btrfs: move leak debug code to functions
[linux-block.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
7f5c1516 24#include "transaction.h"
5f39d397 25#include "print-tree.h"
925baedd 26#include "locking.h"
9a8dd150 27
e089f05c
CM
28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
d4dbff95 31 *root, struct btrfs_key *ins_key,
cc0c5538 32 struct btrfs_path *path, int data_size, int extend);
5f39d397
CM
33static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 35 struct extent_buffer *src, int empty);
5f39d397
CM
36static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
afe5fea7
TI
40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
f230475e
JS
42static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
45 u32 blocksize, u64 parent_transid,
46 u64 time_seq);
47struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
48 u64 bytenr, u32 blocksize,
49 u64 time_seq);
d97e63b6 50
df24a2b9 51struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 52{
df24a2b9 53 struct btrfs_path *path;
e00f7308 54 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
df24a2b9 55 return path;
2c90e5d6
CM
56}
57
b4ce94de
CM
58/*
59 * set all locked nodes in the path to blocking locks. This should
60 * be done before scheduling
61 */
62noinline void btrfs_set_path_blocking(struct btrfs_path *p)
63{
64 int i;
65 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
66 if (!p->nodes[i] || !p->locks[i])
67 continue;
68 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
69 if (p->locks[i] == BTRFS_READ_LOCK)
70 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
71 else if (p->locks[i] == BTRFS_WRITE_LOCK)
72 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
73 }
74}
75
76/*
77 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
78 *
79 * held is used to keep lockdep happy, when lockdep is enabled
80 * we set held to a blocking lock before we go around and
81 * retake all the spinlocks in the path. You can safely use NULL
82 * for held
b4ce94de 83 */
4008c04a 84noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 85 struct extent_buffer *held, int held_rw)
b4ce94de
CM
86{
87 int i;
4008c04a
CM
88
89#ifdef CONFIG_DEBUG_LOCK_ALLOC
90 /* lockdep really cares that we take all of these spinlocks
91 * in the right order. If any of the locks in the path are not
92 * currently blocking, it is going to complain. So, make really
93 * really sure by forcing the path to blocking before we clear
94 * the path blocking.
95 */
bd681513
CM
96 if (held) {
97 btrfs_set_lock_blocking_rw(held, held_rw);
98 if (held_rw == BTRFS_WRITE_LOCK)
99 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
100 else if (held_rw == BTRFS_READ_LOCK)
101 held_rw = BTRFS_READ_LOCK_BLOCKING;
102 }
4008c04a
CM
103 btrfs_set_path_blocking(p);
104#endif
105
106 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
107 if (p->nodes[i] && p->locks[i]) {
108 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
109 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
110 p->locks[i] = BTRFS_WRITE_LOCK;
111 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
112 p->locks[i] = BTRFS_READ_LOCK;
113 }
b4ce94de 114 }
4008c04a
CM
115
116#ifdef CONFIG_DEBUG_LOCK_ALLOC
117 if (held)
bd681513 118 btrfs_clear_lock_blocking_rw(held, held_rw);
4008c04a 119#endif
b4ce94de
CM
120}
121
d352ac68 122/* this also releases the path */
df24a2b9 123void btrfs_free_path(struct btrfs_path *p)
be0e5c09 124{
ff175d57
JJ
125 if (!p)
126 return;
b3b4aa74 127 btrfs_release_path(p);
df24a2b9 128 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
129}
130
d352ac68
CM
131/*
132 * path release drops references on the extent buffers in the path
133 * and it drops any locks held by this path
134 *
135 * It is safe to call this on paths that no locks or extent buffers held.
136 */
b3b4aa74 137noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
138{
139 int i;
a2135011 140
234b63a0 141 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 142 p->slots[i] = 0;
eb60ceac 143 if (!p->nodes[i])
925baedd
CM
144 continue;
145 if (p->locks[i]) {
bd681513 146 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
147 p->locks[i] = 0;
148 }
5f39d397 149 free_extent_buffer(p->nodes[i]);
3f157a2f 150 p->nodes[i] = NULL;
eb60ceac
CM
151 }
152}
153
d352ac68
CM
154/*
155 * safely gets a reference on the root node of a tree. A lock
156 * is not taken, so a concurrent writer may put a different node
157 * at the root of the tree. See btrfs_lock_root_node for the
158 * looping required.
159 *
160 * The extent buffer returned by this has a reference taken, so
161 * it won't disappear. It may stop being the root of the tree
162 * at any time because there are no locks held.
163 */
925baedd
CM
164struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
165{
166 struct extent_buffer *eb;
240f62c8 167
3083ee2e
JB
168 while (1) {
169 rcu_read_lock();
170 eb = rcu_dereference(root->node);
171
172 /*
173 * RCU really hurts here, we could free up the root node because
174 * it was cow'ed but we may not get the new root node yet so do
175 * the inc_not_zero dance and if it doesn't work then
176 * synchronize_rcu and try again.
177 */
178 if (atomic_inc_not_zero(&eb->refs)) {
179 rcu_read_unlock();
180 break;
181 }
182 rcu_read_unlock();
183 synchronize_rcu();
184 }
925baedd
CM
185 return eb;
186}
187
d352ac68
CM
188/* loop around taking references on and locking the root node of the
189 * tree until you end up with a lock on the root. A locked buffer
190 * is returned, with a reference held.
191 */
925baedd
CM
192struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
193{
194 struct extent_buffer *eb;
195
d397712b 196 while (1) {
925baedd
CM
197 eb = btrfs_root_node(root);
198 btrfs_tree_lock(eb);
240f62c8 199 if (eb == root->node)
925baedd 200 break;
925baedd
CM
201 btrfs_tree_unlock(eb);
202 free_extent_buffer(eb);
203 }
204 return eb;
205}
206
bd681513
CM
207/* loop around taking references on and locking the root node of the
208 * tree until you end up with a lock on the root. A locked buffer
209 * is returned, with a reference held.
210 */
211struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
212{
213 struct extent_buffer *eb;
214
215 while (1) {
216 eb = btrfs_root_node(root);
217 btrfs_tree_read_lock(eb);
218 if (eb == root->node)
219 break;
220 btrfs_tree_read_unlock(eb);
221 free_extent_buffer(eb);
222 }
223 return eb;
224}
225
d352ac68
CM
226/* cowonly root (everything not a reference counted cow subvolume), just get
227 * put onto a simple dirty list. transaction.c walks this to make sure they
228 * get properly updated on disk.
229 */
0b86a832
CM
230static void add_root_to_dirty_list(struct btrfs_root *root)
231{
e5846fc6 232 spin_lock(&root->fs_info->trans_lock);
0b86a832
CM
233 if (root->track_dirty && list_empty(&root->dirty_list)) {
234 list_add(&root->dirty_list,
235 &root->fs_info->dirty_cowonly_roots);
236 }
e5846fc6 237 spin_unlock(&root->fs_info->trans_lock);
0b86a832
CM
238}
239
d352ac68
CM
240/*
241 * used by snapshot creation to make a copy of a root for a tree with
242 * a given objectid. The buffer with the new root node is returned in
243 * cow_ret, and this func returns zero on success or a negative error code.
244 */
be20aa9d
CM
245int btrfs_copy_root(struct btrfs_trans_handle *trans,
246 struct btrfs_root *root,
247 struct extent_buffer *buf,
248 struct extent_buffer **cow_ret, u64 new_root_objectid)
249{
250 struct extent_buffer *cow;
be20aa9d
CM
251 int ret = 0;
252 int level;
5d4f98a2 253 struct btrfs_disk_key disk_key;
be20aa9d
CM
254
255 WARN_ON(root->ref_cows && trans->transid !=
256 root->fs_info->running_transaction->transid);
257 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
258
259 level = btrfs_header_level(buf);
5d4f98a2
YZ
260 if (level == 0)
261 btrfs_item_key(buf, &disk_key, 0);
262 else
263 btrfs_node_key(buf, &disk_key, 0);
31840ae1 264
5d4f98a2
YZ
265 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
266 new_root_objectid, &disk_key, level,
5581a51a 267 buf->start, 0);
5d4f98a2 268 if (IS_ERR(cow))
be20aa9d
CM
269 return PTR_ERR(cow);
270
271 copy_extent_buffer(cow, buf, 0, 0, cow->len);
272 btrfs_set_header_bytenr(cow, cow->start);
273 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
274 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
275 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
276 BTRFS_HEADER_FLAG_RELOC);
277 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
279 else
280 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 281
2b82032c
YZ
282 write_extent_buffer(cow, root->fs_info->fsid,
283 (unsigned long)btrfs_header_fsid(cow),
284 BTRFS_FSID_SIZE);
285
be20aa9d 286 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 287 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 288 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 289 else
66d7e7f0 290 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
4aec2b52 291
be20aa9d
CM
292 if (ret)
293 return ret;
294
295 btrfs_mark_buffer_dirty(cow);
296 *cow_ret = cow;
297 return 0;
298}
299
bd989ba3
JS
300enum mod_log_op {
301 MOD_LOG_KEY_REPLACE,
302 MOD_LOG_KEY_ADD,
303 MOD_LOG_KEY_REMOVE,
304 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
305 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
306 MOD_LOG_MOVE_KEYS,
307 MOD_LOG_ROOT_REPLACE,
308};
309
310struct tree_mod_move {
311 int dst_slot;
312 int nr_items;
313};
314
315struct tree_mod_root {
316 u64 logical;
317 u8 level;
318};
319
320struct tree_mod_elem {
321 struct rb_node node;
322 u64 index; /* shifted logical */
097b8a7c 323 u64 seq;
bd989ba3
JS
324 enum mod_log_op op;
325
326 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
327 int slot;
328
329 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
330 u64 generation;
331
332 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333 struct btrfs_disk_key key;
334 u64 blockptr;
335
336 /* this is used for op == MOD_LOG_MOVE_KEYS */
337 struct tree_mod_move move;
338
339 /* this is used for op == MOD_LOG_ROOT_REPLACE */
340 struct tree_mod_root old_root;
341};
342
097b8a7c 343static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 344{
097b8a7c 345 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
346}
347
097b8a7c
JS
348static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
349{
350 read_unlock(&fs_info->tree_mod_log_lock);
351}
352
353static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
354{
355 write_lock(&fs_info->tree_mod_log_lock);
356}
357
358static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
359{
360 write_unlock(&fs_info->tree_mod_log_lock);
361}
362
363/*
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
369 * blocker was added.
370 */
371u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 struct seq_list *elem)
bd989ba3 373{
097b8a7c
JS
374 u64 seq;
375
376 tree_mod_log_write_lock(fs_info);
bd989ba3 377 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
378 if (!elem->seq) {
379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 }
382 seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 383 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
384 tree_mod_log_write_unlock(fs_info);
385
386 return seq;
bd989ba3
JS
387}
388
389void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390 struct seq_list *elem)
391{
392 struct rb_root *tm_root;
393 struct rb_node *node;
394 struct rb_node *next;
395 struct seq_list *cur_elem;
396 struct tree_mod_elem *tm;
397 u64 min_seq = (u64)-1;
398 u64 seq_putting = elem->seq;
399
400 if (!seq_putting)
401 return;
402
bd989ba3
JS
403 spin_lock(&fs_info->tree_mod_seq_lock);
404 list_del(&elem->list);
097b8a7c 405 elem->seq = 0;
bd989ba3
JS
406
407 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 408 if (cur_elem->seq < min_seq) {
bd989ba3
JS
409 if (seq_putting > cur_elem->seq) {
410 /*
411 * blocker with lower sequence number exists, we
412 * cannot remove anything from the log
413 */
097b8a7c
JS
414 spin_unlock(&fs_info->tree_mod_seq_lock);
415 return;
bd989ba3
JS
416 }
417 min_seq = cur_elem->seq;
418 }
419 }
097b8a7c
JS
420 spin_unlock(&fs_info->tree_mod_seq_lock);
421
bd989ba3
JS
422 /*
423 * anything that's lower than the lowest existing (read: blocked)
424 * sequence number can be removed from the tree.
425 */
097b8a7c 426 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
427 tm_root = &fs_info->tree_mod_log;
428 for (node = rb_first(tm_root); node; node = next) {
429 next = rb_next(node);
430 tm = container_of(node, struct tree_mod_elem, node);
097b8a7c 431 if (tm->seq > min_seq)
bd989ba3
JS
432 continue;
433 rb_erase(node, tm_root);
bd989ba3
JS
434 kfree(tm);
435 }
097b8a7c 436 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
437}
438
439/*
440 * key order of the log:
441 * index -> sequence
442 *
443 * the index is the shifted logical of the *new* root node for root replace
444 * operations, or the shifted logical of the affected block for all other
445 * operations.
446 */
447static noinline int
448__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449{
450 struct rb_root *tm_root;
451 struct rb_node **new;
452 struct rb_node *parent = NULL;
453 struct tree_mod_elem *cur;
bd989ba3 454
097b8a7c 455 BUG_ON(!tm || !tm->seq);
bd989ba3 456
bd989ba3
JS
457 tm_root = &fs_info->tree_mod_log;
458 new = &tm_root->rb_node;
459 while (*new) {
460 cur = container_of(*new, struct tree_mod_elem, node);
461 parent = *new;
462 if (cur->index < tm->index)
463 new = &((*new)->rb_left);
464 else if (cur->index > tm->index)
465 new = &((*new)->rb_right);
097b8a7c 466 else if (cur->seq < tm->seq)
bd989ba3 467 new = &((*new)->rb_left);
097b8a7c 468 else if (cur->seq > tm->seq)
bd989ba3
JS
469 new = &((*new)->rb_right);
470 else {
471 kfree(tm);
097b8a7c 472 return -EEXIST;
bd989ba3
JS
473 }
474 }
475
476 rb_link_node(&tm->node, parent, new);
477 rb_insert_color(&tm->node, tm_root);
097b8a7c 478 return 0;
bd989ba3
JS
479}
480
097b8a7c
JS
481/*
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
486 */
e9b7fd4d
JS
487static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 struct extent_buffer *eb) {
489 smp_mb();
490 if (list_empty(&(fs_info)->tree_mod_seq_list))
491 return 1;
097b8a7c
JS
492 if (eb && btrfs_header_level(eb) == 0)
493 return 1;
494
495 tree_mod_log_write_lock(fs_info);
496 if (list_empty(&fs_info->tree_mod_seq_list)) {
497 /*
498 * someone emptied the list while we were waiting for the lock.
499 * we must not add to the list when no blocker exists.
500 */
501 tree_mod_log_write_unlock(fs_info);
e9b7fd4d 502 return 1;
097b8a7c
JS
503 }
504
e9b7fd4d
JS
505 return 0;
506}
507
3310c36e 508/*
097b8a7c 509 * This allocates memory and gets a tree modification sequence number.
3310c36e 510 *
097b8a7c
JS
511 * Returns <0 on error.
512 * Returns >0 (the added sequence number) on success.
3310c36e 513 */
926dd8a6
JS
514static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
515 struct tree_mod_elem **tm_ret)
bd989ba3
JS
516{
517 struct tree_mod_elem *tm;
bd989ba3 518
097b8a7c
JS
519 /*
520 * once we switch from spin locks to something different, we should
521 * honor the flags parameter here.
522 */
523 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
bd989ba3
JS
524 if (!tm)
525 return -ENOMEM;
526
097b8a7c
JS
527 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
528 return tm->seq;
bd989ba3
JS
529}
530
097b8a7c
JS
531static inline int
532__tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533 struct extent_buffer *eb, int slot,
534 enum mod_log_op op, gfp_t flags)
bd989ba3 535{
bd989ba3 536 int ret;
097b8a7c 537 struct tree_mod_elem *tm;
bd989ba3
JS
538
539 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c 540 if (ret < 0)
bd989ba3
JS
541 return ret;
542
543 tm->index = eb->start >> PAGE_CACHE_SHIFT;
544 if (op != MOD_LOG_KEY_ADD) {
545 btrfs_node_key(eb, &tm->key, slot);
546 tm->blockptr = btrfs_node_blockptr(eb, slot);
547 }
548 tm->op = op;
549 tm->slot = slot;
550 tm->generation = btrfs_node_ptr_generation(eb, slot);
551
097b8a7c
JS
552 return __tree_mod_log_insert(fs_info, tm);
553}
554
555static noinline int
556tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
557 struct extent_buffer *eb, int slot,
558 enum mod_log_op op, gfp_t flags)
559{
560 int ret;
561
562 if (tree_mod_dont_log(fs_info, eb))
563 return 0;
564
565 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
566
567 tree_mod_log_write_unlock(fs_info);
3310c36e 568 return ret;
bd989ba3
JS
569}
570
571static noinline int
572tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
573 int slot, enum mod_log_op op)
574{
575 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
576}
577
097b8a7c
JS
578static noinline int
579tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
580 struct extent_buffer *eb, int slot,
581 enum mod_log_op op)
582{
583 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
584}
585
bd989ba3
JS
586static noinline int
587tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
588 struct extent_buffer *eb, int dst_slot, int src_slot,
589 int nr_items, gfp_t flags)
590{
591 struct tree_mod_elem *tm;
592 int ret;
593 int i;
594
f395694c
JS
595 if (tree_mod_dont_log(fs_info, eb))
596 return 0;
bd989ba3 597
01763a2e
JS
598 /*
599 * When we override something during the move, we log these removals.
600 * This can only happen when we move towards the beginning of the
601 * buffer, i.e. dst_slot < src_slot.
602 */
bd989ba3 603 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
097b8a7c 604 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
bd989ba3
JS
605 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
606 BUG_ON(ret < 0);
607 }
608
f395694c 609 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c
JS
610 if (ret < 0)
611 goto out;
f395694c 612
bd989ba3
JS
613 tm->index = eb->start >> PAGE_CACHE_SHIFT;
614 tm->slot = src_slot;
615 tm->move.dst_slot = dst_slot;
616 tm->move.nr_items = nr_items;
617 tm->op = MOD_LOG_MOVE_KEYS;
618
3310c36e 619 ret = __tree_mod_log_insert(fs_info, tm);
097b8a7c
JS
620out:
621 tree_mod_log_write_unlock(fs_info);
3310c36e 622 return ret;
bd989ba3
JS
623}
624
097b8a7c
JS
625static inline void
626__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
627{
628 int i;
629 u32 nritems;
630 int ret;
631
b12a3b1e
CM
632 if (btrfs_header_level(eb) == 0)
633 return;
634
097b8a7c
JS
635 nritems = btrfs_header_nritems(eb);
636 for (i = nritems - 1; i >= 0; i--) {
637 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
638 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
639 BUG_ON(ret < 0);
640 }
641}
642
bd989ba3
JS
643static noinline int
644tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
645 struct extent_buffer *old_root,
90f8d62e
JS
646 struct extent_buffer *new_root, gfp_t flags,
647 int log_removal)
bd989ba3
JS
648{
649 struct tree_mod_elem *tm;
650 int ret;
651
097b8a7c
JS
652 if (tree_mod_dont_log(fs_info, NULL))
653 return 0;
654
90f8d62e
JS
655 if (log_removal)
656 __tree_mod_log_free_eb(fs_info, old_root);
d9abbf1c 657
bd989ba3 658 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c
JS
659 if (ret < 0)
660 goto out;
bd989ba3
JS
661
662 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
663 tm->old_root.logical = old_root->start;
664 tm->old_root.level = btrfs_header_level(old_root);
665 tm->generation = btrfs_header_generation(old_root);
666 tm->op = MOD_LOG_ROOT_REPLACE;
667
3310c36e 668 ret = __tree_mod_log_insert(fs_info, tm);
097b8a7c
JS
669out:
670 tree_mod_log_write_unlock(fs_info);
3310c36e 671 return ret;
bd989ba3
JS
672}
673
674static struct tree_mod_elem *
675__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
676 int smallest)
677{
678 struct rb_root *tm_root;
679 struct rb_node *node;
680 struct tree_mod_elem *cur = NULL;
681 struct tree_mod_elem *found = NULL;
682 u64 index = start >> PAGE_CACHE_SHIFT;
683
097b8a7c 684 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
685 tm_root = &fs_info->tree_mod_log;
686 node = tm_root->rb_node;
687 while (node) {
688 cur = container_of(node, struct tree_mod_elem, node);
689 if (cur->index < index) {
690 node = node->rb_left;
691 } else if (cur->index > index) {
692 node = node->rb_right;
097b8a7c 693 } else if (cur->seq < min_seq) {
bd989ba3
JS
694 node = node->rb_left;
695 } else if (!smallest) {
696 /* we want the node with the highest seq */
697 if (found)
097b8a7c 698 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
699 found = cur;
700 node = node->rb_left;
097b8a7c 701 } else if (cur->seq > min_seq) {
bd989ba3
JS
702 /* we want the node with the smallest seq */
703 if (found)
097b8a7c 704 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
705 found = cur;
706 node = node->rb_right;
707 } else {
708 found = cur;
709 break;
710 }
711 }
097b8a7c 712 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
713
714 return found;
715}
716
717/*
718 * this returns the element from the log with the smallest time sequence
719 * value that's in the log (the oldest log item). any element with a time
720 * sequence lower than min_seq will be ignored.
721 */
722static struct tree_mod_elem *
723tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
724 u64 min_seq)
725{
726 return __tree_mod_log_search(fs_info, start, min_seq, 1);
727}
728
729/*
730 * this returns the element from the log with the largest time sequence
731 * value that's in the log (the most recent log item). any element with
732 * a time sequence lower than min_seq will be ignored.
733 */
734static struct tree_mod_elem *
735tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
736{
737 return __tree_mod_log_search(fs_info, start, min_seq, 0);
738}
739
097b8a7c 740static noinline void
bd989ba3
JS
741tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
742 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 743 unsigned long src_offset, int nr_items)
bd989ba3
JS
744{
745 int ret;
746 int i;
747
e9b7fd4d 748 if (tree_mod_dont_log(fs_info, NULL))
bd989ba3
JS
749 return;
750
097b8a7c
JS
751 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
752 tree_mod_log_write_unlock(fs_info);
bd989ba3 753 return;
097b8a7c 754 }
bd989ba3 755
bd989ba3 756 for (i = 0; i < nr_items; i++) {
90f8d62e
JS
757 ret = tree_mod_log_insert_key_locked(fs_info, src,
758 i + src_offset,
759 MOD_LOG_KEY_REMOVE);
760 BUG_ON(ret < 0);
097b8a7c
JS
761 ret = tree_mod_log_insert_key_locked(fs_info, dst,
762 i + dst_offset,
763 MOD_LOG_KEY_ADD);
bd989ba3
JS
764 BUG_ON(ret < 0);
765 }
097b8a7c
JS
766
767 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
768}
769
770static inline void
771tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
772 int dst_offset, int src_offset, int nr_items)
773{
774 int ret;
775 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
776 nr_items, GFP_NOFS);
777 BUG_ON(ret < 0);
778}
779
097b8a7c 780static noinline void
bd989ba3 781tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
32adf090 782 struct extent_buffer *eb, int slot, int atomic)
bd989ba3
JS
783{
784 int ret;
785
786 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
787 MOD_LOG_KEY_REPLACE,
788 atomic ? GFP_ATOMIC : GFP_NOFS);
789 BUG_ON(ret < 0);
790}
791
097b8a7c
JS
792static noinline void
793tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 794{
e9b7fd4d 795 if (tree_mod_dont_log(fs_info, eb))
bd989ba3
JS
796 return;
797
097b8a7c
JS
798 __tree_mod_log_free_eb(fs_info, eb);
799
800 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
801}
802
097b8a7c 803static noinline void
bd989ba3 804tree_mod_log_set_root_pointer(struct btrfs_root *root,
90f8d62e
JS
805 struct extent_buffer *new_root_node,
806 int log_removal)
bd989ba3
JS
807{
808 int ret;
bd989ba3 809 ret = tree_mod_log_insert_root(root->fs_info, root->node,
90f8d62e 810 new_root_node, GFP_NOFS, log_removal);
bd989ba3
JS
811 BUG_ON(ret < 0);
812}
813
5d4f98a2
YZ
814/*
815 * check if the tree block can be shared by multiple trees
816 */
817int btrfs_block_can_be_shared(struct btrfs_root *root,
818 struct extent_buffer *buf)
819{
820 /*
821 * Tree blocks not in refernece counted trees and tree roots
822 * are never shared. If a block was allocated after the last
823 * snapshot and the block was not allocated by tree relocation,
824 * we know the block is not shared.
825 */
826 if (root->ref_cows &&
827 buf != root->node && buf != root->commit_root &&
828 (btrfs_header_generation(buf) <=
829 btrfs_root_last_snapshot(&root->root_item) ||
830 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
831 return 1;
832#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
833 if (root->ref_cows &&
834 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
835 return 1;
836#endif
837 return 0;
838}
839
840static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
841 struct btrfs_root *root,
842 struct extent_buffer *buf,
f0486c68
YZ
843 struct extent_buffer *cow,
844 int *last_ref)
5d4f98a2
YZ
845{
846 u64 refs;
847 u64 owner;
848 u64 flags;
849 u64 new_flags = 0;
850 int ret;
851
852 /*
853 * Backrefs update rules:
854 *
855 * Always use full backrefs for extent pointers in tree block
856 * allocated by tree relocation.
857 *
858 * If a shared tree block is no longer referenced by its owner
859 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
860 * use full backrefs for extent pointers in tree block.
861 *
862 * If a tree block is been relocating
863 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
864 * use full backrefs for extent pointers in tree block.
865 * The reason for this is some operations (such as drop tree)
866 * are only allowed for blocks use full backrefs.
867 */
868
869 if (btrfs_block_can_be_shared(root, buf)) {
870 ret = btrfs_lookup_extent_info(trans, root, buf->start,
3173a18f
JB
871 btrfs_header_level(buf), 1,
872 &refs, &flags);
be1a5564
MF
873 if (ret)
874 return ret;
e5df9573
MF
875 if (refs == 0) {
876 ret = -EROFS;
877 btrfs_std_error(root->fs_info, ret);
878 return ret;
879 }
5d4f98a2
YZ
880 } else {
881 refs = 1;
882 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
883 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
884 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
885 else
886 flags = 0;
887 }
888
889 owner = btrfs_header_owner(buf);
890 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
891 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
892
893 if (refs > 1) {
894 if ((owner == root->root_key.objectid ||
895 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
896 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
66d7e7f0 897 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
79787eaa 898 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
899
900 if (root->root_key.objectid ==
901 BTRFS_TREE_RELOC_OBJECTID) {
66d7e7f0 902 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
79787eaa 903 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 904 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
79787eaa 905 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
906 }
907 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
908 } else {
909
910 if (root->root_key.objectid ==
911 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 912 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 913 else
66d7e7f0 914 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 915 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
916 }
917 if (new_flags != 0) {
918 ret = btrfs_set_disk_extent_flags(trans, root,
919 buf->start,
920 buf->len,
921 new_flags, 0);
be1a5564
MF
922 if (ret)
923 return ret;
5d4f98a2
YZ
924 }
925 } else {
926 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
927 if (root->root_key.objectid ==
928 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 929 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 930 else
66d7e7f0 931 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 932 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 933 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
79787eaa 934 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
935 }
936 clean_tree_block(trans, root, buf);
f0486c68 937 *last_ref = 1;
5d4f98a2
YZ
938 }
939 return 0;
940}
941
d352ac68 942/*
d397712b
CM
943 * does the dirty work in cow of a single block. The parent block (if
944 * supplied) is updated to point to the new cow copy. The new buffer is marked
945 * dirty and returned locked. If you modify the block it needs to be marked
946 * dirty again.
d352ac68
CM
947 *
948 * search_start -- an allocation hint for the new block
949 *
d397712b
CM
950 * empty_size -- a hint that you plan on doing more cow. This is the size in
951 * bytes the allocator should try to find free next to the block it returns.
952 * This is just a hint and may be ignored by the allocator.
d352ac68 953 */
d397712b 954static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
955 struct btrfs_root *root,
956 struct extent_buffer *buf,
957 struct extent_buffer *parent, int parent_slot,
958 struct extent_buffer **cow_ret,
9fa8cfe7 959 u64 search_start, u64 empty_size)
02217ed2 960{
5d4f98a2 961 struct btrfs_disk_key disk_key;
5f39d397 962 struct extent_buffer *cow;
be1a5564 963 int level, ret;
f0486c68 964 int last_ref = 0;
925baedd 965 int unlock_orig = 0;
5d4f98a2 966 u64 parent_start;
7bb86316 967
925baedd
CM
968 if (*cow_ret == buf)
969 unlock_orig = 1;
970
b9447ef8 971 btrfs_assert_tree_locked(buf);
925baedd 972
7bb86316
CM
973 WARN_ON(root->ref_cows && trans->transid !=
974 root->fs_info->running_transaction->transid);
6702ed49 975 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
5f39d397 976
7bb86316 977 level = btrfs_header_level(buf);
31840ae1 978
5d4f98a2
YZ
979 if (level == 0)
980 btrfs_item_key(buf, &disk_key, 0);
981 else
982 btrfs_node_key(buf, &disk_key, 0);
983
984 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
985 if (parent)
986 parent_start = parent->start;
987 else
988 parent_start = 0;
989 } else
990 parent_start = 0;
991
992 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
993 root->root_key.objectid, &disk_key,
5581a51a 994 level, search_start, empty_size);
54aa1f4d
CM
995 if (IS_ERR(cow))
996 return PTR_ERR(cow);
6702ed49 997
b4ce94de
CM
998 /* cow is set to blocking by btrfs_init_new_buffer */
999
5f39d397 1000 copy_extent_buffer(cow, buf, 0, 0, cow->len);
db94535d 1001 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1002 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1003 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1004 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1005 BTRFS_HEADER_FLAG_RELOC);
1006 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1007 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1008 else
1009 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1010
2b82032c
YZ
1011 write_extent_buffer(cow, root->fs_info->fsid,
1012 (unsigned long)btrfs_header_fsid(cow),
1013 BTRFS_FSID_SIZE);
1014
be1a5564 1015 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1016 if (ret) {
79787eaa 1017 btrfs_abort_transaction(trans, root, ret);
b68dc2a9
MF
1018 return ret;
1019 }
1a40e23b 1020
3fd0a558
YZ
1021 if (root->ref_cows)
1022 btrfs_reloc_cow_block(trans, root, buf, cow);
1023
02217ed2 1024 if (buf == root->node) {
925baedd 1025 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1026 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1027 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1028 parent_start = buf->start;
1029 else
1030 parent_start = 0;
925baedd 1031
5f39d397 1032 extent_buffer_get(cow);
90f8d62e 1033 tree_mod_log_set_root_pointer(root, cow, 1);
240f62c8 1034 rcu_assign_pointer(root->node, cow);
925baedd 1035
f0486c68 1036 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1037 last_ref);
5f39d397 1038 free_extent_buffer(buf);
0b86a832 1039 add_root_to_dirty_list(root);
02217ed2 1040 } else {
5d4f98a2
YZ
1041 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1042 parent_start = parent->start;
1043 else
1044 parent_start = 0;
1045
1046 WARN_ON(trans->transid != btrfs_header_generation(parent));
f230475e
JS
1047 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1048 MOD_LOG_KEY_REPLACE);
5f39d397 1049 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1050 cow->start);
74493f7a
CM
1051 btrfs_set_node_ptr_generation(parent, parent_slot,
1052 trans->transid);
d6025579 1053 btrfs_mark_buffer_dirty(parent);
d9abbf1c 1054 tree_mod_log_free_eb(root->fs_info, buf);
f0486c68 1055 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1056 last_ref);
02217ed2 1057 }
925baedd
CM
1058 if (unlock_orig)
1059 btrfs_tree_unlock(buf);
3083ee2e 1060 free_extent_buffer_stale(buf);
ccd467d6 1061 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1062 *cow_ret = cow;
02217ed2
CM
1063 return 0;
1064}
1065
5d9e75c4
JS
1066/*
1067 * returns the logical address of the oldest predecessor of the given root.
1068 * entries older than time_seq are ignored.
1069 */
1070static struct tree_mod_elem *
1071__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
30b0463a 1072 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1073{
1074 struct tree_mod_elem *tm;
1075 struct tree_mod_elem *found = NULL;
30b0463a 1076 u64 root_logical = eb_root->start;
5d9e75c4
JS
1077 int looped = 0;
1078
1079 if (!time_seq)
1080 return 0;
1081
1082 /*
1083 * the very last operation that's logged for a root is the replacement
1084 * operation (if it is replaced at all). this has the index of the *new*
1085 * root, making it the very first operation that's logged for this root.
1086 */
1087 while (1) {
1088 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1089 time_seq);
1090 if (!looped && !tm)
1091 return 0;
1092 /*
28da9fb4
JS
1093 * if there are no tree operation for the oldest root, we simply
1094 * return it. this should only happen if that (old) root is at
1095 * level 0.
5d9e75c4 1096 */
28da9fb4
JS
1097 if (!tm)
1098 break;
5d9e75c4 1099
28da9fb4
JS
1100 /*
1101 * if there's an operation that's not a root replacement, we
1102 * found the oldest version of our root. normally, we'll find a
1103 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1104 */
5d9e75c4
JS
1105 if (tm->op != MOD_LOG_ROOT_REPLACE)
1106 break;
1107
1108 found = tm;
1109 root_logical = tm->old_root.logical;
5d9e75c4
JS
1110 looped = 1;
1111 }
1112
a95236d9
JS
1113 /* if there's no old root to return, return what we found instead */
1114 if (!found)
1115 found = tm;
1116
5d9e75c4
JS
1117 return found;
1118}
1119
1120/*
1121 * tm is a pointer to the first operation to rewind within eb. then, all
1122 * previous operations will be rewinded (until we reach something older than
1123 * time_seq).
1124 */
1125static void
1126__tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1127 struct tree_mod_elem *first_tm)
1128{
1129 u32 n;
1130 struct rb_node *next;
1131 struct tree_mod_elem *tm = first_tm;
1132 unsigned long o_dst;
1133 unsigned long o_src;
1134 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1135
1136 n = btrfs_header_nritems(eb);
097b8a7c 1137 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1138 /*
1139 * all the operations are recorded with the operator used for
1140 * the modification. as we're going backwards, we do the
1141 * opposite of each operation here.
1142 */
1143 switch (tm->op) {
1144 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1145 BUG_ON(tm->slot < n);
1c697d4a 1146 /* Fallthrough */
95c80bb1 1147 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1148 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1149 btrfs_set_node_key(eb, &tm->key, tm->slot);
1150 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1151 btrfs_set_node_ptr_generation(eb, tm->slot,
1152 tm->generation);
4c3e6969 1153 n++;
5d9e75c4
JS
1154 break;
1155 case MOD_LOG_KEY_REPLACE:
1156 BUG_ON(tm->slot >= n);
1157 btrfs_set_node_key(eb, &tm->key, tm->slot);
1158 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1159 btrfs_set_node_ptr_generation(eb, tm->slot,
1160 tm->generation);
1161 break;
1162 case MOD_LOG_KEY_ADD:
19956c7e 1163 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1164 n--;
1165 break;
1166 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1167 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1168 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1169 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1170 tm->move.nr_items * p_size);
1171 break;
1172 case MOD_LOG_ROOT_REPLACE:
1173 /*
1174 * this operation is special. for roots, this must be
1175 * handled explicitly before rewinding.
1176 * for non-roots, this operation may exist if the node
1177 * was a root: root A -> child B; then A gets empty and
1178 * B is promoted to the new root. in the mod log, we'll
1179 * have a root-replace operation for B, a tree block
1180 * that is no root. we simply ignore that operation.
1181 */
1182 break;
1183 }
1184 next = rb_next(&tm->node);
1185 if (!next)
1186 break;
1187 tm = container_of(next, struct tree_mod_elem, node);
1188 if (tm->index != first_tm->index)
1189 break;
1190 }
1191 btrfs_set_header_nritems(eb, n);
1192}
1193
47fb091f
JS
1194/*
1195 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1196 * is returned. If rewind operations happen, a fresh buffer is returned. The
1197 * returned buffer is always read-locked. If the returned buffer is not the
1198 * input buffer, the lock on the input buffer is released and the input buffer
1199 * is freed (its refcount is decremented).
1200 */
5d9e75c4
JS
1201static struct extent_buffer *
1202tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1203 u64 time_seq)
1204{
1205 struct extent_buffer *eb_rewin;
1206 struct tree_mod_elem *tm;
1207
1208 if (!time_seq)
1209 return eb;
1210
1211 if (btrfs_header_level(eb) == 0)
1212 return eb;
1213
1214 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1215 if (!tm)
1216 return eb;
1217
1218 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1219 BUG_ON(tm->slot != 0);
1220 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1221 fs_info->tree_root->nodesize);
1222 BUG_ON(!eb_rewin);
1223 btrfs_set_header_bytenr(eb_rewin, eb->start);
1224 btrfs_set_header_backref_rev(eb_rewin,
1225 btrfs_header_backref_rev(eb));
1226 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1227 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1228 } else {
1229 eb_rewin = btrfs_clone_extent_buffer(eb);
1230 BUG_ON(!eb_rewin);
1231 }
1232
1233 extent_buffer_get(eb_rewin);
47fb091f 1234 btrfs_tree_read_unlock(eb);
5d9e75c4
JS
1235 free_extent_buffer(eb);
1236
47fb091f
JS
1237 extent_buffer_get(eb_rewin);
1238 btrfs_tree_read_lock(eb_rewin);
5d9e75c4 1239 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
57911b8b 1240 WARN_ON(btrfs_header_nritems(eb_rewin) >
2a745b14 1241 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
5d9e75c4
JS
1242
1243 return eb_rewin;
1244}
1245
8ba97a15
JS
1246/*
1247 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1248 * value. If there are no changes, the current root->root_node is returned. If
1249 * anything changed in between, there's a fresh buffer allocated on which the
1250 * rewind operations are done. In any case, the returned buffer is read locked.
1251 * Returns NULL on error (with no locks held).
1252 */
5d9e75c4
JS
1253static inline struct extent_buffer *
1254get_old_root(struct btrfs_root *root, u64 time_seq)
1255{
1256 struct tree_mod_elem *tm;
30b0463a
JS
1257 struct extent_buffer *eb = NULL;
1258 struct extent_buffer *eb_root;
7bfdcf7f 1259 struct extent_buffer *old;
a95236d9 1260 struct tree_mod_root *old_root = NULL;
4325edd0 1261 u64 old_generation = 0;
a95236d9 1262 u64 logical;
834328a8 1263 u32 blocksize;
5d9e75c4 1264
30b0463a
JS
1265 eb_root = btrfs_read_lock_root_node(root);
1266 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5d9e75c4 1267 if (!tm)
30b0463a 1268 return eb_root;
5d9e75c4 1269
a95236d9
JS
1270 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1271 old_root = &tm->old_root;
1272 old_generation = tm->generation;
1273 logical = old_root->logical;
1274 } else {
30b0463a 1275 logical = eb_root->start;
a95236d9 1276 }
5d9e75c4 1277
a95236d9 1278 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
834328a8 1279 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1280 btrfs_tree_read_unlock(eb_root);
1281 free_extent_buffer(eb_root);
834328a8 1282 blocksize = btrfs_level_size(root, old_root->level);
7bfdcf7f 1283 old = read_tree_block(root, logical, blocksize, 0);
416bc658
JB
1284 if (!old || !extent_buffer_uptodate(old)) {
1285 free_extent_buffer(old);
834328a8
JS
1286 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1287 logical);
1288 WARN_ON(1);
1289 } else {
7bfdcf7f
LB
1290 eb = btrfs_clone_extent_buffer(old);
1291 free_extent_buffer(old);
834328a8
JS
1292 }
1293 } else if (old_root) {
30b0463a
JS
1294 btrfs_tree_read_unlock(eb_root);
1295 free_extent_buffer(eb_root);
28da9fb4 1296 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
834328a8 1297 } else {
30b0463a
JS
1298 eb = btrfs_clone_extent_buffer(eb_root);
1299 btrfs_tree_read_unlock(eb_root);
1300 free_extent_buffer(eb_root);
834328a8
JS
1301 }
1302
8ba97a15
JS
1303 if (!eb)
1304 return NULL;
d6381084 1305 extent_buffer_get(eb);
8ba97a15 1306 btrfs_tree_read_lock(eb);
a95236d9 1307 if (old_root) {
5d9e75c4
JS
1308 btrfs_set_header_bytenr(eb, eb->start);
1309 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1310 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1311 btrfs_set_header_level(eb, old_root->level);
1312 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1313 }
28da9fb4
JS
1314 if (tm)
1315 __tree_mod_log_rewind(eb, time_seq, tm);
1316 else
1317 WARN_ON(btrfs_header_level(eb) != 0);
57911b8b 1318 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
5d9e75c4
JS
1319
1320 return eb;
1321}
1322
5b6602e7
JS
1323int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1324{
1325 struct tree_mod_elem *tm;
1326 int level;
30b0463a 1327 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1328
30b0463a 1329 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5b6602e7
JS
1330 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1331 level = tm->old_root.level;
1332 } else {
30b0463a 1333 level = btrfs_header_level(eb_root);
5b6602e7 1334 }
30b0463a 1335 free_extent_buffer(eb_root);
5b6602e7
JS
1336
1337 return level;
1338}
1339
5d4f98a2
YZ
1340static inline int should_cow_block(struct btrfs_trans_handle *trans,
1341 struct btrfs_root *root,
1342 struct extent_buffer *buf)
1343{
f1ebcc74
LB
1344 /* ensure we can see the force_cow */
1345 smp_rmb();
1346
1347 /*
1348 * We do not need to cow a block if
1349 * 1) this block is not created or changed in this transaction;
1350 * 2) this block does not belong to TREE_RELOC tree;
1351 * 3) the root is not forced COW.
1352 *
1353 * What is forced COW:
1354 * when we create snapshot during commiting the transaction,
1355 * after we've finished coping src root, we must COW the shared
1356 * block to ensure the metadata consistency.
1357 */
5d4f98a2
YZ
1358 if (btrfs_header_generation(buf) == trans->transid &&
1359 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1360 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74
LB
1361 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1362 !root->force_cow)
5d4f98a2
YZ
1363 return 0;
1364 return 1;
1365}
1366
d352ac68
CM
1367/*
1368 * cows a single block, see __btrfs_cow_block for the real work.
1369 * This version of it has extra checks so that a block isn't cow'd more than
1370 * once per transaction, as long as it hasn't been written yet
1371 */
d397712b 1372noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1373 struct btrfs_root *root, struct extent_buffer *buf,
1374 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1375 struct extent_buffer **cow_ret)
6702ed49
CM
1376{
1377 u64 search_start;
f510cfec 1378 int ret;
dc17ff8f 1379
31b1a2bd
JL
1380 if (trans->transaction != root->fs_info->running_transaction)
1381 WARN(1, KERN_CRIT "trans %llu running %llu\n",
d397712b
CM
1382 (unsigned long long)trans->transid,
1383 (unsigned long long)
6702ed49 1384 root->fs_info->running_transaction->transid);
31b1a2bd
JL
1385
1386 if (trans->transid != root->fs_info->generation)
1387 WARN(1, KERN_CRIT "trans %llu running %llu\n",
d397712b
CM
1388 (unsigned long long)trans->transid,
1389 (unsigned long long)root->fs_info->generation);
dc17ff8f 1390
5d4f98a2 1391 if (!should_cow_block(trans, root, buf)) {
6702ed49
CM
1392 *cow_ret = buf;
1393 return 0;
1394 }
c487685d 1395
0b86a832 1396 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
b4ce94de
CM
1397
1398 if (parent)
1399 btrfs_set_lock_blocking(parent);
1400 btrfs_set_lock_blocking(buf);
1401
f510cfec 1402 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1403 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1404
1405 trace_btrfs_cow_block(root, buf, *cow_ret);
1406
f510cfec 1407 return ret;
6702ed49
CM
1408}
1409
d352ac68
CM
1410/*
1411 * helper function for defrag to decide if two blocks pointed to by a
1412 * node are actually close by
1413 */
6b80053d 1414static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1415{
6b80053d 1416 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1417 return 1;
6b80053d 1418 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1419 return 1;
1420 return 0;
1421}
1422
081e9573
CM
1423/*
1424 * compare two keys in a memcmp fashion
1425 */
1426static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1427{
1428 struct btrfs_key k1;
1429
1430 btrfs_disk_key_to_cpu(&k1, disk);
1431
20736aba 1432 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1433}
1434
f3465ca4
JB
1435/*
1436 * same as comp_keys only with two btrfs_key's
1437 */
5d4f98a2 1438int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
f3465ca4
JB
1439{
1440 if (k1->objectid > k2->objectid)
1441 return 1;
1442 if (k1->objectid < k2->objectid)
1443 return -1;
1444 if (k1->type > k2->type)
1445 return 1;
1446 if (k1->type < k2->type)
1447 return -1;
1448 if (k1->offset > k2->offset)
1449 return 1;
1450 if (k1->offset < k2->offset)
1451 return -1;
1452 return 0;
1453}
081e9573 1454
d352ac68
CM
1455/*
1456 * this is used by the defrag code to go through all the
1457 * leaves pointed to by a node and reallocate them so that
1458 * disk order is close to key order
1459 */
6702ed49 1460int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1461 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1462 int start_slot, u64 *last_ret,
a6b6e75e 1463 struct btrfs_key *progress)
6702ed49 1464{
6b80053d 1465 struct extent_buffer *cur;
6702ed49 1466 u64 blocknr;
ca7a79ad 1467 u64 gen;
e9d0b13b
CM
1468 u64 search_start = *last_ret;
1469 u64 last_block = 0;
6702ed49
CM
1470 u64 other;
1471 u32 parent_nritems;
6702ed49
CM
1472 int end_slot;
1473 int i;
1474 int err = 0;
f2183bde 1475 int parent_level;
6b80053d
CM
1476 int uptodate;
1477 u32 blocksize;
081e9573
CM
1478 int progress_passed = 0;
1479 struct btrfs_disk_key disk_key;
6702ed49 1480
5708b959 1481 parent_level = btrfs_header_level(parent);
5708b959 1482
6c1500f2
JL
1483 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1484 WARN_ON(trans->transid != root->fs_info->generation);
86479a04 1485
6b80053d 1486 parent_nritems = btrfs_header_nritems(parent);
6b80053d 1487 blocksize = btrfs_level_size(root, parent_level - 1);
6702ed49
CM
1488 end_slot = parent_nritems;
1489
1490 if (parent_nritems == 1)
1491 return 0;
1492
b4ce94de
CM
1493 btrfs_set_lock_blocking(parent);
1494
6702ed49
CM
1495 for (i = start_slot; i < end_slot; i++) {
1496 int close = 1;
a6b6e75e 1497
081e9573
CM
1498 btrfs_node_key(parent, &disk_key, i);
1499 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1500 continue;
1501
1502 progress_passed = 1;
6b80053d 1503 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1504 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1505 if (last_block == 0)
1506 last_block = blocknr;
5708b959 1507
6702ed49 1508 if (i > 0) {
6b80053d
CM
1509 other = btrfs_node_blockptr(parent, i - 1);
1510 close = close_blocks(blocknr, other, blocksize);
6702ed49 1511 }
0ef3e66b 1512 if (!close && i < end_slot - 2) {
6b80053d
CM
1513 other = btrfs_node_blockptr(parent, i + 1);
1514 close = close_blocks(blocknr, other, blocksize);
6702ed49 1515 }
e9d0b13b
CM
1516 if (close) {
1517 last_block = blocknr;
6702ed49 1518 continue;
e9d0b13b 1519 }
6702ed49 1520
6b80053d
CM
1521 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1522 if (cur)
b9fab919 1523 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1524 else
1525 uptodate = 0;
5708b959 1526 if (!cur || !uptodate) {
6b80053d
CM
1527 if (!cur) {
1528 cur = read_tree_block(root, blocknr,
ca7a79ad 1529 blocksize, gen);
416bc658
JB
1530 if (!cur || !extent_buffer_uptodate(cur)) {
1531 free_extent_buffer(cur);
97d9a8a4 1532 return -EIO;
416bc658 1533 }
6b80053d 1534 } else if (!uptodate) {
018642a1
TI
1535 err = btrfs_read_buffer(cur, gen);
1536 if (err) {
1537 free_extent_buffer(cur);
1538 return err;
1539 }
f2183bde 1540 }
6702ed49 1541 }
e9d0b13b 1542 if (search_start == 0)
6b80053d 1543 search_start = last_block;
e9d0b13b 1544
e7a84565 1545 btrfs_tree_lock(cur);
b4ce94de 1546 btrfs_set_lock_blocking(cur);
6b80053d 1547 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1548 &cur, search_start,
6b80053d 1549 min(16 * blocksize,
9fa8cfe7 1550 (end_slot - i) * blocksize));
252c38f0 1551 if (err) {
e7a84565 1552 btrfs_tree_unlock(cur);
6b80053d 1553 free_extent_buffer(cur);
6702ed49 1554 break;
252c38f0 1555 }
e7a84565
CM
1556 search_start = cur->start;
1557 last_block = cur->start;
f2183bde 1558 *last_ret = search_start;
e7a84565
CM
1559 btrfs_tree_unlock(cur);
1560 free_extent_buffer(cur);
6702ed49
CM
1561 }
1562 return err;
1563}
1564
74123bd7
CM
1565/*
1566 * The leaf data grows from end-to-front in the node.
1567 * this returns the address of the start of the last item,
1568 * which is the stop of the leaf data stack
1569 */
123abc88 1570static inline unsigned int leaf_data_end(struct btrfs_root *root,
5f39d397 1571 struct extent_buffer *leaf)
be0e5c09 1572{
5f39d397 1573 u32 nr = btrfs_header_nritems(leaf);
be0e5c09 1574 if (nr == 0)
123abc88 1575 return BTRFS_LEAF_DATA_SIZE(root);
5f39d397 1576 return btrfs_item_offset_nr(leaf, nr - 1);
be0e5c09
CM
1577}
1578
aa5d6bed 1579
74123bd7 1580/*
5f39d397
CM
1581 * search for key in the extent_buffer. The items start at offset p,
1582 * and they are item_size apart. There are 'max' items in p.
1583 *
74123bd7
CM
1584 * the slot in the array is returned via slot, and it points to
1585 * the place where you would insert key if it is not found in
1586 * the array.
1587 *
1588 * slot may point to max if the key is bigger than all of the keys
1589 */
e02119d5
CM
1590static noinline int generic_bin_search(struct extent_buffer *eb,
1591 unsigned long p,
1592 int item_size, struct btrfs_key *key,
1593 int max, int *slot)
be0e5c09
CM
1594{
1595 int low = 0;
1596 int high = max;
1597 int mid;
1598 int ret;
479965d6 1599 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1600 struct btrfs_disk_key unaligned;
1601 unsigned long offset;
5f39d397
CM
1602 char *kaddr = NULL;
1603 unsigned long map_start = 0;
1604 unsigned long map_len = 0;
479965d6 1605 int err;
be0e5c09 1606
d397712b 1607 while (low < high) {
be0e5c09 1608 mid = (low + high) / 2;
5f39d397
CM
1609 offset = p + mid * item_size;
1610
a6591715 1611 if (!kaddr || offset < map_start ||
5f39d397
CM
1612 (offset + sizeof(struct btrfs_disk_key)) >
1613 map_start + map_len) {
934d375b
CM
1614
1615 err = map_private_extent_buffer(eb, offset,
479965d6 1616 sizeof(struct btrfs_disk_key),
a6591715 1617 &kaddr, &map_start, &map_len);
479965d6
CM
1618
1619 if (!err) {
1620 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1621 map_start);
1622 } else {
1623 read_extent_buffer(eb, &unaligned,
1624 offset, sizeof(unaligned));
1625 tmp = &unaligned;
1626 }
5f39d397 1627
5f39d397
CM
1628 } else {
1629 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1630 map_start);
1631 }
be0e5c09
CM
1632 ret = comp_keys(tmp, key);
1633
1634 if (ret < 0)
1635 low = mid + 1;
1636 else if (ret > 0)
1637 high = mid;
1638 else {
1639 *slot = mid;
1640 return 0;
1641 }
1642 }
1643 *slot = low;
1644 return 1;
1645}
1646
97571fd0
CM
1647/*
1648 * simple bin_search frontend that does the right thing for
1649 * leaves vs nodes
1650 */
5f39d397
CM
1651static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1652 int level, int *slot)
be0e5c09 1653{
f775738f 1654 if (level == 0)
5f39d397
CM
1655 return generic_bin_search(eb,
1656 offsetof(struct btrfs_leaf, items),
0783fcfc 1657 sizeof(struct btrfs_item),
5f39d397 1658 key, btrfs_header_nritems(eb),
7518a238 1659 slot);
f775738f 1660 else
5f39d397
CM
1661 return generic_bin_search(eb,
1662 offsetof(struct btrfs_node, ptrs),
123abc88 1663 sizeof(struct btrfs_key_ptr),
5f39d397 1664 key, btrfs_header_nritems(eb),
7518a238 1665 slot);
be0e5c09
CM
1666}
1667
5d4f98a2
YZ
1668int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1669 int level, int *slot)
1670{
1671 return bin_search(eb, key, level, slot);
1672}
1673
f0486c68
YZ
1674static void root_add_used(struct btrfs_root *root, u32 size)
1675{
1676 spin_lock(&root->accounting_lock);
1677 btrfs_set_root_used(&root->root_item,
1678 btrfs_root_used(&root->root_item) + size);
1679 spin_unlock(&root->accounting_lock);
1680}
1681
1682static void root_sub_used(struct btrfs_root *root, u32 size)
1683{
1684 spin_lock(&root->accounting_lock);
1685 btrfs_set_root_used(&root->root_item,
1686 btrfs_root_used(&root->root_item) - size);
1687 spin_unlock(&root->accounting_lock);
1688}
1689
d352ac68
CM
1690/* given a node and slot number, this reads the blocks it points to. The
1691 * extent buffer is returned with a reference taken (but unlocked).
1692 * NULL is returned on error.
1693 */
e02119d5 1694static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
5f39d397 1695 struct extent_buffer *parent, int slot)
bb803951 1696{
ca7a79ad 1697 int level = btrfs_header_level(parent);
416bc658
JB
1698 struct extent_buffer *eb;
1699
bb803951
CM
1700 if (slot < 0)
1701 return NULL;
5f39d397 1702 if (slot >= btrfs_header_nritems(parent))
bb803951 1703 return NULL;
ca7a79ad
CM
1704
1705 BUG_ON(level == 0);
1706
416bc658
JB
1707 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1708 btrfs_level_size(root, level - 1),
1709 btrfs_node_ptr_generation(parent, slot));
1710 if (eb && !extent_buffer_uptodate(eb)) {
1711 free_extent_buffer(eb);
1712 eb = NULL;
1713 }
1714
1715 return eb;
bb803951
CM
1716}
1717
d352ac68
CM
1718/*
1719 * node level balancing, used to make sure nodes are in proper order for
1720 * item deletion. We balance from the top down, so we have to make sure
1721 * that a deletion won't leave an node completely empty later on.
1722 */
e02119d5 1723static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1724 struct btrfs_root *root,
1725 struct btrfs_path *path, int level)
bb803951 1726{
5f39d397
CM
1727 struct extent_buffer *right = NULL;
1728 struct extent_buffer *mid;
1729 struct extent_buffer *left = NULL;
1730 struct extent_buffer *parent = NULL;
bb803951
CM
1731 int ret = 0;
1732 int wret;
1733 int pslot;
bb803951 1734 int orig_slot = path->slots[level];
79f95c82 1735 u64 orig_ptr;
bb803951
CM
1736
1737 if (level == 0)
1738 return 0;
1739
5f39d397 1740 mid = path->nodes[level];
b4ce94de 1741
bd681513
CM
1742 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1743 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1744 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1745
1d4f8a0c 1746 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1747
a05a9bb1 1748 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1749 parent = path->nodes[level + 1];
a05a9bb1
LZ
1750 pslot = path->slots[level + 1];
1751 }
bb803951 1752
40689478
CM
1753 /*
1754 * deal with the case where there is only one pointer in the root
1755 * by promoting the node below to a root
1756 */
5f39d397
CM
1757 if (!parent) {
1758 struct extent_buffer *child;
bb803951 1759
5f39d397 1760 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1761 return 0;
1762
1763 /* promote the child to a root */
5f39d397 1764 child = read_node_slot(root, mid, 0);
305a26af
MF
1765 if (!child) {
1766 ret = -EROFS;
1767 btrfs_std_error(root->fs_info, ret);
1768 goto enospc;
1769 }
1770
925baedd 1771 btrfs_tree_lock(child);
b4ce94de 1772 btrfs_set_lock_blocking(child);
9fa8cfe7 1773 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1774 if (ret) {
1775 btrfs_tree_unlock(child);
1776 free_extent_buffer(child);
1777 goto enospc;
1778 }
2f375ab9 1779
90f8d62e 1780 tree_mod_log_set_root_pointer(root, child, 1);
240f62c8 1781 rcu_assign_pointer(root->node, child);
925baedd 1782
0b86a832 1783 add_root_to_dirty_list(root);
925baedd 1784 btrfs_tree_unlock(child);
b4ce94de 1785
925baedd 1786 path->locks[level] = 0;
bb803951 1787 path->nodes[level] = NULL;
5f39d397 1788 clean_tree_block(trans, root, mid);
925baedd 1789 btrfs_tree_unlock(mid);
bb803951 1790 /* once for the path */
5f39d397 1791 free_extent_buffer(mid);
f0486c68
YZ
1792
1793 root_sub_used(root, mid->len);
5581a51a 1794 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1795 /* once for the root ptr */
3083ee2e 1796 free_extent_buffer_stale(mid);
f0486c68 1797 return 0;
bb803951 1798 }
5f39d397 1799 if (btrfs_header_nritems(mid) >
123abc88 1800 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
bb803951
CM
1801 return 0;
1802
5f39d397
CM
1803 left = read_node_slot(root, parent, pslot - 1);
1804 if (left) {
925baedd 1805 btrfs_tree_lock(left);
b4ce94de 1806 btrfs_set_lock_blocking(left);
5f39d397 1807 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1808 parent, pslot - 1, &left);
54aa1f4d
CM
1809 if (wret) {
1810 ret = wret;
1811 goto enospc;
1812 }
2cc58cf2 1813 }
5f39d397
CM
1814 right = read_node_slot(root, parent, pslot + 1);
1815 if (right) {
925baedd 1816 btrfs_tree_lock(right);
b4ce94de 1817 btrfs_set_lock_blocking(right);
5f39d397 1818 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1819 parent, pslot + 1, &right);
2cc58cf2
CM
1820 if (wret) {
1821 ret = wret;
1822 goto enospc;
1823 }
1824 }
1825
1826 /* first, try to make some room in the middle buffer */
5f39d397
CM
1827 if (left) {
1828 orig_slot += btrfs_header_nritems(left);
bce4eae9 1829 wret = push_node_left(trans, root, left, mid, 1);
79f95c82
CM
1830 if (wret < 0)
1831 ret = wret;
bb803951 1832 }
79f95c82
CM
1833
1834 /*
1835 * then try to empty the right most buffer into the middle
1836 */
5f39d397 1837 if (right) {
971a1f66 1838 wret = push_node_left(trans, root, mid, right, 1);
54aa1f4d 1839 if (wret < 0 && wret != -ENOSPC)
79f95c82 1840 ret = wret;
5f39d397 1841 if (btrfs_header_nritems(right) == 0) {
5f39d397 1842 clean_tree_block(trans, root, right);
925baedd 1843 btrfs_tree_unlock(right);
afe5fea7 1844 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 1845 root_sub_used(root, right->len);
5581a51a 1846 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1847 free_extent_buffer_stale(right);
f0486c68 1848 right = NULL;
bb803951 1849 } else {
5f39d397
CM
1850 struct btrfs_disk_key right_key;
1851 btrfs_node_key(right, &right_key, 0);
f230475e 1852 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 1853 pslot + 1, 0);
5f39d397
CM
1854 btrfs_set_node_key(parent, &right_key, pslot + 1);
1855 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1856 }
1857 }
5f39d397 1858 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1859 /*
1860 * we're not allowed to leave a node with one item in the
1861 * tree during a delete. A deletion from lower in the tree
1862 * could try to delete the only pointer in this node.
1863 * So, pull some keys from the left.
1864 * There has to be a left pointer at this point because
1865 * otherwise we would have pulled some pointers from the
1866 * right
1867 */
305a26af
MF
1868 if (!left) {
1869 ret = -EROFS;
1870 btrfs_std_error(root->fs_info, ret);
1871 goto enospc;
1872 }
5f39d397 1873 wret = balance_node_right(trans, root, mid, left);
54aa1f4d 1874 if (wret < 0) {
79f95c82 1875 ret = wret;
54aa1f4d
CM
1876 goto enospc;
1877 }
bce4eae9
CM
1878 if (wret == 1) {
1879 wret = push_node_left(trans, root, left, mid, 1);
1880 if (wret < 0)
1881 ret = wret;
1882 }
79f95c82
CM
1883 BUG_ON(wret == 1);
1884 }
5f39d397 1885 if (btrfs_header_nritems(mid) == 0) {
5f39d397 1886 clean_tree_block(trans, root, mid);
925baedd 1887 btrfs_tree_unlock(mid);
afe5fea7 1888 del_ptr(root, path, level + 1, pslot);
f0486c68 1889 root_sub_used(root, mid->len);
5581a51a 1890 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 1891 free_extent_buffer_stale(mid);
f0486c68 1892 mid = NULL;
79f95c82
CM
1893 } else {
1894 /* update the parent key to reflect our changes */
5f39d397
CM
1895 struct btrfs_disk_key mid_key;
1896 btrfs_node_key(mid, &mid_key, 0);
32adf090 1897 tree_mod_log_set_node_key(root->fs_info, parent,
f230475e 1898 pslot, 0);
5f39d397
CM
1899 btrfs_set_node_key(parent, &mid_key, pslot);
1900 btrfs_mark_buffer_dirty(parent);
79f95c82 1901 }
bb803951 1902
79f95c82 1903 /* update the path */
5f39d397
CM
1904 if (left) {
1905 if (btrfs_header_nritems(left) > orig_slot) {
1906 extent_buffer_get(left);
925baedd 1907 /* left was locked after cow */
5f39d397 1908 path->nodes[level] = left;
bb803951
CM
1909 path->slots[level + 1] -= 1;
1910 path->slots[level] = orig_slot;
925baedd
CM
1911 if (mid) {
1912 btrfs_tree_unlock(mid);
5f39d397 1913 free_extent_buffer(mid);
925baedd 1914 }
bb803951 1915 } else {
5f39d397 1916 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
1917 path->slots[level] = orig_slot;
1918 }
1919 }
79f95c82 1920 /* double check we haven't messed things up */
e20d96d6 1921 if (orig_ptr !=
5f39d397 1922 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 1923 BUG();
54aa1f4d 1924enospc:
925baedd
CM
1925 if (right) {
1926 btrfs_tree_unlock(right);
5f39d397 1927 free_extent_buffer(right);
925baedd
CM
1928 }
1929 if (left) {
1930 if (path->nodes[level] != left)
1931 btrfs_tree_unlock(left);
5f39d397 1932 free_extent_buffer(left);
925baedd 1933 }
bb803951
CM
1934 return ret;
1935}
1936
d352ac68
CM
1937/* Node balancing for insertion. Here we only split or push nodes around
1938 * when they are completely full. This is also done top down, so we
1939 * have to be pessimistic.
1940 */
d397712b 1941static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
1942 struct btrfs_root *root,
1943 struct btrfs_path *path, int level)
e66f709b 1944{
5f39d397
CM
1945 struct extent_buffer *right = NULL;
1946 struct extent_buffer *mid;
1947 struct extent_buffer *left = NULL;
1948 struct extent_buffer *parent = NULL;
e66f709b
CM
1949 int ret = 0;
1950 int wret;
1951 int pslot;
1952 int orig_slot = path->slots[level];
e66f709b
CM
1953
1954 if (level == 0)
1955 return 1;
1956
5f39d397 1957 mid = path->nodes[level];
7bb86316 1958 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 1959
a05a9bb1 1960 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1961 parent = path->nodes[level + 1];
a05a9bb1
LZ
1962 pslot = path->slots[level + 1];
1963 }
e66f709b 1964
5f39d397 1965 if (!parent)
e66f709b 1966 return 1;
e66f709b 1967
5f39d397 1968 left = read_node_slot(root, parent, pslot - 1);
e66f709b
CM
1969
1970 /* first, try to make some room in the middle buffer */
5f39d397 1971 if (left) {
e66f709b 1972 u32 left_nr;
925baedd
CM
1973
1974 btrfs_tree_lock(left);
b4ce94de
CM
1975 btrfs_set_lock_blocking(left);
1976
5f39d397 1977 left_nr = btrfs_header_nritems(left);
33ade1f8
CM
1978 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1979 wret = 1;
1980 } else {
5f39d397 1981 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 1982 pslot - 1, &left);
54aa1f4d
CM
1983 if (ret)
1984 wret = 1;
1985 else {
54aa1f4d 1986 wret = push_node_left(trans, root,
971a1f66 1987 left, mid, 0);
54aa1f4d 1988 }
33ade1f8 1989 }
e66f709b
CM
1990 if (wret < 0)
1991 ret = wret;
1992 if (wret == 0) {
5f39d397 1993 struct btrfs_disk_key disk_key;
e66f709b 1994 orig_slot += left_nr;
5f39d397 1995 btrfs_node_key(mid, &disk_key, 0);
f230475e 1996 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 1997 pslot, 0);
5f39d397
CM
1998 btrfs_set_node_key(parent, &disk_key, pslot);
1999 btrfs_mark_buffer_dirty(parent);
2000 if (btrfs_header_nritems(left) > orig_slot) {
2001 path->nodes[level] = left;
e66f709b
CM
2002 path->slots[level + 1] -= 1;
2003 path->slots[level] = orig_slot;
925baedd 2004 btrfs_tree_unlock(mid);
5f39d397 2005 free_extent_buffer(mid);
e66f709b
CM
2006 } else {
2007 orig_slot -=
5f39d397 2008 btrfs_header_nritems(left);
e66f709b 2009 path->slots[level] = orig_slot;
925baedd 2010 btrfs_tree_unlock(left);
5f39d397 2011 free_extent_buffer(left);
e66f709b 2012 }
e66f709b
CM
2013 return 0;
2014 }
925baedd 2015 btrfs_tree_unlock(left);
5f39d397 2016 free_extent_buffer(left);
e66f709b 2017 }
925baedd 2018 right = read_node_slot(root, parent, pslot + 1);
e66f709b
CM
2019
2020 /*
2021 * then try to empty the right most buffer into the middle
2022 */
5f39d397 2023 if (right) {
33ade1f8 2024 u32 right_nr;
b4ce94de 2025
925baedd 2026 btrfs_tree_lock(right);
b4ce94de
CM
2027 btrfs_set_lock_blocking(right);
2028
5f39d397 2029 right_nr = btrfs_header_nritems(right);
33ade1f8
CM
2030 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2031 wret = 1;
2032 } else {
5f39d397
CM
2033 ret = btrfs_cow_block(trans, root, right,
2034 parent, pslot + 1,
9fa8cfe7 2035 &right);
54aa1f4d
CM
2036 if (ret)
2037 wret = 1;
2038 else {
54aa1f4d 2039 wret = balance_node_right(trans, root,
5f39d397 2040 right, mid);
54aa1f4d 2041 }
33ade1f8 2042 }
e66f709b
CM
2043 if (wret < 0)
2044 ret = wret;
2045 if (wret == 0) {
5f39d397
CM
2046 struct btrfs_disk_key disk_key;
2047
2048 btrfs_node_key(right, &disk_key, 0);
f230475e 2049 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2050 pslot + 1, 0);
5f39d397
CM
2051 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2052 btrfs_mark_buffer_dirty(parent);
2053
2054 if (btrfs_header_nritems(mid) <= orig_slot) {
2055 path->nodes[level] = right;
e66f709b
CM
2056 path->slots[level + 1] += 1;
2057 path->slots[level] = orig_slot -
5f39d397 2058 btrfs_header_nritems(mid);
925baedd 2059 btrfs_tree_unlock(mid);
5f39d397 2060 free_extent_buffer(mid);
e66f709b 2061 } else {
925baedd 2062 btrfs_tree_unlock(right);
5f39d397 2063 free_extent_buffer(right);
e66f709b 2064 }
e66f709b
CM
2065 return 0;
2066 }
925baedd 2067 btrfs_tree_unlock(right);
5f39d397 2068 free_extent_buffer(right);
e66f709b 2069 }
e66f709b
CM
2070 return 1;
2071}
2072
3c69faec 2073/*
d352ac68
CM
2074 * readahead one full node of leaves, finding things that are close
2075 * to the block in 'slot', and triggering ra on them.
3c69faec 2076 */
c8c42864
CM
2077static void reada_for_search(struct btrfs_root *root,
2078 struct btrfs_path *path,
2079 int level, int slot, u64 objectid)
3c69faec 2080{
5f39d397 2081 struct extent_buffer *node;
01f46658 2082 struct btrfs_disk_key disk_key;
3c69faec 2083 u32 nritems;
3c69faec 2084 u64 search;
a7175319 2085 u64 target;
6b80053d 2086 u64 nread = 0;
cb25c2ea 2087 u64 gen;
3c69faec 2088 int direction = path->reada;
5f39d397 2089 struct extent_buffer *eb;
6b80053d
CM
2090 u32 nr;
2091 u32 blocksize;
2092 u32 nscan = 0;
db94535d 2093
a6b6e75e 2094 if (level != 1)
6702ed49
CM
2095 return;
2096
2097 if (!path->nodes[level])
3c69faec
CM
2098 return;
2099
5f39d397 2100 node = path->nodes[level];
925baedd 2101
3c69faec 2102 search = btrfs_node_blockptr(node, slot);
6b80053d
CM
2103 blocksize = btrfs_level_size(root, level - 1);
2104 eb = btrfs_find_tree_block(root, search, blocksize);
5f39d397
CM
2105 if (eb) {
2106 free_extent_buffer(eb);
3c69faec
CM
2107 return;
2108 }
2109
a7175319 2110 target = search;
6b80053d 2111
5f39d397 2112 nritems = btrfs_header_nritems(node);
6b80053d 2113 nr = slot;
25b8b936 2114
d397712b 2115 while (1) {
6b80053d
CM
2116 if (direction < 0) {
2117 if (nr == 0)
2118 break;
2119 nr--;
2120 } else if (direction > 0) {
2121 nr++;
2122 if (nr >= nritems)
2123 break;
3c69faec 2124 }
01f46658
CM
2125 if (path->reada < 0 && objectid) {
2126 btrfs_node_key(node, &disk_key, nr);
2127 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2128 break;
2129 }
6b80053d 2130 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2131 if ((search <= target && target - search <= 65536) ||
2132 (search > target && search - target <= 65536)) {
cb25c2ea 2133 gen = btrfs_node_ptr_generation(node, nr);
cb25c2ea 2134 readahead_tree_block(root, search, blocksize, gen);
6b80053d
CM
2135 nread += blocksize;
2136 }
2137 nscan++;
a7175319 2138 if ((nread > 65536 || nscan > 32))
6b80053d 2139 break;
3c69faec
CM
2140 }
2141}
925baedd 2142
b4ce94de
CM
2143/*
2144 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2145 * cache
2146 */
2147static noinline int reada_for_balance(struct btrfs_root *root,
2148 struct btrfs_path *path, int level)
2149{
2150 int slot;
2151 int nritems;
2152 struct extent_buffer *parent;
2153 struct extent_buffer *eb;
2154 u64 gen;
2155 u64 block1 = 0;
2156 u64 block2 = 0;
2157 int ret = 0;
2158 int blocksize;
2159
8c594ea8 2160 parent = path->nodes[level + 1];
b4ce94de
CM
2161 if (!parent)
2162 return 0;
2163
2164 nritems = btrfs_header_nritems(parent);
8c594ea8 2165 slot = path->slots[level + 1];
b4ce94de
CM
2166 blocksize = btrfs_level_size(root, level);
2167
2168 if (slot > 0) {
2169 block1 = btrfs_node_blockptr(parent, slot - 1);
2170 gen = btrfs_node_ptr_generation(parent, slot - 1);
2171 eb = btrfs_find_tree_block(root, block1, blocksize);
b9fab919
CM
2172 /*
2173 * if we get -eagain from btrfs_buffer_uptodate, we
2174 * don't want to return eagain here. That will loop
2175 * forever
2176 */
2177 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2178 block1 = 0;
2179 free_extent_buffer(eb);
2180 }
8c594ea8 2181 if (slot + 1 < nritems) {
b4ce94de
CM
2182 block2 = btrfs_node_blockptr(parent, slot + 1);
2183 gen = btrfs_node_ptr_generation(parent, slot + 1);
2184 eb = btrfs_find_tree_block(root, block2, blocksize);
b9fab919 2185 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2186 block2 = 0;
2187 free_extent_buffer(eb);
2188 }
2189 if (block1 || block2) {
2190 ret = -EAGAIN;
8c594ea8
CM
2191
2192 /* release the whole path */
b3b4aa74 2193 btrfs_release_path(path);
8c594ea8
CM
2194
2195 /* read the blocks */
b4ce94de
CM
2196 if (block1)
2197 readahead_tree_block(root, block1, blocksize, 0);
2198 if (block2)
2199 readahead_tree_block(root, block2, blocksize, 0);
2200
2201 if (block1) {
2202 eb = read_tree_block(root, block1, blocksize, 0);
2203 free_extent_buffer(eb);
2204 }
8c594ea8 2205 if (block2) {
b4ce94de
CM
2206 eb = read_tree_block(root, block2, blocksize, 0);
2207 free_extent_buffer(eb);
2208 }
2209 }
2210 return ret;
2211}
2212
2213
d352ac68 2214/*
d397712b
CM
2215 * when we walk down the tree, it is usually safe to unlock the higher layers
2216 * in the tree. The exceptions are when our path goes through slot 0, because
2217 * operations on the tree might require changing key pointers higher up in the
2218 * tree.
d352ac68 2219 *
d397712b
CM
2220 * callers might also have set path->keep_locks, which tells this code to keep
2221 * the lock if the path points to the last slot in the block. This is part of
2222 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2223 *
d397712b
CM
2224 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2225 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2226 */
e02119d5 2227static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2228 int lowest_unlock, int min_write_lock_level,
2229 int *write_lock_level)
925baedd
CM
2230{
2231 int i;
2232 int skip_level = level;
051e1b9f 2233 int no_skips = 0;
925baedd
CM
2234 struct extent_buffer *t;
2235
2236 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2237 if (!path->nodes[i])
2238 break;
2239 if (!path->locks[i])
2240 break;
051e1b9f 2241 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2242 skip_level = i + 1;
2243 continue;
2244 }
051e1b9f 2245 if (!no_skips && path->keep_locks) {
925baedd
CM
2246 u32 nritems;
2247 t = path->nodes[i];
2248 nritems = btrfs_header_nritems(t);
051e1b9f 2249 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2250 skip_level = i + 1;
2251 continue;
2252 }
2253 }
051e1b9f
CM
2254 if (skip_level < i && i >= lowest_unlock)
2255 no_skips = 1;
2256
925baedd
CM
2257 t = path->nodes[i];
2258 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2259 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2260 path->locks[i] = 0;
f7c79f30
CM
2261 if (write_lock_level &&
2262 i > min_write_lock_level &&
2263 i <= *write_lock_level) {
2264 *write_lock_level = i - 1;
2265 }
925baedd
CM
2266 }
2267 }
2268}
2269
b4ce94de
CM
2270/*
2271 * This releases any locks held in the path starting at level and
2272 * going all the way up to the root.
2273 *
2274 * btrfs_search_slot will keep the lock held on higher nodes in a few
2275 * corner cases, such as COW of the block at slot zero in the node. This
2276 * ignores those rules, and it should only be called when there are no
2277 * more updates to be done higher up in the tree.
2278 */
2279noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2280{
2281 int i;
2282
09a2a8f9 2283 if (path->keep_locks)
b4ce94de
CM
2284 return;
2285
2286 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2287 if (!path->nodes[i])
12f4dacc 2288 continue;
b4ce94de 2289 if (!path->locks[i])
12f4dacc 2290 continue;
bd681513 2291 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2292 path->locks[i] = 0;
2293 }
2294}
2295
c8c42864
CM
2296/*
2297 * helper function for btrfs_search_slot. The goal is to find a block
2298 * in cache without setting the path to blocking. If we find the block
2299 * we return zero and the path is unchanged.
2300 *
2301 * If we can't find the block, we set the path blocking and do some
2302 * reada. -EAGAIN is returned and the search must be repeated.
2303 */
2304static int
2305read_block_for_search(struct btrfs_trans_handle *trans,
2306 struct btrfs_root *root, struct btrfs_path *p,
2307 struct extent_buffer **eb_ret, int level, int slot,
5d9e75c4 2308 struct btrfs_key *key, u64 time_seq)
c8c42864
CM
2309{
2310 u64 blocknr;
2311 u64 gen;
2312 u32 blocksize;
2313 struct extent_buffer *b = *eb_ret;
2314 struct extent_buffer *tmp;
76a05b35 2315 int ret;
c8c42864
CM
2316
2317 blocknr = btrfs_node_blockptr(b, slot);
2318 gen = btrfs_node_ptr_generation(b, slot);
2319 blocksize = btrfs_level_size(root, level - 1);
2320
2321 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
cb44921a 2322 if (tmp) {
b9fab919
CM
2323 /* first we do an atomic uptodate check */
2324 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2325 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
cb44921a
CM
2326 /*
2327 * we found an up to date block without
2328 * sleeping, return
2329 * right away
2330 */
2331 *eb_ret = tmp;
2332 return 0;
2333 }
2334 /* the pages were up to date, but we failed
2335 * the generation number check. Do a full
2336 * read for the generation number that is correct.
2337 * We must do this without dropping locks so
2338 * we can trust our generation number
2339 */
2340 free_extent_buffer(tmp);
bd681513
CM
2341 btrfs_set_path_blocking(p);
2342
b9fab919 2343 /* now we're allowed to do a blocking uptodate check */
cb44921a 2344 tmp = read_tree_block(root, blocknr, blocksize, gen);
b9fab919 2345 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
cb44921a
CM
2346 *eb_ret = tmp;
2347 return 0;
2348 }
2349 free_extent_buffer(tmp);
b3b4aa74 2350 btrfs_release_path(p);
cb44921a
CM
2351 return -EIO;
2352 }
c8c42864
CM
2353 }
2354
2355 /*
2356 * reduce lock contention at high levels
2357 * of the btree by dropping locks before
76a05b35
CM
2358 * we read. Don't release the lock on the current
2359 * level because we need to walk this node to figure
2360 * out which blocks to read.
c8c42864 2361 */
8c594ea8
CM
2362 btrfs_unlock_up_safe(p, level + 1);
2363 btrfs_set_path_blocking(p);
2364
cb44921a 2365 free_extent_buffer(tmp);
c8c42864
CM
2366 if (p->reada)
2367 reada_for_search(root, p, level, slot, key->objectid);
2368
b3b4aa74 2369 btrfs_release_path(p);
76a05b35
CM
2370
2371 ret = -EAGAIN;
5bdd3536 2372 tmp = read_tree_block(root, blocknr, blocksize, 0);
76a05b35
CM
2373 if (tmp) {
2374 /*
2375 * If the read above didn't mark this buffer up to date,
2376 * it will never end up being up to date. Set ret to EIO now
2377 * and give up so that our caller doesn't loop forever
2378 * on our EAGAINs.
2379 */
b9fab919 2380 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2381 ret = -EIO;
c8c42864 2382 free_extent_buffer(tmp);
76a05b35
CM
2383 }
2384 return ret;
c8c42864
CM
2385}
2386
2387/*
2388 * helper function for btrfs_search_slot. This does all of the checks
2389 * for node-level blocks and does any balancing required based on
2390 * the ins_len.
2391 *
2392 * If no extra work was required, zero is returned. If we had to
2393 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2394 * start over
2395 */
2396static int
2397setup_nodes_for_search(struct btrfs_trans_handle *trans,
2398 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2399 struct extent_buffer *b, int level, int ins_len,
2400 int *write_lock_level)
c8c42864
CM
2401{
2402 int ret;
2403 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2404 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2405 int sret;
2406
bd681513
CM
2407 if (*write_lock_level < level + 1) {
2408 *write_lock_level = level + 1;
2409 btrfs_release_path(p);
2410 goto again;
2411 }
2412
c8c42864
CM
2413 sret = reada_for_balance(root, p, level);
2414 if (sret)
2415 goto again;
2416
2417 btrfs_set_path_blocking(p);
2418 sret = split_node(trans, root, p, level);
bd681513 2419 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2420
2421 BUG_ON(sret > 0);
2422 if (sret) {
2423 ret = sret;
2424 goto done;
2425 }
2426 b = p->nodes[level];
2427 } else if (ins_len < 0 && btrfs_header_nritems(b) <
cfbb9308 2428 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
c8c42864
CM
2429 int sret;
2430
bd681513
CM
2431 if (*write_lock_level < level + 1) {
2432 *write_lock_level = level + 1;
2433 btrfs_release_path(p);
2434 goto again;
2435 }
2436
c8c42864
CM
2437 sret = reada_for_balance(root, p, level);
2438 if (sret)
2439 goto again;
2440
2441 btrfs_set_path_blocking(p);
2442 sret = balance_level(trans, root, p, level);
bd681513 2443 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2444
2445 if (sret) {
2446 ret = sret;
2447 goto done;
2448 }
2449 b = p->nodes[level];
2450 if (!b) {
b3b4aa74 2451 btrfs_release_path(p);
c8c42864
CM
2452 goto again;
2453 }
2454 BUG_ON(btrfs_header_nritems(b) == 1);
2455 }
2456 return 0;
2457
2458again:
2459 ret = -EAGAIN;
2460done:
2461 return ret;
2462}
2463
74123bd7
CM
2464/*
2465 * look for key in the tree. path is filled in with nodes along the way
2466 * if key is found, we return zero and you can find the item in the leaf
2467 * level of the path (level 0)
2468 *
2469 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2470 * be inserted, and 1 is returned. If there are other errors during the
2471 * search a negative error number is returned.
97571fd0
CM
2472 *
2473 * if ins_len > 0, nodes and leaves will be split as we walk down the
2474 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2475 * possible)
74123bd7 2476 */
e089f05c
CM
2477int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2478 *root, struct btrfs_key *key, struct btrfs_path *p, int
2479 ins_len, int cow)
be0e5c09 2480{
5f39d397 2481 struct extent_buffer *b;
be0e5c09
CM
2482 int slot;
2483 int ret;
33c66f43 2484 int err;
be0e5c09 2485 int level;
925baedd 2486 int lowest_unlock = 1;
bd681513
CM
2487 int root_lock;
2488 /* everything at write_lock_level or lower must be write locked */
2489 int write_lock_level = 0;
9f3a7427 2490 u8 lowest_level = 0;
f7c79f30 2491 int min_write_lock_level;
9f3a7427 2492
6702ed49 2493 lowest_level = p->lowest_level;
323ac95b 2494 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2495 WARN_ON(p->nodes[0] != NULL);
25179201 2496
bd681513 2497 if (ins_len < 0) {
925baedd 2498 lowest_unlock = 2;
65b51a00 2499
bd681513
CM
2500 /* when we are removing items, we might have to go up to level
2501 * two as we update tree pointers Make sure we keep write
2502 * for those levels as well
2503 */
2504 write_lock_level = 2;
2505 } else if (ins_len > 0) {
2506 /*
2507 * for inserting items, make sure we have a write lock on
2508 * level 1 so we can update keys
2509 */
2510 write_lock_level = 1;
2511 }
2512
2513 if (!cow)
2514 write_lock_level = -1;
2515
09a2a8f9 2516 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2517 write_lock_level = BTRFS_MAX_LEVEL;
2518
f7c79f30
CM
2519 min_write_lock_level = write_lock_level;
2520
bb803951 2521again:
bd681513
CM
2522 /*
2523 * we try very hard to do read locks on the root
2524 */
2525 root_lock = BTRFS_READ_LOCK;
2526 level = 0;
5d4f98a2 2527 if (p->search_commit_root) {
bd681513
CM
2528 /*
2529 * the commit roots are read only
2530 * so we always do read locks
2531 */
5d4f98a2
YZ
2532 b = root->commit_root;
2533 extent_buffer_get(b);
bd681513 2534 level = btrfs_header_level(b);
5d4f98a2 2535 if (!p->skip_locking)
bd681513 2536 btrfs_tree_read_lock(b);
5d4f98a2 2537 } else {
bd681513 2538 if (p->skip_locking) {
5d4f98a2 2539 b = btrfs_root_node(root);
bd681513
CM
2540 level = btrfs_header_level(b);
2541 } else {
2542 /* we don't know the level of the root node
2543 * until we actually have it read locked
2544 */
2545 b = btrfs_read_lock_root_node(root);
2546 level = btrfs_header_level(b);
2547 if (level <= write_lock_level) {
2548 /* whoops, must trade for write lock */
2549 btrfs_tree_read_unlock(b);
2550 free_extent_buffer(b);
2551 b = btrfs_lock_root_node(root);
2552 root_lock = BTRFS_WRITE_LOCK;
2553
2554 /* the level might have changed, check again */
2555 level = btrfs_header_level(b);
2556 }
2557 }
5d4f98a2 2558 }
bd681513
CM
2559 p->nodes[level] = b;
2560 if (!p->skip_locking)
2561 p->locks[level] = root_lock;
925baedd 2562
eb60ceac 2563 while (b) {
5f39d397 2564 level = btrfs_header_level(b);
65b51a00
CM
2565
2566 /*
2567 * setup the path here so we can release it under lock
2568 * contention with the cow code
2569 */
02217ed2 2570 if (cow) {
c8c42864
CM
2571 /*
2572 * if we don't really need to cow this block
2573 * then we don't want to set the path blocking,
2574 * so we test it here
2575 */
5d4f98a2 2576 if (!should_cow_block(trans, root, b))
65b51a00 2577 goto cow_done;
5d4f98a2 2578
b4ce94de
CM
2579 btrfs_set_path_blocking(p);
2580
bd681513
CM
2581 /*
2582 * must have write locks on this node and the
2583 * parent
2584 */
5124e00e
JB
2585 if (level > write_lock_level ||
2586 (level + 1 > write_lock_level &&
2587 level + 1 < BTRFS_MAX_LEVEL &&
2588 p->nodes[level + 1])) {
bd681513
CM
2589 write_lock_level = level + 1;
2590 btrfs_release_path(p);
2591 goto again;
2592 }
2593
33c66f43
YZ
2594 err = btrfs_cow_block(trans, root, b,
2595 p->nodes[level + 1],
2596 p->slots[level + 1], &b);
2597 if (err) {
33c66f43 2598 ret = err;
65b51a00 2599 goto done;
54aa1f4d 2600 }
02217ed2 2601 }
65b51a00 2602cow_done:
02217ed2 2603 BUG_ON(!cow && ins_len);
65b51a00 2604
eb60ceac 2605 p->nodes[level] = b;
bd681513 2606 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2607
2608 /*
2609 * we have a lock on b and as long as we aren't changing
2610 * the tree, there is no way to for the items in b to change.
2611 * It is safe to drop the lock on our parent before we
2612 * go through the expensive btree search on b.
2613 *
2614 * If cow is true, then we might be changing slot zero,
2615 * which may require changing the parent. So, we can't
2616 * drop the lock until after we know which slot we're
2617 * operating on.
2618 */
2619 if (!cow)
2620 btrfs_unlock_up_safe(p, level + 1);
2621
5f39d397 2622 ret = bin_search(b, key, level, &slot);
b4ce94de 2623
5f39d397 2624 if (level != 0) {
33c66f43
YZ
2625 int dec = 0;
2626 if (ret && slot > 0) {
2627 dec = 1;
be0e5c09 2628 slot -= 1;
33c66f43 2629 }
be0e5c09 2630 p->slots[level] = slot;
33c66f43 2631 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2632 ins_len, &write_lock_level);
33c66f43 2633 if (err == -EAGAIN)
c8c42864 2634 goto again;
33c66f43
YZ
2635 if (err) {
2636 ret = err;
c8c42864 2637 goto done;
33c66f43 2638 }
c8c42864
CM
2639 b = p->nodes[level];
2640 slot = p->slots[level];
b4ce94de 2641
bd681513
CM
2642 /*
2643 * slot 0 is special, if we change the key
2644 * we have to update the parent pointer
2645 * which means we must have a write lock
2646 * on the parent
2647 */
2648 if (slot == 0 && cow &&
2649 write_lock_level < level + 1) {
2650 write_lock_level = level + 1;
2651 btrfs_release_path(p);
2652 goto again;
2653 }
2654
f7c79f30
CM
2655 unlock_up(p, level, lowest_unlock,
2656 min_write_lock_level, &write_lock_level);
f9efa9c7 2657
925baedd 2658 if (level == lowest_level) {
33c66f43
YZ
2659 if (dec)
2660 p->slots[level]++;
5b21f2ed 2661 goto done;
925baedd 2662 }
ca7a79ad 2663
33c66f43 2664 err = read_block_for_search(trans, root, p,
5d9e75c4 2665 &b, level, slot, key, 0);
33c66f43 2666 if (err == -EAGAIN)
c8c42864 2667 goto again;
33c66f43
YZ
2668 if (err) {
2669 ret = err;
76a05b35 2670 goto done;
33c66f43 2671 }
76a05b35 2672
b4ce94de 2673 if (!p->skip_locking) {
bd681513
CM
2674 level = btrfs_header_level(b);
2675 if (level <= write_lock_level) {
2676 err = btrfs_try_tree_write_lock(b);
2677 if (!err) {
2678 btrfs_set_path_blocking(p);
2679 btrfs_tree_lock(b);
2680 btrfs_clear_path_blocking(p, b,
2681 BTRFS_WRITE_LOCK);
2682 }
2683 p->locks[level] = BTRFS_WRITE_LOCK;
2684 } else {
2685 err = btrfs_try_tree_read_lock(b);
2686 if (!err) {
2687 btrfs_set_path_blocking(p);
2688 btrfs_tree_read_lock(b);
2689 btrfs_clear_path_blocking(p, b,
2690 BTRFS_READ_LOCK);
2691 }
2692 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2693 }
bd681513 2694 p->nodes[level] = b;
b4ce94de 2695 }
be0e5c09
CM
2696 } else {
2697 p->slots[level] = slot;
87b29b20
YZ
2698 if (ins_len > 0 &&
2699 btrfs_leaf_free_space(root, b) < ins_len) {
bd681513
CM
2700 if (write_lock_level < 1) {
2701 write_lock_level = 1;
2702 btrfs_release_path(p);
2703 goto again;
2704 }
2705
b4ce94de 2706 btrfs_set_path_blocking(p);
33c66f43
YZ
2707 err = split_leaf(trans, root, key,
2708 p, ins_len, ret == 0);
bd681513 2709 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2710
33c66f43
YZ
2711 BUG_ON(err > 0);
2712 if (err) {
2713 ret = err;
65b51a00
CM
2714 goto done;
2715 }
5c680ed6 2716 }
459931ec 2717 if (!p->search_for_split)
f7c79f30
CM
2718 unlock_up(p, level, lowest_unlock,
2719 min_write_lock_level, &write_lock_level);
65b51a00 2720 goto done;
be0e5c09
CM
2721 }
2722 }
65b51a00
CM
2723 ret = 1;
2724done:
b4ce94de
CM
2725 /*
2726 * we don't really know what they plan on doing with the path
2727 * from here on, so for now just mark it as blocking
2728 */
b9473439
CM
2729 if (!p->leave_spinning)
2730 btrfs_set_path_blocking(p);
76a05b35 2731 if (ret < 0)
b3b4aa74 2732 btrfs_release_path(p);
65b51a00 2733 return ret;
be0e5c09
CM
2734}
2735
5d9e75c4
JS
2736/*
2737 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2738 * current state of the tree together with the operations recorded in the tree
2739 * modification log to search for the key in a previous version of this tree, as
2740 * denoted by the time_seq parameter.
2741 *
2742 * Naturally, there is no support for insert, delete or cow operations.
2743 *
2744 * The resulting path and return value will be set up as if we called
2745 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2746 */
2747int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2748 struct btrfs_path *p, u64 time_seq)
2749{
2750 struct extent_buffer *b;
2751 int slot;
2752 int ret;
2753 int err;
2754 int level;
2755 int lowest_unlock = 1;
2756 u8 lowest_level = 0;
2757
2758 lowest_level = p->lowest_level;
2759 WARN_ON(p->nodes[0] != NULL);
2760
2761 if (p->search_commit_root) {
2762 BUG_ON(time_seq);
2763 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2764 }
2765
2766again:
5d9e75c4 2767 b = get_old_root(root, time_seq);
5d9e75c4 2768 level = btrfs_header_level(b);
5d9e75c4
JS
2769 p->locks[level] = BTRFS_READ_LOCK;
2770
2771 while (b) {
2772 level = btrfs_header_level(b);
2773 p->nodes[level] = b;
2774 btrfs_clear_path_blocking(p, NULL, 0);
2775
2776 /*
2777 * we have a lock on b and as long as we aren't changing
2778 * the tree, there is no way to for the items in b to change.
2779 * It is safe to drop the lock on our parent before we
2780 * go through the expensive btree search on b.
2781 */
2782 btrfs_unlock_up_safe(p, level + 1);
2783
2784 ret = bin_search(b, key, level, &slot);
2785
2786 if (level != 0) {
2787 int dec = 0;
2788 if (ret && slot > 0) {
2789 dec = 1;
2790 slot -= 1;
2791 }
2792 p->slots[level] = slot;
2793 unlock_up(p, level, lowest_unlock, 0, NULL);
2794
2795 if (level == lowest_level) {
2796 if (dec)
2797 p->slots[level]++;
2798 goto done;
2799 }
2800
2801 err = read_block_for_search(NULL, root, p, &b, level,
2802 slot, key, time_seq);
2803 if (err == -EAGAIN)
2804 goto again;
2805 if (err) {
2806 ret = err;
2807 goto done;
2808 }
2809
2810 level = btrfs_header_level(b);
2811 err = btrfs_try_tree_read_lock(b);
2812 if (!err) {
2813 btrfs_set_path_blocking(p);
2814 btrfs_tree_read_lock(b);
2815 btrfs_clear_path_blocking(p, b,
2816 BTRFS_READ_LOCK);
2817 }
47fb091f 2818 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
5d9e75c4
JS
2819 p->locks[level] = BTRFS_READ_LOCK;
2820 p->nodes[level] = b;
5d9e75c4
JS
2821 } else {
2822 p->slots[level] = slot;
2823 unlock_up(p, level, lowest_unlock, 0, NULL);
2824 goto done;
2825 }
2826 }
2827 ret = 1;
2828done:
2829 if (!p->leave_spinning)
2830 btrfs_set_path_blocking(p);
2831 if (ret < 0)
2832 btrfs_release_path(p);
2833
2834 return ret;
2835}
2836
2f38b3e1
AJ
2837/*
2838 * helper to use instead of search slot if no exact match is needed but
2839 * instead the next or previous item should be returned.
2840 * When find_higher is true, the next higher item is returned, the next lower
2841 * otherwise.
2842 * When return_any and find_higher are both true, and no higher item is found,
2843 * return the next lower instead.
2844 * When return_any is true and find_higher is false, and no lower item is found,
2845 * return the next higher instead.
2846 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2847 * < 0 on error
2848 */
2849int btrfs_search_slot_for_read(struct btrfs_root *root,
2850 struct btrfs_key *key, struct btrfs_path *p,
2851 int find_higher, int return_any)
2852{
2853 int ret;
2854 struct extent_buffer *leaf;
2855
2856again:
2857 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2858 if (ret <= 0)
2859 return ret;
2860 /*
2861 * a return value of 1 means the path is at the position where the
2862 * item should be inserted. Normally this is the next bigger item,
2863 * but in case the previous item is the last in a leaf, path points
2864 * to the first free slot in the previous leaf, i.e. at an invalid
2865 * item.
2866 */
2867 leaf = p->nodes[0];
2868
2869 if (find_higher) {
2870 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2871 ret = btrfs_next_leaf(root, p);
2872 if (ret <= 0)
2873 return ret;
2874 if (!return_any)
2875 return 1;
2876 /*
2877 * no higher item found, return the next
2878 * lower instead
2879 */
2880 return_any = 0;
2881 find_higher = 0;
2882 btrfs_release_path(p);
2883 goto again;
2884 }
2885 } else {
e6793769
AJ
2886 if (p->slots[0] == 0) {
2887 ret = btrfs_prev_leaf(root, p);
2888 if (ret < 0)
2889 return ret;
2890 if (!ret) {
2891 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2892 return 0;
2f38b3e1 2893 }
e6793769
AJ
2894 if (!return_any)
2895 return 1;
2896 /*
2897 * no lower item found, return the next
2898 * higher instead
2899 */
2900 return_any = 0;
2901 find_higher = 1;
2902 btrfs_release_path(p);
2903 goto again;
2904 } else {
2f38b3e1
AJ
2905 --p->slots[0];
2906 }
2907 }
2908 return 0;
2909}
2910
74123bd7
CM
2911/*
2912 * adjust the pointers going up the tree, starting at level
2913 * making sure the right key of each node is points to 'key'.
2914 * This is used after shifting pointers to the left, so it stops
2915 * fixing up pointers when a given leaf/node is not in slot 0 of the
2916 * higher levels
aa5d6bed 2917 *
74123bd7 2918 */
d6a0a126 2919static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
143bede5 2920 struct btrfs_disk_key *key, int level)
be0e5c09
CM
2921{
2922 int i;
5f39d397
CM
2923 struct extent_buffer *t;
2924
234b63a0 2925 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 2926 int tslot = path->slots[i];
eb60ceac 2927 if (!path->nodes[i])
be0e5c09 2928 break;
5f39d397 2929 t = path->nodes[i];
32adf090 2930 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
5f39d397 2931 btrfs_set_node_key(t, key, tslot);
d6025579 2932 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
2933 if (tslot != 0)
2934 break;
2935 }
2936}
2937
31840ae1
ZY
2938/*
2939 * update item key.
2940 *
2941 * This function isn't completely safe. It's the caller's responsibility
2942 * that the new key won't break the order
2943 */
afe5fea7 2944void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
143bede5 2945 struct btrfs_key *new_key)
31840ae1
ZY
2946{
2947 struct btrfs_disk_key disk_key;
2948 struct extent_buffer *eb;
2949 int slot;
2950
2951 eb = path->nodes[0];
2952 slot = path->slots[0];
2953 if (slot > 0) {
2954 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 2955 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
2956 }
2957 if (slot < btrfs_header_nritems(eb) - 1) {
2958 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 2959 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
2960 }
2961
2962 btrfs_cpu_key_to_disk(&disk_key, new_key);
2963 btrfs_set_item_key(eb, &disk_key, slot);
2964 btrfs_mark_buffer_dirty(eb);
2965 if (slot == 0)
d6a0a126 2966 fixup_low_keys(root, path, &disk_key, 1);
31840ae1
ZY
2967}
2968
74123bd7
CM
2969/*
2970 * try to push data from one node into the next node left in the
79f95c82 2971 * tree.
aa5d6bed
CM
2972 *
2973 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2974 * error, and > 0 if there was no room in the left hand block.
74123bd7 2975 */
98ed5174
CM
2976static int push_node_left(struct btrfs_trans_handle *trans,
2977 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 2978 struct extent_buffer *src, int empty)
be0e5c09 2979{
be0e5c09 2980 int push_items = 0;
bb803951
CM
2981 int src_nritems;
2982 int dst_nritems;
aa5d6bed 2983 int ret = 0;
be0e5c09 2984
5f39d397
CM
2985 src_nritems = btrfs_header_nritems(src);
2986 dst_nritems = btrfs_header_nritems(dst);
123abc88 2987 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
7bb86316
CM
2988 WARN_ON(btrfs_header_generation(src) != trans->transid);
2989 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 2990
bce4eae9 2991 if (!empty && src_nritems <= 8)
971a1f66
CM
2992 return 1;
2993
d397712b 2994 if (push_items <= 0)
be0e5c09
CM
2995 return 1;
2996
bce4eae9 2997 if (empty) {
971a1f66 2998 push_items = min(src_nritems, push_items);
bce4eae9
CM
2999 if (push_items < src_nritems) {
3000 /* leave at least 8 pointers in the node if
3001 * we aren't going to empty it
3002 */
3003 if (src_nritems - push_items < 8) {
3004 if (push_items <= 8)
3005 return 1;
3006 push_items -= 8;
3007 }
3008 }
3009 } else
3010 push_items = min(src_nritems - 8, push_items);
79f95c82 3011
f230475e 3012 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
90f8d62e 3013 push_items);
5f39d397
CM
3014 copy_extent_buffer(dst, src,
3015 btrfs_node_key_ptr_offset(dst_nritems),
3016 btrfs_node_key_ptr_offset(0),
d397712b 3017 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3018
bb803951 3019 if (push_items < src_nritems) {
57911b8b
JS
3020 /*
3021 * don't call tree_mod_log_eb_move here, key removal was already
3022 * fully logged by tree_mod_log_eb_copy above.
3023 */
5f39d397
CM
3024 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3025 btrfs_node_key_ptr_offset(push_items),
3026 (src_nritems - push_items) *
3027 sizeof(struct btrfs_key_ptr));
3028 }
3029 btrfs_set_header_nritems(src, src_nritems - push_items);
3030 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3031 btrfs_mark_buffer_dirty(src);
3032 btrfs_mark_buffer_dirty(dst);
31840ae1 3033
79f95c82
CM
3034 return ret;
3035}
3036
3037/*
3038 * try to push data from one node into the next node right in the
3039 * tree.
3040 *
3041 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3042 * error, and > 0 if there was no room in the right hand block.
3043 *
3044 * this will only push up to 1/2 the contents of the left node over
3045 */
5f39d397
CM
3046static int balance_node_right(struct btrfs_trans_handle *trans,
3047 struct btrfs_root *root,
3048 struct extent_buffer *dst,
3049 struct extent_buffer *src)
79f95c82 3050{
79f95c82
CM
3051 int push_items = 0;
3052 int max_push;
3053 int src_nritems;
3054 int dst_nritems;
3055 int ret = 0;
79f95c82 3056
7bb86316
CM
3057 WARN_ON(btrfs_header_generation(src) != trans->transid);
3058 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3059
5f39d397
CM
3060 src_nritems = btrfs_header_nritems(src);
3061 dst_nritems = btrfs_header_nritems(dst);
123abc88 3062 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
d397712b 3063 if (push_items <= 0)
79f95c82 3064 return 1;
bce4eae9 3065
d397712b 3066 if (src_nritems < 4)
bce4eae9 3067 return 1;
79f95c82
CM
3068
3069 max_push = src_nritems / 2 + 1;
3070 /* don't try to empty the node */
d397712b 3071 if (max_push >= src_nritems)
79f95c82 3072 return 1;
252c38f0 3073
79f95c82
CM
3074 if (max_push < push_items)
3075 push_items = max_push;
3076
f230475e 3077 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3078 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3079 btrfs_node_key_ptr_offset(0),
3080 (dst_nritems) *
3081 sizeof(struct btrfs_key_ptr));
d6025579 3082
f230475e 3083 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
90f8d62e 3084 src_nritems - push_items, push_items);
5f39d397
CM
3085 copy_extent_buffer(dst, src,
3086 btrfs_node_key_ptr_offset(0),
3087 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3088 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3089
5f39d397
CM
3090 btrfs_set_header_nritems(src, src_nritems - push_items);
3091 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3092
5f39d397
CM
3093 btrfs_mark_buffer_dirty(src);
3094 btrfs_mark_buffer_dirty(dst);
31840ae1 3095
aa5d6bed 3096 return ret;
be0e5c09
CM
3097}
3098
97571fd0
CM
3099/*
3100 * helper function to insert a new root level in the tree.
3101 * A new node is allocated, and a single item is inserted to
3102 * point to the existing root
aa5d6bed
CM
3103 *
3104 * returns zero on success or < 0 on failure.
97571fd0 3105 */
d397712b 3106static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3107 struct btrfs_root *root,
90f8d62e 3108 struct btrfs_path *path, int level, int log_removal)
5c680ed6 3109{
7bb86316 3110 u64 lower_gen;
5f39d397
CM
3111 struct extent_buffer *lower;
3112 struct extent_buffer *c;
925baedd 3113 struct extent_buffer *old;
5f39d397 3114 struct btrfs_disk_key lower_key;
5c680ed6
CM
3115
3116 BUG_ON(path->nodes[level]);
3117 BUG_ON(path->nodes[level-1] != root->node);
3118
7bb86316
CM
3119 lower = path->nodes[level-1];
3120 if (level == 1)
3121 btrfs_item_key(lower, &lower_key, 0);
3122 else
3123 btrfs_node_key(lower, &lower_key, 0);
3124
31840ae1 3125 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
5d4f98a2 3126 root->root_key.objectid, &lower_key,
5581a51a 3127 level, root->node->start, 0);
5f39d397
CM
3128 if (IS_ERR(c))
3129 return PTR_ERR(c);
925baedd 3130
f0486c68
YZ
3131 root_add_used(root, root->nodesize);
3132
5d4f98a2 3133 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
5f39d397
CM
3134 btrfs_set_header_nritems(c, 1);
3135 btrfs_set_header_level(c, level);
db94535d 3136 btrfs_set_header_bytenr(c, c->start);
5f39d397 3137 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3138 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3139 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397
CM
3140
3141 write_extent_buffer(c, root->fs_info->fsid,
3142 (unsigned long)btrfs_header_fsid(c),
3143 BTRFS_FSID_SIZE);
e17cade2
CM
3144
3145 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3146 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3147 BTRFS_UUID_SIZE);
3148
5f39d397 3149 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3150 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3151 lower_gen = btrfs_header_generation(lower);
31840ae1 3152 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3153
3154 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3155
5f39d397 3156 btrfs_mark_buffer_dirty(c);
d5719762 3157
925baedd 3158 old = root->node;
90f8d62e 3159 tree_mod_log_set_root_pointer(root, c, log_removal);
240f62c8 3160 rcu_assign_pointer(root->node, c);
925baedd
CM
3161
3162 /* the super has an extra ref to root->node */
3163 free_extent_buffer(old);
3164
0b86a832 3165 add_root_to_dirty_list(root);
5f39d397
CM
3166 extent_buffer_get(c);
3167 path->nodes[level] = c;
bd681513 3168 path->locks[level] = BTRFS_WRITE_LOCK;
5c680ed6
CM
3169 path->slots[level] = 0;
3170 return 0;
3171}
3172
74123bd7
CM
3173/*
3174 * worker function to insert a single pointer in a node.
3175 * the node should have enough room for the pointer already
97571fd0 3176 *
74123bd7
CM
3177 * slot and level indicate where you want the key to go, and
3178 * blocknr is the block the key points to.
3179 */
143bede5
JM
3180static void insert_ptr(struct btrfs_trans_handle *trans,
3181 struct btrfs_root *root, struct btrfs_path *path,
3182 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3183 int slot, int level)
74123bd7 3184{
5f39d397 3185 struct extent_buffer *lower;
74123bd7 3186 int nritems;
f3ea38da 3187 int ret;
5c680ed6
CM
3188
3189 BUG_ON(!path->nodes[level]);
f0486c68 3190 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3191 lower = path->nodes[level];
3192 nritems = btrfs_header_nritems(lower);
c293498b 3193 BUG_ON(slot > nritems);
143bede5 3194 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
74123bd7 3195 if (slot != nritems) {
c3e06965 3196 if (level)
f3ea38da
JS
3197 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3198 slot, nritems - slot);
5f39d397
CM
3199 memmove_extent_buffer(lower,
3200 btrfs_node_key_ptr_offset(slot + 1),
3201 btrfs_node_key_ptr_offset(slot),
d6025579 3202 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3203 }
c3e06965 3204 if (level) {
f3ea38da
JS
3205 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3206 MOD_LOG_KEY_ADD);
3207 BUG_ON(ret < 0);
3208 }
5f39d397 3209 btrfs_set_node_key(lower, key, slot);
db94535d 3210 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3211 WARN_ON(trans->transid == 0);
3212 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3213 btrfs_set_header_nritems(lower, nritems + 1);
3214 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3215}
3216
97571fd0
CM
3217/*
3218 * split the node at the specified level in path in two.
3219 * The path is corrected to point to the appropriate node after the split
3220 *
3221 * Before splitting this tries to make some room in the node by pushing
3222 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3223 *
3224 * returns 0 on success and < 0 on failure
97571fd0 3225 */
e02119d5
CM
3226static noinline int split_node(struct btrfs_trans_handle *trans,
3227 struct btrfs_root *root,
3228 struct btrfs_path *path, int level)
be0e5c09 3229{
5f39d397
CM
3230 struct extent_buffer *c;
3231 struct extent_buffer *split;
3232 struct btrfs_disk_key disk_key;
be0e5c09 3233 int mid;
5c680ed6 3234 int ret;
7518a238 3235 u32 c_nritems;
eb60ceac 3236
5f39d397 3237 c = path->nodes[level];
7bb86316 3238 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3239 if (c == root->node) {
d9abbf1c 3240 /*
90f8d62e
JS
3241 * trying to split the root, lets make a new one
3242 *
3243 * tree mod log: We pass 0 as log_removal parameter to
3244 * insert_new_root, because that root buffer will be kept as a
3245 * normal node. We are going to log removal of half of the
3246 * elements below with tree_mod_log_eb_copy. We're holding a
3247 * tree lock on the buffer, which is why we cannot race with
3248 * other tree_mod_log users.
d9abbf1c 3249 */
90f8d62e 3250 ret = insert_new_root(trans, root, path, level + 1, 0);
5c680ed6
CM
3251 if (ret)
3252 return ret;
b3612421 3253 } else {
e66f709b 3254 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3255 c = path->nodes[level];
3256 if (!ret && btrfs_header_nritems(c) <
c448acf0 3257 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
e66f709b 3258 return 0;
54aa1f4d
CM
3259 if (ret < 0)
3260 return ret;
be0e5c09 3261 }
e66f709b 3262
5f39d397 3263 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3264 mid = (c_nritems + 1) / 2;
3265 btrfs_node_key(c, &disk_key, mid);
7bb86316 3266
5d4f98a2 3267 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
31840ae1 3268 root->root_key.objectid,
5581a51a 3269 &disk_key, level, c->start, 0);
5f39d397
CM
3270 if (IS_ERR(split))
3271 return PTR_ERR(split);
3272
f0486c68
YZ
3273 root_add_used(root, root->nodesize);
3274
5d4f98a2 3275 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
5f39d397 3276 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3277 btrfs_set_header_bytenr(split, split->start);
5f39d397 3278 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3279 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
3280 btrfs_set_header_owner(split, root->root_key.objectid);
3281 write_extent_buffer(split, root->fs_info->fsid,
3282 (unsigned long)btrfs_header_fsid(split),
3283 BTRFS_FSID_SIZE);
e17cade2
CM
3284 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3285 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3286 BTRFS_UUID_SIZE);
54aa1f4d 3287
90f8d62e 3288 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
5f39d397
CM
3289 copy_extent_buffer(split, c,
3290 btrfs_node_key_ptr_offset(0),
3291 btrfs_node_key_ptr_offset(mid),
3292 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3293 btrfs_set_header_nritems(split, c_nritems - mid);
3294 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3295 ret = 0;
3296
5f39d397
CM
3297 btrfs_mark_buffer_dirty(c);
3298 btrfs_mark_buffer_dirty(split);
3299
143bede5 3300 insert_ptr(trans, root, path, &disk_key, split->start,
c3e06965 3301 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3302
5de08d7d 3303 if (path->slots[level] >= mid) {
5c680ed6 3304 path->slots[level] -= mid;
925baedd 3305 btrfs_tree_unlock(c);
5f39d397
CM
3306 free_extent_buffer(c);
3307 path->nodes[level] = split;
5c680ed6
CM
3308 path->slots[level + 1] += 1;
3309 } else {
925baedd 3310 btrfs_tree_unlock(split);
5f39d397 3311 free_extent_buffer(split);
be0e5c09 3312 }
aa5d6bed 3313 return ret;
be0e5c09
CM
3314}
3315
74123bd7
CM
3316/*
3317 * how many bytes are required to store the items in a leaf. start
3318 * and nr indicate which items in the leaf to check. This totals up the
3319 * space used both by the item structs and the item data
3320 */
5f39d397 3321static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3322{
41be1f3b
JB
3323 struct btrfs_item *start_item;
3324 struct btrfs_item *end_item;
3325 struct btrfs_map_token token;
be0e5c09 3326 int data_len;
5f39d397 3327 int nritems = btrfs_header_nritems(l);
d4dbff95 3328 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3329
3330 if (!nr)
3331 return 0;
41be1f3b
JB
3332 btrfs_init_map_token(&token);
3333 start_item = btrfs_item_nr(l, start);
3334 end_item = btrfs_item_nr(l, end);
3335 data_len = btrfs_token_item_offset(l, start_item, &token) +
3336 btrfs_token_item_size(l, start_item, &token);
3337 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3338 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3339 WARN_ON(data_len < 0);
be0e5c09
CM
3340 return data_len;
3341}
3342
d4dbff95
CM
3343/*
3344 * The space between the end of the leaf items and
3345 * the start of the leaf data. IOW, how much room
3346 * the leaf has left for both items and data
3347 */
d397712b 3348noinline int btrfs_leaf_free_space(struct btrfs_root *root,
e02119d5 3349 struct extent_buffer *leaf)
d4dbff95 3350{
5f39d397
CM
3351 int nritems = btrfs_header_nritems(leaf);
3352 int ret;
3353 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3354 if (ret < 0) {
d397712b
CM
3355 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3356 "used %d nritems %d\n",
ae2f5411 3357 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
5f39d397
CM
3358 leaf_space_used(leaf, 0, nritems), nritems);
3359 }
3360 return ret;
d4dbff95
CM
3361}
3362
99d8f83c
CM
3363/*
3364 * min slot controls the lowest index we're willing to push to the
3365 * right. We'll push up to and including min_slot, but no lower
3366 */
44871b1b
CM
3367static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3368 struct btrfs_root *root,
3369 struct btrfs_path *path,
3370 int data_size, int empty,
3371 struct extent_buffer *right,
99d8f83c
CM
3372 int free_space, u32 left_nritems,
3373 u32 min_slot)
00ec4c51 3374{
5f39d397 3375 struct extent_buffer *left = path->nodes[0];
44871b1b 3376 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3377 struct btrfs_map_token token;
5f39d397 3378 struct btrfs_disk_key disk_key;
00ec4c51 3379 int slot;
34a38218 3380 u32 i;
00ec4c51
CM
3381 int push_space = 0;
3382 int push_items = 0;
0783fcfc 3383 struct btrfs_item *item;
34a38218 3384 u32 nr;
7518a238 3385 u32 right_nritems;
5f39d397 3386 u32 data_end;
db94535d 3387 u32 this_item_size;
00ec4c51 3388
cfed81a0
CM
3389 btrfs_init_map_token(&token);
3390
34a38218
CM
3391 if (empty)
3392 nr = 0;
3393 else
99d8f83c 3394 nr = max_t(u32, 1, min_slot);
34a38218 3395
31840ae1 3396 if (path->slots[0] >= left_nritems)
87b29b20 3397 push_space += data_size;
31840ae1 3398
44871b1b 3399 slot = path->slots[1];
34a38218
CM
3400 i = left_nritems - 1;
3401 while (i >= nr) {
5f39d397 3402 item = btrfs_item_nr(left, i);
db94535d 3403
31840ae1
ZY
3404 if (!empty && push_items > 0) {
3405 if (path->slots[0] > i)
3406 break;
3407 if (path->slots[0] == i) {
3408 int space = btrfs_leaf_free_space(root, left);
3409 if (space + push_space * 2 > free_space)
3410 break;
3411 }
3412 }
3413
00ec4c51 3414 if (path->slots[0] == i)
87b29b20 3415 push_space += data_size;
db94535d 3416
db94535d
CM
3417 this_item_size = btrfs_item_size(left, item);
3418 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3419 break;
31840ae1 3420
00ec4c51 3421 push_items++;
db94535d 3422 push_space += this_item_size + sizeof(*item);
34a38218
CM
3423 if (i == 0)
3424 break;
3425 i--;
db94535d 3426 }
5f39d397 3427
925baedd
CM
3428 if (push_items == 0)
3429 goto out_unlock;
5f39d397 3430
6c1500f2 3431 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3432
00ec4c51 3433 /* push left to right */
5f39d397 3434 right_nritems = btrfs_header_nritems(right);
34a38218 3435
5f39d397 3436 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
123abc88 3437 push_space -= leaf_data_end(root, left);
5f39d397 3438
00ec4c51 3439 /* make room in the right data area */
5f39d397
CM
3440 data_end = leaf_data_end(root, right);
3441 memmove_extent_buffer(right,
3442 btrfs_leaf_data(right) + data_end - push_space,
3443 btrfs_leaf_data(right) + data_end,
3444 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3445
00ec4c51 3446 /* copy from the left data area */
5f39d397 3447 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
d6025579
CM
3448 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3449 btrfs_leaf_data(left) + leaf_data_end(root, left),
3450 push_space);
5f39d397
CM
3451
3452 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3453 btrfs_item_nr_offset(0),
3454 right_nritems * sizeof(struct btrfs_item));
3455
00ec4c51 3456 /* copy the items from left to right */
5f39d397
CM
3457 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3458 btrfs_item_nr_offset(left_nritems - push_items),
3459 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3460
3461 /* update the item pointers */
7518a238 3462 right_nritems += push_items;
5f39d397 3463 btrfs_set_header_nritems(right, right_nritems);
123abc88 3464 push_space = BTRFS_LEAF_DATA_SIZE(root);
7518a238 3465 for (i = 0; i < right_nritems; i++) {
5f39d397 3466 item = btrfs_item_nr(right, i);
cfed81a0
CM
3467 push_space -= btrfs_token_item_size(right, item, &token);
3468 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3469 }
3470
7518a238 3471 left_nritems -= push_items;
5f39d397 3472 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3473
34a38218
CM
3474 if (left_nritems)
3475 btrfs_mark_buffer_dirty(left);
f0486c68
YZ
3476 else
3477 clean_tree_block(trans, root, left);
3478
5f39d397 3479 btrfs_mark_buffer_dirty(right);
a429e513 3480
5f39d397
CM
3481 btrfs_item_key(right, &disk_key, 0);
3482 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3483 btrfs_mark_buffer_dirty(upper);
02217ed2 3484
00ec4c51 3485 /* then fixup the leaf pointer in the path */
7518a238
CM
3486 if (path->slots[0] >= left_nritems) {
3487 path->slots[0] -= left_nritems;
925baedd
CM
3488 if (btrfs_header_nritems(path->nodes[0]) == 0)
3489 clean_tree_block(trans, root, path->nodes[0]);
3490 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3491 free_extent_buffer(path->nodes[0]);
3492 path->nodes[0] = right;
00ec4c51
CM
3493 path->slots[1] += 1;
3494 } else {
925baedd 3495 btrfs_tree_unlock(right);
5f39d397 3496 free_extent_buffer(right);
00ec4c51
CM
3497 }
3498 return 0;
925baedd
CM
3499
3500out_unlock:
3501 btrfs_tree_unlock(right);
3502 free_extent_buffer(right);
3503 return 1;
00ec4c51 3504}
925baedd 3505
44871b1b
CM
3506/*
3507 * push some data in the path leaf to the right, trying to free up at
3508 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3509 *
3510 * returns 1 if the push failed because the other node didn't have enough
3511 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3512 *
3513 * this will push starting from min_slot to the end of the leaf. It won't
3514 * push any slot lower than min_slot
44871b1b
CM
3515 */
3516static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3517 *root, struct btrfs_path *path,
3518 int min_data_size, int data_size,
3519 int empty, u32 min_slot)
44871b1b
CM
3520{
3521 struct extent_buffer *left = path->nodes[0];
3522 struct extent_buffer *right;
3523 struct extent_buffer *upper;
3524 int slot;
3525 int free_space;
3526 u32 left_nritems;
3527 int ret;
3528
3529 if (!path->nodes[1])
3530 return 1;
3531
3532 slot = path->slots[1];
3533 upper = path->nodes[1];
3534 if (slot >= btrfs_header_nritems(upper) - 1)
3535 return 1;
3536
3537 btrfs_assert_tree_locked(path->nodes[1]);
3538
3539 right = read_node_slot(root, upper, slot + 1);
91ca338d
TI
3540 if (right == NULL)
3541 return 1;
3542
44871b1b
CM
3543 btrfs_tree_lock(right);
3544 btrfs_set_lock_blocking(right);
3545
3546 free_space = btrfs_leaf_free_space(root, right);
3547 if (free_space < data_size)
3548 goto out_unlock;
3549
3550 /* cow and double check */
3551 ret = btrfs_cow_block(trans, root, right, upper,
3552 slot + 1, &right);
3553 if (ret)
3554 goto out_unlock;
3555
3556 free_space = btrfs_leaf_free_space(root, right);
3557 if (free_space < data_size)
3558 goto out_unlock;
3559
3560 left_nritems = btrfs_header_nritems(left);
3561 if (left_nritems == 0)
3562 goto out_unlock;
3563
99d8f83c
CM
3564 return __push_leaf_right(trans, root, path, min_data_size, empty,
3565 right, free_space, left_nritems, min_slot);
44871b1b
CM
3566out_unlock:
3567 btrfs_tree_unlock(right);
3568 free_extent_buffer(right);
3569 return 1;
3570}
3571
74123bd7
CM
3572/*
3573 * push some data in the path leaf to the left, trying to free up at
3574 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3575 *
3576 * max_slot can put a limit on how far into the leaf we'll push items. The
3577 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3578 * items
74123bd7 3579 */
44871b1b
CM
3580static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3581 struct btrfs_root *root,
3582 struct btrfs_path *path, int data_size,
3583 int empty, struct extent_buffer *left,
99d8f83c
CM
3584 int free_space, u32 right_nritems,
3585 u32 max_slot)
be0e5c09 3586{
5f39d397
CM
3587 struct btrfs_disk_key disk_key;
3588 struct extent_buffer *right = path->nodes[0];
be0e5c09 3589 int i;
be0e5c09
CM
3590 int push_space = 0;
3591 int push_items = 0;
0783fcfc 3592 struct btrfs_item *item;
7518a238 3593 u32 old_left_nritems;
34a38218 3594 u32 nr;
aa5d6bed 3595 int ret = 0;
db94535d
CM
3596 u32 this_item_size;
3597 u32 old_left_item_size;
cfed81a0
CM
3598 struct btrfs_map_token token;
3599
3600 btrfs_init_map_token(&token);
be0e5c09 3601
34a38218 3602 if (empty)
99d8f83c 3603 nr = min(right_nritems, max_slot);
34a38218 3604 else
99d8f83c 3605 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3606
3607 for (i = 0; i < nr; i++) {
5f39d397 3608 item = btrfs_item_nr(right, i);
db94535d 3609
31840ae1
ZY
3610 if (!empty && push_items > 0) {
3611 if (path->slots[0] < i)
3612 break;
3613 if (path->slots[0] == i) {
3614 int space = btrfs_leaf_free_space(root, right);
3615 if (space + push_space * 2 > free_space)
3616 break;
3617 }
3618 }
3619
be0e5c09 3620 if (path->slots[0] == i)
87b29b20 3621 push_space += data_size;
db94535d
CM
3622
3623 this_item_size = btrfs_item_size(right, item);
3624 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3625 break;
db94535d 3626
be0e5c09 3627 push_items++;
db94535d
CM
3628 push_space += this_item_size + sizeof(*item);
3629 }
3630
be0e5c09 3631 if (push_items == 0) {
925baedd
CM
3632 ret = 1;
3633 goto out;
be0e5c09 3634 }
34a38218 3635 if (!empty && push_items == btrfs_header_nritems(right))
a429e513 3636 WARN_ON(1);
5f39d397 3637
be0e5c09 3638 /* push data from right to left */
5f39d397
CM
3639 copy_extent_buffer(left, right,
3640 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3641 btrfs_item_nr_offset(0),
3642 push_items * sizeof(struct btrfs_item));
3643
123abc88 3644 push_space = BTRFS_LEAF_DATA_SIZE(root) -
d397712b 3645 btrfs_item_offset_nr(right, push_items - 1);
5f39d397
CM
3646
3647 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
d6025579
CM
3648 leaf_data_end(root, left) - push_space,
3649 btrfs_leaf_data(right) +
5f39d397 3650 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3651 push_space);
5f39d397 3652 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3653 BUG_ON(old_left_nritems <= 0);
eb60ceac 3654
db94535d 3655 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3656 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3657 u32 ioff;
db94535d 3658
5f39d397 3659 item = btrfs_item_nr(left, i);
db94535d 3660
cfed81a0
CM
3661 ioff = btrfs_token_item_offset(left, item, &token);
3662 btrfs_set_token_item_offset(left, item,
3663 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3664 &token);
be0e5c09 3665 }
5f39d397 3666 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3667
3668 /* fixup right node */
31b1a2bd
JL
3669 if (push_items > right_nritems)
3670 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3671 right_nritems);
34a38218
CM
3672
3673 if (push_items < right_nritems) {
3674 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3675 leaf_data_end(root, right);
3676 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3677 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3678 btrfs_leaf_data(right) +
3679 leaf_data_end(root, right), push_space);
3680
3681 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3682 btrfs_item_nr_offset(push_items),
3683 (btrfs_header_nritems(right) - push_items) *
3684 sizeof(struct btrfs_item));
34a38218 3685 }
eef1c494
Y
3686 right_nritems -= push_items;
3687 btrfs_set_header_nritems(right, right_nritems);
123abc88 3688 push_space = BTRFS_LEAF_DATA_SIZE(root);
5f39d397
CM
3689 for (i = 0; i < right_nritems; i++) {
3690 item = btrfs_item_nr(right, i);
db94535d 3691
cfed81a0
CM
3692 push_space = push_space - btrfs_token_item_size(right,
3693 item, &token);
3694 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3695 }
eb60ceac 3696
5f39d397 3697 btrfs_mark_buffer_dirty(left);
34a38218
CM
3698 if (right_nritems)
3699 btrfs_mark_buffer_dirty(right);
f0486c68
YZ
3700 else
3701 clean_tree_block(trans, root, right);
098f59c2 3702
5f39d397 3703 btrfs_item_key(right, &disk_key, 0);
d6a0a126 3704 fixup_low_keys(root, path, &disk_key, 1);
be0e5c09
CM
3705
3706 /* then fixup the leaf pointer in the path */
3707 if (path->slots[0] < push_items) {
3708 path->slots[0] += old_left_nritems;
925baedd 3709 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3710 free_extent_buffer(path->nodes[0]);
3711 path->nodes[0] = left;
be0e5c09
CM
3712 path->slots[1] -= 1;
3713 } else {
925baedd 3714 btrfs_tree_unlock(left);
5f39d397 3715 free_extent_buffer(left);
be0e5c09
CM
3716 path->slots[0] -= push_items;
3717 }
eb60ceac 3718 BUG_ON(path->slots[0] < 0);
aa5d6bed 3719 return ret;
925baedd
CM
3720out:
3721 btrfs_tree_unlock(left);
3722 free_extent_buffer(left);
3723 return ret;
be0e5c09
CM
3724}
3725
44871b1b
CM
3726/*
3727 * push some data in the path leaf to the left, trying to free up at
3728 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3729 *
3730 * max_slot can put a limit on how far into the leaf we'll push items. The
3731 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3732 * items
44871b1b
CM
3733 */
3734static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3735 *root, struct btrfs_path *path, int min_data_size,
3736 int data_size, int empty, u32 max_slot)
44871b1b
CM
3737{
3738 struct extent_buffer *right = path->nodes[0];
3739 struct extent_buffer *left;
3740 int slot;
3741 int free_space;
3742 u32 right_nritems;
3743 int ret = 0;
3744
3745 slot = path->slots[1];
3746 if (slot == 0)
3747 return 1;
3748 if (!path->nodes[1])
3749 return 1;
3750
3751 right_nritems = btrfs_header_nritems(right);
3752 if (right_nritems == 0)
3753 return 1;
3754
3755 btrfs_assert_tree_locked(path->nodes[1]);
3756
3757 left = read_node_slot(root, path->nodes[1], slot - 1);
91ca338d
TI
3758 if (left == NULL)
3759 return 1;
3760
44871b1b
CM
3761 btrfs_tree_lock(left);
3762 btrfs_set_lock_blocking(left);
3763
3764 free_space = btrfs_leaf_free_space(root, left);
3765 if (free_space < data_size) {
3766 ret = 1;
3767 goto out;
3768 }
3769
3770 /* cow and double check */
3771 ret = btrfs_cow_block(trans, root, left,
3772 path->nodes[1], slot - 1, &left);
3773 if (ret) {
3774 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
3775 if (ret == -ENOSPC)
3776 ret = 1;
44871b1b
CM
3777 goto out;
3778 }
3779
3780 free_space = btrfs_leaf_free_space(root, left);
3781 if (free_space < data_size) {
3782 ret = 1;
3783 goto out;
3784 }
3785
99d8f83c
CM
3786 return __push_leaf_left(trans, root, path, min_data_size,
3787 empty, left, free_space, right_nritems,
3788 max_slot);
44871b1b
CM
3789out:
3790 btrfs_tree_unlock(left);
3791 free_extent_buffer(left);
3792 return ret;
3793}
3794
3795/*
3796 * split the path's leaf in two, making sure there is at least data_size
3797 * available for the resulting leaf level of the path.
44871b1b 3798 */
143bede5
JM
3799static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3800 struct btrfs_root *root,
3801 struct btrfs_path *path,
3802 struct extent_buffer *l,
3803 struct extent_buffer *right,
3804 int slot, int mid, int nritems)
44871b1b
CM
3805{
3806 int data_copy_size;
3807 int rt_data_off;
3808 int i;
44871b1b 3809 struct btrfs_disk_key disk_key;
cfed81a0
CM
3810 struct btrfs_map_token token;
3811
3812 btrfs_init_map_token(&token);
44871b1b
CM
3813
3814 nritems = nritems - mid;
3815 btrfs_set_header_nritems(right, nritems);
3816 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3817
3818 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3819 btrfs_item_nr_offset(mid),
3820 nritems * sizeof(struct btrfs_item));
3821
3822 copy_extent_buffer(right, l,
3823 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3824 data_copy_size, btrfs_leaf_data(l) +
3825 leaf_data_end(root, l), data_copy_size);
3826
3827 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3828 btrfs_item_end_nr(l, mid);
3829
3830 for (i = 0; i < nritems; i++) {
3831 struct btrfs_item *item = btrfs_item_nr(right, i);
3832 u32 ioff;
3833
cfed81a0
CM
3834 ioff = btrfs_token_item_offset(right, item, &token);
3835 btrfs_set_token_item_offset(right, item,
3836 ioff + rt_data_off, &token);
44871b1b
CM
3837 }
3838
44871b1b 3839 btrfs_set_header_nritems(l, mid);
44871b1b 3840 btrfs_item_key(right, &disk_key, 0);
143bede5 3841 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 3842 path->slots[1] + 1, 1);
44871b1b
CM
3843
3844 btrfs_mark_buffer_dirty(right);
3845 btrfs_mark_buffer_dirty(l);
3846 BUG_ON(path->slots[0] != slot);
3847
44871b1b
CM
3848 if (mid <= slot) {
3849 btrfs_tree_unlock(path->nodes[0]);
3850 free_extent_buffer(path->nodes[0]);
3851 path->nodes[0] = right;
3852 path->slots[0] -= mid;
3853 path->slots[1] += 1;
3854 } else {
3855 btrfs_tree_unlock(right);
3856 free_extent_buffer(right);
3857 }
3858
3859 BUG_ON(path->slots[0] < 0);
44871b1b
CM
3860}
3861
99d8f83c
CM
3862/*
3863 * double splits happen when we need to insert a big item in the middle
3864 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3865 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3866 * A B C
3867 *
3868 * We avoid this by trying to push the items on either side of our target
3869 * into the adjacent leaves. If all goes well we can avoid the double split
3870 * completely.
3871 */
3872static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3873 struct btrfs_root *root,
3874 struct btrfs_path *path,
3875 int data_size)
3876{
3877 int ret;
3878 int progress = 0;
3879 int slot;
3880 u32 nritems;
3881
3882 slot = path->slots[0];
3883
3884 /*
3885 * try to push all the items after our slot into the
3886 * right leaf
3887 */
3888 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3889 if (ret < 0)
3890 return ret;
3891
3892 if (ret == 0)
3893 progress++;
3894
3895 nritems = btrfs_header_nritems(path->nodes[0]);
3896 /*
3897 * our goal is to get our slot at the start or end of a leaf. If
3898 * we've done so we're done
3899 */
3900 if (path->slots[0] == 0 || path->slots[0] == nritems)
3901 return 0;
3902
3903 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3904 return 0;
3905
3906 /* try to push all the items before our slot into the next leaf */
3907 slot = path->slots[0];
3908 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3909 if (ret < 0)
3910 return ret;
3911
3912 if (ret == 0)
3913 progress++;
3914
3915 if (progress)
3916 return 0;
3917 return 1;
3918}
3919
74123bd7
CM
3920/*
3921 * split the path's leaf in two, making sure there is at least data_size
3922 * available for the resulting leaf level of the path.
aa5d6bed
CM
3923 *
3924 * returns 0 if all went well and < 0 on failure.
74123bd7 3925 */
e02119d5
CM
3926static noinline int split_leaf(struct btrfs_trans_handle *trans,
3927 struct btrfs_root *root,
3928 struct btrfs_key *ins_key,
3929 struct btrfs_path *path, int data_size,
3930 int extend)
be0e5c09 3931{
5d4f98a2 3932 struct btrfs_disk_key disk_key;
5f39d397 3933 struct extent_buffer *l;
7518a238 3934 u32 nritems;
eb60ceac
CM
3935 int mid;
3936 int slot;
5f39d397 3937 struct extent_buffer *right;
d4dbff95 3938 int ret = 0;
aa5d6bed 3939 int wret;
5d4f98a2 3940 int split;
cc0c5538 3941 int num_doubles = 0;
99d8f83c 3942 int tried_avoid_double = 0;
aa5d6bed 3943
a5719521
YZ
3944 l = path->nodes[0];
3945 slot = path->slots[0];
3946 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3947 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3948 return -EOVERFLOW;
3949
40689478 3950 /* first try to make some room by pushing left and right */
99d8f83c
CM
3951 if (data_size) {
3952 wret = push_leaf_right(trans, root, path, data_size,
3953 data_size, 0, 0);
d397712b 3954 if (wret < 0)
eaee50e8 3955 return wret;
3685f791 3956 if (wret) {
99d8f83c
CM
3957 wret = push_leaf_left(trans, root, path, data_size,
3958 data_size, 0, (u32)-1);
3685f791
CM
3959 if (wret < 0)
3960 return wret;
3961 }
3962 l = path->nodes[0];
aa5d6bed 3963
3685f791 3964 /* did the pushes work? */
87b29b20 3965 if (btrfs_leaf_free_space(root, l) >= data_size)
3685f791 3966 return 0;
3326d1b0 3967 }
aa5d6bed 3968
5c680ed6 3969 if (!path->nodes[1]) {
90f8d62e 3970 ret = insert_new_root(trans, root, path, 1, 1);
5c680ed6
CM
3971 if (ret)
3972 return ret;
3973 }
cc0c5538 3974again:
5d4f98a2 3975 split = 1;
cc0c5538 3976 l = path->nodes[0];
eb60ceac 3977 slot = path->slots[0];
5f39d397 3978 nritems = btrfs_header_nritems(l);
d397712b 3979 mid = (nritems + 1) / 2;
54aa1f4d 3980
5d4f98a2
YZ
3981 if (mid <= slot) {
3982 if (nritems == 1 ||
3983 leaf_space_used(l, mid, nritems - mid) + data_size >
3984 BTRFS_LEAF_DATA_SIZE(root)) {
3985 if (slot >= nritems) {
3986 split = 0;
3987 } else {
3988 mid = slot;
3989 if (mid != nritems &&
3990 leaf_space_used(l, mid, nritems - mid) +
3991 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3992 if (data_size && !tried_avoid_double)
3993 goto push_for_double;
5d4f98a2
YZ
3994 split = 2;
3995 }
3996 }
3997 }
3998 } else {
3999 if (leaf_space_used(l, 0, mid) + data_size >
4000 BTRFS_LEAF_DATA_SIZE(root)) {
4001 if (!extend && data_size && slot == 0) {
4002 split = 0;
4003 } else if ((extend || !data_size) && slot == 0) {
4004 mid = 1;
4005 } else {
4006 mid = slot;
4007 if (mid != nritems &&
4008 leaf_space_used(l, mid, nritems - mid) +
4009 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
4010 if (data_size && !tried_avoid_double)
4011 goto push_for_double;
5d4f98a2
YZ
4012 split = 2 ;
4013 }
4014 }
4015 }
4016 }
4017
4018 if (split == 0)
4019 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4020 else
4021 btrfs_item_key(l, &disk_key, mid);
4022
4023 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
31840ae1 4024 root->root_key.objectid,
5581a51a 4025 &disk_key, 0, l->start, 0);
f0486c68 4026 if (IS_ERR(right))
5f39d397 4027 return PTR_ERR(right);
f0486c68
YZ
4028
4029 root_add_used(root, root->leafsize);
5f39d397
CM
4030
4031 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
db94535d 4032 btrfs_set_header_bytenr(right, right->start);
5f39d397 4033 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4034 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4035 btrfs_set_header_owner(right, root->root_key.objectid);
4036 btrfs_set_header_level(right, 0);
4037 write_extent_buffer(right, root->fs_info->fsid,
4038 (unsigned long)btrfs_header_fsid(right),
4039 BTRFS_FSID_SIZE);
e17cade2
CM
4040
4041 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4042 (unsigned long)btrfs_header_chunk_tree_uuid(right),
4043 BTRFS_UUID_SIZE);
44871b1b 4044
5d4f98a2
YZ
4045 if (split == 0) {
4046 if (mid <= slot) {
4047 btrfs_set_header_nritems(right, 0);
143bede5 4048 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4049 path->slots[1] + 1, 1);
5d4f98a2
YZ
4050 btrfs_tree_unlock(path->nodes[0]);
4051 free_extent_buffer(path->nodes[0]);
4052 path->nodes[0] = right;
4053 path->slots[0] = 0;
4054 path->slots[1] += 1;
4055 } else {
4056 btrfs_set_header_nritems(right, 0);
143bede5 4057 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4058 path->slots[1], 1);
5d4f98a2
YZ
4059 btrfs_tree_unlock(path->nodes[0]);
4060 free_extent_buffer(path->nodes[0]);
4061 path->nodes[0] = right;
4062 path->slots[0] = 0;
143bede5 4063 if (path->slots[1] == 0)
d6a0a126 4064 fixup_low_keys(root, path, &disk_key, 1);
d4dbff95 4065 }
5d4f98a2
YZ
4066 btrfs_mark_buffer_dirty(right);
4067 return ret;
d4dbff95 4068 }
74123bd7 4069
143bede5 4070 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
31840ae1 4071
5d4f98a2 4072 if (split == 2) {
cc0c5538
CM
4073 BUG_ON(num_doubles != 0);
4074 num_doubles++;
4075 goto again;
a429e513 4076 }
44871b1b 4077
143bede5 4078 return 0;
99d8f83c
CM
4079
4080push_for_double:
4081 push_for_double_split(trans, root, path, data_size);
4082 tried_avoid_double = 1;
4083 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4084 return 0;
4085 goto again;
be0e5c09
CM
4086}
4087
ad48fd75
YZ
4088static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4089 struct btrfs_root *root,
4090 struct btrfs_path *path, int ins_len)
459931ec 4091{
ad48fd75 4092 struct btrfs_key key;
459931ec 4093 struct extent_buffer *leaf;
ad48fd75
YZ
4094 struct btrfs_file_extent_item *fi;
4095 u64 extent_len = 0;
4096 u32 item_size;
4097 int ret;
459931ec
CM
4098
4099 leaf = path->nodes[0];
ad48fd75
YZ
4100 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4101
4102 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4103 key.type != BTRFS_EXTENT_CSUM_KEY);
4104
4105 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4106 return 0;
459931ec
CM
4107
4108 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4109 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4110 fi = btrfs_item_ptr(leaf, path->slots[0],
4111 struct btrfs_file_extent_item);
4112 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4113 }
b3b4aa74 4114 btrfs_release_path(path);
459931ec 4115
459931ec 4116 path->keep_locks = 1;
ad48fd75
YZ
4117 path->search_for_split = 1;
4118 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4119 path->search_for_split = 0;
ad48fd75
YZ
4120 if (ret < 0)
4121 goto err;
459931ec 4122
ad48fd75
YZ
4123 ret = -EAGAIN;
4124 leaf = path->nodes[0];
459931ec 4125 /* if our item isn't there or got smaller, return now */
ad48fd75
YZ
4126 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4127 goto err;
4128
109f6aef
CM
4129 /* the leaf has changed, it now has room. return now */
4130 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4131 goto err;
4132
ad48fd75
YZ
4133 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4134 fi = btrfs_item_ptr(leaf, path->slots[0],
4135 struct btrfs_file_extent_item);
4136 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4137 goto err;
459931ec
CM
4138 }
4139
b9473439 4140 btrfs_set_path_blocking(path);
ad48fd75 4141 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4142 if (ret)
4143 goto err;
459931ec 4144
ad48fd75 4145 path->keep_locks = 0;
b9473439 4146 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4147 return 0;
4148err:
4149 path->keep_locks = 0;
4150 return ret;
4151}
4152
4153static noinline int split_item(struct btrfs_trans_handle *trans,
4154 struct btrfs_root *root,
4155 struct btrfs_path *path,
4156 struct btrfs_key *new_key,
4157 unsigned long split_offset)
4158{
4159 struct extent_buffer *leaf;
4160 struct btrfs_item *item;
4161 struct btrfs_item *new_item;
4162 int slot;
4163 char *buf;
4164 u32 nritems;
4165 u32 item_size;
4166 u32 orig_offset;
4167 struct btrfs_disk_key disk_key;
4168
b9473439
CM
4169 leaf = path->nodes[0];
4170 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4171
b4ce94de
CM
4172 btrfs_set_path_blocking(path);
4173
459931ec
CM
4174 item = btrfs_item_nr(leaf, path->slots[0]);
4175 orig_offset = btrfs_item_offset(leaf, item);
4176 item_size = btrfs_item_size(leaf, item);
4177
459931ec 4178 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4179 if (!buf)
4180 return -ENOMEM;
4181
459931ec
CM
4182 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4183 path->slots[0]), item_size);
459931ec 4184
ad48fd75 4185 slot = path->slots[0] + 1;
459931ec 4186 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4187 if (slot != nritems) {
4188 /* shift the items */
4189 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4190 btrfs_item_nr_offset(slot),
4191 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4192 }
4193
4194 btrfs_cpu_key_to_disk(&disk_key, new_key);
4195 btrfs_set_item_key(leaf, &disk_key, slot);
4196
4197 new_item = btrfs_item_nr(leaf, slot);
4198
4199 btrfs_set_item_offset(leaf, new_item, orig_offset);
4200 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4201
4202 btrfs_set_item_offset(leaf, item,
4203 orig_offset + item_size - split_offset);
4204 btrfs_set_item_size(leaf, item, split_offset);
4205
4206 btrfs_set_header_nritems(leaf, nritems + 1);
4207
4208 /* write the data for the start of the original item */
4209 write_extent_buffer(leaf, buf,
4210 btrfs_item_ptr_offset(leaf, path->slots[0]),
4211 split_offset);
4212
4213 /* write the data for the new item */
4214 write_extent_buffer(leaf, buf + split_offset,
4215 btrfs_item_ptr_offset(leaf, slot),
4216 item_size - split_offset);
4217 btrfs_mark_buffer_dirty(leaf);
4218
ad48fd75 4219 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
459931ec 4220 kfree(buf);
ad48fd75
YZ
4221 return 0;
4222}
4223
4224/*
4225 * This function splits a single item into two items,
4226 * giving 'new_key' to the new item and splitting the
4227 * old one at split_offset (from the start of the item).
4228 *
4229 * The path may be released by this operation. After
4230 * the split, the path is pointing to the old item. The
4231 * new item is going to be in the same node as the old one.
4232 *
4233 * Note, the item being split must be smaller enough to live alone on
4234 * a tree block with room for one extra struct btrfs_item
4235 *
4236 * This allows us to split the item in place, keeping a lock on the
4237 * leaf the entire time.
4238 */
4239int btrfs_split_item(struct btrfs_trans_handle *trans,
4240 struct btrfs_root *root,
4241 struct btrfs_path *path,
4242 struct btrfs_key *new_key,
4243 unsigned long split_offset)
4244{
4245 int ret;
4246 ret = setup_leaf_for_split(trans, root, path,
4247 sizeof(struct btrfs_item));
4248 if (ret)
4249 return ret;
4250
4251 ret = split_item(trans, root, path, new_key, split_offset);
459931ec
CM
4252 return ret;
4253}
4254
ad48fd75
YZ
4255/*
4256 * This function duplicate a item, giving 'new_key' to the new item.
4257 * It guarantees both items live in the same tree leaf and the new item
4258 * is contiguous with the original item.
4259 *
4260 * This allows us to split file extent in place, keeping a lock on the
4261 * leaf the entire time.
4262 */
4263int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4264 struct btrfs_root *root,
4265 struct btrfs_path *path,
4266 struct btrfs_key *new_key)
4267{
4268 struct extent_buffer *leaf;
4269 int ret;
4270 u32 item_size;
4271
4272 leaf = path->nodes[0];
4273 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4274 ret = setup_leaf_for_split(trans, root, path,
4275 item_size + sizeof(struct btrfs_item));
4276 if (ret)
4277 return ret;
4278
4279 path->slots[0]++;
afe5fea7 4280 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4281 item_size, item_size +
4282 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4283 leaf = path->nodes[0];
4284 memcpy_extent_buffer(leaf,
4285 btrfs_item_ptr_offset(leaf, path->slots[0]),
4286 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4287 item_size);
4288 return 0;
4289}
4290
d352ac68
CM
4291/*
4292 * make the item pointed to by the path smaller. new_size indicates
4293 * how small to make it, and from_end tells us if we just chop bytes
4294 * off the end of the item or if we shift the item to chop bytes off
4295 * the front.
4296 */
afe5fea7 4297void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
143bede5 4298 u32 new_size, int from_end)
b18c6685 4299{
b18c6685 4300 int slot;
5f39d397
CM
4301 struct extent_buffer *leaf;
4302 struct btrfs_item *item;
b18c6685
CM
4303 u32 nritems;
4304 unsigned int data_end;
4305 unsigned int old_data_start;
4306 unsigned int old_size;
4307 unsigned int size_diff;
4308 int i;
cfed81a0
CM
4309 struct btrfs_map_token token;
4310
4311 btrfs_init_map_token(&token);
b18c6685 4312
5f39d397 4313 leaf = path->nodes[0];
179e29e4
CM
4314 slot = path->slots[0];
4315
4316 old_size = btrfs_item_size_nr(leaf, slot);
4317 if (old_size == new_size)
143bede5 4318 return;
b18c6685 4319
5f39d397 4320 nritems = btrfs_header_nritems(leaf);
b18c6685
CM
4321 data_end = leaf_data_end(root, leaf);
4322
5f39d397 4323 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4324
b18c6685
CM
4325 size_diff = old_size - new_size;
4326
4327 BUG_ON(slot < 0);
4328 BUG_ON(slot >= nritems);
4329
4330 /*
4331 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4332 */
4333 /* first correct the data pointers */
4334 for (i = slot; i < nritems; i++) {
5f39d397
CM
4335 u32 ioff;
4336 item = btrfs_item_nr(leaf, i);
db94535d 4337
cfed81a0
CM
4338 ioff = btrfs_token_item_offset(leaf, item, &token);
4339 btrfs_set_token_item_offset(leaf, item,
4340 ioff + size_diff, &token);
b18c6685 4341 }
db94535d 4342
b18c6685 4343 /* shift the data */
179e29e4
CM
4344 if (from_end) {
4345 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4346 data_end + size_diff, btrfs_leaf_data(leaf) +
4347 data_end, old_data_start + new_size - data_end);
4348 } else {
4349 struct btrfs_disk_key disk_key;
4350 u64 offset;
4351
4352 btrfs_item_key(leaf, &disk_key, slot);
4353
4354 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4355 unsigned long ptr;
4356 struct btrfs_file_extent_item *fi;
4357
4358 fi = btrfs_item_ptr(leaf, slot,
4359 struct btrfs_file_extent_item);
4360 fi = (struct btrfs_file_extent_item *)(
4361 (unsigned long)fi - size_diff);
4362
4363 if (btrfs_file_extent_type(leaf, fi) ==
4364 BTRFS_FILE_EXTENT_INLINE) {
4365 ptr = btrfs_item_ptr_offset(leaf, slot);
4366 memmove_extent_buffer(leaf, ptr,
d397712b
CM
4367 (unsigned long)fi,
4368 offsetof(struct btrfs_file_extent_item,
179e29e4
CM
4369 disk_bytenr));
4370 }
4371 }
4372
4373 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4374 data_end + size_diff, btrfs_leaf_data(leaf) +
4375 data_end, old_data_start - data_end);
4376
4377 offset = btrfs_disk_key_offset(&disk_key);
4378 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4379 btrfs_set_item_key(leaf, &disk_key, slot);
4380 if (slot == 0)
d6a0a126 4381 fixup_low_keys(root, path, &disk_key, 1);
179e29e4 4382 }
5f39d397
CM
4383
4384 item = btrfs_item_nr(leaf, slot);
4385 btrfs_set_item_size(leaf, item, new_size);
4386 btrfs_mark_buffer_dirty(leaf);
b18c6685 4387
5f39d397
CM
4388 if (btrfs_leaf_free_space(root, leaf) < 0) {
4389 btrfs_print_leaf(root, leaf);
b18c6685 4390 BUG();
5f39d397 4391 }
b18c6685
CM
4392}
4393
d352ac68
CM
4394/*
4395 * make the item pointed to by the path bigger, data_size is the new size.
4396 */
4b90c680 4397void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
143bede5 4398 u32 data_size)
6567e837 4399{
6567e837 4400 int slot;
5f39d397
CM
4401 struct extent_buffer *leaf;
4402 struct btrfs_item *item;
6567e837
CM
4403 u32 nritems;
4404 unsigned int data_end;
4405 unsigned int old_data;
4406 unsigned int old_size;
4407 int i;
cfed81a0
CM
4408 struct btrfs_map_token token;
4409
4410 btrfs_init_map_token(&token);
6567e837 4411
5f39d397 4412 leaf = path->nodes[0];
6567e837 4413
5f39d397 4414 nritems = btrfs_header_nritems(leaf);
6567e837
CM
4415 data_end = leaf_data_end(root, leaf);
4416
5f39d397
CM
4417 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4418 btrfs_print_leaf(root, leaf);
6567e837 4419 BUG();
5f39d397 4420 }
6567e837 4421 slot = path->slots[0];
5f39d397 4422 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4423
4424 BUG_ON(slot < 0);
3326d1b0
CM
4425 if (slot >= nritems) {
4426 btrfs_print_leaf(root, leaf);
d397712b
CM
4427 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4428 slot, nritems);
3326d1b0
CM
4429 BUG_ON(1);
4430 }
6567e837
CM
4431
4432 /*
4433 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4434 */
4435 /* first correct the data pointers */
4436 for (i = slot; i < nritems; i++) {
5f39d397
CM
4437 u32 ioff;
4438 item = btrfs_item_nr(leaf, i);
db94535d 4439
cfed81a0
CM
4440 ioff = btrfs_token_item_offset(leaf, item, &token);
4441 btrfs_set_token_item_offset(leaf, item,
4442 ioff - data_size, &token);
6567e837 4443 }
5f39d397 4444
6567e837 4445 /* shift the data */
5f39d397 4446 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
6567e837
CM
4447 data_end - data_size, btrfs_leaf_data(leaf) +
4448 data_end, old_data - data_end);
5f39d397 4449
6567e837 4450 data_end = old_data;
5f39d397
CM
4451 old_size = btrfs_item_size_nr(leaf, slot);
4452 item = btrfs_item_nr(leaf, slot);
4453 btrfs_set_item_size(leaf, item, old_size + data_size);
4454 btrfs_mark_buffer_dirty(leaf);
6567e837 4455
5f39d397
CM
4456 if (btrfs_leaf_free_space(root, leaf) < 0) {
4457 btrfs_print_leaf(root, leaf);
6567e837 4458 BUG();
5f39d397 4459 }
6567e837
CM
4460}
4461
74123bd7 4462/*
44871b1b
CM
4463 * this is a helper for btrfs_insert_empty_items, the main goal here is
4464 * to save stack depth by doing the bulk of the work in a function
4465 * that doesn't call btrfs_search_slot
74123bd7 4466 */
afe5fea7 4467void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
143bede5
JM
4468 struct btrfs_key *cpu_key, u32 *data_size,
4469 u32 total_data, u32 total_size, int nr)
be0e5c09 4470{
5f39d397 4471 struct btrfs_item *item;
9c58309d 4472 int i;
7518a238 4473 u32 nritems;
be0e5c09 4474 unsigned int data_end;
e2fa7227 4475 struct btrfs_disk_key disk_key;
44871b1b
CM
4476 struct extent_buffer *leaf;
4477 int slot;
cfed81a0
CM
4478 struct btrfs_map_token token;
4479
4480 btrfs_init_map_token(&token);
e2fa7227 4481
5f39d397 4482 leaf = path->nodes[0];
44871b1b 4483 slot = path->slots[0];
74123bd7 4484
5f39d397 4485 nritems = btrfs_header_nritems(leaf);
123abc88 4486 data_end = leaf_data_end(root, leaf);
eb60ceac 4487
f25956cc 4488 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3326d1b0 4489 btrfs_print_leaf(root, leaf);
d397712b 4490 printk(KERN_CRIT "not enough freespace need %u have %d\n",
9c58309d 4491 total_size, btrfs_leaf_free_space(root, leaf));
be0e5c09 4492 BUG();
d4dbff95 4493 }
5f39d397 4494
be0e5c09 4495 if (slot != nritems) {
5f39d397 4496 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4497
5f39d397
CM
4498 if (old_data < data_end) {
4499 btrfs_print_leaf(root, leaf);
d397712b 4500 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
5f39d397
CM
4501 slot, old_data, data_end);
4502 BUG_ON(1);
4503 }
be0e5c09
CM
4504 /*
4505 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4506 */
4507 /* first correct the data pointers */
0783fcfc 4508 for (i = slot; i < nritems; i++) {
5f39d397 4509 u32 ioff;
db94535d 4510
5f39d397 4511 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4512 ioff = btrfs_token_item_offset(leaf, item, &token);
4513 btrfs_set_token_item_offset(leaf, item,
4514 ioff - total_data, &token);
0783fcfc 4515 }
be0e5c09 4516 /* shift the items */
9c58309d 4517 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4518 btrfs_item_nr_offset(slot),
d6025579 4519 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4520
4521 /* shift the data */
5f39d397 4522 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
9c58309d 4523 data_end - total_data, btrfs_leaf_data(leaf) +
d6025579 4524 data_end, old_data - data_end);
be0e5c09
CM
4525 data_end = old_data;
4526 }
5f39d397 4527
62e2749e 4528 /* setup the item for the new data */
9c58309d
CM
4529 for (i = 0; i < nr; i++) {
4530 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4531 btrfs_set_item_key(leaf, &disk_key, slot + i);
4532 item = btrfs_item_nr(leaf, slot + i);
cfed81a0
CM
4533 btrfs_set_token_item_offset(leaf, item,
4534 data_end - data_size[i], &token);
9c58309d 4535 data_end -= data_size[i];
cfed81a0 4536 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4537 }
44871b1b 4538
9c58309d 4539 btrfs_set_header_nritems(leaf, nritems + nr);
aa5d6bed 4540
5a01a2e3
CM
4541 if (slot == 0) {
4542 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
d6a0a126 4543 fixup_low_keys(root, path, &disk_key, 1);
5a01a2e3 4544 }
b9473439
CM
4545 btrfs_unlock_up_safe(path, 1);
4546 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4547
5f39d397
CM
4548 if (btrfs_leaf_free_space(root, leaf) < 0) {
4549 btrfs_print_leaf(root, leaf);
be0e5c09 4550 BUG();
5f39d397 4551 }
44871b1b
CM
4552}
4553
4554/*
4555 * Given a key and some data, insert items into the tree.
4556 * This does all the path init required, making room in the tree if needed.
4557 */
4558int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4559 struct btrfs_root *root,
4560 struct btrfs_path *path,
4561 struct btrfs_key *cpu_key, u32 *data_size,
4562 int nr)
4563{
44871b1b
CM
4564 int ret = 0;
4565 int slot;
4566 int i;
4567 u32 total_size = 0;
4568 u32 total_data = 0;
4569
4570 for (i = 0; i < nr; i++)
4571 total_data += data_size[i];
4572
4573 total_size = total_data + (nr * sizeof(struct btrfs_item));
4574 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4575 if (ret == 0)
4576 return -EEXIST;
4577 if (ret < 0)
143bede5 4578 return ret;
44871b1b 4579
44871b1b
CM
4580 slot = path->slots[0];
4581 BUG_ON(slot < 0);
4582
afe5fea7 4583 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4584 total_data, total_size, nr);
143bede5 4585 return 0;
62e2749e
CM
4586}
4587
4588/*
4589 * Given a key and some data, insert an item into the tree.
4590 * This does all the path init required, making room in the tree if needed.
4591 */
e089f05c
CM
4592int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4593 *root, struct btrfs_key *cpu_key, void *data, u32
4594 data_size)
62e2749e
CM
4595{
4596 int ret = 0;
2c90e5d6 4597 struct btrfs_path *path;
5f39d397
CM
4598 struct extent_buffer *leaf;
4599 unsigned long ptr;
62e2749e 4600
2c90e5d6 4601 path = btrfs_alloc_path();
db5b493a
TI
4602 if (!path)
4603 return -ENOMEM;
2c90e5d6 4604 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4605 if (!ret) {
5f39d397
CM
4606 leaf = path->nodes[0];
4607 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4608 write_extent_buffer(leaf, data, ptr, data_size);
4609 btrfs_mark_buffer_dirty(leaf);
62e2749e 4610 }
2c90e5d6 4611 btrfs_free_path(path);
aa5d6bed 4612 return ret;
be0e5c09
CM
4613}
4614
74123bd7 4615/*
5de08d7d 4616 * delete the pointer from a given node.
74123bd7 4617 *
d352ac68
CM
4618 * the tree should have been previously balanced so the deletion does not
4619 * empty a node.
74123bd7 4620 */
afe5fea7
TI
4621static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4622 int level, int slot)
be0e5c09 4623{
5f39d397 4624 struct extent_buffer *parent = path->nodes[level];
7518a238 4625 u32 nritems;
f3ea38da 4626 int ret;
be0e5c09 4627
5f39d397 4628 nritems = btrfs_header_nritems(parent);
d397712b 4629 if (slot != nritems - 1) {
0e411ece 4630 if (level)
f3ea38da
JS
4631 tree_mod_log_eb_move(root->fs_info, parent, slot,
4632 slot + 1, nritems - slot - 1);
5f39d397
CM
4633 memmove_extent_buffer(parent,
4634 btrfs_node_key_ptr_offset(slot),
4635 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4636 sizeof(struct btrfs_key_ptr) *
4637 (nritems - slot - 1));
57ba86c0
CM
4638 } else if (level) {
4639 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4640 MOD_LOG_KEY_REMOVE);
4641 BUG_ON(ret < 0);
bb803951 4642 }
f3ea38da 4643
7518a238 4644 nritems--;
5f39d397 4645 btrfs_set_header_nritems(parent, nritems);
7518a238 4646 if (nritems == 0 && parent == root->node) {
5f39d397 4647 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4648 /* just turn the root into a leaf and break */
5f39d397 4649 btrfs_set_header_level(root->node, 0);
bb803951 4650 } else if (slot == 0) {
5f39d397
CM
4651 struct btrfs_disk_key disk_key;
4652
4653 btrfs_node_key(parent, &disk_key, 0);
d6a0a126 4654 fixup_low_keys(root, path, &disk_key, level + 1);
be0e5c09 4655 }
d6025579 4656 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4657}
4658
323ac95b
CM
4659/*
4660 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4661 * path->nodes[1].
323ac95b
CM
4662 *
4663 * This deletes the pointer in path->nodes[1] and frees the leaf
4664 * block extent. zero is returned if it all worked out, < 0 otherwise.
4665 *
4666 * The path must have already been setup for deleting the leaf, including
4667 * all the proper balancing. path->nodes[1] must be locked.
4668 */
143bede5
JM
4669static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4670 struct btrfs_root *root,
4671 struct btrfs_path *path,
4672 struct extent_buffer *leaf)
323ac95b 4673{
5d4f98a2 4674 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4675 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4676
4d081c41
CM
4677 /*
4678 * btrfs_free_extent is expensive, we want to make sure we
4679 * aren't holding any locks when we call it
4680 */
4681 btrfs_unlock_up_safe(path, 0);
4682
f0486c68
YZ
4683 root_sub_used(root, leaf->len);
4684
3083ee2e 4685 extent_buffer_get(leaf);
5581a51a 4686 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4687 free_extent_buffer_stale(leaf);
323ac95b 4688}
74123bd7
CM
4689/*
4690 * delete the item at the leaf level in path. If that empties
4691 * the leaf, remove it from the tree
4692 */
85e21bac
CM
4693int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4694 struct btrfs_path *path, int slot, int nr)
be0e5c09 4695{
5f39d397
CM
4696 struct extent_buffer *leaf;
4697 struct btrfs_item *item;
85e21bac
CM
4698 int last_off;
4699 int dsize = 0;
aa5d6bed
CM
4700 int ret = 0;
4701 int wret;
85e21bac 4702 int i;
7518a238 4703 u32 nritems;
cfed81a0
CM
4704 struct btrfs_map_token token;
4705
4706 btrfs_init_map_token(&token);
be0e5c09 4707
5f39d397 4708 leaf = path->nodes[0];
85e21bac
CM
4709 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4710
4711 for (i = 0; i < nr; i++)
4712 dsize += btrfs_item_size_nr(leaf, slot + i);
4713
5f39d397 4714 nritems = btrfs_header_nritems(leaf);
be0e5c09 4715
85e21bac 4716 if (slot + nr != nritems) {
123abc88 4717 int data_end = leaf_data_end(root, leaf);
5f39d397
CM
4718
4719 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
d6025579
CM
4720 data_end + dsize,
4721 btrfs_leaf_data(leaf) + data_end,
85e21bac 4722 last_off - data_end);
5f39d397 4723
85e21bac 4724 for (i = slot + nr; i < nritems; i++) {
5f39d397 4725 u32 ioff;
db94535d 4726
5f39d397 4727 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4728 ioff = btrfs_token_item_offset(leaf, item, &token);
4729 btrfs_set_token_item_offset(leaf, item,
4730 ioff + dsize, &token);
0783fcfc 4731 }
db94535d 4732
5f39d397 4733 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4734 btrfs_item_nr_offset(slot + nr),
d6025579 4735 sizeof(struct btrfs_item) *
85e21bac 4736 (nritems - slot - nr));
be0e5c09 4737 }
85e21bac
CM
4738 btrfs_set_header_nritems(leaf, nritems - nr);
4739 nritems -= nr;
5f39d397 4740
74123bd7 4741 /* delete the leaf if we've emptied it */
7518a238 4742 if (nritems == 0) {
5f39d397
CM
4743 if (leaf == root->node) {
4744 btrfs_set_header_level(leaf, 0);
9a8dd150 4745 } else {
f0486c68
YZ
4746 btrfs_set_path_blocking(path);
4747 clean_tree_block(trans, root, leaf);
143bede5 4748 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 4749 }
be0e5c09 4750 } else {
7518a238 4751 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 4752 if (slot == 0) {
5f39d397
CM
4753 struct btrfs_disk_key disk_key;
4754
4755 btrfs_item_key(leaf, &disk_key, 0);
d6a0a126 4756 fixup_low_keys(root, path, &disk_key, 1);
aa5d6bed 4757 }
aa5d6bed 4758
74123bd7 4759 /* delete the leaf if it is mostly empty */
d717aa1d 4760 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
be0e5c09
CM
4761 /* push_leaf_left fixes the path.
4762 * make sure the path still points to our leaf
4763 * for possible call to del_ptr below
4764 */
4920c9ac 4765 slot = path->slots[1];
5f39d397
CM
4766 extent_buffer_get(leaf);
4767
b9473439 4768 btrfs_set_path_blocking(path);
99d8f83c
CM
4769 wret = push_leaf_left(trans, root, path, 1, 1,
4770 1, (u32)-1);
54aa1f4d 4771 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 4772 ret = wret;
5f39d397
CM
4773
4774 if (path->nodes[0] == leaf &&
4775 btrfs_header_nritems(leaf)) {
99d8f83c
CM
4776 wret = push_leaf_right(trans, root, path, 1,
4777 1, 1, 0);
54aa1f4d 4778 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
4779 ret = wret;
4780 }
5f39d397
CM
4781
4782 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 4783 path->slots[1] = slot;
143bede5 4784 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 4785 free_extent_buffer(leaf);
143bede5 4786 ret = 0;
5de08d7d 4787 } else {
925baedd
CM
4788 /* if we're still in the path, make sure
4789 * we're dirty. Otherwise, one of the
4790 * push_leaf functions must have already
4791 * dirtied this buffer
4792 */
4793 if (path->nodes[0] == leaf)
4794 btrfs_mark_buffer_dirty(leaf);
5f39d397 4795 free_extent_buffer(leaf);
be0e5c09 4796 }
d5719762 4797 } else {
5f39d397 4798 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
4799 }
4800 }
aa5d6bed 4801 return ret;
be0e5c09
CM
4802}
4803
7bb86316 4804/*
925baedd 4805 * search the tree again to find a leaf with lesser keys
7bb86316
CM
4806 * returns 0 if it found something or 1 if there are no lesser leaves.
4807 * returns < 0 on io errors.
d352ac68
CM
4808 *
4809 * This may release the path, and so you may lose any locks held at the
4810 * time you call it.
7bb86316
CM
4811 */
4812int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4813{
925baedd
CM
4814 struct btrfs_key key;
4815 struct btrfs_disk_key found_key;
4816 int ret;
7bb86316 4817
925baedd 4818 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 4819
925baedd
CM
4820 if (key.offset > 0)
4821 key.offset--;
4822 else if (key.type > 0)
4823 key.type--;
4824 else if (key.objectid > 0)
4825 key.objectid--;
4826 else
4827 return 1;
7bb86316 4828
b3b4aa74 4829 btrfs_release_path(path);
925baedd
CM
4830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4831 if (ret < 0)
4832 return ret;
4833 btrfs_item_key(path->nodes[0], &found_key, 0);
4834 ret = comp_keys(&found_key, &key);
4835 if (ret < 0)
4836 return 0;
4837 return 1;
7bb86316
CM
4838}
4839
3f157a2f
CM
4840/*
4841 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
4842 * for nodes or leaves that are have a minimum transaction id.
4843 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
4844 *
4845 * This does not cow, but it does stuff the starting key it finds back
4846 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4847 * key and get a writable path.
4848 *
4849 * This does lock as it descends, and path->keep_locks should be set
4850 * to 1 by the caller.
4851 *
4852 * This honors path->lowest_level to prevent descent past a given level
4853 * of the tree.
4854 *
d352ac68
CM
4855 * min_trans indicates the oldest transaction that you are interested
4856 * in walking through. Any nodes or leaves older than min_trans are
4857 * skipped over (without reading them).
4858 *
3f157a2f
CM
4859 * returns zero if something useful was found, < 0 on error and 1 if there
4860 * was nothing in the tree that matched the search criteria.
4861 */
4862int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
e02119d5 4863 struct btrfs_key *max_key,
de78b51a 4864 struct btrfs_path *path,
3f157a2f
CM
4865 u64 min_trans)
4866{
4867 struct extent_buffer *cur;
4868 struct btrfs_key found_key;
4869 int slot;
9652480b 4870 int sret;
3f157a2f
CM
4871 u32 nritems;
4872 int level;
4873 int ret = 1;
4874
934d375b 4875 WARN_ON(!path->keep_locks);
3f157a2f 4876again:
bd681513 4877 cur = btrfs_read_lock_root_node(root);
3f157a2f 4878 level = btrfs_header_level(cur);
e02119d5 4879 WARN_ON(path->nodes[level]);
3f157a2f 4880 path->nodes[level] = cur;
bd681513 4881 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
4882
4883 if (btrfs_header_generation(cur) < min_trans) {
4884 ret = 1;
4885 goto out;
4886 }
d397712b 4887 while (1) {
3f157a2f
CM
4888 nritems = btrfs_header_nritems(cur);
4889 level = btrfs_header_level(cur);
9652480b 4890 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 4891
323ac95b
CM
4892 /* at the lowest level, we're done, setup the path and exit */
4893 if (level == path->lowest_level) {
e02119d5
CM
4894 if (slot >= nritems)
4895 goto find_next_key;
3f157a2f
CM
4896 ret = 0;
4897 path->slots[level] = slot;
4898 btrfs_item_key_to_cpu(cur, &found_key, slot);
4899 goto out;
4900 }
9652480b
Y
4901 if (sret && slot > 0)
4902 slot--;
3f157a2f 4903 /*
de78b51a
ES
4904 * check this node pointer against the min_trans parameters.
4905 * If it is too old, old, skip to the next one.
3f157a2f 4906 */
d397712b 4907 while (slot < nritems) {
3f157a2f
CM
4908 u64 blockptr;
4909 u64 gen;
e02119d5 4910
3f157a2f
CM
4911 blockptr = btrfs_node_blockptr(cur, slot);
4912 gen = btrfs_node_ptr_generation(cur, slot);
4913 if (gen < min_trans) {
4914 slot++;
4915 continue;
4916 }
de78b51a 4917 break;
3f157a2f 4918 }
e02119d5 4919find_next_key:
3f157a2f
CM
4920 /*
4921 * we didn't find a candidate key in this node, walk forward
4922 * and find another one
4923 */
4924 if (slot >= nritems) {
e02119d5 4925 path->slots[level] = slot;
b4ce94de 4926 btrfs_set_path_blocking(path);
e02119d5 4927 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 4928 min_trans);
e02119d5 4929 if (sret == 0) {
b3b4aa74 4930 btrfs_release_path(path);
3f157a2f
CM
4931 goto again;
4932 } else {
4933 goto out;
4934 }
4935 }
4936 /* save our key for returning back */
4937 btrfs_node_key_to_cpu(cur, &found_key, slot);
4938 path->slots[level] = slot;
4939 if (level == path->lowest_level) {
4940 ret = 0;
f7c79f30 4941 unlock_up(path, level, 1, 0, NULL);
3f157a2f
CM
4942 goto out;
4943 }
b4ce94de 4944 btrfs_set_path_blocking(path);
3f157a2f 4945 cur = read_node_slot(root, cur, slot);
79787eaa 4946 BUG_ON(!cur); /* -ENOMEM */
3f157a2f 4947
bd681513 4948 btrfs_tree_read_lock(cur);
b4ce94de 4949
bd681513 4950 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 4951 path->nodes[level - 1] = cur;
f7c79f30 4952 unlock_up(path, level, 1, 0, NULL);
bd681513 4953 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
4954 }
4955out:
4956 if (ret == 0)
4957 memcpy(min_key, &found_key, sizeof(found_key));
b4ce94de 4958 btrfs_set_path_blocking(path);
3f157a2f
CM
4959 return ret;
4960}
4961
7069830a
AB
4962static void tree_move_down(struct btrfs_root *root,
4963 struct btrfs_path *path,
4964 int *level, int root_level)
4965{
74dd17fb 4966 BUG_ON(*level == 0);
7069830a
AB
4967 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4968 path->slots[*level]);
4969 path->slots[*level - 1] = 0;
4970 (*level)--;
4971}
4972
4973static int tree_move_next_or_upnext(struct btrfs_root *root,
4974 struct btrfs_path *path,
4975 int *level, int root_level)
4976{
4977 int ret = 0;
4978 int nritems;
4979 nritems = btrfs_header_nritems(path->nodes[*level]);
4980
4981 path->slots[*level]++;
4982
74dd17fb 4983 while (path->slots[*level] >= nritems) {
7069830a
AB
4984 if (*level == root_level)
4985 return -1;
4986
4987 /* move upnext */
4988 path->slots[*level] = 0;
4989 free_extent_buffer(path->nodes[*level]);
4990 path->nodes[*level] = NULL;
4991 (*level)++;
4992 path->slots[*level]++;
4993
4994 nritems = btrfs_header_nritems(path->nodes[*level]);
4995 ret = 1;
4996 }
4997 return ret;
4998}
4999
5000/*
5001 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5002 * or down.
5003 */
5004static int tree_advance(struct btrfs_root *root,
5005 struct btrfs_path *path,
5006 int *level, int root_level,
5007 int allow_down,
5008 struct btrfs_key *key)
5009{
5010 int ret;
5011
5012 if (*level == 0 || !allow_down) {
5013 ret = tree_move_next_or_upnext(root, path, level, root_level);
5014 } else {
5015 tree_move_down(root, path, level, root_level);
5016 ret = 0;
5017 }
5018 if (ret >= 0) {
5019 if (*level == 0)
5020 btrfs_item_key_to_cpu(path->nodes[*level], key,
5021 path->slots[*level]);
5022 else
5023 btrfs_node_key_to_cpu(path->nodes[*level], key,
5024 path->slots[*level]);
5025 }
5026 return ret;
5027}
5028
5029static int tree_compare_item(struct btrfs_root *left_root,
5030 struct btrfs_path *left_path,
5031 struct btrfs_path *right_path,
5032 char *tmp_buf)
5033{
5034 int cmp;
5035 int len1, len2;
5036 unsigned long off1, off2;
5037
5038 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5039 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5040 if (len1 != len2)
5041 return 1;
5042
5043 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5044 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5045 right_path->slots[0]);
5046
5047 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5048
5049 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5050 if (cmp)
5051 return 1;
5052 return 0;
5053}
5054
5055#define ADVANCE 1
5056#define ADVANCE_ONLY_NEXT -1
5057
5058/*
5059 * This function compares two trees and calls the provided callback for
5060 * every changed/new/deleted item it finds.
5061 * If shared tree blocks are encountered, whole subtrees are skipped, making
5062 * the compare pretty fast on snapshotted subvolumes.
5063 *
5064 * This currently works on commit roots only. As commit roots are read only,
5065 * we don't do any locking. The commit roots are protected with transactions.
5066 * Transactions are ended and rejoined when a commit is tried in between.
5067 *
5068 * This function checks for modifications done to the trees while comparing.
5069 * If it detects a change, it aborts immediately.
5070 */
5071int btrfs_compare_trees(struct btrfs_root *left_root,
5072 struct btrfs_root *right_root,
5073 btrfs_changed_cb_t changed_cb, void *ctx)
5074{
5075 int ret;
5076 int cmp;
5077 struct btrfs_trans_handle *trans = NULL;
5078 struct btrfs_path *left_path = NULL;
5079 struct btrfs_path *right_path = NULL;
5080 struct btrfs_key left_key;
5081 struct btrfs_key right_key;
5082 char *tmp_buf = NULL;
5083 int left_root_level;
5084 int right_root_level;
5085 int left_level;
5086 int right_level;
5087 int left_end_reached;
5088 int right_end_reached;
5089 int advance_left;
5090 int advance_right;
5091 u64 left_blockptr;
5092 u64 right_blockptr;
5093 u64 left_start_ctransid;
5094 u64 right_start_ctransid;
5095 u64 ctransid;
5096
5097 left_path = btrfs_alloc_path();
5098 if (!left_path) {
5099 ret = -ENOMEM;
5100 goto out;
5101 }
5102 right_path = btrfs_alloc_path();
5103 if (!right_path) {
5104 ret = -ENOMEM;
5105 goto out;
5106 }
5107
5108 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5109 if (!tmp_buf) {
5110 ret = -ENOMEM;
5111 goto out;
5112 }
5113
5114 left_path->search_commit_root = 1;
5115 left_path->skip_locking = 1;
5116 right_path->search_commit_root = 1;
5117 right_path->skip_locking = 1;
5118
5f3ab90a 5119 spin_lock(&left_root->root_item_lock);
7069830a 5120 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5f3ab90a 5121 spin_unlock(&left_root->root_item_lock);
7069830a 5122
5f3ab90a 5123 spin_lock(&right_root->root_item_lock);
7069830a 5124 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5f3ab90a 5125 spin_unlock(&right_root->root_item_lock);
7069830a
AB
5126
5127 trans = btrfs_join_transaction(left_root);
5128 if (IS_ERR(trans)) {
5129 ret = PTR_ERR(trans);
5130 trans = NULL;
5131 goto out;
5132 }
5133
5134 /*
5135 * Strategy: Go to the first items of both trees. Then do
5136 *
5137 * If both trees are at level 0
5138 * Compare keys of current items
5139 * If left < right treat left item as new, advance left tree
5140 * and repeat
5141 * If left > right treat right item as deleted, advance right tree
5142 * and repeat
5143 * If left == right do deep compare of items, treat as changed if
5144 * needed, advance both trees and repeat
5145 * If both trees are at the same level but not at level 0
5146 * Compare keys of current nodes/leafs
5147 * If left < right advance left tree and repeat
5148 * If left > right advance right tree and repeat
5149 * If left == right compare blockptrs of the next nodes/leafs
5150 * If they match advance both trees but stay at the same level
5151 * and repeat
5152 * If they don't match advance both trees while allowing to go
5153 * deeper and repeat
5154 * If tree levels are different
5155 * Advance the tree that needs it and repeat
5156 *
5157 * Advancing a tree means:
5158 * If we are at level 0, try to go to the next slot. If that's not
5159 * possible, go one level up and repeat. Stop when we found a level
5160 * where we could go to the next slot. We may at this point be on a
5161 * node or a leaf.
5162 *
5163 * If we are not at level 0 and not on shared tree blocks, go one
5164 * level deeper.
5165 *
5166 * If we are not at level 0 and on shared tree blocks, go one slot to
5167 * the right if possible or go up and right.
5168 */
5169
5170 left_level = btrfs_header_level(left_root->commit_root);
5171 left_root_level = left_level;
5172 left_path->nodes[left_level] = left_root->commit_root;
5173 extent_buffer_get(left_path->nodes[left_level]);
5174
5175 right_level = btrfs_header_level(right_root->commit_root);
5176 right_root_level = right_level;
5177 right_path->nodes[right_level] = right_root->commit_root;
5178 extent_buffer_get(right_path->nodes[right_level]);
5179
5180 if (left_level == 0)
5181 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5182 &left_key, left_path->slots[left_level]);
5183 else
5184 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5185 &left_key, left_path->slots[left_level]);
5186 if (right_level == 0)
5187 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5188 &right_key, right_path->slots[right_level]);
5189 else
5190 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5191 &right_key, right_path->slots[right_level]);
5192
5193 left_end_reached = right_end_reached = 0;
5194 advance_left = advance_right = 0;
5195
5196 while (1) {
5197 /*
5198 * We need to make sure the transaction does not get committed
5199 * while we do anything on commit roots. This means, we need to
5200 * join and leave transactions for every item that we process.
5201 */
5202 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5203 btrfs_release_path(left_path);
5204 btrfs_release_path(right_path);
5205
5206 ret = btrfs_end_transaction(trans, left_root);
5207 trans = NULL;
5208 if (ret < 0)
5209 goto out;
5210 }
5211 /* now rejoin the transaction */
5212 if (!trans) {
5213 trans = btrfs_join_transaction(left_root);
5214 if (IS_ERR(trans)) {
5215 ret = PTR_ERR(trans);
5216 trans = NULL;
5217 goto out;
5218 }
5219
5f3ab90a 5220 spin_lock(&left_root->root_item_lock);
7069830a 5221 ctransid = btrfs_root_ctransid(&left_root->root_item);
5f3ab90a 5222 spin_unlock(&left_root->root_item_lock);
7069830a
AB
5223 if (ctransid != left_start_ctransid)
5224 left_start_ctransid = 0;
5225
5f3ab90a 5226 spin_lock(&right_root->root_item_lock);
7069830a 5227 ctransid = btrfs_root_ctransid(&right_root->root_item);
5f3ab90a 5228 spin_unlock(&right_root->root_item_lock);
7069830a
AB
5229 if (ctransid != right_start_ctransid)
5230 right_start_ctransid = 0;
5231
5232 if (!left_start_ctransid || !right_start_ctransid) {
5233 WARN(1, KERN_WARNING
5234 "btrfs: btrfs_compare_tree detected "
5235 "a change in one of the trees while "
5236 "iterating. This is probably a "
5237 "bug.\n");
5238 ret = -EIO;
5239 goto out;
5240 }
5241
5242 /*
5243 * the commit root may have changed, so start again
5244 * where we stopped
5245 */
5246 left_path->lowest_level = left_level;
5247 right_path->lowest_level = right_level;
5248 ret = btrfs_search_slot(NULL, left_root,
5249 &left_key, left_path, 0, 0);
5250 if (ret < 0)
5251 goto out;
5252 ret = btrfs_search_slot(NULL, right_root,
5253 &right_key, right_path, 0, 0);
5254 if (ret < 0)
5255 goto out;
5256 }
5257
5258 if (advance_left && !left_end_reached) {
5259 ret = tree_advance(left_root, left_path, &left_level,
5260 left_root_level,
5261 advance_left != ADVANCE_ONLY_NEXT,
5262 &left_key);
5263 if (ret < 0)
5264 left_end_reached = ADVANCE;
5265 advance_left = 0;
5266 }
5267 if (advance_right && !right_end_reached) {
5268 ret = tree_advance(right_root, right_path, &right_level,
5269 right_root_level,
5270 advance_right != ADVANCE_ONLY_NEXT,
5271 &right_key);
5272 if (ret < 0)
5273 right_end_reached = ADVANCE;
5274 advance_right = 0;
5275 }
5276
5277 if (left_end_reached && right_end_reached) {
5278 ret = 0;
5279 goto out;
5280 } else if (left_end_reached) {
5281 if (right_level == 0) {
5282 ret = changed_cb(left_root, right_root,
5283 left_path, right_path,
5284 &right_key,
5285 BTRFS_COMPARE_TREE_DELETED,
5286 ctx);
5287 if (ret < 0)
5288 goto out;
5289 }
5290 advance_right = ADVANCE;
5291 continue;
5292 } else if (right_end_reached) {
5293 if (left_level == 0) {
5294 ret = changed_cb(left_root, right_root,
5295 left_path, right_path,
5296 &left_key,
5297 BTRFS_COMPARE_TREE_NEW,
5298 ctx);
5299 if (ret < 0)
5300 goto out;
5301 }
5302 advance_left = ADVANCE;
5303 continue;
5304 }
5305
5306 if (left_level == 0 && right_level == 0) {
5307 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5308 if (cmp < 0) {
5309 ret = changed_cb(left_root, right_root,
5310 left_path, right_path,
5311 &left_key,
5312 BTRFS_COMPARE_TREE_NEW,
5313 ctx);
5314 if (ret < 0)
5315 goto out;
5316 advance_left = ADVANCE;
5317 } else if (cmp > 0) {
5318 ret = changed_cb(left_root, right_root,
5319 left_path, right_path,
5320 &right_key,
5321 BTRFS_COMPARE_TREE_DELETED,
5322 ctx);
5323 if (ret < 0)
5324 goto out;
5325 advance_right = ADVANCE;
5326 } else {
74dd17fb 5327 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5328 ret = tree_compare_item(left_root, left_path,
5329 right_path, tmp_buf);
5330 if (ret) {
74dd17fb 5331 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5332 ret = changed_cb(left_root, right_root,
5333 left_path, right_path,
5334 &left_key,
5335 BTRFS_COMPARE_TREE_CHANGED,
5336 ctx);
5337 if (ret < 0)
5338 goto out;
5339 }
5340 advance_left = ADVANCE;
5341 advance_right = ADVANCE;
5342 }
5343 } else if (left_level == right_level) {
5344 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5345 if (cmp < 0) {
5346 advance_left = ADVANCE;
5347 } else if (cmp > 0) {
5348 advance_right = ADVANCE;
5349 } else {
5350 left_blockptr = btrfs_node_blockptr(
5351 left_path->nodes[left_level],
5352 left_path->slots[left_level]);
5353 right_blockptr = btrfs_node_blockptr(
5354 right_path->nodes[right_level],
5355 right_path->slots[right_level]);
5356 if (left_blockptr == right_blockptr) {
5357 /*
5358 * As we're on a shared block, don't
5359 * allow to go deeper.
5360 */
5361 advance_left = ADVANCE_ONLY_NEXT;
5362 advance_right = ADVANCE_ONLY_NEXT;
5363 } else {
5364 advance_left = ADVANCE;
5365 advance_right = ADVANCE;
5366 }
5367 }
5368 } else if (left_level < right_level) {
5369 advance_right = ADVANCE;
5370 } else {
5371 advance_left = ADVANCE;
5372 }
5373 }
5374
5375out:
5376 btrfs_free_path(left_path);
5377 btrfs_free_path(right_path);
5378 kfree(tmp_buf);
5379
5380 if (trans) {
5381 if (!ret)
5382 ret = btrfs_end_transaction(trans, left_root);
5383 else
5384 btrfs_end_transaction(trans, left_root);
5385 }
5386
5387 return ret;
5388}
5389
3f157a2f
CM
5390/*
5391 * this is similar to btrfs_next_leaf, but does not try to preserve
5392 * and fixup the path. It looks for and returns the next key in the
de78b51a 5393 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5394 *
5395 * 0 is returned if another key is found, < 0 if there are any errors
5396 * and 1 is returned if there are no higher keys in the tree
5397 *
5398 * path->keep_locks should be set to 1 on the search made before
5399 * calling this function.
5400 */
e7a84565 5401int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5402 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5403{
e7a84565
CM
5404 int slot;
5405 struct extent_buffer *c;
5406
934d375b 5407 WARN_ON(!path->keep_locks);
d397712b 5408 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5409 if (!path->nodes[level])
5410 return 1;
5411
5412 slot = path->slots[level] + 1;
5413 c = path->nodes[level];
3f157a2f 5414next:
e7a84565 5415 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5416 int ret;
5417 int orig_lowest;
5418 struct btrfs_key cur_key;
5419 if (level + 1 >= BTRFS_MAX_LEVEL ||
5420 !path->nodes[level + 1])
e7a84565 5421 return 1;
33c66f43
YZ
5422
5423 if (path->locks[level + 1]) {
5424 level++;
5425 continue;
5426 }
5427
5428 slot = btrfs_header_nritems(c) - 1;
5429 if (level == 0)
5430 btrfs_item_key_to_cpu(c, &cur_key, slot);
5431 else
5432 btrfs_node_key_to_cpu(c, &cur_key, slot);
5433
5434 orig_lowest = path->lowest_level;
b3b4aa74 5435 btrfs_release_path(path);
33c66f43
YZ
5436 path->lowest_level = level;
5437 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5438 0, 0);
5439 path->lowest_level = orig_lowest;
5440 if (ret < 0)
5441 return ret;
5442
5443 c = path->nodes[level];
5444 slot = path->slots[level];
5445 if (ret == 0)
5446 slot++;
5447 goto next;
e7a84565 5448 }
33c66f43 5449
e7a84565
CM
5450 if (level == 0)
5451 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5452 else {
3f157a2f
CM
5453 u64 gen = btrfs_node_ptr_generation(c, slot);
5454
3f157a2f
CM
5455 if (gen < min_trans) {
5456 slot++;
5457 goto next;
5458 }
e7a84565 5459 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5460 }
e7a84565
CM
5461 return 0;
5462 }
5463 return 1;
5464}
5465
97571fd0 5466/*
925baedd 5467 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5468 * returns 0 if it found something or 1 if there are no greater leaves.
5469 * returns < 0 on io errors.
97571fd0 5470 */
234b63a0 5471int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5472{
5473 return btrfs_next_old_leaf(root, path, 0);
5474}
5475
5476int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5477 u64 time_seq)
d97e63b6
CM
5478{
5479 int slot;
8e73f275 5480 int level;
5f39d397 5481 struct extent_buffer *c;
8e73f275 5482 struct extent_buffer *next;
925baedd
CM
5483 struct btrfs_key key;
5484 u32 nritems;
5485 int ret;
8e73f275 5486 int old_spinning = path->leave_spinning;
bd681513 5487 int next_rw_lock = 0;
925baedd
CM
5488
5489 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5490 if (nritems == 0)
925baedd 5491 return 1;
925baedd 5492
8e73f275
CM
5493 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5494again:
5495 level = 1;
5496 next = NULL;
bd681513 5497 next_rw_lock = 0;
b3b4aa74 5498 btrfs_release_path(path);
8e73f275 5499
a2135011 5500 path->keep_locks = 1;
31533fb2 5501 path->leave_spinning = 1;
8e73f275 5502
3d7806ec
JS
5503 if (time_seq)
5504 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5505 else
5506 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5507 path->keep_locks = 0;
5508
5509 if (ret < 0)
5510 return ret;
5511
a2135011 5512 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5513 /*
5514 * by releasing the path above we dropped all our locks. A balance
5515 * could have added more items next to the key that used to be
5516 * at the very end of the block. So, check again here and
5517 * advance the path if there are now more items available.
5518 */
a2135011 5519 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5520 if (ret == 0)
5521 path->slots[0]++;
8e73f275 5522 ret = 0;
925baedd
CM
5523 goto done;
5524 }
d97e63b6 5525
d397712b 5526 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5527 if (!path->nodes[level]) {
5528 ret = 1;
5529 goto done;
5530 }
5f39d397 5531
d97e63b6
CM
5532 slot = path->slots[level] + 1;
5533 c = path->nodes[level];
5f39d397 5534 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5535 level++;
8e73f275
CM
5536 if (level == BTRFS_MAX_LEVEL) {
5537 ret = 1;
5538 goto done;
5539 }
d97e63b6
CM
5540 continue;
5541 }
5f39d397 5542
925baedd 5543 if (next) {
bd681513 5544 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5545 free_extent_buffer(next);
925baedd 5546 }
5f39d397 5547
8e73f275 5548 next = c;
bd681513 5549 next_rw_lock = path->locks[level];
8e73f275 5550 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5551 slot, &key, 0);
8e73f275
CM
5552 if (ret == -EAGAIN)
5553 goto again;
5f39d397 5554
76a05b35 5555 if (ret < 0) {
b3b4aa74 5556 btrfs_release_path(path);
76a05b35
CM
5557 goto done;
5558 }
5559
5cd57b2c 5560 if (!path->skip_locking) {
bd681513 5561 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5562 if (!ret && time_seq) {
5563 /*
5564 * If we don't get the lock, we may be racing
5565 * with push_leaf_left, holding that lock while
5566 * itself waiting for the leaf we've currently
5567 * locked. To solve this situation, we give up
5568 * on our lock and cycle.
5569 */
cf538830 5570 free_extent_buffer(next);
d42244a0
JS
5571 btrfs_release_path(path);
5572 cond_resched();
5573 goto again;
5574 }
8e73f275
CM
5575 if (!ret) {
5576 btrfs_set_path_blocking(path);
bd681513 5577 btrfs_tree_read_lock(next);
31533fb2 5578 btrfs_clear_path_blocking(path, next,
bd681513 5579 BTRFS_READ_LOCK);
8e73f275 5580 }
31533fb2 5581 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5582 }
d97e63b6
CM
5583 break;
5584 }
5585 path->slots[level] = slot;
d397712b 5586 while (1) {
d97e63b6
CM
5587 level--;
5588 c = path->nodes[level];
925baedd 5589 if (path->locks[level])
bd681513 5590 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5591
5f39d397 5592 free_extent_buffer(c);
d97e63b6
CM
5593 path->nodes[level] = next;
5594 path->slots[level] = 0;
a74a4b97 5595 if (!path->skip_locking)
bd681513 5596 path->locks[level] = next_rw_lock;
d97e63b6
CM
5597 if (!level)
5598 break;
b4ce94de 5599
8e73f275 5600 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5601 0, &key, 0);
8e73f275
CM
5602 if (ret == -EAGAIN)
5603 goto again;
5604
76a05b35 5605 if (ret < 0) {
b3b4aa74 5606 btrfs_release_path(path);
76a05b35
CM
5607 goto done;
5608 }
5609
5cd57b2c 5610 if (!path->skip_locking) {
bd681513 5611 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5612 if (!ret) {
5613 btrfs_set_path_blocking(path);
bd681513 5614 btrfs_tree_read_lock(next);
31533fb2 5615 btrfs_clear_path_blocking(path, next,
bd681513
CM
5616 BTRFS_READ_LOCK);
5617 }
31533fb2 5618 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5619 }
d97e63b6 5620 }
8e73f275 5621 ret = 0;
925baedd 5622done:
f7c79f30 5623 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5624 path->leave_spinning = old_spinning;
5625 if (!old_spinning)
5626 btrfs_set_path_blocking(path);
5627
5628 return ret;
d97e63b6 5629}
0b86a832 5630
3f157a2f
CM
5631/*
5632 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5633 * searching until it gets past min_objectid or finds an item of 'type'
5634 *
5635 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5636 */
0b86a832
CM
5637int btrfs_previous_item(struct btrfs_root *root,
5638 struct btrfs_path *path, u64 min_objectid,
5639 int type)
5640{
5641 struct btrfs_key found_key;
5642 struct extent_buffer *leaf;
e02119d5 5643 u32 nritems;
0b86a832
CM
5644 int ret;
5645
d397712b 5646 while (1) {
0b86a832 5647 if (path->slots[0] == 0) {
b4ce94de 5648 btrfs_set_path_blocking(path);
0b86a832
CM
5649 ret = btrfs_prev_leaf(root, path);
5650 if (ret != 0)
5651 return ret;
5652 } else {
5653 path->slots[0]--;
5654 }
5655 leaf = path->nodes[0];
e02119d5
CM
5656 nritems = btrfs_header_nritems(leaf);
5657 if (nritems == 0)
5658 return 1;
5659 if (path->slots[0] == nritems)
5660 path->slots[0]--;
5661
0b86a832 5662 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5663 if (found_key.objectid < min_objectid)
5664 break;
0a4eefbb
YZ
5665 if (found_key.type == type)
5666 return 0;
e02119d5
CM
5667 if (found_key.objectid == min_objectid &&
5668 found_key.type < type)
5669 break;
0b86a832
CM
5670 }
5671 return 1;
5672}