Btrfs: fix data loss after truncate when using the no-holes feature
[linux-block.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
8f282f71 22#include <linux/vmalloc.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
7f5c1516 25#include "transaction.h"
5f39d397 26#include "print-tree.h"
925baedd 27#include "locking.h"
9a8dd150 28
e089f05c
CM
29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
310712b2
OS
31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
5f39d397 34static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
35 struct btrfs_fs_info *fs_info,
36 struct extent_buffer *dst,
971a1f66 37 struct extent_buffer *src, int empty);
5f39d397 38static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 39 struct btrfs_fs_info *fs_info,
5f39d397
CM
40 struct extent_buffer *dst_buf,
41 struct extent_buffer *src_buf);
afe5fea7
TI
42static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 int level, int slot);
5de865ee 44static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
f230475e 45 struct extent_buffer *eb);
d97e63b6 46
df24a2b9 47struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 48{
e2c89907 49 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
2c90e5d6
CM
50}
51
b4ce94de
CM
52/*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57{
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
67 }
68}
69
70/*
71 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
b4ce94de 77 */
4008c04a 78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 79 struct extent_buffer *held, int held_rw)
b4ce94de
CM
80{
81 int i;
4008c04a 82
bd681513
CM
83 if (held) {
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
89 }
4008c04a 90 btrfs_set_path_blocking(p);
4008c04a
CM
91
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
99 }
b4ce94de 100 }
4008c04a 101
4008c04a 102 if (held)
bd681513 103 btrfs_clear_lock_blocking_rw(held, held_rw);
b4ce94de
CM
104}
105
d352ac68 106/* this also releases the path */
df24a2b9 107void btrfs_free_path(struct btrfs_path *p)
be0e5c09 108{
ff175d57
JJ
109 if (!p)
110 return;
b3b4aa74 111 btrfs_release_path(p);
df24a2b9 112 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
113}
114
d352ac68
CM
115/*
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
118 *
119 * It is safe to call this on paths that no locks or extent buffers held.
120 */
b3b4aa74 121noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
122{
123 int i;
a2135011 124
234b63a0 125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 126 p->slots[i] = 0;
eb60ceac 127 if (!p->nodes[i])
925baedd
CM
128 continue;
129 if (p->locks[i]) {
bd681513 130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
131 p->locks[i] = 0;
132 }
5f39d397 133 free_extent_buffer(p->nodes[i]);
3f157a2f 134 p->nodes[i] = NULL;
eb60ceac
CM
135 }
136}
137
d352ac68
CM
138/*
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
142 * looping required.
143 *
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
147 */
925baedd
CM
148struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149{
150 struct extent_buffer *eb;
240f62c8 151
3083ee2e
JB
152 while (1) {
153 rcu_read_lock();
154 eb = rcu_dereference(root->node);
155
156 /*
157 * RCU really hurts here, we could free up the root node because
01327610 158 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
161 */
162 if (atomic_inc_not_zero(&eb->refs)) {
163 rcu_read_unlock();
164 break;
165 }
166 rcu_read_unlock();
167 synchronize_rcu();
168 }
925baedd
CM
169 return eb;
170}
171
d352ac68
CM
172/* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
175 */
925baedd
CM
176struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177{
178 struct extent_buffer *eb;
179
d397712b 180 while (1) {
925baedd
CM
181 eb = btrfs_root_node(root);
182 btrfs_tree_lock(eb);
240f62c8 183 if (eb == root->node)
925baedd 184 break;
925baedd
CM
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
187 }
188 return eb;
189}
190
bd681513
CM
191/* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
194 */
48a3b636 195static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
196{
197 struct extent_buffer *eb;
198
199 while (1) {
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
203 break;
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
206 }
207 return eb;
208}
209
d352ac68
CM
210/* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
213 */
0b86a832
CM
214static void add_root_to_dirty_list(struct btrfs_root *root)
215{
0b246afa
JM
216 struct btrfs_fs_info *fs_info = root->fs_info;
217
e7070be1
JB
218 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
219 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
220 return;
221
0b246afa 222 spin_lock(&fs_info->trans_lock);
e7070be1
JB
223 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
224 /* Want the extent tree to be the last on the list */
225 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
226 list_move_tail(&root->dirty_list,
0b246afa 227 &fs_info->dirty_cowonly_roots);
e7070be1
JB
228 else
229 list_move(&root->dirty_list,
0b246afa 230 &fs_info->dirty_cowonly_roots);
0b86a832 231 }
0b246afa 232 spin_unlock(&fs_info->trans_lock);
0b86a832
CM
233}
234
d352ac68
CM
235/*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
be20aa9d
CM
240int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244{
0b246afa 245 struct btrfs_fs_info *fs_info = root->fs_info;
be20aa9d 246 struct extent_buffer *cow;
be20aa9d
CM
247 int ret = 0;
248 int level;
5d4f98a2 249 struct btrfs_disk_key disk_key;
be20aa9d 250
27cdeb70 251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 252 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
253 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
254 trans->transid != root->last_trans);
be20aa9d
CM
255
256 level = btrfs_header_level(buf);
5d4f98a2
YZ
257 if (level == 0)
258 btrfs_item_key(buf, &disk_key, 0);
259 else
260 btrfs_node_key(buf, &disk_key, 0);
31840ae1 261
4d75f8a9
DS
262 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
263 &disk_key, level, buf->start, 0);
5d4f98a2 264 if (IS_ERR(cow))
be20aa9d
CM
265 return PTR_ERR(cow);
266
58e8012c 267 copy_extent_buffer_full(cow, buf);
be20aa9d
CM
268 btrfs_set_header_bytenr(cow, cow->start);
269 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272 BTRFS_HEADER_FLAG_RELOC);
273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275 else
276 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 277
0b246afa 278 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 279
be20aa9d 280 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 282 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 283 else
e339a6b0 284 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 285
be20aa9d
CM
286 if (ret)
287 return ret;
288
289 btrfs_mark_buffer_dirty(cow);
290 *cow_ret = cow;
291 return 0;
292}
293
bd989ba3
JS
294enum mod_log_op {
295 MOD_LOG_KEY_REPLACE,
296 MOD_LOG_KEY_ADD,
297 MOD_LOG_KEY_REMOVE,
298 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 MOD_LOG_MOVE_KEYS,
301 MOD_LOG_ROOT_REPLACE,
302};
303
304struct tree_mod_move {
305 int dst_slot;
306 int nr_items;
307};
308
309struct tree_mod_root {
310 u64 logical;
311 u8 level;
312};
313
314struct tree_mod_elem {
315 struct rb_node node;
298cfd36 316 u64 logical;
097b8a7c 317 u64 seq;
bd989ba3
JS
318 enum mod_log_op op;
319
320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 int slot;
322
323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 u64 generation;
325
326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 struct btrfs_disk_key key;
328 u64 blockptr;
329
330 /* this is used for op == MOD_LOG_MOVE_KEYS */
331 struct tree_mod_move move;
332
333 /* this is used for op == MOD_LOG_ROOT_REPLACE */
334 struct tree_mod_root old_root;
335};
336
097b8a7c 337static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 338{
097b8a7c 339 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
340}
341
097b8a7c
JS
342static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343{
344 read_unlock(&fs_info->tree_mod_log_lock);
345}
346
347static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348{
349 write_lock(&fs_info->tree_mod_log_lock);
350}
351
352static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353{
354 write_unlock(&fs_info->tree_mod_log_lock);
355}
356
fc36ed7e 357/*
fcebe456 358 * Pull a new tree mod seq number for our operation.
fc36ed7e 359 */
fcebe456 360static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
361{
362 return atomic64_inc_return(&fs_info->tree_mod_seq);
363}
364
097b8a7c
JS
365/*
366 * This adds a new blocker to the tree mod log's blocker list if the @elem
367 * passed does not already have a sequence number set. So when a caller expects
368 * to record tree modifications, it should ensure to set elem->seq to zero
369 * before calling btrfs_get_tree_mod_seq.
370 * Returns a fresh, unused tree log modification sequence number, even if no new
371 * blocker was added.
372 */
373u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
374 struct seq_list *elem)
bd989ba3 375{
097b8a7c 376 tree_mod_log_write_lock(fs_info);
bd989ba3 377 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 378 if (!elem->seq) {
fcebe456 379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 }
bd989ba3 382 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
383 tree_mod_log_write_unlock(fs_info);
384
fcebe456 385 return elem->seq;
bd989ba3
JS
386}
387
388void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
389 struct seq_list *elem)
390{
391 struct rb_root *tm_root;
392 struct rb_node *node;
393 struct rb_node *next;
394 struct seq_list *cur_elem;
395 struct tree_mod_elem *tm;
396 u64 min_seq = (u64)-1;
397 u64 seq_putting = elem->seq;
398
399 if (!seq_putting)
400 return;
401
bd989ba3
JS
402 spin_lock(&fs_info->tree_mod_seq_lock);
403 list_del(&elem->list);
097b8a7c 404 elem->seq = 0;
bd989ba3
JS
405
406 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 407 if (cur_elem->seq < min_seq) {
bd989ba3
JS
408 if (seq_putting > cur_elem->seq) {
409 /*
410 * blocker with lower sequence number exists, we
411 * cannot remove anything from the log
412 */
097b8a7c
JS
413 spin_unlock(&fs_info->tree_mod_seq_lock);
414 return;
bd989ba3
JS
415 }
416 min_seq = cur_elem->seq;
417 }
418 }
097b8a7c
JS
419 spin_unlock(&fs_info->tree_mod_seq_lock);
420
bd989ba3
JS
421 /*
422 * anything that's lower than the lowest existing (read: blocked)
423 * sequence number can be removed from the tree.
424 */
097b8a7c 425 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
426 tm_root = &fs_info->tree_mod_log;
427 for (node = rb_first(tm_root); node; node = next) {
428 next = rb_next(node);
6b4df8b6 429 tm = rb_entry(node, struct tree_mod_elem, node);
097b8a7c 430 if (tm->seq > min_seq)
bd989ba3
JS
431 continue;
432 rb_erase(node, tm_root);
bd989ba3
JS
433 kfree(tm);
434 }
097b8a7c 435 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
436}
437
438/*
439 * key order of the log:
298cfd36 440 * node/leaf start address -> sequence
bd989ba3 441 *
298cfd36
CR
442 * The 'start address' is the logical address of the *new* root node
443 * for root replace operations, or the logical address of the affected
444 * block for all other operations.
5de865ee
FDBM
445 *
446 * Note: must be called with write lock (tree_mod_log_write_lock).
bd989ba3
JS
447 */
448static noinline int
449__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450{
451 struct rb_root *tm_root;
452 struct rb_node **new;
453 struct rb_node *parent = NULL;
454 struct tree_mod_elem *cur;
c8cc6341
JB
455
456 BUG_ON(!tm);
457
fcebe456 458 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 459
bd989ba3
JS
460 tm_root = &fs_info->tree_mod_log;
461 new = &tm_root->rb_node;
462 while (*new) {
6b4df8b6 463 cur = rb_entry(*new, struct tree_mod_elem, node);
bd989ba3 464 parent = *new;
298cfd36 465 if (cur->logical < tm->logical)
bd989ba3 466 new = &((*new)->rb_left);
298cfd36 467 else if (cur->logical > tm->logical)
bd989ba3 468 new = &((*new)->rb_right);
097b8a7c 469 else if (cur->seq < tm->seq)
bd989ba3 470 new = &((*new)->rb_left);
097b8a7c 471 else if (cur->seq > tm->seq)
bd989ba3 472 new = &((*new)->rb_right);
5de865ee
FDBM
473 else
474 return -EEXIST;
bd989ba3
JS
475 }
476
477 rb_link_node(&tm->node, parent, new);
478 rb_insert_color(&tm->node, tm_root);
5de865ee 479 return 0;
bd989ba3
JS
480}
481
097b8a7c
JS
482/*
483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
484 * returns zero with the tree_mod_log_lock acquired. The caller must hold
485 * this until all tree mod log insertions are recorded in the rb tree and then
486 * call tree_mod_log_write_unlock() to release.
487 */
e9b7fd4d
JS
488static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
489 struct extent_buffer *eb) {
490 smp_mb();
491 if (list_empty(&(fs_info)->tree_mod_seq_list))
492 return 1;
097b8a7c
JS
493 if (eb && btrfs_header_level(eb) == 0)
494 return 1;
5de865ee
FDBM
495
496 tree_mod_log_write_lock(fs_info);
497 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
498 tree_mod_log_write_unlock(fs_info);
499 return 1;
500 }
501
e9b7fd4d
JS
502 return 0;
503}
504
5de865ee
FDBM
505/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
506static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
507 struct extent_buffer *eb)
508{
509 smp_mb();
510 if (list_empty(&(fs_info)->tree_mod_seq_list))
511 return 0;
512 if (eb && btrfs_header_level(eb) == 0)
513 return 0;
514
515 return 1;
516}
517
518static struct tree_mod_elem *
519alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
520 enum mod_log_op op, gfp_t flags)
bd989ba3 521{
097b8a7c 522 struct tree_mod_elem *tm;
bd989ba3 523
c8cc6341
JB
524 tm = kzalloc(sizeof(*tm), flags);
525 if (!tm)
5de865ee 526 return NULL;
bd989ba3 527
298cfd36 528 tm->logical = eb->start;
bd989ba3
JS
529 if (op != MOD_LOG_KEY_ADD) {
530 btrfs_node_key(eb, &tm->key, slot);
531 tm->blockptr = btrfs_node_blockptr(eb, slot);
532 }
533 tm->op = op;
534 tm->slot = slot;
535 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 536 RB_CLEAR_NODE(&tm->node);
bd989ba3 537
5de865ee 538 return tm;
097b8a7c
JS
539}
540
541static noinline int
c8cc6341
JB
542tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
543 struct extent_buffer *eb, int slot,
544 enum mod_log_op op, gfp_t flags)
097b8a7c 545{
5de865ee
FDBM
546 struct tree_mod_elem *tm;
547 int ret;
548
549 if (!tree_mod_need_log(fs_info, eb))
550 return 0;
551
552 tm = alloc_tree_mod_elem(eb, slot, op, flags);
553 if (!tm)
554 return -ENOMEM;
555
556 if (tree_mod_dont_log(fs_info, eb)) {
557 kfree(tm);
097b8a7c 558 return 0;
5de865ee
FDBM
559 }
560
561 ret = __tree_mod_log_insert(fs_info, tm);
562 tree_mod_log_write_unlock(fs_info);
563 if (ret)
564 kfree(tm);
097b8a7c 565
5de865ee 566 return ret;
097b8a7c
JS
567}
568
bd989ba3
JS
569static noinline int
570tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
571 struct extent_buffer *eb, int dst_slot, int src_slot,
572 int nr_items, gfp_t flags)
573{
5de865ee
FDBM
574 struct tree_mod_elem *tm = NULL;
575 struct tree_mod_elem **tm_list = NULL;
576 int ret = 0;
bd989ba3 577 int i;
5de865ee 578 int locked = 0;
bd989ba3 579
5de865ee 580 if (!tree_mod_need_log(fs_info, eb))
f395694c 581 return 0;
bd989ba3 582
31e818fe 583 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
5de865ee
FDBM
584 if (!tm_list)
585 return -ENOMEM;
586
587 tm = kzalloc(sizeof(*tm), flags);
588 if (!tm) {
589 ret = -ENOMEM;
590 goto free_tms;
591 }
592
298cfd36 593 tm->logical = eb->start;
5de865ee
FDBM
594 tm->slot = src_slot;
595 tm->move.dst_slot = dst_slot;
596 tm->move.nr_items = nr_items;
597 tm->op = MOD_LOG_MOVE_KEYS;
598
599 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
600 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
601 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
602 if (!tm_list[i]) {
603 ret = -ENOMEM;
604 goto free_tms;
605 }
606 }
607
608 if (tree_mod_dont_log(fs_info, eb))
609 goto free_tms;
610 locked = 1;
611
01763a2e
JS
612 /*
613 * When we override something during the move, we log these removals.
614 * This can only happen when we move towards the beginning of the
615 * buffer, i.e. dst_slot < src_slot.
616 */
bd989ba3 617 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
5de865ee
FDBM
618 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
619 if (ret)
620 goto free_tms;
bd989ba3
JS
621 }
622
5de865ee
FDBM
623 ret = __tree_mod_log_insert(fs_info, tm);
624 if (ret)
625 goto free_tms;
626 tree_mod_log_write_unlock(fs_info);
627 kfree(tm_list);
f395694c 628
5de865ee
FDBM
629 return 0;
630free_tms:
631 for (i = 0; i < nr_items; i++) {
632 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
633 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
634 kfree(tm_list[i]);
635 }
636 if (locked)
637 tree_mod_log_write_unlock(fs_info);
638 kfree(tm_list);
639 kfree(tm);
bd989ba3 640
5de865ee 641 return ret;
bd989ba3
JS
642}
643
5de865ee
FDBM
644static inline int
645__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
646 struct tree_mod_elem **tm_list,
647 int nritems)
097b8a7c 648{
5de865ee 649 int i, j;
097b8a7c
JS
650 int ret;
651
097b8a7c 652 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
653 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
654 if (ret) {
655 for (j = nritems - 1; j > i; j--)
656 rb_erase(&tm_list[j]->node,
657 &fs_info->tree_mod_log);
658 return ret;
659 }
097b8a7c 660 }
5de865ee
FDBM
661
662 return 0;
097b8a7c
JS
663}
664
bd989ba3
JS
665static noinline int
666tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
667 struct extent_buffer *old_root,
90f8d62e
JS
668 struct extent_buffer *new_root, gfp_t flags,
669 int log_removal)
bd989ba3 670{
5de865ee
FDBM
671 struct tree_mod_elem *tm = NULL;
672 struct tree_mod_elem **tm_list = NULL;
673 int nritems = 0;
674 int ret = 0;
675 int i;
bd989ba3 676
5de865ee 677 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
678 return 0;
679
5de865ee
FDBM
680 if (log_removal && btrfs_header_level(old_root) > 0) {
681 nritems = btrfs_header_nritems(old_root);
31e818fe 682 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
683 flags);
684 if (!tm_list) {
685 ret = -ENOMEM;
686 goto free_tms;
687 }
688 for (i = 0; i < nritems; i++) {
689 tm_list[i] = alloc_tree_mod_elem(old_root, i,
690 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
691 if (!tm_list[i]) {
692 ret = -ENOMEM;
693 goto free_tms;
694 }
695 }
696 }
d9abbf1c 697
c8cc6341 698 tm = kzalloc(sizeof(*tm), flags);
5de865ee
FDBM
699 if (!tm) {
700 ret = -ENOMEM;
701 goto free_tms;
702 }
bd989ba3 703
298cfd36 704 tm->logical = new_root->start;
bd989ba3
JS
705 tm->old_root.logical = old_root->start;
706 tm->old_root.level = btrfs_header_level(old_root);
707 tm->generation = btrfs_header_generation(old_root);
708 tm->op = MOD_LOG_ROOT_REPLACE;
709
5de865ee
FDBM
710 if (tree_mod_dont_log(fs_info, NULL))
711 goto free_tms;
712
713 if (tm_list)
714 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
715 if (!ret)
716 ret = __tree_mod_log_insert(fs_info, tm);
717
718 tree_mod_log_write_unlock(fs_info);
719 if (ret)
720 goto free_tms;
721 kfree(tm_list);
722
723 return ret;
724
725free_tms:
726 if (tm_list) {
727 for (i = 0; i < nritems; i++)
728 kfree(tm_list[i]);
729 kfree(tm_list);
730 }
731 kfree(tm);
732
733 return ret;
bd989ba3
JS
734}
735
736static struct tree_mod_elem *
737__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
738 int smallest)
739{
740 struct rb_root *tm_root;
741 struct rb_node *node;
742 struct tree_mod_elem *cur = NULL;
743 struct tree_mod_elem *found = NULL;
bd989ba3 744
097b8a7c 745 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
746 tm_root = &fs_info->tree_mod_log;
747 node = tm_root->rb_node;
748 while (node) {
6b4df8b6 749 cur = rb_entry(node, struct tree_mod_elem, node);
298cfd36 750 if (cur->logical < start) {
bd989ba3 751 node = node->rb_left;
298cfd36 752 } else if (cur->logical > start) {
bd989ba3 753 node = node->rb_right;
097b8a7c 754 } else if (cur->seq < min_seq) {
bd989ba3
JS
755 node = node->rb_left;
756 } else if (!smallest) {
757 /* we want the node with the highest seq */
758 if (found)
097b8a7c 759 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
760 found = cur;
761 node = node->rb_left;
097b8a7c 762 } else if (cur->seq > min_seq) {
bd989ba3
JS
763 /* we want the node with the smallest seq */
764 if (found)
097b8a7c 765 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
766 found = cur;
767 node = node->rb_right;
768 } else {
769 found = cur;
770 break;
771 }
772 }
097b8a7c 773 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
774
775 return found;
776}
777
778/*
779 * this returns the element from the log with the smallest time sequence
780 * value that's in the log (the oldest log item). any element with a time
781 * sequence lower than min_seq will be ignored.
782 */
783static struct tree_mod_elem *
784tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
785 u64 min_seq)
786{
787 return __tree_mod_log_search(fs_info, start, min_seq, 1);
788}
789
790/*
791 * this returns the element from the log with the largest time sequence
792 * value that's in the log (the most recent log item). any element with
793 * a time sequence lower than min_seq will be ignored.
794 */
795static struct tree_mod_elem *
796tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
797{
798 return __tree_mod_log_search(fs_info, start, min_seq, 0);
799}
800
5de865ee 801static noinline int
bd989ba3
JS
802tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
803 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 804 unsigned long src_offset, int nr_items)
bd989ba3 805{
5de865ee
FDBM
806 int ret = 0;
807 struct tree_mod_elem **tm_list = NULL;
808 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 809 int i;
5de865ee 810 int locked = 0;
bd989ba3 811
5de865ee
FDBM
812 if (!tree_mod_need_log(fs_info, NULL))
813 return 0;
bd989ba3 814
c8cc6341 815 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
816 return 0;
817
31e818fe 818 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
819 GFP_NOFS);
820 if (!tm_list)
821 return -ENOMEM;
bd989ba3 822
5de865ee
FDBM
823 tm_list_add = tm_list;
824 tm_list_rem = tm_list + nr_items;
bd989ba3 825 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
826 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
827 MOD_LOG_KEY_REMOVE, GFP_NOFS);
828 if (!tm_list_rem[i]) {
829 ret = -ENOMEM;
830 goto free_tms;
831 }
832
833 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
834 MOD_LOG_KEY_ADD, GFP_NOFS);
835 if (!tm_list_add[i]) {
836 ret = -ENOMEM;
837 goto free_tms;
838 }
839 }
840
841 if (tree_mod_dont_log(fs_info, NULL))
842 goto free_tms;
843 locked = 1;
844
845 for (i = 0; i < nr_items; i++) {
846 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
847 if (ret)
848 goto free_tms;
849 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
850 if (ret)
851 goto free_tms;
bd989ba3 852 }
5de865ee
FDBM
853
854 tree_mod_log_write_unlock(fs_info);
855 kfree(tm_list);
856
857 return 0;
858
859free_tms:
860 for (i = 0; i < nr_items * 2; i++) {
861 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
862 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
863 kfree(tm_list[i]);
864 }
865 if (locked)
866 tree_mod_log_write_unlock(fs_info);
867 kfree(tm_list);
868
869 return ret;
bd989ba3
JS
870}
871
872static inline void
873tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
874 int dst_offset, int src_offset, int nr_items)
875{
876 int ret;
877 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
878 nr_items, GFP_NOFS);
879 BUG_ON(ret < 0);
880}
881
097b8a7c 882static noinline void
bd989ba3 883tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
32adf090 884 struct extent_buffer *eb, int slot, int atomic)
bd989ba3
JS
885{
886 int ret;
887
78357766 888 ret = tree_mod_log_insert_key(fs_info, eb, slot,
c8cc6341
JB
889 MOD_LOG_KEY_REPLACE,
890 atomic ? GFP_ATOMIC : GFP_NOFS);
bd989ba3
JS
891 BUG_ON(ret < 0);
892}
893
5de865ee 894static noinline int
097b8a7c 895tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 896{
5de865ee
FDBM
897 struct tree_mod_elem **tm_list = NULL;
898 int nritems = 0;
899 int i;
900 int ret = 0;
901
902 if (btrfs_header_level(eb) == 0)
903 return 0;
904
905 if (!tree_mod_need_log(fs_info, NULL))
906 return 0;
907
908 nritems = btrfs_header_nritems(eb);
31e818fe 909 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
910 if (!tm_list)
911 return -ENOMEM;
912
913 for (i = 0; i < nritems; i++) {
914 tm_list[i] = alloc_tree_mod_elem(eb, i,
915 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
916 if (!tm_list[i]) {
917 ret = -ENOMEM;
918 goto free_tms;
919 }
920 }
921
e9b7fd4d 922 if (tree_mod_dont_log(fs_info, eb))
5de865ee
FDBM
923 goto free_tms;
924
925 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
926 tree_mod_log_write_unlock(fs_info);
927 if (ret)
928 goto free_tms;
929 kfree(tm_list);
930
931 return 0;
932
933free_tms:
934 for (i = 0; i < nritems; i++)
935 kfree(tm_list[i]);
936 kfree(tm_list);
937
938 return ret;
bd989ba3
JS
939}
940
097b8a7c 941static noinline void
bd989ba3 942tree_mod_log_set_root_pointer(struct btrfs_root *root,
90f8d62e
JS
943 struct extent_buffer *new_root_node,
944 int log_removal)
bd989ba3
JS
945{
946 int ret;
bd989ba3 947 ret = tree_mod_log_insert_root(root->fs_info, root->node,
90f8d62e 948 new_root_node, GFP_NOFS, log_removal);
bd989ba3
JS
949 BUG_ON(ret < 0);
950}
951
5d4f98a2
YZ
952/*
953 * check if the tree block can be shared by multiple trees
954 */
955int btrfs_block_can_be_shared(struct btrfs_root *root,
956 struct extent_buffer *buf)
957{
958 /*
01327610 959 * Tree blocks not in reference counted trees and tree roots
5d4f98a2
YZ
960 * are never shared. If a block was allocated after the last
961 * snapshot and the block was not allocated by tree relocation,
962 * we know the block is not shared.
963 */
27cdeb70 964 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
965 buf != root->node && buf != root->commit_root &&
966 (btrfs_header_generation(buf) <=
967 btrfs_root_last_snapshot(&root->root_item) ||
968 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
969 return 1;
970#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
27cdeb70 971 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
972 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
973 return 1;
974#endif
975 return 0;
976}
977
978static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
979 struct btrfs_root *root,
980 struct extent_buffer *buf,
f0486c68
YZ
981 struct extent_buffer *cow,
982 int *last_ref)
5d4f98a2 983{
0b246afa 984 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
985 u64 refs;
986 u64 owner;
987 u64 flags;
988 u64 new_flags = 0;
989 int ret;
990
991 /*
992 * Backrefs update rules:
993 *
994 * Always use full backrefs for extent pointers in tree block
995 * allocated by tree relocation.
996 *
997 * If a shared tree block is no longer referenced by its owner
998 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
999 * use full backrefs for extent pointers in tree block.
1000 *
1001 * If a tree block is been relocating
1002 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1003 * use full backrefs for extent pointers in tree block.
1004 * The reason for this is some operations (such as drop tree)
1005 * are only allowed for blocks use full backrefs.
1006 */
1007
1008 if (btrfs_block_can_be_shared(root, buf)) {
2ff7e61e 1009 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
3173a18f
JB
1010 btrfs_header_level(buf), 1,
1011 &refs, &flags);
be1a5564
MF
1012 if (ret)
1013 return ret;
e5df9573
MF
1014 if (refs == 0) {
1015 ret = -EROFS;
0b246afa 1016 btrfs_handle_fs_error(fs_info, ret, NULL);
e5df9573
MF
1017 return ret;
1018 }
5d4f98a2
YZ
1019 } else {
1020 refs = 1;
1021 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1024 else
1025 flags = 0;
1026 }
1027
1028 owner = btrfs_header_owner(buf);
1029 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1030 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1031
1032 if (refs > 1) {
1033 if ((owner == root->root_key.objectid ||
1034 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1035 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 1036 ret = btrfs_inc_ref(trans, root, buf, 1);
79787eaa 1037 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1038
1039 if (root->root_key.objectid ==
1040 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 1041 ret = btrfs_dec_ref(trans, root, buf, 0);
79787eaa 1042 BUG_ON(ret); /* -ENOMEM */
e339a6b0 1043 ret = btrfs_inc_ref(trans, root, cow, 1);
79787eaa 1044 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1045 }
1046 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1047 } else {
1048
1049 if (root->root_key.objectid ==
1050 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1051 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1052 else
e339a6b0 1053 ret = btrfs_inc_ref(trans, root, cow, 0);
79787eaa 1054 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1055 }
1056 if (new_flags != 0) {
b1c79e09
JB
1057 int level = btrfs_header_level(buf);
1058
2ff7e61e 1059 ret = btrfs_set_disk_extent_flags(trans, fs_info,
5d4f98a2
YZ
1060 buf->start,
1061 buf->len,
b1c79e09 1062 new_flags, level, 0);
be1a5564
MF
1063 if (ret)
1064 return ret;
5d4f98a2
YZ
1065 }
1066 } else {
1067 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1068 if (root->root_key.objectid ==
1069 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1070 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1071 else
e339a6b0 1072 ret = btrfs_inc_ref(trans, root, cow, 0);
79787eaa 1073 BUG_ON(ret); /* -ENOMEM */
e339a6b0 1074 ret = btrfs_dec_ref(trans, root, buf, 1);
79787eaa 1075 BUG_ON(ret); /* -ENOMEM */
5d4f98a2 1076 }
7c302b49 1077 clean_tree_block(fs_info, buf);
f0486c68 1078 *last_ref = 1;
5d4f98a2
YZ
1079 }
1080 return 0;
1081}
1082
d352ac68 1083/*
d397712b
CM
1084 * does the dirty work in cow of a single block. The parent block (if
1085 * supplied) is updated to point to the new cow copy. The new buffer is marked
1086 * dirty and returned locked. If you modify the block it needs to be marked
1087 * dirty again.
d352ac68
CM
1088 *
1089 * search_start -- an allocation hint for the new block
1090 *
d397712b
CM
1091 * empty_size -- a hint that you plan on doing more cow. This is the size in
1092 * bytes the allocator should try to find free next to the block it returns.
1093 * This is just a hint and may be ignored by the allocator.
d352ac68 1094 */
d397712b 1095static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1096 struct btrfs_root *root,
1097 struct extent_buffer *buf,
1098 struct extent_buffer *parent, int parent_slot,
1099 struct extent_buffer **cow_ret,
9fa8cfe7 1100 u64 search_start, u64 empty_size)
02217ed2 1101{
0b246afa 1102 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2 1103 struct btrfs_disk_key disk_key;
5f39d397 1104 struct extent_buffer *cow;
be1a5564 1105 int level, ret;
f0486c68 1106 int last_ref = 0;
925baedd 1107 int unlock_orig = 0;
0f5053eb 1108 u64 parent_start = 0;
7bb86316 1109
925baedd
CM
1110 if (*cow_ret == buf)
1111 unlock_orig = 1;
1112
b9447ef8 1113 btrfs_assert_tree_locked(buf);
925baedd 1114
27cdeb70 1115 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 1116 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
1117 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1118 trans->transid != root->last_trans);
5f39d397 1119
7bb86316 1120 level = btrfs_header_level(buf);
31840ae1 1121
5d4f98a2
YZ
1122 if (level == 0)
1123 btrfs_item_key(buf, &disk_key, 0);
1124 else
1125 btrfs_node_key(buf, &disk_key, 0);
1126
0f5053eb
GR
1127 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1128 parent_start = parent->start;
5d4f98a2 1129
4d75f8a9
DS
1130 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1131 root->root_key.objectid, &disk_key, level,
1132 search_start, empty_size);
54aa1f4d
CM
1133 if (IS_ERR(cow))
1134 return PTR_ERR(cow);
6702ed49 1135
b4ce94de
CM
1136 /* cow is set to blocking by btrfs_init_new_buffer */
1137
58e8012c 1138 copy_extent_buffer_full(cow, buf);
db94535d 1139 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1140 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1141 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1142 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1143 BTRFS_HEADER_FLAG_RELOC);
1144 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1145 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1146 else
1147 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1148
0b246afa 1149 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 1150
be1a5564 1151 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1152 if (ret) {
66642832 1153 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1154 return ret;
1155 }
1a40e23b 1156
27cdeb70 1157 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1158 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1159 if (ret) {
66642832 1160 btrfs_abort_transaction(trans, ret);
83d4cfd4 1161 return ret;
93314e3b 1162 }
83d4cfd4 1163 }
3fd0a558 1164
02217ed2 1165 if (buf == root->node) {
925baedd 1166 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1167 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1168 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1169 parent_start = buf->start;
925baedd 1170
5f39d397 1171 extent_buffer_get(cow);
90f8d62e 1172 tree_mod_log_set_root_pointer(root, cow, 1);
240f62c8 1173 rcu_assign_pointer(root->node, cow);
925baedd 1174
f0486c68 1175 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1176 last_ref);
5f39d397 1177 free_extent_buffer(buf);
0b86a832 1178 add_root_to_dirty_list(root);
02217ed2 1179 } else {
5d4f98a2 1180 WARN_ON(trans->transid != btrfs_header_generation(parent));
0b246afa 1181 tree_mod_log_insert_key(fs_info, parent, parent_slot,
c8cc6341 1182 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1183 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1184 cow->start);
74493f7a
CM
1185 btrfs_set_node_ptr_generation(parent, parent_slot,
1186 trans->transid);
d6025579 1187 btrfs_mark_buffer_dirty(parent);
5de865ee 1188 if (last_ref) {
0b246afa 1189 ret = tree_mod_log_free_eb(fs_info, buf);
5de865ee 1190 if (ret) {
66642832 1191 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1192 return ret;
1193 }
1194 }
f0486c68 1195 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1196 last_ref);
02217ed2 1197 }
925baedd
CM
1198 if (unlock_orig)
1199 btrfs_tree_unlock(buf);
3083ee2e 1200 free_extent_buffer_stale(buf);
ccd467d6 1201 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1202 *cow_ret = cow;
02217ed2
CM
1203 return 0;
1204}
1205
5d9e75c4
JS
1206/*
1207 * returns the logical address of the oldest predecessor of the given root.
1208 * entries older than time_seq are ignored.
1209 */
1210static struct tree_mod_elem *
1211__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
30b0463a 1212 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1213{
1214 struct tree_mod_elem *tm;
1215 struct tree_mod_elem *found = NULL;
30b0463a 1216 u64 root_logical = eb_root->start;
5d9e75c4
JS
1217 int looped = 0;
1218
1219 if (!time_seq)
35a3621b 1220 return NULL;
5d9e75c4
JS
1221
1222 /*
298cfd36
CR
1223 * the very last operation that's logged for a root is the
1224 * replacement operation (if it is replaced at all). this has
1225 * the logical address of the *new* root, making it the very
1226 * first operation that's logged for this root.
5d9e75c4
JS
1227 */
1228 while (1) {
1229 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1230 time_seq);
1231 if (!looped && !tm)
35a3621b 1232 return NULL;
5d9e75c4 1233 /*
28da9fb4
JS
1234 * if there are no tree operation for the oldest root, we simply
1235 * return it. this should only happen if that (old) root is at
1236 * level 0.
5d9e75c4 1237 */
28da9fb4
JS
1238 if (!tm)
1239 break;
5d9e75c4 1240
28da9fb4
JS
1241 /*
1242 * if there's an operation that's not a root replacement, we
1243 * found the oldest version of our root. normally, we'll find a
1244 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1245 */
5d9e75c4
JS
1246 if (tm->op != MOD_LOG_ROOT_REPLACE)
1247 break;
1248
1249 found = tm;
1250 root_logical = tm->old_root.logical;
5d9e75c4
JS
1251 looped = 1;
1252 }
1253
a95236d9
JS
1254 /* if there's no old root to return, return what we found instead */
1255 if (!found)
1256 found = tm;
1257
5d9e75c4
JS
1258 return found;
1259}
1260
1261/*
1262 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1263 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1264 * time_seq).
1265 */
1266static void
f1ca7e98
JB
1267__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1268 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1269{
1270 u32 n;
1271 struct rb_node *next;
1272 struct tree_mod_elem *tm = first_tm;
1273 unsigned long o_dst;
1274 unsigned long o_src;
1275 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1276
1277 n = btrfs_header_nritems(eb);
f1ca7e98 1278 tree_mod_log_read_lock(fs_info);
097b8a7c 1279 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1280 /*
1281 * all the operations are recorded with the operator used for
1282 * the modification. as we're going backwards, we do the
1283 * opposite of each operation here.
1284 */
1285 switch (tm->op) {
1286 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1287 BUG_ON(tm->slot < n);
1c697d4a 1288 /* Fallthrough */
95c80bb1 1289 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1290 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1291 btrfs_set_node_key(eb, &tm->key, tm->slot);
1292 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1293 btrfs_set_node_ptr_generation(eb, tm->slot,
1294 tm->generation);
4c3e6969 1295 n++;
5d9e75c4
JS
1296 break;
1297 case MOD_LOG_KEY_REPLACE:
1298 BUG_ON(tm->slot >= n);
1299 btrfs_set_node_key(eb, &tm->key, tm->slot);
1300 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1301 btrfs_set_node_ptr_generation(eb, tm->slot,
1302 tm->generation);
1303 break;
1304 case MOD_LOG_KEY_ADD:
19956c7e 1305 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1306 n--;
1307 break;
1308 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1309 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1310 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1311 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1312 tm->move.nr_items * p_size);
1313 break;
1314 case MOD_LOG_ROOT_REPLACE:
1315 /*
1316 * this operation is special. for roots, this must be
1317 * handled explicitly before rewinding.
1318 * for non-roots, this operation may exist if the node
1319 * was a root: root A -> child B; then A gets empty and
1320 * B is promoted to the new root. in the mod log, we'll
1321 * have a root-replace operation for B, a tree block
1322 * that is no root. we simply ignore that operation.
1323 */
1324 break;
1325 }
1326 next = rb_next(&tm->node);
1327 if (!next)
1328 break;
6b4df8b6 1329 tm = rb_entry(next, struct tree_mod_elem, node);
298cfd36 1330 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1331 break;
1332 }
f1ca7e98 1333 tree_mod_log_read_unlock(fs_info);
5d9e75c4
JS
1334 btrfs_set_header_nritems(eb, n);
1335}
1336
47fb091f 1337/*
01327610 1338 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1339 * is returned. If rewind operations happen, a fresh buffer is returned. The
1340 * returned buffer is always read-locked. If the returned buffer is not the
1341 * input buffer, the lock on the input buffer is released and the input buffer
1342 * is freed (its refcount is decremented).
1343 */
5d9e75c4 1344static struct extent_buffer *
9ec72677
JB
1345tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1346 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1347{
1348 struct extent_buffer *eb_rewin;
1349 struct tree_mod_elem *tm;
1350
1351 if (!time_seq)
1352 return eb;
1353
1354 if (btrfs_header_level(eb) == 0)
1355 return eb;
1356
1357 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1358 if (!tm)
1359 return eb;
1360
9ec72677
JB
1361 btrfs_set_path_blocking(path);
1362 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1363
5d9e75c4
JS
1364 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1365 BUG_ON(tm->slot != 0);
da17066c 1366 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1367 if (!eb_rewin) {
9ec72677 1368 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1369 free_extent_buffer(eb);
1370 return NULL;
1371 }
5d9e75c4
JS
1372 btrfs_set_header_bytenr(eb_rewin, eb->start);
1373 btrfs_set_header_backref_rev(eb_rewin,
1374 btrfs_header_backref_rev(eb));
1375 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1376 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1377 } else {
1378 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1379 if (!eb_rewin) {
9ec72677 1380 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1381 free_extent_buffer(eb);
1382 return NULL;
1383 }
5d9e75c4
JS
1384 }
1385
9ec72677
JB
1386 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1387 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1388 free_extent_buffer(eb);
1389
47fb091f
JS
1390 extent_buffer_get(eb_rewin);
1391 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1392 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1393 WARN_ON(btrfs_header_nritems(eb_rewin) >
da17066c 1394 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1395
1396 return eb_rewin;
1397}
1398
8ba97a15
JS
1399/*
1400 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1401 * value. If there are no changes, the current root->root_node is returned. If
1402 * anything changed in between, there's a fresh buffer allocated on which the
1403 * rewind operations are done. In any case, the returned buffer is read locked.
1404 * Returns NULL on error (with no locks held).
1405 */
5d9e75c4
JS
1406static inline struct extent_buffer *
1407get_old_root(struct btrfs_root *root, u64 time_seq)
1408{
0b246afa 1409 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4 1410 struct tree_mod_elem *tm;
30b0463a
JS
1411 struct extent_buffer *eb = NULL;
1412 struct extent_buffer *eb_root;
7bfdcf7f 1413 struct extent_buffer *old;
a95236d9 1414 struct tree_mod_root *old_root = NULL;
4325edd0 1415 u64 old_generation = 0;
a95236d9 1416 u64 logical;
5d9e75c4 1417
30b0463a 1418 eb_root = btrfs_read_lock_root_node(root);
0b246afa 1419 tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
5d9e75c4 1420 if (!tm)
30b0463a 1421 return eb_root;
5d9e75c4 1422
a95236d9
JS
1423 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1424 old_root = &tm->old_root;
1425 old_generation = tm->generation;
1426 logical = old_root->logical;
1427 } else {
30b0463a 1428 logical = eb_root->start;
a95236d9 1429 }
5d9e75c4 1430
0b246afa 1431 tm = tree_mod_log_search(fs_info, logical, time_seq);
834328a8 1432 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1433 btrfs_tree_read_unlock(eb_root);
1434 free_extent_buffer(eb_root);
2ff7e61e 1435 old = read_tree_block(fs_info, logical, 0);
64c043de
LB
1436 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1437 if (!IS_ERR(old))
1438 free_extent_buffer(old);
0b246afa
JM
1439 btrfs_warn(fs_info,
1440 "failed to read tree block %llu from get_old_root",
1441 logical);
834328a8 1442 } else {
7bfdcf7f
LB
1443 eb = btrfs_clone_extent_buffer(old);
1444 free_extent_buffer(old);
834328a8
JS
1445 }
1446 } else if (old_root) {
30b0463a
JS
1447 btrfs_tree_read_unlock(eb_root);
1448 free_extent_buffer(eb_root);
0b246afa 1449 eb = alloc_dummy_extent_buffer(fs_info, logical);
834328a8 1450 } else {
9ec72677 1451 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1452 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1453 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1454 free_extent_buffer(eb_root);
834328a8
JS
1455 }
1456
8ba97a15
JS
1457 if (!eb)
1458 return NULL;
d6381084 1459 extent_buffer_get(eb);
8ba97a15 1460 btrfs_tree_read_lock(eb);
a95236d9 1461 if (old_root) {
5d9e75c4
JS
1462 btrfs_set_header_bytenr(eb, eb->start);
1463 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1464 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1465 btrfs_set_header_level(eb, old_root->level);
1466 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1467 }
28da9fb4 1468 if (tm)
0b246afa 1469 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
28da9fb4
JS
1470 else
1471 WARN_ON(btrfs_header_level(eb) != 0);
0b246afa 1472 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1473
1474 return eb;
1475}
1476
5b6602e7
JS
1477int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1478{
1479 struct tree_mod_elem *tm;
1480 int level;
30b0463a 1481 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1482
30b0463a 1483 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5b6602e7
JS
1484 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1485 level = tm->old_root.level;
1486 } else {
30b0463a 1487 level = btrfs_header_level(eb_root);
5b6602e7 1488 }
30b0463a 1489 free_extent_buffer(eb_root);
5b6602e7
JS
1490
1491 return level;
1492}
1493
5d4f98a2
YZ
1494static inline int should_cow_block(struct btrfs_trans_handle *trans,
1495 struct btrfs_root *root,
1496 struct extent_buffer *buf)
1497{
f5ee5c9a 1498 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1499 return 0;
fccb84c9 1500
f1ebcc74
LB
1501 /* ensure we can see the force_cow */
1502 smp_rmb();
1503
1504 /*
1505 * We do not need to cow a block if
1506 * 1) this block is not created or changed in this transaction;
1507 * 2) this block does not belong to TREE_RELOC tree;
1508 * 3) the root is not forced COW.
1509 *
1510 * What is forced COW:
01327610 1511 * when we create snapshot during committing the transaction,
f1ebcc74
LB
1512 * after we've finished coping src root, we must COW the shared
1513 * block to ensure the metadata consistency.
1514 */
5d4f98a2
YZ
1515 if (btrfs_header_generation(buf) == trans->transid &&
1516 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1517 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1518 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1519 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1520 return 0;
1521 return 1;
1522}
1523
d352ac68
CM
1524/*
1525 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1526 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1527 * once per transaction, as long as it hasn't been written yet
1528 */
d397712b 1529noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1530 struct btrfs_root *root, struct extent_buffer *buf,
1531 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1532 struct extent_buffer **cow_ret)
6702ed49 1533{
0b246afa 1534 struct btrfs_fs_info *fs_info = root->fs_info;
6702ed49 1535 u64 search_start;
f510cfec 1536 int ret;
dc17ff8f 1537
0b246afa 1538 if (trans->transaction != fs_info->running_transaction)
31b1a2bd 1539 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1540 trans->transid,
0b246afa 1541 fs_info->running_transaction->transid);
31b1a2bd 1542
0b246afa 1543 if (trans->transid != fs_info->generation)
31b1a2bd 1544 WARN(1, KERN_CRIT "trans %llu running %llu\n",
0b246afa 1545 trans->transid, fs_info->generation);
dc17ff8f 1546
5d4f98a2 1547 if (!should_cow_block(trans, root, buf)) {
64c12921 1548 trans->dirty = true;
6702ed49
CM
1549 *cow_ret = buf;
1550 return 0;
1551 }
c487685d 1552
ee22184b 1553 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1554
1555 if (parent)
1556 btrfs_set_lock_blocking(parent);
1557 btrfs_set_lock_blocking(buf);
1558
f510cfec 1559 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1560 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1561
1562 trace_btrfs_cow_block(root, buf, *cow_ret);
1563
f510cfec 1564 return ret;
6702ed49
CM
1565}
1566
d352ac68
CM
1567/*
1568 * helper function for defrag to decide if two blocks pointed to by a
1569 * node are actually close by
1570 */
6b80053d 1571static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1572{
6b80053d 1573 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1574 return 1;
6b80053d 1575 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1576 return 1;
1577 return 0;
1578}
1579
081e9573
CM
1580/*
1581 * compare two keys in a memcmp fashion
1582 */
310712b2
OS
1583static int comp_keys(const struct btrfs_disk_key *disk,
1584 const struct btrfs_key *k2)
081e9573
CM
1585{
1586 struct btrfs_key k1;
1587
1588 btrfs_disk_key_to_cpu(&k1, disk);
1589
20736aba 1590 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1591}
1592
f3465ca4
JB
1593/*
1594 * same as comp_keys only with two btrfs_key's
1595 */
310712b2 1596int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
f3465ca4
JB
1597{
1598 if (k1->objectid > k2->objectid)
1599 return 1;
1600 if (k1->objectid < k2->objectid)
1601 return -1;
1602 if (k1->type > k2->type)
1603 return 1;
1604 if (k1->type < k2->type)
1605 return -1;
1606 if (k1->offset > k2->offset)
1607 return 1;
1608 if (k1->offset < k2->offset)
1609 return -1;
1610 return 0;
1611}
081e9573 1612
d352ac68
CM
1613/*
1614 * this is used by the defrag code to go through all the
1615 * leaves pointed to by a node and reallocate them so that
1616 * disk order is close to key order
1617 */
6702ed49 1618int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1619 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1620 int start_slot, u64 *last_ret,
a6b6e75e 1621 struct btrfs_key *progress)
6702ed49 1622{
0b246afa 1623 struct btrfs_fs_info *fs_info = root->fs_info;
6b80053d 1624 struct extent_buffer *cur;
6702ed49 1625 u64 blocknr;
ca7a79ad 1626 u64 gen;
e9d0b13b
CM
1627 u64 search_start = *last_ret;
1628 u64 last_block = 0;
6702ed49
CM
1629 u64 other;
1630 u32 parent_nritems;
6702ed49
CM
1631 int end_slot;
1632 int i;
1633 int err = 0;
f2183bde 1634 int parent_level;
6b80053d
CM
1635 int uptodate;
1636 u32 blocksize;
081e9573
CM
1637 int progress_passed = 0;
1638 struct btrfs_disk_key disk_key;
6702ed49 1639
5708b959 1640 parent_level = btrfs_header_level(parent);
5708b959 1641
0b246afa
JM
1642 WARN_ON(trans->transaction != fs_info->running_transaction);
1643 WARN_ON(trans->transid != fs_info->generation);
86479a04 1644
6b80053d 1645 parent_nritems = btrfs_header_nritems(parent);
0b246afa 1646 blocksize = fs_info->nodesize;
5dfe2be7 1647 end_slot = parent_nritems - 1;
6702ed49 1648
5dfe2be7 1649 if (parent_nritems <= 1)
6702ed49
CM
1650 return 0;
1651
b4ce94de
CM
1652 btrfs_set_lock_blocking(parent);
1653
5dfe2be7 1654 for (i = start_slot; i <= end_slot; i++) {
6702ed49 1655 int close = 1;
a6b6e75e 1656
081e9573
CM
1657 btrfs_node_key(parent, &disk_key, i);
1658 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1659 continue;
1660
1661 progress_passed = 1;
6b80053d 1662 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1663 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1664 if (last_block == 0)
1665 last_block = blocknr;
5708b959 1666
6702ed49 1667 if (i > 0) {
6b80053d
CM
1668 other = btrfs_node_blockptr(parent, i - 1);
1669 close = close_blocks(blocknr, other, blocksize);
6702ed49 1670 }
5dfe2be7 1671 if (!close && i < end_slot) {
6b80053d
CM
1672 other = btrfs_node_blockptr(parent, i + 1);
1673 close = close_blocks(blocknr, other, blocksize);
6702ed49 1674 }
e9d0b13b
CM
1675 if (close) {
1676 last_block = blocknr;
6702ed49 1677 continue;
e9d0b13b 1678 }
6702ed49 1679
0b246afa 1680 cur = find_extent_buffer(fs_info, blocknr);
6b80053d 1681 if (cur)
b9fab919 1682 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1683 else
1684 uptodate = 0;
5708b959 1685 if (!cur || !uptodate) {
6b80053d 1686 if (!cur) {
2ff7e61e 1687 cur = read_tree_block(fs_info, blocknr, gen);
64c043de
LB
1688 if (IS_ERR(cur)) {
1689 return PTR_ERR(cur);
1690 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1691 free_extent_buffer(cur);
97d9a8a4 1692 return -EIO;
416bc658 1693 }
6b80053d 1694 } else if (!uptodate) {
018642a1
TI
1695 err = btrfs_read_buffer(cur, gen);
1696 if (err) {
1697 free_extent_buffer(cur);
1698 return err;
1699 }
f2183bde 1700 }
6702ed49 1701 }
e9d0b13b 1702 if (search_start == 0)
6b80053d 1703 search_start = last_block;
e9d0b13b 1704
e7a84565 1705 btrfs_tree_lock(cur);
b4ce94de 1706 btrfs_set_lock_blocking(cur);
6b80053d 1707 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1708 &cur, search_start,
6b80053d 1709 min(16 * blocksize,
9fa8cfe7 1710 (end_slot - i) * blocksize));
252c38f0 1711 if (err) {
e7a84565 1712 btrfs_tree_unlock(cur);
6b80053d 1713 free_extent_buffer(cur);
6702ed49 1714 break;
252c38f0 1715 }
e7a84565
CM
1716 search_start = cur->start;
1717 last_block = cur->start;
f2183bde 1718 *last_ret = search_start;
e7a84565
CM
1719 btrfs_tree_unlock(cur);
1720 free_extent_buffer(cur);
6702ed49
CM
1721 }
1722 return err;
1723}
1724
74123bd7 1725/*
5f39d397
CM
1726 * search for key in the extent_buffer. The items start at offset p,
1727 * and they are item_size apart. There are 'max' items in p.
1728 *
74123bd7
CM
1729 * the slot in the array is returned via slot, and it points to
1730 * the place where you would insert key if it is not found in
1731 * the array.
1732 *
1733 * slot may point to max if the key is bigger than all of the keys
1734 */
e02119d5 1735static noinline int generic_bin_search(struct extent_buffer *eb,
310712b2
OS
1736 unsigned long p, int item_size,
1737 const struct btrfs_key *key,
e02119d5 1738 int max, int *slot)
be0e5c09
CM
1739{
1740 int low = 0;
1741 int high = max;
1742 int mid;
1743 int ret;
479965d6 1744 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1745 struct btrfs_disk_key unaligned;
1746 unsigned long offset;
5f39d397
CM
1747 char *kaddr = NULL;
1748 unsigned long map_start = 0;
1749 unsigned long map_len = 0;
479965d6 1750 int err;
be0e5c09 1751
5e24e9af
LB
1752 if (low > high) {
1753 btrfs_err(eb->fs_info,
1754 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1755 __func__, low, high, eb->start,
1756 btrfs_header_owner(eb), btrfs_header_level(eb));
1757 return -EINVAL;
1758 }
1759
d397712b 1760 while (low < high) {
be0e5c09 1761 mid = (low + high) / 2;
5f39d397
CM
1762 offset = p + mid * item_size;
1763
a6591715 1764 if (!kaddr || offset < map_start ||
5f39d397
CM
1765 (offset + sizeof(struct btrfs_disk_key)) >
1766 map_start + map_len) {
934d375b
CM
1767
1768 err = map_private_extent_buffer(eb, offset,
479965d6 1769 sizeof(struct btrfs_disk_key),
a6591715 1770 &kaddr, &map_start, &map_len);
479965d6
CM
1771
1772 if (!err) {
1773 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1774 map_start);
415b35a5 1775 } else if (err == 1) {
479965d6
CM
1776 read_extent_buffer(eb, &unaligned,
1777 offset, sizeof(unaligned));
1778 tmp = &unaligned;
415b35a5
LB
1779 } else {
1780 return err;
479965d6 1781 }
5f39d397 1782
5f39d397
CM
1783 } else {
1784 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1785 map_start);
1786 }
be0e5c09
CM
1787 ret = comp_keys(tmp, key);
1788
1789 if (ret < 0)
1790 low = mid + 1;
1791 else if (ret > 0)
1792 high = mid;
1793 else {
1794 *slot = mid;
1795 return 0;
1796 }
1797 }
1798 *slot = low;
1799 return 1;
1800}
1801
97571fd0
CM
1802/*
1803 * simple bin_search frontend that does the right thing for
1804 * leaves vs nodes
1805 */
310712b2 1806static int bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
5f39d397 1807 int level, int *slot)
be0e5c09 1808{
f775738f 1809 if (level == 0)
5f39d397
CM
1810 return generic_bin_search(eb,
1811 offsetof(struct btrfs_leaf, items),
0783fcfc 1812 sizeof(struct btrfs_item),
5f39d397 1813 key, btrfs_header_nritems(eb),
7518a238 1814 slot);
f775738f 1815 else
5f39d397
CM
1816 return generic_bin_search(eb,
1817 offsetof(struct btrfs_node, ptrs),
123abc88 1818 sizeof(struct btrfs_key_ptr),
5f39d397 1819 key, btrfs_header_nritems(eb),
7518a238 1820 slot);
be0e5c09
CM
1821}
1822
310712b2 1823int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
5d4f98a2
YZ
1824 int level, int *slot)
1825{
1826 return bin_search(eb, key, level, slot);
1827}
1828
f0486c68
YZ
1829static void root_add_used(struct btrfs_root *root, u32 size)
1830{
1831 spin_lock(&root->accounting_lock);
1832 btrfs_set_root_used(&root->root_item,
1833 btrfs_root_used(&root->root_item) + size);
1834 spin_unlock(&root->accounting_lock);
1835}
1836
1837static void root_sub_used(struct btrfs_root *root, u32 size)
1838{
1839 spin_lock(&root->accounting_lock);
1840 btrfs_set_root_used(&root->root_item,
1841 btrfs_root_used(&root->root_item) - size);
1842 spin_unlock(&root->accounting_lock);
1843}
1844
d352ac68
CM
1845/* given a node and slot number, this reads the blocks it points to. The
1846 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1847 */
2ff7e61e
JM
1848static noinline struct extent_buffer *
1849read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1850 int slot)
bb803951 1851{
ca7a79ad 1852 int level = btrfs_header_level(parent);
416bc658
JB
1853 struct extent_buffer *eb;
1854
fb770ae4
LB
1855 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1856 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1857
1858 BUG_ON(level == 0);
1859
2ff7e61e 1860 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
416bc658 1861 btrfs_node_ptr_generation(parent, slot));
fb770ae4
LB
1862 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1863 free_extent_buffer(eb);
1864 eb = ERR_PTR(-EIO);
416bc658
JB
1865 }
1866
1867 return eb;
bb803951
CM
1868}
1869
d352ac68
CM
1870/*
1871 * node level balancing, used to make sure nodes are in proper order for
1872 * item deletion. We balance from the top down, so we have to make sure
1873 * that a deletion won't leave an node completely empty later on.
1874 */
e02119d5 1875static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1876 struct btrfs_root *root,
1877 struct btrfs_path *path, int level)
bb803951 1878{
0b246afa 1879 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
1880 struct extent_buffer *right = NULL;
1881 struct extent_buffer *mid;
1882 struct extent_buffer *left = NULL;
1883 struct extent_buffer *parent = NULL;
bb803951
CM
1884 int ret = 0;
1885 int wret;
1886 int pslot;
bb803951 1887 int orig_slot = path->slots[level];
79f95c82 1888 u64 orig_ptr;
bb803951
CM
1889
1890 if (level == 0)
1891 return 0;
1892
5f39d397 1893 mid = path->nodes[level];
b4ce94de 1894
bd681513
CM
1895 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1896 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1897 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1898
1d4f8a0c 1899 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1900
a05a9bb1 1901 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1902 parent = path->nodes[level + 1];
a05a9bb1
LZ
1903 pslot = path->slots[level + 1];
1904 }
bb803951 1905
40689478
CM
1906 /*
1907 * deal with the case where there is only one pointer in the root
1908 * by promoting the node below to a root
1909 */
5f39d397
CM
1910 if (!parent) {
1911 struct extent_buffer *child;
bb803951 1912
5f39d397 1913 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1914 return 0;
1915
1916 /* promote the child to a root */
2ff7e61e 1917 child = read_node_slot(fs_info, mid, 0);
fb770ae4
LB
1918 if (IS_ERR(child)) {
1919 ret = PTR_ERR(child);
0b246afa 1920 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1921 goto enospc;
1922 }
1923
925baedd 1924 btrfs_tree_lock(child);
b4ce94de 1925 btrfs_set_lock_blocking(child);
9fa8cfe7 1926 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1927 if (ret) {
1928 btrfs_tree_unlock(child);
1929 free_extent_buffer(child);
1930 goto enospc;
1931 }
2f375ab9 1932
90f8d62e 1933 tree_mod_log_set_root_pointer(root, child, 1);
240f62c8 1934 rcu_assign_pointer(root->node, child);
925baedd 1935
0b86a832 1936 add_root_to_dirty_list(root);
925baedd 1937 btrfs_tree_unlock(child);
b4ce94de 1938
925baedd 1939 path->locks[level] = 0;
bb803951 1940 path->nodes[level] = NULL;
7c302b49 1941 clean_tree_block(fs_info, mid);
925baedd 1942 btrfs_tree_unlock(mid);
bb803951 1943 /* once for the path */
5f39d397 1944 free_extent_buffer(mid);
f0486c68
YZ
1945
1946 root_sub_used(root, mid->len);
5581a51a 1947 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1948 /* once for the root ptr */
3083ee2e 1949 free_extent_buffer_stale(mid);
f0486c68 1950 return 0;
bb803951 1951 }
5f39d397 1952 if (btrfs_header_nritems(mid) >
0b246afa 1953 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
bb803951
CM
1954 return 0;
1955
2ff7e61e 1956 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
1957 if (IS_ERR(left))
1958 left = NULL;
1959
5f39d397 1960 if (left) {
925baedd 1961 btrfs_tree_lock(left);
b4ce94de 1962 btrfs_set_lock_blocking(left);
5f39d397 1963 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1964 parent, pslot - 1, &left);
54aa1f4d
CM
1965 if (wret) {
1966 ret = wret;
1967 goto enospc;
1968 }
2cc58cf2 1969 }
fb770ae4 1970
2ff7e61e 1971 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
1972 if (IS_ERR(right))
1973 right = NULL;
1974
5f39d397 1975 if (right) {
925baedd 1976 btrfs_tree_lock(right);
b4ce94de 1977 btrfs_set_lock_blocking(right);
5f39d397 1978 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1979 parent, pslot + 1, &right);
2cc58cf2
CM
1980 if (wret) {
1981 ret = wret;
1982 goto enospc;
1983 }
1984 }
1985
1986 /* first, try to make some room in the middle buffer */
5f39d397
CM
1987 if (left) {
1988 orig_slot += btrfs_header_nritems(left);
2ff7e61e 1989 wret = push_node_left(trans, fs_info, left, mid, 1);
79f95c82
CM
1990 if (wret < 0)
1991 ret = wret;
bb803951 1992 }
79f95c82
CM
1993
1994 /*
1995 * then try to empty the right most buffer into the middle
1996 */
5f39d397 1997 if (right) {
2ff7e61e 1998 wret = push_node_left(trans, fs_info, mid, right, 1);
54aa1f4d 1999 if (wret < 0 && wret != -ENOSPC)
79f95c82 2000 ret = wret;
5f39d397 2001 if (btrfs_header_nritems(right) == 0) {
7c302b49 2002 clean_tree_block(fs_info, right);
925baedd 2003 btrfs_tree_unlock(right);
afe5fea7 2004 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 2005 root_sub_used(root, right->len);
5581a51a 2006 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 2007 free_extent_buffer_stale(right);
f0486c68 2008 right = NULL;
bb803951 2009 } else {
5f39d397
CM
2010 struct btrfs_disk_key right_key;
2011 btrfs_node_key(right, &right_key, 0);
0b246afa 2012 tree_mod_log_set_node_key(fs_info, parent,
32adf090 2013 pslot + 1, 0);
5f39d397
CM
2014 btrfs_set_node_key(parent, &right_key, pslot + 1);
2015 btrfs_mark_buffer_dirty(parent);
bb803951
CM
2016 }
2017 }
5f39d397 2018 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
2019 /*
2020 * we're not allowed to leave a node with one item in the
2021 * tree during a delete. A deletion from lower in the tree
2022 * could try to delete the only pointer in this node.
2023 * So, pull some keys from the left.
2024 * There has to be a left pointer at this point because
2025 * otherwise we would have pulled some pointers from the
2026 * right
2027 */
305a26af
MF
2028 if (!left) {
2029 ret = -EROFS;
0b246afa 2030 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
2031 goto enospc;
2032 }
2ff7e61e 2033 wret = balance_node_right(trans, fs_info, mid, left);
54aa1f4d 2034 if (wret < 0) {
79f95c82 2035 ret = wret;
54aa1f4d
CM
2036 goto enospc;
2037 }
bce4eae9 2038 if (wret == 1) {
2ff7e61e 2039 wret = push_node_left(trans, fs_info, left, mid, 1);
bce4eae9
CM
2040 if (wret < 0)
2041 ret = wret;
2042 }
79f95c82
CM
2043 BUG_ON(wret == 1);
2044 }
5f39d397 2045 if (btrfs_header_nritems(mid) == 0) {
7c302b49 2046 clean_tree_block(fs_info, mid);
925baedd 2047 btrfs_tree_unlock(mid);
afe5fea7 2048 del_ptr(root, path, level + 1, pslot);
f0486c68 2049 root_sub_used(root, mid->len);
5581a51a 2050 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 2051 free_extent_buffer_stale(mid);
f0486c68 2052 mid = NULL;
79f95c82
CM
2053 } else {
2054 /* update the parent key to reflect our changes */
5f39d397
CM
2055 struct btrfs_disk_key mid_key;
2056 btrfs_node_key(mid, &mid_key, 0);
0b246afa 2057 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
5f39d397
CM
2058 btrfs_set_node_key(parent, &mid_key, pslot);
2059 btrfs_mark_buffer_dirty(parent);
79f95c82 2060 }
bb803951 2061
79f95c82 2062 /* update the path */
5f39d397
CM
2063 if (left) {
2064 if (btrfs_header_nritems(left) > orig_slot) {
2065 extent_buffer_get(left);
925baedd 2066 /* left was locked after cow */
5f39d397 2067 path->nodes[level] = left;
bb803951
CM
2068 path->slots[level + 1] -= 1;
2069 path->slots[level] = orig_slot;
925baedd
CM
2070 if (mid) {
2071 btrfs_tree_unlock(mid);
5f39d397 2072 free_extent_buffer(mid);
925baedd 2073 }
bb803951 2074 } else {
5f39d397 2075 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2076 path->slots[level] = orig_slot;
2077 }
2078 }
79f95c82 2079 /* double check we haven't messed things up */
e20d96d6 2080 if (orig_ptr !=
5f39d397 2081 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2082 BUG();
54aa1f4d 2083enospc:
925baedd
CM
2084 if (right) {
2085 btrfs_tree_unlock(right);
5f39d397 2086 free_extent_buffer(right);
925baedd
CM
2087 }
2088 if (left) {
2089 if (path->nodes[level] != left)
2090 btrfs_tree_unlock(left);
5f39d397 2091 free_extent_buffer(left);
925baedd 2092 }
bb803951
CM
2093 return ret;
2094}
2095
d352ac68
CM
2096/* Node balancing for insertion. Here we only split or push nodes around
2097 * when they are completely full. This is also done top down, so we
2098 * have to be pessimistic.
2099 */
d397712b 2100static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2101 struct btrfs_root *root,
2102 struct btrfs_path *path, int level)
e66f709b 2103{
0b246afa 2104 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
2105 struct extent_buffer *right = NULL;
2106 struct extent_buffer *mid;
2107 struct extent_buffer *left = NULL;
2108 struct extent_buffer *parent = NULL;
e66f709b
CM
2109 int ret = 0;
2110 int wret;
2111 int pslot;
2112 int orig_slot = path->slots[level];
e66f709b
CM
2113
2114 if (level == 0)
2115 return 1;
2116
5f39d397 2117 mid = path->nodes[level];
7bb86316 2118 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2119
a05a9bb1 2120 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2121 parent = path->nodes[level + 1];
a05a9bb1
LZ
2122 pslot = path->slots[level + 1];
2123 }
e66f709b 2124
5f39d397 2125 if (!parent)
e66f709b 2126 return 1;
e66f709b 2127
2ff7e61e 2128 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
2129 if (IS_ERR(left))
2130 left = NULL;
e66f709b
CM
2131
2132 /* first, try to make some room in the middle buffer */
5f39d397 2133 if (left) {
e66f709b 2134 u32 left_nr;
925baedd
CM
2135
2136 btrfs_tree_lock(left);
b4ce94de
CM
2137 btrfs_set_lock_blocking(left);
2138
5f39d397 2139 left_nr = btrfs_header_nritems(left);
0b246afa 2140 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2141 wret = 1;
2142 } else {
5f39d397 2143 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2144 pslot - 1, &left);
54aa1f4d
CM
2145 if (ret)
2146 wret = 1;
2147 else {
2ff7e61e 2148 wret = push_node_left(trans, fs_info,
971a1f66 2149 left, mid, 0);
54aa1f4d 2150 }
33ade1f8 2151 }
e66f709b
CM
2152 if (wret < 0)
2153 ret = wret;
2154 if (wret == 0) {
5f39d397 2155 struct btrfs_disk_key disk_key;
e66f709b 2156 orig_slot += left_nr;
5f39d397 2157 btrfs_node_key(mid, &disk_key, 0);
0b246afa 2158 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
5f39d397
CM
2159 btrfs_set_node_key(parent, &disk_key, pslot);
2160 btrfs_mark_buffer_dirty(parent);
2161 if (btrfs_header_nritems(left) > orig_slot) {
2162 path->nodes[level] = left;
e66f709b
CM
2163 path->slots[level + 1] -= 1;
2164 path->slots[level] = orig_slot;
925baedd 2165 btrfs_tree_unlock(mid);
5f39d397 2166 free_extent_buffer(mid);
e66f709b
CM
2167 } else {
2168 orig_slot -=
5f39d397 2169 btrfs_header_nritems(left);
e66f709b 2170 path->slots[level] = orig_slot;
925baedd 2171 btrfs_tree_unlock(left);
5f39d397 2172 free_extent_buffer(left);
e66f709b 2173 }
e66f709b
CM
2174 return 0;
2175 }
925baedd 2176 btrfs_tree_unlock(left);
5f39d397 2177 free_extent_buffer(left);
e66f709b 2178 }
2ff7e61e 2179 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
2180 if (IS_ERR(right))
2181 right = NULL;
e66f709b
CM
2182
2183 /*
2184 * then try to empty the right most buffer into the middle
2185 */
5f39d397 2186 if (right) {
33ade1f8 2187 u32 right_nr;
b4ce94de 2188
925baedd 2189 btrfs_tree_lock(right);
b4ce94de
CM
2190 btrfs_set_lock_blocking(right);
2191
5f39d397 2192 right_nr = btrfs_header_nritems(right);
0b246afa 2193 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2194 wret = 1;
2195 } else {
5f39d397
CM
2196 ret = btrfs_cow_block(trans, root, right,
2197 parent, pslot + 1,
9fa8cfe7 2198 &right);
54aa1f4d
CM
2199 if (ret)
2200 wret = 1;
2201 else {
2ff7e61e 2202 wret = balance_node_right(trans, fs_info,
5f39d397 2203 right, mid);
54aa1f4d 2204 }
33ade1f8 2205 }
e66f709b
CM
2206 if (wret < 0)
2207 ret = wret;
2208 if (wret == 0) {
5f39d397
CM
2209 struct btrfs_disk_key disk_key;
2210
2211 btrfs_node_key(right, &disk_key, 0);
0b246afa 2212 tree_mod_log_set_node_key(fs_info, parent,
32adf090 2213 pslot + 1, 0);
5f39d397
CM
2214 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2215 btrfs_mark_buffer_dirty(parent);
2216
2217 if (btrfs_header_nritems(mid) <= orig_slot) {
2218 path->nodes[level] = right;
e66f709b
CM
2219 path->slots[level + 1] += 1;
2220 path->slots[level] = orig_slot -
5f39d397 2221 btrfs_header_nritems(mid);
925baedd 2222 btrfs_tree_unlock(mid);
5f39d397 2223 free_extent_buffer(mid);
e66f709b 2224 } else {
925baedd 2225 btrfs_tree_unlock(right);
5f39d397 2226 free_extent_buffer(right);
e66f709b 2227 }
e66f709b
CM
2228 return 0;
2229 }
925baedd 2230 btrfs_tree_unlock(right);
5f39d397 2231 free_extent_buffer(right);
e66f709b 2232 }
e66f709b
CM
2233 return 1;
2234}
2235
3c69faec 2236/*
d352ac68
CM
2237 * readahead one full node of leaves, finding things that are close
2238 * to the block in 'slot', and triggering ra on them.
3c69faec 2239 */
2ff7e61e 2240static void reada_for_search(struct btrfs_fs_info *fs_info,
c8c42864
CM
2241 struct btrfs_path *path,
2242 int level, int slot, u64 objectid)
3c69faec 2243{
5f39d397 2244 struct extent_buffer *node;
01f46658 2245 struct btrfs_disk_key disk_key;
3c69faec 2246 u32 nritems;
3c69faec 2247 u64 search;
a7175319 2248 u64 target;
6b80053d 2249 u64 nread = 0;
5f39d397 2250 struct extent_buffer *eb;
6b80053d
CM
2251 u32 nr;
2252 u32 blocksize;
2253 u32 nscan = 0;
db94535d 2254
a6b6e75e 2255 if (level != 1)
6702ed49
CM
2256 return;
2257
2258 if (!path->nodes[level])
3c69faec
CM
2259 return;
2260
5f39d397 2261 node = path->nodes[level];
925baedd 2262
3c69faec 2263 search = btrfs_node_blockptr(node, slot);
0b246afa
JM
2264 blocksize = fs_info->nodesize;
2265 eb = find_extent_buffer(fs_info, search);
5f39d397
CM
2266 if (eb) {
2267 free_extent_buffer(eb);
3c69faec
CM
2268 return;
2269 }
2270
a7175319 2271 target = search;
6b80053d 2272
5f39d397 2273 nritems = btrfs_header_nritems(node);
6b80053d 2274 nr = slot;
25b8b936 2275
d397712b 2276 while (1) {
e4058b54 2277 if (path->reada == READA_BACK) {
6b80053d
CM
2278 if (nr == 0)
2279 break;
2280 nr--;
e4058b54 2281 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2282 nr++;
2283 if (nr >= nritems)
2284 break;
3c69faec 2285 }
e4058b54 2286 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2287 btrfs_node_key(node, &disk_key, nr);
2288 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2289 break;
2290 }
6b80053d 2291 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2292 if ((search <= target && target - search <= 65536) ||
2293 (search > target && search - target <= 65536)) {
2ff7e61e 2294 readahead_tree_block(fs_info, search);
6b80053d
CM
2295 nread += blocksize;
2296 }
2297 nscan++;
a7175319 2298 if ((nread > 65536 || nscan > 32))
6b80053d 2299 break;
3c69faec
CM
2300 }
2301}
925baedd 2302
2ff7e61e 2303static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
0b08851f 2304 struct btrfs_path *path, int level)
b4ce94de
CM
2305{
2306 int slot;
2307 int nritems;
2308 struct extent_buffer *parent;
2309 struct extent_buffer *eb;
2310 u64 gen;
2311 u64 block1 = 0;
2312 u64 block2 = 0;
b4ce94de 2313
8c594ea8 2314 parent = path->nodes[level + 1];
b4ce94de 2315 if (!parent)
0b08851f 2316 return;
b4ce94de
CM
2317
2318 nritems = btrfs_header_nritems(parent);
8c594ea8 2319 slot = path->slots[level + 1];
b4ce94de
CM
2320
2321 if (slot > 0) {
2322 block1 = btrfs_node_blockptr(parent, slot - 1);
2323 gen = btrfs_node_ptr_generation(parent, slot - 1);
0b246afa 2324 eb = find_extent_buffer(fs_info, block1);
b9fab919
CM
2325 /*
2326 * if we get -eagain from btrfs_buffer_uptodate, we
2327 * don't want to return eagain here. That will loop
2328 * forever
2329 */
2330 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2331 block1 = 0;
2332 free_extent_buffer(eb);
2333 }
8c594ea8 2334 if (slot + 1 < nritems) {
b4ce94de
CM
2335 block2 = btrfs_node_blockptr(parent, slot + 1);
2336 gen = btrfs_node_ptr_generation(parent, slot + 1);
0b246afa 2337 eb = find_extent_buffer(fs_info, block2);
b9fab919 2338 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2339 block2 = 0;
2340 free_extent_buffer(eb);
2341 }
8c594ea8 2342
0b08851f 2343 if (block1)
2ff7e61e 2344 readahead_tree_block(fs_info, block1);
0b08851f 2345 if (block2)
2ff7e61e 2346 readahead_tree_block(fs_info, block2);
b4ce94de
CM
2347}
2348
2349
d352ac68 2350/*
d397712b
CM
2351 * when we walk down the tree, it is usually safe to unlock the higher layers
2352 * in the tree. The exceptions are when our path goes through slot 0, because
2353 * operations on the tree might require changing key pointers higher up in the
2354 * tree.
d352ac68 2355 *
d397712b
CM
2356 * callers might also have set path->keep_locks, which tells this code to keep
2357 * the lock if the path points to the last slot in the block. This is part of
2358 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2359 *
d397712b
CM
2360 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2361 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2362 */
e02119d5 2363static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2364 int lowest_unlock, int min_write_lock_level,
2365 int *write_lock_level)
925baedd
CM
2366{
2367 int i;
2368 int skip_level = level;
051e1b9f 2369 int no_skips = 0;
925baedd
CM
2370 struct extent_buffer *t;
2371
2372 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2373 if (!path->nodes[i])
2374 break;
2375 if (!path->locks[i])
2376 break;
051e1b9f 2377 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2378 skip_level = i + 1;
2379 continue;
2380 }
051e1b9f 2381 if (!no_skips && path->keep_locks) {
925baedd
CM
2382 u32 nritems;
2383 t = path->nodes[i];
2384 nritems = btrfs_header_nritems(t);
051e1b9f 2385 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2386 skip_level = i + 1;
2387 continue;
2388 }
2389 }
051e1b9f
CM
2390 if (skip_level < i && i >= lowest_unlock)
2391 no_skips = 1;
2392
925baedd
CM
2393 t = path->nodes[i];
2394 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2395 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2396 path->locks[i] = 0;
f7c79f30
CM
2397 if (write_lock_level &&
2398 i > min_write_lock_level &&
2399 i <= *write_lock_level) {
2400 *write_lock_level = i - 1;
2401 }
925baedd
CM
2402 }
2403 }
2404}
2405
b4ce94de
CM
2406/*
2407 * This releases any locks held in the path starting at level and
2408 * going all the way up to the root.
2409 *
2410 * btrfs_search_slot will keep the lock held on higher nodes in a few
2411 * corner cases, such as COW of the block at slot zero in the node. This
2412 * ignores those rules, and it should only be called when there are no
2413 * more updates to be done higher up in the tree.
2414 */
2415noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2416{
2417 int i;
2418
09a2a8f9 2419 if (path->keep_locks)
b4ce94de
CM
2420 return;
2421
2422 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2423 if (!path->nodes[i])
12f4dacc 2424 continue;
b4ce94de 2425 if (!path->locks[i])
12f4dacc 2426 continue;
bd681513 2427 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2428 path->locks[i] = 0;
2429 }
2430}
2431
c8c42864
CM
2432/*
2433 * helper function for btrfs_search_slot. The goal is to find a block
2434 * in cache without setting the path to blocking. If we find the block
2435 * we return zero and the path is unchanged.
2436 *
2437 * If we can't find the block, we set the path blocking and do some
2438 * reada. -EAGAIN is returned and the search must be repeated.
2439 */
2440static int
d07b8528
LB
2441read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2442 struct extent_buffer **eb_ret, int level, int slot,
cda79c54 2443 const struct btrfs_key *key)
c8c42864 2444{
0b246afa 2445 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864
CM
2446 u64 blocknr;
2447 u64 gen;
c8c42864
CM
2448 struct extent_buffer *b = *eb_ret;
2449 struct extent_buffer *tmp;
76a05b35 2450 int ret;
c8c42864
CM
2451
2452 blocknr = btrfs_node_blockptr(b, slot);
2453 gen = btrfs_node_ptr_generation(b, slot);
c8c42864 2454
0b246afa 2455 tmp = find_extent_buffer(fs_info, blocknr);
cb44921a 2456 if (tmp) {
b9fab919 2457 /* first we do an atomic uptodate check */
bdf7c00e
JB
2458 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2459 *eb_ret = tmp;
2460 return 0;
2461 }
2462
2463 /* the pages were up to date, but we failed
2464 * the generation number check. Do a full
2465 * read for the generation number that is correct.
2466 * We must do this without dropping locks so
2467 * we can trust our generation number
2468 */
2469 btrfs_set_path_blocking(p);
2470
2471 /* now we're allowed to do a blocking uptodate check */
2472 ret = btrfs_read_buffer(tmp, gen);
2473 if (!ret) {
2474 *eb_ret = tmp;
2475 return 0;
cb44921a 2476 }
bdf7c00e
JB
2477 free_extent_buffer(tmp);
2478 btrfs_release_path(p);
2479 return -EIO;
c8c42864
CM
2480 }
2481
2482 /*
2483 * reduce lock contention at high levels
2484 * of the btree by dropping locks before
76a05b35
CM
2485 * we read. Don't release the lock on the current
2486 * level because we need to walk this node to figure
2487 * out which blocks to read.
c8c42864 2488 */
8c594ea8
CM
2489 btrfs_unlock_up_safe(p, level + 1);
2490 btrfs_set_path_blocking(p);
2491
cb44921a 2492 free_extent_buffer(tmp);
e4058b54 2493 if (p->reada != READA_NONE)
2ff7e61e 2494 reada_for_search(fs_info, p, level, slot, key->objectid);
c8c42864 2495
b3b4aa74 2496 btrfs_release_path(p);
76a05b35
CM
2497
2498 ret = -EAGAIN;
2ff7e61e 2499 tmp = read_tree_block(fs_info, blocknr, 0);
64c043de 2500 if (!IS_ERR(tmp)) {
76a05b35
CM
2501 /*
2502 * If the read above didn't mark this buffer up to date,
2503 * it will never end up being up to date. Set ret to EIO now
2504 * and give up so that our caller doesn't loop forever
2505 * on our EAGAINs.
2506 */
b9fab919 2507 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2508 ret = -EIO;
c8c42864 2509 free_extent_buffer(tmp);
c871b0f2
LB
2510 } else {
2511 ret = PTR_ERR(tmp);
76a05b35
CM
2512 }
2513 return ret;
c8c42864
CM
2514}
2515
2516/*
2517 * helper function for btrfs_search_slot. This does all of the checks
2518 * for node-level blocks and does any balancing required based on
2519 * the ins_len.
2520 *
2521 * If no extra work was required, zero is returned. If we had to
2522 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2523 * start over
2524 */
2525static int
2526setup_nodes_for_search(struct btrfs_trans_handle *trans,
2527 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2528 struct extent_buffer *b, int level, int ins_len,
2529 int *write_lock_level)
c8c42864 2530{
0b246afa 2531 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864 2532 int ret;
0b246afa 2533
c8c42864 2534 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
0b246afa 2535 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
c8c42864
CM
2536 int sret;
2537
bd681513
CM
2538 if (*write_lock_level < level + 1) {
2539 *write_lock_level = level + 1;
2540 btrfs_release_path(p);
2541 goto again;
2542 }
2543
c8c42864 2544 btrfs_set_path_blocking(p);
2ff7e61e 2545 reada_for_balance(fs_info, p, level);
c8c42864 2546 sret = split_node(trans, root, p, level);
bd681513 2547 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2548
2549 BUG_ON(sret > 0);
2550 if (sret) {
2551 ret = sret;
2552 goto done;
2553 }
2554 b = p->nodes[level];
2555 } else if (ins_len < 0 && btrfs_header_nritems(b) <
0b246afa 2556 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
c8c42864
CM
2557 int sret;
2558
bd681513
CM
2559 if (*write_lock_level < level + 1) {
2560 *write_lock_level = level + 1;
2561 btrfs_release_path(p);
2562 goto again;
2563 }
2564
c8c42864 2565 btrfs_set_path_blocking(p);
2ff7e61e 2566 reada_for_balance(fs_info, p, level);
c8c42864 2567 sret = balance_level(trans, root, p, level);
bd681513 2568 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2569
2570 if (sret) {
2571 ret = sret;
2572 goto done;
2573 }
2574 b = p->nodes[level];
2575 if (!b) {
b3b4aa74 2576 btrfs_release_path(p);
c8c42864
CM
2577 goto again;
2578 }
2579 BUG_ON(btrfs_header_nritems(b) == 1);
2580 }
2581 return 0;
2582
2583again:
2584 ret = -EAGAIN;
2585done:
2586 return ret;
2587}
2588
d7396f07 2589static void key_search_validate(struct extent_buffer *b,
310712b2 2590 const struct btrfs_key *key,
d7396f07
FDBM
2591 int level)
2592{
2593#ifdef CONFIG_BTRFS_ASSERT
2594 struct btrfs_disk_key disk_key;
2595
2596 btrfs_cpu_key_to_disk(&disk_key, key);
2597
2598 if (level == 0)
2599 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2600 offsetof(struct btrfs_leaf, items[0].key),
2601 sizeof(disk_key)));
2602 else
2603 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2604 offsetof(struct btrfs_node, ptrs[0].key),
2605 sizeof(disk_key)));
2606#endif
2607}
2608
310712b2 2609static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
d7396f07
FDBM
2610 int level, int *prev_cmp, int *slot)
2611{
2612 if (*prev_cmp != 0) {
2613 *prev_cmp = bin_search(b, key, level, slot);
2614 return *prev_cmp;
2615 }
2616
2617 key_search_validate(b, key, level);
2618 *slot = 0;
2619
2620 return 0;
2621}
2622
381cf658 2623int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2624 u64 iobjectid, u64 ioff, u8 key_type,
2625 struct btrfs_key *found_key)
2626{
2627 int ret;
2628 struct btrfs_key key;
2629 struct extent_buffer *eb;
381cf658
DS
2630
2631 ASSERT(path);
1d4c08e0 2632 ASSERT(found_key);
e33d5c3d
KN
2633
2634 key.type = key_type;
2635 key.objectid = iobjectid;
2636 key.offset = ioff;
2637
2638 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2639 if (ret < 0)
e33d5c3d
KN
2640 return ret;
2641
2642 eb = path->nodes[0];
2643 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2644 ret = btrfs_next_leaf(fs_root, path);
2645 if (ret)
2646 return ret;
2647 eb = path->nodes[0];
2648 }
2649
2650 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2651 if (found_key->type != key.type ||
2652 found_key->objectid != key.objectid)
2653 return 1;
2654
2655 return 0;
2656}
2657
74123bd7
CM
2658/*
2659 * look for key in the tree. path is filled in with nodes along the way
2660 * if key is found, we return zero and you can find the item in the leaf
2661 * level of the path (level 0)
2662 *
2663 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2664 * be inserted, and 1 is returned. If there are other errors during the
2665 * search a negative error number is returned.
97571fd0
CM
2666 *
2667 * if ins_len > 0, nodes and leaves will be split as we walk down the
2668 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2669 * possible)
74123bd7 2670 */
310712b2
OS
2671int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2672 const struct btrfs_key *key, struct btrfs_path *p,
2673 int ins_len, int cow)
be0e5c09 2674{
0b246afa 2675 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 2676 struct extent_buffer *b;
be0e5c09
CM
2677 int slot;
2678 int ret;
33c66f43 2679 int err;
be0e5c09 2680 int level;
925baedd 2681 int lowest_unlock = 1;
bd681513
CM
2682 int root_lock;
2683 /* everything at write_lock_level or lower must be write locked */
2684 int write_lock_level = 0;
9f3a7427 2685 u8 lowest_level = 0;
f7c79f30 2686 int min_write_lock_level;
d7396f07 2687 int prev_cmp;
9f3a7427 2688
6702ed49 2689 lowest_level = p->lowest_level;
323ac95b 2690 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2691 WARN_ON(p->nodes[0] != NULL);
eb653de1 2692 BUG_ON(!cow && ins_len);
25179201 2693
bd681513 2694 if (ins_len < 0) {
925baedd 2695 lowest_unlock = 2;
65b51a00 2696
bd681513
CM
2697 /* when we are removing items, we might have to go up to level
2698 * two as we update tree pointers Make sure we keep write
2699 * for those levels as well
2700 */
2701 write_lock_level = 2;
2702 } else if (ins_len > 0) {
2703 /*
2704 * for inserting items, make sure we have a write lock on
2705 * level 1 so we can update keys
2706 */
2707 write_lock_level = 1;
2708 }
2709
2710 if (!cow)
2711 write_lock_level = -1;
2712
09a2a8f9 2713 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2714 write_lock_level = BTRFS_MAX_LEVEL;
2715
f7c79f30
CM
2716 min_write_lock_level = write_lock_level;
2717
bb803951 2718again:
d7396f07 2719 prev_cmp = -1;
bd681513
CM
2720 /*
2721 * we try very hard to do read locks on the root
2722 */
2723 root_lock = BTRFS_READ_LOCK;
2724 level = 0;
5d4f98a2 2725 if (p->search_commit_root) {
bd681513
CM
2726 /*
2727 * the commit roots are read only
2728 * so we always do read locks
2729 */
3f8a18cc 2730 if (p->need_commit_sem)
0b246afa 2731 down_read(&fs_info->commit_root_sem);
5d4f98a2
YZ
2732 b = root->commit_root;
2733 extent_buffer_get(b);
bd681513 2734 level = btrfs_header_level(b);
3f8a18cc 2735 if (p->need_commit_sem)
0b246afa 2736 up_read(&fs_info->commit_root_sem);
5d4f98a2 2737 if (!p->skip_locking)
bd681513 2738 btrfs_tree_read_lock(b);
5d4f98a2 2739 } else {
bd681513 2740 if (p->skip_locking) {
5d4f98a2 2741 b = btrfs_root_node(root);
bd681513
CM
2742 level = btrfs_header_level(b);
2743 } else {
2744 /* we don't know the level of the root node
2745 * until we actually have it read locked
2746 */
2747 b = btrfs_read_lock_root_node(root);
2748 level = btrfs_header_level(b);
2749 if (level <= write_lock_level) {
2750 /* whoops, must trade for write lock */
2751 btrfs_tree_read_unlock(b);
2752 free_extent_buffer(b);
2753 b = btrfs_lock_root_node(root);
2754 root_lock = BTRFS_WRITE_LOCK;
2755
2756 /* the level might have changed, check again */
2757 level = btrfs_header_level(b);
2758 }
2759 }
5d4f98a2 2760 }
bd681513
CM
2761 p->nodes[level] = b;
2762 if (!p->skip_locking)
2763 p->locks[level] = root_lock;
925baedd 2764
eb60ceac 2765 while (b) {
5f39d397 2766 level = btrfs_header_level(b);
65b51a00
CM
2767
2768 /*
2769 * setup the path here so we can release it under lock
2770 * contention with the cow code
2771 */
02217ed2 2772 if (cow) {
c8c42864
CM
2773 /*
2774 * if we don't really need to cow this block
2775 * then we don't want to set the path blocking,
2776 * so we test it here
2777 */
64c12921
JM
2778 if (!should_cow_block(trans, root, b)) {
2779 trans->dirty = true;
65b51a00 2780 goto cow_done;
64c12921 2781 }
5d4f98a2 2782
bd681513
CM
2783 /*
2784 * must have write locks on this node and the
2785 * parent
2786 */
5124e00e
JB
2787 if (level > write_lock_level ||
2788 (level + 1 > write_lock_level &&
2789 level + 1 < BTRFS_MAX_LEVEL &&
2790 p->nodes[level + 1])) {
bd681513
CM
2791 write_lock_level = level + 1;
2792 btrfs_release_path(p);
2793 goto again;
2794 }
2795
160f4089 2796 btrfs_set_path_blocking(p);
33c66f43
YZ
2797 err = btrfs_cow_block(trans, root, b,
2798 p->nodes[level + 1],
2799 p->slots[level + 1], &b);
2800 if (err) {
33c66f43 2801 ret = err;
65b51a00 2802 goto done;
54aa1f4d 2803 }
02217ed2 2804 }
65b51a00 2805cow_done:
eb60ceac 2806 p->nodes[level] = b;
bd681513 2807 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2808
2809 /*
2810 * we have a lock on b and as long as we aren't changing
2811 * the tree, there is no way to for the items in b to change.
2812 * It is safe to drop the lock on our parent before we
2813 * go through the expensive btree search on b.
2814 *
eb653de1
FDBM
2815 * If we're inserting or deleting (ins_len != 0), then we might
2816 * be changing slot zero, which may require changing the parent.
2817 * So, we can't drop the lock until after we know which slot
2818 * we're operating on.
b4ce94de 2819 */
eb653de1
FDBM
2820 if (!ins_len && !p->keep_locks) {
2821 int u = level + 1;
2822
2823 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2824 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2825 p->locks[u] = 0;
2826 }
2827 }
b4ce94de 2828
d7396f07 2829 ret = key_search(b, key, level, &prev_cmp, &slot);
415b35a5
LB
2830 if (ret < 0)
2831 goto done;
b4ce94de 2832
5f39d397 2833 if (level != 0) {
33c66f43
YZ
2834 int dec = 0;
2835 if (ret && slot > 0) {
2836 dec = 1;
be0e5c09 2837 slot -= 1;
33c66f43 2838 }
be0e5c09 2839 p->slots[level] = slot;
33c66f43 2840 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2841 ins_len, &write_lock_level);
33c66f43 2842 if (err == -EAGAIN)
c8c42864 2843 goto again;
33c66f43
YZ
2844 if (err) {
2845 ret = err;
c8c42864 2846 goto done;
33c66f43 2847 }
c8c42864
CM
2848 b = p->nodes[level];
2849 slot = p->slots[level];
b4ce94de 2850
bd681513
CM
2851 /*
2852 * slot 0 is special, if we change the key
2853 * we have to update the parent pointer
2854 * which means we must have a write lock
2855 * on the parent
2856 */
eb653de1 2857 if (slot == 0 && ins_len &&
bd681513
CM
2858 write_lock_level < level + 1) {
2859 write_lock_level = level + 1;
2860 btrfs_release_path(p);
2861 goto again;
2862 }
2863
f7c79f30
CM
2864 unlock_up(p, level, lowest_unlock,
2865 min_write_lock_level, &write_lock_level);
f9efa9c7 2866
925baedd 2867 if (level == lowest_level) {
33c66f43
YZ
2868 if (dec)
2869 p->slots[level]++;
5b21f2ed 2870 goto done;
925baedd 2871 }
ca7a79ad 2872
d07b8528 2873 err = read_block_for_search(root, p, &b, level,
cda79c54 2874 slot, key);
33c66f43 2875 if (err == -EAGAIN)
c8c42864 2876 goto again;
33c66f43
YZ
2877 if (err) {
2878 ret = err;
76a05b35 2879 goto done;
33c66f43 2880 }
76a05b35 2881
b4ce94de 2882 if (!p->skip_locking) {
bd681513
CM
2883 level = btrfs_header_level(b);
2884 if (level <= write_lock_level) {
2885 err = btrfs_try_tree_write_lock(b);
2886 if (!err) {
2887 btrfs_set_path_blocking(p);
2888 btrfs_tree_lock(b);
2889 btrfs_clear_path_blocking(p, b,
2890 BTRFS_WRITE_LOCK);
2891 }
2892 p->locks[level] = BTRFS_WRITE_LOCK;
2893 } else {
f82c458a 2894 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2895 if (!err) {
2896 btrfs_set_path_blocking(p);
2897 btrfs_tree_read_lock(b);
2898 btrfs_clear_path_blocking(p, b,
2899 BTRFS_READ_LOCK);
2900 }
2901 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2902 }
bd681513 2903 p->nodes[level] = b;
b4ce94de 2904 }
be0e5c09
CM
2905 } else {
2906 p->slots[level] = slot;
87b29b20 2907 if (ins_len > 0 &&
2ff7e61e 2908 btrfs_leaf_free_space(fs_info, b) < ins_len) {
bd681513
CM
2909 if (write_lock_level < 1) {
2910 write_lock_level = 1;
2911 btrfs_release_path(p);
2912 goto again;
2913 }
2914
b4ce94de 2915 btrfs_set_path_blocking(p);
33c66f43
YZ
2916 err = split_leaf(trans, root, key,
2917 p, ins_len, ret == 0);
bd681513 2918 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2919
33c66f43
YZ
2920 BUG_ON(err > 0);
2921 if (err) {
2922 ret = err;
65b51a00
CM
2923 goto done;
2924 }
5c680ed6 2925 }
459931ec 2926 if (!p->search_for_split)
f7c79f30
CM
2927 unlock_up(p, level, lowest_unlock,
2928 min_write_lock_level, &write_lock_level);
65b51a00 2929 goto done;
be0e5c09
CM
2930 }
2931 }
65b51a00
CM
2932 ret = 1;
2933done:
b4ce94de
CM
2934 /*
2935 * we don't really know what they plan on doing with the path
2936 * from here on, so for now just mark it as blocking
2937 */
b9473439
CM
2938 if (!p->leave_spinning)
2939 btrfs_set_path_blocking(p);
5f5bc6b1 2940 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2941 btrfs_release_path(p);
65b51a00 2942 return ret;
be0e5c09
CM
2943}
2944
5d9e75c4
JS
2945/*
2946 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2947 * current state of the tree together with the operations recorded in the tree
2948 * modification log to search for the key in a previous version of this tree, as
2949 * denoted by the time_seq parameter.
2950 *
2951 * Naturally, there is no support for insert, delete or cow operations.
2952 *
2953 * The resulting path and return value will be set up as if we called
2954 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2955 */
310712b2 2956int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
5d9e75c4
JS
2957 struct btrfs_path *p, u64 time_seq)
2958{
0b246afa 2959 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4
JS
2960 struct extent_buffer *b;
2961 int slot;
2962 int ret;
2963 int err;
2964 int level;
2965 int lowest_unlock = 1;
2966 u8 lowest_level = 0;
d4b4087c 2967 int prev_cmp = -1;
5d9e75c4
JS
2968
2969 lowest_level = p->lowest_level;
2970 WARN_ON(p->nodes[0] != NULL);
2971
2972 if (p->search_commit_root) {
2973 BUG_ON(time_seq);
2974 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2975 }
2976
2977again:
5d9e75c4 2978 b = get_old_root(root, time_seq);
5d9e75c4 2979 level = btrfs_header_level(b);
5d9e75c4
JS
2980 p->locks[level] = BTRFS_READ_LOCK;
2981
2982 while (b) {
2983 level = btrfs_header_level(b);
2984 p->nodes[level] = b;
2985 btrfs_clear_path_blocking(p, NULL, 0);
2986
2987 /*
2988 * we have a lock on b and as long as we aren't changing
2989 * the tree, there is no way to for the items in b to change.
2990 * It is safe to drop the lock on our parent before we
2991 * go through the expensive btree search on b.
2992 */
2993 btrfs_unlock_up_safe(p, level + 1);
2994
d4b4087c 2995 /*
01327610 2996 * Since we can unwind ebs we want to do a real search every
d4b4087c
JB
2997 * time.
2998 */
2999 prev_cmp = -1;
d7396f07 3000 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
3001
3002 if (level != 0) {
3003 int dec = 0;
3004 if (ret && slot > 0) {
3005 dec = 1;
3006 slot -= 1;
3007 }
3008 p->slots[level] = slot;
3009 unlock_up(p, level, lowest_unlock, 0, NULL);
3010
3011 if (level == lowest_level) {
3012 if (dec)
3013 p->slots[level]++;
3014 goto done;
3015 }
3016
d07b8528 3017 err = read_block_for_search(root, p, &b, level,
cda79c54 3018 slot, key);
5d9e75c4
JS
3019 if (err == -EAGAIN)
3020 goto again;
3021 if (err) {
3022 ret = err;
3023 goto done;
3024 }
3025
3026 level = btrfs_header_level(b);
f82c458a 3027 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
3028 if (!err) {
3029 btrfs_set_path_blocking(p);
3030 btrfs_tree_read_lock(b);
3031 btrfs_clear_path_blocking(p, b,
3032 BTRFS_READ_LOCK);
3033 }
0b246afa 3034 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
db7f3436
JB
3035 if (!b) {
3036 ret = -ENOMEM;
3037 goto done;
3038 }
5d9e75c4
JS
3039 p->locks[level] = BTRFS_READ_LOCK;
3040 p->nodes[level] = b;
5d9e75c4
JS
3041 } else {
3042 p->slots[level] = slot;
3043 unlock_up(p, level, lowest_unlock, 0, NULL);
3044 goto done;
3045 }
3046 }
3047 ret = 1;
3048done:
3049 if (!p->leave_spinning)
3050 btrfs_set_path_blocking(p);
3051 if (ret < 0)
3052 btrfs_release_path(p);
3053
3054 return ret;
3055}
3056
2f38b3e1
AJ
3057/*
3058 * helper to use instead of search slot if no exact match is needed but
3059 * instead the next or previous item should be returned.
3060 * When find_higher is true, the next higher item is returned, the next lower
3061 * otherwise.
3062 * When return_any and find_higher are both true, and no higher item is found,
3063 * return the next lower instead.
3064 * When return_any is true and find_higher is false, and no lower item is found,
3065 * return the next higher instead.
3066 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3067 * < 0 on error
3068 */
3069int btrfs_search_slot_for_read(struct btrfs_root *root,
310712b2
OS
3070 const struct btrfs_key *key,
3071 struct btrfs_path *p, int find_higher,
3072 int return_any)
2f38b3e1
AJ
3073{
3074 int ret;
3075 struct extent_buffer *leaf;
3076
3077again:
3078 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3079 if (ret <= 0)
3080 return ret;
3081 /*
3082 * a return value of 1 means the path is at the position where the
3083 * item should be inserted. Normally this is the next bigger item,
3084 * but in case the previous item is the last in a leaf, path points
3085 * to the first free slot in the previous leaf, i.e. at an invalid
3086 * item.
3087 */
3088 leaf = p->nodes[0];
3089
3090 if (find_higher) {
3091 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3092 ret = btrfs_next_leaf(root, p);
3093 if (ret <= 0)
3094 return ret;
3095 if (!return_any)
3096 return 1;
3097 /*
3098 * no higher item found, return the next
3099 * lower instead
3100 */
3101 return_any = 0;
3102 find_higher = 0;
3103 btrfs_release_path(p);
3104 goto again;
3105 }
3106 } else {
e6793769
AJ
3107 if (p->slots[0] == 0) {
3108 ret = btrfs_prev_leaf(root, p);
3109 if (ret < 0)
3110 return ret;
3111 if (!ret) {
23c6bf6a
FDBM
3112 leaf = p->nodes[0];
3113 if (p->slots[0] == btrfs_header_nritems(leaf))
3114 p->slots[0]--;
e6793769 3115 return 0;
2f38b3e1 3116 }
e6793769
AJ
3117 if (!return_any)
3118 return 1;
3119 /*
3120 * no lower item found, return the next
3121 * higher instead
3122 */
3123 return_any = 0;
3124 find_higher = 1;
3125 btrfs_release_path(p);
3126 goto again;
3127 } else {
2f38b3e1
AJ
3128 --p->slots[0];
3129 }
3130 }
3131 return 0;
3132}
3133
74123bd7
CM
3134/*
3135 * adjust the pointers going up the tree, starting at level
3136 * making sure the right key of each node is points to 'key'.
3137 * This is used after shifting pointers to the left, so it stops
3138 * fixing up pointers when a given leaf/node is not in slot 0 of the
3139 * higher levels
aa5d6bed 3140 *
74123bd7 3141 */
b7a0365e
DD
3142static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3143 struct btrfs_path *path,
143bede5 3144 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3145{
3146 int i;
5f39d397
CM
3147 struct extent_buffer *t;
3148
234b63a0 3149 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3150 int tslot = path->slots[i];
eb60ceac 3151 if (!path->nodes[i])
be0e5c09 3152 break;
5f39d397 3153 t = path->nodes[i];
b7a0365e 3154 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
5f39d397 3155 btrfs_set_node_key(t, key, tslot);
d6025579 3156 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3157 if (tslot != 0)
3158 break;
3159 }
3160}
3161
31840ae1
ZY
3162/*
3163 * update item key.
3164 *
3165 * This function isn't completely safe. It's the caller's responsibility
3166 * that the new key won't break the order
3167 */
b7a0365e
DD
3168void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3169 struct btrfs_path *path,
310712b2 3170 const struct btrfs_key *new_key)
31840ae1
ZY
3171{
3172 struct btrfs_disk_key disk_key;
3173 struct extent_buffer *eb;
3174 int slot;
3175
3176 eb = path->nodes[0];
3177 slot = path->slots[0];
3178 if (slot > 0) {
3179 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3180 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3181 }
3182 if (slot < btrfs_header_nritems(eb) - 1) {
3183 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3184 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3185 }
3186
3187 btrfs_cpu_key_to_disk(&disk_key, new_key);
3188 btrfs_set_item_key(eb, &disk_key, slot);
3189 btrfs_mark_buffer_dirty(eb);
3190 if (slot == 0)
b7a0365e 3191 fixup_low_keys(fs_info, path, &disk_key, 1);
31840ae1
ZY
3192}
3193
74123bd7
CM
3194/*
3195 * try to push data from one node into the next node left in the
79f95c82 3196 * tree.
aa5d6bed
CM
3197 *
3198 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3199 * error, and > 0 if there was no room in the left hand block.
74123bd7 3200 */
98ed5174 3201static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
3202 struct btrfs_fs_info *fs_info,
3203 struct extent_buffer *dst,
971a1f66 3204 struct extent_buffer *src, int empty)
be0e5c09 3205{
be0e5c09 3206 int push_items = 0;
bb803951
CM
3207 int src_nritems;
3208 int dst_nritems;
aa5d6bed 3209 int ret = 0;
be0e5c09 3210
5f39d397
CM
3211 src_nritems = btrfs_header_nritems(src);
3212 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3213 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
7bb86316
CM
3214 WARN_ON(btrfs_header_generation(src) != trans->transid);
3215 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3216
bce4eae9 3217 if (!empty && src_nritems <= 8)
971a1f66
CM
3218 return 1;
3219
d397712b 3220 if (push_items <= 0)
be0e5c09
CM
3221 return 1;
3222
bce4eae9 3223 if (empty) {
971a1f66 3224 push_items = min(src_nritems, push_items);
bce4eae9
CM
3225 if (push_items < src_nritems) {
3226 /* leave at least 8 pointers in the node if
3227 * we aren't going to empty it
3228 */
3229 if (src_nritems - push_items < 8) {
3230 if (push_items <= 8)
3231 return 1;
3232 push_items -= 8;
3233 }
3234 }
3235 } else
3236 push_items = min(src_nritems - 8, push_items);
79f95c82 3237
0b246afa 3238 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
5de865ee
FDBM
3239 push_items);
3240 if (ret) {
66642832 3241 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3242 return ret;
3243 }
5f39d397
CM
3244 copy_extent_buffer(dst, src,
3245 btrfs_node_key_ptr_offset(dst_nritems),
3246 btrfs_node_key_ptr_offset(0),
d397712b 3247 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3248
bb803951 3249 if (push_items < src_nritems) {
57911b8b
JS
3250 /*
3251 * don't call tree_mod_log_eb_move here, key removal was already
3252 * fully logged by tree_mod_log_eb_copy above.
3253 */
5f39d397
CM
3254 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3255 btrfs_node_key_ptr_offset(push_items),
3256 (src_nritems - push_items) *
3257 sizeof(struct btrfs_key_ptr));
3258 }
3259 btrfs_set_header_nritems(src, src_nritems - push_items);
3260 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3261 btrfs_mark_buffer_dirty(src);
3262 btrfs_mark_buffer_dirty(dst);
31840ae1 3263
79f95c82
CM
3264 return ret;
3265}
3266
3267/*
3268 * try to push data from one node into the next node right in the
3269 * tree.
3270 *
3271 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3272 * error, and > 0 if there was no room in the right hand block.
3273 *
3274 * this will only push up to 1/2 the contents of the left node over
3275 */
5f39d397 3276static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 3277 struct btrfs_fs_info *fs_info,
5f39d397
CM
3278 struct extent_buffer *dst,
3279 struct extent_buffer *src)
79f95c82 3280{
79f95c82
CM
3281 int push_items = 0;
3282 int max_push;
3283 int src_nritems;
3284 int dst_nritems;
3285 int ret = 0;
79f95c82 3286
7bb86316
CM
3287 WARN_ON(btrfs_header_generation(src) != trans->transid);
3288 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3289
5f39d397
CM
3290 src_nritems = btrfs_header_nritems(src);
3291 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3292 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
d397712b 3293 if (push_items <= 0)
79f95c82 3294 return 1;
bce4eae9 3295
d397712b 3296 if (src_nritems < 4)
bce4eae9 3297 return 1;
79f95c82
CM
3298
3299 max_push = src_nritems / 2 + 1;
3300 /* don't try to empty the node */
d397712b 3301 if (max_push >= src_nritems)
79f95c82 3302 return 1;
252c38f0 3303
79f95c82
CM
3304 if (max_push < push_items)
3305 push_items = max_push;
3306
0b246afa 3307 tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3308 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3309 btrfs_node_key_ptr_offset(0),
3310 (dst_nritems) *
3311 sizeof(struct btrfs_key_ptr));
d6025579 3312
0b246afa 3313 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
5de865ee
FDBM
3314 src_nritems - push_items, push_items);
3315 if (ret) {
66642832 3316 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3317 return ret;
3318 }
5f39d397
CM
3319 copy_extent_buffer(dst, src,
3320 btrfs_node_key_ptr_offset(0),
3321 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3322 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3323
5f39d397
CM
3324 btrfs_set_header_nritems(src, src_nritems - push_items);
3325 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3326
5f39d397
CM
3327 btrfs_mark_buffer_dirty(src);
3328 btrfs_mark_buffer_dirty(dst);
31840ae1 3329
aa5d6bed 3330 return ret;
be0e5c09
CM
3331}
3332
97571fd0
CM
3333/*
3334 * helper function to insert a new root level in the tree.
3335 * A new node is allocated, and a single item is inserted to
3336 * point to the existing root
aa5d6bed
CM
3337 *
3338 * returns zero on success or < 0 on failure.
97571fd0 3339 */
d397712b 3340static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3341 struct btrfs_root *root,
fdd99c72 3342 struct btrfs_path *path, int level)
5c680ed6 3343{
0b246afa 3344 struct btrfs_fs_info *fs_info = root->fs_info;
7bb86316 3345 u64 lower_gen;
5f39d397
CM
3346 struct extent_buffer *lower;
3347 struct extent_buffer *c;
925baedd 3348 struct extent_buffer *old;
5f39d397 3349 struct btrfs_disk_key lower_key;
5c680ed6
CM
3350
3351 BUG_ON(path->nodes[level]);
3352 BUG_ON(path->nodes[level-1] != root->node);
3353
7bb86316
CM
3354 lower = path->nodes[level-1];
3355 if (level == 1)
3356 btrfs_item_key(lower, &lower_key, 0);
3357 else
3358 btrfs_node_key(lower, &lower_key, 0);
3359
4d75f8a9
DS
3360 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3361 &lower_key, level, root->node->start, 0);
5f39d397
CM
3362 if (IS_ERR(c))
3363 return PTR_ERR(c);
925baedd 3364
0b246afa 3365 root_add_used(root, fs_info->nodesize);
f0486c68 3366
b159fa28 3367 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
5f39d397
CM
3368 btrfs_set_header_nritems(c, 1);
3369 btrfs_set_header_level(c, level);
db94535d 3370 btrfs_set_header_bytenr(c, c->start);
5f39d397 3371 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3372 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3373 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397 3374
0b246afa
JM
3375 write_extent_buffer_fsid(c, fs_info->fsid);
3376 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
e17cade2 3377
5f39d397 3378 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3379 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3380 lower_gen = btrfs_header_generation(lower);
31840ae1 3381 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3382
3383 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3384
5f39d397 3385 btrfs_mark_buffer_dirty(c);
d5719762 3386
925baedd 3387 old = root->node;
fdd99c72 3388 tree_mod_log_set_root_pointer(root, c, 0);
240f62c8 3389 rcu_assign_pointer(root->node, c);
925baedd
CM
3390
3391 /* the super has an extra ref to root->node */
3392 free_extent_buffer(old);
3393
0b86a832 3394 add_root_to_dirty_list(root);
5f39d397
CM
3395 extent_buffer_get(c);
3396 path->nodes[level] = c;
95449a16 3397 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3398 path->slots[level] = 0;
3399 return 0;
3400}
3401
74123bd7
CM
3402/*
3403 * worker function to insert a single pointer in a node.
3404 * the node should have enough room for the pointer already
97571fd0 3405 *
74123bd7
CM
3406 * slot and level indicate where you want the key to go, and
3407 * blocknr is the block the key points to.
3408 */
143bede5 3409static void insert_ptr(struct btrfs_trans_handle *trans,
2ff7e61e 3410 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 3411 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3412 int slot, int level)
74123bd7 3413{
5f39d397 3414 struct extent_buffer *lower;
74123bd7 3415 int nritems;
f3ea38da 3416 int ret;
5c680ed6
CM
3417
3418 BUG_ON(!path->nodes[level]);
f0486c68 3419 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3420 lower = path->nodes[level];
3421 nritems = btrfs_header_nritems(lower);
c293498b 3422 BUG_ON(slot > nritems);
0b246afa 3423 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
74123bd7 3424 if (slot != nritems) {
c3e06965 3425 if (level)
0b246afa 3426 tree_mod_log_eb_move(fs_info, lower, slot + 1,
f3ea38da 3427 slot, nritems - slot);
5f39d397
CM
3428 memmove_extent_buffer(lower,
3429 btrfs_node_key_ptr_offset(slot + 1),
3430 btrfs_node_key_ptr_offset(slot),
d6025579 3431 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3432 }
c3e06965 3433 if (level) {
0b246afa 3434 ret = tree_mod_log_insert_key(fs_info, lower, slot,
c8cc6341 3435 MOD_LOG_KEY_ADD, GFP_NOFS);
f3ea38da
JS
3436 BUG_ON(ret < 0);
3437 }
5f39d397 3438 btrfs_set_node_key(lower, key, slot);
db94535d 3439 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3440 WARN_ON(trans->transid == 0);
3441 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3442 btrfs_set_header_nritems(lower, nritems + 1);
3443 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3444}
3445
97571fd0
CM
3446/*
3447 * split the node at the specified level in path in two.
3448 * The path is corrected to point to the appropriate node after the split
3449 *
3450 * Before splitting this tries to make some room in the node by pushing
3451 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3452 *
3453 * returns 0 on success and < 0 on failure
97571fd0 3454 */
e02119d5
CM
3455static noinline int split_node(struct btrfs_trans_handle *trans,
3456 struct btrfs_root *root,
3457 struct btrfs_path *path, int level)
be0e5c09 3458{
0b246afa 3459 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
3460 struct extent_buffer *c;
3461 struct extent_buffer *split;
3462 struct btrfs_disk_key disk_key;
be0e5c09 3463 int mid;
5c680ed6 3464 int ret;
7518a238 3465 u32 c_nritems;
eb60ceac 3466
5f39d397 3467 c = path->nodes[level];
7bb86316 3468 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3469 if (c == root->node) {
d9abbf1c 3470 /*
90f8d62e
JS
3471 * trying to split the root, lets make a new one
3472 *
fdd99c72 3473 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3474 * insert_new_root, because that root buffer will be kept as a
3475 * normal node. We are going to log removal of half of the
3476 * elements below with tree_mod_log_eb_copy. We're holding a
3477 * tree lock on the buffer, which is why we cannot race with
3478 * other tree_mod_log users.
d9abbf1c 3479 */
fdd99c72 3480 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3481 if (ret)
3482 return ret;
b3612421 3483 } else {
e66f709b 3484 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3485 c = path->nodes[level];
3486 if (!ret && btrfs_header_nritems(c) <
0b246afa 3487 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
e66f709b 3488 return 0;
54aa1f4d
CM
3489 if (ret < 0)
3490 return ret;
be0e5c09 3491 }
e66f709b 3492
5f39d397 3493 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3494 mid = (c_nritems + 1) / 2;
3495 btrfs_node_key(c, &disk_key, mid);
7bb86316 3496
4d75f8a9
DS
3497 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3498 &disk_key, level, c->start, 0);
5f39d397
CM
3499 if (IS_ERR(split))
3500 return PTR_ERR(split);
3501
0b246afa 3502 root_add_used(root, fs_info->nodesize);
f0486c68 3503
b159fa28 3504 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
5f39d397 3505 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3506 btrfs_set_header_bytenr(split, split->start);
5f39d397 3507 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3508 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397 3509 btrfs_set_header_owner(split, root->root_key.objectid);
0b246afa
JM
3510 write_extent_buffer_fsid(split, fs_info->fsid);
3511 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
54aa1f4d 3512
0b246afa 3513 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
5de865ee 3514 if (ret) {
66642832 3515 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3516 return ret;
3517 }
5f39d397
CM
3518 copy_extent_buffer(split, c,
3519 btrfs_node_key_ptr_offset(0),
3520 btrfs_node_key_ptr_offset(mid),
3521 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3522 btrfs_set_header_nritems(split, c_nritems - mid);
3523 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3524 ret = 0;
3525
5f39d397
CM
3526 btrfs_mark_buffer_dirty(c);
3527 btrfs_mark_buffer_dirty(split);
3528
2ff7e61e 3529 insert_ptr(trans, fs_info, path, &disk_key, split->start,
c3e06965 3530 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3531
5de08d7d 3532 if (path->slots[level] >= mid) {
5c680ed6 3533 path->slots[level] -= mid;
925baedd 3534 btrfs_tree_unlock(c);
5f39d397
CM
3535 free_extent_buffer(c);
3536 path->nodes[level] = split;
5c680ed6
CM
3537 path->slots[level + 1] += 1;
3538 } else {
925baedd 3539 btrfs_tree_unlock(split);
5f39d397 3540 free_extent_buffer(split);
be0e5c09 3541 }
aa5d6bed 3542 return ret;
be0e5c09
CM
3543}
3544
74123bd7
CM
3545/*
3546 * how many bytes are required to store the items in a leaf. start
3547 * and nr indicate which items in the leaf to check. This totals up the
3548 * space used both by the item structs and the item data
3549 */
5f39d397 3550static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3551{
41be1f3b
JB
3552 struct btrfs_item *start_item;
3553 struct btrfs_item *end_item;
3554 struct btrfs_map_token token;
be0e5c09 3555 int data_len;
5f39d397 3556 int nritems = btrfs_header_nritems(l);
d4dbff95 3557 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3558
3559 if (!nr)
3560 return 0;
41be1f3b 3561 btrfs_init_map_token(&token);
dd3cc16b
RK
3562 start_item = btrfs_item_nr(start);
3563 end_item = btrfs_item_nr(end);
41be1f3b
JB
3564 data_len = btrfs_token_item_offset(l, start_item, &token) +
3565 btrfs_token_item_size(l, start_item, &token);
3566 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3567 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3568 WARN_ON(data_len < 0);
be0e5c09
CM
3569 return data_len;
3570}
3571
d4dbff95
CM
3572/*
3573 * The space between the end of the leaf items and
3574 * the start of the leaf data. IOW, how much room
3575 * the leaf has left for both items and data
3576 */
2ff7e61e 3577noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
e02119d5 3578 struct extent_buffer *leaf)
d4dbff95 3579{
5f39d397
CM
3580 int nritems = btrfs_header_nritems(leaf);
3581 int ret;
0b246afa
JM
3582
3583 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
5f39d397 3584 if (ret < 0) {
0b246afa
JM
3585 btrfs_crit(fs_info,
3586 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3587 ret,
3588 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3589 leaf_space_used(leaf, 0, nritems), nritems);
5f39d397
CM
3590 }
3591 return ret;
d4dbff95
CM
3592}
3593
99d8f83c
CM
3594/*
3595 * min slot controls the lowest index we're willing to push to the
3596 * right. We'll push up to and including min_slot, but no lower
3597 */
1e47eef2 3598static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
44871b1b
CM
3599 struct btrfs_path *path,
3600 int data_size, int empty,
3601 struct extent_buffer *right,
99d8f83c
CM
3602 int free_space, u32 left_nritems,
3603 u32 min_slot)
00ec4c51 3604{
5f39d397 3605 struct extent_buffer *left = path->nodes[0];
44871b1b 3606 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3607 struct btrfs_map_token token;
5f39d397 3608 struct btrfs_disk_key disk_key;
00ec4c51 3609 int slot;
34a38218 3610 u32 i;
00ec4c51
CM
3611 int push_space = 0;
3612 int push_items = 0;
0783fcfc 3613 struct btrfs_item *item;
34a38218 3614 u32 nr;
7518a238 3615 u32 right_nritems;
5f39d397 3616 u32 data_end;
db94535d 3617 u32 this_item_size;
00ec4c51 3618
cfed81a0
CM
3619 btrfs_init_map_token(&token);
3620
34a38218
CM
3621 if (empty)
3622 nr = 0;
3623 else
99d8f83c 3624 nr = max_t(u32, 1, min_slot);
34a38218 3625
31840ae1 3626 if (path->slots[0] >= left_nritems)
87b29b20 3627 push_space += data_size;
31840ae1 3628
44871b1b 3629 slot = path->slots[1];
34a38218
CM
3630 i = left_nritems - 1;
3631 while (i >= nr) {
dd3cc16b 3632 item = btrfs_item_nr(i);
db94535d 3633
31840ae1
ZY
3634 if (!empty && push_items > 0) {
3635 if (path->slots[0] > i)
3636 break;
3637 if (path->slots[0] == i) {
2ff7e61e 3638 int space = btrfs_leaf_free_space(fs_info, left);
31840ae1
ZY
3639 if (space + push_space * 2 > free_space)
3640 break;
3641 }
3642 }
3643
00ec4c51 3644 if (path->slots[0] == i)
87b29b20 3645 push_space += data_size;
db94535d 3646
db94535d
CM
3647 this_item_size = btrfs_item_size(left, item);
3648 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3649 break;
31840ae1 3650
00ec4c51 3651 push_items++;
db94535d 3652 push_space += this_item_size + sizeof(*item);
34a38218
CM
3653 if (i == 0)
3654 break;
3655 i--;
db94535d 3656 }
5f39d397 3657
925baedd
CM
3658 if (push_items == 0)
3659 goto out_unlock;
5f39d397 3660
6c1500f2 3661 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3662
00ec4c51 3663 /* push left to right */
5f39d397 3664 right_nritems = btrfs_header_nritems(right);
34a38218 3665
5f39d397 3666 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2ff7e61e 3667 push_space -= leaf_data_end(fs_info, left);
5f39d397 3668
00ec4c51 3669 /* make room in the right data area */
2ff7e61e 3670 data_end = leaf_data_end(fs_info, right);
5f39d397
CM
3671 memmove_extent_buffer(right,
3672 btrfs_leaf_data(right) + data_end - push_space,
3673 btrfs_leaf_data(right) + data_end,
0b246afa 3674 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
5f39d397 3675
00ec4c51 3676 /* copy from the left data area */
5f39d397 3677 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
0b246afa 3678 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2ff7e61e 3679 btrfs_leaf_data(left) + leaf_data_end(fs_info, left),
d6025579 3680 push_space);
5f39d397
CM
3681
3682 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3683 btrfs_item_nr_offset(0),
3684 right_nritems * sizeof(struct btrfs_item));
3685
00ec4c51 3686 /* copy the items from left to right */
5f39d397
CM
3687 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3688 btrfs_item_nr_offset(left_nritems - push_items),
3689 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3690
3691 /* update the item pointers */
7518a238 3692 right_nritems += push_items;
5f39d397 3693 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3694 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
7518a238 3695 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3696 item = btrfs_item_nr(i);
cfed81a0
CM
3697 push_space -= btrfs_token_item_size(right, item, &token);
3698 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3699 }
3700
7518a238 3701 left_nritems -= push_items;
5f39d397 3702 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3703
34a38218
CM
3704 if (left_nritems)
3705 btrfs_mark_buffer_dirty(left);
f0486c68 3706 else
7c302b49 3707 clean_tree_block(fs_info, left);
f0486c68 3708
5f39d397 3709 btrfs_mark_buffer_dirty(right);
a429e513 3710
5f39d397
CM
3711 btrfs_item_key(right, &disk_key, 0);
3712 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3713 btrfs_mark_buffer_dirty(upper);
02217ed2 3714
00ec4c51 3715 /* then fixup the leaf pointer in the path */
7518a238
CM
3716 if (path->slots[0] >= left_nritems) {
3717 path->slots[0] -= left_nritems;
925baedd 3718 if (btrfs_header_nritems(path->nodes[0]) == 0)
7c302b49 3719 clean_tree_block(fs_info, path->nodes[0]);
925baedd 3720 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3721 free_extent_buffer(path->nodes[0]);
3722 path->nodes[0] = right;
00ec4c51
CM
3723 path->slots[1] += 1;
3724 } else {
925baedd 3725 btrfs_tree_unlock(right);
5f39d397 3726 free_extent_buffer(right);
00ec4c51
CM
3727 }
3728 return 0;
925baedd
CM
3729
3730out_unlock:
3731 btrfs_tree_unlock(right);
3732 free_extent_buffer(right);
3733 return 1;
00ec4c51 3734}
925baedd 3735
44871b1b
CM
3736/*
3737 * push some data in the path leaf to the right, trying to free up at
3738 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3739 *
3740 * returns 1 if the push failed because the other node didn't have enough
3741 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3742 *
3743 * this will push starting from min_slot to the end of the leaf. It won't
3744 * push any slot lower than min_slot
44871b1b
CM
3745 */
3746static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3747 *root, struct btrfs_path *path,
3748 int min_data_size, int data_size,
3749 int empty, u32 min_slot)
44871b1b 3750{
2ff7e61e 3751 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3752 struct extent_buffer *left = path->nodes[0];
3753 struct extent_buffer *right;
3754 struct extent_buffer *upper;
3755 int slot;
3756 int free_space;
3757 u32 left_nritems;
3758 int ret;
3759
3760 if (!path->nodes[1])
3761 return 1;
3762
3763 slot = path->slots[1];
3764 upper = path->nodes[1];
3765 if (slot >= btrfs_header_nritems(upper) - 1)
3766 return 1;
3767
3768 btrfs_assert_tree_locked(path->nodes[1]);
3769
2ff7e61e 3770 right = read_node_slot(fs_info, upper, slot + 1);
fb770ae4
LB
3771 /*
3772 * slot + 1 is not valid or we fail to read the right node,
3773 * no big deal, just return.
3774 */
3775 if (IS_ERR(right))
91ca338d
TI
3776 return 1;
3777
44871b1b
CM
3778 btrfs_tree_lock(right);
3779 btrfs_set_lock_blocking(right);
3780
2ff7e61e 3781 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3782 if (free_space < data_size)
3783 goto out_unlock;
3784
3785 /* cow and double check */
3786 ret = btrfs_cow_block(trans, root, right, upper,
3787 slot + 1, &right);
3788 if (ret)
3789 goto out_unlock;
3790
2ff7e61e 3791 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3792 if (free_space < data_size)
3793 goto out_unlock;
3794
3795 left_nritems = btrfs_header_nritems(left);
3796 if (left_nritems == 0)
3797 goto out_unlock;
3798
2ef1fed2
FDBM
3799 if (path->slots[0] == left_nritems && !empty) {
3800 /* Key greater than all keys in the leaf, right neighbor has
3801 * enough room for it and we're not emptying our leaf to delete
3802 * it, therefore use right neighbor to insert the new item and
3803 * no need to touch/dirty our left leaft. */
3804 btrfs_tree_unlock(left);
3805 free_extent_buffer(left);
3806 path->nodes[0] = right;
3807 path->slots[0] = 0;
3808 path->slots[1]++;
3809 return 0;
3810 }
3811
1e47eef2 3812 return __push_leaf_right(fs_info, path, min_data_size, empty,
99d8f83c 3813 right, free_space, left_nritems, min_slot);
44871b1b
CM
3814out_unlock:
3815 btrfs_tree_unlock(right);
3816 free_extent_buffer(right);
3817 return 1;
3818}
3819
74123bd7
CM
3820/*
3821 * push some data in the path leaf to the left, trying to free up at
3822 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3823 *
3824 * max_slot can put a limit on how far into the leaf we'll push items. The
3825 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3826 * items
74123bd7 3827 */
66cb7ddb 3828static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
44871b1b
CM
3829 struct btrfs_path *path, int data_size,
3830 int empty, struct extent_buffer *left,
99d8f83c
CM
3831 int free_space, u32 right_nritems,
3832 u32 max_slot)
be0e5c09 3833{
5f39d397
CM
3834 struct btrfs_disk_key disk_key;
3835 struct extent_buffer *right = path->nodes[0];
be0e5c09 3836 int i;
be0e5c09
CM
3837 int push_space = 0;
3838 int push_items = 0;
0783fcfc 3839 struct btrfs_item *item;
7518a238 3840 u32 old_left_nritems;
34a38218 3841 u32 nr;
aa5d6bed 3842 int ret = 0;
db94535d
CM
3843 u32 this_item_size;
3844 u32 old_left_item_size;
cfed81a0
CM
3845 struct btrfs_map_token token;
3846
3847 btrfs_init_map_token(&token);
be0e5c09 3848
34a38218 3849 if (empty)
99d8f83c 3850 nr = min(right_nritems, max_slot);
34a38218 3851 else
99d8f83c 3852 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3853
3854 for (i = 0; i < nr; i++) {
dd3cc16b 3855 item = btrfs_item_nr(i);
db94535d 3856
31840ae1
ZY
3857 if (!empty && push_items > 0) {
3858 if (path->slots[0] < i)
3859 break;
3860 if (path->slots[0] == i) {
2ff7e61e 3861 int space = btrfs_leaf_free_space(fs_info, right);
31840ae1
ZY
3862 if (space + push_space * 2 > free_space)
3863 break;
3864 }
3865 }
3866
be0e5c09 3867 if (path->slots[0] == i)
87b29b20 3868 push_space += data_size;
db94535d
CM
3869
3870 this_item_size = btrfs_item_size(right, item);
3871 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3872 break;
db94535d 3873
be0e5c09 3874 push_items++;
db94535d
CM
3875 push_space += this_item_size + sizeof(*item);
3876 }
3877
be0e5c09 3878 if (push_items == 0) {
925baedd
CM
3879 ret = 1;
3880 goto out;
be0e5c09 3881 }
fae7f21c 3882 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3883
be0e5c09 3884 /* push data from right to left */
5f39d397
CM
3885 copy_extent_buffer(left, right,
3886 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3887 btrfs_item_nr_offset(0),
3888 push_items * sizeof(struct btrfs_item));
3889
0b246afa 3890 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
d397712b 3891 btrfs_item_offset_nr(right, push_items - 1);
5f39d397
CM
3892
3893 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2ff7e61e 3894 leaf_data_end(fs_info, left) - push_space,
d6025579 3895 btrfs_leaf_data(right) +
5f39d397 3896 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3897 push_space);
5f39d397 3898 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3899 BUG_ON(old_left_nritems <= 0);
eb60ceac 3900
db94535d 3901 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3902 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3903 u32 ioff;
db94535d 3904
dd3cc16b 3905 item = btrfs_item_nr(i);
db94535d 3906
cfed81a0
CM
3907 ioff = btrfs_token_item_offset(left, item, &token);
3908 btrfs_set_token_item_offset(left, item,
0b246afa 3909 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
cfed81a0 3910 &token);
be0e5c09 3911 }
5f39d397 3912 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3913
3914 /* fixup right node */
31b1a2bd
JL
3915 if (push_items > right_nritems)
3916 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3917 right_nritems);
34a38218
CM
3918
3919 if (push_items < right_nritems) {
3920 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2ff7e61e 3921 leaf_data_end(fs_info, right);
34a38218 3922 memmove_extent_buffer(right, btrfs_leaf_data(right) +
0b246afa 3923 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
34a38218 3924 btrfs_leaf_data(right) +
2ff7e61e 3925 leaf_data_end(fs_info, right), push_space);
34a38218
CM
3926
3927 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3928 btrfs_item_nr_offset(push_items),
3929 (btrfs_header_nritems(right) - push_items) *
3930 sizeof(struct btrfs_item));
34a38218 3931 }
eef1c494
Y
3932 right_nritems -= push_items;
3933 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3934 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
5f39d397 3935 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3936 item = btrfs_item_nr(i);
db94535d 3937
cfed81a0
CM
3938 push_space = push_space - btrfs_token_item_size(right,
3939 item, &token);
3940 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3941 }
eb60ceac 3942
5f39d397 3943 btrfs_mark_buffer_dirty(left);
34a38218
CM
3944 if (right_nritems)
3945 btrfs_mark_buffer_dirty(right);
f0486c68 3946 else
7c302b49 3947 clean_tree_block(fs_info, right);
098f59c2 3948
5f39d397 3949 btrfs_item_key(right, &disk_key, 0);
0b246afa 3950 fixup_low_keys(fs_info, path, &disk_key, 1);
be0e5c09
CM
3951
3952 /* then fixup the leaf pointer in the path */
3953 if (path->slots[0] < push_items) {
3954 path->slots[0] += old_left_nritems;
925baedd 3955 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3956 free_extent_buffer(path->nodes[0]);
3957 path->nodes[0] = left;
be0e5c09
CM
3958 path->slots[1] -= 1;
3959 } else {
925baedd 3960 btrfs_tree_unlock(left);
5f39d397 3961 free_extent_buffer(left);
be0e5c09
CM
3962 path->slots[0] -= push_items;
3963 }
eb60ceac 3964 BUG_ON(path->slots[0] < 0);
aa5d6bed 3965 return ret;
925baedd
CM
3966out:
3967 btrfs_tree_unlock(left);
3968 free_extent_buffer(left);
3969 return ret;
be0e5c09
CM
3970}
3971
44871b1b
CM
3972/*
3973 * push some data in the path leaf to the left, trying to free up at
3974 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3975 *
3976 * max_slot can put a limit on how far into the leaf we'll push items. The
3977 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3978 * items
44871b1b
CM
3979 */
3980static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3981 *root, struct btrfs_path *path, int min_data_size,
3982 int data_size, int empty, u32 max_slot)
44871b1b 3983{
2ff7e61e 3984 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3985 struct extent_buffer *right = path->nodes[0];
3986 struct extent_buffer *left;
3987 int slot;
3988 int free_space;
3989 u32 right_nritems;
3990 int ret = 0;
3991
3992 slot = path->slots[1];
3993 if (slot == 0)
3994 return 1;
3995 if (!path->nodes[1])
3996 return 1;
3997
3998 right_nritems = btrfs_header_nritems(right);
3999 if (right_nritems == 0)
4000 return 1;
4001
4002 btrfs_assert_tree_locked(path->nodes[1]);
4003
2ff7e61e 4004 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
fb770ae4
LB
4005 /*
4006 * slot - 1 is not valid or we fail to read the left node,
4007 * no big deal, just return.
4008 */
4009 if (IS_ERR(left))
91ca338d
TI
4010 return 1;
4011
44871b1b
CM
4012 btrfs_tree_lock(left);
4013 btrfs_set_lock_blocking(left);
4014
2ff7e61e 4015 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4016 if (free_space < data_size) {
4017 ret = 1;
4018 goto out;
4019 }
4020
4021 /* cow and double check */
4022 ret = btrfs_cow_block(trans, root, left,
4023 path->nodes[1], slot - 1, &left);
4024 if (ret) {
4025 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4026 if (ret == -ENOSPC)
4027 ret = 1;
44871b1b
CM
4028 goto out;
4029 }
4030
2ff7e61e 4031 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4032 if (free_space < data_size) {
4033 ret = 1;
4034 goto out;
4035 }
4036
66cb7ddb 4037 return __push_leaf_left(fs_info, path, min_data_size,
99d8f83c
CM
4038 empty, left, free_space, right_nritems,
4039 max_slot);
44871b1b
CM
4040out:
4041 btrfs_tree_unlock(left);
4042 free_extent_buffer(left);
4043 return ret;
4044}
4045
4046/*
4047 * split the path's leaf in two, making sure there is at least data_size
4048 * available for the resulting leaf level of the path.
44871b1b 4049 */
143bede5 4050static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2ff7e61e 4051 struct btrfs_fs_info *fs_info,
143bede5
JM
4052 struct btrfs_path *path,
4053 struct extent_buffer *l,
4054 struct extent_buffer *right,
4055 int slot, int mid, int nritems)
44871b1b
CM
4056{
4057 int data_copy_size;
4058 int rt_data_off;
4059 int i;
44871b1b 4060 struct btrfs_disk_key disk_key;
cfed81a0
CM
4061 struct btrfs_map_token token;
4062
4063 btrfs_init_map_token(&token);
44871b1b
CM
4064
4065 nritems = nritems - mid;
4066 btrfs_set_header_nritems(right, nritems);
2ff7e61e 4067 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
44871b1b
CM
4068
4069 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4070 btrfs_item_nr_offset(mid),
4071 nritems * sizeof(struct btrfs_item));
4072
4073 copy_extent_buffer(right, l,
0b246afa 4074 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(fs_info) -
44871b1b 4075 data_copy_size, btrfs_leaf_data(l) +
2ff7e61e 4076 leaf_data_end(fs_info, l), data_copy_size);
44871b1b 4077
0b246afa 4078 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
44871b1b
CM
4079
4080 for (i = 0; i < nritems; i++) {
dd3cc16b 4081 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4082 u32 ioff;
4083
cfed81a0
CM
4084 ioff = btrfs_token_item_offset(right, item, &token);
4085 btrfs_set_token_item_offset(right, item,
4086 ioff + rt_data_off, &token);
44871b1b
CM
4087 }
4088
44871b1b 4089 btrfs_set_header_nritems(l, mid);
44871b1b 4090 btrfs_item_key(right, &disk_key, 0);
2ff7e61e 4091 insert_ptr(trans, fs_info, path, &disk_key, right->start,
c3e06965 4092 path->slots[1] + 1, 1);
44871b1b
CM
4093
4094 btrfs_mark_buffer_dirty(right);
4095 btrfs_mark_buffer_dirty(l);
4096 BUG_ON(path->slots[0] != slot);
4097
44871b1b
CM
4098 if (mid <= slot) {
4099 btrfs_tree_unlock(path->nodes[0]);
4100 free_extent_buffer(path->nodes[0]);
4101 path->nodes[0] = right;
4102 path->slots[0] -= mid;
4103 path->slots[1] += 1;
4104 } else {
4105 btrfs_tree_unlock(right);
4106 free_extent_buffer(right);
4107 }
4108
4109 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4110}
4111
99d8f83c
CM
4112/*
4113 * double splits happen when we need to insert a big item in the middle
4114 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4115 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4116 * A B C
4117 *
4118 * We avoid this by trying to push the items on either side of our target
4119 * into the adjacent leaves. If all goes well we can avoid the double split
4120 * completely.
4121 */
4122static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4123 struct btrfs_root *root,
4124 struct btrfs_path *path,
4125 int data_size)
4126{
2ff7e61e 4127 struct btrfs_fs_info *fs_info = root->fs_info;
99d8f83c
CM
4128 int ret;
4129 int progress = 0;
4130 int slot;
4131 u32 nritems;
5a4267ca 4132 int space_needed = data_size;
99d8f83c
CM
4133
4134 slot = path->slots[0];
5a4267ca 4135 if (slot < btrfs_header_nritems(path->nodes[0]))
2ff7e61e 4136 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
99d8f83c
CM
4137
4138 /*
4139 * try to push all the items after our slot into the
4140 * right leaf
4141 */
5a4267ca 4142 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4143 if (ret < 0)
4144 return ret;
4145
4146 if (ret == 0)
4147 progress++;
4148
4149 nritems = btrfs_header_nritems(path->nodes[0]);
4150 /*
4151 * our goal is to get our slot at the start or end of a leaf. If
4152 * we've done so we're done
4153 */
4154 if (path->slots[0] == 0 || path->slots[0] == nritems)
4155 return 0;
4156
2ff7e61e 4157 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4158 return 0;
4159
4160 /* try to push all the items before our slot into the next leaf */
4161 slot = path->slots[0];
5a4267ca 4162 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4163 if (ret < 0)
4164 return ret;
4165
4166 if (ret == 0)
4167 progress++;
4168
4169 if (progress)
4170 return 0;
4171 return 1;
4172}
4173
74123bd7
CM
4174/*
4175 * split the path's leaf in two, making sure there is at least data_size
4176 * available for the resulting leaf level of the path.
aa5d6bed
CM
4177 *
4178 * returns 0 if all went well and < 0 on failure.
74123bd7 4179 */
e02119d5
CM
4180static noinline int split_leaf(struct btrfs_trans_handle *trans,
4181 struct btrfs_root *root,
310712b2 4182 const struct btrfs_key *ins_key,
e02119d5
CM
4183 struct btrfs_path *path, int data_size,
4184 int extend)
be0e5c09 4185{
5d4f98a2 4186 struct btrfs_disk_key disk_key;
5f39d397 4187 struct extent_buffer *l;
7518a238 4188 u32 nritems;
eb60ceac
CM
4189 int mid;
4190 int slot;
5f39d397 4191 struct extent_buffer *right;
b7a0365e 4192 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4193 int ret = 0;
aa5d6bed 4194 int wret;
5d4f98a2 4195 int split;
cc0c5538 4196 int num_doubles = 0;
99d8f83c 4197 int tried_avoid_double = 0;
aa5d6bed 4198
a5719521
YZ
4199 l = path->nodes[0];
4200 slot = path->slots[0];
4201 if (extend && data_size + btrfs_item_size_nr(l, slot) +
0b246afa 4202 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
a5719521
YZ
4203 return -EOVERFLOW;
4204
40689478 4205 /* first try to make some room by pushing left and right */
33157e05 4206 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4207 int space_needed = data_size;
4208
4209 if (slot < btrfs_header_nritems(l))
2ff7e61e 4210 space_needed -= btrfs_leaf_free_space(fs_info, l);
5a4267ca
FDBM
4211
4212 wret = push_leaf_right(trans, root, path, space_needed,
4213 space_needed, 0, 0);
d397712b 4214 if (wret < 0)
eaee50e8 4215 return wret;
3685f791 4216 if (wret) {
5a4267ca
FDBM
4217 wret = push_leaf_left(trans, root, path, space_needed,
4218 space_needed, 0, (u32)-1);
3685f791
CM
4219 if (wret < 0)
4220 return wret;
4221 }
4222 l = path->nodes[0];
aa5d6bed 4223
3685f791 4224 /* did the pushes work? */
2ff7e61e 4225 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
3685f791 4226 return 0;
3326d1b0 4227 }
aa5d6bed 4228
5c680ed6 4229 if (!path->nodes[1]) {
fdd99c72 4230 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4231 if (ret)
4232 return ret;
4233 }
cc0c5538 4234again:
5d4f98a2 4235 split = 1;
cc0c5538 4236 l = path->nodes[0];
eb60ceac 4237 slot = path->slots[0];
5f39d397 4238 nritems = btrfs_header_nritems(l);
d397712b 4239 mid = (nritems + 1) / 2;
54aa1f4d 4240
5d4f98a2
YZ
4241 if (mid <= slot) {
4242 if (nritems == 1 ||
4243 leaf_space_used(l, mid, nritems - mid) + data_size >
0b246afa 4244 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4245 if (slot >= nritems) {
4246 split = 0;
4247 } else {
4248 mid = slot;
4249 if (mid != nritems &&
4250 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4251 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4252 if (data_size && !tried_avoid_double)
4253 goto push_for_double;
5d4f98a2
YZ
4254 split = 2;
4255 }
4256 }
4257 }
4258 } else {
4259 if (leaf_space_used(l, 0, mid) + data_size >
0b246afa 4260 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4261 if (!extend && data_size && slot == 0) {
4262 split = 0;
4263 } else if ((extend || !data_size) && slot == 0) {
4264 mid = 1;
4265 } else {
4266 mid = slot;
4267 if (mid != nritems &&
4268 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4269 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4270 if (data_size && !tried_avoid_double)
4271 goto push_for_double;
67871254 4272 split = 2;
5d4f98a2
YZ
4273 }
4274 }
4275 }
4276 }
4277
4278 if (split == 0)
4279 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4280 else
4281 btrfs_item_key(l, &disk_key, mid);
4282
4d75f8a9
DS
4283 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4284 &disk_key, 0, l->start, 0);
f0486c68 4285 if (IS_ERR(right))
5f39d397 4286 return PTR_ERR(right);
f0486c68 4287
0b246afa 4288 root_add_used(root, fs_info->nodesize);
5f39d397 4289
b159fa28 4290 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
db94535d 4291 btrfs_set_header_bytenr(right, right->start);
5f39d397 4292 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4293 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4294 btrfs_set_header_owner(right, root->root_key.objectid);
4295 btrfs_set_header_level(right, 0);
d24ee97b
DS
4296 write_extent_buffer_fsid(right, fs_info->fsid);
4297 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
44871b1b 4298
5d4f98a2
YZ
4299 if (split == 0) {
4300 if (mid <= slot) {
4301 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4302 insert_ptr(trans, fs_info, path, &disk_key,
4303 right->start, path->slots[1] + 1, 1);
5d4f98a2
YZ
4304 btrfs_tree_unlock(path->nodes[0]);
4305 free_extent_buffer(path->nodes[0]);
4306 path->nodes[0] = right;
4307 path->slots[0] = 0;
4308 path->slots[1] += 1;
4309 } else {
4310 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4311 insert_ptr(trans, fs_info, path, &disk_key,
4312 right->start, path->slots[1], 1);
5d4f98a2
YZ
4313 btrfs_tree_unlock(path->nodes[0]);
4314 free_extent_buffer(path->nodes[0]);
4315 path->nodes[0] = right;
4316 path->slots[0] = 0;
143bede5 4317 if (path->slots[1] == 0)
b7a0365e 4318 fixup_low_keys(fs_info, path, &disk_key, 1);
d4dbff95 4319 }
196e0249
LB
4320 /*
4321 * We create a new leaf 'right' for the required ins_len and
4322 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4323 * the content of ins_len to 'right'.
4324 */
5d4f98a2 4325 return ret;
d4dbff95 4326 }
74123bd7 4327
2ff7e61e 4328 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
31840ae1 4329
5d4f98a2 4330 if (split == 2) {
cc0c5538
CM
4331 BUG_ON(num_doubles != 0);
4332 num_doubles++;
4333 goto again;
a429e513 4334 }
44871b1b 4335
143bede5 4336 return 0;
99d8f83c
CM
4337
4338push_for_double:
4339 push_for_double_split(trans, root, path, data_size);
4340 tried_avoid_double = 1;
2ff7e61e 4341 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4342 return 0;
4343 goto again;
be0e5c09
CM
4344}
4345
ad48fd75
YZ
4346static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4347 struct btrfs_root *root,
4348 struct btrfs_path *path, int ins_len)
459931ec 4349{
2ff7e61e 4350 struct btrfs_fs_info *fs_info = root->fs_info;
ad48fd75 4351 struct btrfs_key key;
459931ec 4352 struct extent_buffer *leaf;
ad48fd75
YZ
4353 struct btrfs_file_extent_item *fi;
4354 u64 extent_len = 0;
4355 u32 item_size;
4356 int ret;
459931ec
CM
4357
4358 leaf = path->nodes[0];
ad48fd75
YZ
4359 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4360
4361 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4362 key.type != BTRFS_EXTENT_CSUM_KEY);
4363
2ff7e61e 4364 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
ad48fd75 4365 return 0;
459931ec
CM
4366
4367 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4368 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4369 fi = btrfs_item_ptr(leaf, path->slots[0],
4370 struct btrfs_file_extent_item);
4371 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4372 }
b3b4aa74 4373 btrfs_release_path(path);
459931ec 4374
459931ec 4375 path->keep_locks = 1;
ad48fd75
YZ
4376 path->search_for_split = 1;
4377 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4378 path->search_for_split = 0;
a8df6fe6
FM
4379 if (ret > 0)
4380 ret = -EAGAIN;
ad48fd75
YZ
4381 if (ret < 0)
4382 goto err;
459931ec 4383
ad48fd75
YZ
4384 ret = -EAGAIN;
4385 leaf = path->nodes[0];
a8df6fe6
FM
4386 /* if our item isn't there, return now */
4387 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4388 goto err;
4389
109f6aef 4390 /* the leaf has changed, it now has room. return now */
2ff7e61e 4391 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
109f6aef
CM
4392 goto err;
4393
ad48fd75
YZ
4394 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4395 fi = btrfs_item_ptr(leaf, path->slots[0],
4396 struct btrfs_file_extent_item);
4397 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4398 goto err;
459931ec
CM
4399 }
4400
b9473439 4401 btrfs_set_path_blocking(path);
ad48fd75 4402 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4403 if (ret)
4404 goto err;
459931ec 4405
ad48fd75 4406 path->keep_locks = 0;
b9473439 4407 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4408 return 0;
4409err:
4410 path->keep_locks = 0;
4411 return ret;
4412}
4413
4961e293 4414static noinline int split_item(struct btrfs_fs_info *fs_info,
ad48fd75 4415 struct btrfs_path *path,
310712b2 4416 const struct btrfs_key *new_key,
ad48fd75
YZ
4417 unsigned long split_offset)
4418{
4419 struct extent_buffer *leaf;
4420 struct btrfs_item *item;
4421 struct btrfs_item *new_item;
4422 int slot;
4423 char *buf;
4424 u32 nritems;
4425 u32 item_size;
4426 u32 orig_offset;
4427 struct btrfs_disk_key disk_key;
4428
b9473439 4429 leaf = path->nodes[0];
2ff7e61e 4430 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
b9473439 4431
b4ce94de
CM
4432 btrfs_set_path_blocking(path);
4433
dd3cc16b 4434 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4435 orig_offset = btrfs_item_offset(leaf, item);
4436 item_size = btrfs_item_size(leaf, item);
4437
459931ec 4438 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4439 if (!buf)
4440 return -ENOMEM;
4441
459931ec
CM
4442 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4443 path->slots[0]), item_size);
459931ec 4444
ad48fd75 4445 slot = path->slots[0] + 1;
459931ec 4446 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4447 if (slot != nritems) {
4448 /* shift the items */
4449 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4450 btrfs_item_nr_offset(slot),
4451 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4452 }
4453
4454 btrfs_cpu_key_to_disk(&disk_key, new_key);
4455 btrfs_set_item_key(leaf, &disk_key, slot);
4456
dd3cc16b 4457 new_item = btrfs_item_nr(slot);
459931ec
CM
4458
4459 btrfs_set_item_offset(leaf, new_item, orig_offset);
4460 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4461
4462 btrfs_set_item_offset(leaf, item,
4463 orig_offset + item_size - split_offset);
4464 btrfs_set_item_size(leaf, item, split_offset);
4465
4466 btrfs_set_header_nritems(leaf, nritems + 1);
4467
4468 /* write the data for the start of the original item */
4469 write_extent_buffer(leaf, buf,
4470 btrfs_item_ptr_offset(leaf, path->slots[0]),
4471 split_offset);
4472
4473 /* write the data for the new item */
4474 write_extent_buffer(leaf, buf + split_offset,
4475 btrfs_item_ptr_offset(leaf, slot),
4476 item_size - split_offset);
4477 btrfs_mark_buffer_dirty(leaf);
4478
2ff7e61e 4479 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
459931ec 4480 kfree(buf);
ad48fd75
YZ
4481 return 0;
4482}
4483
4484/*
4485 * This function splits a single item into two items,
4486 * giving 'new_key' to the new item and splitting the
4487 * old one at split_offset (from the start of the item).
4488 *
4489 * The path may be released by this operation. After
4490 * the split, the path is pointing to the old item. The
4491 * new item is going to be in the same node as the old one.
4492 *
4493 * Note, the item being split must be smaller enough to live alone on
4494 * a tree block with room for one extra struct btrfs_item
4495 *
4496 * This allows us to split the item in place, keeping a lock on the
4497 * leaf the entire time.
4498 */
4499int btrfs_split_item(struct btrfs_trans_handle *trans,
4500 struct btrfs_root *root,
4501 struct btrfs_path *path,
310712b2 4502 const struct btrfs_key *new_key,
ad48fd75
YZ
4503 unsigned long split_offset)
4504{
4505 int ret;
4506 ret = setup_leaf_for_split(trans, root, path,
4507 sizeof(struct btrfs_item));
4508 if (ret)
4509 return ret;
4510
4961e293 4511 ret = split_item(root->fs_info, path, new_key, split_offset);
459931ec
CM
4512 return ret;
4513}
4514
ad48fd75
YZ
4515/*
4516 * This function duplicate a item, giving 'new_key' to the new item.
4517 * It guarantees both items live in the same tree leaf and the new item
4518 * is contiguous with the original item.
4519 *
4520 * This allows us to split file extent in place, keeping a lock on the
4521 * leaf the entire time.
4522 */
4523int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4524 struct btrfs_root *root,
4525 struct btrfs_path *path,
310712b2 4526 const struct btrfs_key *new_key)
ad48fd75
YZ
4527{
4528 struct extent_buffer *leaf;
4529 int ret;
4530 u32 item_size;
4531
4532 leaf = path->nodes[0];
4533 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4534 ret = setup_leaf_for_split(trans, root, path,
4535 item_size + sizeof(struct btrfs_item));
4536 if (ret)
4537 return ret;
4538
4539 path->slots[0]++;
afe5fea7 4540 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4541 item_size, item_size +
4542 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4543 leaf = path->nodes[0];
4544 memcpy_extent_buffer(leaf,
4545 btrfs_item_ptr_offset(leaf, path->slots[0]),
4546 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4547 item_size);
4548 return 0;
4549}
4550
d352ac68
CM
4551/*
4552 * make the item pointed to by the path smaller. new_size indicates
4553 * how small to make it, and from_end tells us if we just chop bytes
4554 * off the end of the item or if we shift the item to chop bytes off
4555 * the front.
4556 */
2ff7e61e
JM
4557void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4558 struct btrfs_path *path, u32 new_size, int from_end)
b18c6685 4559{
b18c6685 4560 int slot;
5f39d397
CM
4561 struct extent_buffer *leaf;
4562 struct btrfs_item *item;
b18c6685
CM
4563 u32 nritems;
4564 unsigned int data_end;
4565 unsigned int old_data_start;
4566 unsigned int old_size;
4567 unsigned int size_diff;
4568 int i;
cfed81a0
CM
4569 struct btrfs_map_token token;
4570
4571 btrfs_init_map_token(&token);
b18c6685 4572
5f39d397 4573 leaf = path->nodes[0];
179e29e4
CM
4574 slot = path->slots[0];
4575
4576 old_size = btrfs_item_size_nr(leaf, slot);
4577 if (old_size == new_size)
143bede5 4578 return;
b18c6685 4579
5f39d397 4580 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4581 data_end = leaf_data_end(fs_info, leaf);
b18c6685 4582
5f39d397 4583 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4584
b18c6685
CM
4585 size_diff = old_size - new_size;
4586
4587 BUG_ON(slot < 0);
4588 BUG_ON(slot >= nritems);
4589
4590 /*
4591 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4592 */
4593 /* first correct the data pointers */
4594 for (i = slot; i < nritems; i++) {
5f39d397 4595 u32 ioff;
dd3cc16b 4596 item = btrfs_item_nr(i);
db94535d 4597
cfed81a0
CM
4598 ioff = btrfs_token_item_offset(leaf, item, &token);
4599 btrfs_set_token_item_offset(leaf, item,
4600 ioff + size_diff, &token);
b18c6685 4601 }
db94535d 4602
b18c6685 4603 /* shift the data */
179e29e4
CM
4604 if (from_end) {
4605 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4606 data_end + size_diff, btrfs_leaf_data(leaf) +
4607 data_end, old_data_start + new_size - data_end);
4608 } else {
4609 struct btrfs_disk_key disk_key;
4610 u64 offset;
4611
4612 btrfs_item_key(leaf, &disk_key, slot);
4613
4614 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4615 unsigned long ptr;
4616 struct btrfs_file_extent_item *fi;
4617
4618 fi = btrfs_item_ptr(leaf, slot,
4619 struct btrfs_file_extent_item);
4620 fi = (struct btrfs_file_extent_item *)(
4621 (unsigned long)fi - size_diff);
4622
4623 if (btrfs_file_extent_type(leaf, fi) ==
4624 BTRFS_FILE_EXTENT_INLINE) {
4625 ptr = btrfs_item_ptr_offset(leaf, slot);
4626 memmove_extent_buffer(leaf, ptr,
d397712b 4627 (unsigned long)fi,
7ec20afb 4628 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4629 }
4630 }
4631
4632 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4633 data_end + size_diff, btrfs_leaf_data(leaf) +
4634 data_end, old_data_start - data_end);
4635
4636 offset = btrfs_disk_key_offset(&disk_key);
4637 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4638 btrfs_set_item_key(leaf, &disk_key, slot);
4639 if (slot == 0)
0b246afa 4640 fixup_low_keys(fs_info, path, &disk_key, 1);
179e29e4 4641 }
5f39d397 4642
dd3cc16b 4643 item = btrfs_item_nr(slot);
5f39d397
CM
4644 btrfs_set_item_size(leaf, item, new_size);
4645 btrfs_mark_buffer_dirty(leaf);
b18c6685 4646
2ff7e61e
JM
4647 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4648 btrfs_print_leaf(fs_info, leaf);
b18c6685 4649 BUG();
5f39d397 4650 }
b18c6685
CM
4651}
4652
d352ac68 4653/*
8f69dbd2 4654 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4655 */
2ff7e61e 4656void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 4657 u32 data_size)
6567e837 4658{
6567e837 4659 int slot;
5f39d397
CM
4660 struct extent_buffer *leaf;
4661 struct btrfs_item *item;
6567e837
CM
4662 u32 nritems;
4663 unsigned int data_end;
4664 unsigned int old_data;
4665 unsigned int old_size;
4666 int i;
cfed81a0
CM
4667 struct btrfs_map_token token;
4668
4669 btrfs_init_map_token(&token);
6567e837 4670
5f39d397 4671 leaf = path->nodes[0];
6567e837 4672
5f39d397 4673 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4674 data_end = leaf_data_end(fs_info, leaf);
6567e837 4675
2ff7e61e
JM
4676 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4677 btrfs_print_leaf(fs_info, leaf);
6567e837 4678 BUG();
5f39d397 4679 }
6567e837 4680 slot = path->slots[0];
5f39d397 4681 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4682
4683 BUG_ON(slot < 0);
3326d1b0 4684 if (slot >= nritems) {
2ff7e61e 4685 btrfs_print_leaf(fs_info, leaf);
0b246afa
JM
4686 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4687 slot, nritems);
3326d1b0
CM
4688 BUG_ON(1);
4689 }
6567e837
CM
4690
4691 /*
4692 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4693 */
4694 /* first correct the data pointers */
4695 for (i = slot; i < nritems; i++) {
5f39d397 4696 u32 ioff;
dd3cc16b 4697 item = btrfs_item_nr(i);
db94535d 4698
cfed81a0
CM
4699 ioff = btrfs_token_item_offset(leaf, item, &token);
4700 btrfs_set_token_item_offset(leaf, item,
4701 ioff - data_size, &token);
6567e837 4702 }
5f39d397 4703
6567e837 4704 /* shift the data */
5f39d397 4705 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
6567e837
CM
4706 data_end - data_size, btrfs_leaf_data(leaf) +
4707 data_end, old_data - data_end);
5f39d397 4708
6567e837 4709 data_end = old_data;
5f39d397 4710 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4711 item = btrfs_item_nr(slot);
5f39d397
CM
4712 btrfs_set_item_size(leaf, item, old_size + data_size);
4713 btrfs_mark_buffer_dirty(leaf);
6567e837 4714
2ff7e61e
JM
4715 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4716 btrfs_print_leaf(fs_info, leaf);
6567e837 4717 BUG();
5f39d397 4718 }
6567e837
CM
4719}
4720
74123bd7 4721/*
44871b1b
CM
4722 * this is a helper for btrfs_insert_empty_items, the main goal here is
4723 * to save stack depth by doing the bulk of the work in a function
4724 * that doesn't call btrfs_search_slot
74123bd7 4725 */
afe5fea7 4726void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
310712b2 4727 const struct btrfs_key *cpu_key, u32 *data_size,
143bede5 4728 u32 total_data, u32 total_size, int nr)
be0e5c09 4729{
0b246afa 4730 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4731 struct btrfs_item *item;
9c58309d 4732 int i;
7518a238 4733 u32 nritems;
be0e5c09 4734 unsigned int data_end;
e2fa7227 4735 struct btrfs_disk_key disk_key;
44871b1b
CM
4736 struct extent_buffer *leaf;
4737 int slot;
cfed81a0
CM
4738 struct btrfs_map_token token;
4739
24cdc847
FM
4740 if (path->slots[0] == 0) {
4741 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
0b246afa 4742 fixup_low_keys(fs_info, path, &disk_key, 1);
24cdc847
FM
4743 }
4744 btrfs_unlock_up_safe(path, 1);
4745
cfed81a0 4746 btrfs_init_map_token(&token);
e2fa7227 4747
5f39d397 4748 leaf = path->nodes[0];
44871b1b 4749 slot = path->slots[0];
74123bd7 4750
5f39d397 4751 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4752 data_end = leaf_data_end(fs_info, leaf);
eb60ceac 4753
2ff7e61e
JM
4754 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4755 btrfs_print_leaf(fs_info, leaf);
0b246afa 4756 btrfs_crit(fs_info, "not enough freespace need %u have %d",
2ff7e61e 4757 total_size, btrfs_leaf_free_space(fs_info, leaf));
be0e5c09 4758 BUG();
d4dbff95 4759 }
5f39d397 4760
be0e5c09 4761 if (slot != nritems) {
5f39d397 4762 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4763
5f39d397 4764 if (old_data < data_end) {
2ff7e61e 4765 btrfs_print_leaf(fs_info, leaf);
0b246afa 4766 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
5d163e0e 4767 slot, old_data, data_end);
5f39d397
CM
4768 BUG_ON(1);
4769 }
be0e5c09
CM
4770 /*
4771 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4772 */
4773 /* first correct the data pointers */
0783fcfc 4774 for (i = slot; i < nritems; i++) {
5f39d397 4775 u32 ioff;
db94535d 4776
62e85577 4777 item = btrfs_item_nr(i);
cfed81a0
CM
4778 ioff = btrfs_token_item_offset(leaf, item, &token);
4779 btrfs_set_token_item_offset(leaf, item,
4780 ioff - total_data, &token);
0783fcfc 4781 }
be0e5c09 4782 /* shift the items */
9c58309d 4783 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4784 btrfs_item_nr_offset(slot),
d6025579 4785 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4786
4787 /* shift the data */
5f39d397 4788 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
9c58309d 4789 data_end - total_data, btrfs_leaf_data(leaf) +
d6025579 4790 data_end, old_data - data_end);
be0e5c09
CM
4791 data_end = old_data;
4792 }
5f39d397 4793
62e2749e 4794 /* setup the item for the new data */
9c58309d
CM
4795 for (i = 0; i < nr; i++) {
4796 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4797 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4798 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4799 btrfs_set_token_item_offset(leaf, item,
4800 data_end - data_size[i], &token);
9c58309d 4801 data_end -= data_size[i];
cfed81a0 4802 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4803 }
44871b1b 4804
9c58309d 4805 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4806 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4807
2ff7e61e
JM
4808 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4809 btrfs_print_leaf(fs_info, leaf);
be0e5c09 4810 BUG();
5f39d397 4811 }
44871b1b
CM
4812}
4813
4814/*
4815 * Given a key and some data, insert items into the tree.
4816 * This does all the path init required, making room in the tree if needed.
4817 */
4818int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4819 struct btrfs_root *root,
4820 struct btrfs_path *path,
310712b2 4821 const struct btrfs_key *cpu_key, u32 *data_size,
44871b1b
CM
4822 int nr)
4823{
44871b1b
CM
4824 int ret = 0;
4825 int slot;
4826 int i;
4827 u32 total_size = 0;
4828 u32 total_data = 0;
4829
4830 for (i = 0; i < nr; i++)
4831 total_data += data_size[i];
4832
4833 total_size = total_data + (nr * sizeof(struct btrfs_item));
4834 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4835 if (ret == 0)
4836 return -EEXIST;
4837 if (ret < 0)
143bede5 4838 return ret;
44871b1b 4839
44871b1b
CM
4840 slot = path->slots[0];
4841 BUG_ON(slot < 0);
4842
afe5fea7 4843 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4844 total_data, total_size, nr);
143bede5 4845 return 0;
62e2749e
CM
4846}
4847
4848/*
4849 * Given a key and some data, insert an item into the tree.
4850 * This does all the path init required, making room in the tree if needed.
4851 */
310712b2
OS
4852int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4853 const struct btrfs_key *cpu_key, void *data,
4854 u32 data_size)
62e2749e
CM
4855{
4856 int ret = 0;
2c90e5d6 4857 struct btrfs_path *path;
5f39d397
CM
4858 struct extent_buffer *leaf;
4859 unsigned long ptr;
62e2749e 4860
2c90e5d6 4861 path = btrfs_alloc_path();
db5b493a
TI
4862 if (!path)
4863 return -ENOMEM;
2c90e5d6 4864 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4865 if (!ret) {
5f39d397
CM
4866 leaf = path->nodes[0];
4867 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4868 write_extent_buffer(leaf, data, ptr, data_size);
4869 btrfs_mark_buffer_dirty(leaf);
62e2749e 4870 }
2c90e5d6 4871 btrfs_free_path(path);
aa5d6bed 4872 return ret;
be0e5c09
CM
4873}
4874
74123bd7 4875/*
5de08d7d 4876 * delete the pointer from a given node.
74123bd7 4877 *
d352ac68
CM
4878 * the tree should have been previously balanced so the deletion does not
4879 * empty a node.
74123bd7 4880 */
afe5fea7
TI
4881static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4882 int level, int slot)
be0e5c09 4883{
0b246afa 4884 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4885 struct extent_buffer *parent = path->nodes[level];
7518a238 4886 u32 nritems;
f3ea38da 4887 int ret;
be0e5c09 4888
5f39d397 4889 nritems = btrfs_header_nritems(parent);
d397712b 4890 if (slot != nritems - 1) {
0e411ece 4891 if (level)
0b246afa 4892 tree_mod_log_eb_move(fs_info, parent, slot,
f3ea38da 4893 slot + 1, nritems - slot - 1);
5f39d397
CM
4894 memmove_extent_buffer(parent,
4895 btrfs_node_key_ptr_offset(slot),
4896 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4897 sizeof(struct btrfs_key_ptr) *
4898 (nritems - slot - 1));
57ba86c0 4899 } else if (level) {
0b246afa 4900 ret = tree_mod_log_insert_key(fs_info, parent, slot,
c8cc6341 4901 MOD_LOG_KEY_REMOVE, GFP_NOFS);
57ba86c0 4902 BUG_ON(ret < 0);
bb803951 4903 }
f3ea38da 4904
7518a238 4905 nritems--;
5f39d397 4906 btrfs_set_header_nritems(parent, nritems);
7518a238 4907 if (nritems == 0 && parent == root->node) {
5f39d397 4908 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4909 /* just turn the root into a leaf and break */
5f39d397 4910 btrfs_set_header_level(root->node, 0);
bb803951 4911 } else if (slot == 0) {
5f39d397
CM
4912 struct btrfs_disk_key disk_key;
4913
4914 btrfs_node_key(parent, &disk_key, 0);
0b246afa 4915 fixup_low_keys(fs_info, path, &disk_key, level + 1);
be0e5c09 4916 }
d6025579 4917 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4918}
4919
323ac95b
CM
4920/*
4921 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4922 * path->nodes[1].
323ac95b
CM
4923 *
4924 * This deletes the pointer in path->nodes[1] and frees the leaf
4925 * block extent. zero is returned if it all worked out, < 0 otherwise.
4926 *
4927 * The path must have already been setup for deleting the leaf, including
4928 * all the proper balancing. path->nodes[1] must be locked.
4929 */
143bede5
JM
4930static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4931 struct btrfs_root *root,
4932 struct btrfs_path *path,
4933 struct extent_buffer *leaf)
323ac95b 4934{
5d4f98a2 4935 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4936 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4937
4d081c41
CM
4938 /*
4939 * btrfs_free_extent is expensive, we want to make sure we
4940 * aren't holding any locks when we call it
4941 */
4942 btrfs_unlock_up_safe(path, 0);
4943
f0486c68
YZ
4944 root_sub_used(root, leaf->len);
4945
3083ee2e 4946 extent_buffer_get(leaf);
5581a51a 4947 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4948 free_extent_buffer_stale(leaf);
323ac95b 4949}
74123bd7
CM
4950/*
4951 * delete the item at the leaf level in path. If that empties
4952 * the leaf, remove it from the tree
4953 */
85e21bac
CM
4954int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4955 struct btrfs_path *path, int slot, int nr)
be0e5c09 4956{
0b246afa 4957 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
4958 struct extent_buffer *leaf;
4959 struct btrfs_item *item;
ce0eac2a
AM
4960 u32 last_off;
4961 u32 dsize = 0;
aa5d6bed
CM
4962 int ret = 0;
4963 int wret;
85e21bac 4964 int i;
7518a238 4965 u32 nritems;
cfed81a0
CM
4966 struct btrfs_map_token token;
4967
4968 btrfs_init_map_token(&token);
be0e5c09 4969
5f39d397 4970 leaf = path->nodes[0];
85e21bac
CM
4971 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4972
4973 for (i = 0; i < nr; i++)
4974 dsize += btrfs_item_size_nr(leaf, slot + i);
4975
5f39d397 4976 nritems = btrfs_header_nritems(leaf);
be0e5c09 4977
85e21bac 4978 if (slot + nr != nritems) {
2ff7e61e 4979 int data_end = leaf_data_end(fs_info, leaf);
5f39d397
CM
4980
4981 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
d6025579
CM
4982 data_end + dsize,
4983 btrfs_leaf_data(leaf) + data_end,
85e21bac 4984 last_off - data_end);
5f39d397 4985
85e21bac 4986 for (i = slot + nr; i < nritems; i++) {
5f39d397 4987 u32 ioff;
db94535d 4988
dd3cc16b 4989 item = btrfs_item_nr(i);
cfed81a0
CM
4990 ioff = btrfs_token_item_offset(leaf, item, &token);
4991 btrfs_set_token_item_offset(leaf, item,
4992 ioff + dsize, &token);
0783fcfc 4993 }
db94535d 4994
5f39d397 4995 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4996 btrfs_item_nr_offset(slot + nr),
d6025579 4997 sizeof(struct btrfs_item) *
85e21bac 4998 (nritems - slot - nr));
be0e5c09 4999 }
85e21bac
CM
5000 btrfs_set_header_nritems(leaf, nritems - nr);
5001 nritems -= nr;
5f39d397 5002
74123bd7 5003 /* delete the leaf if we've emptied it */
7518a238 5004 if (nritems == 0) {
5f39d397
CM
5005 if (leaf == root->node) {
5006 btrfs_set_header_level(leaf, 0);
9a8dd150 5007 } else {
f0486c68 5008 btrfs_set_path_blocking(path);
7c302b49 5009 clean_tree_block(fs_info, leaf);
143bede5 5010 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 5011 }
be0e5c09 5012 } else {
7518a238 5013 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 5014 if (slot == 0) {
5f39d397
CM
5015 struct btrfs_disk_key disk_key;
5016
5017 btrfs_item_key(leaf, &disk_key, 0);
0b246afa 5018 fixup_low_keys(fs_info, path, &disk_key, 1);
aa5d6bed 5019 }
aa5d6bed 5020
74123bd7 5021 /* delete the leaf if it is mostly empty */
0b246afa 5022 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
be0e5c09
CM
5023 /* push_leaf_left fixes the path.
5024 * make sure the path still points to our leaf
5025 * for possible call to del_ptr below
5026 */
4920c9ac 5027 slot = path->slots[1];
5f39d397
CM
5028 extent_buffer_get(leaf);
5029
b9473439 5030 btrfs_set_path_blocking(path);
99d8f83c
CM
5031 wret = push_leaf_left(trans, root, path, 1, 1,
5032 1, (u32)-1);
54aa1f4d 5033 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5034 ret = wret;
5f39d397
CM
5035
5036 if (path->nodes[0] == leaf &&
5037 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5038 wret = push_leaf_right(trans, root, path, 1,
5039 1, 1, 0);
54aa1f4d 5040 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5041 ret = wret;
5042 }
5f39d397
CM
5043
5044 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5045 path->slots[1] = slot;
143bede5 5046 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5047 free_extent_buffer(leaf);
143bede5 5048 ret = 0;
5de08d7d 5049 } else {
925baedd
CM
5050 /* if we're still in the path, make sure
5051 * we're dirty. Otherwise, one of the
5052 * push_leaf functions must have already
5053 * dirtied this buffer
5054 */
5055 if (path->nodes[0] == leaf)
5056 btrfs_mark_buffer_dirty(leaf);
5f39d397 5057 free_extent_buffer(leaf);
be0e5c09 5058 }
d5719762 5059 } else {
5f39d397 5060 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5061 }
5062 }
aa5d6bed 5063 return ret;
be0e5c09
CM
5064}
5065
7bb86316 5066/*
925baedd 5067 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5068 * returns 0 if it found something or 1 if there are no lesser leaves.
5069 * returns < 0 on io errors.
d352ac68
CM
5070 *
5071 * This may release the path, and so you may lose any locks held at the
5072 * time you call it.
7bb86316 5073 */
16e7549f 5074int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5075{
925baedd
CM
5076 struct btrfs_key key;
5077 struct btrfs_disk_key found_key;
5078 int ret;
7bb86316 5079
925baedd 5080 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5081
e8b0d724 5082 if (key.offset > 0) {
925baedd 5083 key.offset--;
e8b0d724 5084 } else if (key.type > 0) {
925baedd 5085 key.type--;
e8b0d724
FDBM
5086 key.offset = (u64)-1;
5087 } else if (key.objectid > 0) {
925baedd 5088 key.objectid--;
e8b0d724
FDBM
5089 key.type = (u8)-1;
5090 key.offset = (u64)-1;
5091 } else {
925baedd 5092 return 1;
e8b0d724 5093 }
7bb86316 5094
b3b4aa74 5095 btrfs_release_path(path);
925baedd
CM
5096 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5097 if (ret < 0)
5098 return ret;
5099 btrfs_item_key(path->nodes[0], &found_key, 0);
5100 ret = comp_keys(&found_key, &key);
337c6f68
FM
5101 /*
5102 * We might have had an item with the previous key in the tree right
5103 * before we released our path. And after we released our path, that
5104 * item might have been pushed to the first slot (0) of the leaf we
5105 * were holding due to a tree balance. Alternatively, an item with the
5106 * previous key can exist as the only element of a leaf (big fat item).
5107 * Therefore account for these 2 cases, so that our callers (like
5108 * btrfs_previous_item) don't miss an existing item with a key matching
5109 * the previous key we computed above.
5110 */
5111 if (ret <= 0)
925baedd
CM
5112 return 0;
5113 return 1;
7bb86316
CM
5114}
5115
3f157a2f
CM
5116/*
5117 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5118 * for nodes or leaves that are have a minimum transaction id.
5119 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5120 *
5121 * This does not cow, but it does stuff the starting key it finds back
5122 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5123 * key and get a writable path.
5124 *
5125 * This does lock as it descends, and path->keep_locks should be set
5126 * to 1 by the caller.
5127 *
5128 * This honors path->lowest_level to prevent descent past a given level
5129 * of the tree.
5130 *
d352ac68
CM
5131 * min_trans indicates the oldest transaction that you are interested
5132 * in walking through. Any nodes or leaves older than min_trans are
5133 * skipped over (without reading them).
5134 *
3f157a2f
CM
5135 * returns zero if something useful was found, < 0 on error and 1 if there
5136 * was nothing in the tree that matched the search criteria.
5137 */
5138int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5139 struct btrfs_path *path,
3f157a2f
CM
5140 u64 min_trans)
5141{
2ff7e61e 5142 struct btrfs_fs_info *fs_info = root->fs_info;
3f157a2f
CM
5143 struct extent_buffer *cur;
5144 struct btrfs_key found_key;
5145 int slot;
9652480b 5146 int sret;
3f157a2f
CM
5147 u32 nritems;
5148 int level;
5149 int ret = 1;
f98de9b9 5150 int keep_locks = path->keep_locks;
3f157a2f 5151
f98de9b9 5152 path->keep_locks = 1;
3f157a2f 5153again:
bd681513 5154 cur = btrfs_read_lock_root_node(root);
3f157a2f 5155 level = btrfs_header_level(cur);
e02119d5 5156 WARN_ON(path->nodes[level]);
3f157a2f 5157 path->nodes[level] = cur;
bd681513 5158 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5159
5160 if (btrfs_header_generation(cur) < min_trans) {
5161 ret = 1;
5162 goto out;
5163 }
d397712b 5164 while (1) {
3f157a2f
CM
5165 nritems = btrfs_header_nritems(cur);
5166 level = btrfs_header_level(cur);
9652480b 5167 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 5168
323ac95b
CM
5169 /* at the lowest level, we're done, setup the path and exit */
5170 if (level == path->lowest_level) {
e02119d5
CM
5171 if (slot >= nritems)
5172 goto find_next_key;
3f157a2f
CM
5173 ret = 0;
5174 path->slots[level] = slot;
5175 btrfs_item_key_to_cpu(cur, &found_key, slot);
5176 goto out;
5177 }
9652480b
Y
5178 if (sret && slot > 0)
5179 slot--;
3f157a2f 5180 /*
de78b51a
ES
5181 * check this node pointer against the min_trans parameters.
5182 * If it is too old, old, skip to the next one.
3f157a2f 5183 */
d397712b 5184 while (slot < nritems) {
3f157a2f 5185 u64 gen;
e02119d5 5186
3f157a2f
CM
5187 gen = btrfs_node_ptr_generation(cur, slot);
5188 if (gen < min_trans) {
5189 slot++;
5190 continue;
5191 }
de78b51a 5192 break;
3f157a2f 5193 }
e02119d5 5194find_next_key:
3f157a2f
CM
5195 /*
5196 * we didn't find a candidate key in this node, walk forward
5197 * and find another one
5198 */
5199 if (slot >= nritems) {
e02119d5 5200 path->slots[level] = slot;
b4ce94de 5201 btrfs_set_path_blocking(path);
e02119d5 5202 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5203 min_trans);
e02119d5 5204 if (sret == 0) {
b3b4aa74 5205 btrfs_release_path(path);
3f157a2f
CM
5206 goto again;
5207 } else {
5208 goto out;
5209 }
5210 }
5211 /* save our key for returning back */
5212 btrfs_node_key_to_cpu(cur, &found_key, slot);
5213 path->slots[level] = slot;
5214 if (level == path->lowest_level) {
5215 ret = 0;
3f157a2f
CM
5216 goto out;
5217 }
b4ce94de 5218 btrfs_set_path_blocking(path);
2ff7e61e 5219 cur = read_node_slot(fs_info, cur, slot);
fb770ae4
LB
5220 if (IS_ERR(cur)) {
5221 ret = PTR_ERR(cur);
5222 goto out;
5223 }
3f157a2f 5224
bd681513 5225 btrfs_tree_read_lock(cur);
b4ce94de 5226
bd681513 5227 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5228 path->nodes[level - 1] = cur;
f7c79f30 5229 unlock_up(path, level, 1, 0, NULL);
bd681513 5230 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
5231 }
5232out:
f98de9b9
FM
5233 path->keep_locks = keep_locks;
5234 if (ret == 0) {
5235 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5236 btrfs_set_path_blocking(path);
3f157a2f 5237 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5238 }
3f157a2f
CM
5239 return ret;
5240}
5241
2ff7e61e 5242static int tree_move_down(struct btrfs_fs_info *fs_info,
7069830a 5243 struct btrfs_path *path,
ab6a43e1 5244 int *level)
7069830a 5245{
fb770ae4
LB
5246 struct extent_buffer *eb;
5247
74dd17fb 5248 BUG_ON(*level == 0);
2ff7e61e 5249 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
fb770ae4
LB
5250 if (IS_ERR(eb))
5251 return PTR_ERR(eb);
5252
5253 path->nodes[*level - 1] = eb;
7069830a
AB
5254 path->slots[*level - 1] = 0;
5255 (*level)--;
fb770ae4 5256 return 0;
7069830a
AB
5257}
5258
f1e30261 5259static int tree_move_next_or_upnext(struct btrfs_path *path,
7069830a
AB
5260 int *level, int root_level)
5261{
5262 int ret = 0;
5263 int nritems;
5264 nritems = btrfs_header_nritems(path->nodes[*level]);
5265
5266 path->slots[*level]++;
5267
74dd17fb 5268 while (path->slots[*level] >= nritems) {
7069830a
AB
5269 if (*level == root_level)
5270 return -1;
5271
5272 /* move upnext */
5273 path->slots[*level] = 0;
5274 free_extent_buffer(path->nodes[*level]);
5275 path->nodes[*level] = NULL;
5276 (*level)++;
5277 path->slots[*level]++;
5278
5279 nritems = btrfs_header_nritems(path->nodes[*level]);
5280 ret = 1;
5281 }
5282 return ret;
5283}
5284
5285/*
5286 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5287 * or down.
5288 */
2ff7e61e 5289static int tree_advance(struct btrfs_fs_info *fs_info,
7069830a
AB
5290 struct btrfs_path *path,
5291 int *level, int root_level,
5292 int allow_down,
5293 struct btrfs_key *key)
5294{
5295 int ret;
5296
5297 if (*level == 0 || !allow_down) {
f1e30261 5298 ret = tree_move_next_or_upnext(path, level, root_level);
7069830a 5299 } else {
ab6a43e1 5300 ret = tree_move_down(fs_info, path, level);
7069830a
AB
5301 }
5302 if (ret >= 0) {
5303 if (*level == 0)
5304 btrfs_item_key_to_cpu(path->nodes[*level], key,
5305 path->slots[*level]);
5306 else
5307 btrfs_node_key_to_cpu(path->nodes[*level], key,
5308 path->slots[*level]);
5309 }
5310 return ret;
5311}
5312
2ff7e61e 5313static int tree_compare_item(struct btrfs_path *left_path,
7069830a
AB
5314 struct btrfs_path *right_path,
5315 char *tmp_buf)
5316{
5317 int cmp;
5318 int len1, len2;
5319 unsigned long off1, off2;
5320
5321 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5322 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5323 if (len1 != len2)
5324 return 1;
5325
5326 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5327 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5328 right_path->slots[0]);
5329
5330 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5331
5332 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5333 if (cmp)
5334 return 1;
5335 return 0;
5336}
5337
5338#define ADVANCE 1
5339#define ADVANCE_ONLY_NEXT -1
5340
5341/*
5342 * This function compares two trees and calls the provided callback for
5343 * every changed/new/deleted item it finds.
5344 * If shared tree blocks are encountered, whole subtrees are skipped, making
5345 * the compare pretty fast on snapshotted subvolumes.
5346 *
5347 * This currently works on commit roots only. As commit roots are read only,
5348 * we don't do any locking. The commit roots are protected with transactions.
5349 * Transactions are ended and rejoined when a commit is tried in between.
5350 *
5351 * This function checks for modifications done to the trees while comparing.
5352 * If it detects a change, it aborts immediately.
5353 */
5354int btrfs_compare_trees(struct btrfs_root *left_root,
5355 struct btrfs_root *right_root,
5356 btrfs_changed_cb_t changed_cb, void *ctx)
5357{
0b246afa 5358 struct btrfs_fs_info *fs_info = left_root->fs_info;
7069830a
AB
5359 int ret;
5360 int cmp;
7069830a
AB
5361 struct btrfs_path *left_path = NULL;
5362 struct btrfs_path *right_path = NULL;
5363 struct btrfs_key left_key;
5364 struct btrfs_key right_key;
5365 char *tmp_buf = NULL;
5366 int left_root_level;
5367 int right_root_level;
5368 int left_level;
5369 int right_level;
5370 int left_end_reached;
5371 int right_end_reached;
5372 int advance_left;
5373 int advance_right;
5374 u64 left_blockptr;
5375 u64 right_blockptr;
6baa4293
FM
5376 u64 left_gen;
5377 u64 right_gen;
7069830a
AB
5378
5379 left_path = btrfs_alloc_path();
5380 if (!left_path) {
5381 ret = -ENOMEM;
5382 goto out;
5383 }
5384 right_path = btrfs_alloc_path();
5385 if (!right_path) {
5386 ret = -ENOMEM;
5387 goto out;
5388 }
5389
0b246afa 5390 tmp_buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
7069830a 5391 if (!tmp_buf) {
0b246afa 5392 tmp_buf = vmalloc(fs_info->nodesize);
8f282f71
DS
5393 if (!tmp_buf) {
5394 ret = -ENOMEM;
5395 goto out;
5396 }
7069830a
AB
5397 }
5398
5399 left_path->search_commit_root = 1;
5400 left_path->skip_locking = 1;
5401 right_path->search_commit_root = 1;
5402 right_path->skip_locking = 1;
5403
7069830a
AB
5404 /*
5405 * Strategy: Go to the first items of both trees. Then do
5406 *
5407 * If both trees are at level 0
5408 * Compare keys of current items
5409 * If left < right treat left item as new, advance left tree
5410 * and repeat
5411 * If left > right treat right item as deleted, advance right tree
5412 * and repeat
5413 * If left == right do deep compare of items, treat as changed if
5414 * needed, advance both trees and repeat
5415 * If both trees are at the same level but not at level 0
5416 * Compare keys of current nodes/leafs
5417 * If left < right advance left tree and repeat
5418 * If left > right advance right tree and repeat
5419 * If left == right compare blockptrs of the next nodes/leafs
5420 * If they match advance both trees but stay at the same level
5421 * and repeat
5422 * If they don't match advance both trees while allowing to go
5423 * deeper and repeat
5424 * If tree levels are different
5425 * Advance the tree that needs it and repeat
5426 *
5427 * Advancing a tree means:
5428 * If we are at level 0, try to go to the next slot. If that's not
5429 * possible, go one level up and repeat. Stop when we found a level
5430 * where we could go to the next slot. We may at this point be on a
5431 * node or a leaf.
5432 *
5433 * If we are not at level 0 and not on shared tree blocks, go one
5434 * level deeper.
5435 *
5436 * If we are not at level 0 and on shared tree blocks, go one slot to
5437 * the right if possible or go up and right.
5438 */
5439
0b246afa 5440 down_read(&fs_info->commit_root_sem);
7069830a
AB
5441 left_level = btrfs_header_level(left_root->commit_root);
5442 left_root_level = left_level;
5443 left_path->nodes[left_level] = left_root->commit_root;
5444 extent_buffer_get(left_path->nodes[left_level]);
5445
5446 right_level = btrfs_header_level(right_root->commit_root);
5447 right_root_level = right_level;
5448 right_path->nodes[right_level] = right_root->commit_root;
5449 extent_buffer_get(right_path->nodes[right_level]);
0b246afa 5450 up_read(&fs_info->commit_root_sem);
7069830a
AB
5451
5452 if (left_level == 0)
5453 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5454 &left_key, left_path->slots[left_level]);
5455 else
5456 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5457 &left_key, left_path->slots[left_level]);
5458 if (right_level == 0)
5459 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5460 &right_key, right_path->slots[right_level]);
5461 else
5462 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5463 &right_key, right_path->slots[right_level]);
5464
5465 left_end_reached = right_end_reached = 0;
5466 advance_left = advance_right = 0;
5467
5468 while (1) {
7069830a 5469 if (advance_left && !left_end_reached) {
2ff7e61e 5470 ret = tree_advance(fs_info, left_path, &left_level,
7069830a
AB
5471 left_root_level,
5472 advance_left != ADVANCE_ONLY_NEXT,
5473 &left_key);
fb770ae4 5474 if (ret == -1)
7069830a 5475 left_end_reached = ADVANCE;
fb770ae4
LB
5476 else if (ret < 0)
5477 goto out;
7069830a
AB
5478 advance_left = 0;
5479 }
5480 if (advance_right && !right_end_reached) {
2ff7e61e 5481 ret = tree_advance(fs_info, right_path, &right_level,
7069830a
AB
5482 right_root_level,
5483 advance_right != ADVANCE_ONLY_NEXT,
5484 &right_key);
fb770ae4 5485 if (ret == -1)
7069830a 5486 right_end_reached = ADVANCE;
fb770ae4
LB
5487 else if (ret < 0)
5488 goto out;
7069830a
AB
5489 advance_right = 0;
5490 }
5491
5492 if (left_end_reached && right_end_reached) {
5493 ret = 0;
5494 goto out;
5495 } else if (left_end_reached) {
5496 if (right_level == 0) {
5497 ret = changed_cb(left_root, right_root,
5498 left_path, right_path,
5499 &right_key,
5500 BTRFS_COMPARE_TREE_DELETED,
5501 ctx);
5502 if (ret < 0)
5503 goto out;
5504 }
5505 advance_right = ADVANCE;
5506 continue;
5507 } else if (right_end_reached) {
5508 if (left_level == 0) {
5509 ret = changed_cb(left_root, right_root,
5510 left_path, right_path,
5511 &left_key,
5512 BTRFS_COMPARE_TREE_NEW,
5513 ctx);
5514 if (ret < 0)
5515 goto out;
5516 }
5517 advance_left = ADVANCE;
5518 continue;
5519 }
5520
5521 if (left_level == 0 && right_level == 0) {
5522 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5523 if (cmp < 0) {
5524 ret = changed_cb(left_root, right_root,
5525 left_path, right_path,
5526 &left_key,
5527 BTRFS_COMPARE_TREE_NEW,
5528 ctx);
5529 if (ret < 0)
5530 goto out;
5531 advance_left = ADVANCE;
5532 } else if (cmp > 0) {
5533 ret = changed_cb(left_root, right_root,
5534 left_path, right_path,
5535 &right_key,
5536 BTRFS_COMPARE_TREE_DELETED,
5537 ctx);
5538 if (ret < 0)
5539 goto out;
5540 advance_right = ADVANCE;
5541 } else {
b99d9a6a 5542 enum btrfs_compare_tree_result result;
ba5e8f2e 5543
74dd17fb 5544 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
2ff7e61e
JM
5545 ret = tree_compare_item(left_path, right_path,
5546 tmp_buf);
ba5e8f2e 5547 if (ret)
b99d9a6a 5548 result = BTRFS_COMPARE_TREE_CHANGED;
ba5e8f2e 5549 else
b99d9a6a 5550 result = BTRFS_COMPARE_TREE_SAME;
ba5e8f2e
JB
5551 ret = changed_cb(left_root, right_root,
5552 left_path, right_path,
b99d9a6a 5553 &left_key, result, ctx);
ba5e8f2e
JB
5554 if (ret < 0)
5555 goto out;
7069830a
AB
5556 advance_left = ADVANCE;
5557 advance_right = ADVANCE;
5558 }
5559 } else if (left_level == right_level) {
5560 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5561 if (cmp < 0) {
5562 advance_left = ADVANCE;
5563 } else if (cmp > 0) {
5564 advance_right = ADVANCE;
5565 } else {
5566 left_blockptr = btrfs_node_blockptr(
5567 left_path->nodes[left_level],
5568 left_path->slots[left_level]);
5569 right_blockptr = btrfs_node_blockptr(
5570 right_path->nodes[right_level],
5571 right_path->slots[right_level]);
6baa4293
FM
5572 left_gen = btrfs_node_ptr_generation(
5573 left_path->nodes[left_level],
5574 left_path->slots[left_level]);
5575 right_gen = btrfs_node_ptr_generation(
5576 right_path->nodes[right_level],
5577 right_path->slots[right_level]);
5578 if (left_blockptr == right_blockptr &&
5579 left_gen == right_gen) {
7069830a
AB
5580 /*
5581 * As we're on a shared block, don't
5582 * allow to go deeper.
5583 */
5584 advance_left = ADVANCE_ONLY_NEXT;
5585 advance_right = ADVANCE_ONLY_NEXT;
5586 } else {
5587 advance_left = ADVANCE;
5588 advance_right = ADVANCE;
5589 }
5590 }
5591 } else if (left_level < right_level) {
5592 advance_right = ADVANCE;
5593 } else {
5594 advance_left = ADVANCE;
5595 }
5596 }
5597
5598out:
5599 btrfs_free_path(left_path);
5600 btrfs_free_path(right_path);
8f282f71 5601 kvfree(tmp_buf);
7069830a
AB
5602 return ret;
5603}
5604
3f157a2f
CM
5605/*
5606 * this is similar to btrfs_next_leaf, but does not try to preserve
5607 * and fixup the path. It looks for and returns the next key in the
de78b51a 5608 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5609 *
5610 * 0 is returned if another key is found, < 0 if there are any errors
5611 * and 1 is returned if there are no higher keys in the tree
5612 *
5613 * path->keep_locks should be set to 1 on the search made before
5614 * calling this function.
5615 */
e7a84565 5616int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5617 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5618{
e7a84565
CM
5619 int slot;
5620 struct extent_buffer *c;
5621
934d375b 5622 WARN_ON(!path->keep_locks);
d397712b 5623 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5624 if (!path->nodes[level])
5625 return 1;
5626
5627 slot = path->slots[level] + 1;
5628 c = path->nodes[level];
3f157a2f 5629next:
e7a84565 5630 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5631 int ret;
5632 int orig_lowest;
5633 struct btrfs_key cur_key;
5634 if (level + 1 >= BTRFS_MAX_LEVEL ||
5635 !path->nodes[level + 1])
e7a84565 5636 return 1;
33c66f43
YZ
5637
5638 if (path->locks[level + 1]) {
5639 level++;
5640 continue;
5641 }
5642
5643 slot = btrfs_header_nritems(c) - 1;
5644 if (level == 0)
5645 btrfs_item_key_to_cpu(c, &cur_key, slot);
5646 else
5647 btrfs_node_key_to_cpu(c, &cur_key, slot);
5648
5649 orig_lowest = path->lowest_level;
b3b4aa74 5650 btrfs_release_path(path);
33c66f43
YZ
5651 path->lowest_level = level;
5652 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5653 0, 0);
5654 path->lowest_level = orig_lowest;
5655 if (ret < 0)
5656 return ret;
5657
5658 c = path->nodes[level];
5659 slot = path->slots[level];
5660 if (ret == 0)
5661 slot++;
5662 goto next;
e7a84565 5663 }
33c66f43 5664
e7a84565
CM
5665 if (level == 0)
5666 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5667 else {
3f157a2f
CM
5668 u64 gen = btrfs_node_ptr_generation(c, slot);
5669
3f157a2f
CM
5670 if (gen < min_trans) {
5671 slot++;
5672 goto next;
5673 }
e7a84565 5674 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5675 }
e7a84565
CM
5676 return 0;
5677 }
5678 return 1;
5679}
5680
97571fd0 5681/*
925baedd 5682 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5683 * returns 0 if it found something or 1 if there are no greater leaves.
5684 * returns < 0 on io errors.
97571fd0 5685 */
234b63a0 5686int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5687{
5688 return btrfs_next_old_leaf(root, path, 0);
5689}
5690
5691int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5692 u64 time_seq)
d97e63b6
CM
5693{
5694 int slot;
8e73f275 5695 int level;
5f39d397 5696 struct extent_buffer *c;
8e73f275 5697 struct extent_buffer *next;
925baedd
CM
5698 struct btrfs_key key;
5699 u32 nritems;
5700 int ret;
8e73f275 5701 int old_spinning = path->leave_spinning;
bd681513 5702 int next_rw_lock = 0;
925baedd
CM
5703
5704 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5705 if (nritems == 0)
925baedd 5706 return 1;
925baedd 5707
8e73f275
CM
5708 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5709again:
5710 level = 1;
5711 next = NULL;
bd681513 5712 next_rw_lock = 0;
b3b4aa74 5713 btrfs_release_path(path);
8e73f275 5714
a2135011 5715 path->keep_locks = 1;
31533fb2 5716 path->leave_spinning = 1;
8e73f275 5717
3d7806ec
JS
5718 if (time_seq)
5719 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5720 else
5721 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5722 path->keep_locks = 0;
5723
5724 if (ret < 0)
5725 return ret;
5726
a2135011 5727 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5728 /*
5729 * by releasing the path above we dropped all our locks. A balance
5730 * could have added more items next to the key that used to be
5731 * at the very end of the block. So, check again here and
5732 * advance the path if there are now more items available.
5733 */
a2135011 5734 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5735 if (ret == 0)
5736 path->slots[0]++;
8e73f275 5737 ret = 0;
925baedd
CM
5738 goto done;
5739 }
0b43e04f
LB
5740 /*
5741 * So the above check misses one case:
5742 * - after releasing the path above, someone has removed the item that
5743 * used to be at the very end of the block, and balance between leafs
5744 * gets another one with bigger key.offset to replace it.
5745 *
5746 * This one should be returned as well, or we can get leaf corruption
5747 * later(esp. in __btrfs_drop_extents()).
5748 *
5749 * And a bit more explanation about this check,
5750 * with ret > 0, the key isn't found, the path points to the slot
5751 * where it should be inserted, so the path->slots[0] item must be the
5752 * bigger one.
5753 */
5754 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5755 ret = 0;
5756 goto done;
5757 }
d97e63b6 5758
d397712b 5759 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5760 if (!path->nodes[level]) {
5761 ret = 1;
5762 goto done;
5763 }
5f39d397 5764
d97e63b6
CM
5765 slot = path->slots[level] + 1;
5766 c = path->nodes[level];
5f39d397 5767 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5768 level++;
8e73f275
CM
5769 if (level == BTRFS_MAX_LEVEL) {
5770 ret = 1;
5771 goto done;
5772 }
d97e63b6
CM
5773 continue;
5774 }
5f39d397 5775
925baedd 5776 if (next) {
bd681513 5777 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5778 free_extent_buffer(next);
925baedd 5779 }
5f39d397 5780
8e73f275 5781 next = c;
bd681513 5782 next_rw_lock = path->locks[level];
d07b8528 5783 ret = read_block_for_search(root, path, &next, level,
cda79c54 5784 slot, &key);
8e73f275
CM
5785 if (ret == -EAGAIN)
5786 goto again;
5f39d397 5787
76a05b35 5788 if (ret < 0) {
b3b4aa74 5789 btrfs_release_path(path);
76a05b35
CM
5790 goto done;
5791 }
5792
5cd57b2c 5793 if (!path->skip_locking) {
bd681513 5794 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5795 if (!ret && time_seq) {
5796 /*
5797 * If we don't get the lock, we may be racing
5798 * with push_leaf_left, holding that lock while
5799 * itself waiting for the leaf we've currently
5800 * locked. To solve this situation, we give up
5801 * on our lock and cycle.
5802 */
cf538830 5803 free_extent_buffer(next);
d42244a0
JS
5804 btrfs_release_path(path);
5805 cond_resched();
5806 goto again;
5807 }
8e73f275
CM
5808 if (!ret) {
5809 btrfs_set_path_blocking(path);
bd681513 5810 btrfs_tree_read_lock(next);
31533fb2 5811 btrfs_clear_path_blocking(path, next,
bd681513 5812 BTRFS_READ_LOCK);
8e73f275 5813 }
31533fb2 5814 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5815 }
d97e63b6
CM
5816 break;
5817 }
5818 path->slots[level] = slot;
d397712b 5819 while (1) {
d97e63b6
CM
5820 level--;
5821 c = path->nodes[level];
925baedd 5822 if (path->locks[level])
bd681513 5823 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5824
5f39d397 5825 free_extent_buffer(c);
d97e63b6
CM
5826 path->nodes[level] = next;
5827 path->slots[level] = 0;
a74a4b97 5828 if (!path->skip_locking)
bd681513 5829 path->locks[level] = next_rw_lock;
d97e63b6
CM
5830 if (!level)
5831 break;
b4ce94de 5832
d07b8528 5833 ret = read_block_for_search(root, path, &next, level,
cda79c54 5834 0, &key);
8e73f275
CM
5835 if (ret == -EAGAIN)
5836 goto again;
5837
76a05b35 5838 if (ret < 0) {
b3b4aa74 5839 btrfs_release_path(path);
76a05b35
CM
5840 goto done;
5841 }
5842
5cd57b2c 5843 if (!path->skip_locking) {
bd681513 5844 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5845 if (!ret) {
5846 btrfs_set_path_blocking(path);
bd681513 5847 btrfs_tree_read_lock(next);
31533fb2 5848 btrfs_clear_path_blocking(path, next,
bd681513
CM
5849 BTRFS_READ_LOCK);
5850 }
31533fb2 5851 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5852 }
d97e63b6 5853 }
8e73f275 5854 ret = 0;
925baedd 5855done:
f7c79f30 5856 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5857 path->leave_spinning = old_spinning;
5858 if (!old_spinning)
5859 btrfs_set_path_blocking(path);
5860
5861 return ret;
d97e63b6 5862}
0b86a832 5863
3f157a2f
CM
5864/*
5865 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5866 * searching until it gets past min_objectid or finds an item of 'type'
5867 *
5868 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5869 */
0b86a832
CM
5870int btrfs_previous_item(struct btrfs_root *root,
5871 struct btrfs_path *path, u64 min_objectid,
5872 int type)
5873{
5874 struct btrfs_key found_key;
5875 struct extent_buffer *leaf;
e02119d5 5876 u32 nritems;
0b86a832
CM
5877 int ret;
5878
d397712b 5879 while (1) {
0b86a832 5880 if (path->slots[0] == 0) {
b4ce94de 5881 btrfs_set_path_blocking(path);
0b86a832
CM
5882 ret = btrfs_prev_leaf(root, path);
5883 if (ret != 0)
5884 return ret;
5885 } else {
5886 path->slots[0]--;
5887 }
5888 leaf = path->nodes[0];
e02119d5
CM
5889 nritems = btrfs_header_nritems(leaf);
5890 if (nritems == 0)
5891 return 1;
5892 if (path->slots[0] == nritems)
5893 path->slots[0]--;
5894
0b86a832 5895 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5896 if (found_key.objectid < min_objectid)
5897 break;
0a4eefbb
YZ
5898 if (found_key.type == type)
5899 return 0;
e02119d5
CM
5900 if (found_key.objectid == min_objectid &&
5901 found_key.type < type)
5902 break;
0b86a832
CM
5903 }
5904 return 1;
5905}
ade2e0b3
WS
5906
5907/*
5908 * search in extent tree to find a previous Metadata/Data extent item with
5909 * min objecitd.
5910 *
5911 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5912 */
5913int btrfs_previous_extent_item(struct btrfs_root *root,
5914 struct btrfs_path *path, u64 min_objectid)
5915{
5916 struct btrfs_key found_key;
5917 struct extent_buffer *leaf;
5918 u32 nritems;
5919 int ret;
5920
5921 while (1) {
5922 if (path->slots[0] == 0) {
5923 btrfs_set_path_blocking(path);
5924 ret = btrfs_prev_leaf(root, path);
5925 if (ret != 0)
5926 return ret;
5927 } else {
5928 path->slots[0]--;
5929 }
5930 leaf = path->nodes[0];
5931 nritems = btrfs_header_nritems(leaf);
5932 if (nritems == 0)
5933 return 1;
5934 if (path->slots[0] == nritems)
5935 path->slots[0]--;
5936
5937 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5938 if (found_key.objectid < min_objectid)
5939 break;
5940 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5941 found_key.type == BTRFS_METADATA_ITEM_KEY)
5942 return 0;
5943 if (found_key.objectid == min_objectid &&
5944 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5945 break;
5946 }
5947 return 1;
5948}