the oldest transaction that you are interested
4879 * in walking through. Any nodes or leaves older than min_trans are
4880 * skipped over (without reading them).
4881 *
3f157a2f
CM
4882 * returns zero if something useful was found, < 0 on error and 1 if there
4883 * was nothing in the tree that matched the search criteria.
4884 */
4885int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
e02119d5 4886 struct btrfs_key *max_key,
3f157a2f
CM
4887 struct btrfs_path *path, int cache_only,
4888 u64 min_trans)
4889{
4890 struct extent_buffer *cur;
4891 struct btrfs_key found_key;
4892 int slot;
9652480b 4893 int sret;
3f157a2f
CM
4894 u32 nritems;
4895 int level;
4896 int ret = 1;
4897
934d375b 4898 WARN_ON(!path->keep_locks);
3f157a2f 4899again:
bd681513 4900 cur = btrfs_read_lock_root_node(root);
3f157a2f 4901 level = btrfs_header_level(cur);
e02119d5 4902 WARN_ON(path->nodes[level]);
3f157a2f 4903 path->nodes[level] = cur;
bd681513 4904 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
4905
4906 if (btrfs_header_generation(cur) < min_trans) {
4907 ret = 1;
4908 goto out;
4909 }
d397712b 4910 while (1) {
3f157a2f
CM
4911 nritems = btrfs_header_nritems(cur);
4912 level = btrfs_header_level(cur);
9652480b 4913 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 4914
323ac95b
CM
4915 /* at the lowest level, we're done, setup the path and exit */
4916 if (level == path->lowest_level) {
e02119d5
CM
4917 if (slot >= nritems)
4918 goto find_next_key;
3f157a2f
CM
4919 ret = 0;
4920 path->slots[level] = slot;
4921 btrfs_item_key_to_cpu(cur, &found_key, slot);
4922 goto out;
4923 }
9652480b
Y
4924 if (sret && slot > 0)
4925 slot--;
3f157a2f
CM
4926 /*
4927 * check this node pointer against the cache_only and
4928 * min_trans parameters. If it isn't in cache or is too
4929 * old, skip to the next one.
4930 */
d397712b 4931 while (slot < nritems) {
3f157a2f
CM
4932 u64 blockptr;
4933 u64 gen;
4934 struct extent_buffer *tmp;
e02119d5
CM
4935 struct btrfs_disk_key disk_key;
4936
3f157a2f
CM
4937 blockptr = btrfs_node_blockptr(cur, slot);
4938 gen = btrfs_node_ptr_generation(cur, slot);
4939 if (gen < min_trans) {
4940 slot++;
4941 continue;
4942 }
4943 if (!cache_only)
4944 break;
4945
e02119d5
CM
4946 if (max_key) {
4947 btrfs_node_key(cur, &disk_key, slot);
4948 if (comp_keys(&disk_key, max_key) >= 0) {
4949 ret = 1;
4950 goto out;
4951 }
4952 }
4953
3f157a2f
CM
4954 tmp = btrfs_find_tree_block(root, blockptr,
4955 btrfs_level_size(root, level - 1));
4956
b9fab919 4957 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
3f157a2f
CM
4958 free_extent_buffer(tmp);
4959 break;
4960 }
4961 if (tmp)
4962 free_extent_buffer(tmp);
4963 slot++;
4964 }
e02119d5 4965find_next_key:
3f157a2f
CM
4966 /*
4967 * we didn't find a candidate key in this node, walk forward
4968 * and find another one
4969 */
4970 if (slot >= nritems) {
e02119d5 4971 path->slots[level] = slot;
b4ce94de 4972 btrfs_set_path_blocking(path);
e02119d5 4973 sret = btrfs_find_next_key(root, path, min_key, level,
3f157a2f 4974 cache_only, min_trans);
e02119d5 4975 if (sret == 0) {
b3b4aa74 4976 btrfs_release_path(path);
3f157a2f
CM
4977 goto again;
4978 } else {
4979 goto out;
4980 }
4981 }
4982 /* save our key for returning back */
4983 btrfs_node_key_to_cpu(cur, &found_key, slot);
4984 path->slots[level] = slot;
4985 if (level == path->lowest_level) {
4986 ret = 0;
f7c79f30 4987 unlock_up(path, level, 1, 0, NULL);
3f157a2f
CM
4988 goto out;
4989 }
b4ce94de 4990 btrfs_set_path_blocking(path);
3f157a2f 4991 cur = read_node_slot(root, cur, slot);
79787eaa 4992 BUG_ON(!cur); /* -ENOMEM */
3f157a2f 4993
bd681513 4994 btrfs_tree_read_lock(cur);
b4ce94de 4995
bd681513 4996 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 4997 path->nodes[level - 1] = cur;
f7c79f30 4998 unlock_up(path, level, 1, 0, NULL);
bd681513 4999 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
5000 }
5001out:
5002 if (ret == 0)
5003 memcpy(min_key, &found_key, sizeof(found_key));
b4ce94de 5004 btrfs_set_path_blocking(path);
3f157a2f
CM
5005 return ret;
5006}
5007
5008/*
5009 * this is similar to btrfs_next_leaf, but does not try to preserve
5010 * and fixup the path. It looks for and returns the next key in the
5011 * tree based on the current path and the cache_only and min_trans
5012 * parameters.
5013 *
5014 * 0 is returned if another key is found, < 0 if there are any errors
5015 * and 1 is returned if there are no higher keys in the tree
5016 *
5017 * path->keep_locks should be set to 1 on the search made before
5018 * calling this function.
5019 */
e7a84565 5020int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
33c66f43 5021 struct btrfs_key *key, int level,
3f157a2f 5022 int cache_only, u64 min_trans)
e7a84565 5023{
e7a84565
CM
5024 int slot;
5025 struct extent_buffer *c;
5026
934d375b 5027 WARN_ON(!path->keep_locks);
d397712b 5028 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5029 if (!path->nodes[level])
5030 return 1;
5031
5032 slot = path->slots[level] + 1;
5033 c = path->nodes[level];
3f157a2f 5034next:
e7a84565 5035 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5036 int ret;
5037 int orig_lowest;
5038 struct btrfs_key cur_key;
5039 if (level + 1 >= BTRFS_MAX_LEVEL ||
5040 !path->nodes[level + 1])
e7a84565 5041 return 1;
33c66f43
YZ
5042
5043 if (path->locks[level + 1]) {
5044 level++;
5045 continue;
5046 }
5047
5048 slot = btrfs_header_nritems(c) - 1;
5049 if (level == 0)
5050 btrfs_item_key_to_cpu(c, &cur_key, slot);
5051 else
5052 btrfs_node_key_to_cpu(c, &cur_key, slot);
5053
5054 orig_lowest = path->lowest_level;
b3b4aa74 5055 btrfs_release_path(path);
33c66f43
YZ
5056 path->lowest_level = level;
5057 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5058 0, 0);
5059 path->lowest_level = orig_lowest;
5060 if (ret < 0)
5061 return ret;
5062
5063 c = path->nodes[level];
5064 slot = path->slots[level];
5065 if (ret == 0)
5066 slot++;
5067 goto next;
e7a84565 5068 }
33c66f43 5069
e7a84565
CM
5070 if (level == 0)
5071 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f
CM
5072 else {
5073 u64 blockptr = btrfs_node_blockptr(c, slot);
5074 u64 gen = btrfs_node_ptr_generation(c, slot);
5075
5076 if (cache_only) {
5077 struct extent_buffer *cur;
5078 cur = btrfs_find_tree_block(root, blockptr,
5079 btrfs_level_size(root, level - 1));
b9fab919
CM
5080 if (!cur ||
5081 btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
3f157a2f
CM
5082 slot++;
5083 if (cur)
5084 free_extent_buffer(cur);
5085 goto next;
5086 }
5087 free_extent_buffer(cur);
5088 }
5089 if (gen < min_trans) {
5090 slot++;
5091 goto next;
5092 }
e7a84565 5093 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5094 }
e7a84565
CM
5095 return 0;
5096 }
5097 return 1;
5098}
5099
97571fd0 5100/*
925baedd 5101 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5102 * returns 0 if it found something or 1 if there are no greater leaves.
5103 * returns < 0 on io errors.
97571fd0 5104 */
234b63a0 5105int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5106{
5107 return btrfs_next_old_leaf(root, path, 0);
5108}
5109
5110int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5111 u64 time_seq)
d97e63b6
CM
5112{
5113 int slot;
8e73f275 5114 int level;
5f39d397 5115 struct extent_buffer *c;
8e73f275 5116 struct extent_buffer *next;
925baedd
CM
5117 struct btrfs_key key;
5118 u32 nritems;
5119 int ret;
8e73f275 5120 int old_spinning = path->leave_spinning;
bd681513 5121 int next_rw_lock = 0;
925baedd
CM
5122
5123 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5124 if (nritems == 0)
925baedd 5125 return 1;
925baedd 5126
8e73f275
CM
5127 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5128again:
5129 level = 1;
5130 next = NULL;
bd681513 5131 next_rw_lock = 0;
b3b4aa74 5132 btrfs_release_path(path);
8e73f275 5133
a2135011 5134 path->keep_locks = 1;
31533fb2 5135 path->leave_spinning = 1;
8e73f275 5136
3d7806ec
JS
5137 if (time_seq)
5138 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5139 else
5140 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5141 path->keep_locks = 0;
5142
5143 if (ret < 0)
5144 return ret;
5145
a2135011 5146 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5147 /*
5148 * by releasing the path above we dropped all our locks. A balance
5149 * could have added more items next to the key that used to be
5150 * at the very end of the block. So, check again here and
5151 * advance the path if there are now more items available.
5152 */
a2135011 5153 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5154 if (ret == 0)
5155 path->slots[0]++;
8e73f275 5156 ret = 0;
925baedd
CM
5157 goto done;
5158 }
d97e63b6 5159
d397712b 5160 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5161 if (!path->nodes[level]) {
5162 ret = 1;
5163 goto done;
5164 }
5f39d397 5165
d97e63b6
CM
5166 slot = path->slots[level] + 1;
5167 c = path->nodes[level];
5f39d397 5168 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5169 level++;
8e73f275
CM
5170 if (level == BTRFS_MAX_LEVEL) {
5171 ret = 1;
5172 goto done;
5173 }
d97e63b6
CM
5174 continue;
5175 }
5f39d397 5176
925baedd 5177 if (next) {
bd681513 5178 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5179 free_extent_buffer(next);
925baedd 5180 }
5f39d397 5181
8e73f275 5182 next = c;
bd681513 5183 next_rw_lock = path->locks[level];
8e73f275 5184 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5185 slot, &key, 0);
8e73f275
CM
5186 if (ret == -EAGAIN)
5187 goto again;
5f39d397 5188
76a05b35 5189 if (ret < 0) {
b3b4aa74 5190 btrfs_release_path(path);
76a05b35
CM
5191 goto done;
5192 }
5193
5cd57b2c 5194 if (!path->skip_locking) {
bd681513 5195 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5196 if (!ret && time_seq) {
5197 /*
5198 * If we don't get the lock, we may be racing
5199 * with push_leaf_left, holding that lock while
5200 * itself waiting for the leaf we've currently
5201 * locked. To solve this situation, we give up
5202 * on our lock and cycle.
5203 */
5204 btrfs_release_path(path);
5205 cond_resched();
5206 goto again;
5207 }
8e73f275
CM
5208 if (!ret) {
5209 btrfs_set_path_blocking(path);
bd681513 5210 btrfs_tree_read_lock(next);
31533fb2 5211 btrfs_clear_path_blocking(path, next,
bd681513 5212 BTRFS_READ_LOCK);
8e73f275 5213 }
31533fb2 5214 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5215 }
d97e63b6
CM
5216 break;
5217 }
5218 path->slots[level] = slot;
d397712b 5219 while (1) {
d97e63b6
CM
5220 level--;
5221 c = path->nodes[level];
925baedd 5222 if (path->locks[level])
bd681513 5223 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5224
5f39d397 5225 free_extent_buffer(c);
d97e63b6
CM
5226 path->nodes[level] = next;
5227 path->slots[level] = 0;
a74a4b97 5228 if (!path->skip_locking)
bd681513 5229 path->locks[level] = next_rw_lock;
d97e63b6
CM
5230 if (!level)
5231 break;
b4ce94de 5232
8e73f275 5233 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5234 0, &key, 0);
8e73f275
CM
5235 if (ret == -EAGAIN)
5236 goto again;
5237
76a05b35 5238 if (ret < 0) {
b3b4aa74 5239 btrfs_release_path(path);
76a05b35
CM
5240 goto done;
5241 }
5242
5cd57b2c 5243 if (!path->skip_locking) {
bd681513 5244 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5245 if (!ret) {
5246 btrfs_set_path_blocking(path);
bd681513 5247 btrfs_tree_read_lock(next);
31533fb2 5248 btrfs_clear_path_blocking(path, next,
bd681513
CM
5249 BTRFS_READ_LOCK);
5250 }
31533fb2 5251 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5252 }
d97e63b6 5253 }
8e73f275 5254 ret = 0;
925baedd 5255done:
f7c79f30 5256 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5257 path->leave_spinning = old_spinning;
5258 if (!old_spinning)
5259 btrfs_set_path_blocking(path);
5260
5261 return ret;
d97e63b6 5262}
0b86a832 5263
3f157a2f
CM
5264/*
5265 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5266 * searching until it gets past min_objectid or finds an item of 'type'
5267 *
5268 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5269 */
0b86a832
CM
5270int btrfs_previous_item(struct btrfs_root *root,
5271 struct btrfs_path *path, u64 min_objectid,
5272 int type)
5273{
5274 struct btrfs_key found_key;
5275 struct extent_buffer *leaf;
e02119d5 5276 u32 nritems;
0b86a832
CM
5277 int ret;
5278
d397712b 5279 while (1) {
0b86a832 5280 if (path->slots[0] == 0) {
b4ce94de 5281 btrfs_set_path_blocking(path);
0b86a832
CM
5282 ret = btrfs_prev_leaf(root, path);
5283 if (ret != 0)
5284 return ret;
5285 } else {
5286 path->slots[0]--;
5287 }
5288 leaf = path->nodes[0];
e02119d5
CM
5289 nritems = btrfs_header_nritems(leaf);
5290 if (nritems == 0)
5291 return 1;
5292 if (path->slots[0] == nritems)
5293 path->slots[0]--;
5294
0b86a832 5295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5296 if (found_key.objectid < min_objectid)
5297 break;
0a4eefbb
YZ
5298 if (found_key.type == type)
5299 return 0;
e02119d5
CM
5300 if (found_key.objectid == min_objectid &&
5301 found_key.type < type)
5302 break;
0b86a832
CM
5303 }
5304 return 1;
5305}