Btrfs: use nofs context when initializing security xattrs to avoid deadlock
[linux-block.git] / fs / btrfs / ctree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570 2/*
d352ac68 3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
a6b6e75e 6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
bd989ba3 8#include <linux/rbtree.h>
adf02123 9#include <linux/mm.h>
eb60ceac
CM
10#include "ctree.h"
11#include "disk-io.h"
7f5c1516 12#include "transaction.h"
5f39d397 13#include "print-tree.h"
925baedd 14#include "locking.h"
de37aa51 15#include "volumes.h"
9a8dd150 16
e089f05c
CM
17static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
18 *root, struct btrfs_path *path, int level);
310712b2
OS
19static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
20 const struct btrfs_key *ins_key, struct btrfs_path *path,
21 int data_size, int extend);
5f39d397 22static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
23 struct btrfs_fs_info *fs_info,
24 struct extent_buffer *dst,
971a1f66 25 struct extent_buffer *src, int empty);
5f39d397 26static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 27 struct btrfs_fs_info *fs_info,
5f39d397
CM
28 struct extent_buffer *dst_buf,
29 struct extent_buffer *src_buf);
afe5fea7
TI
30static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
31 int level, int slot);
d97e63b6 32
df24a2b9 33struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 34{
e2c89907 35 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
2c90e5d6
CM
36}
37
b4ce94de
CM
38/*
39 * set all locked nodes in the path to blocking locks. This should
40 * be done before scheduling
41 */
42noinline void btrfs_set_path_blocking(struct btrfs_path *p)
43{
44 int i;
45 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
46 if (!p->nodes[i] || !p->locks[i])
47 continue;
48 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
49 if (p->locks[i] == BTRFS_READ_LOCK)
50 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
51 else if (p->locks[i] == BTRFS_WRITE_LOCK)
52 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
53 }
54}
55
d352ac68 56/* this also releases the path */
df24a2b9 57void btrfs_free_path(struct btrfs_path *p)
be0e5c09 58{
ff175d57
JJ
59 if (!p)
60 return;
b3b4aa74 61 btrfs_release_path(p);
df24a2b9 62 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
63}
64
d352ac68
CM
65/*
66 * path release drops references on the extent buffers in the path
67 * and it drops any locks held by this path
68 *
69 * It is safe to call this on paths that no locks or extent buffers held.
70 */
b3b4aa74 71noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
72{
73 int i;
a2135011 74
234b63a0 75 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 76 p->slots[i] = 0;
eb60ceac 77 if (!p->nodes[i])
925baedd
CM
78 continue;
79 if (p->locks[i]) {
bd681513 80 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
81 p->locks[i] = 0;
82 }
5f39d397 83 free_extent_buffer(p->nodes[i]);
3f157a2f 84 p->nodes[i] = NULL;
eb60ceac
CM
85 }
86}
87
d352ac68
CM
88/*
89 * safely gets a reference on the root node of a tree. A lock
90 * is not taken, so a concurrent writer may put a different node
91 * at the root of the tree. See btrfs_lock_root_node for the
92 * looping required.
93 *
94 * The extent buffer returned by this has a reference taken, so
95 * it won't disappear. It may stop being the root of the tree
96 * at any time because there are no locks held.
97 */
925baedd
CM
98struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
99{
100 struct extent_buffer *eb;
240f62c8 101
3083ee2e
JB
102 while (1) {
103 rcu_read_lock();
104 eb = rcu_dereference(root->node);
105
106 /*
107 * RCU really hurts here, we could free up the root node because
01327610 108 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
109 * the inc_not_zero dance and if it doesn't work then
110 * synchronize_rcu and try again.
111 */
112 if (atomic_inc_not_zero(&eb->refs)) {
113 rcu_read_unlock();
114 break;
115 }
116 rcu_read_unlock();
117 synchronize_rcu();
118 }
925baedd
CM
119 return eb;
120}
121
d352ac68
CM
122/* loop around taking references on and locking the root node of the
123 * tree until you end up with a lock on the root. A locked buffer
124 * is returned, with a reference held.
125 */
925baedd
CM
126struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
127{
128 struct extent_buffer *eb;
129
d397712b 130 while (1) {
925baedd
CM
131 eb = btrfs_root_node(root);
132 btrfs_tree_lock(eb);
240f62c8 133 if (eb == root->node)
925baedd 134 break;
925baedd
CM
135 btrfs_tree_unlock(eb);
136 free_extent_buffer(eb);
137 }
138 return eb;
139}
140
bd681513
CM
141/* loop around taking references on and locking the root node of the
142 * tree until you end up with a lock on the root. A locked buffer
143 * is returned, with a reference held.
144 */
84f7d8e6 145struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
146{
147 struct extent_buffer *eb;
148
149 while (1) {
150 eb = btrfs_root_node(root);
151 btrfs_tree_read_lock(eb);
152 if (eb == root->node)
153 break;
154 btrfs_tree_read_unlock(eb);
155 free_extent_buffer(eb);
156 }
157 return eb;
158}
159
d352ac68
CM
160/* cowonly root (everything not a reference counted cow subvolume), just get
161 * put onto a simple dirty list. transaction.c walks this to make sure they
162 * get properly updated on disk.
163 */
0b86a832
CM
164static void add_root_to_dirty_list(struct btrfs_root *root)
165{
0b246afa
JM
166 struct btrfs_fs_info *fs_info = root->fs_info;
167
e7070be1
JB
168 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
169 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
170 return;
171
0b246afa 172 spin_lock(&fs_info->trans_lock);
e7070be1
JB
173 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
174 /* Want the extent tree to be the last on the list */
4fd786e6 175 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
e7070be1 176 list_move_tail(&root->dirty_list,
0b246afa 177 &fs_info->dirty_cowonly_roots);
e7070be1
JB
178 else
179 list_move(&root->dirty_list,
0b246afa 180 &fs_info->dirty_cowonly_roots);
0b86a832 181 }
0b246afa 182 spin_unlock(&fs_info->trans_lock);
0b86a832
CM
183}
184
d352ac68
CM
185/*
186 * used by snapshot creation to make a copy of a root for a tree with
187 * a given objectid. The buffer with the new root node is returned in
188 * cow_ret, and this func returns zero on success or a negative error code.
189 */
be20aa9d
CM
190int btrfs_copy_root(struct btrfs_trans_handle *trans,
191 struct btrfs_root *root,
192 struct extent_buffer *buf,
193 struct extent_buffer **cow_ret, u64 new_root_objectid)
194{
0b246afa 195 struct btrfs_fs_info *fs_info = root->fs_info;
be20aa9d 196 struct extent_buffer *cow;
be20aa9d
CM
197 int ret = 0;
198 int level;
5d4f98a2 199 struct btrfs_disk_key disk_key;
be20aa9d 200
27cdeb70 201 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 202 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
203 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
204 trans->transid != root->last_trans);
be20aa9d
CM
205
206 level = btrfs_header_level(buf);
5d4f98a2
YZ
207 if (level == 0)
208 btrfs_item_key(buf, &disk_key, 0);
209 else
210 btrfs_node_key(buf, &disk_key, 0);
31840ae1 211
4d75f8a9
DS
212 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
213 &disk_key, level, buf->start, 0);
5d4f98a2 214 if (IS_ERR(cow))
be20aa9d
CM
215 return PTR_ERR(cow);
216
58e8012c 217 copy_extent_buffer_full(cow, buf);
be20aa9d
CM
218 btrfs_set_header_bytenr(cow, cow->start);
219 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
220 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
221 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
222 BTRFS_HEADER_FLAG_RELOC);
223 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
224 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
225 else
226 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 227
de37aa51 228 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
2b82032c 229
be20aa9d 230 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 231 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 232 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 233 else
e339a6b0 234 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 235
be20aa9d
CM
236 if (ret)
237 return ret;
238
239 btrfs_mark_buffer_dirty(cow);
240 *cow_ret = cow;
241 return 0;
242}
243
bd989ba3
JS
244enum mod_log_op {
245 MOD_LOG_KEY_REPLACE,
246 MOD_LOG_KEY_ADD,
247 MOD_LOG_KEY_REMOVE,
248 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
249 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
250 MOD_LOG_MOVE_KEYS,
251 MOD_LOG_ROOT_REPLACE,
252};
253
bd989ba3
JS
254struct tree_mod_root {
255 u64 logical;
256 u8 level;
257};
258
259struct tree_mod_elem {
260 struct rb_node node;
298cfd36 261 u64 logical;
097b8a7c 262 u64 seq;
bd989ba3
JS
263 enum mod_log_op op;
264
265 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
266 int slot;
267
268 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
269 u64 generation;
270
271 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
272 struct btrfs_disk_key key;
273 u64 blockptr;
274
275 /* this is used for op == MOD_LOG_MOVE_KEYS */
b6dfa35b
DS
276 struct {
277 int dst_slot;
278 int nr_items;
279 } move;
bd989ba3
JS
280
281 /* this is used for op == MOD_LOG_ROOT_REPLACE */
282 struct tree_mod_root old_root;
283};
284
fc36ed7e 285/*
fcebe456 286 * Pull a new tree mod seq number for our operation.
fc36ed7e 287 */
fcebe456 288static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
289{
290 return atomic64_inc_return(&fs_info->tree_mod_seq);
291}
292
097b8a7c
JS
293/*
294 * This adds a new blocker to the tree mod log's blocker list if the @elem
295 * passed does not already have a sequence number set. So when a caller expects
296 * to record tree modifications, it should ensure to set elem->seq to zero
297 * before calling btrfs_get_tree_mod_seq.
298 * Returns a fresh, unused tree log modification sequence number, even if no new
299 * blocker was added.
300 */
301u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
302 struct seq_list *elem)
bd989ba3 303{
b1a09f1e 304 write_lock(&fs_info->tree_mod_log_lock);
bd989ba3 305 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 306 if (!elem->seq) {
fcebe456 307 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
308 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
309 }
bd989ba3 310 spin_unlock(&fs_info->tree_mod_seq_lock);
b1a09f1e 311 write_unlock(&fs_info->tree_mod_log_lock);
097b8a7c 312
fcebe456 313 return elem->seq;
bd989ba3
JS
314}
315
316void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
317 struct seq_list *elem)
318{
319 struct rb_root *tm_root;
320 struct rb_node *node;
321 struct rb_node *next;
322 struct seq_list *cur_elem;
323 struct tree_mod_elem *tm;
324 u64 min_seq = (u64)-1;
325 u64 seq_putting = elem->seq;
326
327 if (!seq_putting)
328 return;
329
bd989ba3
JS
330 spin_lock(&fs_info->tree_mod_seq_lock);
331 list_del(&elem->list);
097b8a7c 332 elem->seq = 0;
bd989ba3
JS
333
334 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 335 if (cur_elem->seq < min_seq) {
bd989ba3
JS
336 if (seq_putting > cur_elem->seq) {
337 /*
338 * blocker with lower sequence number exists, we
339 * cannot remove anything from the log
340 */
097b8a7c
JS
341 spin_unlock(&fs_info->tree_mod_seq_lock);
342 return;
bd989ba3
JS
343 }
344 min_seq = cur_elem->seq;
345 }
346 }
097b8a7c
JS
347 spin_unlock(&fs_info->tree_mod_seq_lock);
348
bd989ba3
JS
349 /*
350 * anything that's lower than the lowest existing (read: blocked)
351 * sequence number can be removed from the tree.
352 */
b1a09f1e 353 write_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
354 tm_root = &fs_info->tree_mod_log;
355 for (node = rb_first(tm_root); node; node = next) {
356 next = rb_next(node);
6b4df8b6 357 tm = rb_entry(node, struct tree_mod_elem, node);
097b8a7c 358 if (tm->seq > min_seq)
bd989ba3
JS
359 continue;
360 rb_erase(node, tm_root);
bd989ba3
JS
361 kfree(tm);
362 }
b1a09f1e 363 write_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
364}
365
366/*
367 * key order of the log:
298cfd36 368 * node/leaf start address -> sequence
bd989ba3 369 *
298cfd36
CR
370 * The 'start address' is the logical address of the *new* root node
371 * for root replace operations, or the logical address of the affected
372 * block for all other operations.
5de865ee 373 *
b1a09f1e 374 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
bd989ba3
JS
375 */
376static noinline int
377__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
378{
379 struct rb_root *tm_root;
380 struct rb_node **new;
381 struct rb_node *parent = NULL;
382 struct tree_mod_elem *cur;
c8cc6341 383
fcebe456 384 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 385
bd989ba3
JS
386 tm_root = &fs_info->tree_mod_log;
387 new = &tm_root->rb_node;
388 while (*new) {
6b4df8b6 389 cur = rb_entry(*new, struct tree_mod_elem, node);
bd989ba3 390 parent = *new;
298cfd36 391 if (cur->logical < tm->logical)
bd989ba3 392 new = &((*new)->rb_left);
298cfd36 393 else if (cur->logical > tm->logical)
bd989ba3 394 new = &((*new)->rb_right);
097b8a7c 395 else if (cur->seq < tm->seq)
bd989ba3 396 new = &((*new)->rb_left);
097b8a7c 397 else if (cur->seq > tm->seq)
bd989ba3 398 new = &((*new)->rb_right);
5de865ee
FDBM
399 else
400 return -EEXIST;
bd989ba3
JS
401 }
402
403 rb_link_node(&tm->node, parent, new);
404 rb_insert_color(&tm->node, tm_root);
5de865ee 405 return 0;
bd989ba3
JS
406}
407
097b8a7c
JS
408/*
409 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
410 * returns zero with the tree_mod_log_lock acquired. The caller must hold
411 * this until all tree mod log insertions are recorded in the rb tree and then
b1a09f1e 412 * write unlock fs_info::tree_mod_log_lock.
097b8a7c 413 */
e9b7fd4d
JS
414static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
415 struct extent_buffer *eb) {
416 smp_mb();
417 if (list_empty(&(fs_info)->tree_mod_seq_list))
418 return 1;
097b8a7c
JS
419 if (eb && btrfs_header_level(eb) == 0)
420 return 1;
5de865ee 421
b1a09f1e 422 write_lock(&fs_info->tree_mod_log_lock);
5de865ee 423 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
b1a09f1e 424 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
425 return 1;
426 }
427
e9b7fd4d
JS
428 return 0;
429}
430
5de865ee
FDBM
431/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
432static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
433 struct extent_buffer *eb)
434{
435 smp_mb();
436 if (list_empty(&(fs_info)->tree_mod_seq_list))
437 return 0;
438 if (eb && btrfs_header_level(eb) == 0)
439 return 0;
440
441 return 1;
442}
443
444static struct tree_mod_elem *
445alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
446 enum mod_log_op op, gfp_t flags)
bd989ba3 447{
097b8a7c 448 struct tree_mod_elem *tm;
bd989ba3 449
c8cc6341
JB
450 tm = kzalloc(sizeof(*tm), flags);
451 if (!tm)
5de865ee 452 return NULL;
bd989ba3 453
298cfd36 454 tm->logical = eb->start;
bd989ba3
JS
455 if (op != MOD_LOG_KEY_ADD) {
456 btrfs_node_key(eb, &tm->key, slot);
457 tm->blockptr = btrfs_node_blockptr(eb, slot);
458 }
459 tm->op = op;
460 tm->slot = slot;
461 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 462 RB_CLEAR_NODE(&tm->node);
bd989ba3 463
5de865ee 464 return tm;
097b8a7c
JS
465}
466
e09c2efe
DS
467static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
468 enum mod_log_op op, gfp_t flags)
097b8a7c 469{
5de865ee
FDBM
470 struct tree_mod_elem *tm;
471 int ret;
472
e09c2efe 473 if (!tree_mod_need_log(eb->fs_info, eb))
5de865ee
FDBM
474 return 0;
475
476 tm = alloc_tree_mod_elem(eb, slot, op, flags);
477 if (!tm)
478 return -ENOMEM;
479
e09c2efe 480 if (tree_mod_dont_log(eb->fs_info, eb)) {
5de865ee 481 kfree(tm);
097b8a7c 482 return 0;
5de865ee
FDBM
483 }
484
e09c2efe 485 ret = __tree_mod_log_insert(eb->fs_info, tm);
b1a09f1e 486 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
487 if (ret)
488 kfree(tm);
097b8a7c 489
5de865ee 490 return ret;
097b8a7c
JS
491}
492
6074d45f
DS
493static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
494 int dst_slot, int src_slot, int nr_items)
bd989ba3 495{
5de865ee
FDBM
496 struct tree_mod_elem *tm = NULL;
497 struct tree_mod_elem **tm_list = NULL;
498 int ret = 0;
bd989ba3 499 int i;
5de865ee 500 int locked = 0;
bd989ba3 501
6074d45f 502 if (!tree_mod_need_log(eb->fs_info, eb))
f395694c 503 return 0;
bd989ba3 504
176ef8f5 505 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
506 if (!tm_list)
507 return -ENOMEM;
508
176ef8f5 509 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
510 if (!tm) {
511 ret = -ENOMEM;
512 goto free_tms;
513 }
514
298cfd36 515 tm->logical = eb->start;
5de865ee
FDBM
516 tm->slot = src_slot;
517 tm->move.dst_slot = dst_slot;
518 tm->move.nr_items = nr_items;
519 tm->op = MOD_LOG_MOVE_KEYS;
520
521 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
522 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
176ef8f5 523 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
5de865ee
FDBM
524 if (!tm_list[i]) {
525 ret = -ENOMEM;
526 goto free_tms;
527 }
528 }
529
6074d45f 530 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
531 goto free_tms;
532 locked = 1;
533
01763a2e
JS
534 /*
535 * When we override something during the move, we log these removals.
536 * This can only happen when we move towards the beginning of the
537 * buffer, i.e. dst_slot < src_slot.
538 */
bd989ba3 539 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
6074d45f 540 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
5de865ee
FDBM
541 if (ret)
542 goto free_tms;
bd989ba3
JS
543 }
544
6074d45f 545 ret = __tree_mod_log_insert(eb->fs_info, tm);
5de865ee
FDBM
546 if (ret)
547 goto free_tms;
b1a09f1e 548 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee 549 kfree(tm_list);
f395694c 550
5de865ee
FDBM
551 return 0;
552free_tms:
553 for (i = 0; i < nr_items; i++) {
554 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
6074d45f 555 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
5de865ee
FDBM
556 kfree(tm_list[i]);
557 }
558 if (locked)
b1a09f1e 559 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
560 kfree(tm_list);
561 kfree(tm);
bd989ba3 562
5de865ee 563 return ret;
bd989ba3
JS
564}
565
5de865ee
FDBM
566static inline int
567__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
568 struct tree_mod_elem **tm_list,
569 int nritems)
097b8a7c 570{
5de865ee 571 int i, j;
097b8a7c
JS
572 int ret;
573
097b8a7c 574 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
575 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
576 if (ret) {
577 for (j = nritems - 1; j > i; j--)
578 rb_erase(&tm_list[j]->node,
579 &fs_info->tree_mod_log);
580 return ret;
581 }
097b8a7c 582 }
5de865ee
FDBM
583
584 return 0;
097b8a7c
JS
585}
586
95b757c1
DS
587static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
588 struct extent_buffer *new_root, int log_removal)
bd989ba3 589{
95b757c1 590 struct btrfs_fs_info *fs_info = old_root->fs_info;
5de865ee
FDBM
591 struct tree_mod_elem *tm = NULL;
592 struct tree_mod_elem **tm_list = NULL;
593 int nritems = 0;
594 int ret = 0;
595 int i;
bd989ba3 596
5de865ee 597 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
598 return 0;
599
5de865ee
FDBM
600 if (log_removal && btrfs_header_level(old_root) > 0) {
601 nritems = btrfs_header_nritems(old_root);
31e818fe 602 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
bcc8e07f 603 GFP_NOFS);
5de865ee
FDBM
604 if (!tm_list) {
605 ret = -ENOMEM;
606 goto free_tms;
607 }
608 for (i = 0; i < nritems; i++) {
609 tm_list[i] = alloc_tree_mod_elem(old_root, i,
bcc8e07f 610 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
5de865ee
FDBM
611 if (!tm_list[i]) {
612 ret = -ENOMEM;
613 goto free_tms;
614 }
615 }
616 }
d9abbf1c 617
bcc8e07f 618 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
619 if (!tm) {
620 ret = -ENOMEM;
621 goto free_tms;
622 }
bd989ba3 623
298cfd36 624 tm->logical = new_root->start;
bd989ba3
JS
625 tm->old_root.logical = old_root->start;
626 tm->old_root.level = btrfs_header_level(old_root);
627 tm->generation = btrfs_header_generation(old_root);
628 tm->op = MOD_LOG_ROOT_REPLACE;
629
5de865ee
FDBM
630 if (tree_mod_dont_log(fs_info, NULL))
631 goto free_tms;
632
633 if (tm_list)
634 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
635 if (!ret)
636 ret = __tree_mod_log_insert(fs_info, tm);
637
b1a09f1e 638 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
639 if (ret)
640 goto free_tms;
641 kfree(tm_list);
642
643 return ret;
644
645free_tms:
646 if (tm_list) {
647 for (i = 0; i < nritems; i++)
648 kfree(tm_list[i]);
649 kfree(tm_list);
650 }
651 kfree(tm);
652
653 return ret;
bd989ba3
JS
654}
655
656static struct tree_mod_elem *
657__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
658 int smallest)
659{
660 struct rb_root *tm_root;
661 struct rb_node *node;
662 struct tree_mod_elem *cur = NULL;
663 struct tree_mod_elem *found = NULL;
bd989ba3 664
b1a09f1e 665 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
666 tm_root = &fs_info->tree_mod_log;
667 node = tm_root->rb_node;
668 while (node) {
6b4df8b6 669 cur = rb_entry(node, struct tree_mod_elem, node);
298cfd36 670 if (cur->logical < start) {
bd989ba3 671 node = node->rb_left;
298cfd36 672 } else if (cur->logical > start) {
bd989ba3 673 node = node->rb_right;
097b8a7c 674 } else if (cur->seq < min_seq) {
bd989ba3
JS
675 node = node->rb_left;
676 } else if (!smallest) {
677 /* we want the node with the highest seq */
678 if (found)
097b8a7c 679 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
680 found = cur;
681 node = node->rb_left;
097b8a7c 682 } else if (cur->seq > min_seq) {
bd989ba3
JS
683 /* we want the node with the smallest seq */
684 if (found)
097b8a7c 685 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
686 found = cur;
687 node = node->rb_right;
688 } else {
689 found = cur;
690 break;
691 }
692 }
b1a09f1e 693 read_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
694
695 return found;
696}
697
698/*
699 * this returns the element from the log with the smallest time sequence
700 * value that's in the log (the oldest log item). any element with a time
701 * sequence lower than min_seq will be ignored.
702 */
703static struct tree_mod_elem *
704tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
705 u64 min_seq)
706{
707 return __tree_mod_log_search(fs_info, start, min_seq, 1);
708}
709
710/*
711 * this returns the element from the log with the largest time sequence
712 * value that's in the log (the most recent log item). any element with
713 * a time sequence lower than min_seq will be ignored.
714 */
715static struct tree_mod_elem *
716tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
717{
718 return __tree_mod_log_search(fs_info, start, min_seq, 0);
719}
720
5de865ee 721static noinline int
bd989ba3
JS
722tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
723 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 724 unsigned long src_offset, int nr_items)
bd989ba3 725{
5de865ee
FDBM
726 int ret = 0;
727 struct tree_mod_elem **tm_list = NULL;
728 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 729 int i;
5de865ee 730 int locked = 0;
bd989ba3 731
5de865ee
FDBM
732 if (!tree_mod_need_log(fs_info, NULL))
733 return 0;
bd989ba3 734
c8cc6341 735 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
736 return 0;
737
31e818fe 738 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
739 GFP_NOFS);
740 if (!tm_list)
741 return -ENOMEM;
bd989ba3 742
5de865ee
FDBM
743 tm_list_add = tm_list;
744 tm_list_rem = tm_list + nr_items;
bd989ba3 745 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
746 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
747 MOD_LOG_KEY_REMOVE, GFP_NOFS);
748 if (!tm_list_rem[i]) {
749 ret = -ENOMEM;
750 goto free_tms;
751 }
752
753 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
754 MOD_LOG_KEY_ADD, GFP_NOFS);
755 if (!tm_list_add[i]) {
756 ret = -ENOMEM;
757 goto free_tms;
758 }
759 }
760
761 if (tree_mod_dont_log(fs_info, NULL))
762 goto free_tms;
763 locked = 1;
764
765 for (i = 0; i < nr_items; i++) {
766 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
767 if (ret)
768 goto free_tms;
769 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
770 if (ret)
771 goto free_tms;
bd989ba3 772 }
5de865ee 773
b1a09f1e 774 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
775 kfree(tm_list);
776
777 return 0;
778
779free_tms:
780 for (i = 0; i < nr_items * 2; i++) {
781 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
782 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
783 kfree(tm_list[i]);
784 }
785 if (locked)
b1a09f1e 786 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
787 kfree(tm_list);
788
789 return ret;
bd989ba3
JS
790}
791
db7279a2 792static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
bd989ba3 793{
5de865ee
FDBM
794 struct tree_mod_elem **tm_list = NULL;
795 int nritems = 0;
796 int i;
797 int ret = 0;
798
799 if (btrfs_header_level(eb) == 0)
800 return 0;
801
db7279a2 802 if (!tree_mod_need_log(eb->fs_info, NULL))
5de865ee
FDBM
803 return 0;
804
805 nritems = btrfs_header_nritems(eb);
31e818fe 806 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
807 if (!tm_list)
808 return -ENOMEM;
809
810 for (i = 0; i < nritems; i++) {
811 tm_list[i] = alloc_tree_mod_elem(eb, i,
812 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
813 if (!tm_list[i]) {
814 ret = -ENOMEM;
815 goto free_tms;
816 }
817 }
818
db7279a2 819 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
820 goto free_tms;
821
db7279a2 822 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
b1a09f1e 823 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
824 if (ret)
825 goto free_tms;
826 kfree(tm_list);
827
828 return 0;
829
830free_tms:
831 for (i = 0; i < nritems; i++)
832 kfree(tm_list[i]);
833 kfree(tm_list);
834
835 return ret;
bd989ba3
JS
836}
837
5d4f98a2
YZ
838/*
839 * check if the tree block can be shared by multiple trees
840 */
841int btrfs_block_can_be_shared(struct btrfs_root *root,
842 struct extent_buffer *buf)
843{
844 /*
01327610 845 * Tree blocks not in reference counted trees and tree roots
5d4f98a2
YZ
846 * are never shared. If a block was allocated after the last
847 * snapshot and the block was not allocated by tree relocation,
848 * we know the block is not shared.
849 */
27cdeb70 850 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
851 buf != root->node && buf != root->commit_root &&
852 (btrfs_header_generation(buf) <=
853 btrfs_root_last_snapshot(&root->root_item) ||
854 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
855 return 1;
a79865c6 856
5d4f98a2
YZ
857 return 0;
858}
859
860static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
861 struct btrfs_root *root,
862 struct extent_buffer *buf,
f0486c68
YZ
863 struct extent_buffer *cow,
864 int *last_ref)
5d4f98a2 865{
0b246afa 866 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
867 u64 refs;
868 u64 owner;
869 u64 flags;
870 u64 new_flags = 0;
871 int ret;
872
873 /*
874 * Backrefs update rules:
875 *
876 * Always use full backrefs for extent pointers in tree block
877 * allocated by tree relocation.
878 *
879 * If a shared tree block is no longer referenced by its owner
880 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
881 * use full backrefs for extent pointers in tree block.
882 *
883 * If a tree block is been relocating
884 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
885 * use full backrefs for extent pointers in tree block.
886 * The reason for this is some operations (such as drop tree)
887 * are only allowed for blocks use full backrefs.
888 */
889
890 if (btrfs_block_can_be_shared(root, buf)) {
2ff7e61e 891 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
3173a18f
JB
892 btrfs_header_level(buf), 1,
893 &refs, &flags);
be1a5564
MF
894 if (ret)
895 return ret;
e5df9573
MF
896 if (refs == 0) {
897 ret = -EROFS;
0b246afa 898 btrfs_handle_fs_error(fs_info, ret, NULL);
e5df9573
MF
899 return ret;
900 }
5d4f98a2
YZ
901 } else {
902 refs = 1;
903 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
904 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
905 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
906 else
907 flags = 0;
908 }
909
910 owner = btrfs_header_owner(buf);
911 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
912 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
913
914 if (refs > 1) {
915 if ((owner == root->root_key.objectid ||
916 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
917 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 918 ret = btrfs_inc_ref(trans, root, buf, 1);
692826b2
JM
919 if (ret)
920 return ret;
5d4f98a2
YZ
921
922 if (root->root_key.objectid ==
923 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 924 ret = btrfs_dec_ref(trans, root, buf, 0);
692826b2
JM
925 if (ret)
926 return ret;
e339a6b0 927 ret = btrfs_inc_ref(trans, root, cow, 1);
692826b2
JM
928 if (ret)
929 return ret;
5d4f98a2
YZ
930 }
931 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
932 } else {
933
934 if (root->root_key.objectid ==
935 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 936 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 937 else
e339a6b0 938 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
939 if (ret)
940 return ret;
5d4f98a2
YZ
941 }
942 if (new_flags != 0) {
b1c79e09
JB
943 int level = btrfs_header_level(buf);
944
2ff7e61e 945 ret = btrfs_set_disk_extent_flags(trans, fs_info,
5d4f98a2
YZ
946 buf->start,
947 buf->len,
b1c79e09 948 new_flags, level, 0);
be1a5564
MF
949 if (ret)
950 return ret;
5d4f98a2
YZ
951 }
952 } else {
953 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
954 if (root->root_key.objectid ==
955 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 956 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 957 else
e339a6b0 958 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
959 if (ret)
960 return ret;
e339a6b0 961 ret = btrfs_dec_ref(trans, root, buf, 1);
692826b2
JM
962 if (ret)
963 return ret;
5d4f98a2 964 }
7c302b49 965 clean_tree_block(fs_info, buf);
f0486c68 966 *last_ref = 1;
5d4f98a2
YZ
967 }
968 return 0;
969}
970
d352ac68 971/*
d397712b
CM
972 * does the dirty work in cow of a single block. The parent block (if
973 * supplied) is updated to point to the new cow copy. The new buffer is marked
974 * dirty and returned locked. If you modify the block it needs to be marked
975 * dirty again.
d352ac68
CM
976 *
977 * search_start -- an allocation hint for the new block
978 *
d397712b
CM
979 * empty_size -- a hint that you plan on doing more cow. This is the size in
980 * bytes the allocator should try to find free next to the block it returns.
981 * This is just a hint and may be ignored by the allocator.
d352ac68 982 */
d397712b 983static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
984 struct btrfs_root *root,
985 struct extent_buffer *buf,
986 struct extent_buffer *parent, int parent_slot,
987 struct extent_buffer **cow_ret,
9fa8cfe7 988 u64 search_start, u64 empty_size)
02217ed2 989{
0b246afa 990 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2 991 struct btrfs_disk_key disk_key;
5f39d397 992 struct extent_buffer *cow;
be1a5564 993 int level, ret;
f0486c68 994 int last_ref = 0;
925baedd 995 int unlock_orig = 0;
0f5053eb 996 u64 parent_start = 0;
7bb86316 997
925baedd
CM
998 if (*cow_ret == buf)
999 unlock_orig = 1;
1000
b9447ef8 1001 btrfs_assert_tree_locked(buf);
925baedd 1002
27cdeb70 1003 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 1004 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
1005 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1006 trans->transid != root->last_trans);
5f39d397 1007
7bb86316 1008 level = btrfs_header_level(buf);
31840ae1 1009
5d4f98a2
YZ
1010 if (level == 0)
1011 btrfs_item_key(buf, &disk_key, 0);
1012 else
1013 btrfs_node_key(buf, &disk_key, 0);
1014
0f5053eb
GR
1015 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1016 parent_start = parent->start;
5d4f98a2 1017
5ce55557
FM
1018 /*
1019 * If we are COWing a node/leaf from the extent, chunk or device trees,
1020 * make sure that we do not finish block group creation of pending block
1021 * groups. We do this to avoid a deadlock.
1022 * COWing can result in allocation of a new chunk, and flushing pending
1023 * block groups (btrfs_create_pending_block_groups()) can be triggered
1024 * when finishing allocation of a new chunk. Creation of a pending block
1025 * group modifies the extent, chunk and device trees, therefore we could
1026 * deadlock with ourselves since we are holding a lock on an extent
1027 * buffer that btrfs_create_pending_block_groups() may try to COW later.
1028 */
1029 if (root == fs_info->extent_root ||
1030 root == fs_info->chunk_root ||
1031 root == fs_info->dev_root)
1032 trans->can_flush_pending_bgs = false;
1033
4d75f8a9
DS
1034 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1035 root->root_key.objectid, &disk_key, level,
1036 search_start, empty_size);
5ce55557 1037 trans->can_flush_pending_bgs = true;
54aa1f4d
CM
1038 if (IS_ERR(cow))
1039 return PTR_ERR(cow);
6702ed49 1040
b4ce94de
CM
1041 /* cow is set to blocking by btrfs_init_new_buffer */
1042
58e8012c 1043 copy_extent_buffer_full(cow, buf);
db94535d 1044 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1045 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1046 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1047 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1048 BTRFS_HEADER_FLAG_RELOC);
1049 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1050 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1051 else
1052 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1053
de37aa51 1054 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
2b82032c 1055
be1a5564 1056 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1057 if (ret) {
66642832 1058 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1059 return ret;
1060 }
1a40e23b 1061
27cdeb70 1062 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1063 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1064 if (ret) {
66642832 1065 btrfs_abort_transaction(trans, ret);
83d4cfd4 1066 return ret;
93314e3b 1067 }
83d4cfd4 1068 }
3fd0a558 1069
02217ed2 1070 if (buf == root->node) {
925baedd 1071 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1072 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1073 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1074 parent_start = buf->start;
925baedd 1075
5f39d397 1076 extent_buffer_get(cow);
d9d19a01
DS
1077 ret = tree_mod_log_insert_root(root->node, cow, 1);
1078 BUG_ON(ret < 0);
240f62c8 1079 rcu_assign_pointer(root->node, cow);
925baedd 1080
f0486c68 1081 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1082 last_ref);
5f39d397 1083 free_extent_buffer(buf);
0b86a832 1084 add_root_to_dirty_list(root);
02217ed2 1085 } else {
5d4f98a2 1086 WARN_ON(trans->transid != btrfs_header_generation(parent));
e09c2efe 1087 tree_mod_log_insert_key(parent, parent_slot,
c8cc6341 1088 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1089 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1090 cow->start);
74493f7a
CM
1091 btrfs_set_node_ptr_generation(parent, parent_slot,
1092 trans->transid);
d6025579 1093 btrfs_mark_buffer_dirty(parent);
5de865ee 1094 if (last_ref) {
db7279a2 1095 ret = tree_mod_log_free_eb(buf);
5de865ee 1096 if (ret) {
66642832 1097 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1098 return ret;
1099 }
1100 }
f0486c68 1101 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1102 last_ref);
02217ed2 1103 }
925baedd
CM
1104 if (unlock_orig)
1105 btrfs_tree_unlock(buf);
3083ee2e 1106 free_extent_buffer_stale(buf);
ccd467d6 1107 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1108 *cow_ret = cow;
02217ed2
CM
1109 return 0;
1110}
1111
5d9e75c4
JS
1112/*
1113 * returns the logical address of the oldest predecessor of the given root.
1114 * entries older than time_seq are ignored.
1115 */
bcd24dab
DS
1116static struct tree_mod_elem *__tree_mod_log_oldest_root(
1117 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1118{
1119 struct tree_mod_elem *tm;
1120 struct tree_mod_elem *found = NULL;
30b0463a 1121 u64 root_logical = eb_root->start;
5d9e75c4
JS
1122 int looped = 0;
1123
1124 if (!time_seq)
35a3621b 1125 return NULL;
5d9e75c4
JS
1126
1127 /*
298cfd36
CR
1128 * the very last operation that's logged for a root is the
1129 * replacement operation (if it is replaced at all). this has
1130 * the logical address of the *new* root, making it the very
1131 * first operation that's logged for this root.
5d9e75c4
JS
1132 */
1133 while (1) {
bcd24dab 1134 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
5d9e75c4
JS
1135 time_seq);
1136 if (!looped && !tm)
35a3621b 1137 return NULL;
5d9e75c4 1138 /*
28da9fb4
JS
1139 * if there are no tree operation for the oldest root, we simply
1140 * return it. this should only happen if that (old) root is at
1141 * level 0.
5d9e75c4 1142 */
28da9fb4
JS
1143 if (!tm)
1144 break;
5d9e75c4 1145
28da9fb4
JS
1146 /*
1147 * if there's an operation that's not a root replacement, we
1148 * found the oldest version of our root. normally, we'll find a
1149 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1150 */
5d9e75c4
JS
1151 if (tm->op != MOD_LOG_ROOT_REPLACE)
1152 break;
1153
1154 found = tm;
1155 root_logical = tm->old_root.logical;
5d9e75c4
JS
1156 looped = 1;
1157 }
1158
a95236d9
JS
1159 /* if there's no old root to return, return what we found instead */
1160 if (!found)
1161 found = tm;
1162
5d9e75c4
JS
1163 return found;
1164}
1165
1166/*
1167 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1168 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1169 * time_seq).
1170 */
1171static void
f1ca7e98
JB
1172__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1173 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1174{
1175 u32 n;
1176 struct rb_node *next;
1177 struct tree_mod_elem *tm = first_tm;
1178 unsigned long o_dst;
1179 unsigned long o_src;
1180 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1181
1182 n = btrfs_header_nritems(eb);
b1a09f1e 1183 read_lock(&fs_info->tree_mod_log_lock);
097b8a7c 1184 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1185 /*
1186 * all the operations are recorded with the operator used for
1187 * the modification. as we're going backwards, we do the
1188 * opposite of each operation here.
1189 */
1190 switch (tm->op) {
1191 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1192 BUG_ON(tm->slot < n);
1c697d4a 1193 /* Fallthrough */
95c80bb1 1194 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1195 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1196 btrfs_set_node_key(eb, &tm->key, tm->slot);
1197 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1198 btrfs_set_node_ptr_generation(eb, tm->slot,
1199 tm->generation);
4c3e6969 1200 n++;
5d9e75c4
JS
1201 break;
1202 case MOD_LOG_KEY_REPLACE:
1203 BUG_ON(tm->slot >= n);
1204 btrfs_set_node_key(eb, &tm->key, tm->slot);
1205 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1206 btrfs_set_node_ptr_generation(eb, tm->slot,
1207 tm->generation);
1208 break;
1209 case MOD_LOG_KEY_ADD:
19956c7e 1210 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1211 n--;
1212 break;
1213 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1214 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1215 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1216 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1217 tm->move.nr_items * p_size);
1218 break;
1219 case MOD_LOG_ROOT_REPLACE:
1220 /*
1221 * this operation is special. for roots, this must be
1222 * handled explicitly before rewinding.
1223 * for non-roots, this operation may exist if the node
1224 * was a root: root A -> child B; then A gets empty and
1225 * B is promoted to the new root. in the mod log, we'll
1226 * have a root-replace operation for B, a tree block
1227 * that is no root. we simply ignore that operation.
1228 */
1229 break;
1230 }
1231 next = rb_next(&tm->node);
1232 if (!next)
1233 break;
6b4df8b6 1234 tm = rb_entry(next, struct tree_mod_elem, node);
298cfd36 1235 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1236 break;
1237 }
b1a09f1e 1238 read_unlock(&fs_info->tree_mod_log_lock);
5d9e75c4
JS
1239 btrfs_set_header_nritems(eb, n);
1240}
1241
47fb091f 1242/*
01327610 1243 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1244 * is returned. If rewind operations happen, a fresh buffer is returned. The
1245 * returned buffer is always read-locked. If the returned buffer is not the
1246 * input buffer, the lock on the input buffer is released and the input buffer
1247 * is freed (its refcount is decremented).
1248 */
5d9e75c4 1249static struct extent_buffer *
9ec72677
JB
1250tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1251 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1252{
1253 struct extent_buffer *eb_rewin;
1254 struct tree_mod_elem *tm;
1255
1256 if (!time_seq)
1257 return eb;
1258
1259 if (btrfs_header_level(eb) == 0)
1260 return eb;
1261
1262 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1263 if (!tm)
1264 return eb;
1265
9ec72677
JB
1266 btrfs_set_path_blocking(path);
1267 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1268
5d9e75c4
JS
1269 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1270 BUG_ON(tm->slot != 0);
da17066c 1271 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1272 if (!eb_rewin) {
9ec72677 1273 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1274 free_extent_buffer(eb);
1275 return NULL;
1276 }
5d9e75c4
JS
1277 btrfs_set_header_bytenr(eb_rewin, eb->start);
1278 btrfs_set_header_backref_rev(eb_rewin,
1279 btrfs_header_backref_rev(eb));
1280 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1281 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1282 } else {
1283 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1284 if (!eb_rewin) {
9ec72677 1285 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1286 free_extent_buffer(eb);
1287 return NULL;
1288 }
5d9e75c4
JS
1289 }
1290
9ec72677 1291 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1292 free_extent_buffer(eb);
1293
47fb091f 1294 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1295 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1296 WARN_ON(btrfs_header_nritems(eb_rewin) >
da17066c 1297 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1298
1299 return eb_rewin;
1300}
1301
8ba97a15
JS
1302/*
1303 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1304 * value. If there are no changes, the current root->root_node is returned. If
1305 * anything changed in between, there's a fresh buffer allocated on which the
1306 * rewind operations are done. In any case, the returned buffer is read locked.
1307 * Returns NULL on error (with no locks held).
1308 */
5d9e75c4
JS
1309static inline struct extent_buffer *
1310get_old_root(struct btrfs_root *root, u64 time_seq)
1311{
0b246afa 1312 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4 1313 struct tree_mod_elem *tm;
30b0463a
JS
1314 struct extent_buffer *eb = NULL;
1315 struct extent_buffer *eb_root;
7bfdcf7f 1316 struct extent_buffer *old;
a95236d9 1317 struct tree_mod_root *old_root = NULL;
4325edd0 1318 u64 old_generation = 0;
a95236d9 1319 u64 logical;
581c1760 1320 int level;
5d9e75c4 1321
30b0463a 1322 eb_root = btrfs_read_lock_root_node(root);
bcd24dab 1323 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5d9e75c4 1324 if (!tm)
30b0463a 1325 return eb_root;
5d9e75c4 1326
a95236d9
JS
1327 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1328 old_root = &tm->old_root;
1329 old_generation = tm->generation;
1330 logical = old_root->logical;
581c1760 1331 level = old_root->level;
a95236d9 1332 } else {
30b0463a 1333 logical = eb_root->start;
581c1760 1334 level = btrfs_header_level(eb_root);
a95236d9 1335 }
5d9e75c4 1336
0b246afa 1337 tm = tree_mod_log_search(fs_info, logical, time_seq);
834328a8 1338 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1339 btrfs_tree_read_unlock(eb_root);
1340 free_extent_buffer(eb_root);
581c1760 1341 old = read_tree_block(fs_info, logical, 0, level, NULL);
64c043de
LB
1342 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1343 if (!IS_ERR(old))
1344 free_extent_buffer(old);
0b246afa
JM
1345 btrfs_warn(fs_info,
1346 "failed to read tree block %llu from get_old_root",
1347 logical);
834328a8 1348 } else {
7bfdcf7f
LB
1349 eb = btrfs_clone_extent_buffer(old);
1350 free_extent_buffer(old);
834328a8
JS
1351 }
1352 } else if (old_root) {
30b0463a
JS
1353 btrfs_tree_read_unlock(eb_root);
1354 free_extent_buffer(eb_root);
0b246afa 1355 eb = alloc_dummy_extent_buffer(fs_info, logical);
834328a8 1356 } else {
9ec72677 1357 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1358 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1359 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1360 free_extent_buffer(eb_root);
834328a8
JS
1361 }
1362
8ba97a15
JS
1363 if (!eb)
1364 return NULL;
1365 btrfs_tree_read_lock(eb);
a95236d9 1366 if (old_root) {
5d9e75c4
JS
1367 btrfs_set_header_bytenr(eb, eb->start);
1368 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1369 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1370 btrfs_set_header_level(eb, old_root->level);
1371 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1372 }
28da9fb4 1373 if (tm)
0b246afa 1374 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
28da9fb4
JS
1375 else
1376 WARN_ON(btrfs_header_level(eb) != 0);
0b246afa 1377 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1378
1379 return eb;
1380}
1381
5b6602e7
JS
1382int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1383{
1384 struct tree_mod_elem *tm;
1385 int level;
30b0463a 1386 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1387
bcd24dab 1388 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5b6602e7
JS
1389 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1390 level = tm->old_root.level;
1391 } else {
30b0463a 1392 level = btrfs_header_level(eb_root);
5b6602e7 1393 }
30b0463a 1394 free_extent_buffer(eb_root);
5b6602e7
JS
1395
1396 return level;
1397}
1398
5d4f98a2
YZ
1399static inline int should_cow_block(struct btrfs_trans_handle *trans,
1400 struct btrfs_root *root,
1401 struct extent_buffer *buf)
1402{
f5ee5c9a 1403 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1404 return 0;
fccb84c9 1405
d1980131
DS
1406 /* Ensure we can see the FORCE_COW bit */
1407 smp_mb__before_atomic();
f1ebcc74
LB
1408
1409 /*
1410 * We do not need to cow a block if
1411 * 1) this block is not created or changed in this transaction;
1412 * 2) this block does not belong to TREE_RELOC tree;
1413 * 3) the root is not forced COW.
1414 *
1415 * What is forced COW:
01327610 1416 * when we create snapshot during committing the transaction,
f1ebcc74
LB
1417 * after we've finished coping src root, we must COW the shared
1418 * block to ensure the metadata consistency.
1419 */
5d4f98a2
YZ
1420 if (btrfs_header_generation(buf) == trans->transid &&
1421 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1422 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1423 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1424 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1425 return 0;
1426 return 1;
1427}
1428
d352ac68
CM
1429/*
1430 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1431 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1432 * once per transaction, as long as it hasn't been written yet
1433 */
d397712b 1434noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1435 struct btrfs_root *root, struct extent_buffer *buf,
1436 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1437 struct extent_buffer **cow_ret)
6702ed49 1438{
0b246afa 1439 struct btrfs_fs_info *fs_info = root->fs_info;
6702ed49 1440 u64 search_start;
f510cfec 1441 int ret;
dc17ff8f 1442
83354f07
JB
1443 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1444 btrfs_err(fs_info,
1445 "COW'ing blocks on a fs root that's being dropped");
1446
0b246afa 1447 if (trans->transaction != fs_info->running_transaction)
31b1a2bd 1448 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1449 trans->transid,
0b246afa 1450 fs_info->running_transaction->transid);
31b1a2bd 1451
0b246afa 1452 if (trans->transid != fs_info->generation)
31b1a2bd 1453 WARN(1, KERN_CRIT "trans %llu running %llu\n",
0b246afa 1454 trans->transid, fs_info->generation);
dc17ff8f 1455
5d4f98a2 1456 if (!should_cow_block(trans, root, buf)) {
64c12921 1457 trans->dirty = true;
6702ed49
CM
1458 *cow_ret = buf;
1459 return 0;
1460 }
c487685d 1461
ee22184b 1462 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1463
1464 if (parent)
1465 btrfs_set_lock_blocking(parent);
1466 btrfs_set_lock_blocking(buf);
1467
f510cfec 1468 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1469 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1470
1471 trace_btrfs_cow_block(root, buf, *cow_ret);
1472
f510cfec 1473 return ret;
6702ed49
CM
1474}
1475
d352ac68
CM
1476/*
1477 * helper function for defrag to decide if two blocks pointed to by a
1478 * node are actually close by
1479 */
6b80053d 1480static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1481{
6b80053d 1482 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1483 return 1;
6b80053d 1484 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1485 return 1;
1486 return 0;
1487}
1488
081e9573
CM
1489/*
1490 * compare two keys in a memcmp fashion
1491 */
310712b2
OS
1492static int comp_keys(const struct btrfs_disk_key *disk,
1493 const struct btrfs_key *k2)
081e9573
CM
1494{
1495 struct btrfs_key k1;
1496
1497 btrfs_disk_key_to_cpu(&k1, disk);
1498
20736aba 1499 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1500}
1501
f3465ca4
JB
1502/*
1503 * same as comp_keys only with two btrfs_key's
1504 */
310712b2 1505int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
f3465ca4
JB
1506{
1507 if (k1->objectid > k2->objectid)
1508 return 1;
1509 if (k1->objectid < k2->objectid)
1510 return -1;
1511 if (k1->type > k2->type)
1512 return 1;
1513 if (k1->type < k2->type)
1514 return -1;
1515 if (k1->offset > k2->offset)
1516 return 1;
1517 if (k1->offset < k2->offset)
1518 return -1;
1519 return 0;
1520}
081e9573 1521
d352ac68
CM
1522/*
1523 * this is used by the defrag code to go through all the
1524 * leaves pointed to by a node and reallocate them so that
1525 * disk order is close to key order
1526 */
6702ed49 1527int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1528 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1529 int start_slot, u64 *last_ret,
a6b6e75e 1530 struct btrfs_key *progress)
6702ed49 1531{
0b246afa 1532 struct btrfs_fs_info *fs_info = root->fs_info;
6b80053d 1533 struct extent_buffer *cur;
6702ed49 1534 u64 blocknr;
ca7a79ad 1535 u64 gen;
e9d0b13b
CM
1536 u64 search_start = *last_ret;
1537 u64 last_block = 0;
6702ed49
CM
1538 u64 other;
1539 u32 parent_nritems;
6702ed49
CM
1540 int end_slot;
1541 int i;
1542 int err = 0;
f2183bde 1543 int parent_level;
6b80053d
CM
1544 int uptodate;
1545 u32 blocksize;
081e9573
CM
1546 int progress_passed = 0;
1547 struct btrfs_disk_key disk_key;
6702ed49 1548
5708b959 1549 parent_level = btrfs_header_level(parent);
5708b959 1550
0b246afa
JM
1551 WARN_ON(trans->transaction != fs_info->running_transaction);
1552 WARN_ON(trans->transid != fs_info->generation);
86479a04 1553
6b80053d 1554 parent_nritems = btrfs_header_nritems(parent);
0b246afa 1555 blocksize = fs_info->nodesize;
5dfe2be7 1556 end_slot = parent_nritems - 1;
6702ed49 1557
5dfe2be7 1558 if (parent_nritems <= 1)
6702ed49
CM
1559 return 0;
1560
b4ce94de
CM
1561 btrfs_set_lock_blocking(parent);
1562
5dfe2be7 1563 for (i = start_slot; i <= end_slot; i++) {
581c1760 1564 struct btrfs_key first_key;
6702ed49 1565 int close = 1;
a6b6e75e 1566
081e9573
CM
1567 btrfs_node_key(parent, &disk_key, i);
1568 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1569 continue;
1570
1571 progress_passed = 1;
6b80053d 1572 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1573 gen = btrfs_node_ptr_generation(parent, i);
581c1760 1574 btrfs_node_key_to_cpu(parent, &first_key, i);
e9d0b13b
CM
1575 if (last_block == 0)
1576 last_block = blocknr;
5708b959 1577
6702ed49 1578 if (i > 0) {
6b80053d
CM
1579 other = btrfs_node_blockptr(parent, i - 1);
1580 close = close_blocks(blocknr, other, blocksize);
6702ed49 1581 }
5dfe2be7 1582 if (!close && i < end_slot) {
6b80053d
CM
1583 other = btrfs_node_blockptr(parent, i + 1);
1584 close = close_blocks(blocknr, other, blocksize);
6702ed49 1585 }
e9d0b13b
CM
1586 if (close) {
1587 last_block = blocknr;
6702ed49 1588 continue;
e9d0b13b 1589 }
6702ed49 1590
0b246afa 1591 cur = find_extent_buffer(fs_info, blocknr);
6b80053d 1592 if (cur)
b9fab919 1593 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1594 else
1595 uptodate = 0;
5708b959 1596 if (!cur || !uptodate) {
6b80053d 1597 if (!cur) {
581c1760
QW
1598 cur = read_tree_block(fs_info, blocknr, gen,
1599 parent_level - 1,
1600 &first_key);
64c043de
LB
1601 if (IS_ERR(cur)) {
1602 return PTR_ERR(cur);
1603 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1604 free_extent_buffer(cur);
97d9a8a4 1605 return -EIO;
416bc658 1606 }
6b80053d 1607 } else if (!uptodate) {
581c1760
QW
1608 err = btrfs_read_buffer(cur, gen,
1609 parent_level - 1,&first_key);
018642a1
TI
1610 if (err) {
1611 free_extent_buffer(cur);
1612 return err;
1613 }
f2183bde 1614 }
6702ed49 1615 }
e9d0b13b 1616 if (search_start == 0)
6b80053d 1617 search_start = last_block;
e9d0b13b 1618
e7a84565 1619 btrfs_tree_lock(cur);
b4ce94de 1620 btrfs_set_lock_blocking(cur);
6b80053d 1621 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1622 &cur, search_start,
6b80053d 1623 min(16 * blocksize,
9fa8cfe7 1624 (end_slot - i) * blocksize));
252c38f0 1625 if (err) {
e7a84565 1626 btrfs_tree_unlock(cur);
6b80053d 1627 free_extent_buffer(cur);
6702ed49 1628 break;
252c38f0 1629 }
e7a84565
CM
1630 search_start = cur->start;
1631 last_block = cur->start;
f2183bde 1632 *last_ret = search_start;
e7a84565
CM
1633 btrfs_tree_unlock(cur);
1634 free_extent_buffer(cur);
6702ed49
CM
1635 }
1636 return err;
1637}
1638
74123bd7 1639/*
5f39d397
CM
1640 * search for key in the extent_buffer. The items start at offset p,
1641 * and they are item_size apart. There are 'max' items in p.
1642 *
74123bd7
CM
1643 * the slot in the array is returned via slot, and it points to
1644 * the place where you would insert key if it is not found in
1645 * the array.
1646 *
1647 * slot may point to max if the key is bigger than all of the keys
1648 */
e02119d5 1649static noinline int generic_bin_search(struct extent_buffer *eb,
310712b2
OS
1650 unsigned long p, int item_size,
1651 const struct btrfs_key *key,
e02119d5 1652 int max, int *slot)
be0e5c09
CM
1653{
1654 int low = 0;
1655 int high = max;
1656 int mid;
1657 int ret;
479965d6 1658 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1659 struct btrfs_disk_key unaligned;
1660 unsigned long offset;
5f39d397
CM
1661 char *kaddr = NULL;
1662 unsigned long map_start = 0;
1663 unsigned long map_len = 0;
479965d6 1664 int err;
be0e5c09 1665
5e24e9af
LB
1666 if (low > high) {
1667 btrfs_err(eb->fs_info,
1668 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1669 __func__, low, high, eb->start,
1670 btrfs_header_owner(eb), btrfs_header_level(eb));
1671 return -EINVAL;
1672 }
1673
d397712b 1674 while (low < high) {
be0e5c09 1675 mid = (low + high) / 2;
5f39d397
CM
1676 offset = p + mid * item_size;
1677
a6591715 1678 if (!kaddr || offset < map_start ||
5f39d397
CM
1679 (offset + sizeof(struct btrfs_disk_key)) >
1680 map_start + map_len) {
934d375b
CM
1681
1682 err = map_private_extent_buffer(eb, offset,
479965d6 1683 sizeof(struct btrfs_disk_key),
a6591715 1684 &kaddr, &map_start, &map_len);
479965d6
CM
1685
1686 if (!err) {
1687 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1688 map_start);
415b35a5 1689 } else if (err == 1) {
479965d6
CM
1690 read_extent_buffer(eb, &unaligned,
1691 offset, sizeof(unaligned));
1692 tmp = &unaligned;
415b35a5
LB
1693 } else {
1694 return err;
479965d6 1695 }
5f39d397 1696
5f39d397
CM
1697 } else {
1698 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1699 map_start);
1700 }
be0e5c09
CM
1701 ret = comp_keys(tmp, key);
1702
1703 if (ret < 0)
1704 low = mid + 1;
1705 else if (ret > 0)
1706 high = mid;
1707 else {
1708 *slot = mid;
1709 return 0;
1710 }
1711 }
1712 *slot = low;
1713 return 1;
1714}
1715
97571fd0
CM
1716/*
1717 * simple bin_search frontend that does the right thing for
1718 * leaves vs nodes
1719 */
a74b35ec
NB
1720int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1721 int level, int *slot)
be0e5c09 1722{
f775738f 1723 if (level == 0)
5f39d397
CM
1724 return generic_bin_search(eb,
1725 offsetof(struct btrfs_leaf, items),
0783fcfc 1726 sizeof(struct btrfs_item),
5f39d397 1727 key, btrfs_header_nritems(eb),
7518a238 1728 slot);
f775738f 1729 else
5f39d397
CM
1730 return generic_bin_search(eb,
1731 offsetof(struct btrfs_node, ptrs),
123abc88 1732 sizeof(struct btrfs_key_ptr),
5f39d397 1733 key, btrfs_header_nritems(eb),
7518a238 1734 slot);
be0e5c09
CM
1735}
1736
f0486c68
YZ
1737static void root_add_used(struct btrfs_root *root, u32 size)
1738{
1739 spin_lock(&root->accounting_lock);
1740 btrfs_set_root_used(&root->root_item,
1741 btrfs_root_used(&root->root_item) + size);
1742 spin_unlock(&root->accounting_lock);
1743}
1744
1745static void root_sub_used(struct btrfs_root *root, u32 size)
1746{
1747 spin_lock(&root->accounting_lock);
1748 btrfs_set_root_used(&root->root_item,
1749 btrfs_root_used(&root->root_item) - size);
1750 spin_unlock(&root->accounting_lock);
1751}
1752
d352ac68
CM
1753/* given a node and slot number, this reads the blocks it points to. The
1754 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1755 */
2ff7e61e
JM
1756static noinline struct extent_buffer *
1757read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1758 int slot)
bb803951 1759{
ca7a79ad 1760 int level = btrfs_header_level(parent);
416bc658 1761 struct extent_buffer *eb;
581c1760 1762 struct btrfs_key first_key;
416bc658 1763
fb770ae4
LB
1764 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1765 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1766
1767 BUG_ON(level == 0);
1768
581c1760 1769 btrfs_node_key_to_cpu(parent, &first_key, slot);
2ff7e61e 1770 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
581c1760
QW
1771 btrfs_node_ptr_generation(parent, slot),
1772 level - 1, &first_key);
fb770ae4
LB
1773 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1774 free_extent_buffer(eb);
1775 eb = ERR_PTR(-EIO);
416bc658
JB
1776 }
1777
1778 return eb;
bb803951
CM
1779}
1780
d352ac68
CM
1781/*
1782 * node level balancing, used to make sure nodes are in proper order for
1783 * item deletion. We balance from the top down, so we have to make sure
1784 * that a deletion won't leave an node completely empty later on.
1785 */
e02119d5 1786static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1787 struct btrfs_root *root,
1788 struct btrfs_path *path, int level)
bb803951 1789{
0b246afa 1790 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
1791 struct extent_buffer *right = NULL;
1792 struct extent_buffer *mid;
1793 struct extent_buffer *left = NULL;
1794 struct extent_buffer *parent = NULL;
bb803951
CM
1795 int ret = 0;
1796 int wret;
1797 int pslot;
bb803951 1798 int orig_slot = path->slots[level];
79f95c82 1799 u64 orig_ptr;
bb803951 1800
98e6b1eb 1801 ASSERT(level > 0);
bb803951 1802
5f39d397 1803 mid = path->nodes[level];
b4ce94de 1804
bd681513
CM
1805 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1806 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1807 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1808
1d4f8a0c 1809 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1810
a05a9bb1 1811 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1812 parent = path->nodes[level + 1];
a05a9bb1
LZ
1813 pslot = path->slots[level + 1];
1814 }
bb803951 1815
40689478
CM
1816 /*
1817 * deal with the case where there is only one pointer in the root
1818 * by promoting the node below to a root
1819 */
5f39d397
CM
1820 if (!parent) {
1821 struct extent_buffer *child;
bb803951 1822
5f39d397 1823 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1824 return 0;
1825
1826 /* promote the child to a root */
2ff7e61e 1827 child = read_node_slot(fs_info, mid, 0);
fb770ae4
LB
1828 if (IS_ERR(child)) {
1829 ret = PTR_ERR(child);
0b246afa 1830 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1831 goto enospc;
1832 }
1833
925baedd 1834 btrfs_tree_lock(child);
b4ce94de 1835 btrfs_set_lock_blocking(child);
9fa8cfe7 1836 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1837 if (ret) {
1838 btrfs_tree_unlock(child);
1839 free_extent_buffer(child);
1840 goto enospc;
1841 }
2f375ab9 1842
d9d19a01
DS
1843 ret = tree_mod_log_insert_root(root->node, child, 1);
1844 BUG_ON(ret < 0);
240f62c8 1845 rcu_assign_pointer(root->node, child);
925baedd 1846
0b86a832 1847 add_root_to_dirty_list(root);
925baedd 1848 btrfs_tree_unlock(child);
b4ce94de 1849
925baedd 1850 path->locks[level] = 0;
bb803951 1851 path->nodes[level] = NULL;
7c302b49 1852 clean_tree_block(fs_info, mid);
925baedd 1853 btrfs_tree_unlock(mid);
bb803951 1854 /* once for the path */
5f39d397 1855 free_extent_buffer(mid);
f0486c68
YZ
1856
1857 root_sub_used(root, mid->len);
5581a51a 1858 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1859 /* once for the root ptr */
3083ee2e 1860 free_extent_buffer_stale(mid);
f0486c68 1861 return 0;
bb803951 1862 }
5f39d397 1863 if (btrfs_header_nritems(mid) >
0b246afa 1864 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
bb803951
CM
1865 return 0;
1866
2ff7e61e 1867 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
1868 if (IS_ERR(left))
1869 left = NULL;
1870
5f39d397 1871 if (left) {
925baedd 1872 btrfs_tree_lock(left);
b4ce94de 1873 btrfs_set_lock_blocking(left);
5f39d397 1874 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1875 parent, pslot - 1, &left);
54aa1f4d
CM
1876 if (wret) {
1877 ret = wret;
1878 goto enospc;
1879 }
2cc58cf2 1880 }
fb770ae4 1881
2ff7e61e 1882 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
1883 if (IS_ERR(right))
1884 right = NULL;
1885
5f39d397 1886 if (right) {
925baedd 1887 btrfs_tree_lock(right);
b4ce94de 1888 btrfs_set_lock_blocking(right);
5f39d397 1889 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1890 parent, pslot + 1, &right);
2cc58cf2
CM
1891 if (wret) {
1892 ret = wret;
1893 goto enospc;
1894 }
1895 }
1896
1897 /* first, try to make some room in the middle buffer */
5f39d397
CM
1898 if (left) {
1899 orig_slot += btrfs_header_nritems(left);
2ff7e61e 1900 wret = push_node_left(trans, fs_info, left, mid, 1);
79f95c82
CM
1901 if (wret < 0)
1902 ret = wret;
bb803951 1903 }
79f95c82
CM
1904
1905 /*
1906 * then try to empty the right most buffer into the middle
1907 */
5f39d397 1908 if (right) {
2ff7e61e 1909 wret = push_node_left(trans, fs_info, mid, right, 1);
54aa1f4d 1910 if (wret < 0 && wret != -ENOSPC)
79f95c82 1911 ret = wret;
5f39d397 1912 if (btrfs_header_nritems(right) == 0) {
7c302b49 1913 clean_tree_block(fs_info, right);
925baedd 1914 btrfs_tree_unlock(right);
afe5fea7 1915 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 1916 root_sub_used(root, right->len);
5581a51a 1917 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1918 free_extent_buffer_stale(right);
f0486c68 1919 right = NULL;
bb803951 1920 } else {
5f39d397
CM
1921 struct btrfs_disk_key right_key;
1922 btrfs_node_key(right, &right_key, 0);
0e82bcfe
DS
1923 ret = tree_mod_log_insert_key(parent, pslot + 1,
1924 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1925 BUG_ON(ret < 0);
5f39d397
CM
1926 btrfs_set_node_key(parent, &right_key, pslot + 1);
1927 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1928 }
1929 }
5f39d397 1930 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1931 /*
1932 * we're not allowed to leave a node with one item in the
1933 * tree during a delete. A deletion from lower in the tree
1934 * could try to delete the only pointer in this node.
1935 * So, pull some keys from the left.
1936 * There has to be a left pointer at this point because
1937 * otherwise we would have pulled some pointers from the
1938 * right
1939 */
305a26af
MF
1940 if (!left) {
1941 ret = -EROFS;
0b246afa 1942 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1943 goto enospc;
1944 }
2ff7e61e 1945 wret = balance_node_right(trans, fs_info, mid, left);
54aa1f4d 1946 if (wret < 0) {
79f95c82 1947 ret = wret;
54aa1f4d
CM
1948 goto enospc;
1949 }
bce4eae9 1950 if (wret == 1) {
2ff7e61e 1951 wret = push_node_left(trans, fs_info, left, mid, 1);
bce4eae9
CM
1952 if (wret < 0)
1953 ret = wret;
1954 }
79f95c82
CM
1955 BUG_ON(wret == 1);
1956 }
5f39d397 1957 if (btrfs_header_nritems(mid) == 0) {
7c302b49 1958 clean_tree_block(fs_info, mid);
925baedd 1959 btrfs_tree_unlock(mid);
afe5fea7 1960 del_ptr(root, path, level + 1, pslot);
f0486c68 1961 root_sub_used(root, mid->len);
5581a51a 1962 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 1963 free_extent_buffer_stale(mid);
f0486c68 1964 mid = NULL;
79f95c82
CM
1965 } else {
1966 /* update the parent key to reflect our changes */
5f39d397
CM
1967 struct btrfs_disk_key mid_key;
1968 btrfs_node_key(mid, &mid_key, 0);
0e82bcfe
DS
1969 ret = tree_mod_log_insert_key(parent, pslot,
1970 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1971 BUG_ON(ret < 0);
5f39d397
CM
1972 btrfs_set_node_key(parent, &mid_key, pslot);
1973 btrfs_mark_buffer_dirty(parent);
79f95c82 1974 }
bb803951 1975
79f95c82 1976 /* update the path */
5f39d397
CM
1977 if (left) {
1978 if (btrfs_header_nritems(left) > orig_slot) {
1979 extent_buffer_get(left);
925baedd 1980 /* left was locked after cow */
5f39d397 1981 path->nodes[level] = left;
bb803951
CM
1982 path->slots[level + 1] -= 1;
1983 path->slots[level] = orig_slot;
925baedd
CM
1984 if (mid) {
1985 btrfs_tree_unlock(mid);
5f39d397 1986 free_extent_buffer(mid);
925baedd 1987 }
bb803951 1988 } else {
5f39d397 1989 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
1990 path->slots[level] = orig_slot;
1991 }
1992 }
79f95c82 1993 /* double check we haven't messed things up */
e20d96d6 1994 if (orig_ptr !=
5f39d397 1995 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 1996 BUG();
54aa1f4d 1997enospc:
925baedd
CM
1998 if (right) {
1999 btrfs_tree_unlock(right);
5f39d397 2000 free_extent_buffer(right);
925baedd
CM
2001 }
2002 if (left) {
2003 if (path->nodes[level] != left)
2004 btrfs_tree_unlock(left);
5f39d397 2005 free_extent_buffer(left);
925baedd 2006 }
bb803951
CM
2007 return ret;
2008}
2009
d352ac68
CM
2010/* Node balancing for insertion. Here we only split or push nodes around
2011 * when they are completely full. This is also done top down, so we
2012 * have to be pessimistic.
2013 */
d397712b 2014static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2015 struct btrfs_root *root,
2016 struct btrfs_path *path, int level)
e66f709b 2017{
0b246afa 2018 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
2019 struct extent_buffer *right = NULL;
2020 struct extent_buffer *mid;
2021 struct extent_buffer *left = NULL;
2022 struct extent_buffer *parent = NULL;
e66f709b
CM
2023 int ret = 0;
2024 int wret;
2025 int pslot;
2026 int orig_slot = path->slots[level];
e66f709b
CM
2027
2028 if (level == 0)
2029 return 1;
2030
5f39d397 2031 mid = path->nodes[level];
7bb86316 2032 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2033
a05a9bb1 2034 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2035 parent = path->nodes[level + 1];
a05a9bb1
LZ
2036 pslot = path->slots[level + 1];
2037 }
e66f709b 2038
5f39d397 2039 if (!parent)
e66f709b 2040 return 1;
e66f709b 2041
2ff7e61e 2042 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
2043 if (IS_ERR(left))
2044 left = NULL;
e66f709b
CM
2045
2046 /* first, try to make some room in the middle buffer */
5f39d397 2047 if (left) {
e66f709b 2048 u32 left_nr;
925baedd
CM
2049
2050 btrfs_tree_lock(left);
b4ce94de
CM
2051 btrfs_set_lock_blocking(left);
2052
5f39d397 2053 left_nr = btrfs_header_nritems(left);
0b246afa 2054 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2055 wret = 1;
2056 } else {
5f39d397 2057 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2058 pslot - 1, &left);
54aa1f4d
CM
2059 if (ret)
2060 wret = 1;
2061 else {
2ff7e61e 2062 wret = push_node_left(trans, fs_info,
971a1f66 2063 left, mid, 0);
54aa1f4d 2064 }
33ade1f8 2065 }
e66f709b
CM
2066 if (wret < 0)
2067 ret = wret;
2068 if (wret == 0) {
5f39d397 2069 struct btrfs_disk_key disk_key;
e66f709b 2070 orig_slot += left_nr;
5f39d397 2071 btrfs_node_key(mid, &disk_key, 0);
0e82bcfe
DS
2072 ret = tree_mod_log_insert_key(parent, pslot,
2073 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2074 BUG_ON(ret < 0);
5f39d397
CM
2075 btrfs_set_node_key(parent, &disk_key, pslot);
2076 btrfs_mark_buffer_dirty(parent);
2077 if (btrfs_header_nritems(left) > orig_slot) {
2078 path->nodes[level] = left;
e66f709b
CM
2079 path->slots[level + 1] -= 1;
2080 path->slots[level] = orig_slot;
925baedd 2081 btrfs_tree_unlock(mid);
5f39d397 2082 free_extent_buffer(mid);
e66f709b
CM
2083 } else {
2084 orig_slot -=
5f39d397 2085 btrfs_header_nritems(left);
e66f709b 2086 path->slots[level] = orig_slot;
925baedd 2087 btrfs_tree_unlock(left);
5f39d397 2088 free_extent_buffer(left);
e66f709b 2089 }
e66f709b
CM
2090 return 0;
2091 }
925baedd 2092 btrfs_tree_unlock(left);
5f39d397 2093 free_extent_buffer(left);
e66f709b 2094 }
2ff7e61e 2095 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
2096 if (IS_ERR(right))
2097 right = NULL;
e66f709b
CM
2098
2099 /*
2100 * then try to empty the right most buffer into the middle
2101 */
5f39d397 2102 if (right) {
33ade1f8 2103 u32 right_nr;
b4ce94de 2104
925baedd 2105 btrfs_tree_lock(right);
b4ce94de
CM
2106 btrfs_set_lock_blocking(right);
2107
5f39d397 2108 right_nr = btrfs_header_nritems(right);
0b246afa 2109 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2110 wret = 1;
2111 } else {
5f39d397
CM
2112 ret = btrfs_cow_block(trans, root, right,
2113 parent, pslot + 1,
9fa8cfe7 2114 &right);
54aa1f4d
CM
2115 if (ret)
2116 wret = 1;
2117 else {
2ff7e61e 2118 wret = balance_node_right(trans, fs_info,
5f39d397 2119 right, mid);
54aa1f4d 2120 }
33ade1f8 2121 }
e66f709b
CM
2122 if (wret < 0)
2123 ret = wret;
2124 if (wret == 0) {
5f39d397
CM
2125 struct btrfs_disk_key disk_key;
2126
2127 btrfs_node_key(right, &disk_key, 0);
0e82bcfe
DS
2128 ret = tree_mod_log_insert_key(parent, pslot + 1,
2129 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2130 BUG_ON(ret < 0);
5f39d397
CM
2131 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2132 btrfs_mark_buffer_dirty(parent);
2133
2134 if (btrfs_header_nritems(mid) <= orig_slot) {
2135 path->nodes[level] = right;
e66f709b
CM
2136 path->slots[level + 1] += 1;
2137 path->slots[level] = orig_slot -
5f39d397 2138 btrfs_header_nritems(mid);
925baedd 2139 btrfs_tree_unlock(mid);
5f39d397 2140 free_extent_buffer(mid);
e66f709b 2141 } else {
925baedd 2142 btrfs_tree_unlock(right);
5f39d397 2143 free_extent_buffer(right);
e66f709b 2144 }
e66f709b
CM
2145 return 0;
2146 }
925baedd 2147 btrfs_tree_unlock(right);
5f39d397 2148 free_extent_buffer(right);
e66f709b 2149 }
e66f709b
CM
2150 return 1;
2151}
2152
3c69faec 2153/*
d352ac68
CM
2154 * readahead one full node of leaves, finding things that are close
2155 * to the block in 'slot', and triggering ra on them.
3c69faec 2156 */
2ff7e61e 2157static void reada_for_search(struct btrfs_fs_info *fs_info,
c8c42864
CM
2158 struct btrfs_path *path,
2159 int level, int slot, u64 objectid)
3c69faec 2160{
5f39d397 2161 struct extent_buffer *node;
01f46658 2162 struct btrfs_disk_key disk_key;
3c69faec 2163 u32 nritems;
3c69faec 2164 u64 search;
a7175319 2165 u64 target;
6b80053d 2166 u64 nread = 0;
5f39d397 2167 struct extent_buffer *eb;
6b80053d
CM
2168 u32 nr;
2169 u32 blocksize;
2170 u32 nscan = 0;
db94535d 2171
a6b6e75e 2172 if (level != 1)
6702ed49
CM
2173 return;
2174
2175 if (!path->nodes[level])
3c69faec
CM
2176 return;
2177
5f39d397 2178 node = path->nodes[level];
925baedd 2179
3c69faec 2180 search = btrfs_node_blockptr(node, slot);
0b246afa
JM
2181 blocksize = fs_info->nodesize;
2182 eb = find_extent_buffer(fs_info, search);
5f39d397
CM
2183 if (eb) {
2184 free_extent_buffer(eb);
3c69faec
CM
2185 return;
2186 }
2187
a7175319 2188 target = search;
6b80053d 2189
5f39d397 2190 nritems = btrfs_header_nritems(node);
6b80053d 2191 nr = slot;
25b8b936 2192
d397712b 2193 while (1) {
e4058b54 2194 if (path->reada == READA_BACK) {
6b80053d
CM
2195 if (nr == 0)
2196 break;
2197 nr--;
e4058b54 2198 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2199 nr++;
2200 if (nr >= nritems)
2201 break;
3c69faec 2202 }
e4058b54 2203 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2204 btrfs_node_key(node, &disk_key, nr);
2205 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2206 break;
2207 }
6b80053d 2208 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2209 if ((search <= target && target - search <= 65536) ||
2210 (search > target && search - target <= 65536)) {
2ff7e61e 2211 readahead_tree_block(fs_info, search);
6b80053d
CM
2212 nread += blocksize;
2213 }
2214 nscan++;
a7175319 2215 if ((nread > 65536 || nscan > 32))
6b80053d 2216 break;
3c69faec
CM
2217 }
2218}
925baedd 2219
2ff7e61e 2220static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
0b08851f 2221 struct btrfs_path *path, int level)
b4ce94de
CM
2222{
2223 int slot;
2224 int nritems;
2225 struct extent_buffer *parent;
2226 struct extent_buffer *eb;
2227 u64 gen;
2228 u64 block1 = 0;
2229 u64 block2 = 0;
b4ce94de 2230
8c594ea8 2231 parent = path->nodes[level + 1];
b4ce94de 2232 if (!parent)
0b08851f 2233 return;
b4ce94de
CM
2234
2235 nritems = btrfs_header_nritems(parent);
8c594ea8 2236 slot = path->slots[level + 1];
b4ce94de
CM
2237
2238 if (slot > 0) {
2239 block1 = btrfs_node_blockptr(parent, slot - 1);
2240 gen = btrfs_node_ptr_generation(parent, slot - 1);
0b246afa 2241 eb = find_extent_buffer(fs_info, block1);
b9fab919
CM
2242 /*
2243 * if we get -eagain from btrfs_buffer_uptodate, we
2244 * don't want to return eagain here. That will loop
2245 * forever
2246 */
2247 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2248 block1 = 0;
2249 free_extent_buffer(eb);
2250 }
8c594ea8 2251 if (slot + 1 < nritems) {
b4ce94de
CM
2252 block2 = btrfs_node_blockptr(parent, slot + 1);
2253 gen = btrfs_node_ptr_generation(parent, slot + 1);
0b246afa 2254 eb = find_extent_buffer(fs_info, block2);
b9fab919 2255 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2256 block2 = 0;
2257 free_extent_buffer(eb);
2258 }
8c594ea8 2259
0b08851f 2260 if (block1)
2ff7e61e 2261 readahead_tree_block(fs_info, block1);
0b08851f 2262 if (block2)
2ff7e61e 2263 readahead_tree_block(fs_info, block2);
b4ce94de
CM
2264}
2265
2266
d352ac68 2267/*
d397712b
CM
2268 * when we walk down the tree, it is usually safe to unlock the higher layers
2269 * in the tree. The exceptions are when our path goes through slot 0, because
2270 * operations on the tree might require changing key pointers higher up in the
2271 * tree.
d352ac68 2272 *
d397712b
CM
2273 * callers might also have set path->keep_locks, which tells this code to keep
2274 * the lock if the path points to the last slot in the block. This is part of
2275 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2276 *
d397712b
CM
2277 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2278 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2279 */
e02119d5 2280static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2281 int lowest_unlock, int min_write_lock_level,
2282 int *write_lock_level)
925baedd
CM
2283{
2284 int i;
2285 int skip_level = level;
051e1b9f 2286 int no_skips = 0;
925baedd
CM
2287 struct extent_buffer *t;
2288
2289 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2290 if (!path->nodes[i])
2291 break;
2292 if (!path->locks[i])
2293 break;
051e1b9f 2294 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2295 skip_level = i + 1;
2296 continue;
2297 }
051e1b9f 2298 if (!no_skips && path->keep_locks) {
925baedd
CM
2299 u32 nritems;
2300 t = path->nodes[i];
2301 nritems = btrfs_header_nritems(t);
051e1b9f 2302 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2303 skip_level = i + 1;
2304 continue;
2305 }
2306 }
051e1b9f
CM
2307 if (skip_level < i && i >= lowest_unlock)
2308 no_skips = 1;
2309
925baedd 2310 t = path->nodes[i];
d80bb3f9 2311 if (i >= lowest_unlock && i > skip_level) {
bd681513 2312 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2313 path->locks[i] = 0;
f7c79f30
CM
2314 if (write_lock_level &&
2315 i > min_write_lock_level &&
2316 i <= *write_lock_level) {
2317 *write_lock_level = i - 1;
2318 }
925baedd
CM
2319 }
2320 }
2321}
2322
b4ce94de
CM
2323/*
2324 * This releases any locks held in the path starting at level and
2325 * going all the way up to the root.
2326 *
2327 * btrfs_search_slot will keep the lock held on higher nodes in a few
2328 * corner cases, such as COW of the block at slot zero in the node. This
2329 * ignores those rules, and it should only be called when there are no
2330 * more updates to be done higher up in the tree.
2331 */
2332noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2333{
2334 int i;
2335
09a2a8f9 2336 if (path->keep_locks)
b4ce94de
CM
2337 return;
2338
2339 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2340 if (!path->nodes[i])
12f4dacc 2341 continue;
b4ce94de 2342 if (!path->locks[i])
12f4dacc 2343 continue;
bd681513 2344 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2345 path->locks[i] = 0;
2346 }
2347}
2348
c8c42864
CM
2349/*
2350 * helper function for btrfs_search_slot. The goal is to find a block
2351 * in cache without setting the path to blocking. If we find the block
2352 * we return zero and the path is unchanged.
2353 *
2354 * If we can't find the block, we set the path blocking and do some
2355 * reada. -EAGAIN is returned and the search must be repeated.
2356 */
2357static int
d07b8528
LB
2358read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2359 struct extent_buffer **eb_ret, int level, int slot,
cda79c54 2360 const struct btrfs_key *key)
c8c42864 2361{
0b246afa 2362 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864
CM
2363 u64 blocknr;
2364 u64 gen;
c8c42864
CM
2365 struct extent_buffer *b = *eb_ret;
2366 struct extent_buffer *tmp;
581c1760 2367 struct btrfs_key first_key;
76a05b35 2368 int ret;
581c1760 2369 int parent_level;
c8c42864
CM
2370
2371 blocknr = btrfs_node_blockptr(b, slot);
2372 gen = btrfs_node_ptr_generation(b, slot);
581c1760
QW
2373 parent_level = btrfs_header_level(b);
2374 btrfs_node_key_to_cpu(b, &first_key, slot);
c8c42864 2375
0b246afa 2376 tmp = find_extent_buffer(fs_info, blocknr);
cb44921a 2377 if (tmp) {
b9fab919 2378 /* first we do an atomic uptodate check */
bdf7c00e
JB
2379 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2380 *eb_ret = tmp;
2381 return 0;
2382 }
2383
2384 /* the pages were up to date, but we failed
2385 * the generation number check. Do a full
2386 * read for the generation number that is correct.
2387 * We must do this without dropping locks so
2388 * we can trust our generation number
2389 */
2390 btrfs_set_path_blocking(p);
2391
2392 /* now we're allowed to do a blocking uptodate check */
581c1760 2393 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
bdf7c00e
JB
2394 if (!ret) {
2395 *eb_ret = tmp;
2396 return 0;
cb44921a 2397 }
bdf7c00e
JB
2398 free_extent_buffer(tmp);
2399 btrfs_release_path(p);
2400 return -EIO;
c8c42864
CM
2401 }
2402
2403 /*
2404 * reduce lock contention at high levels
2405 * of the btree by dropping locks before
76a05b35
CM
2406 * we read. Don't release the lock on the current
2407 * level because we need to walk this node to figure
2408 * out which blocks to read.
c8c42864 2409 */
8c594ea8
CM
2410 btrfs_unlock_up_safe(p, level + 1);
2411 btrfs_set_path_blocking(p);
2412
e4058b54 2413 if (p->reada != READA_NONE)
2ff7e61e 2414 reada_for_search(fs_info, p, level, slot, key->objectid);
c8c42864 2415
76a05b35 2416 ret = -EAGAIN;
02a3307a 2417 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
581c1760 2418 &first_key);
64c043de 2419 if (!IS_ERR(tmp)) {
76a05b35
CM
2420 /*
2421 * If the read above didn't mark this buffer up to date,
2422 * it will never end up being up to date. Set ret to EIO now
2423 * and give up so that our caller doesn't loop forever
2424 * on our EAGAINs.
2425 */
e6a1d6fd 2426 if (!extent_buffer_uptodate(tmp))
76a05b35 2427 ret = -EIO;
c8c42864 2428 free_extent_buffer(tmp);
c871b0f2
LB
2429 } else {
2430 ret = PTR_ERR(tmp);
76a05b35 2431 }
02a3307a
LB
2432
2433 btrfs_release_path(p);
76a05b35 2434 return ret;
c8c42864
CM
2435}
2436
2437/*
2438 * helper function for btrfs_search_slot. This does all of the checks
2439 * for node-level blocks and does any balancing required based on
2440 * the ins_len.
2441 *
2442 * If no extra work was required, zero is returned. If we had to
2443 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2444 * start over
2445 */
2446static int
2447setup_nodes_for_search(struct btrfs_trans_handle *trans,
2448 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2449 struct extent_buffer *b, int level, int ins_len,
2450 int *write_lock_level)
c8c42864 2451{
0b246afa 2452 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864 2453 int ret;
0b246afa 2454
c8c42864 2455 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
0b246afa 2456 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
c8c42864
CM
2457 int sret;
2458
bd681513
CM
2459 if (*write_lock_level < level + 1) {
2460 *write_lock_level = level + 1;
2461 btrfs_release_path(p);
2462 goto again;
2463 }
2464
c8c42864 2465 btrfs_set_path_blocking(p);
2ff7e61e 2466 reada_for_balance(fs_info, p, level);
c8c42864 2467 sret = split_node(trans, root, p, level);
c8c42864
CM
2468
2469 BUG_ON(sret > 0);
2470 if (sret) {
2471 ret = sret;
2472 goto done;
2473 }
2474 b = p->nodes[level];
2475 } else if (ins_len < 0 && btrfs_header_nritems(b) <
0b246afa 2476 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
c8c42864
CM
2477 int sret;
2478
bd681513
CM
2479 if (*write_lock_level < level + 1) {
2480 *write_lock_level = level + 1;
2481 btrfs_release_path(p);
2482 goto again;
2483 }
2484
c8c42864 2485 btrfs_set_path_blocking(p);
2ff7e61e 2486 reada_for_balance(fs_info, p, level);
c8c42864 2487 sret = balance_level(trans, root, p, level);
c8c42864
CM
2488
2489 if (sret) {
2490 ret = sret;
2491 goto done;
2492 }
2493 b = p->nodes[level];
2494 if (!b) {
b3b4aa74 2495 btrfs_release_path(p);
c8c42864
CM
2496 goto again;
2497 }
2498 BUG_ON(btrfs_header_nritems(b) == 1);
2499 }
2500 return 0;
2501
2502again:
2503 ret = -EAGAIN;
2504done:
2505 return ret;
2506}
2507
d7396f07 2508static void key_search_validate(struct extent_buffer *b,
310712b2 2509 const struct btrfs_key *key,
d7396f07
FDBM
2510 int level)
2511{
2512#ifdef CONFIG_BTRFS_ASSERT
2513 struct btrfs_disk_key disk_key;
2514
2515 btrfs_cpu_key_to_disk(&disk_key, key);
2516
2517 if (level == 0)
2518 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2519 offsetof(struct btrfs_leaf, items[0].key),
2520 sizeof(disk_key)));
2521 else
2522 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2523 offsetof(struct btrfs_node, ptrs[0].key),
2524 sizeof(disk_key)));
2525#endif
2526}
2527
310712b2 2528static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
d7396f07
FDBM
2529 int level, int *prev_cmp, int *slot)
2530{
2531 if (*prev_cmp != 0) {
a74b35ec 2532 *prev_cmp = btrfs_bin_search(b, key, level, slot);
d7396f07
FDBM
2533 return *prev_cmp;
2534 }
2535
2536 key_search_validate(b, key, level);
2537 *slot = 0;
2538
2539 return 0;
2540}
2541
381cf658 2542int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2543 u64 iobjectid, u64 ioff, u8 key_type,
2544 struct btrfs_key *found_key)
2545{
2546 int ret;
2547 struct btrfs_key key;
2548 struct extent_buffer *eb;
381cf658
DS
2549
2550 ASSERT(path);
1d4c08e0 2551 ASSERT(found_key);
e33d5c3d
KN
2552
2553 key.type = key_type;
2554 key.objectid = iobjectid;
2555 key.offset = ioff;
2556
2557 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2558 if (ret < 0)
e33d5c3d
KN
2559 return ret;
2560
2561 eb = path->nodes[0];
2562 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2563 ret = btrfs_next_leaf(fs_root, path);
2564 if (ret)
2565 return ret;
2566 eb = path->nodes[0];
2567 }
2568
2569 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2570 if (found_key->type != key.type ||
2571 found_key->objectid != key.objectid)
2572 return 1;
2573
2574 return 0;
2575}
2576
1fc28d8e
LB
2577static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2578 struct btrfs_path *p,
2579 int write_lock_level)
2580{
2581 struct btrfs_fs_info *fs_info = root->fs_info;
2582 struct extent_buffer *b;
2583 int root_lock;
2584 int level = 0;
2585
2586 /* We try very hard to do read locks on the root */
2587 root_lock = BTRFS_READ_LOCK;
2588
2589 if (p->search_commit_root) {
2590 /* The commit roots are read only so we always do read locks */
2591 if (p->need_commit_sem)
2592 down_read(&fs_info->commit_root_sem);
2593 b = root->commit_root;
2594 extent_buffer_get(b);
2595 level = btrfs_header_level(b);
2596 if (p->need_commit_sem)
2597 up_read(&fs_info->commit_root_sem);
f9ddfd05
LB
2598 /*
2599 * Ensure that all callers have set skip_locking when
2600 * p->search_commit_root = 1.
2601 */
2602 ASSERT(p->skip_locking == 1);
1fc28d8e
LB
2603
2604 goto out;
2605 }
2606
2607 if (p->skip_locking) {
2608 b = btrfs_root_node(root);
2609 level = btrfs_header_level(b);
2610 goto out;
2611 }
2612
2613 /*
662c653b
LB
2614 * If the level is set to maximum, we can skip trying to get the read
2615 * lock.
1fc28d8e 2616 */
662c653b
LB
2617 if (write_lock_level < BTRFS_MAX_LEVEL) {
2618 /*
2619 * We don't know the level of the root node until we actually
2620 * have it read locked
2621 */
2622 b = btrfs_read_lock_root_node(root);
2623 level = btrfs_header_level(b);
2624 if (level > write_lock_level)
2625 goto out;
2626
2627 /* Whoops, must trade for write lock */
2628 btrfs_tree_read_unlock(b);
2629 free_extent_buffer(b);
2630 }
1fc28d8e 2631
1fc28d8e
LB
2632 b = btrfs_lock_root_node(root);
2633 root_lock = BTRFS_WRITE_LOCK;
2634
2635 /* The level might have changed, check again */
2636 level = btrfs_header_level(b);
2637
2638out:
2639 p->nodes[level] = b;
2640 if (!p->skip_locking)
2641 p->locks[level] = root_lock;
2642 /*
2643 * Callers are responsible for dropping b's references.
2644 */
2645 return b;
2646}
2647
2648
74123bd7 2649/*
4271ecea
NB
2650 * btrfs_search_slot - look for a key in a tree and perform necessary
2651 * modifications to preserve tree invariants.
74123bd7 2652 *
4271ecea
NB
2653 * @trans: Handle of transaction, used when modifying the tree
2654 * @p: Holds all btree nodes along the search path
2655 * @root: The root node of the tree
2656 * @key: The key we are looking for
2657 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2658 * deletions it's -1. 0 for plain searches
2659 * @cow: boolean should CoW operations be performed. Must always be 1
2660 * when modifying the tree.
97571fd0 2661 *
4271ecea
NB
2662 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2663 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2664 *
2665 * If @key is found, 0 is returned and you can find the item in the leaf level
2666 * of the path (level 0)
2667 *
2668 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2669 * points to the slot where it should be inserted
2670 *
2671 * If an error is encountered while searching the tree a negative error number
2672 * is returned
74123bd7 2673 */
310712b2
OS
2674int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2675 const struct btrfs_key *key, struct btrfs_path *p,
2676 int ins_len, int cow)
be0e5c09 2677{
0b246afa 2678 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 2679 struct extent_buffer *b;
be0e5c09
CM
2680 int slot;
2681 int ret;
33c66f43 2682 int err;
be0e5c09 2683 int level;
925baedd 2684 int lowest_unlock = 1;
bd681513
CM
2685 /* everything at write_lock_level or lower must be write locked */
2686 int write_lock_level = 0;
9f3a7427 2687 u8 lowest_level = 0;
f7c79f30 2688 int min_write_lock_level;
d7396f07 2689 int prev_cmp;
9f3a7427 2690
6702ed49 2691 lowest_level = p->lowest_level;
323ac95b 2692 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2693 WARN_ON(p->nodes[0] != NULL);
eb653de1 2694 BUG_ON(!cow && ins_len);
25179201 2695
bd681513 2696 if (ins_len < 0) {
925baedd 2697 lowest_unlock = 2;
65b51a00 2698
bd681513
CM
2699 /* when we are removing items, we might have to go up to level
2700 * two as we update tree pointers Make sure we keep write
2701 * for those levels as well
2702 */
2703 write_lock_level = 2;
2704 } else if (ins_len > 0) {
2705 /*
2706 * for inserting items, make sure we have a write lock on
2707 * level 1 so we can update keys
2708 */
2709 write_lock_level = 1;
2710 }
2711
2712 if (!cow)
2713 write_lock_level = -1;
2714
09a2a8f9 2715 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2716 write_lock_level = BTRFS_MAX_LEVEL;
2717
f7c79f30
CM
2718 min_write_lock_level = write_lock_level;
2719
bb803951 2720again:
d7396f07 2721 prev_cmp = -1;
1fc28d8e 2722 b = btrfs_search_slot_get_root(root, p, write_lock_level);
925baedd 2723
eb60ceac 2724 while (b) {
5f39d397 2725 level = btrfs_header_level(b);
65b51a00
CM
2726
2727 /*
2728 * setup the path here so we can release it under lock
2729 * contention with the cow code
2730 */
02217ed2 2731 if (cow) {
9ea2c7c9
NB
2732 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2733
c8c42864
CM
2734 /*
2735 * if we don't really need to cow this block
2736 * then we don't want to set the path blocking,
2737 * so we test it here
2738 */
64c12921
JM
2739 if (!should_cow_block(trans, root, b)) {
2740 trans->dirty = true;
65b51a00 2741 goto cow_done;
64c12921 2742 }
5d4f98a2 2743
bd681513
CM
2744 /*
2745 * must have write locks on this node and the
2746 * parent
2747 */
5124e00e
JB
2748 if (level > write_lock_level ||
2749 (level + 1 > write_lock_level &&
2750 level + 1 < BTRFS_MAX_LEVEL &&
2751 p->nodes[level + 1])) {
bd681513
CM
2752 write_lock_level = level + 1;
2753 btrfs_release_path(p);
2754 goto again;
2755 }
2756
160f4089 2757 btrfs_set_path_blocking(p);
9ea2c7c9
NB
2758 if (last_level)
2759 err = btrfs_cow_block(trans, root, b, NULL, 0,
2760 &b);
2761 else
2762 err = btrfs_cow_block(trans, root, b,
2763 p->nodes[level + 1],
2764 p->slots[level + 1], &b);
33c66f43 2765 if (err) {
33c66f43 2766 ret = err;
65b51a00 2767 goto done;
54aa1f4d 2768 }
02217ed2 2769 }
65b51a00 2770cow_done:
eb60ceac 2771 p->nodes[level] = b;
52398340
LB
2772 /*
2773 * Leave path with blocking locks to avoid massive
2774 * lock context switch, this is made on purpose.
2775 */
b4ce94de
CM
2776
2777 /*
2778 * we have a lock on b and as long as we aren't changing
2779 * the tree, there is no way to for the items in b to change.
2780 * It is safe to drop the lock on our parent before we
2781 * go through the expensive btree search on b.
2782 *
eb653de1
FDBM
2783 * If we're inserting or deleting (ins_len != 0), then we might
2784 * be changing slot zero, which may require changing the parent.
2785 * So, we can't drop the lock until after we know which slot
2786 * we're operating on.
b4ce94de 2787 */
eb653de1
FDBM
2788 if (!ins_len && !p->keep_locks) {
2789 int u = level + 1;
2790
2791 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2792 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2793 p->locks[u] = 0;
2794 }
2795 }
b4ce94de 2796
d7396f07 2797 ret = key_search(b, key, level, &prev_cmp, &slot);
415b35a5
LB
2798 if (ret < 0)
2799 goto done;
b4ce94de 2800
5f39d397 2801 if (level != 0) {
33c66f43
YZ
2802 int dec = 0;
2803 if (ret && slot > 0) {
2804 dec = 1;
be0e5c09 2805 slot -= 1;
33c66f43 2806 }
be0e5c09 2807 p->slots[level] = slot;
33c66f43 2808 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2809 ins_len, &write_lock_level);
33c66f43 2810 if (err == -EAGAIN)
c8c42864 2811 goto again;
33c66f43
YZ
2812 if (err) {
2813 ret = err;
c8c42864 2814 goto done;
33c66f43 2815 }
c8c42864
CM
2816 b = p->nodes[level];
2817 slot = p->slots[level];
b4ce94de 2818
bd681513
CM
2819 /*
2820 * slot 0 is special, if we change the key
2821 * we have to update the parent pointer
2822 * which means we must have a write lock
2823 * on the parent
2824 */
eb653de1 2825 if (slot == 0 && ins_len &&
bd681513
CM
2826 write_lock_level < level + 1) {
2827 write_lock_level = level + 1;
2828 btrfs_release_path(p);
2829 goto again;
2830 }
2831
f7c79f30
CM
2832 unlock_up(p, level, lowest_unlock,
2833 min_write_lock_level, &write_lock_level);
f9efa9c7 2834
925baedd 2835 if (level == lowest_level) {
33c66f43
YZ
2836 if (dec)
2837 p->slots[level]++;
5b21f2ed 2838 goto done;
925baedd 2839 }
ca7a79ad 2840
d07b8528 2841 err = read_block_for_search(root, p, &b, level,
cda79c54 2842 slot, key);
33c66f43 2843 if (err == -EAGAIN)
c8c42864 2844 goto again;
33c66f43
YZ
2845 if (err) {
2846 ret = err;
76a05b35 2847 goto done;
33c66f43 2848 }
76a05b35 2849
b4ce94de 2850 if (!p->skip_locking) {
bd681513
CM
2851 level = btrfs_header_level(b);
2852 if (level <= write_lock_level) {
2853 err = btrfs_try_tree_write_lock(b);
2854 if (!err) {
2855 btrfs_set_path_blocking(p);
2856 btrfs_tree_lock(b);
bd681513
CM
2857 }
2858 p->locks[level] = BTRFS_WRITE_LOCK;
2859 } else {
f82c458a 2860 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2861 if (!err) {
2862 btrfs_set_path_blocking(p);
2863 btrfs_tree_read_lock(b);
bd681513
CM
2864 }
2865 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2866 }
bd681513 2867 p->nodes[level] = b;
b4ce94de 2868 }
be0e5c09
CM
2869 } else {
2870 p->slots[level] = slot;
87b29b20 2871 if (ins_len > 0 &&
2ff7e61e 2872 btrfs_leaf_free_space(fs_info, b) < ins_len) {
bd681513
CM
2873 if (write_lock_level < 1) {
2874 write_lock_level = 1;
2875 btrfs_release_path(p);
2876 goto again;
2877 }
2878
b4ce94de 2879 btrfs_set_path_blocking(p);
33c66f43
YZ
2880 err = split_leaf(trans, root, key,
2881 p, ins_len, ret == 0);
b4ce94de 2882
33c66f43
YZ
2883 BUG_ON(err > 0);
2884 if (err) {
2885 ret = err;
65b51a00
CM
2886 goto done;
2887 }
5c680ed6 2888 }
459931ec 2889 if (!p->search_for_split)
f7c79f30 2890 unlock_up(p, level, lowest_unlock,
4b6f8e96 2891 min_write_lock_level, NULL);
65b51a00 2892 goto done;
be0e5c09
CM
2893 }
2894 }
65b51a00
CM
2895 ret = 1;
2896done:
b4ce94de
CM
2897 /*
2898 * we don't really know what they plan on doing with the path
2899 * from here on, so for now just mark it as blocking
2900 */
b9473439
CM
2901 if (!p->leave_spinning)
2902 btrfs_set_path_blocking(p);
5f5bc6b1 2903 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2904 btrfs_release_path(p);
65b51a00 2905 return ret;
be0e5c09
CM
2906}
2907
5d9e75c4
JS
2908/*
2909 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2910 * current state of the tree together with the operations recorded in the tree
2911 * modification log to search for the key in a previous version of this tree, as
2912 * denoted by the time_seq parameter.
2913 *
2914 * Naturally, there is no support for insert, delete or cow operations.
2915 *
2916 * The resulting path and return value will be set up as if we called
2917 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2918 */
310712b2 2919int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
5d9e75c4
JS
2920 struct btrfs_path *p, u64 time_seq)
2921{
0b246afa 2922 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4
JS
2923 struct extent_buffer *b;
2924 int slot;
2925 int ret;
2926 int err;
2927 int level;
2928 int lowest_unlock = 1;
2929 u8 lowest_level = 0;
d4b4087c 2930 int prev_cmp = -1;
5d9e75c4
JS
2931
2932 lowest_level = p->lowest_level;
2933 WARN_ON(p->nodes[0] != NULL);
2934
2935 if (p->search_commit_root) {
2936 BUG_ON(time_seq);
2937 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2938 }
2939
2940again:
5d9e75c4 2941 b = get_old_root(root, time_seq);
315bed43
NB
2942 if (!b) {
2943 ret = -EIO;
2944 goto done;
2945 }
5d9e75c4 2946 level = btrfs_header_level(b);
5d9e75c4
JS
2947 p->locks[level] = BTRFS_READ_LOCK;
2948
2949 while (b) {
2950 level = btrfs_header_level(b);
2951 p->nodes[level] = b;
5d9e75c4
JS
2952
2953 /*
2954 * we have a lock on b and as long as we aren't changing
2955 * the tree, there is no way to for the items in b to change.
2956 * It is safe to drop the lock on our parent before we
2957 * go through the expensive btree search on b.
2958 */
2959 btrfs_unlock_up_safe(p, level + 1);
2960
d4b4087c 2961 /*
01327610 2962 * Since we can unwind ebs we want to do a real search every
d4b4087c
JB
2963 * time.
2964 */
2965 prev_cmp = -1;
d7396f07 2966 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
2967
2968 if (level != 0) {
2969 int dec = 0;
2970 if (ret && slot > 0) {
2971 dec = 1;
2972 slot -= 1;
2973 }
2974 p->slots[level] = slot;
2975 unlock_up(p, level, lowest_unlock, 0, NULL);
2976
2977 if (level == lowest_level) {
2978 if (dec)
2979 p->slots[level]++;
2980 goto done;
2981 }
2982
d07b8528 2983 err = read_block_for_search(root, p, &b, level,
cda79c54 2984 slot, key);
5d9e75c4
JS
2985 if (err == -EAGAIN)
2986 goto again;
2987 if (err) {
2988 ret = err;
2989 goto done;
2990 }
2991
2992 level = btrfs_header_level(b);
f82c458a 2993 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
2994 if (!err) {
2995 btrfs_set_path_blocking(p);
2996 btrfs_tree_read_lock(b);
5d9e75c4 2997 }
0b246afa 2998 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
db7f3436
JB
2999 if (!b) {
3000 ret = -ENOMEM;
3001 goto done;
3002 }
5d9e75c4
JS
3003 p->locks[level] = BTRFS_READ_LOCK;
3004 p->nodes[level] = b;
5d9e75c4
JS
3005 } else {
3006 p->slots[level] = slot;
3007 unlock_up(p, level, lowest_unlock, 0, NULL);
3008 goto done;
3009 }
3010 }
3011 ret = 1;
3012done:
3013 if (!p->leave_spinning)
3014 btrfs_set_path_blocking(p);
3015 if (ret < 0)
3016 btrfs_release_path(p);
3017
3018 return ret;
3019}
3020
2f38b3e1
AJ
3021/*
3022 * helper to use instead of search slot if no exact match is needed but
3023 * instead the next or previous item should be returned.
3024 * When find_higher is true, the next higher item is returned, the next lower
3025 * otherwise.
3026 * When return_any and find_higher are both true, and no higher item is found,
3027 * return the next lower instead.
3028 * When return_any is true and find_higher is false, and no lower item is found,
3029 * return the next higher instead.
3030 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3031 * < 0 on error
3032 */
3033int btrfs_search_slot_for_read(struct btrfs_root *root,
310712b2
OS
3034 const struct btrfs_key *key,
3035 struct btrfs_path *p, int find_higher,
3036 int return_any)
2f38b3e1
AJ
3037{
3038 int ret;
3039 struct extent_buffer *leaf;
3040
3041again:
3042 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3043 if (ret <= 0)
3044 return ret;
3045 /*
3046 * a return value of 1 means the path is at the position where the
3047 * item should be inserted. Normally this is the next bigger item,
3048 * but in case the previous item is the last in a leaf, path points
3049 * to the first free slot in the previous leaf, i.e. at an invalid
3050 * item.
3051 */
3052 leaf = p->nodes[0];
3053
3054 if (find_higher) {
3055 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3056 ret = btrfs_next_leaf(root, p);
3057 if (ret <= 0)
3058 return ret;
3059 if (!return_any)
3060 return 1;
3061 /*
3062 * no higher item found, return the next
3063 * lower instead
3064 */
3065 return_any = 0;
3066 find_higher = 0;
3067 btrfs_release_path(p);
3068 goto again;
3069 }
3070 } else {
e6793769
AJ
3071 if (p->slots[0] == 0) {
3072 ret = btrfs_prev_leaf(root, p);
3073 if (ret < 0)
3074 return ret;
3075 if (!ret) {
23c6bf6a
FDBM
3076 leaf = p->nodes[0];
3077 if (p->slots[0] == btrfs_header_nritems(leaf))
3078 p->slots[0]--;
e6793769 3079 return 0;
2f38b3e1 3080 }
e6793769
AJ
3081 if (!return_any)
3082 return 1;
3083 /*
3084 * no lower item found, return the next
3085 * higher instead
3086 */
3087 return_any = 0;
3088 find_higher = 1;
3089 btrfs_release_path(p);
3090 goto again;
3091 } else {
2f38b3e1
AJ
3092 --p->slots[0];
3093 }
3094 }
3095 return 0;
3096}
3097
74123bd7
CM
3098/*
3099 * adjust the pointers going up the tree, starting at level
3100 * making sure the right key of each node is points to 'key'.
3101 * This is used after shifting pointers to the left, so it stops
3102 * fixing up pointers when a given leaf/node is not in slot 0 of the
3103 * higher levels
aa5d6bed 3104 *
74123bd7 3105 */
b167fa91 3106static void fixup_low_keys(struct btrfs_path *path,
143bede5 3107 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3108{
3109 int i;
5f39d397 3110 struct extent_buffer *t;
0e82bcfe 3111 int ret;
5f39d397 3112
234b63a0 3113 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3114 int tslot = path->slots[i];
0e82bcfe 3115
eb60ceac 3116 if (!path->nodes[i])
be0e5c09 3117 break;
5f39d397 3118 t = path->nodes[i];
0e82bcfe
DS
3119 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3120 GFP_ATOMIC);
3121 BUG_ON(ret < 0);
5f39d397 3122 btrfs_set_node_key(t, key, tslot);
d6025579 3123 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3124 if (tslot != 0)
3125 break;
3126 }
3127}
3128
31840ae1
ZY
3129/*
3130 * update item key.
3131 *
3132 * This function isn't completely safe. It's the caller's responsibility
3133 * that the new key won't break the order
3134 */
b7a0365e
DD
3135void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3136 struct btrfs_path *path,
310712b2 3137 const struct btrfs_key *new_key)
31840ae1
ZY
3138{
3139 struct btrfs_disk_key disk_key;
3140 struct extent_buffer *eb;
3141 int slot;
3142
3143 eb = path->nodes[0];
3144 slot = path->slots[0];
3145 if (slot > 0) {
3146 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3147 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3148 }
3149 if (slot < btrfs_header_nritems(eb) - 1) {
3150 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3151 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3152 }
3153
3154 btrfs_cpu_key_to_disk(&disk_key, new_key);
3155 btrfs_set_item_key(eb, &disk_key, slot);
3156 btrfs_mark_buffer_dirty(eb);
3157 if (slot == 0)
b167fa91 3158 fixup_low_keys(path, &disk_key, 1);
31840ae1
ZY
3159}
3160
74123bd7
CM
3161/*
3162 * try to push data from one node into the next node left in the
79f95c82 3163 * tree.
aa5d6bed
CM
3164 *
3165 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3166 * error, and > 0 if there was no room in the left hand block.
74123bd7 3167 */
98ed5174 3168static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
3169 struct btrfs_fs_info *fs_info,
3170 struct extent_buffer *dst,
971a1f66 3171 struct extent_buffer *src, int empty)
be0e5c09 3172{
be0e5c09 3173 int push_items = 0;
bb803951
CM
3174 int src_nritems;
3175 int dst_nritems;
aa5d6bed 3176 int ret = 0;
be0e5c09 3177
5f39d397
CM
3178 src_nritems = btrfs_header_nritems(src);
3179 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3180 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
7bb86316
CM
3181 WARN_ON(btrfs_header_generation(src) != trans->transid);
3182 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3183
bce4eae9 3184 if (!empty && src_nritems <= 8)
971a1f66
CM
3185 return 1;
3186
d397712b 3187 if (push_items <= 0)
be0e5c09
CM
3188 return 1;
3189
bce4eae9 3190 if (empty) {
971a1f66 3191 push_items = min(src_nritems, push_items);
bce4eae9
CM
3192 if (push_items < src_nritems) {
3193 /* leave at least 8 pointers in the node if
3194 * we aren't going to empty it
3195 */
3196 if (src_nritems - push_items < 8) {
3197 if (push_items <= 8)
3198 return 1;
3199 push_items -= 8;
3200 }
3201 }
3202 } else
3203 push_items = min(src_nritems - 8, push_items);
79f95c82 3204
0b246afa 3205 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
5de865ee
FDBM
3206 push_items);
3207 if (ret) {
66642832 3208 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3209 return ret;
3210 }
5f39d397
CM
3211 copy_extent_buffer(dst, src,
3212 btrfs_node_key_ptr_offset(dst_nritems),
3213 btrfs_node_key_ptr_offset(0),
d397712b 3214 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3215
bb803951 3216 if (push_items < src_nritems) {
57911b8b 3217 /*
bf1d3425
DS
3218 * Don't call tree_mod_log_insert_move here, key removal was
3219 * already fully logged by tree_mod_log_eb_copy above.
57911b8b 3220 */
5f39d397
CM
3221 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3222 btrfs_node_key_ptr_offset(push_items),
3223 (src_nritems - push_items) *
3224 sizeof(struct btrfs_key_ptr));
3225 }
3226 btrfs_set_header_nritems(src, src_nritems - push_items);
3227 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3228 btrfs_mark_buffer_dirty(src);
3229 btrfs_mark_buffer_dirty(dst);
31840ae1 3230
79f95c82
CM
3231 return ret;
3232}
3233
3234/*
3235 * try to push data from one node into the next node right in the
3236 * tree.
3237 *
3238 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3239 * error, and > 0 if there was no room in the right hand block.
3240 *
3241 * this will only push up to 1/2 the contents of the left node over
3242 */
5f39d397 3243static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 3244 struct btrfs_fs_info *fs_info,
5f39d397
CM
3245 struct extent_buffer *dst,
3246 struct extent_buffer *src)
79f95c82 3247{
79f95c82
CM
3248 int push_items = 0;
3249 int max_push;
3250 int src_nritems;
3251 int dst_nritems;
3252 int ret = 0;
79f95c82 3253
7bb86316
CM
3254 WARN_ON(btrfs_header_generation(src) != trans->transid);
3255 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3256
5f39d397
CM
3257 src_nritems = btrfs_header_nritems(src);
3258 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3259 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
d397712b 3260 if (push_items <= 0)
79f95c82 3261 return 1;
bce4eae9 3262
d397712b 3263 if (src_nritems < 4)
bce4eae9 3264 return 1;
79f95c82
CM
3265
3266 max_push = src_nritems / 2 + 1;
3267 /* don't try to empty the node */
d397712b 3268 if (max_push >= src_nritems)
79f95c82 3269 return 1;
252c38f0 3270
79f95c82
CM
3271 if (max_push < push_items)
3272 push_items = max_push;
3273
bf1d3425
DS
3274 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3275 BUG_ON(ret < 0);
5f39d397
CM
3276 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3277 btrfs_node_key_ptr_offset(0),
3278 (dst_nritems) *
3279 sizeof(struct btrfs_key_ptr));
d6025579 3280
0b246afa 3281 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
5de865ee
FDBM
3282 src_nritems - push_items, push_items);
3283 if (ret) {
66642832 3284 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3285 return ret;
3286 }
5f39d397
CM
3287 copy_extent_buffer(dst, src,
3288 btrfs_node_key_ptr_offset(0),
3289 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3290 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3291
5f39d397
CM
3292 btrfs_set_header_nritems(src, src_nritems - push_items);
3293 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3294
5f39d397
CM
3295 btrfs_mark_buffer_dirty(src);
3296 btrfs_mark_buffer_dirty(dst);
31840ae1 3297
aa5d6bed 3298 return ret;
be0e5c09
CM
3299}
3300
97571fd0
CM
3301/*
3302 * helper function to insert a new root level in the tree.
3303 * A new node is allocated, and a single item is inserted to
3304 * point to the existing root
aa5d6bed
CM
3305 *
3306 * returns zero on success or < 0 on failure.
97571fd0 3307 */
d397712b 3308static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3309 struct btrfs_root *root,
fdd99c72 3310 struct btrfs_path *path, int level)
5c680ed6 3311{
0b246afa 3312 struct btrfs_fs_info *fs_info = root->fs_info;
7bb86316 3313 u64 lower_gen;
5f39d397
CM
3314 struct extent_buffer *lower;
3315 struct extent_buffer *c;
925baedd 3316 struct extent_buffer *old;
5f39d397 3317 struct btrfs_disk_key lower_key;
d9d19a01 3318 int ret;
5c680ed6
CM
3319
3320 BUG_ON(path->nodes[level]);
3321 BUG_ON(path->nodes[level-1] != root->node);
3322
7bb86316
CM
3323 lower = path->nodes[level-1];
3324 if (level == 1)
3325 btrfs_item_key(lower, &lower_key, 0);
3326 else
3327 btrfs_node_key(lower, &lower_key, 0);
3328
4d75f8a9
DS
3329 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3330 &lower_key, level, root->node->start, 0);
5f39d397
CM
3331 if (IS_ERR(c))
3332 return PTR_ERR(c);
925baedd 3333
0b246afa 3334 root_add_used(root, fs_info->nodesize);
f0486c68 3335
5f39d397 3336 btrfs_set_header_nritems(c, 1);
5f39d397 3337 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3338 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3339 lower_gen = btrfs_header_generation(lower);
31840ae1 3340 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3341
3342 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3343
5f39d397 3344 btrfs_mark_buffer_dirty(c);
d5719762 3345
925baedd 3346 old = root->node;
d9d19a01
DS
3347 ret = tree_mod_log_insert_root(root->node, c, 0);
3348 BUG_ON(ret < 0);
240f62c8 3349 rcu_assign_pointer(root->node, c);
925baedd
CM
3350
3351 /* the super has an extra ref to root->node */
3352 free_extent_buffer(old);
3353
0b86a832 3354 add_root_to_dirty_list(root);
5f39d397
CM
3355 extent_buffer_get(c);
3356 path->nodes[level] = c;
95449a16 3357 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3358 path->slots[level] = 0;
3359 return 0;
3360}
3361
74123bd7
CM
3362/*
3363 * worker function to insert a single pointer in a node.
3364 * the node should have enough room for the pointer already
97571fd0 3365 *
74123bd7
CM
3366 * slot and level indicate where you want the key to go, and
3367 * blocknr is the block the key points to.
3368 */
143bede5 3369static void insert_ptr(struct btrfs_trans_handle *trans,
2ff7e61e 3370 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 3371 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3372 int slot, int level)
74123bd7 3373{
5f39d397 3374 struct extent_buffer *lower;
74123bd7 3375 int nritems;
f3ea38da 3376 int ret;
5c680ed6
CM
3377
3378 BUG_ON(!path->nodes[level]);
f0486c68 3379 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3380 lower = path->nodes[level];
3381 nritems = btrfs_header_nritems(lower);
c293498b 3382 BUG_ON(slot > nritems);
0b246afa 3383 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
74123bd7 3384 if (slot != nritems) {
bf1d3425
DS
3385 if (level) {
3386 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
a446a979 3387 nritems - slot);
bf1d3425
DS
3388 BUG_ON(ret < 0);
3389 }
5f39d397
CM
3390 memmove_extent_buffer(lower,
3391 btrfs_node_key_ptr_offset(slot + 1),
3392 btrfs_node_key_ptr_offset(slot),
d6025579 3393 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3394 }
c3e06965 3395 if (level) {
e09c2efe
DS
3396 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3397 GFP_NOFS);
f3ea38da
JS
3398 BUG_ON(ret < 0);
3399 }
5f39d397 3400 btrfs_set_node_key(lower, key, slot);
db94535d 3401 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3402 WARN_ON(trans->transid == 0);
3403 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3404 btrfs_set_header_nritems(lower, nritems + 1);
3405 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3406}
3407
97571fd0
CM
3408/*
3409 * split the node at the specified level in path in two.
3410 * The path is corrected to point to the appropriate node after the split
3411 *
3412 * Before splitting this tries to make some room in the node by pushing
3413 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3414 *
3415 * returns 0 on success and < 0 on failure
97571fd0 3416 */
e02119d5
CM
3417static noinline int split_node(struct btrfs_trans_handle *trans,
3418 struct btrfs_root *root,
3419 struct btrfs_path *path, int level)
be0e5c09 3420{
0b246afa 3421 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
3422 struct extent_buffer *c;
3423 struct extent_buffer *split;
3424 struct btrfs_disk_key disk_key;
be0e5c09 3425 int mid;
5c680ed6 3426 int ret;
7518a238 3427 u32 c_nritems;
eb60ceac 3428
5f39d397 3429 c = path->nodes[level];
7bb86316 3430 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3431 if (c == root->node) {
d9abbf1c 3432 /*
90f8d62e
JS
3433 * trying to split the root, lets make a new one
3434 *
fdd99c72 3435 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3436 * insert_new_root, because that root buffer will be kept as a
3437 * normal node. We are going to log removal of half of the
3438 * elements below with tree_mod_log_eb_copy. We're holding a
3439 * tree lock on the buffer, which is why we cannot race with
3440 * other tree_mod_log users.
d9abbf1c 3441 */
fdd99c72 3442 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3443 if (ret)
3444 return ret;
b3612421 3445 } else {
e66f709b 3446 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3447 c = path->nodes[level];
3448 if (!ret && btrfs_header_nritems(c) <
0b246afa 3449 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
e66f709b 3450 return 0;
54aa1f4d
CM
3451 if (ret < 0)
3452 return ret;
be0e5c09 3453 }
e66f709b 3454
5f39d397 3455 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3456 mid = (c_nritems + 1) / 2;
3457 btrfs_node_key(c, &disk_key, mid);
7bb86316 3458
4d75f8a9
DS
3459 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3460 &disk_key, level, c->start, 0);
5f39d397
CM
3461 if (IS_ERR(split))
3462 return PTR_ERR(split);
3463
0b246afa 3464 root_add_used(root, fs_info->nodesize);
bc877d28 3465 ASSERT(btrfs_header_level(c) == level);
54aa1f4d 3466
0b246afa 3467 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
5de865ee 3468 if (ret) {
66642832 3469 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3470 return ret;
3471 }
5f39d397
CM
3472 copy_extent_buffer(split, c,
3473 btrfs_node_key_ptr_offset(0),
3474 btrfs_node_key_ptr_offset(mid),
3475 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3476 btrfs_set_header_nritems(split, c_nritems - mid);
3477 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3478 ret = 0;
3479
5f39d397
CM
3480 btrfs_mark_buffer_dirty(c);
3481 btrfs_mark_buffer_dirty(split);
3482
2ff7e61e 3483 insert_ptr(trans, fs_info, path, &disk_key, split->start,
c3e06965 3484 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3485
5de08d7d 3486 if (path->slots[level] >= mid) {
5c680ed6 3487 path->slots[level] -= mid;
925baedd 3488 btrfs_tree_unlock(c);
5f39d397
CM
3489 free_extent_buffer(c);
3490 path->nodes[level] = split;
5c680ed6
CM
3491 path->slots[level + 1] += 1;
3492 } else {
925baedd 3493 btrfs_tree_unlock(split);
5f39d397 3494 free_extent_buffer(split);
be0e5c09 3495 }
aa5d6bed 3496 return ret;
be0e5c09
CM
3497}
3498
74123bd7
CM
3499/*
3500 * how many bytes are required to store the items in a leaf. start
3501 * and nr indicate which items in the leaf to check. This totals up the
3502 * space used both by the item structs and the item data
3503 */
5f39d397 3504static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3505{
41be1f3b
JB
3506 struct btrfs_item *start_item;
3507 struct btrfs_item *end_item;
3508 struct btrfs_map_token token;
be0e5c09 3509 int data_len;
5f39d397 3510 int nritems = btrfs_header_nritems(l);
d4dbff95 3511 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3512
3513 if (!nr)
3514 return 0;
41be1f3b 3515 btrfs_init_map_token(&token);
dd3cc16b
RK
3516 start_item = btrfs_item_nr(start);
3517 end_item = btrfs_item_nr(end);
41be1f3b
JB
3518 data_len = btrfs_token_item_offset(l, start_item, &token) +
3519 btrfs_token_item_size(l, start_item, &token);
3520 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3521 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3522 WARN_ON(data_len < 0);
be0e5c09
CM
3523 return data_len;
3524}
3525
d4dbff95
CM
3526/*
3527 * The space between the end of the leaf items and
3528 * the start of the leaf data. IOW, how much room
3529 * the leaf has left for both items and data
3530 */
2ff7e61e 3531noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
e02119d5 3532 struct extent_buffer *leaf)
d4dbff95 3533{
5f39d397
CM
3534 int nritems = btrfs_header_nritems(leaf);
3535 int ret;
0b246afa
JM
3536
3537 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
5f39d397 3538 if (ret < 0) {
0b246afa
JM
3539 btrfs_crit(fs_info,
3540 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3541 ret,
3542 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3543 leaf_space_used(leaf, 0, nritems), nritems);
5f39d397
CM
3544 }
3545 return ret;
d4dbff95
CM
3546}
3547
99d8f83c
CM
3548/*
3549 * min slot controls the lowest index we're willing to push to the
3550 * right. We'll push up to and including min_slot, but no lower
3551 */
1e47eef2 3552static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
44871b1b
CM
3553 struct btrfs_path *path,
3554 int data_size, int empty,
3555 struct extent_buffer *right,
99d8f83c
CM
3556 int free_space, u32 left_nritems,
3557 u32 min_slot)
00ec4c51 3558{
5f39d397 3559 struct extent_buffer *left = path->nodes[0];
44871b1b 3560 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3561 struct btrfs_map_token token;
5f39d397 3562 struct btrfs_disk_key disk_key;
00ec4c51 3563 int slot;
34a38218 3564 u32 i;
00ec4c51
CM
3565 int push_space = 0;
3566 int push_items = 0;
0783fcfc 3567 struct btrfs_item *item;
34a38218 3568 u32 nr;
7518a238 3569 u32 right_nritems;
5f39d397 3570 u32 data_end;
db94535d 3571 u32 this_item_size;
00ec4c51 3572
cfed81a0
CM
3573 btrfs_init_map_token(&token);
3574
34a38218
CM
3575 if (empty)
3576 nr = 0;
3577 else
99d8f83c 3578 nr = max_t(u32, 1, min_slot);
34a38218 3579
31840ae1 3580 if (path->slots[0] >= left_nritems)
87b29b20 3581 push_space += data_size;
31840ae1 3582
44871b1b 3583 slot = path->slots[1];
34a38218
CM
3584 i = left_nritems - 1;
3585 while (i >= nr) {
dd3cc16b 3586 item = btrfs_item_nr(i);
db94535d 3587
31840ae1
ZY
3588 if (!empty && push_items > 0) {
3589 if (path->slots[0] > i)
3590 break;
3591 if (path->slots[0] == i) {
2ff7e61e 3592 int space = btrfs_leaf_free_space(fs_info, left);
31840ae1
ZY
3593 if (space + push_space * 2 > free_space)
3594 break;
3595 }
3596 }
3597
00ec4c51 3598 if (path->slots[0] == i)
87b29b20 3599 push_space += data_size;
db94535d 3600
db94535d
CM
3601 this_item_size = btrfs_item_size(left, item);
3602 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3603 break;
31840ae1 3604
00ec4c51 3605 push_items++;
db94535d 3606 push_space += this_item_size + sizeof(*item);
34a38218
CM
3607 if (i == 0)
3608 break;
3609 i--;
db94535d 3610 }
5f39d397 3611
925baedd
CM
3612 if (push_items == 0)
3613 goto out_unlock;
5f39d397 3614
6c1500f2 3615 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3616
00ec4c51 3617 /* push left to right */
5f39d397 3618 right_nritems = btrfs_header_nritems(right);
34a38218 3619
5f39d397 3620 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2ff7e61e 3621 push_space -= leaf_data_end(fs_info, left);
5f39d397 3622
00ec4c51 3623 /* make room in the right data area */
2ff7e61e 3624 data_end = leaf_data_end(fs_info, right);
5f39d397 3625 memmove_extent_buffer(right,
3d9ec8c4
NB
3626 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3627 BTRFS_LEAF_DATA_OFFSET + data_end,
0b246afa 3628 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
5f39d397 3629
00ec4c51 3630 /* copy from the left data area */
3d9ec8c4 3631 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3632 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3633 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
d6025579 3634 push_space);
5f39d397
CM
3635
3636 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3637 btrfs_item_nr_offset(0),
3638 right_nritems * sizeof(struct btrfs_item));
3639
00ec4c51 3640 /* copy the items from left to right */
5f39d397
CM
3641 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3642 btrfs_item_nr_offset(left_nritems - push_items),
3643 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3644
3645 /* update the item pointers */
7518a238 3646 right_nritems += push_items;
5f39d397 3647 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3648 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
7518a238 3649 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3650 item = btrfs_item_nr(i);
cfed81a0
CM
3651 push_space -= btrfs_token_item_size(right, item, &token);
3652 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3653 }
3654
7518a238 3655 left_nritems -= push_items;
5f39d397 3656 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3657
34a38218
CM
3658 if (left_nritems)
3659 btrfs_mark_buffer_dirty(left);
f0486c68 3660 else
7c302b49 3661 clean_tree_block(fs_info, left);
f0486c68 3662
5f39d397 3663 btrfs_mark_buffer_dirty(right);
a429e513 3664
5f39d397
CM
3665 btrfs_item_key(right, &disk_key, 0);
3666 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3667 btrfs_mark_buffer_dirty(upper);
02217ed2 3668
00ec4c51 3669 /* then fixup the leaf pointer in the path */
7518a238
CM
3670 if (path->slots[0] >= left_nritems) {
3671 path->slots[0] -= left_nritems;
925baedd 3672 if (btrfs_header_nritems(path->nodes[0]) == 0)
7c302b49 3673 clean_tree_block(fs_info, path->nodes[0]);
925baedd 3674 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3675 free_extent_buffer(path->nodes[0]);
3676 path->nodes[0] = right;
00ec4c51
CM
3677 path->slots[1] += 1;
3678 } else {
925baedd 3679 btrfs_tree_unlock(right);
5f39d397 3680 free_extent_buffer(right);
00ec4c51
CM
3681 }
3682 return 0;
925baedd
CM
3683
3684out_unlock:
3685 btrfs_tree_unlock(right);
3686 free_extent_buffer(right);
3687 return 1;
00ec4c51 3688}
925baedd 3689
44871b1b
CM
3690/*
3691 * push some data in the path leaf to the right, trying to free up at
3692 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3693 *
3694 * returns 1 if the push failed because the other node didn't have enough
3695 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3696 *
3697 * this will push starting from min_slot to the end of the leaf. It won't
3698 * push any slot lower than min_slot
44871b1b
CM
3699 */
3700static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3701 *root, struct btrfs_path *path,
3702 int min_data_size, int data_size,
3703 int empty, u32 min_slot)
44871b1b 3704{
2ff7e61e 3705 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3706 struct extent_buffer *left = path->nodes[0];
3707 struct extent_buffer *right;
3708 struct extent_buffer *upper;
3709 int slot;
3710 int free_space;
3711 u32 left_nritems;
3712 int ret;
3713
3714 if (!path->nodes[1])
3715 return 1;
3716
3717 slot = path->slots[1];
3718 upper = path->nodes[1];
3719 if (slot >= btrfs_header_nritems(upper) - 1)
3720 return 1;
3721
3722 btrfs_assert_tree_locked(path->nodes[1]);
3723
2ff7e61e 3724 right = read_node_slot(fs_info, upper, slot + 1);
fb770ae4
LB
3725 /*
3726 * slot + 1 is not valid or we fail to read the right node,
3727 * no big deal, just return.
3728 */
3729 if (IS_ERR(right))
91ca338d
TI
3730 return 1;
3731
44871b1b
CM
3732 btrfs_tree_lock(right);
3733 btrfs_set_lock_blocking(right);
3734
2ff7e61e 3735 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3736 if (free_space < data_size)
3737 goto out_unlock;
3738
3739 /* cow and double check */
3740 ret = btrfs_cow_block(trans, root, right, upper,
3741 slot + 1, &right);
3742 if (ret)
3743 goto out_unlock;
3744
2ff7e61e 3745 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3746 if (free_space < data_size)
3747 goto out_unlock;
3748
3749 left_nritems = btrfs_header_nritems(left);
3750 if (left_nritems == 0)
3751 goto out_unlock;
3752
2ef1fed2
FDBM
3753 if (path->slots[0] == left_nritems && !empty) {
3754 /* Key greater than all keys in the leaf, right neighbor has
3755 * enough room for it and we're not emptying our leaf to delete
3756 * it, therefore use right neighbor to insert the new item and
3757 * no need to touch/dirty our left leaft. */
3758 btrfs_tree_unlock(left);
3759 free_extent_buffer(left);
3760 path->nodes[0] = right;
3761 path->slots[0] = 0;
3762 path->slots[1]++;
3763 return 0;
3764 }
3765
1e47eef2 3766 return __push_leaf_right(fs_info, path, min_data_size, empty,
99d8f83c 3767 right, free_space, left_nritems, min_slot);
44871b1b
CM
3768out_unlock:
3769 btrfs_tree_unlock(right);
3770 free_extent_buffer(right);
3771 return 1;
3772}
3773
74123bd7
CM
3774/*
3775 * push some data in the path leaf to the left, trying to free up at
3776 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3777 *
3778 * max_slot can put a limit on how far into the leaf we'll push items. The
3779 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3780 * items
74123bd7 3781 */
66cb7ddb 3782static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
44871b1b
CM
3783 struct btrfs_path *path, int data_size,
3784 int empty, struct extent_buffer *left,
99d8f83c
CM
3785 int free_space, u32 right_nritems,
3786 u32 max_slot)
be0e5c09 3787{
5f39d397
CM
3788 struct btrfs_disk_key disk_key;
3789 struct extent_buffer *right = path->nodes[0];
be0e5c09 3790 int i;
be0e5c09
CM
3791 int push_space = 0;
3792 int push_items = 0;
0783fcfc 3793 struct btrfs_item *item;
7518a238 3794 u32 old_left_nritems;
34a38218 3795 u32 nr;
aa5d6bed 3796 int ret = 0;
db94535d
CM
3797 u32 this_item_size;
3798 u32 old_left_item_size;
cfed81a0
CM
3799 struct btrfs_map_token token;
3800
3801 btrfs_init_map_token(&token);
be0e5c09 3802
34a38218 3803 if (empty)
99d8f83c 3804 nr = min(right_nritems, max_slot);
34a38218 3805 else
99d8f83c 3806 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3807
3808 for (i = 0; i < nr; i++) {
dd3cc16b 3809 item = btrfs_item_nr(i);
db94535d 3810
31840ae1
ZY
3811 if (!empty && push_items > 0) {
3812 if (path->slots[0] < i)
3813 break;
3814 if (path->slots[0] == i) {
2ff7e61e 3815 int space = btrfs_leaf_free_space(fs_info, right);
31840ae1
ZY
3816 if (space + push_space * 2 > free_space)
3817 break;
3818 }
3819 }
3820
be0e5c09 3821 if (path->slots[0] == i)
87b29b20 3822 push_space += data_size;
db94535d
CM
3823
3824 this_item_size = btrfs_item_size(right, item);
3825 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3826 break;
db94535d 3827
be0e5c09 3828 push_items++;
db94535d
CM
3829 push_space += this_item_size + sizeof(*item);
3830 }
3831
be0e5c09 3832 if (push_items == 0) {
925baedd
CM
3833 ret = 1;
3834 goto out;
be0e5c09 3835 }
fae7f21c 3836 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3837
be0e5c09 3838 /* push data from right to left */
5f39d397
CM
3839 copy_extent_buffer(left, right,
3840 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3841 btrfs_item_nr_offset(0),
3842 push_items * sizeof(struct btrfs_item));
3843
0b246afa 3844 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
d397712b 3845 btrfs_item_offset_nr(right, push_items - 1);
5f39d397 3846
3d9ec8c4 3847 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3848 leaf_data_end(fs_info, left) - push_space,
3d9ec8c4 3849 BTRFS_LEAF_DATA_OFFSET +
5f39d397 3850 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3851 push_space);
5f39d397 3852 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3853 BUG_ON(old_left_nritems <= 0);
eb60ceac 3854
db94535d 3855 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3856 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3857 u32 ioff;
db94535d 3858
dd3cc16b 3859 item = btrfs_item_nr(i);
db94535d 3860
cfed81a0
CM
3861 ioff = btrfs_token_item_offset(left, item, &token);
3862 btrfs_set_token_item_offset(left, item,
0b246afa 3863 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
cfed81a0 3864 &token);
be0e5c09 3865 }
5f39d397 3866 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3867
3868 /* fixup right node */
31b1a2bd
JL
3869 if (push_items > right_nritems)
3870 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3871 right_nritems);
34a38218
CM
3872
3873 if (push_items < right_nritems) {
3874 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2ff7e61e 3875 leaf_data_end(fs_info, right);
3d9ec8c4 3876 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3877 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3878 BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3879 leaf_data_end(fs_info, right), push_space);
34a38218
CM
3880
3881 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3882 btrfs_item_nr_offset(push_items),
3883 (btrfs_header_nritems(right) - push_items) *
3884 sizeof(struct btrfs_item));
34a38218 3885 }
eef1c494
Y
3886 right_nritems -= push_items;
3887 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3888 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
5f39d397 3889 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3890 item = btrfs_item_nr(i);
db94535d 3891
cfed81a0
CM
3892 push_space = push_space - btrfs_token_item_size(right,
3893 item, &token);
3894 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3895 }
eb60ceac 3896
5f39d397 3897 btrfs_mark_buffer_dirty(left);
34a38218
CM
3898 if (right_nritems)
3899 btrfs_mark_buffer_dirty(right);
f0486c68 3900 else
7c302b49 3901 clean_tree_block(fs_info, right);
098f59c2 3902
5f39d397 3903 btrfs_item_key(right, &disk_key, 0);
b167fa91 3904 fixup_low_keys(path, &disk_key, 1);
be0e5c09
CM
3905
3906 /* then fixup the leaf pointer in the path */
3907 if (path->slots[0] < push_items) {
3908 path->slots[0] += old_left_nritems;
925baedd 3909 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3910 free_extent_buffer(path->nodes[0]);
3911 path->nodes[0] = left;
be0e5c09
CM
3912 path->slots[1] -= 1;
3913 } else {
925baedd 3914 btrfs_tree_unlock(left);
5f39d397 3915 free_extent_buffer(left);
be0e5c09
CM
3916 path->slots[0] -= push_items;
3917 }
eb60ceac 3918 BUG_ON(path->slots[0] < 0);
aa5d6bed 3919 return ret;
925baedd
CM
3920out:
3921 btrfs_tree_unlock(left);
3922 free_extent_buffer(left);
3923 return ret;
be0e5c09
CM
3924}
3925
44871b1b
CM
3926/*
3927 * push some data in the path leaf to the left, trying to free up at
3928 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3929 *
3930 * max_slot can put a limit on how far into the leaf we'll push items. The
3931 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3932 * items
44871b1b
CM
3933 */
3934static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3935 *root, struct btrfs_path *path, int min_data_size,
3936 int data_size, int empty, u32 max_slot)
44871b1b 3937{
2ff7e61e 3938 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3939 struct extent_buffer *right = path->nodes[0];
3940 struct extent_buffer *left;
3941 int slot;
3942 int free_space;
3943 u32 right_nritems;
3944 int ret = 0;
3945
3946 slot = path->slots[1];
3947 if (slot == 0)
3948 return 1;
3949 if (!path->nodes[1])
3950 return 1;
3951
3952 right_nritems = btrfs_header_nritems(right);
3953 if (right_nritems == 0)
3954 return 1;
3955
3956 btrfs_assert_tree_locked(path->nodes[1]);
3957
2ff7e61e 3958 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
fb770ae4
LB
3959 /*
3960 * slot - 1 is not valid or we fail to read the left node,
3961 * no big deal, just return.
3962 */
3963 if (IS_ERR(left))
91ca338d
TI
3964 return 1;
3965
44871b1b
CM
3966 btrfs_tree_lock(left);
3967 btrfs_set_lock_blocking(left);
3968
2ff7e61e 3969 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
3970 if (free_space < data_size) {
3971 ret = 1;
3972 goto out;
3973 }
3974
3975 /* cow and double check */
3976 ret = btrfs_cow_block(trans, root, left,
3977 path->nodes[1], slot - 1, &left);
3978 if (ret) {
3979 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
3980 if (ret == -ENOSPC)
3981 ret = 1;
44871b1b
CM
3982 goto out;
3983 }
3984
2ff7e61e 3985 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
3986 if (free_space < data_size) {
3987 ret = 1;
3988 goto out;
3989 }
3990
66cb7ddb 3991 return __push_leaf_left(fs_info, path, min_data_size,
99d8f83c
CM
3992 empty, left, free_space, right_nritems,
3993 max_slot);
44871b1b
CM
3994out:
3995 btrfs_tree_unlock(left);
3996 free_extent_buffer(left);
3997 return ret;
3998}
3999
4000/*
4001 * split the path's leaf in two, making sure there is at least data_size
4002 * available for the resulting leaf level of the path.
44871b1b 4003 */
143bede5 4004static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2ff7e61e 4005 struct btrfs_fs_info *fs_info,
143bede5
JM
4006 struct btrfs_path *path,
4007 struct extent_buffer *l,
4008 struct extent_buffer *right,
4009 int slot, int mid, int nritems)
44871b1b
CM
4010{
4011 int data_copy_size;
4012 int rt_data_off;
4013 int i;
44871b1b 4014 struct btrfs_disk_key disk_key;
cfed81a0
CM
4015 struct btrfs_map_token token;
4016
4017 btrfs_init_map_token(&token);
44871b1b
CM
4018
4019 nritems = nritems - mid;
4020 btrfs_set_header_nritems(right, nritems);
2ff7e61e 4021 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
44871b1b
CM
4022
4023 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4024 btrfs_item_nr_offset(mid),
4025 nritems * sizeof(struct btrfs_item));
4026
4027 copy_extent_buffer(right, l,
3d9ec8c4
NB
4028 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4029 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 4030 leaf_data_end(fs_info, l), data_copy_size);
44871b1b 4031
0b246afa 4032 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
44871b1b
CM
4033
4034 for (i = 0; i < nritems; i++) {
dd3cc16b 4035 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4036 u32 ioff;
4037
cfed81a0
CM
4038 ioff = btrfs_token_item_offset(right, item, &token);
4039 btrfs_set_token_item_offset(right, item,
4040 ioff + rt_data_off, &token);
44871b1b
CM
4041 }
4042
44871b1b 4043 btrfs_set_header_nritems(l, mid);
44871b1b 4044 btrfs_item_key(right, &disk_key, 0);
2ff7e61e 4045 insert_ptr(trans, fs_info, path, &disk_key, right->start,
c3e06965 4046 path->slots[1] + 1, 1);
44871b1b
CM
4047
4048 btrfs_mark_buffer_dirty(right);
4049 btrfs_mark_buffer_dirty(l);
4050 BUG_ON(path->slots[0] != slot);
4051
44871b1b
CM
4052 if (mid <= slot) {
4053 btrfs_tree_unlock(path->nodes[0]);
4054 free_extent_buffer(path->nodes[0]);
4055 path->nodes[0] = right;
4056 path->slots[0] -= mid;
4057 path->slots[1] += 1;
4058 } else {
4059 btrfs_tree_unlock(right);
4060 free_extent_buffer(right);
4061 }
4062
4063 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4064}
4065
99d8f83c
CM
4066/*
4067 * double splits happen when we need to insert a big item in the middle
4068 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4069 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4070 * A B C
4071 *
4072 * We avoid this by trying to push the items on either side of our target
4073 * into the adjacent leaves. If all goes well we can avoid the double split
4074 * completely.
4075 */
4076static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4077 struct btrfs_root *root,
4078 struct btrfs_path *path,
4079 int data_size)
4080{
2ff7e61e 4081 struct btrfs_fs_info *fs_info = root->fs_info;
99d8f83c
CM
4082 int ret;
4083 int progress = 0;
4084 int slot;
4085 u32 nritems;
5a4267ca 4086 int space_needed = data_size;
99d8f83c
CM
4087
4088 slot = path->slots[0];
5a4267ca 4089 if (slot < btrfs_header_nritems(path->nodes[0]))
2ff7e61e 4090 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
99d8f83c
CM
4091
4092 /*
4093 * try to push all the items after our slot into the
4094 * right leaf
4095 */
5a4267ca 4096 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4097 if (ret < 0)
4098 return ret;
4099
4100 if (ret == 0)
4101 progress++;
4102
4103 nritems = btrfs_header_nritems(path->nodes[0]);
4104 /*
4105 * our goal is to get our slot at the start or end of a leaf. If
4106 * we've done so we're done
4107 */
4108 if (path->slots[0] == 0 || path->slots[0] == nritems)
4109 return 0;
4110
2ff7e61e 4111 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4112 return 0;
4113
4114 /* try to push all the items before our slot into the next leaf */
4115 slot = path->slots[0];
263d3995
FM
4116 space_needed = data_size;
4117 if (slot > 0)
4118 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
5a4267ca 4119 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4120 if (ret < 0)
4121 return ret;
4122
4123 if (ret == 0)
4124 progress++;
4125
4126 if (progress)
4127 return 0;
4128 return 1;
4129}
4130
74123bd7
CM
4131/*
4132 * split the path's leaf in two, making sure there is at least data_size
4133 * available for the resulting leaf level of the path.
aa5d6bed
CM
4134 *
4135 * returns 0 if all went well and < 0 on failure.
74123bd7 4136 */
e02119d5
CM
4137static noinline int split_leaf(struct btrfs_trans_handle *trans,
4138 struct btrfs_root *root,
310712b2 4139 const struct btrfs_key *ins_key,
e02119d5
CM
4140 struct btrfs_path *path, int data_size,
4141 int extend)
be0e5c09 4142{
5d4f98a2 4143 struct btrfs_disk_key disk_key;
5f39d397 4144 struct extent_buffer *l;
7518a238 4145 u32 nritems;
eb60ceac
CM
4146 int mid;
4147 int slot;
5f39d397 4148 struct extent_buffer *right;
b7a0365e 4149 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4150 int ret = 0;
aa5d6bed 4151 int wret;
5d4f98a2 4152 int split;
cc0c5538 4153 int num_doubles = 0;
99d8f83c 4154 int tried_avoid_double = 0;
aa5d6bed 4155
a5719521
YZ
4156 l = path->nodes[0];
4157 slot = path->slots[0];
4158 if (extend && data_size + btrfs_item_size_nr(l, slot) +
0b246afa 4159 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
a5719521
YZ
4160 return -EOVERFLOW;
4161
40689478 4162 /* first try to make some room by pushing left and right */
33157e05 4163 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4164 int space_needed = data_size;
4165
4166 if (slot < btrfs_header_nritems(l))
2ff7e61e 4167 space_needed -= btrfs_leaf_free_space(fs_info, l);
5a4267ca
FDBM
4168
4169 wret = push_leaf_right(trans, root, path, space_needed,
4170 space_needed, 0, 0);
d397712b 4171 if (wret < 0)
eaee50e8 4172 return wret;
3685f791 4173 if (wret) {
263d3995
FM
4174 space_needed = data_size;
4175 if (slot > 0)
4176 space_needed -= btrfs_leaf_free_space(fs_info,
4177 l);
5a4267ca
FDBM
4178 wret = push_leaf_left(trans, root, path, space_needed,
4179 space_needed, 0, (u32)-1);
3685f791
CM
4180 if (wret < 0)
4181 return wret;
4182 }
4183 l = path->nodes[0];
aa5d6bed 4184
3685f791 4185 /* did the pushes work? */
2ff7e61e 4186 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
3685f791 4187 return 0;
3326d1b0 4188 }
aa5d6bed 4189
5c680ed6 4190 if (!path->nodes[1]) {
fdd99c72 4191 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4192 if (ret)
4193 return ret;
4194 }
cc0c5538 4195again:
5d4f98a2 4196 split = 1;
cc0c5538 4197 l = path->nodes[0];
eb60ceac 4198 slot = path->slots[0];
5f39d397 4199 nritems = btrfs_header_nritems(l);
d397712b 4200 mid = (nritems + 1) / 2;
54aa1f4d 4201
5d4f98a2
YZ
4202 if (mid <= slot) {
4203 if (nritems == 1 ||
4204 leaf_space_used(l, mid, nritems - mid) + data_size >
0b246afa 4205 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4206 if (slot >= nritems) {
4207 split = 0;
4208 } else {
4209 mid = slot;
4210 if (mid != nritems &&
4211 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4212 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4213 if (data_size && !tried_avoid_double)
4214 goto push_for_double;
5d4f98a2
YZ
4215 split = 2;
4216 }
4217 }
4218 }
4219 } else {
4220 if (leaf_space_used(l, 0, mid) + data_size >
0b246afa 4221 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4222 if (!extend && data_size && slot == 0) {
4223 split = 0;
4224 } else if ((extend || !data_size) && slot == 0) {
4225 mid = 1;
4226 } else {
4227 mid = slot;
4228 if (mid != nritems &&
4229 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4230 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4231 if (data_size && !tried_avoid_double)
4232 goto push_for_double;
67871254 4233 split = 2;
5d4f98a2
YZ
4234 }
4235 }
4236 }
4237 }
4238
4239 if (split == 0)
4240 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4241 else
4242 btrfs_item_key(l, &disk_key, mid);
4243
4d75f8a9
DS
4244 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4245 &disk_key, 0, l->start, 0);
f0486c68 4246 if (IS_ERR(right))
5f39d397 4247 return PTR_ERR(right);
f0486c68 4248
0b246afa 4249 root_add_used(root, fs_info->nodesize);
5f39d397 4250
5d4f98a2
YZ
4251 if (split == 0) {
4252 if (mid <= slot) {
4253 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4254 insert_ptr(trans, fs_info, path, &disk_key,
4255 right->start, path->slots[1] + 1, 1);
5d4f98a2
YZ
4256 btrfs_tree_unlock(path->nodes[0]);
4257 free_extent_buffer(path->nodes[0]);
4258 path->nodes[0] = right;
4259 path->slots[0] = 0;
4260 path->slots[1] += 1;
4261 } else {
4262 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4263 insert_ptr(trans, fs_info, path, &disk_key,
4264 right->start, path->slots[1], 1);
5d4f98a2
YZ
4265 btrfs_tree_unlock(path->nodes[0]);
4266 free_extent_buffer(path->nodes[0]);
4267 path->nodes[0] = right;
4268 path->slots[0] = 0;
143bede5 4269 if (path->slots[1] == 0)
b167fa91 4270 fixup_low_keys(path, &disk_key, 1);
d4dbff95 4271 }
196e0249
LB
4272 /*
4273 * We create a new leaf 'right' for the required ins_len and
4274 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4275 * the content of ins_len to 'right'.
4276 */
5d4f98a2 4277 return ret;
d4dbff95 4278 }
74123bd7 4279
2ff7e61e 4280 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
31840ae1 4281
5d4f98a2 4282 if (split == 2) {
cc0c5538
CM
4283 BUG_ON(num_doubles != 0);
4284 num_doubles++;
4285 goto again;
a429e513 4286 }
44871b1b 4287
143bede5 4288 return 0;
99d8f83c
CM
4289
4290push_for_double:
4291 push_for_double_split(trans, root, path, data_size);
4292 tried_avoid_double = 1;
2ff7e61e 4293 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4294 return 0;
4295 goto again;
be0e5c09
CM
4296}
4297
ad48fd75
YZ
4298static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4299 struct btrfs_root *root,
4300 struct btrfs_path *path, int ins_len)
459931ec 4301{
2ff7e61e 4302 struct btrfs_fs_info *fs_info = root->fs_info;
ad48fd75 4303 struct btrfs_key key;
459931ec 4304 struct extent_buffer *leaf;
ad48fd75
YZ
4305 struct btrfs_file_extent_item *fi;
4306 u64 extent_len = 0;
4307 u32 item_size;
4308 int ret;
459931ec
CM
4309
4310 leaf = path->nodes[0];
ad48fd75
YZ
4311 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4312
4313 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4314 key.type != BTRFS_EXTENT_CSUM_KEY);
4315
2ff7e61e 4316 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
ad48fd75 4317 return 0;
459931ec
CM
4318
4319 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4320 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4321 fi = btrfs_item_ptr(leaf, path->slots[0],
4322 struct btrfs_file_extent_item);
4323 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4324 }
b3b4aa74 4325 btrfs_release_path(path);
459931ec 4326
459931ec 4327 path->keep_locks = 1;
ad48fd75
YZ
4328 path->search_for_split = 1;
4329 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4330 path->search_for_split = 0;
a8df6fe6
FM
4331 if (ret > 0)
4332 ret = -EAGAIN;
ad48fd75
YZ
4333 if (ret < 0)
4334 goto err;
459931ec 4335
ad48fd75
YZ
4336 ret = -EAGAIN;
4337 leaf = path->nodes[0];
a8df6fe6
FM
4338 /* if our item isn't there, return now */
4339 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4340 goto err;
4341
109f6aef 4342 /* the leaf has changed, it now has room. return now */
2ff7e61e 4343 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
109f6aef
CM
4344 goto err;
4345
ad48fd75
YZ
4346 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4347 fi = btrfs_item_ptr(leaf, path->slots[0],
4348 struct btrfs_file_extent_item);
4349 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4350 goto err;
459931ec
CM
4351 }
4352
b9473439 4353 btrfs_set_path_blocking(path);
ad48fd75 4354 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4355 if (ret)
4356 goto err;
459931ec 4357
ad48fd75 4358 path->keep_locks = 0;
b9473439 4359 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4360 return 0;
4361err:
4362 path->keep_locks = 0;
4363 return ret;
4364}
4365
4961e293 4366static noinline int split_item(struct btrfs_fs_info *fs_info,
ad48fd75 4367 struct btrfs_path *path,
310712b2 4368 const struct btrfs_key *new_key,
ad48fd75
YZ
4369 unsigned long split_offset)
4370{
4371 struct extent_buffer *leaf;
4372 struct btrfs_item *item;
4373 struct btrfs_item *new_item;
4374 int slot;
4375 char *buf;
4376 u32 nritems;
4377 u32 item_size;
4378 u32 orig_offset;
4379 struct btrfs_disk_key disk_key;
4380
b9473439 4381 leaf = path->nodes[0];
2ff7e61e 4382 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
b9473439 4383
b4ce94de
CM
4384 btrfs_set_path_blocking(path);
4385
dd3cc16b 4386 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4387 orig_offset = btrfs_item_offset(leaf, item);
4388 item_size = btrfs_item_size(leaf, item);
4389
459931ec 4390 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4391 if (!buf)
4392 return -ENOMEM;
4393
459931ec
CM
4394 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4395 path->slots[0]), item_size);
459931ec 4396
ad48fd75 4397 slot = path->slots[0] + 1;
459931ec 4398 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4399 if (slot != nritems) {
4400 /* shift the items */
4401 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4402 btrfs_item_nr_offset(slot),
4403 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4404 }
4405
4406 btrfs_cpu_key_to_disk(&disk_key, new_key);
4407 btrfs_set_item_key(leaf, &disk_key, slot);
4408
dd3cc16b 4409 new_item = btrfs_item_nr(slot);
459931ec
CM
4410
4411 btrfs_set_item_offset(leaf, new_item, orig_offset);
4412 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4413
4414 btrfs_set_item_offset(leaf, item,
4415 orig_offset + item_size - split_offset);
4416 btrfs_set_item_size(leaf, item, split_offset);
4417
4418 btrfs_set_header_nritems(leaf, nritems + 1);
4419
4420 /* write the data for the start of the original item */
4421 write_extent_buffer(leaf, buf,
4422 btrfs_item_ptr_offset(leaf, path->slots[0]),
4423 split_offset);
4424
4425 /* write the data for the new item */
4426 write_extent_buffer(leaf, buf + split_offset,
4427 btrfs_item_ptr_offset(leaf, slot),
4428 item_size - split_offset);
4429 btrfs_mark_buffer_dirty(leaf);
4430
2ff7e61e 4431 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
459931ec 4432 kfree(buf);
ad48fd75
YZ
4433 return 0;
4434}
4435
4436/*
4437 * This function splits a single item into two items,
4438 * giving 'new_key' to the new item and splitting the
4439 * old one at split_offset (from the start of the item).
4440 *
4441 * The path may be released by this operation. After
4442 * the split, the path is pointing to the old item. The
4443 * new item is going to be in the same node as the old one.
4444 *
4445 * Note, the item being split must be smaller enough to live alone on
4446 * a tree block with room for one extra struct btrfs_item
4447 *
4448 * This allows us to split the item in place, keeping a lock on the
4449 * leaf the entire time.
4450 */
4451int btrfs_split_item(struct btrfs_trans_handle *trans,
4452 struct btrfs_root *root,
4453 struct btrfs_path *path,
310712b2 4454 const struct btrfs_key *new_key,
ad48fd75
YZ
4455 unsigned long split_offset)
4456{
4457 int ret;
4458 ret = setup_leaf_for_split(trans, root, path,
4459 sizeof(struct btrfs_item));
4460 if (ret)
4461 return ret;
4462
4961e293 4463 ret = split_item(root->fs_info, path, new_key, split_offset);
459931ec
CM
4464 return ret;
4465}
4466
ad48fd75
YZ
4467/*
4468 * This function duplicate a item, giving 'new_key' to the new item.
4469 * It guarantees both items live in the same tree leaf and the new item
4470 * is contiguous with the original item.
4471 *
4472 * This allows us to split file extent in place, keeping a lock on the
4473 * leaf the entire time.
4474 */
4475int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4476 struct btrfs_root *root,
4477 struct btrfs_path *path,
310712b2 4478 const struct btrfs_key *new_key)
ad48fd75
YZ
4479{
4480 struct extent_buffer *leaf;
4481 int ret;
4482 u32 item_size;
4483
4484 leaf = path->nodes[0];
4485 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4486 ret = setup_leaf_for_split(trans, root, path,
4487 item_size + sizeof(struct btrfs_item));
4488 if (ret)
4489 return ret;
4490
4491 path->slots[0]++;
afe5fea7 4492 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4493 item_size, item_size +
4494 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4495 leaf = path->nodes[0];
4496 memcpy_extent_buffer(leaf,
4497 btrfs_item_ptr_offset(leaf, path->slots[0]),
4498 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4499 item_size);
4500 return 0;
4501}
4502
d352ac68
CM
4503/*
4504 * make the item pointed to by the path smaller. new_size indicates
4505 * how small to make it, and from_end tells us if we just chop bytes
4506 * off the end of the item or if we shift the item to chop bytes off
4507 * the front.
4508 */
2ff7e61e
JM
4509void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4510 struct btrfs_path *path, u32 new_size, int from_end)
b18c6685 4511{
b18c6685 4512 int slot;
5f39d397
CM
4513 struct extent_buffer *leaf;
4514 struct btrfs_item *item;
b18c6685
CM
4515 u32 nritems;
4516 unsigned int data_end;
4517 unsigned int old_data_start;
4518 unsigned int old_size;
4519 unsigned int size_diff;
4520 int i;
cfed81a0
CM
4521 struct btrfs_map_token token;
4522
4523 btrfs_init_map_token(&token);
b18c6685 4524
5f39d397 4525 leaf = path->nodes[0];
179e29e4
CM
4526 slot = path->slots[0];
4527
4528 old_size = btrfs_item_size_nr(leaf, slot);
4529 if (old_size == new_size)
143bede5 4530 return;
b18c6685 4531
5f39d397 4532 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4533 data_end = leaf_data_end(fs_info, leaf);
b18c6685 4534
5f39d397 4535 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4536
b18c6685
CM
4537 size_diff = old_size - new_size;
4538
4539 BUG_ON(slot < 0);
4540 BUG_ON(slot >= nritems);
4541
4542 /*
4543 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4544 */
4545 /* first correct the data pointers */
4546 for (i = slot; i < nritems; i++) {
5f39d397 4547 u32 ioff;
dd3cc16b 4548 item = btrfs_item_nr(i);
db94535d 4549
cfed81a0
CM
4550 ioff = btrfs_token_item_offset(leaf, item, &token);
4551 btrfs_set_token_item_offset(leaf, item,
4552 ioff + size_diff, &token);
b18c6685 4553 }
db94535d 4554
b18c6685 4555 /* shift the data */
179e29e4 4556 if (from_end) {
3d9ec8c4
NB
4557 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4558 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4559 data_end, old_data_start + new_size - data_end);
4560 } else {
4561 struct btrfs_disk_key disk_key;
4562 u64 offset;
4563
4564 btrfs_item_key(leaf, &disk_key, slot);
4565
4566 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4567 unsigned long ptr;
4568 struct btrfs_file_extent_item *fi;
4569
4570 fi = btrfs_item_ptr(leaf, slot,
4571 struct btrfs_file_extent_item);
4572 fi = (struct btrfs_file_extent_item *)(
4573 (unsigned long)fi - size_diff);
4574
4575 if (btrfs_file_extent_type(leaf, fi) ==
4576 BTRFS_FILE_EXTENT_INLINE) {
4577 ptr = btrfs_item_ptr_offset(leaf, slot);
4578 memmove_extent_buffer(leaf, ptr,
d397712b 4579 (unsigned long)fi,
7ec20afb 4580 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4581 }
4582 }
4583
3d9ec8c4
NB
4584 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4585 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4586 data_end, old_data_start - data_end);
4587
4588 offset = btrfs_disk_key_offset(&disk_key);
4589 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4590 btrfs_set_item_key(leaf, &disk_key, slot);
4591 if (slot == 0)
b167fa91 4592 fixup_low_keys(path, &disk_key, 1);
179e29e4 4593 }
5f39d397 4594
dd3cc16b 4595 item = btrfs_item_nr(slot);
5f39d397
CM
4596 btrfs_set_item_size(leaf, item, new_size);
4597 btrfs_mark_buffer_dirty(leaf);
b18c6685 4598
2ff7e61e 4599 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4600 btrfs_print_leaf(leaf);
b18c6685 4601 BUG();
5f39d397 4602 }
b18c6685
CM
4603}
4604
d352ac68 4605/*
8f69dbd2 4606 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4607 */
2ff7e61e 4608void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 4609 u32 data_size)
6567e837 4610{
6567e837 4611 int slot;
5f39d397
CM
4612 struct extent_buffer *leaf;
4613 struct btrfs_item *item;
6567e837
CM
4614 u32 nritems;
4615 unsigned int data_end;
4616 unsigned int old_data;
4617 unsigned int old_size;
4618 int i;
cfed81a0
CM
4619 struct btrfs_map_token token;
4620
4621 btrfs_init_map_token(&token);
6567e837 4622
5f39d397 4623 leaf = path->nodes[0];
6567e837 4624
5f39d397 4625 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4626 data_end = leaf_data_end(fs_info, leaf);
6567e837 4627
2ff7e61e 4628 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
a4f78750 4629 btrfs_print_leaf(leaf);
6567e837 4630 BUG();
5f39d397 4631 }
6567e837 4632 slot = path->slots[0];
5f39d397 4633 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4634
4635 BUG_ON(slot < 0);
3326d1b0 4636 if (slot >= nritems) {
a4f78750 4637 btrfs_print_leaf(leaf);
0b246afa
JM
4638 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4639 slot, nritems);
3326d1b0
CM
4640 BUG_ON(1);
4641 }
6567e837
CM
4642
4643 /*
4644 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4645 */
4646 /* first correct the data pointers */
4647 for (i = slot; i < nritems; i++) {
5f39d397 4648 u32 ioff;
dd3cc16b 4649 item = btrfs_item_nr(i);
db94535d 4650
cfed81a0
CM
4651 ioff = btrfs_token_item_offset(leaf, item, &token);
4652 btrfs_set_token_item_offset(leaf, item,
4653 ioff - data_size, &token);
6567e837 4654 }
5f39d397 4655
6567e837 4656 /* shift the data */
3d9ec8c4
NB
4657 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4658 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
6567e837 4659 data_end, old_data - data_end);
5f39d397 4660
6567e837 4661 data_end = old_data;
5f39d397 4662 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4663 item = btrfs_item_nr(slot);
5f39d397
CM
4664 btrfs_set_item_size(leaf, item, old_size + data_size);
4665 btrfs_mark_buffer_dirty(leaf);
6567e837 4666
2ff7e61e 4667 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4668 btrfs_print_leaf(leaf);
6567e837 4669 BUG();
5f39d397 4670 }
6567e837
CM
4671}
4672
74123bd7 4673/*
44871b1b
CM
4674 * this is a helper for btrfs_insert_empty_items, the main goal here is
4675 * to save stack depth by doing the bulk of the work in a function
4676 * that doesn't call btrfs_search_slot
74123bd7 4677 */
afe5fea7 4678void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
310712b2 4679 const struct btrfs_key *cpu_key, u32 *data_size,
143bede5 4680 u32 total_data, u32 total_size, int nr)
be0e5c09 4681{
0b246afa 4682 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4683 struct btrfs_item *item;
9c58309d 4684 int i;
7518a238 4685 u32 nritems;
be0e5c09 4686 unsigned int data_end;
e2fa7227 4687 struct btrfs_disk_key disk_key;
44871b1b
CM
4688 struct extent_buffer *leaf;
4689 int slot;
cfed81a0
CM
4690 struct btrfs_map_token token;
4691
24cdc847
FM
4692 if (path->slots[0] == 0) {
4693 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
b167fa91 4694 fixup_low_keys(path, &disk_key, 1);
24cdc847
FM
4695 }
4696 btrfs_unlock_up_safe(path, 1);
4697
cfed81a0 4698 btrfs_init_map_token(&token);
e2fa7227 4699
5f39d397 4700 leaf = path->nodes[0];
44871b1b 4701 slot = path->slots[0];
74123bd7 4702
5f39d397 4703 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4704 data_end = leaf_data_end(fs_info, leaf);
eb60ceac 4705
2ff7e61e 4706 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
a4f78750 4707 btrfs_print_leaf(leaf);
0b246afa 4708 btrfs_crit(fs_info, "not enough freespace need %u have %d",
2ff7e61e 4709 total_size, btrfs_leaf_free_space(fs_info, leaf));
be0e5c09 4710 BUG();
d4dbff95 4711 }
5f39d397 4712
be0e5c09 4713 if (slot != nritems) {
5f39d397 4714 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4715
5f39d397 4716 if (old_data < data_end) {
a4f78750 4717 btrfs_print_leaf(leaf);
0b246afa 4718 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
5d163e0e 4719 slot, old_data, data_end);
5f39d397
CM
4720 BUG_ON(1);
4721 }
be0e5c09
CM
4722 /*
4723 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4724 */
4725 /* first correct the data pointers */
0783fcfc 4726 for (i = slot; i < nritems; i++) {
5f39d397 4727 u32 ioff;
db94535d 4728
62e85577 4729 item = btrfs_item_nr(i);
cfed81a0
CM
4730 ioff = btrfs_token_item_offset(leaf, item, &token);
4731 btrfs_set_token_item_offset(leaf, item,
4732 ioff - total_data, &token);
0783fcfc 4733 }
be0e5c09 4734 /* shift the items */
9c58309d 4735 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4736 btrfs_item_nr_offset(slot),
d6025579 4737 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4738
4739 /* shift the data */
3d9ec8c4
NB
4740 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4741 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
d6025579 4742 data_end, old_data - data_end);
be0e5c09
CM
4743 data_end = old_data;
4744 }
5f39d397 4745
62e2749e 4746 /* setup the item for the new data */
9c58309d
CM
4747 for (i = 0; i < nr; i++) {
4748 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4749 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4750 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4751 btrfs_set_token_item_offset(leaf, item,
4752 data_end - data_size[i], &token);
9c58309d 4753 data_end -= data_size[i];
cfed81a0 4754 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4755 }
44871b1b 4756
9c58309d 4757 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4758 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4759
2ff7e61e 4760 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4761 btrfs_print_leaf(leaf);
be0e5c09 4762 BUG();
5f39d397 4763 }
44871b1b
CM
4764}
4765
4766/*
4767 * Given a key and some data, insert items into the tree.
4768 * This does all the path init required, making room in the tree if needed.
4769 */
4770int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4771 struct btrfs_root *root,
4772 struct btrfs_path *path,
310712b2 4773 const struct btrfs_key *cpu_key, u32 *data_size,
44871b1b
CM
4774 int nr)
4775{
44871b1b
CM
4776 int ret = 0;
4777 int slot;
4778 int i;
4779 u32 total_size = 0;
4780 u32 total_data = 0;
4781
4782 for (i = 0; i < nr; i++)
4783 total_data += data_size[i];
4784
4785 total_size = total_data + (nr * sizeof(struct btrfs_item));
4786 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4787 if (ret == 0)
4788 return -EEXIST;
4789 if (ret < 0)
143bede5 4790 return ret;
44871b1b 4791
44871b1b
CM
4792 slot = path->slots[0];
4793 BUG_ON(slot < 0);
4794
afe5fea7 4795 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4796 total_data, total_size, nr);
143bede5 4797 return 0;
62e2749e
CM
4798}
4799
4800/*
4801 * Given a key and some data, insert an item into the tree.
4802 * This does all the path init required, making room in the tree if needed.
4803 */
310712b2
OS
4804int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4805 const struct btrfs_key *cpu_key, void *data,
4806 u32 data_size)
62e2749e
CM
4807{
4808 int ret = 0;
2c90e5d6 4809 struct btrfs_path *path;
5f39d397
CM
4810 struct extent_buffer *leaf;
4811 unsigned long ptr;
62e2749e 4812
2c90e5d6 4813 path = btrfs_alloc_path();
db5b493a
TI
4814 if (!path)
4815 return -ENOMEM;
2c90e5d6 4816 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4817 if (!ret) {
5f39d397
CM
4818 leaf = path->nodes[0];
4819 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4820 write_extent_buffer(leaf, data, ptr, data_size);
4821 btrfs_mark_buffer_dirty(leaf);
62e2749e 4822 }
2c90e5d6 4823 btrfs_free_path(path);
aa5d6bed 4824 return ret;
be0e5c09
CM
4825}
4826
74123bd7 4827/*
5de08d7d 4828 * delete the pointer from a given node.
74123bd7 4829 *
d352ac68
CM
4830 * the tree should have been previously balanced so the deletion does not
4831 * empty a node.
74123bd7 4832 */
afe5fea7
TI
4833static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4834 int level, int slot)
be0e5c09 4835{
5f39d397 4836 struct extent_buffer *parent = path->nodes[level];
7518a238 4837 u32 nritems;
f3ea38da 4838 int ret;
be0e5c09 4839
5f39d397 4840 nritems = btrfs_header_nritems(parent);
d397712b 4841 if (slot != nritems - 1) {
bf1d3425
DS
4842 if (level) {
4843 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
a446a979 4844 nritems - slot - 1);
bf1d3425
DS
4845 BUG_ON(ret < 0);
4846 }
5f39d397
CM
4847 memmove_extent_buffer(parent,
4848 btrfs_node_key_ptr_offset(slot),
4849 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4850 sizeof(struct btrfs_key_ptr) *
4851 (nritems - slot - 1));
57ba86c0 4852 } else if (level) {
e09c2efe
DS
4853 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4854 GFP_NOFS);
57ba86c0 4855 BUG_ON(ret < 0);
bb803951 4856 }
f3ea38da 4857
7518a238 4858 nritems--;
5f39d397 4859 btrfs_set_header_nritems(parent, nritems);
7518a238 4860 if (nritems == 0 && parent == root->node) {
5f39d397 4861 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4862 /* just turn the root into a leaf and break */
5f39d397 4863 btrfs_set_header_level(root->node, 0);
bb803951 4864 } else if (slot == 0) {
5f39d397
CM
4865 struct btrfs_disk_key disk_key;
4866
4867 btrfs_node_key(parent, &disk_key, 0);
b167fa91 4868 fixup_low_keys(path, &disk_key, level + 1);
be0e5c09 4869 }
d6025579 4870 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4871}
4872
323ac95b
CM
4873/*
4874 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4875 * path->nodes[1].
323ac95b
CM
4876 *
4877 * This deletes the pointer in path->nodes[1] and frees the leaf
4878 * block extent. zero is returned if it all worked out, < 0 otherwise.
4879 *
4880 * The path must have already been setup for deleting the leaf, including
4881 * all the proper balancing. path->nodes[1] must be locked.
4882 */
143bede5
JM
4883static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4884 struct btrfs_root *root,
4885 struct btrfs_path *path,
4886 struct extent_buffer *leaf)
323ac95b 4887{
5d4f98a2 4888 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4889 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4890
4d081c41
CM
4891 /*
4892 * btrfs_free_extent is expensive, we want to make sure we
4893 * aren't holding any locks when we call it
4894 */
4895 btrfs_unlock_up_safe(path, 0);
4896
f0486c68
YZ
4897 root_sub_used(root, leaf->len);
4898
3083ee2e 4899 extent_buffer_get(leaf);
5581a51a 4900 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4901 free_extent_buffer_stale(leaf);
323ac95b 4902}
74123bd7
CM
4903/*
4904 * delete the item at the leaf level in path. If that empties
4905 * the leaf, remove it from the tree
4906 */
85e21bac
CM
4907int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4908 struct btrfs_path *path, int slot, int nr)
be0e5c09 4909{
0b246afa 4910 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
4911 struct extent_buffer *leaf;
4912 struct btrfs_item *item;
ce0eac2a
AM
4913 u32 last_off;
4914 u32 dsize = 0;
aa5d6bed
CM
4915 int ret = 0;
4916 int wret;
85e21bac 4917 int i;
7518a238 4918 u32 nritems;
cfed81a0
CM
4919 struct btrfs_map_token token;
4920
4921 btrfs_init_map_token(&token);
be0e5c09 4922
5f39d397 4923 leaf = path->nodes[0];
85e21bac
CM
4924 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4925
4926 for (i = 0; i < nr; i++)
4927 dsize += btrfs_item_size_nr(leaf, slot + i);
4928
5f39d397 4929 nritems = btrfs_header_nritems(leaf);
be0e5c09 4930
85e21bac 4931 if (slot + nr != nritems) {
2ff7e61e 4932 int data_end = leaf_data_end(fs_info, leaf);
5f39d397 4933
3d9ec8c4 4934 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
d6025579 4935 data_end + dsize,
3d9ec8c4 4936 BTRFS_LEAF_DATA_OFFSET + data_end,
85e21bac 4937 last_off - data_end);
5f39d397 4938
85e21bac 4939 for (i = slot + nr; i < nritems; i++) {
5f39d397 4940 u32 ioff;
db94535d 4941
dd3cc16b 4942 item = btrfs_item_nr(i);
cfed81a0
CM
4943 ioff = btrfs_token_item_offset(leaf, item, &token);
4944 btrfs_set_token_item_offset(leaf, item,
4945 ioff + dsize, &token);
0783fcfc 4946 }
db94535d 4947
5f39d397 4948 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4949 btrfs_item_nr_offset(slot + nr),
d6025579 4950 sizeof(struct btrfs_item) *
85e21bac 4951 (nritems - slot - nr));
be0e5c09 4952 }
85e21bac
CM
4953 btrfs_set_header_nritems(leaf, nritems - nr);
4954 nritems -= nr;
5f39d397 4955
74123bd7 4956 /* delete the leaf if we've emptied it */
7518a238 4957 if (nritems == 0) {
5f39d397
CM
4958 if (leaf == root->node) {
4959 btrfs_set_header_level(leaf, 0);
9a8dd150 4960 } else {
f0486c68 4961 btrfs_set_path_blocking(path);
7c302b49 4962 clean_tree_block(fs_info, leaf);
143bede5 4963 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 4964 }
be0e5c09 4965 } else {
7518a238 4966 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 4967 if (slot == 0) {
5f39d397
CM
4968 struct btrfs_disk_key disk_key;
4969
4970 btrfs_item_key(leaf, &disk_key, 0);
b167fa91 4971 fixup_low_keys(path, &disk_key, 1);
aa5d6bed 4972 }
aa5d6bed 4973
74123bd7 4974 /* delete the leaf if it is mostly empty */
0b246afa 4975 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
be0e5c09
CM
4976 /* push_leaf_left fixes the path.
4977 * make sure the path still points to our leaf
4978 * for possible call to del_ptr below
4979 */
4920c9ac 4980 slot = path->slots[1];
5f39d397
CM
4981 extent_buffer_get(leaf);
4982
b9473439 4983 btrfs_set_path_blocking(path);
99d8f83c
CM
4984 wret = push_leaf_left(trans, root, path, 1, 1,
4985 1, (u32)-1);
54aa1f4d 4986 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 4987 ret = wret;
5f39d397
CM
4988
4989 if (path->nodes[0] == leaf &&
4990 btrfs_header_nritems(leaf)) {
99d8f83c
CM
4991 wret = push_leaf_right(trans, root, path, 1,
4992 1, 1, 0);
54aa1f4d 4993 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
4994 ret = wret;
4995 }
5f39d397
CM
4996
4997 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 4998 path->slots[1] = slot;
143bede5 4999 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5000 free_extent_buffer(leaf);
143bede5 5001 ret = 0;
5de08d7d 5002 } else {
925baedd
CM
5003 /* if we're still in the path, make sure
5004 * we're dirty. Otherwise, one of the
5005 * push_leaf functions must have already
5006 * dirtied this buffer
5007 */
5008 if (path->nodes[0] == leaf)
5009 btrfs_mark_buffer_dirty(leaf);
5f39d397 5010 free_extent_buffer(leaf);
be0e5c09 5011 }
d5719762 5012 } else {
5f39d397 5013 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5014 }
5015 }
aa5d6bed 5016 return ret;
be0e5c09
CM
5017}
5018
7bb86316 5019/*
925baedd 5020 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5021 * returns 0 if it found something or 1 if there are no lesser leaves.
5022 * returns < 0 on io errors.
d352ac68
CM
5023 *
5024 * This may release the path, and so you may lose any locks held at the
5025 * time you call it.
7bb86316 5026 */
16e7549f 5027int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5028{
925baedd
CM
5029 struct btrfs_key key;
5030 struct btrfs_disk_key found_key;
5031 int ret;
7bb86316 5032
925baedd 5033 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5034
e8b0d724 5035 if (key.offset > 0) {
925baedd 5036 key.offset--;
e8b0d724 5037 } else if (key.type > 0) {
925baedd 5038 key.type--;
e8b0d724
FDBM
5039 key.offset = (u64)-1;
5040 } else if (key.objectid > 0) {
925baedd 5041 key.objectid--;
e8b0d724
FDBM
5042 key.type = (u8)-1;
5043 key.offset = (u64)-1;
5044 } else {
925baedd 5045 return 1;
e8b0d724 5046 }
7bb86316 5047
b3b4aa74 5048 btrfs_release_path(path);
925baedd
CM
5049 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5050 if (ret < 0)
5051 return ret;
5052 btrfs_item_key(path->nodes[0], &found_key, 0);
5053 ret = comp_keys(&found_key, &key);
337c6f68
FM
5054 /*
5055 * We might have had an item with the previous key in the tree right
5056 * before we released our path. And after we released our path, that
5057 * item might have been pushed to the first slot (0) of the leaf we
5058 * were holding due to a tree balance. Alternatively, an item with the
5059 * previous key can exist as the only element of a leaf (big fat item).
5060 * Therefore account for these 2 cases, so that our callers (like
5061 * btrfs_previous_item) don't miss an existing item with a key matching
5062 * the previous key we computed above.
5063 */
5064 if (ret <= 0)
925baedd
CM
5065 return 0;
5066 return 1;
7bb86316
CM
5067}
5068
3f157a2f
CM
5069/*
5070 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5071 * for nodes or leaves that are have a minimum transaction id.
5072 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5073 *
5074 * This does not cow, but it does stuff the starting key it finds back
5075 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5076 * key and get a writable path.
5077 *
3f157a2f
CM
5078 * This honors path->lowest_level to prevent descent past a given level
5079 * of the tree.
5080 *
d352ac68
CM
5081 * min_trans indicates the oldest transaction that you are interested
5082 * in walking through. Any nodes or leaves older than min_trans are
5083 * skipped over (without reading them).
5084 *
3f157a2f
CM
5085 * returns zero if something useful was found, < 0 on error and 1 if there
5086 * was nothing in the tree that matched the search criteria.
5087 */
5088int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5089 struct btrfs_path *path,
3f157a2f
CM
5090 u64 min_trans)
5091{
2ff7e61e 5092 struct btrfs_fs_info *fs_info = root->fs_info;
3f157a2f
CM
5093 struct extent_buffer *cur;
5094 struct btrfs_key found_key;
5095 int slot;
9652480b 5096 int sret;
3f157a2f
CM
5097 u32 nritems;
5098 int level;
5099 int ret = 1;
f98de9b9 5100 int keep_locks = path->keep_locks;
3f157a2f 5101
f98de9b9 5102 path->keep_locks = 1;
3f157a2f 5103again:
bd681513 5104 cur = btrfs_read_lock_root_node(root);
3f157a2f 5105 level = btrfs_header_level(cur);
e02119d5 5106 WARN_ON(path->nodes[level]);
3f157a2f 5107 path->nodes[level] = cur;
bd681513 5108 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5109
5110 if (btrfs_header_generation(cur) < min_trans) {
5111 ret = 1;
5112 goto out;
5113 }
d397712b 5114 while (1) {
3f157a2f
CM
5115 nritems = btrfs_header_nritems(cur);
5116 level = btrfs_header_level(cur);
a74b35ec 5117 sret = btrfs_bin_search(cur, min_key, level, &slot);
3f157a2f 5118
323ac95b
CM
5119 /* at the lowest level, we're done, setup the path and exit */
5120 if (level == path->lowest_level) {
e02119d5
CM
5121 if (slot >= nritems)
5122 goto find_next_key;
3f157a2f
CM
5123 ret = 0;
5124 path->slots[level] = slot;
5125 btrfs_item_key_to_cpu(cur, &found_key, slot);
5126 goto out;
5127 }
9652480b
Y
5128 if (sret && slot > 0)
5129 slot--;
3f157a2f 5130 /*
de78b51a
ES
5131 * check this node pointer against the min_trans parameters.
5132 * If it is too old, old, skip to the next one.
3f157a2f 5133 */
d397712b 5134 while (slot < nritems) {
3f157a2f 5135 u64 gen;
e02119d5 5136
3f157a2f
CM
5137 gen = btrfs_node_ptr_generation(cur, slot);
5138 if (gen < min_trans) {
5139 slot++;
5140 continue;
5141 }
de78b51a 5142 break;
3f157a2f 5143 }
e02119d5 5144find_next_key:
3f157a2f
CM
5145 /*
5146 * we didn't find a candidate key in this node, walk forward
5147 * and find another one
5148 */
5149 if (slot >= nritems) {
e02119d5 5150 path->slots[level] = slot;
b4ce94de 5151 btrfs_set_path_blocking(path);
e02119d5 5152 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5153 min_trans);
e02119d5 5154 if (sret == 0) {
b3b4aa74 5155 btrfs_release_path(path);
3f157a2f
CM
5156 goto again;
5157 } else {
5158 goto out;
5159 }
5160 }
5161 /* save our key for returning back */
5162 btrfs_node_key_to_cpu(cur, &found_key, slot);
5163 path->slots[level] = slot;
5164 if (level == path->lowest_level) {
5165 ret = 0;
3f157a2f
CM
5166 goto out;
5167 }
b4ce94de 5168 btrfs_set_path_blocking(path);
2ff7e61e 5169 cur = read_node_slot(fs_info, cur, slot);
fb770ae4
LB
5170 if (IS_ERR(cur)) {
5171 ret = PTR_ERR(cur);
5172 goto out;
5173 }
3f157a2f 5174
bd681513 5175 btrfs_tree_read_lock(cur);
b4ce94de 5176
bd681513 5177 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5178 path->nodes[level - 1] = cur;
f7c79f30 5179 unlock_up(path, level, 1, 0, NULL);
3f157a2f
CM
5180 }
5181out:
f98de9b9
FM
5182 path->keep_locks = keep_locks;
5183 if (ret == 0) {
5184 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5185 btrfs_set_path_blocking(path);
3f157a2f 5186 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5187 }
3f157a2f
CM
5188 return ret;
5189}
5190
2ff7e61e 5191static int tree_move_down(struct btrfs_fs_info *fs_info,
7069830a 5192 struct btrfs_path *path,
ab6a43e1 5193 int *level)
7069830a 5194{
fb770ae4
LB
5195 struct extent_buffer *eb;
5196
74dd17fb 5197 BUG_ON(*level == 0);
2ff7e61e 5198 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
fb770ae4
LB
5199 if (IS_ERR(eb))
5200 return PTR_ERR(eb);
5201
5202 path->nodes[*level - 1] = eb;
7069830a
AB
5203 path->slots[*level - 1] = 0;
5204 (*level)--;
fb770ae4 5205 return 0;
7069830a
AB
5206}
5207
f1e30261 5208static int tree_move_next_or_upnext(struct btrfs_path *path,
7069830a
AB
5209 int *level, int root_level)
5210{
5211 int ret = 0;
5212 int nritems;
5213 nritems = btrfs_header_nritems(path->nodes[*level]);
5214
5215 path->slots[*level]++;
5216
74dd17fb 5217 while (path->slots[*level] >= nritems) {
7069830a
AB
5218 if (*level == root_level)
5219 return -1;
5220
5221 /* move upnext */
5222 path->slots[*level] = 0;
5223 free_extent_buffer(path->nodes[*level]);
5224 path->nodes[*level] = NULL;
5225 (*level)++;
5226 path->slots[*level]++;
5227
5228 nritems = btrfs_header_nritems(path->nodes[*level]);
5229 ret = 1;
5230 }
5231 return ret;
5232}
5233
5234/*
5235 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5236 * or down.
5237 */
2ff7e61e 5238static int tree_advance(struct btrfs_fs_info *fs_info,
7069830a
AB
5239 struct btrfs_path *path,
5240 int *level, int root_level,
5241 int allow_down,
5242 struct btrfs_key *key)
5243{
5244 int ret;
5245
5246 if (*level == 0 || !allow_down) {
f1e30261 5247 ret = tree_move_next_or_upnext(path, level, root_level);
7069830a 5248 } else {
ab6a43e1 5249 ret = tree_move_down(fs_info, path, level);
7069830a
AB
5250 }
5251 if (ret >= 0) {
5252 if (*level == 0)
5253 btrfs_item_key_to_cpu(path->nodes[*level], key,
5254 path->slots[*level]);
5255 else
5256 btrfs_node_key_to_cpu(path->nodes[*level], key,
5257 path->slots[*level]);
5258 }
5259 return ret;
5260}
5261
2ff7e61e 5262static int tree_compare_item(struct btrfs_path *left_path,
7069830a
AB
5263 struct btrfs_path *right_path,
5264 char *tmp_buf)
5265{
5266 int cmp;
5267 int len1, len2;
5268 unsigned long off1, off2;
5269
5270 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5271 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5272 if (len1 != len2)
5273 return 1;
5274
5275 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5276 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5277 right_path->slots[0]);
5278
5279 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5280
5281 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5282 if (cmp)
5283 return 1;
5284 return 0;
5285}
5286
5287#define ADVANCE 1
5288#define ADVANCE_ONLY_NEXT -1
5289
5290/*
5291 * This function compares two trees and calls the provided callback for
5292 * every changed/new/deleted item it finds.
5293 * If shared tree blocks are encountered, whole subtrees are skipped, making
5294 * the compare pretty fast on snapshotted subvolumes.
5295 *
5296 * This currently works on commit roots only. As commit roots are read only,
5297 * we don't do any locking. The commit roots are protected with transactions.
5298 * Transactions are ended and rejoined when a commit is tried in between.
5299 *
5300 * This function checks for modifications done to the trees while comparing.
5301 * If it detects a change, it aborts immediately.
5302 */
5303int btrfs_compare_trees(struct btrfs_root *left_root,
5304 struct btrfs_root *right_root,
5305 btrfs_changed_cb_t changed_cb, void *ctx)
5306{
0b246afa 5307 struct btrfs_fs_info *fs_info = left_root->fs_info;
7069830a
AB
5308 int ret;
5309 int cmp;
7069830a
AB
5310 struct btrfs_path *left_path = NULL;
5311 struct btrfs_path *right_path = NULL;
5312 struct btrfs_key left_key;
5313 struct btrfs_key right_key;
5314 char *tmp_buf = NULL;
5315 int left_root_level;
5316 int right_root_level;
5317 int left_level;
5318 int right_level;
5319 int left_end_reached;
5320 int right_end_reached;
5321 int advance_left;
5322 int advance_right;
5323 u64 left_blockptr;
5324 u64 right_blockptr;
6baa4293
FM
5325 u64 left_gen;
5326 u64 right_gen;
7069830a
AB
5327
5328 left_path = btrfs_alloc_path();
5329 if (!left_path) {
5330 ret = -ENOMEM;
5331 goto out;
5332 }
5333 right_path = btrfs_alloc_path();
5334 if (!right_path) {
5335 ret = -ENOMEM;
5336 goto out;
5337 }
5338
752ade68 5339 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7069830a 5340 if (!tmp_buf) {
752ade68
MH
5341 ret = -ENOMEM;
5342 goto out;
7069830a
AB
5343 }
5344
5345 left_path->search_commit_root = 1;
5346 left_path->skip_locking = 1;
5347 right_path->search_commit_root = 1;
5348 right_path->skip_locking = 1;
5349
7069830a
AB
5350 /*
5351 * Strategy: Go to the first items of both trees. Then do
5352 *
5353 * If both trees are at level 0
5354 * Compare keys of current items
5355 * If left < right treat left item as new, advance left tree
5356 * and repeat
5357 * If left > right treat right item as deleted, advance right tree
5358 * and repeat
5359 * If left == right do deep compare of items, treat as changed if
5360 * needed, advance both trees and repeat
5361 * If both trees are at the same level but not at level 0
5362 * Compare keys of current nodes/leafs
5363 * If left < right advance left tree and repeat
5364 * If left > right advance right tree and repeat
5365 * If left == right compare blockptrs of the next nodes/leafs
5366 * If they match advance both trees but stay at the same level
5367 * and repeat
5368 * If they don't match advance both trees while allowing to go
5369 * deeper and repeat
5370 * If tree levels are different
5371 * Advance the tree that needs it and repeat
5372 *
5373 * Advancing a tree means:
5374 * If we are at level 0, try to go to the next slot. If that's not
5375 * possible, go one level up and repeat. Stop when we found a level
5376 * where we could go to the next slot. We may at this point be on a
5377 * node or a leaf.
5378 *
5379 * If we are not at level 0 and not on shared tree blocks, go one
5380 * level deeper.
5381 *
5382 * If we are not at level 0 and on shared tree blocks, go one slot to
5383 * the right if possible or go up and right.
5384 */
5385
0b246afa 5386 down_read(&fs_info->commit_root_sem);
7069830a
AB
5387 left_level = btrfs_header_level(left_root->commit_root);
5388 left_root_level = left_level;
6f2f0b39
RK
5389 left_path->nodes[left_level] =
5390 btrfs_clone_extent_buffer(left_root->commit_root);
5391 if (!left_path->nodes[left_level]) {
5392 up_read(&fs_info->commit_root_sem);
5393 ret = -ENOMEM;
5394 goto out;
5395 }
7069830a
AB
5396
5397 right_level = btrfs_header_level(right_root->commit_root);
5398 right_root_level = right_level;
6f2f0b39
RK
5399 right_path->nodes[right_level] =
5400 btrfs_clone_extent_buffer(right_root->commit_root);
5401 if (!right_path->nodes[right_level]) {
5402 up_read(&fs_info->commit_root_sem);
5403 ret = -ENOMEM;
5404 goto out;
5405 }
0b246afa 5406 up_read(&fs_info->commit_root_sem);
7069830a
AB
5407
5408 if (left_level == 0)
5409 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5410 &left_key, left_path->slots[left_level]);
5411 else
5412 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5413 &left_key, left_path->slots[left_level]);
5414 if (right_level == 0)
5415 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5416 &right_key, right_path->slots[right_level]);
5417 else
5418 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5419 &right_key, right_path->slots[right_level]);
5420
5421 left_end_reached = right_end_reached = 0;
5422 advance_left = advance_right = 0;
5423
5424 while (1) {
7069830a 5425 if (advance_left && !left_end_reached) {
2ff7e61e 5426 ret = tree_advance(fs_info, left_path, &left_level,
7069830a
AB
5427 left_root_level,
5428 advance_left != ADVANCE_ONLY_NEXT,
5429 &left_key);
fb770ae4 5430 if (ret == -1)
7069830a 5431 left_end_reached = ADVANCE;
fb770ae4
LB
5432 else if (ret < 0)
5433 goto out;
7069830a
AB
5434 advance_left = 0;
5435 }
5436 if (advance_right && !right_end_reached) {
2ff7e61e 5437 ret = tree_advance(fs_info, right_path, &right_level,
7069830a
AB
5438 right_root_level,
5439 advance_right != ADVANCE_ONLY_NEXT,
5440 &right_key);
fb770ae4 5441 if (ret == -1)
7069830a 5442 right_end_reached = ADVANCE;
fb770ae4
LB
5443 else if (ret < 0)
5444 goto out;
7069830a
AB
5445 advance_right = 0;
5446 }
5447
5448 if (left_end_reached && right_end_reached) {
5449 ret = 0;
5450 goto out;
5451 } else if (left_end_reached) {
5452 if (right_level == 0) {
ee8c494f 5453 ret = changed_cb(left_path, right_path,
7069830a
AB
5454 &right_key,
5455 BTRFS_COMPARE_TREE_DELETED,
5456 ctx);
5457 if (ret < 0)
5458 goto out;
5459 }
5460 advance_right = ADVANCE;
5461 continue;
5462 } else if (right_end_reached) {
5463 if (left_level == 0) {
ee8c494f 5464 ret = changed_cb(left_path, right_path,
7069830a
AB
5465 &left_key,
5466 BTRFS_COMPARE_TREE_NEW,
5467 ctx);
5468 if (ret < 0)
5469 goto out;
5470 }
5471 advance_left = ADVANCE;
5472 continue;
5473 }
5474
5475 if (left_level == 0 && right_level == 0) {
5476 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5477 if (cmp < 0) {
ee8c494f 5478 ret = changed_cb(left_path, right_path,
7069830a
AB
5479 &left_key,
5480 BTRFS_COMPARE_TREE_NEW,
5481 ctx);
5482 if (ret < 0)
5483 goto out;
5484 advance_left = ADVANCE;
5485 } else if (cmp > 0) {
ee8c494f 5486 ret = changed_cb(left_path, right_path,
7069830a
AB
5487 &right_key,
5488 BTRFS_COMPARE_TREE_DELETED,
5489 ctx);
5490 if (ret < 0)
5491 goto out;
5492 advance_right = ADVANCE;
5493 } else {
b99d9a6a 5494 enum btrfs_compare_tree_result result;
ba5e8f2e 5495
74dd17fb 5496 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
2ff7e61e
JM
5497 ret = tree_compare_item(left_path, right_path,
5498 tmp_buf);
ba5e8f2e 5499 if (ret)
b99d9a6a 5500 result = BTRFS_COMPARE_TREE_CHANGED;
ba5e8f2e 5501 else
b99d9a6a 5502 result = BTRFS_COMPARE_TREE_SAME;
ee8c494f 5503 ret = changed_cb(left_path, right_path,
b99d9a6a 5504 &left_key, result, ctx);
ba5e8f2e
JB
5505 if (ret < 0)
5506 goto out;
7069830a
AB
5507 advance_left = ADVANCE;
5508 advance_right = ADVANCE;
5509 }
5510 } else if (left_level == right_level) {
5511 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5512 if (cmp < 0) {
5513 advance_left = ADVANCE;
5514 } else if (cmp > 0) {
5515 advance_right = ADVANCE;
5516 } else {
5517 left_blockptr = btrfs_node_blockptr(
5518 left_path->nodes[left_level],
5519 left_path->slots[left_level]);
5520 right_blockptr = btrfs_node_blockptr(
5521 right_path->nodes[right_level],
5522 right_path->slots[right_level]);
6baa4293
FM
5523 left_gen = btrfs_node_ptr_generation(
5524 left_path->nodes[left_level],
5525 left_path->slots[left_level]);
5526 right_gen = btrfs_node_ptr_generation(
5527 right_path->nodes[right_level],
5528 right_path->slots[right_level]);
5529 if (left_blockptr == right_blockptr &&
5530 left_gen == right_gen) {
7069830a
AB
5531 /*
5532 * As we're on a shared block, don't
5533 * allow to go deeper.
5534 */
5535 advance_left = ADVANCE_ONLY_NEXT;
5536 advance_right = ADVANCE_ONLY_NEXT;
5537 } else {
5538 advance_left = ADVANCE;
5539 advance_right = ADVANCE;
5540 }
5541 }
5542 } else if (left_level < right_level) {
5543 advance_right = ADVANCE;
5544 } else {
5545 advance_left = ADVANCE;
5546 }
5547 }
5548
5549out:
5550 btrfs_free_path(left_path);
5551 btrfs_free_path(right_path);
8f282f71 5552 kvfree(tmp_buf);
7069830a
AB
5553 return ret;
5554}
5555
3f157a2f
CM
5556/*
5557 * this is similar to btrfs_next_leaf, but does not try to preserve
5558 * and fixup the path. It looks for and returns the next key in the
de78b51a 5559 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5560 *
5561 * 0 is returned if another key is found, < 0 if there are any errors
5562 * and 1 is returned if there are no higher keys in the tree
5563 *
5564 * path->keep_locks should be set to 1 on the search made before
5565 * calling this function.
5566 */
e7a84565 5567int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5568 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5569{
e7a84565
CM
5570 int slot;
5571 struct extent_buffer *c;
5572
934d375b 5573 WARN_ON(!path->keep_locks);
d397712b 5574 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5575 if (!path->nodes[level])
5576 return 1;
5577
5578 slot = path->slots[level] + 1;
5579 c = path->nodes[level];
3f157a2f 5580next:
e7a84565 5581 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5582 int ret;
5583 int orig_lowest;
5584 struct btrfs_key cur_key;
5585 if (level + 1 >= BTRFS_MAX_LEVEL ||
5586 !path->nodes[level + 1])
e7a84565 5587 return 1;
33c66f43
YZ
5588
5589 if (path->locks[level + 1]) {
5590 level++;
5591 continue;
5592 }
5593
5594 slot = btrfs_header_nritems(c) - 1;
5595 if (level == 0)
5596 btrfs_item_key_to_cpu(c, &cur_key, slot);
5597 else
5598 btrfs_node_key_to_cpu(c, &cur_key, slot);
5599
5600 orig_lowest = path->lowest_level;
b3b4aa74 5601 btrfs_release_path(path);
33c66f43
YZ
5602 path->lowest_level = level;
5603 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5604 0, 0);
5605 path->lowest_level = orig_lowest;
5606 if (ret < 0)
5607 return ret;
5608
5609 c = path->nodes[level];
5610 slot = path->slots[level];
5611 if (ret == 0)
5612 slot++;
5613 goto next;
e7a84565 5614 }
33c66f43 5615
e7a84565
CM
5616 if (level == 0)
5617 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5618 else {
3f157a2f
CM
5619 u64 gen = btrfs_node_ptr_generation(c, slot);
5620
3f157a2f
CM
5621 if (gen < min_trans) {
5622 slot++;
5623 goto next;
5624 }
e7a84565 5625 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5626 }
e7a84565
CM
5627 return 0;
5628 }
5629 return 1;
5630}
5631
97571fd0 5632/*
925baedd 5633 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5634 * returns 0 if it found something or 1 if there are no greater leaves.
5635 * returns < 0 on io errors.
97571fd0 5636 */
234b63a0 5637int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5638{
5639 return btrfs_next_old_leaf(root, path, 0);
5640}
5641
5642int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5643 u64 time_seq)
d97e63b6
CM
5644{
5645 int slot;
8e73f275 5646 int level;
5f39d397 5647 struct extent_buffer *c;
8e73f275 5648 struct extent_buffer *next;
925baedd
CM
5649 struct btrfs_key key;
5650 u32 nritems;
5651 int ret;
8e73f275 5652 int old_spinning = path->leave_spinning;
bd681513 5653 int next_rw_lock = 0;
925baedd
CM
5654
5655 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5656 if (nritems == 0)
925baedd 5657 return 1;
925baedd 5658
8e73f275
CM
5659 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5660again:
5661 level = 1;
5662 next = NULL;
bd681513 5663 next_rw_lock = 0;
b3b4aa74 5664 btrfs_release_path(path);
8e73f275 5665
a2135011 5666 path->keep_locks = 1;
31533fb2 5667 path->leave_spinning = 1;
8e73f275 5668
3d7806ec
JS
5669 if (time_seq)
5670 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5671 else
5672 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5673 path->keep_locks = 0;
5674
5675 if (ret < 0)
5676 return ret;
5677
a2135011 5678 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5679 /*
5680 * by releasing the path above we dropped all our locks. A balance
5681 * could have added more items next to the key that used to be
5682 * at the very end of the block. So, check again here and
5683 * advance the path if there are now more items available.
5684 */
a2135011 5685 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5686 if (ret == 0)
5687 path->slots[0]++;
8e73f275 5688 ret = 0;
925baedd
CM
5689 goto done;
5690 }
0b43e04f
LB
5691 /*
5692 * So the above check misses one case:
5693 * - after releasing the path above, someone has removed the item that
5694 * used to be at the very end of the block, and balance between leafs
5695 * gets another one with bigger key.offset to replace it.
5696 *
5697 * This one should be returned as well, or we can get leaf corruption
5698 * later(esp. in __btrfs_drop_extents()).
5699 *
5700 * And a bit more explanation about this check,
5701 * with ret > 0, the key isn't found, the path points to the slot
5702 * where it should be inserted, so the path->slots[0] item must be the
5703 * bigger one.
5704 */
5705 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5706 ret = 0;
5707 goto done;
5708 }
d97e63b6 5709
d397712b 5710 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5711 if (!path->nodes[level]) {
5712 ret = 1;
5713 goto done;
5714 }
5f39d397 5715
d97e63b6
CM
5716 slot = path->slots[level] + 1;
5717 c = path->nodes[level];
5f39d397 5718 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5719 level++;
8e73f275
CM
5720 if (level == BTRFS_MAX_LEVEL) {
5721 ret = 1;
5722 goto done;
5723 }
d97e63b6
CM
5724 continue;
5725 }
5f39d397 5726
925baedd 5727 if (next) {
bd681513 5728 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5729 free_extent_buffer(next);
925baedd 5730 }
5f39d397 5731
8e73f275 5732 next = c;
bd681513 5733 next_rw_lock = path->locks[level];
d07b8528 5734 ret = read_block_for_search(root, path, &next, level,
cda79c54 5735 slot, &key);
8e73f275
CM
5736 if (ret == -EAGAIN)
5737 goto again;
5f39d397 5738
76a05b35 5739 if (ret < 0) {
b3b4aa74 5740 btrfs_release_path(path);
76a05b35
CM
5741 goto done;
5742 }
5743
5cd57b2c 5744 if (!path->skip_locking) {
bd681513 5745 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5746 if (!ret && time_seq) {
5747 /*
5748 * If we don't get the lock, we may be racing
5749 * with push_leaf_left, holding that lock while
5750 * itself waiting for the leaf we've currently
5751 * locked. To solve this situation, we give up
5752 * on our lock and cycle.
5753 */
cf538830 5754 free_extent_buffer(next);
d42244a0
JS
5755 btrfs_release_path(path);
5756 cond_resched();
5757 goto again;
5758 }
8e73f275
CM
5759 if (!ret) {
5760 btrfs_set_path_blocking(path);
bd681513 5761 btrfs_tree_read_lock(next);
8e73f275 5762 }
31533fb2 5763 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5764 }
d97e63b6
CM
5765 break;
5766 }
5767 path->slots[level] = slot;
d397712b 5768 while (1) {
d97e63b6
CM
5769 level--;
5770 c = path->nodes[level];
925baedd 5771 if (path->locks[level])
bd681513 5772 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5773
5f39d397 5774 free_extent_buffer(c);
d97e63b6
CM
5775 path->nodes[level] = next;
5776 path->slots[level] = 0;
a74a4b97 5777 if (!path->skip_locking)
bd681513 5778 path->locks[level] = next_rw_lock;
d97e63b6
CM
5779 if (!level)
5780 break;
b4ce94de 5781
d07b8528 5782 ret = read_block_for_search(root, path, &next, level,
cda79c54 5783 0, &key);
8e73f275
CM
5784 if (ret == -EAGAIN)
5785 goto again;
5786
76a05b35 5787 if (ret < 0) {
b3b4aa74 5788 btrfs_release_path(path);
76a05b35
CM
5789 goto done;
5790 }
5791
5cd57b2c 5792 if (!path->skip_locking) {
bd681513 5793 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5794 if (!ret) {
5795 btrfs_set_path_blocking(path);
bd681513 5796 btrfs_tree_read_lock(next);
bd681513 5797 }
31533fb2 5798 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5799 }
d97e63b6 5800 }
8e73f275 5801 ret = 0;
925baedd 5802done:
f7c79f30 5803 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5804 path->leave_spinning = old_spinning;
5805 if (!old_spinning)
5806 btrfs_set_path_blocking(path);
5807
5808 return ret;
d97e63b6 5809}
0b86a832 5810
3f157a2f
CM
5811/*
5812 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5813 * searching until it gets past min_objectid or finds an item of 'type'
5814 *
5815 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5816 */
0b86a832
CM
5817int btrfs_previous_item(struct btrfs_root *root,
5818 struct btrfs_path *path, u64 min_objectid,
5819 int type)
5820{
5821 struct btrfs_key found_key;
5822 struct extent_buffer *leaf;
e02119d5 5823 u32 nritems;
0b86a832
CM
5824 int ret;
5825
d397712b 5826 while (1) {
0b86a832 5827 if (path->slots[0] == 0) {
b4ce94de 5828 btrfs_set_path_blocking(path);
0b86a832
CM
5829 ret = btrfs_prev_leaf(root, path);
5830 if (ret != 0)
5831 return ret;
5832 } else {
5833 path->slots[0]--;
5834 }
5835 leaf = path->nodes[0];
e02119d5
CM
5836 nritems = btrfs_header_nritems(leaf);
5837 if (nritems == 0)
5838 return 1;
5839 if (path->slots[0] == nritems)
5840 path->slots[0]--;
5841
0b86a832 5842 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5843 if (found_key.objectid < min_objectid)
5844 break;
0a4eefbb
YZ
5845 if (found_key.type == type)
5846 return 0;
e02119d5
CM
5847 if (found_key.objectid == min_objectid &&
5848 found_key.type < type)
5849 break;
0b86a832
CM
5850 }
5851 return 1;
5852}
ade2e0b3
WS
5853
5854/*
5855 * search in extent tree to find a previous Metadata/Data extent item with
5856 * min objecitd.
5857 *
5858 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5859 */
5860int btrfs_previous_extent_item(struct btrfs_root *root,
5861 struct btrfs_path *path, u64 min_objectid)
5862{
5863 struct btrfs_key found_key;
5864 struct extent_buffer *leaf;
5865 u32 nritems;
5866 int ret;
5867
5868 while (1) {
5869 if (path->slots[0] == 0) {
5870 btrfs_set_path_blocking(path);
5871 ret = btrfs_prev_leaf(root, path);
5872 if (ret != 0)
5873 return ret;
5874 } else {
5875 path->slots[0]--;
5876 }
5877 leaf = path->nodes[0];
5878 nritems = btrfs_header_nritems(leaf);
5879 if (nritems == 0)
5880 return 1;
5881 if (path->slots[0] == nritems)
5882 path->slots[0]--;
5883
5884 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5885 if (found_key.objectid < min_objectid)
5886 break;
5887 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5888 found_key.type == BTRFS_METADATA_ITEM_KEY)
5889 return 0;
5890 if (found_key.objectid == min_objectid &&
5891 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5892 break;
5893 }
5894 return 1;
5895}