btrfs: drop the lock on error in btrfs_dev_replace_cancel
[linux-block.git] / fs / btrfs / ctree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570 2/*
d352ac68 3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
a6b6e75e 6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
bd989ba3 8#include <linux/rbtree.h>
adf02123 9#include <linux/mm.h>
eb60ceac
CM
10#include "ctree.h"
11#include "disk-io.h"
7f5c1516 12#include "transaction.h"
5f39d397 13#include "print-tree.h"
925baedd 14#include "locking.h"
de37aa51 15#include "volumes.h"
f616f5cd 16#include "qgroup.h"
9a8dd150 17
e089f05c
CM
18static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 *root, struct btrfs_path *path, int level);
310712b2
OS
20static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 const struct btrfs_key *ins_key, struct btrfs_path *path,
22 int data_size, int extend);
5f39d397 23static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
24 struct btrfs_fs_info *fs_info,
25 struct extent_buffer *dst,
971a1f66 26 struct extent_buffer *src, int empty);
5f39d397 27static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 28 struct btrfs_fs_info *fs_info,
5f39d397
CM
29 struct extent_buffer *dst_buf,
30 struct extent_buffer *src_buf);
afe5fea7
TI
31static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
32 int level, int slot);
d97e63b6 33
df24a2b9 34struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 35{
e2c89907 36 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
2c90e5d6
CM
37}
38
b4ce94de
CM
39/*
40 * set all locked nodes in the path to blocking locks. This should
41 * be done before scheduling
42 */
43noinline void btrfs_set_path_blocking(struct btrfs_path *p)
44{
45 int i;
46 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
47 if (!p->nodes[i] || !p->locks[i])
48 continue;
766ece54
DS
49 /*
50 * If we currently have a spinning reader or writer lock this
51 * will bump the count of blocking holders and drop the
52 * spinlock.
53 */
54 if (p->locks[i] == BTRFS_READ_LOCK) {
55 btrfs_set_lock_blocking_read(p->nodes[i]);
bd681513 56 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
766ece54
DS
57 } else if (p->locks[i] == BTRFS_WRITE_LOCK) {
58 btrfs_set_lock_blocking_write(p->nodes[i]);
bd681513 59 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
766ece54 60 }
b4ce94de
CM
61 }
62}
63
d352ac68 64/* this also releases the path */
df24a2b9 65void btrfs_free_path(struct btrfs_path *p)
be0e5c09 66{
ff175d57
JJ
67 if (!p)
68 return;
b3b4aa74 69 btrfs_release_path(p);
df24a2b9 70 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
71}
72
d352ac68
CM
73/*
74 * path release drops references on the extent buffers in the path
75 * and it drops any locks held by this path
76 *
77 * It is safe to call this on paths that no locks or extent buffers held.
78 */
b3b4aa74 79noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
80{
81 int i;
a2135011 82
234b63a0 83 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 84 p->slots[i] = 0;
eb60ceac 85 if (!p->nodes[i])
925baedd
CM
86 continue;
87 if (p->locks[i]) {
bd681513 88 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
89 p->locks[i] = 0;
90 }
5f39d397 91 free_extent_buffer(p->nodes[i]);
3f157a2f 92 p->nodes[i] = NULL;
eb60ceac
CM
93 }
94}
95
d352ac68
CM
96/*
97 * safely gets a reference on the root node of a tree. A lock
98 * is not taken, so a concurrent writer may put a different node
99 * at the root of the tree. See btrfs_lock_root_node for the
100 * looping required.
101 *
102 * The extent buffer returned by this has a reference taken, so
103 * it won't disappear. It may stop being the root of the tree
104 * at any time because there are no locks held.
105 */
925baedd
CM
106struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
107{
108 struct extent_buffer *eb;
240f62c8 109
3083ee2e
JB
110 while (1) {
111 rcu_read_lock();
112 eb = rcu_dereference(root->node);
113
114 /*
115 * RCU really hurts here, we could free up the root node because
01327610 116 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
117 * the inc_not_zero dance and if it doesn't work then
118 * synchronize_rcu and try again.
119 */
120 if (atomic_inc_not_zero(&eb->refs)) {
121 rcu_read_unlock();
122 break;
123 }
124 rcu_read_unlock();
125 synchronize_rcu();
126 }
925baedd
CM
127 return eb;
128}
129
d352ac68
CM
130/* loop around taking references on and locking the root node of the
131 * tree until you end up with a lock on the root. A locked buffer
132 * is returned, with a reference held.
133 */
925baedd
CM
134struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
135{
136 struct extent_buffer *eb;
137
d397712b 138 while (1) {
925baedd
CM
139 eb = btrfs_root_node(root);
140 btrfs_tree_lock(eb);
240f62c8 141 if (eb == root->node)
925baedd 142 break;
925baedd
CM
143 btrfs_tree_unlock(eb);
144 free_extent_buffer(eb);
145 }
146 return eb;
147}
148
bd681513
CM
149/* loop around taking references on and locking the root node of the
150 * tree until you end up with a lock on the root. A locked buffer
151 * is returned, with a reference held.
152 */
84f7d8e6 153struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
154{
155 struct extent_buffer *eb;
156
157 while (1) {
158 eb = btrfs_root_node(root);
159 btrfs_tree_read_lock(eb);
160 if (eb == root->node)
161 break;
162 btrfs_tree_read_unlock(eb);
163 free_extent_buffer(eb);
164 }
165 return eb;
166}
167
d352ac68
CM
168/* cowonly root (everything not a reference counted cow subvolume), just get
169 * put onto a simple dirty list. transaction.c walks this to make sure they
170 * get properly updated on disk.
171 */
0b86a832
CM
172static void add_root_to_dirty_list(struct btrfs_root *root)
173{
0b246afa
JM
174 struct btrfs_fs_info *fs_info = root->fs_info;
175
e7070be1
JB
176 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
177 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
178 return;
179
0b246afa 180 spin_lock(&fs_info->trans_lock);
e7070be1
JB
181 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
182 /* Want the extent tree to be the last on the list */
4fd786e6 183 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
e7070be1 184 list_move_tail(&root->dirty_list,
0b246afa 185 &fs_info->dirty_cowonly_roots);
e7070be1
JB
186 else
187 list_move(&root->dirty_list,
0b246afa 188 &fs_info->dirty_cowonly_roots);
0b86a832 189 }
0b246afa 190 spin_unlock(&fs_info->trans_lock);
0b86a832
CM
191}
192
d352ac68
CM
193/*
194 * used by snapshot creation to make a copy of a root for a tree with
195 * a given objectid. The buffer with the new root node is returned in
196 * cow_ret, and this func returns zero on success or a negative error code.
197 */
be20aa9d
CM
198int btrfs_copy_root(struct btrfs_trans_handle *trans,
199 struct btrfs_root *root,
200 struct extent_buffer *buf,
201 struct extent_buffer **cow_ret, u64 new_root_objectid)
202{
0b246afa 203 struct btrfs_fs_info *fs_info = root->fs_info;
be20aa9d 204 struct extent_buffer *cow;
be20aa9d
CM
205 int ret = 0;
206 int level;
5d4f98a2 207 struct btrfs_disk_key disk_key;
be20aa9d 208
27cdeb70 209 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 210 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
211 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
212 trans->transid != root->last_trans);
be20aa9d
CM
213
214 level = btrfs_header_level(buf);
5d4f98a2
YZ
215 if (level == 0)
216 btrfs_item_key(buf, &disk_key, 0);
217 else
218 btrfs_node_key(buf, &disk_key, 0);
31840ae1 219
4d75f8a9
DS
220 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
221 &disk_key, level, buf->start, 0);
5d4f98a2 222 if (IS_ERR(cow))
be20aa9d
CM
223 return PTR_ERR(cow);
224
58e8012c 225 copy_extent_buffer_full(cow, buf);
be20aa9d
CM
226 btrfs_set_header_bytenr(cow, cow->start);
227 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
228 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
229 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
230 BTRFS_HEADER_FLAG_RELOC);
231 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
232 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
233 else
234 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 235
de37aa51 236 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
2b82032c 237
be20aa9d 238 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 239 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 240 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 241 else
e339a6b0 242 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 243
be20aa9d
CM
244 if (ret)
245 return ret;
246
247 btrfs_mark_buffer_dirty(cow);
248 *cow_ret = cow;
249 return 0;
250}
251
bd989ba3
JS
252enum mod_log_op {
253 MOD_LOG_KEY_REPLACE,
254 MOD_LOG_KEY_ADD,
255 MOD_LOG_KEY_REMOVE,
256 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
257 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
258 MOD_LOG_MOVE_KEYS,
259 MOD_LOG_ROOT_REPLACE,
260};
261
bd989ba3
JS
262struct tree_mod_root {
263 u64 logical;
264 u8 level;
265};
266
267struct tree_mod_elem {
268 struct rb_node node;
298cfd36 269 u64 logical;
097b8a7c 270 u64 seq;
bd989ba3
JS
271 enum mod_log_op op;
272
273 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
274 int slot;
275
276 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
277 u64 generation;
278
279 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
280 struct btrfs_disk_key key;
281 u64 blockptr;
282
283 /* this is used for op == MOD_LOG_MOVE_KEYS */
b6dfa35b
DS
284 struct {
285 int dst_slot;
286 int nr_items;
287 } move;
bd989ba3
JS
288
289 /* this is used for op == MOD_LOG_ROOT_REPLACE */
290 struct tree_mod_root old_root;
291};
292
fc36ed7e 293/*
fcebe456 294 * Pull a new tree mod seq number for our operation.
fc36ed7e 295 */
fcebe456 296static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
297{
298 return atomic64_inc_return(&fs_info->tree_mod_seq);
299}
300
097b8a7c
JS
301/*
302 * This adds a new blocker to the tree mod log's blocker list if the @elem
303 * passed does not already have a sequence number set. So when a caller expects
304 * to record tree modifications, it should ensure to set elem->seq to zero
305 * before calling btrfs_get_tree_mod_seq.
306 * Returns a fresh, unused tree log modification sequence number, even if no new
307 * blocker was added.
308 */
309u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
310 struct seq_list *elem)
bd989ba3 311{
b1a09f1e 312 write_lock(&fs_info->tree_mod_log_lock);
bd989ba3 313 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 314 if (!elem->seq) {
fcebe456 315 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
316 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
317 }
bd989ba3 318 spin_unlock(&fs_info->tree_mod_seq_lock);
b1a09f1e 319 write_unlock(&fs_info->tree_mod_log_lock);
097b8a7c 320
fcebe456 321 return elem->seq;
bd989ba3
JS
322}
323
324void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
325 struct seq_list *elem)
326{
327 struct rb_root *tm_root;
328 struct rb_node *node;
329 struct rb_node *next;
330 struct seq_list *cur_elem;
331 struct tree_mod_elem *tm;
332 u64 min_seq = (u64)-1;
333 u64 seq_putting = elem->seq;
334
335 if (!seq_putting)
336 return;
337
bd989ba3
JS
338 spin_lock(&fs_info->tree_mod_seq_lock);
339 list_del(&elem->list);
097b8a7c 340 elem->seq = 0;
bd989ba3
JS
341
342 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 343 if (cur_elem->seq < min_seq) {
bd989ba3
JS
344 if (seq_putting > cur_elem->seq) {
345 /*
346 * blocker with lower sequence number exists, we
347 * cannot remove anything from the log
348 */
097b8a7c
JS
349 spin_unlock(&fs_info->tree_mod_seq_lock);
350 return;
bd989ba3
JS
351 }
352 min_seq = cur_elem->seq;
353 }
354 }
097b8a7c
JS
355 spin_unlock(&fs_info->tree_mod_seq_lock);
356
bd989ba3
JS
357 /*
358 * anything that's lower than the lowest existing (read: blocked)
359 * sequence number can be removed from the tree.
360 */
b1a09f1e 361 write_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
362 tm_root = &fs_info->tree_mod_log;
363 for (node = rb_first(tm_root); node; node = next) {
364 next = rb_next(node);
6b4df8b6 365 tm = rb_entry(node, struct tree_mod_elem, node);
097b8a7c 366 if (tm->seq > min_seq)
bd989ba3
JS
367 continue;
368 rb_erase(node, tm_root);
bd989ba3
JS
369 kfree(tm);
370 }
b1a09f1e 371 write_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
372}
373
374/*
375 * key order of the log:
298cfd36 376 * node/leaf start address -> sequence
bd989ba3 377 *
298cfd36
CR
378 * The 'start address' is the logical address of the *new* root node
379 * for root replace operations, or the logical address of the affected
380 * block for all other operations.
5de865ee 381 *
b1a09f1e 382 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
bd989ba3
JS
383 */
384static noinline int
385__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
386{
387 struct rb_root *tm_root;
388 struct rb_node **new;
389 struct rb_node *parent = NULL;
390 struct tree_mod_elem *cur;
c8cc6341 391
fcebe456 392 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 393
bd989ba3
JS
394 tm_root = &fs_info->tree_mod_log;
395 new = &tm_root->rb_node;
396 while (*new) {
6b4df8b6 397 cur = rb_entry(*new, struct tree_mod_elem, node);
bd989ba3 398 parent = *new;
298cfd36 399 if (cur->logical < tm->logical)
bd989ba3 400 new = &((*new)->rb_left);
298cfd36 401 else if (cur->logical > tm->logical)
bd989ba3 402 new = &((*new)->rb_right);
097b8a7c 403 else if (cur->seq < tm->seq)
bd989ba3 404 new = &((*new)->rb_left);
097b8a7c 405 else if (cur->seq > tm->seq)
bd989ba3 406 new = &((*new)->rb_right);
5de865ee
FDBM
407 else
408 return -EEXIST;
bd989ba3
JS
409 }
410
411 rb_link_node(&tm->node, parent, new);
412 rb_insert_color(&tm->node, tm_root);
5de865ee 413 return 0;
bd989ba3
JS
414}
415
097b8a7c
JS
416/*
417 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
418 * returns zero with the tree_mod_log_lock acquired. The caller must hold
419 * this until all tree mod log insertions are recorded in the rb tree and then
b1a09f1e 420 * write unlock fs_info::tree_mod_log_lock.
097b8a7c 421 */
e9b7fd4d
JS
422static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
423 struct extent_buffer *eb) {
424 smp_mb();
425 if (list_empty(&(fs_info)->tree_mod_seq_list))
426 return 1;
097b8a7c
JS
427 if (eb && btrfs_header_level(eb) == 0)
428 return 1;
5de865ee 429
b1a09f1e 430 write_lock(&fs_info->tree_mod_log_lock);
5de865ee 431 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
b1a09f1e 432 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
433 return 1;
434 }
435
e9b7fd4d
JS
436 return 0;
437}
438
5de865ee
FDBM
439/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
440static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
441 struct extent_buffer *eb)
442{
443 smp_mb();
444 if (list_empty(&(fs_info)->tree_mod_seq_list))
445 return 0;
446 if (eb && btrfs_header_level(eb) == 0)
447 return 0;
448
449 return 1;
450}
451
452static struct tree_mod_elem *
453alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
454 enum mod_log_op op, gfp_t flags)
bd989ba3 455{
097b8a7c 456 struct tree_mod_elem *tm;
bd989ba3 457
c8cc6341
JB
458 tm = kzalloc(sizeof(*tm), flags);
459 if (!tm)
5de865ee 460 return NULL;
bd989ba3 461
298cfd36 462 tm->logical = eb->start;
bd989ba3
JS
463 if (op != MOD_LOG_KEY_ADD) {
464 btrfs_node_key(eb, &tm->key, slot);
465 tm->blockptr = btrfs_node_blockptr(eb, slot);
466 }
467 tm->op = op;
468 tm->slot = slot;
469 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 470 RB_CLEAR_NODE(&tm->node);
bd989ba3 471
5de865ee 472 return tm;
097b8a7c
JS
473}
474
e09c2efe
DS
475static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
476 enum mod_log_op op, gfp_t flags)
097b8a7c 477{
5de865ee
FDBM
478 struct tree_mod_elem *tm;
479 int ret;
480
e09c2efe 481 if (!tree_mod_need_log(eb->fs_info, eb))
5de865ee
FDBM
482 return 0;
483
484 tm = alloc_tree_mod_elem(eb, slot, op, flags);
485 if (!tm)
486 return -ENOMEM;
487
e09c2efe 488 if (tree_mod_dont_log(eb->fs_info, eb)) {
5de865ee 489 kfree(tm);
097b8a7c 490 return 0;
5de865ee
FDBM
491 }
492
e09c2efe 493 ret = __tree_mod_log_insert(eb->fs_info, tm);
b1a09f1e 494 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
495 if (ret)
496 kfree(tm);
097b8a7c 497
5de865ee 498 return ret;
097b8a7c
JS
499}
500
6074d45f
DS
501static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
502 int dst_slot, int src_slot, int nr_items)
bd989ba3 503{
5de865ee
FDBM
504 struct tree_mod_elem *tm = NULL;
505 struct tree_mod_elem **tm_list = NULL;
506 int ret = 0;
bd989ba3 507 int i;
5de865ee 508 int locked = 0;
bd989ba3 509
6074d45f 510 if (!tree_mod_need_log(eb->fs_info, eb))
f395694c 511 return 0;
bd989ba3 512
176ef8f5 513 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
514 if (!tm_list)
515 return -ENOMEM;
516
176ef8f5 517 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
518 if (!tm) {
519 ret = -ENOMEM;
520 goto free_tms;
521 }
522
298cfd36 523 tm->logical = eb->start;
5de865ee
FDBM
524 tm->slot = src_slot;
525 tm->move.dst_slot = dst_slot;
526 tm->move.nr_items = nr_items;
527 tm->op = MOD_LOG_MOVE_KEYS;
528
529 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
530 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
176ef8f5 531 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
5de865ee
FDBM
532 if (!tm_list[i]) {
533 ret = -ENOMEM;
534 goto free_tms;
535 }
536 }
537
6074d45f 538 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
539 goto free_tms;
540 locked = 1;
541
01763a2e
JS
542 /*
543 * When we override something during the move, we log these removals.
544 * This can only happen when we move towards the beginning of the
545 * buffer, i.e. dst_slot < src_slot.
546 */
bd989ba3 547 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
6074d45f 548 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
5de865ee
FDBM
549 if (ret)
550 goto free_tms;
bd989ba3
JS
551 }
552
6074d45f 553 ret = __tree_mod_log_insert(eb->fs_info, tm);
5de865ee
FDBM
554 if (ret)
555 goto free_tms;
b1a09f1e 556 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee 557 kfree(tm_list);
f395694c 558
5de865ee
FDBM
559 return 0;
560free_tms:
561 for (i = 0; i < nr_items; i++) {
562 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
6074d45f 563 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
5de865ee
FDBM
564 kfree(tm_list[i]);
565 }
566 if (locked)
b1a09f1e 567 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
568 kfree(tm_list);
569 kfree(tm);
bd989ba3 570
5de865ee 571 return ret;
bd989ba3
JS
572}
573
5de865ee
FDBM
574static inline int
575__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
576 struct tree_mod_elem **tm_list,
577 int nritems)
097b8a7c 578{
5de865ee 579 int i, j;
097b8a7c
JS
580 int ret;
581
097b8a7c 582 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
583 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
584 if (ret) {
585 for (j = nritems - 1; j > i; j--)
586 rb_erase(&tm_list[j]->node,
587 &fs_info->tree_mod_log);
588 return ret;
589 }
097b8a7c 590 }
5de865ee
FDBM
591
592 return 0;
097b8a7c
JS
593}
594
95b757c1
DS
595static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
596 struct extent_buffer *new_root, int log_removal)
bd989ba3 597{
95b757c1 598 struct btrfs_fs_info *fs_info = old_root->fs_info;
5de865ee
FDBM
599 struct tree_mod_elem *tm = NULL;
600 struct tree_mod_elem **tm_list = NULL;
601 int nritems = 0;
602 int ret = 0;
603 int i;
bd989ba3 604
5de865ee 605 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
606 return 0;
607
5de865ee
FDBM
608 if (log_removal && btrfs_header_level(old_root) > 0) {
609 nritems = btrfs_header_nritems(old_root);
31e818fe 610 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
bcc8e07f 611 GFP_NOFS);
5de865ee
FDBM
612 if (!tm_list) {
613 ret = -ENOMEM;
614 goto free_tms;
615 }
616 for (i = 0; i < nritems; i++) {
617 tm_list[i] = alloc_tree_mod_elem(old_root, i,
bcc8e07f 618 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
5de865ee
FDBM
619 if (!tm_list[i]) {
620 ret = -ENOMEM;
621 goto free_tms;
622 }
623 }
624 }
d9abbf1c 625
bcc8e07f 626 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
627 if (!tm) {
628 ret = -ENOMEM;
629 goto free_tms;
630 }
bd989ba3 631
298cfd36 632 tm->logical = new_root->start;
bd989ba3
JS
633 tm->old_root.logical = old_root->start;
634 tm->old_root.level = btrfs_header_level(old_root);
635 tm->generation = btrfs_header_generation(old_root);
636 tm->op = MOD_LOG_ROOT_REPLACE;
637
5de865ee
FDBM
638 if (tree_mod_dont_log(fs_info, NULL))
639 goto free_tms;
640
641 if (tm_list)
642 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
643 if (!ret)
644 ret = __tree_mod_log_insert(fs_info, tm);
645
b1a09f1e 646 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
647 if (ret)
648 goto free_tms;
649 kfree(tm_list);
650
651 return ret;
652
653free_tms:
654 if (tm_list) {
655 for (i = 0; i < nritems; i++)
656 kfree(tm_list[i]);
657 kfree(tm_list);
658 }
659 kfree(tm);
660
661 return ret;
bd989ba3
JS
662}
663
664static struct tree_mod_elem *
665__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
666 int smallest)
667{
668 struct rb_root *tm_root;
669 struct rb_node *node;
670 struct tree_mod_elem *cur = NULL;
671 struct tree_mod_elem *found = NULL;
bd989ba3 672
b1a09f1e 673 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
674 tm_root = &fs_info->tree_mod_log;
675 node = tm_root->rb_node;
676 while (node) {
6b4df8b6 677 cur = rb_entry(node, struct tree_mod_elem, node);
298cfd36 678 if (cur->logical < start) {
bd989ba3 679 node = node->rb_left;
298cfd36 680 } else if (cur->logical > start) {
bd989ba3 681 node = node->rb_right;
097b8a7c 682 } else if (cur->seq < min_seq) {
bd989ba3
JS
683 node = node->rb_left;
684 } else if (!smallest) {
685 /* we want the node with the highest seq */
686 if (found)
097b8a7c 687 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
688 found = cur;
689 node = node->rb_left;
097b8a7c 690 } else if (cur->seq > min_seq) {
bd989ba3
JS
691 /* we want the node with the smallest seq */
692 if (found)
097b8a7c 693 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
694 found = cur;
695 node = node->rb_right;
696 } else {
697 found = cur;
698 break;
699 }
700 }
b1a09f1e 701 read_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
702
703 return found;
704}
705
706/*
707 * this returns the element from the log with the smallest time sequence
708 * value that's in the log (the oldest log item). any element with a time
709 * sequence lower than min_seq will be ignored.
710 */
711static struct tree_mod_elem *
712tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
713 u64 min_seq)
714{
715 return __tree_mod_log_search(fs_info, start, min_seq, 1);
716}
717
718/*
719 * this returns the element from the log with the largest time sequence
720 * value that's in the log (the most recent log item). any element with
721 * a time sequence lower than min_seq will be ignored.
722 */
723static struct tree_mod_elem *
724tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
725{
726 return __tree_mod_log_search(fs_info, start, min_seq, 0);
727}
728
5de865ee 729static noinline int
bd989ba3
JS
730tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
731 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 732 unsigned long src_offset, int nr_items)
bd989ba3 733{
5de865ee
FDBM
734 int ret = 0;
735 struct tree_mod_elem **tm_list = NULL;
736 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 737 int i;
5de865ee 738 int locked = 0;
bd989ba3 739
5de865ee
FDBM
740 if (!tree_mod_need_log(fs_info, NULL))
741 return 0;
bd989ba3 742
c8cc6341 743 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
744 return 0;
745
31e818fe 746 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
747 GFP_NOFS);
748 if (!tm_list)
749 return -ENOMEM;
bd989ba3 750
5de865ee
FDBM
751 tm_list_add = tm_list;
752 tm_list_rem = tm_list + nr_items;
bd989ba3 753 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
754 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
755 MOD_LOG_KEY_REMOVE, GFP_NOFS);
756 if (!tm_list_rem[i]) {
757 ret = -ENOMEM;
758 goto free_tms;
759 }
760
761 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
762 MOD_LOG_KEY_ADD, GFP_NOFS);
763 if (!tm_list_add[i]) {
764 ret = -ENOMEM;
765 goto free_tms;
766 }
767 }
768
769 if (tree_mod_dont_log(fs_info, NULL))
770 goto free_tms;
771 locked = 1;
772
773 for (i = 0; i < nr_items; i++) {
774 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
775 if (ret)
776 goto free_tms;
777 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
778 if (ret)
779 goto free_tms;
bd989ba3 780 }
5de865ee 781
b1a09f1e 782 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
783 kfree(tm_list);
784
785 return 0;
786
787free_tms:
788 for (i = 0; i < nr_items * 2; i++) {
789 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
790 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
791 kfree(tm_list[i]);
792 }
793 if (locked)
b1a09f1e 794 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
795 kfree(tm_list);
796
797 return ret;
bd989ba3
JS
798}
799
db7279a2 800static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
bd989ba3 801{
5de865ee
FDBM
802 struct tree_mod_elem **tm_list = NULL;
803 int nritems = 0;
804 int i;
805 int ret = 0;
806
807 if (btrfs_header_level(eb) == 0)
808 return 0;
809
db7279a2 810 if (!tree_mod_need_log(eb->fs_info, NULL))
5de865ee
FDBM
811 return 0;
812
813 nritems = btrfs_header_nritems(eb);
31e818fe 814 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
815 if (!tm_list)
816 return -ENOMEM;
817
818 for (i = 0; i < nritems; i++) {
819 tm_list[i] = alloc_tree_mod_elem(eb, i,
820 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
821 if (!tm_list[i]) {
822 ret = -ENOMEM;
823 goto free_tms;
824 }
825 }
826
db7279a2 827 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
828 goto free_tms;
829
db7279a2 830 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
b1a09f1e 831 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
832 if (ret)
833 goto free_tms;
834 kfree(tm_list);
835
836 return 0;
837
838free_tms:
839 for (i = 0; i < nritems; i++)
840 kfree(tm_list[i]);
841 kfree(tm_list);
842
843 return ret;
bd989ba3
JS
844}
845
5d4f98a2
YZ
846/*
847 * check if the tree block can be shared by multiple trees
848 */
849int btrfs_block_can_be_shared(struct btrfs_root *root,
850 struct extent_buffer *buf)
851{
852 /*
01327610 853 * Tree blocks not in reference counted trees and tree roots
5d4f98a2
YZ
854 * are never shared. If a block was allocated after the last
855 * snapshot and the block was not allocated by tree relocation,
856 * we know the block is not shared.
857 */
27cdeb70 858 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
859 buf != root->node && buf != root->commit_root &&
860 (btrfs_header_generation(buf) <=
861 btrfs_root_last_snapshot(&root->root_item) ||
862 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
863 return 1;
a79865c6 864
5d4f98a2
YZ
865 return 0;
866}
867
868static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
869 struct btrfs_root *root,
870 struct extent_buffer *buf,
f0486c68
YZ
871 struct extent_buffer *cow,
872 int *last_ref)
5d4f98a2 873{
0b246afa 874 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
875 u64 refs;
876 u64 owner;
877 u64 flags;
878 u64 new_flags = 0;
879 int ret;
880
881 /*
882 * Backrefs update rules:
883 *
884 * Always use full backrefs for extent pointers in tree block
885 * allocated by tree relocation.
886 *
887 * If a shared tree block is no longer referenced by its owner
888 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
889 * use full backrefs for extent pointers in tree block.
890 *
891 * If a tree block is been relocating
892 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
893 * use full backrefs for extent pointers in tree block.
894 * The reason for this is some operations (such as drop tree)
895 * are only allowed for blocks use full backrefs.
896 */
897
898 if (btrfs_block_can_be_shared(root, buf)) {
2ff7e61e 899 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
3173a18f
JB
900 btrfs_header_level(buf), 1,
901 &refs, &flags);
be1a5564
MF
902 if (ret)
903 return ret;
e5df9573
MF
904 if (refs == 0) {
905 ret = -EROFS;
0b246afa 906 btrfs_handle_fs_error(fs_info, ret, NULL);
e5df9573
MF
907 return ret;
908 }
5d4f98a2
YZ
909 } else {
910 refs = 1;
911 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
912 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
913 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
914 else
915 flags = 0;
916 }
917
918 owner = btrfs_header_owner(buf);
919 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
920 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
921
922 if (refs > 1) {
923 if ((owner == root->root_key.objectid ||
924 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
925 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 926 ret = btrfs_inc_ref(trans, root, buf, 1);
692826b2
JM
927 if (ret)
928 return ret;
5d4f98a2
YZ
929
930 if (root->root_key.objectid ==
931 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 932 ret = btrfs_dec_ref(trans, root, buf, 0);
692826b2
JM
933 if (ret)
934 return ret;
e339a6b0 935 ret = btrfs_inc_ref(trans, root, cow, 1);
692826b2
JM
936 if (ret)
937 return ret;
5d4f98a2
YZ
938 }
939 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
940 } else {
941
942 if (root->root_key.objectid ==
943 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 944 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 945 else
e339a6b0 946 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
947 if (ret)
948 return ret;
5d4f98a2
YZ
949 }
950 if (new_flags != 0) {
b1c79e09
JB
951 int level = btrfs_header_level(buf);
952
2ff7e61e 953 ret = btrfs_set_disk_extent_flags(trans, fs_info,
5d4f98a2
YZ
954 buf->start,
955 buf->len,
b1c79e09 956 new_flags, level, 0);
be1a5564
MF
957 if (ret)
958 return ret;
5d4f98a2
YZ
959 }
960 } else {
961 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
962 if (root->root_key.objectid ==
963 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 964 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 965 else
e339a6b0 966 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
967 if (ret)
968 return ret;
e339a6b0 969 ret = btrfs_dec_ref(trans, root, buf, 1);
692826b2
JM
970 if (ret)
971 return ret;
5d4f98a2 972 }
7c302b49 973 clean_tree_block(fs_info, buf);
f0486c68 974 *last_ref = 1;
5d4f98a2
YZ
975 }
976 return 0;
977}
978
a6279470
FM
979static struct extent_buffer *alloc_tree_block_no_bg_flush(
980 struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 u64 parent_start,
983 const struct btrfs_disk_key *disk_key,
984 int level,
985 u64 hint,
986 u64 empty_size)
987{
988 struct btrfs_fs_info *fs_info = root->fs_info;
989 struct extent_buffer *ret;
990
991 /*
992 * If we are COWing a node/leaf from the extent, chunk, device or free
993 * space trees, make sure that we do not finish block group creation of
994 * pending block groups. We do this to avoid a deadlock.
995 * COWing can result in allocation of a new chunk, and flushing pending
996 * block groups (btrfs_create_pending_block_groups()) can be triggered
997 * when finishing allocation of a new chunk. Creation of a pending block
998 * group modifies the extent, chunk, device and free space trees,
999 * therefore we could deadlock with ourselves since we are holding a
1000 * lock on an extent buffer that btrfs_create_pending_block_groups() may
1001 * try to COW later.
1002 * For similar reasons, we also need to delay flushing pending block
1003 * groups when splitting a leaf or node, from one of those trees, since
1004 * we are holding a write lock on it and its parent or when inserting a
1005 * new root node for one of those trees.
1006 */
1007 if (root == fs_info->extent_root ||
1008 root == fs_info->chunk_root ||
1009 root == fs_info->dev_root ||
1010 root == fs_info->free_space_root)
1011 trans->can_flush_pending_bgs = false;
1012
1013 ret = btrfs_alloc_tree_block(trans, root, parent_start,
1014 root->root_key.objectid, disk_key, level,
1015 hint, empty_size);
1016 trans->can_flush_pending_bgs = true;
1017
1018 return ret;
1019}
1020
d352ac68 1021/*
d397712b
CM
1022 * does the dirty work in cow of a single block. The parent block (if
1023 * supplied) is updated to point to the new cow copy. The new buffer is marked
1024 * dirty and returned locked. If you modify the block it needs to be marked
1025 * dirty again.
d352ac68
CM
1026 *
1027 * search_start -- an allocation hint for the new block
1028 *
d397712b
CM
1029 * empty_size -- a hint that you plan on doing more cow. This is the size in
1030 * bytes the allocator should try to find free next to the block it returns.
1031 * This is just a hint and may be ignored by the allocator.
d352ac68 1032 */
d397712b 1033static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1034 struct btrfs_root *root,
1035 struct extent_buffer *buf,
1036 struct extent_buffer *parent, int parent_slot,
1037 struct extent_buffer **cow_ret,
9fa8cfe7 1038 u64 search_start, u64 empty_size)
02217ed2 1039{
0b246afa 1040 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2 1041 struct btrfs_disk_key disk_key;
5f39d397 1042 struct extent_buffer *cow;
be1a5564 1043 int level, ret;
f0486c68 1044 int last_ref = 0;
925baedd 1045 int unlock_orig = 0;
0f5053eb 1046 u64 parent_start = 0;
7bb86316 1047
925baedd
CM
1048 if (*cow_ret == buf)
1049 unlock_orig = 1;
1050
b9447ef8 1051 btrfs_assert_tree_locked(buf);
925baedd 1052
27cdeb70 1053 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 1054 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
1055 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1056 trans->transid != root->last_trans);
5f39d397 1057
7bb86316 1058 level = btrfs_header_level(buf);
31840ae1 1059
5d4f98a2
YZ
1060 if (level == 0)
1061 btrfs_item_key(buf, &disk_key, 0);
1062 else
1063 btrfs_node_key(buf, &disk_key, 0);
1064
0f5053eb
GR
1065 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1066 parent_start = parent->start;
5d4f98a2 1067
a6279470
FM
1068 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1069 level, search_start, empty_size);
54aa1f4d
CM
1070 if (IS_ERR(cow))
1071 return PTR_ERR(cow);
6702ed49 1072
b4ce94de
CM
1073 /* cow is set to blocking by btrfs_init_new_buffer */
1074
58e8012c 1075 copy_extent_buffer_full(cow, buf);
db94535d 1076 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1077 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1078 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1079 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1080 BTRFS_HEADER_FLAG_RELOC);
1081 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1082 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1083 else
1084 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1085
de37aa51 1086 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
2b82032c 1087
be1a5564 1088 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1089 if (ret) {
66642832 1090 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1091 return ret;
1092 }
1a40e23b 1093
27cdeb70 1094 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1095 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1096 if (ret) {
66642832 1097 btrfs_abort_transaction(trans, ret);
83d4cfd4 1098 return ret;
93314e3b 1099 }
83d4cfd4 1100 }
3fd0a558 1101
02217ed2 1102 if (buf == root->node) {
925baedd 1103 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1104 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1105 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1106 parent_start = buf->start;
925baedd 1107
5f39d397 1108 extent_buffer_get(cow);
d9d19a01
DS
1109 ret = tree_mod_log_insert_root(root->node, cow, 1);
1110 BUG_ON(ret < 0);
240f62c8 1111 rcu_assign_pointer(root->node, cow);
925baedd 1112
f0486c68 1113 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1114 last_ref);
5f39d397 1115 free_extent_buffer(buf);
0b86a832 1116 add_root_to_dirty_list(root);
02217ed2 1117 } else {
5d4f98a2 1118 WARN_ON(trans->transid != btrfs_header_generation(parent));
e09c2efe 1119 tree_mod_log_insert_key(parent, parent_slot,
c8cc6341 1120 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1121 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1122 cow->start);
74493f7a
CM
1123 btrfs_set_node_ptr_generation(parent, parent_slot,
1124 trans->transid);
d6025579 1125 btrfs_mark_buffer_dirty(parent);
5de865ee 1126 if (last_ref) {
db7279a2 1127 ret = tree_mod_log_free_eb(buf);
5de865ee 1128 if (ret) {
66642832 1129 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1130 return ret;
1131 }
1132 }
f0486c68 1133 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1134 last_ref);
02217ed2 1135 }
925baedd
CM
1136 if (unlock_orig)
1137 btrfs_tree_unlock(buf);
3083ee2e 1138 free_extent_buffer_stale(buf);
ccd467d6 1139 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1140 *cow_ret = cow;
02217ed2
CM
1141 return 0;
1142}
1143
5d9e75c4
JS
1144/*
1145 * returns the logical address of the oldest predecessor of the given root.
1146 * entries older than time_seq are ignored.
1147 */
bcd24dab
DS
1148static struct tree_mod_elem *__tree_mod_log_oldest_root(
1149 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1150{
1151 struct tree_mod_elem *tm;
1152 struct tree_mod_elem *found = NULL;
30b0463a 1153 u64 root_logical = eb_root->start;
5d9e75c4
JS
1154 int looped = 0;
1155
1156 if (!time_seq)
35a3621b 1157 return NULL;
5d9e75c4
JS
1158
1159 /*
298cfd36
CR
1160 * the very last operation that's logged for a root is the
1161 * replacement operation (if it is replaced at all). this has
1162 * the logical address of the *new* root, making it the very
1163 * first operation that's logged for this root.
5d9e75c4
JS
1164 */
1165 while (1) {
bcd24dab 1166 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
5d9e75c4
JS
1167 time_seq);
1168 if (!looped && !tm)
35a3621b 1169 return NULL;
5d9e75c4 1170 /*
28da9fb4
JS
1171 * if there are no tree operation for the oldest root, we simply
1172 * return it. this should only happen if that (old) root is at
1173 * level 0.
5d9e75c4 1174 */
28da9fb4
JS
1175 if (!tm)
1176 break;
5d9e75c4 1177
28da9fb4
JS
1178 /*
1179 * if there's an operation that's not a root replacement, we
1180 * found the oldest version of our root. normally, we'll find a
1181 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1182 */
5d9e75c4
JS
1183 if (tm->op != MOD_LOG_ROOT_REPLACE)
1184 break;
1185
1186 found = tm;
1187 root_logical = tm->old_root.logical;
5d9e75c4
JS
1188 looped = 1;
1189 }
1190
a95236d9
JS
1191 /* if there's no old root to return, return what we found instead */
1192 if (!found)
1193 found = tm;
1194
5d9e75c4
JS
1195 return found;
1196}
1197
1198/*
1199 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1200 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1201 * time_seq).
1202 */
1203static void
f1ca7e98
JB
1204__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1205 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1206{
1207 u32 n;
1208 struct rb_node *next;
1209 struct tree_mod_elem *tm = first_tm;
1210 unsigned long o_dst;
1211 unsigned long o_src;
1212 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1213
1214 n = btrfs_header_nritems(eb);
b1a09f1e 1215 read_lock(&fs_info->tree_mod_log_lock);
097b8a7c 1216 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1217 /*
1218 * all the operations are recorded with the operator used for
1219 * the modification. as we're going backwards, we do the
1220 * opposite of each operation here.
1221 */
1222 switch (tm->op) {
1223 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1224 BUG_ON(tm->slot < n);
1c697d4a 1225 /* Fallthrough */
95c80bb1 1226 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1227 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1228 btrfs_set_node_key(eb, &tm->key, tm->slot);
1229 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1230 btrfs_set_node_ptr_generation(eb, tm->slot,
1231 tm->generation);
4c3e6969 1232 n++;
5d9e75c4
JS
1233 break;
1234 case MOD_LOG_KEY_REPLACE:
1235 BUG_ON(tm->slot >= n);
1236 btrfs_set_node_key(eb, &tm->key, tm->slot);
1237 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1238 btrfs_set_node_ptr_generation(eb, tm->slot,
1239 tm->generation);
1240 break;
1241 case MOD_LOG_KEY_ADD:
19956c7e 1242 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1243 n--;
1244 break;
1245 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1246 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1247 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1248 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1249 tm->move.nr_items * p_size);
1250 break;
1251 case MOD_LOG_ROOT_REPLACE:
1252 /*
1253 * this operation is special. for roots, this must be
1254 * handled explicitly before rewinding.
1255 * for non-roots, this operation may exist if the node
1256 * was a root: root A -> child B; then A gets empty and
1257 * B is promoted to the new root. in the mod log, we'll
1258 * have a root-replace operation for B, a tree block
1259 * that is no root. we simply ignore that operation.
1260 */
1261 break;
1262 }
1263 next = rb_next(&tm->node);
1264 if (!next)
1265 break;
6b4df8b6 1266 tm = rb_entry(next, struct tree_mod_elem, node);
298cfd36 1267 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1268 break;
1269 }
b1a09f1e 1270 read_unlock(&fs_info->tree_mod_log_lock);
5d9e75c4
JS
1271 btrfs_set_header_nritems(eb, n);
1272}
1273
47fb091f 1274/*
01327610 1275 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1276 * is returned. If rewind operations happen, a fresh buffer is returned. The
1277 * returned buffer is always read-locked. If the returned buffer is not the
1278 * input buffer, the lock on the input buffer is released and the input buffer
1279 * is freed (its refcount is decremented).
1280 */
5d9e75c4 1281static struct extent_buffer *
9ec72677
JB
1282tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1283 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1284{
1285 struct extent_buffer *eb_rewin;
1286 struct tree_mod_elem *tm;
1287
1288 if (!time_seq)
1289 return eb;
1290
1291 if (btrfs_header_level(eb) == 0)
1292 return eb;
1293
1294 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1295 if (!tm)
1296 return eb;
1297
9ec72677 1298 btrfs_set_path_blocking(path);
300aa896 1299 btrfs_set_lock_blocking_read(eb);
9ec72677 1300
5d9e75c4
JS
1301 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1302 BUG_ON(tm->slot != 0);
da17066c 1303 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1304 if (!eb_rewin) {
9ec72677 1305 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1306 free_extent_buffer(eb);
1307 return NULL;
1308 }
5d9e75c4
JS
1309 btrfs_set_header_bytenr(eb_rewin, eb->start);
1310 btrfs_set_header_backref_rev(eb_rewin,
1311 btrfs_header_backref_rev(eb));
1312 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1313 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1314 } else {
1315 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1316 if (!eb_rewin) {
9ec72677 1317 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1318 free_extent_buffer(eb);
1319 return NULL;
1320 }
5d9e75c4
JS
1321 }
1322
9ec72677 1323 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1324 free_extent_buffer(eb);
1325
47fb091f 1326 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1327 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1328 WARN_ON(btrfs_header_nritems(eb_rewin) >
da17066c 1329 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1330
1331 return eb_rewin;
1332}
1333
8ba97a15
JS
1334/*
1335 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1336 * value. If there are no changes, the current root->root_node is returned. If
1337 * anything changed in between, there's a fresh buffer allocated on which the
1338 * rewind operations are done. In any case, the returned buffer is read locked.
1339 * Returns NULL on error (with no locks held).
1340 */
5d9e75c4
JS
1341static inline struct extent_buffer *
1342get_old_root(struct btrfs_root *root, u64 time_seq)
1343{
0b246afa 1344 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4 1345 struct tree_mod_elem *tm;
30b0463a
JS
1346 struct extent_buffer *eb = NULL;
1347 struct extent_buffer *eb_root;
7bfdcf7f 1348 struct extent_buffer *old;
a95236d9 1349 struct tree_mod_root *old_root = NULL;
4325edd0 1350 u64 old_generation = 0;
a95236d9 1351 u64 logical;
581c1760 1352 int level;
5d9e75c4 1353
30b0463a 1354 eb_root = btrfs_read_lock_root_node(root);
bcd24dab 1355 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5d9e75c4 1356 if (!tm)
30b0463a 1357 return eb_root;
5d9e75c4 1358
a95236d9
JS
1359 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1360 old_root = &tm->old_root;
1361 old_generation = tm->generation;
1362 logical = old_root->logical;
581c1760 1363 level = old_root->level;
a95236d9 1364 } else {
30b0463a 1365 logical = eb_root->start;
581c1760 1366 level = btrfs_header_level(eb_root);
a95236d9 1367 }
5d9e75c4 1368
0b246afa 1369 tm = tree_mod_log_search(fs_info, logical, time_seq);
834328a8 1370 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1371 btrfs_tree_read_unlock(eb_root);
1372 free_extent_buffer(eb_root);
581c1760 1373 old = read_tree_block(fs_info, logical, 0, level, NULL);
64c043de
LB
1374 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1375 if (!IS_ERR(old))
1376 free_extent_buffer(old);
0b246afa
JM
1377 btrfs_warn(fs_info,
1378 "failed to read tree block %llu from get_old_root",
1379 logical);
834328a8 1380 } else {
7bfdcf7f
LB
1381 eb = btrfs_clone_extent_buffer(old);
1382 free_extent_buffer(old);
834328a8
JS
1383 }
1384 } else if (old_root) {
30b0463a
JS
1385 btrfs_tree_read_unlock(eb_root);
1386 free_extent_buffer(eb_root);
0b246afa 1387 eb = alloc_dummy_extent_buffer(fs_info, logical);
834328a8 1388 } else {
300aa896 1389 btrfs_set_lock_blocking_read(eb_root);
30b0463a 1390 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1391 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1392 free_extent_buffer(eb_root);
834328a8
JS
1393 }
1394
8ba97a15
JS
1395 if (!eb)
1396 return NULL;
1397 btrfs_tree_read_lock(eb);
a95236d9 1398 if (old_root) {
5d9e75c4
JS
1399 btrfs_set_header_bytenr(eb, eb->start);
1400 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1401 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1402 btrfs_set_header_level(eb, old_root->level);
1403 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1404 }
28da9fb4 1405 if (tm)
0b246afa 1406 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
28da9fb4
JS
1407 else
1408 WARN_ON(btrfs_header_level(eb) != 0);
0b246afa 1409 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1410
1411 return eb;
1412}
1413
5b6602e7
JS
1414int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1415{
1416 struct tree_mod_elem *tm;
1417 int level;
30b0463a 1418 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1419
bcd24dab 1420 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5b6602e7
JS
1421 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1422 level = tm->old_root.level;
1423 } else {
30b0463a 1424 level = btrfs_header_level(eb_root);
5b6602e7 1425 }
30b0463a 1426 free_extent_buffer(eb_root);
5b6602e7
JS
1427
1428 return level;
1429}
1430
5d4f98a2
YZ
1431static inline int should_cow_block(struct btrfs_trans_handle *trans,
1432 struct btrfs_root *root,
1433 struct extent_buffer *buf)
1434{
f5ee5c9a 1435 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1436 return 0;
fccb84c9 1437
d1980131
DS
1438 /* Ensure we can see the FORCE_COW bit */
1439 smp_mb__before_atomic();
f1ebcc74
LB
1440
1441 /*
1442 * We do not need to cow a block if
1443 * 1) this block is not created or changed in this transaction;
1444 * 2) this block does not belong to TREE_RELOC tree;
1445 * 3) the root is not forced COW.
1446 *
1447 * What is forced COW:
01327610 1448 * when we create snapshot during committing the transaction,
52042d8e 1449 * after we've finished copying src root, we must COW the shared
f1ebcc74
LB
1450 * block to ensure the metadata consistency.
1451 */
5d4f98a2
YZ
1452 if (btrfs_header_generation(buf) == trans->transid &&
1453 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1454 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1455 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1456 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1457 return 0;
1458 return 1;
1459}
1460
d352ac68
CM
1461/*
1462 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1463 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1464 * once per transaction, as long as it hasn't been written yet
1465 */
d397712b 1466noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1467 struct btrfs_root *root, struct extent_buffer *buf,
1468 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1469 struct extent_buffer **cow_ret)
6702ed49 1470{
0b246afa 1471 struct btrfs_fs_info *fs_info = root->fs_info;
6702ed49 1472 u64 search_start;
f510cfec 1473 int ret;
dc17ff8f 1474
83354f07
JB
1475 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1476 btrfs_err(fs_info,
1477 "COW'ing blocks on a fs root that's being dropped");
1478
0b246afa 1479 if (trans->transaction != fs_info->running_transaction)
31b1a2bd 1480 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1481 trans->transid,
0b246afa 1482 fs_info->running_transaction->transid);
31b1a2bd 1483
0b246afa 1484 if (trans->transid != fs_info->generation)
31b1a2bd 1485 WARN(1, KERN_CRIT "trans %llu running %llu\n",
0b246afa 1486 trans->transid, fs_info->generation);
dc17ff8f 1487
5d4f98a2 1488 if (!should_cow_block(trans, root, buf)) {
64c12921 1489 trans->dirty = true;
6702ed49
CM
1490 *cow_ret = buf;
1491 return 0;
1492 }
c487685d 1493
ee22184b 1494 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1495
1496 if (parent)
8bead258
DS
1497 btrfs_set_lock_blocking_write(parent);
1498 btrfs_set_lock_blocking_write(buf);
b4ce94de 1499
f616f5cd
QW
1500 /*
1501 * Before CoWing this block for later modification, check if it's
1502 * the subtree root and do the delayed subtree trace if needed.
1503 *
1504 * Also We don't care about the error, as it's handled internally.
1505 */
1506 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
f510cfec 1507 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1508 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1509
1510 trace_btrfs_cow_block(root, buf, *cow_ret);
1511
f510cfec 1512 return ret;
6702ed49
CM
1513}
1514
d352ac68
CM
1515/*
1516 * helper function for defrag to decide if two blocks pointed to by a
1517 * node are actually close by
1518 */
6b80053d 1519static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1520{
6b80053d 1521 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1522 return 1;
6b80053d 1523 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1524 return 1;
1525 return 0;
1526}
1527
081e9573
CM
1528/*
1529 * compare two keys in a memcmp fashion
1530 */
310712b2
OS
1531static int comp_keys(const struct btrfs_disk_key *disk,
1532 const struct btrfs_key *k2)
081e9573
CM
1533{
1534 struct btrfs_key k1;
1535
1536 btrfs_disk_key_to_cpu(&k1, disk);
1537
20736aba 1538 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1539}
1540
f3465ca4
JB
1541/*
1542 * same as comp_keys only with two btrfs_key's
1543 */
310712b2 1544int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
f3465ca4
JB
1545{
1546 if (k1->objectid > k2->objectid)
1547 return 1;
1548 if (k1->objectid < k2->objectid)
1549 return -1;
1550 if (k1->type > k2->type)
1551 return 1;
1552 if (k1->type < k2->type)
1553 return -1;
1554 if (k1->offset > k2->offset)
1555 return 1;
1556 if (k1->offset < k2->offset)
1557 return -1;
1558 return 0;
1559}
081e9573 1560
d352ac68
CM
1561/*
1562 * this is used by the defrag code to go through all the
1563 * leaves pointed to by a node and reallocate them so that
1564 * disk order is close to key order
1565 */
6702ed49 1566int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1567 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1568 int start_slot, u64 *last_ret,
a6b6e75e 1569 struct btrfs_key *progress)
6702ed49 1570{
0b246afa 1571 struct btrfs_fs_info *fs_info = root->fs_info;
6b80053d 1572 struct extent_buffer *cur;
6702ed49 1573 u64 blocknr;
ca7a79ad 1574 u64 gen;
e9d0b13b
CM
1575 u64 search_start = *last_ret;
1576 u64 last_block = 0;
6702ed49
CM
1577 u64 other;
1578 u32 parent_nritems;
6702ed49
CM
1579 int end_slot;
1580 int i;
1581 int err = 0;
f2183bde 1582 int parent_level;
6b80053d
CM
1583 int uptodate;
1584 u32 blocksize;
081e9573
CM
1585 int progress_passed = 0;
1586 struct btrfs_disk_key disk_key;
6702ed49 1587
5708b959 1588 parent_level = btrfs_header_level(parent);
5708b959 1589
0b246afa
JM
1590 WARN_ON(trans->transaction != fs_info->running_transaction);
1591 WARN_ON(trans->transid != fs_info->generation);
86479a04 1592
6b80053d 1593 parent_nritems = btrfs_header_nritems(parent);
0b246afa 1594 blocksize = fs_info->nodesize;
5dfe2be7 1595 end_slot = parent_nritems - 1;
6702ed49 1596
5dfe2be7 1597 if (parent_nritems <= 1)
6702ed49
CM
1598 return 0;
1599
8bead258 1600 btrfs_set_lock_blocking_write(parent);
b4ce94de 1601
5dfe2be7 1602 for (i = start_slot; i <= end_slot; i++) {
581c1760 1603 struct btrfs_key first_key;
6702ed49 1604 int close = 1;
a6b6e75e 1605
081e9573
CM
1606 btrfs_node_key(parent, &disk_key, i);
1607 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1608 continue;
1609
1610 progress_passed = 1;
6b80053d 1611 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1612 gen = btrfs_node_ptr_generation(parent, i);
581c1760 1613 btrfs_node_key_to_cpu(parent, &first_key, i);
e9d0b13b
CM
1614 if (last_block == 0)
1615 last_block = blocknr;
5708b959 1616
6702ed49 1617 if (i > 0) {
6b80053d
CM
1618 other = btrfs_node_blockptr(parent, i - 1);
1619 close = close_blocks(blocknr, other, blocksize);
6702ed49 1620 }
5dfe2be7 1621 if (!close && i < end_slot) {
6b80053d
CM
1622 other = btrfs_node_blockptr(parent, i + 1);
1623 close = close_blocks(blocknr, other, blocksize);
6702ed49 1624 }
e9d0b13b
CM
1625 if (close) {
1626 last_block = blocknr;
6702ed49 1627 continue;
e9d0b13b 1628 }
6702ed49 1629
0b246afa 1630 cur = find_extent_buffer(fs_info, blocknr);
6b80053d 1631 if (cur)
b9fab919 1632 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1633 else
1634 uptodate = 0;
5708b959 1635 if (!cur || !uptodate) {
6b80053d 1636 if (!cur) {
581c1760
QW
1637 cur = read_tree_block(fs_info, blocknr, gen,
1638 parent_level - 1,
1639 &first_key);
64c043de
LB
1640 if (IS_ERR(cur)) {
1641 return PTR_ERR(cur);
1642 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1643 free_extent_buffer(cur);
97d9a8a4 1644 return -EIO;
416bc658 1645 }
6b80053d 1646 } else if (!uptodate) {
581c1760
QW
1647 err = btrfs_read_buffer(cur, gen,
1648 parent_level - 1,&first_key);
018642a1
TI
1649 if (err) {
1650 free_extent_buffer(cur);
1651 return err;
1652 }
f2183bde 1653 }
6702ed49 1654 }
e9d0b13b 1655 if (search_start == 0)
6b80053d 1656 search_start = last_block;
e9d0b13b 1657
e7a84565 1658 btrfs_tree_lock(cur);
8bead258 1659 btrfs_set_lock_blocking_write(cur);
6b80053d 1660 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1661 &cur, search_start,
6b80053d 1662 min(16 * blocksize,
9fa8cfe7 1663 (end_slot - i) * blocksize));
252c38f0 1664 if (err) {
e7a84565 1665 btrfs_tree_unlock(cur);
6b80053d 1666 free_extent_buffer(cur);
6702ed49 1667 break;
252c38f0 1668 }
e7a84565
CM
1669 search_start = cur->start;
1670 last_block = cur->start;
f2183bde 1671 *last_ret = search_start;
e7a84565
CM
1672 btrfs_tree_unlock(cur);
1673 free_extent_buffer(cur);
6702ed49
CM
1674 }
1675 return err;
1676}
1677
74123bd7 1678/*
5f39d397
CM
1679 * search for key in the extent_buffer. The items start at offset p,
1680 * and they are item_size apart. There are 'max' items in p.
1681 *
74123bd7
CM
1682 * the slot in the array is returned via slot, and it points to
1683 * the place where you would insert key if it is not found in
1684 * the array.
1685 *
1686 * slot may point to max if the key is bigger than all of the keys
1687 */
e02119d5 1688static noinline int generic_bin_search(struct extent_buffer *eb,
310712b2
OS
1689 unsigned long p, int item_size,
1690 const struct btrfs_key *key,
e02119d5 1691 int max, int *slot)
be0e5c09
CM
1692{
1693 int low = 0;
1694 int high = max;
1695 int mid;
1696 int ret;
479965d6 1697 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1698 struct btrfs_disk_key unaligned;
1699 unsigned long offset;
5f39d397
CM
1700 char *kaddr = NULL;
1701 unsigned long map_start = 0;
1702 unsigned long map_len = 0;
479965d6 1703 int err;
be0e5c09 1704
5e24e9af
LB
1705 if (low > high) {
1706 btrfs_err(eb->fs_info,
1707 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1708 __func__, low, high, eb->start,
1709 btrfs_header_owner(eb), btrfs_header_level(eb));
1710 return -EINVAL;
1711 }
1712
d397712b 1713 while (low < high) {
be0e5c09 1714 mid = (low + high) / 2;
5f39d397
CM
1715 offset = p + mid * item_size;
1716
a6591715 1717 if (!kaddr || offset < map_start ||
5f39d397
CM
1718 (offset + sizeof(struct btrfs_disk_key)) >
1719 map_start + map_len) {
934d375b
CM
1720
1721 err = map_private_extent_buffer(eb, offset,
479965d6 1722 sizeof(struct btrfs_disk_key),
a6591715 1723 &kaddr, &map_start, &map_len);
479965d6
CM
1724
1725 if (!err) {
1726 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1727 map_start);
415b35a5 1728 } else if (err == 1) {
479965d6
CM
1729 read_extent_buffer(eb, &unaligned,
1730 offset, sizeof(unaligned));
1731 tmp = &unaligned;
415b35a5
LB
1732 } else {
1733 return err;
479965d6 1734 }
5f39d397 1735
5f39d397
CM
1736 } else {
1737 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1738 map_start);
1739 }
be0e5c09
CM
1740 ret = comp_keys(tmp, key);
1741
1742 if (ret < 0)
1743 low = mid + 1;
1744 else if (ret > 0)
1745 high = mid;
1746 else {
1747 *slot = mid;
1748 return 0;
1749 }
1750 }
1751 *slot = low;
1752 return 1;
1753}
1754
97571fd0
CM
1755/*
1756 * simple bin_search frontend that does the right thing for
1757 * leaves vs nodes
1758 */
a74b35ec
NB
1759int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1760 int level, int *slot)
be0e5c09 1761{
f775738f 1762 if (level == 0)
5f39d397
CM
1763 return generic_bin_search(eb,
1764 offsetof(struct btrfs_leaf, items),
0783fcfc 1765 sizeof(struct btrfs_item),
5f39d397 1766 key, btrfs_header_nritems(eb),
7518a238 1767 slot);
f775738f 1768 else
5f39d397
CM
1769 return generic_bin_search(eb,
1770 offsetof(struct btrfs_node, ptrs),
123abc88 1771 sizeof(struct btrfs_key_ptr),
5f39d397 1772 key, btrfs_header_nritems(eb),
7518a238 1773 slot);
be0e5c09
CM
1774}
1775
f0486c68
YZ
1776static void root_add_used(struct btrfs_root *root, u32 size)
1777{
1778 spin_lock(&root->accounting_lock);
1779 btrfs_set_root_used(&root->root_item,
1780 btrfs_root_used(&root->root_item) + size);
1781 spin_unlock(&root->accounting_lock);
1782}
1783
1784static void root_sub_used(struct btrfs_root *root, u32 size)
1785{
1786 spin_lock(&root->accounting_lock);
1787 btrfs_set_root_used(&root->root_item,
1788 btrfs_root_used(&root->root_item) - size);
1789 spin_unlock(&root->accounting_lock);
1790}
1791
d352ac68
CM
1792/* given a node and slot number, this reads the blocks it points to. The
1793 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1794 */
2ff7e61e
JM
1795static noinline struct extent_buffer *
1796read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1797 int slot)
bb803951 1798{
ca7a79ad 1799 int level = btrfs_header_level(parent);
416bc658 1800 struct extent_buffer *eb;
581c1760 1801 struct btrfs_key first_key;
416bc658 1802
fb770ae4
LB
1803 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1804 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1805
1806 BUG_ON(level == 0);
1807
581c1760 1808 btrfs_node_key_to_cpu(parent, &first_key, slot);
2ff7e61e 1809 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
581c1760
QW
1810 btrfs_node_ptr_generation(parent, slot),
1811 level - 1, &first_key);
fb770ae4
LB
1812 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1813 free_extent_buffer(eb);
1814 eb = ERR_PTR(-EIO);
416bc658
JB
1815 }
1816
1817 return eb;
bb803951
CM
1818}
1819
d352ac68
CM
1820/*
1821 * node level balancing, used to make sure nodes are in proper order for
1822 * item deletion. We balance from the top down, so we have to make sure
1823 * that a deletion won't leave an node completely empty later on.
1824 */
e02119d5 1825static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1826 struct btrfs_root *root,
1827 struct btrfs_path *path, int level)
bb803951 1828{
0b246afa 1829 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
1830 struct extent_buffer *right = NULL;
1831 struct extent_buffer *mid;
1832 struct extent_buffer *left = NULL;
1833 struct extent_buffer *parent = NULL;
bb803951
CM
1834 int ret = 0;
1835 int wret;
1836 int pslot;
bb803951 1837 int orig_slot = path->slots[level];
79f95c82 1838 u64 orig_ptr;
bb803951 1839
98e6b1eb 1840 ASSERT(level > 0);
bb803951 1841
5f39d397 1842 mid = path->nodes[level];
b4ce94de 1843
bd681513
CM
1844 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1845 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1846 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1847
1d4f8a0c 1848 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1849
a05a9bb1 1850 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1851 parent = path->nodes[level + 1];
a05a9bb1
LZ
1852 pslot = path->slots[level + 1];
1853 }
bb803951 1854
40689478
CM
1855 /*
1856 * deal with the case where there is only one pointer in the root
1857 * by promoting the node below to a root
1858 */
5f39d397
CM
1859 if (!parent) {
1860 struct extent_buffer *child;
bb803951 1861
5f39d397 1862 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1863 return 0;
1864
1865 /* promote the child to a root */
2ff7e61e 1866 child = read_node_slot(fs_info, mid, 0);
fb770ae4
LB
1867 if (IS_ERR(child)) {
1868 ret = PTR_ERR(child);
0b246afa 1869 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1870 goto enospc;
1871 }
1872
925baedd 1873 btrfs_tree_lock(child);
8bead258 1874 btrfs_set_lock_blocking_write(child);
9fa8cfe7 1875 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1876 if (ret) {
1877 btrfs_tree_unlock(child);
1878 free_extent_buffer(child);
1879 goto enospc;
1880 }
2f375ab9 1881
d9d19a01
DS
1882 ret = tree_mod_log_insert_root(root->node, child, 1);
1883 BUG_ON(ret < 0);
240f62c8 1884 rcu_assign_pointer(root->node, child);
925baedd 1885
0b86a832 1886 add_root_to_dirty_list(root);
925baedd 1887 btrfs_tree_unlock(child);
b4ce94de 1888
925baedd 1889 path->locks[level] = 0;
bb803951 1890 path->nodes[level] = NULL;
7c302b49 1891 clean_tree_block(fs_info, mid);
925baedd 1892 btrfs_tree_unlock(mid);
bb803951 1893 /* once for the path */
5f39d397 1894 free_extent_buffer(mid);
f0486c68
YZ
1895
1896 root_sub_used(root, mid->len);
5581a51a 1897 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1898 /* once for the root ptr */
3083ee2e 1899 free_extent_buffer_stale(mid);
f0486c68 1900 return 0;
bb803951 1901 }
5f39d397 1902 if (btrfs_header_nritems(mid) >
0b246afa 1903 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
bb803951
CM
1904 return 0;
1905
2ff7e61e 1906 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
1907 if (IS_ERR(left))
1908 left = NULL;
1909
5f39d397 1910 if (left) {
925baedd 1911 btrfs_tree_lock(left);
8bead258 1912 btrfs_set_lock_blocking_write(left);
5f39d397 1913 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1914 parent, pslot - 1, &left);
54aa1f4d
CM
1915 if (wret) {
1916 ret = wret;
1917 goto enospc;
1918 }
2cc58cf2 1919 }
fb770ae4 1920
2ff7e61e 1921 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
1922 if (IS_ERR(right))
1923 right = NULL;
1924
5f39d397 1925 if (right) {
925baedd 1926 btrfs_tree_lock(right);
8bead258 1927 btrfs_set_lock_blocking_write(right);
5f39d397 1928 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1929 parent, pslot + 1, &right);
2cc58cf2
CM
1930 if (wret) {
1931 ret = wret;
1932 goto enospc;
1933 }
1934 }
1935
1936 /* first, try to make some room in the middle buffer */
5f39d397
CM
1937 if (left) {
1938 orig_slot += btrfs_header_nritems(left);
2ff7e61e 1939 wret = push_node_left(trans, fs_info, left, mid, 1);
79f95c82
CM
1940 if (wret < 0)
1941 ret = wret;
bb803951 1942 }
79f95c82
CM
1943
1944 /*
1945 * then try to empty the right most buffer into the middle
1946 */
5f39d397 1947 if (right) {
2ff7e61e 1948 wret = push_node_left(trans, fs_info, mid, right, 1);
54aa1f4d 1949 if (wret < 0 && wret != -ENOSPC)
79f95c82 1950 ret = wret;
5f39d397 1951 if (btrfs_header_nritems(right) == 0) {
7c302b49 1952 clean_tree_block(fs_info, right);
925baedd 1953 btrfs_tree_unlock(right);
afe5fea7 1954 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 1955 root_sub_used(root, right->len);
5581a51a 1956 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1957 free_extent_buffer_stale(right);
f0486c68 1958 right = NULL;
bb803951 1959 } else {
5f39d397
CM
1960 struct btrfs_disk_key right_key;
1961 btrfs_node_key(right, &right_key, 0);
0e82bcfe
DS
1962 ret = tree_mod_log_insert_key(parent, pslot + 1,
1963 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1964 BUG_ON(ret < 0);
5f39d397
CM
1965 btrfs_set_node_key(parent, &right_key, pslot + 1);
1966 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1967 }
1968 }
5f39d397 1969 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1970 /*
1971 * we're not allowed to leave a node with one item in the
1972 * tree during a delete. A deletion from lower in the tree
1973 * could try to delete the only pointer in this node.
1974 * So, pull some keys from the left.
1975 * There has to be a left pointer at this point because
1976 * otherwise we would have pulled some pointers from the
1977 * right
1978 */
305a26af
MF
1979 if (!left) {
1980 ret = -EROFS;
0b246afa 1981 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1982 goto enospc;
1983 }
2ff7e61e 1984 wret = balance_node_right(trans, fs_info, mid, left);
54aa1f4d 1985 if (wret < 0) {
79f95c82 1986 ret = wret;
54aa1f4d
CM
1987 goto enospc;
1988 }
bce4eae9 1989 if (wret == 1) {
2ff7e61e 1990 wret = push_node_left(trans, fs_info, left, mid, 1);
bce4eae9
CM
1991 if (wret < 0)
1992 ret = wret;
1993 }
79f95c82
CM
1994 BUG_ON(wret == 1);
1995 }
5f39d397 1996 if (btrfs_header_nritems(mid) == 0) {
7c302b49 1997 clean_tree_block(fs_info, mid);
925baedd 1998 btrfs_tree_unlock(mid);
afe5fea7 1999 del_ptr(root, path, level + 1, pslot);
f0486c68 2000 root_sub_used(root, mid->len);
5581a51a 2001 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 2002 free_extent_buffer_stale(mid);
f0486c68 2003 mid = NULL;
79f95c82
CM
2004 } else {
2005 /* update the parent key to reflect our changes */
5f39d397
CM
2006 struct btrfs_disk_key mid_key;
2007 btrfs_node_key(mid, &mid_key, 0);
0e82bcfe
DS
2008 ret = tree_mod_log_insert_key(parent, pslot,
2009 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2010 BUG_ON(ret < 0);
5f39d397
CM
2011 btrfs_set_node_key(parent, &mid_key, pslot);
2012 btrfs_mark_buffer_dirty(parent);
79f95c82 2013 }
bb803951 2014
79f95c82 2015 /* update the path */
5f39d397
CM
2016 if (left) {
2017 if (btrfs_header_nritems(left) > orig_slot) {
2018 extent_buffer_get(left);
925baedd 2019 /* left was locked after cow */
5f39d397 2020 path->nodes[level] = left;
bb803951
CM
2021 path->slots[level + 1] -= 1;
2022 path->slots[level] = orig_slot;
925baedd
CM
2023 if (mid) {
2024 btrfs_tree_unlock(mid);
5f39d397 2025 free_extent_buffer(mid);
925baedd 2026 }
bb803951 2027 } else {
5f39d397 2028 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2029 path->slots[level] = orig_slot;
2030 }
2031 }
79f95c82 2032 /* double check we haven't messed things up */
e20d96d6 2033 if (orig_ptr !=
5f39d397 2034 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2035 BUG();
54aa1f4d 2036enospc:
925baedd
CM
2037 if (right) {
2038 btrfs_tree_unlock(right);
5f39d397 2039 free_extent_buffer(right);
925baedd
CM
2040 }
2041 if (left) {
2042 if (path->nodes[level] != left)
2043 btrfs_tree_unlock(left);
5f39d397 2044 free_extent_buffer(left);
925baedd 2045 }
bb803951
CM
2046 return ret;
2047}
2048
d352ac68
CM
2049/* Node balancing for insertion. Here we only split or push nodes around
2050 * when they are completely full. This is also done top down, so we
2051 * have to be pessimistic.
2052 */
d397712b 2053static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2054 struct btrfs_root *root,
2055 struct btrfs_path *path, int level)
e66f709b 2056{
0b246afa 2057 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
2058 struct extent_buffer *right = NULL;
2059 struct extent_buffer *mid;
2060 struct extent_buffer *left = NULL;
2061 struct extent_buffer *parent = NULL;
e66f709b
CM
2062 int ret = 0;
2063 int wret;
2064 int pslot;
2065 int orig_slot = path->slots[level];
e66f709b
CM
2066
2067 if (level == 0)
2068 return 1;
2069
5f39d397 2070 mid = path->nodes[level];
7bb86316 2071 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2072
a05a9bb1 2073 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2074 parent = path->nodes[level + 1];
a05a9bb1
LZ
2075 pslot = path->slots[level + 1];
2076 }
e66f709b 2077
5f39d397 2078 if (!parent)
e66f709b 2079 return 1;
e66f709b 2080
2ff7e61e 2081 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
2082 if (IS_ERR(left))
2083 left = NULL;
e66f709b
CM
2084
2085 /* first, try to make some room in the middle buffer */
5f39d397 2086 if (left) {
e66f709b 2087 u32 left_nr;
925baedd
CM
2088
2089 btrfs_tree_lock(left);
8bead258 2090 btrfs_set_lock_blocking_write(left);
b4ce94de 2091
5f39d397 2092 left_nr = btrfs_header_nritems(left);
0b246afa 2093 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2094 wret = 1;
2095 } else {
5f39d397 2096 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2097 pslot - 1, &left);
54aa1f4d
CM
2098 if (ret)
2099 wret = 1;
2100 else {
2ff7e61e 2101 wret = push_node_left(trans, fs_info,
971a1f66 2102 left, mid, 0);
54aa1f4d 2103 }
33ade1f8 2104 }
e66f709b
CM
2105 if (wret < 0)
2106 ret = wret;
2107 if (wret == 0) {
5f39d397 2108 struct btrfs_disk_key disk_key;
e66f709b 2109 orig_slot += left_nr;
5f39d397 2110 btrfs_node_key(mid, &disk_key, 0);
0e82bcfe
DS
2111 ret = tree_mod_log_insert_key(parent, pslot,
2112 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2113 BUG_ON(ret < 0);
5f39d397
CM
2114 btrfs_set_node_key(parent, &disk_key, pslot);
2115 btrfs_mark_buffer_dirty(parent);
2116 if (btrfs_header_nritems(left) > orig_slot) {
2117 path->nodes[level] = left;
e66f709b
CM
2118 path->slots[level + 1] -= 1;
2119 path->slots[level] = orig_slot;
925baedd 2120 btrfs_tree_unlock(mid);
5f39d397 2121 free_extent_buffer(mid);
e66f709b
CM
2122 } else {
2123 orig_slot -=
5f39d397 2124 btrfs_header_nritems(left);
e66f709b 2125 path->slots[level] = orig_slot;
925baedd 2126 btrfs_tree_unlock(left);
5f39d397 2127 free_extent_buffer(left);
e66f709b 2128 }
e66f709b
CM
2129 return 0;
2130 }
925baedd 2131 btrfs_tree_unlock(left);
5f39d397 2132 free_extent_buffer(left);
e66f709b 2133 }
2ff7e61e 2134 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
2135 if (IS_ERR(right))
2136 right = NULL;
e66f709b
CM
2137
2138 /*
2139 * then try to empty the right most buffer into the middle
2140 */
5f39d397 2141 if (right) {
33ade1f8 2142 u32 right_nr;
b4ce94de 2143
925baedd 2144 btrfs_tree_lock(right);
8bead258 2145 btrfs_set_lock_blocking_write(right);
b4ce94de 2146
5f39d397 2147 right_nr = btrfs_header_nritems(right);
0b246afa 2148 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2149 wret = 1;
2150 } else {
5f39d397
CM
2151 ret = btrfs_cow_block(trans, root, right,
2152 parent, pslot + 1,
9fa8cfe7 2153 &right);
54aa1f4d
CM
2154 if (ret)
2155 wret = 1;
2156 else {
2ff7e61e 2157 wret = balance_node_right(trans, fs_info,
5f39d397 2158 right, mid);
54aa1f4d 2159 }
33ade1f8 2160 }
e66f709b
CM
2161 if (wret < 0)
2162 ret = wret;
2163 if (wret == 0) {
5f39d397
CM
2164 struct btrfs_disk_key disk_key;
2165
2166 btrfs_node_key(right, &disk_key, 0);
0e82bcfe
DS
2167 ret = tree_mod_log_insert_key(parent, pslot + 1,
2168 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2169 BUG_ON(ret < 0);
5f39d397
CM
2170 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2171 btrfs_mark_buffer_dirty(parent);
2172
2173 if (btrfs_header_nritems(mid) <= orig_slot) {
2174 path->nodes[level] = right;
e66f709b
CM
2175 path->slots[level + 1] += 1;
2176 path->slots[level] = orig_slot -
5f39d397 2177 btrfs_header_nritems(mid);
925baedd 2178 btrfs_tree_unlock(mid);
5f39d397 2179 free_extent_buffer(mid);
e66f709b 2180 } else {
925baedd 2181 btrfs_tree_unlock(right);
5f39d397 2182 free_extent_buffer(right);
e66f709b 2183 }
e66f709b
CM
2184 return 0;
2185 }
925baedd 2186 btrfs_tree_unlock(right);
5f39d397 2187 free_extent_buffer(right);
e66f709b 2188 }
e66f709b
CM
2189 return 1;
2190}
2191
3c69faec 2192/*
d352ac68
CM
2193 * readahead one full node of leaves, finding things that are close
2194 * to the block in 'slot', and triggering ra on them.
3c69faec 2195 */
2ff7e61e 2196static void reada_for_search(struct btrfs_fs_info *fs_info,
c8c42864
CM
2197 struct btrfs_path *path,
2198 int level, int slot, u64 objectid)
3c69faec 2199{
5f39d397 2200 struct extent_buffer *node;
01f46658 2201 struct btrfs_disk_key disk_key;
3c69faec 2202 u32 nritems;
3c69faec 2203 u64 search;
a7175319 2204 u64 target;
6b80053d 2205 u64 nread = 0;
5f39d397 2206 struct extent_buffer *eb;
6b80053d
CM
2207 u32 nr;
2208 u32 blocksize;
2209 u32 nscan = 0;
db94535d 2210
a6b6e75e 2211 if (level != 1)
6702ed49
CM
2212 return;
2213
2214 if (!path->nodes[level])
3c69faec
CM
2215 return;
2216
5f39d397 2217 node = path->nodes[level];
925baedd 2218
3c69faec 2219 search = btrfs_node_blockptr(node, slot);
0b246afa
JM
2220 blocksize = fs_info->nodesize;
2221 eb = find_extent_buffer(fs_info, search);
5f39d397
CM
2222 if (eb) {
2223 free_extent_buffer(eb);
3c69faec
CM
2224 return;
2225 }
2226
a7175319 2227 target = search;
6b80053d 2228
5f39d397 2229 nritems = btrfs_header_nritems(node);
6b80053d 2230 nr = slot;
25b8b936 2231
d397712b 2232 while (1) {
e4058b54 2233 if (path->reada == READA_BACK) {
6b80053d
CM
2234 if (nr == 0)
2235 break;
2236 nr--;
e4058b54 2237 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2238 nr++;
2239 if (nr >= nritems)
2240 break;
3c69faec 2241 }
e4058b54 2242 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2243 btrfs_node_key(node, &disk_key, nr);
2244 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2245 break;
2246 }
6b80053d 2247 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2248 if ((search <= target && target - search <= 65536) ||
2249 (search > target && search - target <= 65536)) {
2ff7e61e 2250 readahead_tree_block(fs_info, search);
6b80053d
CM
2251 nread += blocksize;
2252 }
2253 nscan++;
a7175319 2254 if ((nread > 65536 || nscan > 32))
6b80053d 2255 break;
3c69faec
CM
2256 }
2257}
925baedd 2258
2ff7e61e 2259static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
0b08851f 2260 struct btrfs_path *path, int level)
b4ce94de
CM
2261{
2262 int slot;
2263 int nritems;
2264 struct extent_buffer *parent;
2265 struct extent_buffer *eb;
2266 u64 gen;
2267 u64 block1 = 0;
2268 u64 block2 = 0;
b4ce94de 2269
8c594ea8 2270 parent = path->nodes[level + 1];
b4ce94de 2271 if (!parent)
0b08851f 2272 return;
b4ce94de
CM
2273
2274 nritems = btrfs_header_nritems(parent);
8c594ea8 2275 slot = path->slots[level + 1];
b4ce94de
CM
2276
2277 if (slot > 0) {
2278 block1 = btrfs_node_blockptr(parent, slot - 1);
2279 gen = btrfs_node_ptr_generation(parent, slot - 1);
0b246afa 2280 eb = find_extent_buffer(fs_info, block1);
b9fab919
CM
2281 /*
2282 * if we get -eagain from btrfs_buffer_uptodate, we
2283 * don't want to return eagain here. That will loop
2284 * forever
2285 */
2286 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2287 block1 = 0;
2288 free_extent_buffer(eb);
2289 }
8c594ea8 2290 if (slot + 1 < nritems) {
b4ce94de
CM
2291 block2 = btrfs_node_blockptr(parent, slot + 1);
2292 gen = btrfs_node_ptr_generation(parent, slot + 1);
0b246afa 2293 eb = find_extent_buffer(fs_info, block2);
b9fab919 2294 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2295 block2 = 0;
2296 free_extent_buffer(eb);
2297 }
8c594ea8 2298
0b08851f 2299 if (block1)
2ff7e61e 2300 readahead_tree_block(fs_info, block1);
0b08851f 2301 if (block2)
2ff7e61e 2302 readahead_tree_block(fs_info, block2);
b4ce94de
CM
2303}
2304
2305
d352ac68 2306/*
d397712b
CM
2307 * when we walk down the tree, it is usually safe to unlock the higher layers
2308 * in the tree. The exceptions are when our path goes through slot 0, because
2309 * operations on the tree might require changing key pointers higher up in the
2310 * tree.
d352ac68 2311 *
d397712b
CM
2312 * callers might also have set path->keep_locks, which tells this code to keep
2313 * the lock if the path points to the last slot in the block. This is part of
2314 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2315 *
d397712b
CM
2316 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2317 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2318 */
e02119d5 2319static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2320 int lowest_unlock, int min_write_lock_level,
2321 int *write_lock_level)
925baedd
CM
2322{
2323 int i;
2324 int skip_level = level;
051e1b9f 2325 int no_skips = 0;
925baedd
CM
2326 struct extent_buffer *t;
2327
2328 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2329 if (!path->nodes[i])
2330 break;
2331 if (!path->locks[i])
2332 break;
051e1b9f 2333 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2334 skip_level = i + 1;
2335 continue;
2336 }
051e1b9f 2337 if (!no_skips && path->keep_locks) {
925baedd
CM
2338 u32 nritems;
2339 t = path->nodes[i];
2340 nritems = btrfs_header_nritems(t);
051e1b9f 2341 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2342 skip_level = i + 1;
2343 continue;
2344 }
2345 }
051e1b9f
CM
2346 if (skip_level < i && i >= lowest_unlock)
2347 no_skips = 1;
2348
925baedd 2349 t = path->nodes[i];
d80bb3f9 2350 if (i >= lowest_unlock && i > skip_level) {
bd681513 2351 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2352 path->locks[i] = 0;
f7c79f30
CM
2353 if (write_lock_level &&
2354 i > min_write_lock_level &&
2355 i <= *write_lock_level) {
2356 *write_lock_level = i - 1;
2357 }
925baedd
CM
2358 }
2359 }
2360}
2361
b4ce94de
CM
2362/*
2363 * This releases any locks held in the path starting at level and
2364 * going all the way up to the root.
2365 *
2366 * btrfs_search_slot will keep the lock held on higher nodes in a few
2367 * corner cases, such as COW of the block at slot zero in the node. This
2368 * ignores those rules, and it should only be called when there are no
2369 * more updates to be done higher up in the tree.
2370 */
2371noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2372{
2373 int i;
2374
09a2a8f9 2375 if (path->keep_locks)
b4ce94de
CM
2376 return;
2377
2378 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2379 if (!path->nodes[i])
12f4dacc 2380 continue;
b4ce94de 2381 if (!path->locks[i])
12f4dacc 2382 continue;
bd681513 2383 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2384 path->locks[i] = 0;
2385 }
2386}
2387
c8c42864
CM
2388/*
2389 * helper function for btrfs_search_slot. The goal is to find a block
2390 * in cache without setting the path to blocking. If we find the block
2391 * we return zero and the path is unchanged.
2392 *
2393 * If we can't find the block, we set the path blocking and do some
2394 * reada. -EAGAIN is returned and the search must be repeated.
2395 */
2396static int
d07b8528
LB
2397read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2398 struct extent_buffer **eb_ret, int level, int slot,
cda79c54 2399 const struct btrfs_key *key)
c8c42864 2400{
0b246afa 2401 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864
CM
2402 u64 blocknr;
2403 u64 gen;
c8c42864
CM
2404 struct extent_buffer *b = *eb_ret;
2405 struct extent_buffer *tmp;
581c1760 2406 struct btrfs_key first_key;
76a05b35 2407 int ret;
581c1760 2408 int parent_level;
c8c42864
CM
2409
2410 blocknr = btrfs_node_blockptr(b, slot);
2411 gen = btrfs_node_ptr_generation(b, slot);
581c1760
QW
2412 parent_level = btrfs_header_level(b);
2413 btrfs_node_key_to_cpu(b, &first_key, slot);
c8c42864 2414
0b246afa 2415 tmp = find_extent_buffer(fs_info, blocknr);
cb44921a 2416 if (tmp) {
b9fab919 2417 /* first we do an atomic uptodate check */
bdf7c00e
JB
2418 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2419 *eb_ret = tmp;
2420 return 0;
2421 }
2422
2423 /* the pages were up to date, but we failed
2424 * the generation number check. Do a full
2425 * read for the generation number that is correct.
2426 * We must do this without dropping locks so
2427 * we can trust our generation number
2428 */
2429 btrfs_set_path_blocking(p);
2430
2431 /* now we're allowed to do a blocking uptodate check */
581c1760 2432 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
bdf7c00e
JB
2433 if (!ret) {
2434 *eb_ret = tmp;
2435 return 0;
cb44921a 2436 }
bdf7c00e
JB
2437 free_extent_buffer(tmp);
2438 btrfs_release_path(p);
2439 return -EIO;
c8c42864
CM
2440 }
2441
2442 /*
2443 * reduce lock contention at high levels
2444 * of the btree by dropping locks before
76a05b35
CM
2445 * we read. Don't release the lock on the current
2446 * level because we need to walk this node to figure
2447 * out which blocks to read.
c8c42864 2448 */
8c594ea8
CM
2449 btrfs_unlock_up_safe(p, level + 1);
2450 btrfs_set_path_blocking(p);
2451
e4058b54 2452 if (p->reada != READA_NONE)
2ff7e61e 2453 reada_for_search(fs_info, p, level, slot, key->objectid);
c8c42864 2454
76a05b35 2455 ret = -EAGAIN;
02a3307a 2456 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
581c1760 2457 &first_key);
64c043de 2458 if (!IS_ERR(tmp)) {
76a05b35
CM
2459 /*
2460 * If the read above didn't mark this buffer up to date,
2461 * it will never end up being up to date. Set ret to EIO now
2462 * and give up so that our caller doesn't loop forever
2463 * on our EAGAINs.
2464 */
e6a1d6fd 2465 if (!extent_buffer_uptodate(tmp))
76a05b35 2466 ret = -EIO;
c8c42864 2467 free_extent_buffer(tmp);
c871b0f2
LB
2468 } else {
2469 ret = PTR_ERR(tmp);
76a05b35 2470 }
02a3307a
LB
2471
2472 btrfs_release_path(p);
76a05b35 2473 return ret;
c8c42864
CM
2474}
2475
2476/*
2477 * helper function for btrfs_search_slot. This does all of the checks
2478 * for node-level blocks and does any balancing required based on
2479 * the ins_len.
2480 *
2481 * If no extra work was required, zero is returned. If we had to
2482 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2483 * start over
2484 */
2485static int
2486setup_nodes_for_search(struct btrfs_trans_handle *trans,
2487 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2488 struct extent_buffer *b, int level, int ins_len,
2489 int *write_lock_level)
c8c42864 2490{
0b246afa 2491 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864 2492 int ret;
0b246afa 2493
c8c42864 2494 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
0b246afa 2495 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
c8c42864
CM
2496 int sret;
2497
bd681513
CM
2498 if (*write_lock_level < level + 1) {
2499 *write_lock_level = level + 1;
2500 btrfs_release_path(p);
2501 goto again;
2502 }
2503
c8c42864 2504 btrfs_set_path_blocking(p);
2ff7e61e 2505 reada_for_balance(fs_info, p, level);
c8c42864 2506 sret = split_node(trans, root, p, level);
c8c42864
CM
2507
2508 BUG_ON(sret > 0);
2509 if (sret) {
2510 ret = sret;
2511 goto done;
2512 }
2513 b = p->nodes[level];
2514 } else if (ins_len < 0 && btrfs_header_nritems(b) <
0b246afa 2515 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
c8c42864
CM
2516 int sret;
2517
bd681513
CM
2518 if (*write_lock_level < level + 1) {
2519 *write_lock_level = level + 1;
2520 btrfs_release_path(p);
2521 goto again;
2522 }
2523
c8c42864 2524 btrfs_set_path_blocking(p);
2ff7e61e 2525 reada_for_balance(fs_info, p, level);
c8c42864 2526 sret = balance_level(trans, root, p, level);
c8c42864
CM
2527
2528 if (sret) {
2529 ret = sret;
2530 goto done;
2531 }
2532 b = p->nodes[level];
2533 if (!b) {
b3b4aa74 2534 btrfs_release_path(p);
c8c42864
CM
2535 goto again;
2536 }
2537 BUG_ON(btrfs_header_nritems(b) == 1);
2538 }
2539 return 0;
2540
2541again:
2542 ret = -EAGAIN;
2543done:
2544 return ret;
2545}
2546
d7396f07 2547static void key_search_validate(struct extent_buffer *b,
310712b2 2548 const struct btrfs_key *key,
d7396f07
FDBM
2549 int level)
2550{
2551#ifdef CONFIG_BTRFS_ASSERT
2552 struct btrfs_disk_key disk_key;
2553
2554 btrfs_cpu_key_to_disk(&disk_key, key);
2555
2556 if (level == 0)
2557 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2558 offsetof(struct btrfs_leaf, items[0].key),
2559 sizeof(disk_key)));
2560 else
2561 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2562 offsetof(struct btrfs_node, ptrs[0].key),
2563 sizeof(disk_key)));
2564#endif
2565}
2566
310712b2 2567static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
d7396f07
FDBM
2568 int level, int *prev_cmp, int *slot)
2569{
2570 if (*prev_cmp != 0) {
a74b35ec 2571 *prev_cmp = btrfs_bin_search(b, key, level, slot);
d7396f07
FDBM
2572 return *prev_cmp;
2573 }
2574
2575 key_search_validate(b, key, level);
2576 *slot = 0;
2577
2578 return 0;
2579}
2580
381cf658 2581int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2582 u64 iobjectid, u64 ioff, u8 key_type,
2583 struct btrfs_key *found_key)
2584{
2585 int ret;
2586 struct btrfs_key key;
2587 struct extent_buffer *eb;
381cf658
DS
2588
2589 ASSERT(path);
1d4c08e0 2590 ASSERT(found_key);
e33d5c3d
KN
2591
2592 key.type = key_type;
2593 key.objectid = iobjectid;
2594 key.offset = ioff;
2595
2596 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2597 if (ret < 0)
e33d5c3d
KN
2598 return ret;
2599
2600 eb = path->nodes[0];
2601 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2602 ret = btrfs_next_leaf(fs_root, path);
2603 if (ret)
2604 return ret;
2605 eb = path->nodes[0];
2606 }
2607
2608 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2609 if (found_key->type != key.type ||
2610 found_key->objectid != key.objectid)
2611 return 1;
2612
2613 return 0;
2614}
2615
1fc28d8e
LB
2616static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2617 struct btrfs_path *p,
2618 int write_lock_level)
2619{
2620 struct btrfs_fs_info *fs_info = root->fs_info;
2621 struct extent_buffer *b;
2622 int root_lock;
2623 int level = 0;
2624
2625 /* We try very hard to do read locks on the root */
2626 root_lock = BTRFS_READ_LOCK;
2627
2628 if (p->search_commit_root) {
be6821f8
FM
2629 /*
2630 * The commit roots are read only so we always do read locks,
2631 * and we always must hold the commit_root_sem when doing
2632 * searches on them, the only exception is send where we don't
2633 * want to block transaction commits for a long time, so
2634 * we need to clone the commit root in order to avoid races
2635 * with transaction commits that create a snapshot of one of
2636 * the roots used by a send operation.
2637 */
2638 if (p->need_commit_sem) {
1fc28d8e 2639 down_read(&fs_info->commit_root_sem);
be6821f8 2640 b = btrfs_clone_extent_buffer(root->commit_root);
1fc28d8e 2641 up_read(&fs_info->commit_root_sem);
be6821f8
FM
2642 if (!b)
2643 return ERR_PTR(-ENOMEM);
2644
2645 } else {
2646 b = root->commit_root;
2647 extent_buffer_get(b);
2648 }
2649 level = btrfs_header_level(b);
f9ddfd05
LB
2650 /*
2651 * Ensure that all callers have set skip_locking when
2652 * p->search_commit_root = 1.
2653 */
2654 ASSERT(p->skip_locking == 1);
1fc28d8e
LB
2655
2656 goto out;
2657 }
2658
2659 if (p->skip_locking) {
2660 b = btrfs_root_node(root);
2661 level = btrfs_header_level(b);
2662 goto out;
2663 }
2664
2665 /*
662c653b
LB
2666 * If the level is set to maximum, we can skip trying to get the read
2667 * lock.
1fc28d8e 2668 */
662c653b
LB
2669 if (write_lock_level < BTRFS_MAX_LEVEL) {
2670 /*
2671 * We don't know the level of the root node until we actually
2672 * have it read locked
2673 */
2674 b = btrfs_read_lock_root_node(root);
2675 level = btrfs_header_level(b);
2676 if (level > write_lock_level)
2677 goto out;
2678
2679 /* Whoops, must trade for write lock */
2680 btrfs_tree_read_unlock(b);
2681 free_extent_buffer(b);
2682 }
1fc28d8e 2683
1fc28d8e
LB
2684 b = btrfs_lock_root_node(root);
2685 root_lock = BTRFS_WRITE_LOCK;
2686
2687 /* The level might have changed, check again */
2688 level = btrfs_header_level(b);
2689
2690out:
2691 p->nodes[level] = b;
2692 if (!p->skip_locking)
2693 p->locks[level] = root_lock;
2694 /*
2695 * Callers are responsible for dropping b's references.
2696 */
2697 return b;
2698}
2699
2700
74123bd7 2701/*
4271ecea
NB
2702 * btrfs_search_slot - look for a key in a tree and perform necessary
2703 * modifications to preserve tree invariants.
74123bd7 2704 *
4271ecea
NB
2705 * @trans: Handle of transaction, used when modifying the tree
2706 * @p: Holds all btree nodes along the search path
2707 * @root: The root node of the tree
2708 * @key: The key we are looking for
2709 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2710 * deletions it's -1. 0 for plain searches
2711 * @cow: boolean should CoW operations be performed. Must always be 1
2712 * when modifying the tree.
97571fd0 2713 *
4271ecea
NB
2714 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2715 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2716 *
2717 * If @key is found, 0 is returned and you can find the item in the leaf level
2718 * of the path (level 0)
2719 *
2720 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2721 * points to the slot where it should be inserted
2722 *
2723 * If an error is encountered while searching the tree a negative error number
2724 * is returned
74123bd7 2725 */
310712b2
OS
2726int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2727 const struct btrfs_key *key, struct btrfs_path *p,
2728 int ins_len, int cow)
be0e5c09 2729{
0b246afa 2730 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 2731 struct extent_buffer *b;
be0e5c09
CM
2732 int slot;
2733 int ret;
33c66f43 2734 int err;
be0e5c09 2735 int level;
925baedd 2736 int lowest_unlock = 1;
bd681513
CM
2737 /* everything at write_lock_level or lower must be write locked */
2738 int write_lock_level = 0;
9f3a7427 2739 u8 lowest_level = 0;
f7c79f30 2740 int min_write_lock_level;
d7396f07 2741 int prev_cmp;
9f3a7427 2742
6702ed49 2743 lowest_level = p->lowest_level;
323ac95b 2744 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2745 WARN_ON(p->nodes[0] != NULL);
eb653de1 2746 BUG_ON(!cow && ins_len);
25179201 2747
bd681513 2748 if (ins_len < 0) {
925baedd 2749 lowest_unlock = 2;
65b51a00 2750
bd681513
CM
2751 /* when we are removing items, we might have to go up to level
2752 * two as we update tree pointers Make sure we keep write
2753 * for those levels as well
2754 */
2755 write_lock_level = 2;
2756 } else if (ins_len > 0) {
2757 /*
2758 * for inserting items, make sure we have a write lock on
2759 * level 1 so we can update keys
2760 */
2761 write_lock_level = 1;
2762 }
2763
2764 if (!cow)
2765 write_lock_level = -1;
2766
09a2a8f9 2767 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2768 write_lock_level = BTRFS_MAX_LEVEL;
2769
f7c79f30
CM
2770 min_write_lock_level = write_lock_level;
2771
bb803951 2772again:
d7396f07 2773 prev_cmp = -1;
1fc28d8e 2774 b = btrfs_search_slot_get_root(root, p, write_lock_level);
be6821f8
FM
2775 if (IS_ERR(b)) {
2776 ret = PTR_ERR(b);
2777 goto done;
2778 }
925baedd 2779
eb60ceac 2780 while (b) {
5f39d397 2781 level = btrfs_header_level(b);
65b51a00
CM
2782
2783 /*
2784 * setup the path here so we can release it under lock
2785 * contention with the cow code
2786 */
02217ed2 2787 if (cow) {
9ea2c7c9
NB
2788 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2789
c8c42864
CM
2790 /*
2791 * if we don't really need to cow this block
2792 * then we don't want to set the path blocking,
2793 * so we test it here
2794 */
64c12921
JM
2795 if (!should_cow_block(trans, root, b)) {
2796 trans->dirty = true;
65b51a00 2797 goto cow_done;
64c12921 2798 }
5d4f98a2 2799
bd681513
CM
2800 /*
2801 * must have write locks on this node and the
2802 * parent
2803 */
5124e00e
JB
2804 if (level > write_lock_level ||
2805 (level + 1 > write_lock_level &&
2806 level + 1 < BTRFS_MAX_LEVEL &&
2807 p->nodes[level + 1])) {
bd681513
CM
2808 write_lock_level = level + 1;
2809 btrfs_release_path(p);
2810 goto again;
2811 }
2812
160f4089 2813 btrfs_set_path_blocking(p);
9ea2c7c9
NB
2814 if (last_level)
2815 err = btrfs_cow_block(trans, root, b, NULL, 0,
2816 &b);
2817 else
2818 err = btrfs_cow_block(trans, root, b,
2819 p->nodes[level + 1],
2820 p->slots[level + 1], &b);
33c66f43 2821 if (err) {
33c66f43 2822 ret = err;
65b51a00 2823 goto done;
54aa1f4d 2824 }
02217ed2 2825 }
65b51a00 2826cow_done:
eb60ceac 2827 p->nodes[level] = b;
52398340
LB
2828 /*
2829 * Leave path with blocking locks to avoid massive
2830 * lock context switch, this is made on purpose.
2831 */
b4ce94de
CM
2832
2833 /*
2834 * we have a lock on b and as long as we aren't changing
2835 * the tree, there is no way to for the items in b to change.
2836 * It is safe to drop the lock on our parent before we
2837 * go through the expensive btree search on b.
2838 *
eb653de1
FDBM
2839 * If we're inserting or deleting (ins_len != 0), then we might
2840 * be changing slot zero, which may require changing the parent.
2841 * So, we can't drop the lock until after we know which slot
2842 * we're operating on.
b4ce94de 2843 */
eb653de1
FDBM
2844 if (!ins_len && !p->keep_locks) {
2845 int u = level + 1;
2846
2847 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2848 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2849 p->locks[u] = 0;
2850 }
2851 }
b4ce94de 2852
d7396f07 2853 ret = key_search(b, key, level, &prev_cmp, &slot);
415b35a5
LB
2854 if (ret < 0)
2855 goto done;
b4ce94de 2856
5f39d397 2857 if (level != 0) {
33c66f43
YZ
2858 int dec = 0;
2859 if (ret && slot > 0) {
2860 dec = 1;
be0e5c09 2861 slot -= 1;
33c66f43 2862 }
be0e5c09 2863 p->slots[level] = slot;
33c66f43 2864 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2865 ins_len, &write_lock_level);
33c66f43 2866 if (err == -EAGAIN)
c8c42864 2867 goto again;
33c66f43
YZ
2868 if (err) {
2869 ret = err;
c8c42864 2870 goto done;
33c66f43 2871 }
c8c42864
CM
2872 b = p->nodes[level];
2873 slot = p->slots[level];
b4ce94de 2874
bd681513
CM
2875 /*
2876 * slot 0 is special, if we change the key
2877 * we have to update the parent pointer
2878 * which means we must have a write lock
2879 * on the parent
2880 */
eb653de1 2881 if (slot == 0 && ins_len &&
bd681513
CM
2882 write_lock_level < level + 1) {
2883 write_lock_level = level + 1;
2884 btrfs_release_path(p);
2885 goto again;
2886 }
2887
f7c79f30
CM
2888 unlock_up(p, level, lowest_unlock,
2889 min_write_lock_level, &write_lock_level);
f9efa9c7 2890
925baedd 2891 if (level == lowest_level) {
33c66f43
YZ
2892 if (dec)
2893 p->slots[level]++;
5b21f2ed 2894 goto done;
925baedd 2895 }
ca7a79ad 2896
d07b8528 2897 err = read_block_for_search(root, p, &b, level,
cda79c54 2898 slot, key);
33c66f43 2899 if (err == -EAGAIN)
c8c42864 2900 goto again;
33c66f43
YZ
2901 if (err) {
2902 ret = err;
76a05b35 2903 goto done;
33c66f43 2904 }
76a05b35 2905
b4ce94de 2906 if (!p->skip_locking) {
bd681513
CM
2907 level = btrfs_header_level(b);
2908 if (level <= write_lock_level) {
2909 err = btrfs_try_tree_write_lock(b);
2910 if (!err) {
2911 btrfs_set_path_blocking(p);
2912 btrfs_tree_lock(b);
bd681513
CM
2913 }
2914 p->locks[level] = BTRFS_WRITE_LOCK;
2915 } else {
f82c458a 2916 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2917 if (!err) {
2918 btrfs_set_path_blocking(p);
2919 btrfs_tree_read_lock(b);
bd681513
CM
2920 }
2921 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2922 }
bd681513 2923 p->nodes[level] = b;
b4ce94de 2924 }
be0e5c09
CM
2925 } else {
2926 p->slots[level] = slot;
87b29b20 2927 if (ins_len > 0 &&
2ff7e61e 2928 btrfs_leaf_free_space(fs_info, b) < ins_len) {
bd681513
CM
2929 if (write_lock_level < 1) {
2930 write_lock_level = 1;
2931 btrfs_release_path(p);
2932 goto again;
2933 }
2934
b4ce94de 2935 btrfs_set_path_blocking(p);
33c66f43
YZ
2936 err = split_leaf(trans, root, key,
2937 p, ins_len, ret == 0);
b4ce94de 2938
33c66f43
YZ
2939 BUG_ON(err > 0);
2940 if (err) {
2941 ret = err;
65b51a00
CM
2942 goto done;
2943 }
5c680ed6 2944 }
459931ec 2945 if (!p->search_for_split)
f7c79f30 2946 unlock_up(p, level, lowest_unlock,
4b6f8e96 2947 min_write_lock_level, NULL);
65b51a00 2948 goto done;
be0e5c09
CM
2949 }
2950 }
65b51a00
CM
2951 ret = 1;
2952done:
b4ce94de
CM
2953 /*
2954 * we don't really know what they plan on doing with the path
2955 * from here on, so for now just mark it as blocking
2956 */
b9473439
CM
2957 if (!p->leave_spinning)
2958 btrfs_set_path_blocking(p);
5f5bc6b1 2959 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2960 btrfs_release_path(p);
65b51a00 2961 return ret;
be0e5c09
CM
2962}
2963
5d9e75c4
JS
2964/*
2965 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2966 * current state of the tree together with the operations recorded in the tree
2967 * modification log to search for the key in a previous version of this tree, as
2968 * denoted by the time_seq parameter.
2969 *
2970 * Naturally, there is no support for insert, delete or cow operations.
2971 *
2972 * The resulting path and return value will be set up as if we called
2973 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2974 */
310712b2 2975int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
5d9e75c4
JS
2976 struct btrfs_path *p, u64 time_seq)
2977{
0b246afa 2978 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4
JS
2979 struct extent_buffer *b;
2980 int slot;
2981 int ret;
2982 int err;
2983 int level;
2984 int lowest_unlock = 1;
2985 u8 lowest_level = 0;
d4b4087c 2986 int prev_cmp = -1;
5d9e75c4
JS
2987
2988 lowest_level = p->lowest_level;
2989 WARN_ON(p->nodes[0] != NULL);
2990
2991 if (p->search_commit_root) {
2992 BUG_ON(time_seq);
2993 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2994 }
2995
2996again:
5d9e75c4 2997 b = get_old_root(root, time_seq);
315bed43
NB
2998 if (!b) {
2999 ret = -EIO;
3000 goto done;
3001 }
5d9e75c4 3002 level = btrfs_header_level(b);
5d9e75c4
JS
3003 p->locks[level] = BTRFS_READ_LOCK;
3004
3005 while (b) {
3006 level = btrfs_header_level(b);
3007 p->nodes[level] = b;
5d9e75c4
JS
3008
3009 /*
3010 * we have a lock on b and as long as we aren't changing
3011 * the tree, there is no way to for the items in b to change.
3012 * It is safe to drop the lock on our parent before we
3013 * go through the expensive btree search on b.
3014 */
3015 btrfs_unlock_up_safe(p, level + 1);
3016
d4b4087c 3017 /*
01327610 3018 * Since we can unwind ebs we want to do a real search every
d4b4087c
JB
3019 * time.
3020 */
3021 prev_cmp = -1;
d7396f07 3022 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
3023
3024 if (level != 0) {
3025 int dec = 0;
3026 if (ret && slot > 0) {
3027 dec = 1;
3028 slot -= 1;
3029 }
3030 p->slots[level] = slot;
3031 unlock_up(p, level, lowest_unlock, 0, NULL);
3032
3033 if (level == lowest_level) {
3034 if (dec)
3035 p->slots[level]++;
3036 goto done;
3037 }
3038
d07b8528 3039 err = read_block_for_search(root, p, &b, level,
cda79c54 3040 slot, key);
5d9e75c4
JS
3041 if (err == -EAGAIN)
3042 goto again;
3043 if (err) {
3044 ret = err;
3045 goto done;
3046 }
3047
3048 level = btrfs_header_level(b);
f82c458a 3049 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
3050 if (!err) {
3051 btrfs_set_path_blocking(p);
3052 btrfs_tree_read_lock(b);
5d9e75c4 3053 }
0b246afa 3054 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
db7f3436
JB
3055 if (!b) {
3056 ret = -ENOMEM;
3057 goto done;
3058 }
5d9e75c4
JS
3059 p->locks[level] = BTRFS_READ_LOCK;
3060 p->nodes[level] = b;
5d9e75c4
JS
3061 } else {
3062 p->slots[level] = slot;
3063 unlock_up(p, level, lowest_unlock, 0, NULL);
3064 goto done;
3065 }
3066 }
3067 ret = 1;
3068done:
3069 if (!p->leave_spinning)
3070 btrfs_set_path_blocking(p);
3071 if (ret < 0)
3072 btrfs_release_path(p);
3073
3074 return ret;
3075}
3076
2f38b3e1
AJ
3077/*
3078 * helper to use instead of search slot if no exact match is needed but
3079 * instead the next or previous item should be returned.
3080 * When find_higher is true, the next higher item is returned, the next lower
3081 * otherwise.
3082 * When return_any and find_higher are both true, and no higher item is found,
3083 * return the next lower instead.
3084 * When return_any is true and find_higher is false, and no lower item is found,
3085 * return the next higher instead.
3086 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3087 * < 0 on error
3088 */
3089int btrfs_search_slot_for_read(struct btrfs_root *root,
310712b2
OS
3090 const struct btrfs_key *key,
3091 struct btrfs_path *p, int find_higher,
3092 int return_any)
2f38b3e1
AJ
3093{
3094 int ret;
3095 struct extent_buffer *leaf;
3096
3097again:
3098 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3099 if (ret <= 0)
3100 return ret;
3101 /*
3102 * a return value of 1 means the path is at the position where the
3103 * item should be inserted. Normally this is the next bigger item,
3104 * but in case the previous item is the last in a leaf, path points
3105 * to the first free slot in the previous leaf, i.e. at an invalid
3106 * item.
3107 */
3108 leaf = p->nodes[0];
3109
3110 if (find_higher) {
3111 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3112 ret = btrfs_next_leaf(root, p);
3113 if (ret <= 0)
3114 return ret;
3115 if (!return_any)
3116 return 1;
3117 /*
3118 * no higher item found, return the next
3119 * lower instead
3120 */
3121 return_any = 0;
3122 find_higher = 0;
3123 btrfs_release_path(p);
3124 goto again;
3125 }
3126 } else {
e6793769
AJ
3127 if (p->slots[0] == 0) {
3128 ret = btrfs_prev_leaf(root, p);
3129 if (ret < 0)
3130 return ret;
3131 if (!ret) {
23c6bf6a
FDBM
3132 leaf = p->nodes[0];
3133 if (p->slots[0] == btrfs_header_nritems(leaf))
3134 p->slots[0]--;
e6793769 3135 return 0;
2f38b3e1 3136 }
e6793769
AJ
3137 if (!return_any)
3138 return 1;
3139 /*
3140 * no lower item found, return the next
3141 * higher instead
3142 */
3143 return_any = 0;
3144 find_higher = 1;
3145 btrfs_release_path(p);
3146 goto again;
3147 } else {
2f38b3e1
AJ
3148 --p->slots[0];
3149 }
3150 }
3151 return 0;
3152}
3153
74123bd7
CM
3154/*
3155 * adjust the pointers going up the tree, starting at level
3156 * making sure the right key of each node is points to 'key'.
3157 * This is used after shifting pointers to the left, so it stops
3158 * fixing up pointers when a given leaf/node is not in slot 0 of the
3159 * higher levels
aa5d6bed 3160 *
74123bd7 3161 */
b167fa91 3162static void fixup_low_keys(struct btrfs_path *path,
143bede5 3163 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3164{
3165 int i;
5f39d397 3166 struct extent_buffer *t;
0e82bcfe 3167 int ret;
5f39d397 3168
234b63a0 3169 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3170 int tslot = path->slots[i];
0e82bcfe 3171
eb60ceac 3172 if (!path->nodes[i])
be0e5c09 3173 break;
5f39d397 3174 t = path->nodes[i];
0e82bcfe
DS
3175 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3176 GFP_ATOMIC);
3177 BUG_ON(ret < 0);
5f39d397 3178 btrfs_set_node_key(t, key, tslot);
d6025579 3179 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3180 if (tslot != 0)
3181 break;
3182 }
3183}
3184
31840ae1
ZY
3185/*
3186 * update item key.
3187 *
3188 * This function isn't completely safe. It's the caller's responsibility
3189 * that the new key won't break the order
3190 */
b7a0365e
DD
3191void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3192 struct btrfs_path *path,
310712b2 3193 const struct btrfs_key *new_key)
31840ae1
ZY
3194{
3195 struct btrfs_disk_key disk_key;
3196 struct extent_buffer *eb;
3197 int slot;
3198
3199 eb = path->nodes[0];
3200 slot = path->slots[0];
3201 if (slot > 0) {
3202 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3203 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3204 }
3205 if (slot < btrfs_header_nritems(eb) - 1) {
3206 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3207 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3208 }
3209
3210 btrfs_cpu_key_to_disk(&disk_key, new_key);
3211 btrfs_set_item_key(eb, &disk_key, slot);
3212 btrfs_mark_buffer_dirty(eb);
3213 if (slot == 0)
b167fa91 3214 fixup_low_keys(path, &disk_key, 1);
31840ae1
ZY
3215}
3216
74123bd7
CM
3217/*
3218 * try to push data from one node into the next node left in the
79f95c82 3219 * tree.
aa5d6bed
CM
3220 *
3221 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3222 * error, and > 0 if there was no room in the left hand block.
74123bd7 3223 */
98ed5174 3224static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
3225 struct btrfs_fs_info *fs_info,
3226 struct extent_buffer *dst,
971a1f66 3227 struct extent_buffer *src, int empty)
be0e5c09 3228{
be0e5c09 3229 int push_items = 0;
bb803951
CM
3230 int src_nritems;
3231 int dst_nritems;
aa5d6bed 3232 int ret = 0;
be0e5c09 3233
5f39d397
CM
3234 src_nritems = btrfs_header_nritems(src);
3235 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3236 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
7bb86316
CM
3237 WARN_ON(btrfs_header_generation(src) != trans->transid);
3238 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3239
bce4eae9 3240 if (!empty && src_nritems <= 8)
971a1f66
CM
3241 return 1;
3242
d397712b 3243 if (push_items <= 0)
be0e5c09
CM
3244 return 1;
3245
bce4eae9 3246 if (empty) {
971a1f66 3247 push_items = min(src_nritems, push_items);
bce4eae9
CM
3248 if (push_items < src_nritems) {
3249 /* leave at least 8 pointers in the node if
3250 * we aren't going to empty it
3251 */
3252 if (src_nritems - push_items < 8) {
3253 if (push_items <= 8)
3254 return 1;
3255 push_items -= 8;
3256 }
3257 }
3258 } else
3259 push_items = min(src_nritems - 8, push_items);
79f95c82 3260
0b246afa 3261 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
5de865ee
FDBM
3262 push_items);
3263 if (ret) {
66642832 3264 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3265 return ret;
3266 }
5f39d397
CM
3267 copy_extent_buffer(dst, src,
3268 btrfs_node_key_ptr_offset(dst_nritems),
3269 btrfs_node_key_ptr_offset(0),
d397712b 3270 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3271
bb803951 3272 if (push_items < src_nritems) {
57911b8b 3273 /*
bf1d3425
DS
3274 * Don't call tree_mod_log_insert_move here, key removal was
3275 * already fully logged by tree_mod_log_eb_copy above.
57911b8b 3276 */
5f39d397
CM
3277 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3278 btrfs_node_key_ptr_offset(push_items),
3279 (src_nritems - push_items) *
3280 sizeof(struct btrfs_key_ptr));
3281 }
3282 btrfs_set_header_nritems(src, src_nritems - push_items);
3283 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3284 btrfs_mark_buffer_dirty(src);
3285 btrfs_mark_buffer_dirty(dst);
31840ae1 3286
79f95c82
CM
3287 return ret;
3288}
3289
3290/*
3291 * try to push data from one node into the next node right in the
3292 * tree.
3293 *
3294 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3295 * error, and > 0 if there was no room in the right hand block.
3296 *
3297 * this will only push up to 1/2 the contents of the left node over
3298 */
5f39d397 3299static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 3300 struct btrfs_fs_info *fs_info,
5f39d397
CM
3301 struct extent_buffer *dst,
3302 struct extent_buffer *src)
79f95c82 3303{
79f95c82
CM
3304 int push_items = 0;
3305 int max_push;
3306 int src_nritems;
3307 int dst_nritems;
3308 int ret = 0;
79f95c82 3309
7bb86316
CM
3310 WARN_ON(btrfs_header_generation(src) != trans->transid);
3311 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3312
5f39d397
CM
3313 src_nritems = btrfs_header_nritems(src);
3314 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3315 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
d397712b 3316 if (push_items <= 0)
79f95c82 3317 return 1;
bce4eae9 3318
d397712b 3319 if (src_nritems < 4)
bce4eae9 3320 return 1;
79f95c82
CM
3321
3322 max_push = src_nritems / 2 + 1;
3323 /* don't try to empty the node */
d397712b 3324 if (max_push >= src_nritems)
79f95c82 3325 return 1;
252c38f0 3326
79f95c82
CM
3327 if (max_push < push_items)
3328 push_items = max_push;
3329
bf1d3425
DS
3330 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3331 BUG_ON(ret < 0);
5f39d397
CM
3332 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3333 btrfs_node_key_ptr_offset(0),
3334 (dst_nritems) *
3335 sizeof(struct btrfs_key_ptr));
d6025579 3336
0b246afa 3337 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
5de865ee
FDBM
3338 src_nritems - push_items, push_items);
3339 if (ret) {
66642832 3340 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3341 return ret;
3342 }
5f39d397
CM
3343 copy_extent_buffer(dst, src,
3344 btrfs_node_key_ptr_offset(0),
3345 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3346 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3347
5f39d397
CM
3348 btrfs_set_header_nritems(src, src_nritems - push_items);
3349 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3350
5f39d397
CM
3351 btrfs_mark_buffer_dirty(src);
3352 btrfs_mark_buffer_dirty(dst);
31840ae1 3353
aa5d6bed 3354 return ret;
be0e5c09
CM
3355}
3356
97571fd0
CM
3357/*
3358 * helper function to insert a new root level in the tree.
3359 * A new node is allocated, and a single item is inserted to
3360 * point to the existing root
aa5d6bed
CM
3361 *
3362 * returns zero on success or < 0 on failure.
97571fd0 3363 */
d397712b 3364static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3365 struct btrfs_root *root,
fdd99c72 3366 struct btrfs_path *path, int level)
5c680ed6 3367{
0b246afa 3368 struct btrfs_fs_info *fs_info = root->fs_info;
7bb86316 3369 u64 lower_gen;
5f39d397
CM
3370 struct extent_buffer *lower;
3371 struct extent_buffer *c;
925baedd 3372 struct extent_buffer *old;
5f39d397 3373 struct btrfs_disk_key lower_key;
d9d19a01 3374 int ret;
5c680ed6
CM
3375
3376 BUG_ON(path->nodes[level]);
3377 BUG_ON(path->nodes[level-1] != root->node);
3378
7bb86316
CM
3379 lower = path->nodes[level-1];
3380 if (level == 1)
3381 btrfs_item_key(lower, &lower_key, 0);
3382 else
3383 btrfs_node_key(lower, &lower_key, 0);
3384
a6279470
FM
3385 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3386 root->node->start, 0);
5f39d397
CM
3387 if (IS_ERR(c))
3388 return PTR_ERR(c);
925baedd 3389
0b246afa 3390 root_add_used(root, fs_info->nodesize);
f0486c68 3391
5f39d397 3392 btrfs_set_header_nritems(c, 1);
5f39d397 3393 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3394 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3395 lower_gen = btrfs_header_generation(lower);
31840ae1 3396 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3397
3398 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3399
5f39d397 3400 btrfs_mark_buffer_dirty(c);
d5719762 3401
925baedd 3402 old = root->node;
d9d19a01
DS
3403 ret = tree_mod_log_insert_root(root->node, c, 0);
3404 BUG_ON(ret < 0);
240f62c8 3405 rcu_assign_pointer(root->node, c);
925baedd
CM
3406
3407 /* the super has an extra ref to root->node */
3408 free_extent_buffer(old);
3409
0b86a832 3410 add_root_to_dirty_list(root);
5f39d397
CM
3411 extent_buffer_get(c);
3412 path->nodes[level] = c;
95449a16 3413 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3414 path->slots[level] = 0;
3415 return 0;
3416}
3417
74123bd7
CM
3418/*
3419 * worker function to insert a single pointer in a node.
3420 * the node should have enough room for the pointer already
97571fd0 3421 *
74123bd7
CM
3422 * slot and level indicate where you want the key to go, and
3423 * blocknr is the block the key points to.
3424 */
143bede5 3425static void insert_ptr(struct btrfs_trans_handle *trans,
2ff7e61e 3426 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 3427 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3428 int slot, int level)
74123bd7 3429{
5f39d397 3430 struct extent_buffer *lower;
74123bd7 3431 int nritems;
f3ea38da 3432 int ret;
5c680ed6
CM
3433
3434 BUG_ON(!path->nodes[level]);
f0486c68 3435 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3436 lower = path->nodes[level];
3437 nritems = btrfs_header_nritems(lower);
c293498b 3438 BUG_ON(slot > nritems);
0b246afa 3439 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
74123bd7 3440 if (slot != nritems) {
bf1d3425
DS
3441 if (level) {
3442 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
a446a979 3443 nritems - slot);
bf1d3425
DS
3444 BUG_ON(ret < 0);
3445 }
5f39d397
CM
3446 memmove_extent_buffer(lower,
3447 btrfs_node_key_ptr_offset(slot + 1),
3448 btrfs_node_key_ptr_offset(slot),
d6025579 3449 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3450 }
c3e06965 3451 if (level) {
e09c2efe
DS
3452 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3453 GFP_NOFS);
f3ea38da
JS
3454 BUG_ON(ret < 0);
3455 }
5f39d397 3456 btrfs_set_node_key(lower, key, slot);
db94535d 3457 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3458 WARN_ON(trans->transid == 0);
3459 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3460 btrfs_set_header_nritems(lower, nritems + 1);
3461 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3462}
3463
97571fd0
CM
3464/*
3465 * split the node at the specified level in path in two.
3466 * The path is corrected to point to the appropriate node after the split
3467 *
3468 * Before splitting this tries to make some room in the node by pushing
3469 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3470 *
3471 * returns 0 on success and < 0 on failure
97571fd0 3472 */
e02119d5
CM
3473static noinline int split_node(struct btrfs_trans_handle *trans,
3474 struct btrfs_root *root,
3475 struct btrfs_path *path, int level)
be0e5c09 3476{
0b246afa 3477 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
3478 struct extent_buffer *c;
3479 struct extent_buffer *split;
3480 struct btrfs_disk_key disk_key;
be0e5c09 3481 int mid;
5c680ed6 3482 int ret;
7518a238 3483 u32 c_nritems;
eb60ceac 3484
5f39d397 3485 c = path->nodes[level];
7bb86316 3486 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3487 if (c == root->node) {
d9abbf1c 3488 /*
90f8d62e
JS
3489 * trying to split the root, lets make a new one
3490 *
fdd99c72 3491 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3492 * insert_new_root, because that root buffer will be kept as a
3493 * normal node. We are going to log removal of half of the
3494 * elements below with tree_mod_log_eb_copy. We're holding a
3495 * tree lock on the buffer, which is why we cannot race with
3496 * other tree_mod_log users.
d9abbf1c 3497 */
fdd99c72 3498 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3499 if (ret)
3500 return ret;
b3612421 3501 } else {
e66f709b 3502 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3503 c = path->nodes[level];
3504 if (!ret && btrfs_header_nritems(c) <
0b246afa 3505 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
e66f709b 3506 return 0;
54aa1f4d
CM
3507 if (ret < 0)
3508 return ret;
be0e5c09 3509 }
e66f709b 3510
5f39d397 3511 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3512 mid = (c_nritems + 1) / 2;
3513 btrfs_node_key(c, &disk_key, mid);
7bb86316 3514
a6279470
FM
3515 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3516 c->start, 0);
5f39d397
CM
3517 if (IS_ERR(split))
3518 return PTR_ERR(split);
3519
0b246afa 3520 root_add_used(root, fs_info->nodesize);
bc877d28 3521 ASSERT(btrfs_header_level(c) == level);
54aa1f4d 3522
0b246afa 3523 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
5de865ee 3524 if (ret) {
66642832 3525 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3526 return ret;
3527 }
5f39d397
CM
3528 copy_extent_buffer(split, c,
3529 btrfs_node_key_ptr_offset(0),
3530 btrfs_node_key_ptr_offset(mid),
3531 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3532 btrfs_set_header_nritems(split, c_nritems - mid);
3533 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3534 ret = 0;
3535
5f39d397
CM
3536 btrfs_mark_buffer_dirty(c);
3537 btrfs_mark_buffer_dirty(split);
3538
2ff7e61e 3539 insert_ptr(trans, fs_info, path, &disk_key, split->start,
c3e06965 3540 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3541
5de08d7d 3542 if (path->slots[level] >= mid) {
5c680ed6 3543 path->slots[level] -= mid;
925baedd 3544 btrfs_tree_unlock(c);
5f39d397
CM
3545 free_extent_buffer(c);
3546 path->nodes[level] = split;
5c680ed6
CM
3547 path->slots[level + 1] += 1;
3548 } else {
925baedd 3549 btrfs_tree_unlock(split);
5f39d397 3550 free_extent_buffer(split);
be0e5c09 3551 }
aa5d6bed 3552 return ret;
be0e5c09
CM
3553}
3554
74123bd7
CM
3555/*
3556 * how many bytes are required to store the items in a leaf. start
3557 * and nr indicate which items in the leaf to check. This totals up the
3558 * space used both by the item structs and the item data
3559 */
5f39d397 3560static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3561{
41be1f3b
JB
3562 struct btrfs_item *start_item;
3563 struct btrfs_item *end_item;
3564 struct btrfs_map_token token;
be0e5c09 3565 int data_len;
5f39d397 3566 int nritems = btrfs_header_nritems(l);
d4dbff95 3567 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3568
3569 if (!nr)
3570 return 0;
41be1f3b 3571 btrfs_init_map_token(&token);
dd3cc16b
RK
3572 start_item = btrfs_item_nr(start);
3573 end_item = btrfs_item_nr(end);
41be1f3b
JB
3574 data_len = btrfs_token_item_offset(l, start_item, &token) +
3575 btrfs_token_item_size(l, start_item, &token);
3576 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3577 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3578 WARN_ON(data_len < 0);
be0e5c09
CM
3579 return data_len;
3580}
3581
d4dbff95
CM
3582/*
3583 * The space between the end of the leaf items and
3584 * the start of the leaf data. IOW, how much room
3585 * the leaf has left for both items and data
3586 */
2ff7e61e 3587noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
e02119d5 3588 struct extent_buffer *leaf)
d4dbff95 3589{
5f39d397
CM
3590 int nritems = btrfs_header_nritems(leaf);
3591 int ret;
0b246afa
JM
3592
3593 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
5f39d397 3594 if (ret < 0) {
0b246afa
JM
3595 btrfs_crit(fs_info,
3596 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3597 ret,
3598 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3599 leaf_space_used(leaf, 0, nritems), nritems);
5f39d397
CM
3600 }
3601 return ret;
d4dbff95
CM
3602}
3603
99d8f83c
CM
3604/*
3605 * min slot controls the lowest index we're willing to push to the
3606 * right. We'll push up to and including min_slot, but no lower
3607 */
1e47eef2 3608static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
44871b1b
CM
3609 struct btrfs_path *path,
3610 int data_size, int empty,
3611 struct extent_buffer *right,
99d8f83c
CM
3612 int free_space, u32 left_nritems,
3613 u32 min_slot)
00ec4c51 3614{
5f39d397 3615 struct extent_buffer *left = path->nodes[0];
44871b1b 3616 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3617 struct btrfs_map_token token;
5f39d397 3618 struct btrfs_disk_key disk_key;
00ec4c51 3619 int slot;
34a38218 3620 u32 i;
00ec4c51
CM
3621 int push_space = 0;
3622 int push_items = 0;
0783fcfc 3623 struct btrfs_item *item;
34a38218 3624 u32 nr;
7518a238 3625 u32 right_nritems;
5f39d397 3626 u32 data_end;
db94535d 3627 u32 this_item_size;
00ec4c51 3628
cfed81a0
CM
3629 btrfs_init_map_token(&token);
3630
34a38218
CM
3631 if (empty)
3632 nr = 0;
3633 else
99d8f83c 3634 nr = max_t(u32, 1, min_slot);
34a38218 3635
31840ae1 3636 if (path->slots[0] >= left_nritems)
87b29b20 3637 push_space += data_size;
31840ae1 3638
44871b1b 3639 slot = path->slots[1];
34a38218
CM
3640 i = left_nritems - 1;
3641 while (i >= nr) {
dd3cc16b 3642 item = btrfs_item_nr(i);
db94535d 3643
31840ae1
ZY
3644 if (!empty && push_items > 0) {
3645 if (path->slots[0] > i)
3646 break;
3647 if (path->slots[0] == i) {
2ff7e61e 3648 int space = btrfs_leaf_free_space(fs_info, left);
31840ae1
ZY
3649 if (space + push_space * 2 > free_space)
3650 break;
3651 }
3652 }
3653
00ec4c51 3654 if (path->slots[0] == i)
87b29b20 3655 push_space += data_size;
db94535d 3656
db94535d
CM
3657 this_item_size = btrfs_item_size(left, item);
3658 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3659 break;
31840ae1 3660
00ec4c51 3661 push_items++;
db94535d 3662 push_space += this_item_size + sizeof(*item);
34a38218
CM
3663 if (i == 0)
3664 break;
3665 i--;
db94535d 3666 }
5f39d397 3667
925baedd
CM
3668 if (push_items == 0)
3669 goto out_unlock;
5f39d397 3670
6c1500f2 3671 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3672
00ec4c51 3673 /* push left to right */
5f39d397 3674 right_nritems = btrfs_header_nritems(right);
34a38218 3675
5f39d397 3676 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2ff7e61e 3677 push_space -= leaf_data_end(fs_info, left);
5f39d397 3678
00ec4c51 3679 /* make room in the right data area */
2ff7e61e 3680 data_end = leaf_data_end(fs_info, right);
5f39d397 3681 memmove_extent_buffer(right,
3d9ec8c4
NB
3682 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3683 BTRFS_LEAF_DATA_OFFSET + data_end,
0b246afa 3684 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
5f39d397 3685
00ec4c51 3686 /* copy from the left data area */
3d9ec8c4 3687 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3688 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3689 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
d6025579 3690 push_space);
5f39d397
CM
3691
3692 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3693 btrfs_item_nr_offset(0),
3694 right_nritems * sizeof(struct btrfs_item));
3695
00ec4c51 3696 /* copy the items from left to right */
5f39d397
CM
3697 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3698 btrfs_item_nr_offset(left_nritems - push_items),
3699 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3700
3701 /* update the item pointers */
7518a238 3702 right_nritems += push_items;
5f39d397 3703 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3704 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
7518a238 3705 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3706 item = btrfs_item_nr(i);
cfed81a0
CM
3707 push_space -= btrfs_token_item_size(right, item, &token);
3708 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3709 }
3710
7518a238 3711 left_nritems -= push_items;
5f39d397 3712 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3713
34a38218
CM
3714 if (left_nritems)
3715 btrfs_mark_buffer_dirty(left);
f0486c68 3716 else
7c302b49 3717 clean_tree_block(fs_info, left);
f0486c68 3718
5f39d397 3719 btrfs_mark_buffer_dirty(right);
a429e513 3720
5f39d397
CM
3721 btrfs_item_key(right, &disk_key, 0);
3722 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3723 btrfs_mark_buffer_dirty(upper);
02217ed2 3724
00ec4c51 3725 /* then fixup the leaf pointer in the path */
7518a238
CM
3726 if (path->slots[0] >= left_nritems) {
3727 path->slots[0] -= left_nritems;
925baedd 3728 if (btrfs_header_nritems(path->nodes[0]) == 0)
7c302b49 3729 clean_tree_block(fs_info, path->nodes[0]);
925baedd 3730 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3731 free_extent_buffer(path->nodes[0]);
3732 path->nodes[0] = right;
00ec4c51
CM
3733 path->slots[1] += 1;
3734 } else {
925baedd 3735 btrfs_tree_unlock(right);
5f39d397 3736 free_extent_buffer(right);
00ec4c51
CM
3737 }
3738 return 0;
925baedd
CM
3739
3740out_unlock:
3741 btrfs_tree_unlock(right);
3742 free_extent_buffer(right);
3743 return 1;
00ec4c51 3744}
925baedd 3745
44871b1b
CM
3746/*
3747 * push some data in the path leaf to the right, trying to free up at
3748 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3749 *
3750 * returns 1 if the push failed because the other node didn't have enough
3751 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3752 *
3753 * this will push starting from min_slot to the end of the leaf. It won't
3754 * push any slot lower than min_slot
44871b1b
CM
3755 */
3756static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3757 *root, struct btrfs_path *path,
3758 int min_data_size, int data_size,
3759 int empty, u32 min_slot)
44871b1b 3760{
2ff7e61e 3761 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3762 struct extent_buffer *left = path->nodes[0];
3763 struct extent_buffer *right;
3764 struct extent_buffer *upper;
3765 int slot;
3766 int free_space;
3767 u32 left_nritems;
3768 int ret;
3769
3770 if (!path->nodes[1])
3771 return 1;
3772
3773 slot = path->slots[1];
3774 upper = path->nodes[1];
3775 if (slot >= btrfs_header_nritems(upper) - 1)
3776 return 1;
3777
3778 btrfs_assert_tree_locked(path->nodes[1]);
3779
2ff7e61e 3780 right = read_node_slot(fs_info, upper, slot + 1);
fb770ae4
LB
3781 /*
3782 * slot + 1 is not valid or we fail to read the right node,
3783 * no big deal, just return.
3784 */
3785 if (IS_ERR(right))
91ca338d
TI
3786 return 1;
3787
44871b1b 3788 btrfs_tree_lock(right);
8bead258 3789 btrfs_set_lock_blocking_write(right);
44871b1b 3790
2ff7e61e 3791 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3792 if (free_space < data_size)
3793 goto out_unlock;
3794
3795 /* cow and double check */
3796 ret = btrfs_cow_block(trans, root, right, upper,
3797 slot + 1, &right);
3798 if (ret)
3799 goto out_unlock;
3800
2ff7e61e 3801 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3802 if (free_space < data_size)
3803 goto out_unlock;
3804
3805 left_nritems = btrfs_header_nritems(left);
3806 if (left_nritems == 0)
3807 goto out_unlock;
3808
2ef1fed2
FDBM
3809 if (path->slots[0] == left_nritems && !empty) {
3810 /* Key greater than all keys in the leaf, right neighbor has
3811 * enough room for it and we're not emptying our leaf to delete
3812 * it, therefore use right neighbor to insert the new item and
52042d8e 3813 * no need to touch/dirty our left leaf. */
2ef1fed2
FDBM
3814 btrfs_tree_unlock(left);
3815 free_extent_buffer(left);
3816 path->nodes[0] = right;
3817 path->slots[0] = 0;
3818 path->slots[1]++;
3819 return 0;
3820 }
3821
1e47eef2 3822 return __push_leaf_right(fs_info, path, min_data_size, empty,
99d8f83c 3823 right, free_space, left_nritems, min_slot);
44871b1b
CM
3824out_unlock:
3825 btrfs_tree_unlock(right);
3826 free_extent_buffer(right);
3827 return 1;
3828}
3829
74123bd7
CM
3830/*
3831 * push some data in the path leaf to the left, trying to free up at
3832 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3833 *
3834 * max_slot can put a limit on how far into the leaf we'll push items. The
3835 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3836 * items
74123bd7 3837 */
66cb7ddb 3838static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
44871b1b
CM
3839 struct btrfs_path *path, int data_size,
3840 int empty, struct extent_buffer *left,
99d8f83c
CM
3841 int free_space, u32 right_nritems,
3842 u32 max_slot)
be0e5c09 3843{
5f39d397
CM
3844 struct btrfs_disk_key disk_key;
3845 struct extent_buffer *right = path->nodes[0];
be0e5c09 3846 int i;
be0e5c09
CM
3847 int push_space = 0;
3848 int push_items = 0;
0783fcfc 3849 struct btrfs_item *item;
7518a238 3850 u32 old_left_nritems;
34a38218 3851 u32 nr;
aa5d6bed 3852 int ret = 0;
db94535d
CM
3853 u32 this_item_size;
3854 u32 old_left_item_size;
cfed81a0
CM
3855 struct btrfs_map_token token;
3856
3857 btrfs_init_map_token(&token);
be0e5c09 3858
34a38218 3859 if (empty)
99d8f83c 3860 nr = min(right_nritems, max_slot);
34a38218 3861 else
99d8f83c 3862 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3863
3864 for (i = 0; i < nr; i++) {
dd3cc16b 3865 item = btrfs_item_nr(i);
db94535d 3866
31840ae1
ZY
3867 if (!empty && push_items > 0) {
3868 if (path->slots[0] < i)
3869 break;
3870 if (path->slots[0] == i) {
2ff7e61e 3871 int space = btrfs_leaf_free_space(fs_info, right);
31840ae1
ZY
3872 if (space + push_space * 2 > free_space)
3873 break;
3874 }
3875 }
3876
be0e5c09 3877 if (path->slots[0] == i)
87b29b20 3878 push_space += data_size;
db94535d
CM
3879
3880 this_item_size = btrfs_item_size(right, item);
3881 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3882 break;
db94535d 3883
be0e5c09 3884 push_items++;
db94535d
CM
3885 push_space += this_item_size + sizeof(*item);
3886 }
3887
be0e5c09 3888 if (push_items == 0) {
925baedd
CM
3889 ret = 1;
3890 goto out;
be0e5c09 3891 }
fae7f21c 3892 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3893
be0e5c09 3894 /* push data from right to left */
5f39d397
CM
3895 copy_extent_buffer(left, right,
3896 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3897 btrfs_item_nr_offset(0),
3898 push_items * sizeof(struct btrfs_item));
3899
0b246afa 3900 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
d397712b 3901 btrfs_item_offset_nr(right, push_items - 1);
5f39d397 3902
3d9ec8c4 3903 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3904 leaf_data_end(fs_info, left) - push_space,
3d9ec8c4 3905 BTRFS_LEAF_DATA_OFFSET +
5f39d397 3906 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3907 push_space);
5f39d397 3908 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3909 BUG_ON(old_left_nritems <= 0);
eb60ceac 3910
db94535d 3911 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3912 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3913 u32 ioff;
db94535d 3914
dd3cc16b 3915 item = btrfs_item_nr(i);
db94535d 3916
cfed81a0
CM
3917 ioff = btrfs_token_item_offset(left, item, &token);
3918 btrfs_set_token_item_offset(left, item,
0b246afa 3919 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
cfed81a0 3920 &token);
be0e5c09 3921 }
5f39d397 3922 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3923
3924 /* fixup right node */
31b1a2bd
JL
3925 if (push_items > right_nritems)
3926 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3927 right_nritems);
34a38218
CM
3928
3929 if (push_items < right_nritems) {
3930 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2ff7e61e 3931 leaf_data_end(fs_info, right);
3d9ec8c4 3932 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3933 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3934 BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3935 leaf_data_end(fs_info, right), push_space);
34a38218
CM
3936
3937 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3938 btrfs_item_nr_offset(push_items),
3939 (btrfs_header_nritems(right) - push_items) *
3940 sizeof(struct btrfs_item));
34a38218 3941 }
eef1c494
Y
3942 right_nritems -= push_items;
3943 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3944 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
5f39d397 3945 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3946 item = btrfs_item_nr(i);
db94535d 3947
cfed81a0
CM
3948 push_space = push_space - btrfs_token_item_size(right,
3949 item, &token);
3950 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3951 }
eb60ceac 3952
5f39d397 3953 btrfs_mark_buffer_dirty(left);
34a38218
CM
3954 if (right_nritems)
3955 btrfs_mark_buffer_dirty(right);
f0486c68 3956 else
7c302b49 3957 clean_tree_block(fs_info, right);
098f59c2 3958
5f39d397 3959 btrfs_item_key(right, &disk_key, 0);
b167fa91 3960 fixup_low_keys(path, &disk_key, 1);
be0e5c09
CM
3961
3962 /* then fixup the leaf pointer in the path */
3963 if (path->slots[0] < push_items) {
3964 path->slots[0] += old_left_nritems;
925baedd 3965 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3966 free_extent_buffer(path->nodes[0]);
3967 path->nodes[0] = left;
be0e5c09
CM
3968 path->slots[1] -= 1;
3969 } else {
925baedd 3970 btrfs_tree_unlock(left);
5f39d397 3971 free_extent_buffer(left);
be0e5c09
CM
3972 path->slots[0] -= push_items;
3973 }
eb60ceac 3974 BUG_ON(path->slots[0] < 0);
aa5d6bed 3975 return ret;
925baedd
CM
3976out:
3977 btrfs_tree_unlock(left);
3978 free_extent_buffer(left);
3979 return ret;
be0e5c09
CM
3980}
3981
44871b1b
CM
3982/*
3983 * push some data in the path leaf to the left, trying to free up at
3984 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3985 *
3986 * max_slot can put a limit on how far into the leaf we'll push items. The
3987 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3988 * items
44871b1b
CM
3989 */
3990static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3991 *root, struct btrfs_path *path, int min_data_size,
3992 int data_size, int empty, u32 max_slot)
44871b1b 3993{
2ff7e61e 3994 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3995 struct extent_buffer *right = path->nodes[0];
3996 struct extent_buffer *left;
3997 int slot;
3998 int free_space;
3999 u32 right_nritems;
4000 int ret = 0;
4001
4002 slot = path->slots[1];
4003 if (slot == 0)
4004 return 1;
4005 if (!path->nodes[1])
4006 return 1;
4007
4008 right_nritems = btrfs_header_nritems(right);
4009 if (right_nritems == 0)
4010 return 1;
4011
4012 btrfs_assert_tree_locked(path->nodes[1]);
4013
2ff7e61e 4014 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
fb770ae4
LB
4015 /*
4016 * slot - 1 is not valid or we fail to read the left node,
4017 * no big deal, just return.
4018 */
4019 if (IS_ERR(left))
91ca338d
TI
4020 return 1;
4021
44871b1b 4022 btrfs_tree_lock(left);
8bead258 4023 btrfs_set_lock_blocking_write(left);
44871b1b 4024
2ff7e61e 4025 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4026 if (free_space < data_size) {
4027 ret = 1;
4028 goto out;
4029 }
4030
4031 /* cow and double check */
4032 ret = btrfs_cow_block(trans, root, left,
4033 path->nodes[1], slot - 1, &left);
4034 if (ret) {
4035 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4036 if (ret == -ENOSPC)
4037 ret = 1;
44871b1b
CM
4038 goto out;
4039 }
4040
2ff7e61e 4041 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4042 if (free_space < data_size) {
4043 ret = 1;
4044 goto out;
4045 }
4046
66cb7ddb 4047 return __push_leaf_left(fs_info, path, min_data_size,
99d8f83c
CM
4048 empty, left, free_space, right_nritems,
4049 max_slot);
44871b1b
CM
4050out:
4051 btrfs_tree_unlock(left);
4052 free_extent_buffer(left);
4053 return ret;
4054}
4055
4056/*
4057 * split the path's leaf in two, making sure there is at least data_size
4058 * available for the resulting leaf level of the path.
44871b1b 4059 */
143bede5 4060static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2ff7e61e 4061 struct btrfs_fs_info *fs_info,
143bede5
JM
4062 struct btrfs_path *path,
4063 struct extent_buffer *l,
4064 struct extent_buffer *right,
4065 int slot, int mid, int nritems)
44871b1b
CM
4066{
4067 int data_copy_size;
4068 int rt_data_off;
4069 int i;
44871b1b 4070 struct btrfs_disk_key disk_key;
cfed81a0
CM
4071 struct btrfs_map_token token;
4072
4073 btrfs_init_map_token(&token);
44871b1b
CM
4074
4075 nritems = nritems - mid;
4076 btrfs_set_header_nritems(right, nritems);
2ff7e61e 4077 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
44871b1b
CM
4078
4079 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4080 btrfs_item_nr_offset(mid),
4081 nritems * sizeof(struct btrfs_item));
4082
4083 copy_extent_buffer(right, l,
3d9ec8c4
NB
4084 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4085 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 4086 leaf_data_end(fs_info, l), data_copy_size);
44871b1b 4087
0b246afa 4088 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
44871b1b
CM
4089
4090 for (i = 0; i < nritems; i++) {
dd3cc16b 4091 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4092 u32 ioff;
4093
cfed81a0
CM
4094 ioff = btrfs_token_item_offset(right, item, &token);
4095 btrfs_set_token_item_offset(right, item,
4096 ioff + rt_data_off, &token);
44871b1b
CM
4097 }
4098
44871b1b 4099 btrfs_set_header_nritems(l, mid);
44871b1b 4100 btrfs_item_key(right, &disk_key, 0);
2ff7e61e 4101 insert_ptr(trans, fs_info, path, &disk_key, right->start,
c3e06965 4102 path->slots[1] + 1, 1);
44871b1b
CM
4103
4104 btrfs_mark_buffer_dirty(right);
4105 btrfs_mark_buffer_dirty(l);
4106 BUG_ON(path->slots[0] != slot);
4107
44871b1b
CM
4108 if (mid <= slot) {
4109 btrfs_tree_unlock(path->nodes[0]);
4110 free_extent_buffer(path->nodes[0]);
4111 path->nodes[0] = right;
4112 path->slots[0] -= mid;
4113 path->slots[1] += 1;
4114 } else {
4115 btrfs_tree_unlock(right);
4116 free_extent_buffer(right);
4117 }
4118
4119 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4120}
4121
99d8f83c
CM
4122/*
4123 * double splits happen when we need to insert a big item in the middle
4124 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4125 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4126 * A B C
4127 *
4128 * We avoid this by trying to push the items on either side of our target
4129 * into the adjacent leaves. If all goes well we can avoid the double split
4130 * completely.
4131 */
4132static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4133 struct btrfs_root *root,
4134 struct btrfs_path *path,
4135 int data_size)
4136{
2ff7e61e 4137 struct btrfs_fs_info *fs_info = root->fs_info;
99d8f83c
CM
4138 int ret;
4139 int progress = 0;
4140 int slot;
4141 u32 nritems;
5a4267ca 4142 int space_needed = data_size;
99d8f83c
CM
4143
4144 slot = path->slots[0];
5a4267ca 4145 if (slot < btrfs_header_nritems(path->nodes[0]))
2ff7e61e 4146 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
99d8f83c
CM
4147
4148 /*
4149 * try to push all the items after our slot into the
4150 * right leaf
4151 */
5a4267ca 4152 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4153 if (ret < 0)
4154 return ret;
4155
4156 if (ret == 0)
4157 progress++;
4158
4159 nritems = btrfs_header_nritems(path->nodes[0]);
4160 /*
4161 * our goal is to get our slot at the start or end of a leaf. If
4162 * we've done so we're done
4163 */
4164 if (path->slots[0] == 0 || path->slots[0] == nritems)
4165 return 0;
4166
2ff7e61e 4167 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4168 return 0;
4169
4170 /* try to push all the items before our slot into the next leaf */
4171 slot = path->slots[0];
263d3995
FM
4172 space_needed = data_size;
4173 if (slot > 0)
4174 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
5a4267ca 4175 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4176 if (ret < 0)
4177 return ret;
4178
4179 if (ret == 0)
4180 progress++;
4181
4182 if (progress)
4183 return 0;
4184 return 1;
4185}
4186
74123bd7
CM
4187/*
4188 * split the path's leaf in two, making sure there is at least data_size
4189 * available for the resulting leaf level of the path.
aa5d6bed
CM
4190 *
4191 * returns 0 if all went well and < 0 on failure.
74123bd7 4192 */
e02119d5
CM
4193static noinline int split_leaf(struct btrfs_trans_handle *trans,
4194 struct btrfs_root *root,
310712b2 4195 const struct btrfs_key *ins_key,
e02119d5
CM
4196 struct btrfs_path *path, int data_size,
4197 int extend)
be0e5c09 4198{
5d4f98a2 4199 struct btrfs_disk_key disk_key;
5f39d397 4200 struct extent_buffer *l;
7518a238 4201 u32 nritems;
eb60ceac
CM
4202 int mid;
4203 int slot;
5f39d397 4204 struct extent_buffer *right;
b7a0365e 4205 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4206 int ret = 0;
aa5d6bed 4207 int wret;
5d4f98a2 4208 int split;
cc0c5538 4209 int num_doubles = 0;
99d8f83c 4210 int tried_avoid_double = 0;
aa5d6bed 4211
a5719521
YZ
4212 l = path->nodes[0];
4213 slot = path->slots[0];
4214 if (extend && data_size + btrfs_item_size_nr(l, slot) +
0b246afa 4215 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
a5719521
YZ
4216 return -EOVERFLOW;
4217
40689478 4218 /* first try to make some room by pushing left and right */
33157e05 4219 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4220 int space_needed = data_size;
4221
4222 if (slot < btrfs_header_nritems(l))
2ff7e61e 4223 space_needed -= btrfs_leaf_free_space(fs_info, l);
5a4267ca
FDBM
4224
4225 wret = push_leaf_right(trans, root, path, space_needed,
4226 space_needed, 0, 0);
d397712b 4227 if (wret < 0)
eaee50e8 4228 return wret;
3685f791 4229 if (wret) {
263d3995
FM
4230 space_needed = data_size;
4231 if (slot > 0)
4232 space_needed -= btrfs_leaf_free_space(fs_info,
4233 l);
5a4267ca
FDBM
4234 wret = push_leaf_left(trans, root, path, space_needed,
4235 space_needed, 0, (u32)-1);
3685f791
CM
4236 if (wret < 0)
4237 return wret;
4238 }
4239 l = path->nodes[0];
aa5d6bed 4240
3685f791 4241 /* did the pushes work? */
2ff7e61e 4242 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
3685f791 4243 return 0;
3326d1b0 4244 }
aa5d6bed 4245
5c680ed6 4246 if (!path->nodes[1]) {
fdd99c72 4247 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4248 if (ret)
4249 return ret;
4250 }
cc0c5538 4251again:
5d4f98a2 4252 split = 1;
cc0c5538 4253 l = path->nodes[0];
eb60ceac 4254 slot = path->slots[0];
5f39d397 4255 nritems = btrfs_header_nritems(l);
d397712b 4256 mid = (nritems + 1) / 2;
54aa1f4d 4257
5d4f98a2
YZ
4258 if (mid <= slot) {
4259 if (nritems == 1 ||
4260 leaf_space_used(l, mid, nritems - mid) + data_size >
0b246afa 4261 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4262 if (slot >= nritems) {
4263 split = 0;
4264 } else {
4265 mid = slot;
4266 if (mid != nritems &&
4267 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4268 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4269 if (data_size && !tried_avoid_double)
4270 goto push_for_double;
5d4f98a2
YZ
4271 split = 2;
4272 }
4273 }
4274 }
4275 } else {
4276 if (leaf_space_used(l, 0, mid) + data_size >
0b246afa 4277 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4278 if (!extend && data_size && slot == 0) {
4279 split = 0;
4280 } else if ((extend || !data_size) && slot == 0) {
4281 mid = 1;
4282 } else {
4283 mid = slot;
4284 if (mid != nritems &&
4285 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4286 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4287 if (data_size && !tried_avoid_double)
4288 goto push_for_double;
67871254 4289 split = 2;
5d4f98a2
YZ
4290 }
4291 }
4292 }
4293 }
4294
4295 if (split == 0)
4296 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4297 else
4298 btrfs_item_key(l, &disk_key, mid);
4299
a6279470
FM
4300 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4301 l->start, 0);
f0486c68 4302 if (IS_ERR(right))
5f39d397 4303 return PTR_ERR(right);
f0486c68 4304
0b246afa 4305 root_add_used(root, fs_info->nodesize);
5f39d397 4306
5d4f98a2
YZ
4307 if (split == 0) {
4308 if (mid <= slot) {
4309 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4310 insert_ptr(trans, fs_info, path, &disk_key,
4311 right->start, path->slots[1] + 1, 1);
5d4f98a2
YZ
4312 btrfs_tree_unlock(path->nodes[0]);
4313 free_extent_buffer(path->nodes[0]);
4314 path->nodes[0] = right;
4315 path->slots[0] = 0;
4316 path->slots[1] += 1;
4317 } else {
4318 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4319 insert_ptr(trans, fs_info, path, &disk_key,
4320 right->start, path->slots[1], 1);
5d4f98a2
YZ
4321 btrfs_tree_unlock(path->nodes[0]);
4322 free_extent_buffer(path->nodes[0]);
4323 path->nodes[0] = right;
4324 path->slots[0] = 0;
143bede5 4325 if (path->slots[1] == 0)
b167fa91 4326 fixup_low_keys(path, &disk_key, 1);
d4dbff95 4327 }
196e0249
LB
4328 /*
4329 * We create a new leaf 'right' for the required ins_len and
4330 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4331 * the content of ins_len to 'right'.
4332 */
5d4f98a2 4333 return ret;
d4dbff95 4334 }
74123bd7 4335
2ff7e61e 4336 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
31840ae1 4337
5d4f98a2 4338 if (split == 2) {
cc0c5538
CM
4339 BUG_ON(num_doubles != 0);
4340 num_doubles++;
4341 goto again;
a429e513 4342 }
44871b1b 4343
143bede5 4344 return 0;
99d8f83c
CM
4345
4346push_for_double:
4347 push_for_double_split(trans, root, path, data_size);
4348 tried_avoid_double = 1;
2ff7e61e 4349 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4350 return 0;
4351 goto again;
be0e5c09
CM
4352}
4353
ad48fd75
YZ
4354static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4355 struct btrfs_root *root,
4356 struct btrfs_path *path, int ins_len)
459931ec 4357{
2ff7e61e 4358 struct btrfs_fs_info *fs_info = root->fs_info;
ad48fd75 4359 struct btrfs_key key;
459931ec 4360 struct extent_buffer *leaf;
ad48fd75
YZ
4361 struct btrfs_file_extent_item *fi;
4362 u64 extent_len = 0;
4363 u32 item_size;
4364 int ret;
459931ec
CM
4365
4366 leaf = path->nodes[0];
ad48fd75
YZ
4367 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4368
4369 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4370 key.type != BTRFS_EXTENT_CSUM_KEY);
4371
2ff7e61e 4372 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
ad48fd75 4373 return 0;
459931ec
CM
4374
4375 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4376 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4377 fi = btrfs_item_ptr(leaf, path->slots[0],
4378 struct btrfs_file_extent_item);
4379 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4380 }
b3b4aa74 4381 btrfs_release_path(path);
459931ec 4382
459931ec 4383 path->keep_locks = 1;
ad48fd75
YZ
4384 path->search_for_split = 1;
4385 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4386 path->search_for_split = 0;
a8df6fe6
FM
4387 if (ret > 0)
4388 ret = -EAGAIN;
ad48fd75
YZ
4389 if (ret < 0)
4390 goto err;
459931ec 4391
ad48fd75
YZ
4392 ret = -EAGAIN;
4393 leaf = path->nodes[0];
a8df6fe6
FM
4394 /* if our item isn't there, return now */
4395 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4396 goto err;
4397
109f6aef 4398 /* the leaf has changed, it now has room. return now */
2ff7e61e 4399 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
109f6aef
CM
4400 goto err;
4401
ad48fd75
YZ
4402 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4403 fi = btrfs_item_ptr(leaf, path->slots[0],
4404 struct btrfs_file_extent_item);
4405 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4406 goto err;
459931ec
CM
4407 }
4408
b9473439 4409 btrfs_set_path_blocking(path);
ad48fd75 4410 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4411 if (ret)
4412 goto err;
459931ec 4413
ad48fd75 4414 path->keep_locks = 0;
b9473439 4415 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4416 return 0;
4417err:
4418 path->keep_locks = 0;
4419 return ret;
4420}
4421
4961e293 4422static noinline int split_item(struct btrfs_fs_info *fs_info,
ad48fd75 4423 struct btrfs_path *path,
310712b2 4424 const struct btrfs_key *new_key,
ad48fd75
YZ
4425 unsigned long split_offset)
4426{
4427 struct extent_buffer *leaf;
4428 struct btrfs_item *item;
4429 struct btrfs_item *new_item;
4430 int slot;
4431 char *buf;
4432 u32 nritems;
4433 u32 item_size;
4434 u32 orig_offset;
4435 struct btrfs_disk_key disk_key;
4436
b9473439 4437 leaf = path->nodes[0];
2ff7e61e 4438 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
b9473439 4439
b4ce94de
CM
4440 btrfs_set_path_blocking(path);
4441
dd3cc16b 4442 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4443 orig_offset = btrfs_item_offset(leaf, item);
4444 item_size = btrfs_item_size(leaf, item);
4445
459931ec 4446 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4447 if (!buf)
4448 return -ENOMEM;
4449
459931ec
CM
4450 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4451 path->slots[0]), item_size);
459931ec 4452
ad48fd75 4453 slot = path->slots[0] + 1;
459931ec 4454 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4455 if (slot != nritems) {
4456 /* shift the items */
4457 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4458 btrfs_item_nr_offset(slot),
4459 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4460 }
4461
4462 btrfs_cpu_key_to_disk(&disk_key, new_key);
4463 btrfs_set_item_key(leaf, &disk_key, slot);
4464
dd3cc16b 4465 new_item = btrfs_item_nr(slot);
459931ec
CM
4466
4467 btrfs_set_item_offset(leaf, new_item, orig_offset);
4468 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4469
4470 btrfs_set_item_offset(leaf, item,
4471 orig_offset + item_size - split_offset);
4472 btrfs_set_item_size(leaf, item, split_offset);
4473
4474 btrfs_set_header_nritems(leaf, nritems + 1);
4475
4476 /* write the data for the start of the original item */
4477 write_extent_buffer(leaf, buf,
4478 btrfs_item_ptr_offset(leaf, path->slots[0]),
4479 split_offset);
4480
4481 /* write the data for the new item */
4482 write_extent_buffer(leaf, buf + split_offset,
4483 btrfs_item_ptr_offset(leaf, slot),
4484 item_size - split_offset);
4485 btrfs_mark_buffer_dirty(leaf);
4486
2ff7e61e 4487 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
459931ec 4488 kfree(buf);
ad48fd75
YZ
4489 return 0;
4490}
4491
4492/*
4493 * This function splits a single item into two items,
4494 * giving 'new_key' to the new item and splitting the
4495 * old one at split_offset (from the start of the item).
4496 *
4497 * The path may be released by this operation. After
4498 * the split, the path is pointing to the old item. The
4499 * new item is going to be in the same node as the old one.
4500 *
4501 * Note, the item being split must be smaller enough to live alone on
4502 * a tree block with room for one extra struct btrfs_item
4503 *
4504 * This allows us to split the item in place, keeping a lock on the
4505 * leaf the entire time.
4506 */
4507int btrfs_split_item(struct btrfs_trans_handle *trans,
4508 struct btrfs_root *root,
4509 struct btrfs_path *path,
310712b2 4510 const struct btrfs_key *new_key,
ad48fd75
YZ
4511 unsigned long split_offset)
4512{
4513 int ret;
4514 ret = setup_leaf_for_split(trans, root, path,
4515 sizeof(struct btrfs_item));
4516 if (ret)
4517 return ret;
4518
4961e293 4519 ret = split_item(root->fs_info, path, new_key, split_offset);
459931ec
CM
4520 return ret;
4521}
4522
ad48fd75
YZ
4523/*
4524 * This function duplicate a item, giving 'new_key' to the new item.
4525 * It guarantees both items live in the same tree leaf and the new item
4526 * is contiguous with the original item.
4527 *
4528 * This allows us to split file extent in place, keeping a lock on the
4529 * leaf the entire time.
4530 */
4531int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4532 struct btrfs_root *root,
4533 struct btrfs_path *path,
310712b2 4534 const struct btrfs_key *new_key)
ad48fd75
YZ
4535{
4536 struct extent_buffer *leaf;
4537 int ret;
4538 u32 item_size;
4539
4540 leaf = path->nodes[0];
4541 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4542 ret = setup_leaf_for_split(trans, root, path,
4543 item_size + sizeof(struct btrfs_item));
4544 if (ret)
4545 return ret;
4546
4547 path->slots[0]++;
afe5fea7 4548 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4549 item_size, item_size +
4550 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4551 leaf = path->nodes[0];
4552 memcpy_extent_buffer(leaf,
4553 btrfs_item_ptr_offset(leaf, path->slots[0]),
4554 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4555 item_size);
4556 return 0;
4557}
4558
d352ac68
CM
4559/*
4560 * make the item pointed to by the path smaller. new_size indicates
4561 * how small to make it, and from_end tells us if we just chop bytes
4562 * off the end of the item or if we shift the item to chop bytes off
4563 * the front.
4564 */
2ff7e61e
JM
4565void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4566 struct btrfs_path *path, u32 new_size, int from_end)
b18c6685 4567{
b18c6685 4568 int slot;
5f39d397
CM
4569 struct extent_buffer *leaf;
4570 struct btrfs_item *item;
b18c6685
CM
4571 u32 nritems;
4572 unsigned int data_end;
4573 unsigned int old_data_start;
4574 unsigned int old_size;
4575 unsigned int size_diff;
4576 int i;
cfed81a0
CM
4577 struct btrfs_map_token token;
4578
4579 btrfs_init_map_token(&token);
b18c6685 4580
5f39d397 4581 leaf = path->nodes[0];
179e29e4
CM
4582 slot = path->slots[0];
4583
4584 old_size = btrfs_item_size_nr(leaf, slot);
4585 if (old_size == new_size)
143bede5 4586 return;
b18c6685 4587
5f39d397 4588 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4589 data_end = leaf_data_end(fs_info, leaf);
b18c6685 4590
5f39d397 4591 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4592
b18c6685
CM
4593 size_diff = old_size - new_size;
4594
4595 BUG_ON(slot < 0);
4596 BUG_ON(slot >= nritems);
4597
4598 /*
4599 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4600 */
4601 /* first correct the data pointers */
4602 for (i = slot; i < nritems; i++) {
5f39d397 4603 u32 ioff;
dd3cc16b 4604 item = btrfs_item_nr(i);
db94535d 4605
cfed81a0
CM
4606 ioff = btrfs_token_item_offset(leaf, item, &token);
4607 btrfs_set_token_item_offset(leaf, item,
4608 ioff + size_diff, &token);
b18c6685 4609 }
db94535d 4610
b18c6685 4611 /* shift the data */
179e29e4 4612 if (from_end) {
3d9ec8c4
NB
4613 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4614 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4615 data_end, old_data_start + new_size - data_end);
4616 } else {
4617 struct btrfs_disk_key disk_key;
4618 u64 offset;
4619
4620 btrfs_item_key(leaf, &disk_key, slot);
4621
4622 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4623 unsigned long ptr;
4624 struct btrfs_file_extent_item *fi;
4625
4626 fi = btrfs_item_ptr(leaf, slot,
4627 struct btrfs_file_extent_item);
4628 fi = (struct btrfs_file_extent_item *)(
4629 (unsigned long)fi - size_diff);
4630
4631 if (btrfs_file_extent_type(leaf, fi) ==
4632 BTRFS_FILE_EXTENT_INLINE) {
4633 ptr = btrfs_item_ptr_offset(leaf, slot);
4634 memmove_extent_buffer(leaf, ptr,
d397712b 4635 (unsigned long)fi,
7ec20afb 4636 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4637 }
4638 }
4639
3d9ec8c4
NB
4640 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4641 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4642 data_end, old_data_start - data_end);
4643
4644 offset = btrfs_disk_key_offset(&disk_key);
4645 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4646 btrfs_set_item_key(leaf, &disk_key, slot);
4647 if (slot == 0)
b167fa91 4648 fixup_low_keys(path, &disk_key, 1);
179e29e4 4649 }
5f39d397 4650
dd3cc16b 4651 item = btrfs_item_nr(slot);
5f39d397
CM
4652 btrfs_set_item_size(leaf, item, new_size);
4653 btrfs_mark_buffer_dirty(leaf);
b18c6685 4654
2ff7e61e 4655 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4656 btrfs_print_leaf(leaf);
b18c6685 4657 BUG();
5f39d397 4658 }
b18c6685
CM
4659}
4660
d352ac68 4661/*
8f69dbd2 4662 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4663 */
2ff7e61e 4664void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 4665 u32 data_size)
6567e837 4666{
6567e837 4667 int slot;
5f39d397
CM
4668 struct extent_buffer *leaf;
4669 struct btrfs_item *item;
6567e837
CM
4670 u32 nritems;
4671 unsigned int data_end;
4672 unsigned int old_data;
4673 unsigned int old_size;
4674 int i;
cfed81a0
CM
4675 struct btrfs_map_token token;
4676
4677 btrfs_init_map_token(&token);
6567e837 4678
5f39d397 4679 leaf = path->nodes[0];
6567e837 4680
5f39d397 4681 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4682 data_end = leaf_data_end(fs_info, leaf);
6567e837 4683
2ff7e61e 4684 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
a4f78750 4685 btrfs_print_leaf(leaf);
6567e837 4686 BUG();
5f39d397 4687 }
6567e837 4688 slot = path->slots[0];
5f39d397 4689 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4690
4691 BUG_ON(slot < 0);
3326d1b0 4692 if (slot >= nritems) {
a4f78750 4693 btrfs_print_leaf(leaf);
0b246afa
JM
4694 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4695 slot, nritems);
3326d1b0
CM
4696 BUG_ON(1);
4697 }
6567e837
CM
4698
4699 /*
4700 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4701 */
4702 /* first correct the data pointers */
4703 for (i = slot; i < nritems; i++) {
5f39d397 4704 u32 ioff;
dd3cc16b 4705 item = btrfs_item_nr(i);
db94535d 4706
cfed81a0
CM
4707 ioff = btrfs_token_item_offset(leaf, item, &token);
4708 btrfs_set_token_item_offset(leaf, item,
4709 ioff - data_size, &token);
6567e837 4710 }
5f39d397 4711
6567e837 4712 /* shift the data */
3d9ec8c4
NB
4713 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4714 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
6567e837 4715 data_end, old_data - data_end);
5f39d397 4716
6567e837 4717 data_end = old_data;
5f39d397 4718 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4719 item = btrfs_item_nr(slot);
5f39d397
CM
4720 btrfs_set_item_size(leaf, item, old_size + data_size);
4721 btrfs_mark_buffer_dirty(leaf);
6567e837 4722
2ff7e61e 4723 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4724 btrfs_print_leaf(leaf);
6567e837 4725 BUG();
5f39d397 4726 }
6567e837
CM
4727}
4728
74123bd7 4729/*
44871b1b
CM
4730 * this is a helper for btrfs_insert_empty_items, the main goal here is
4731 * to save stack depth by doing the bulk of the work in a function
4732 * that doesn't call btrfs_search_slot
74123bd7 4733 */
afe5fea7 4734void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
310712b2 4735 const struct btrfs_key *cpu_key, u32 *data_size,
143bede5 4736 u32 total_data, u32 total_size, int nr)
be0e5c09 4737{
0b246afa 4738 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4739 struct btrfs_item *item;
9c58309d 4740 int i;
7518a238 4741 u32 nritems;
be0e5c09 4742 unsigned int data_end;
e2fa7227 4743 struct btrfs_disk_key disk_key;
44871b1b
CM
4744 struct extent_buffer *leaf;
4745 int slot;
cfed81a0
CM
4746 struct btrfs_map_token token;
4747
24cdc847
FM
4748 if (path->slots[0] == 0) {
4749 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
b167fa91 4750 fixup_low_keys(path, &disk_key, 1);
24cdc847
FM
4751 }
4752 btrfs_unlock_up_safe(path, 1);
4753
cfed81a0 4754 btrfs_init_map_token(&token);
e2fa7227 4755
5f39d397 4756 leaf = path->nodes[0];
44871b1b 4757 slot = path->slots[0];
74123bd7 4758
5f39d397 4759 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4760 data_end = leaf_data_end(fs_info, leaf);
eb60ceac 4761
2ff7e61e 4762 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
a4f78750 4763 btrfs_print_leaf(leaf);
0b246afa 4764 btrfs_crit(fs_info, "not enough freespace need %u have %d",
2ff7e61e 4765 total_size, btrfs_leaf_free_space(fs_info, leaf));
be0e5c09 4766 BUG();
d4dbff95 4767 }
5f39d397 4768
be0e5c09 4769 if (slot != nritems) {
5f39d397 4770 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4771
5f39d397 4772 if (old_data < data_end) {
a4f78750 4773 btrfs_print_leaf(leaf);
0b246afa 4774 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
5d163e0e 4775 slot, old_data, data_end);
5f39d397
CM
4776 BUG_ON(1);
4777 }
be0e5c09
CM
4778 /*
4779 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4780 */
4781 /* first correct the data pointers */
0783fcfc 4782 for (i = slot; i < nritems; i++) {
5f39d397 4783 u32 ioff;
db94535d 4784
62e85577 4785 item = btrfs_item_nr(i);
cfed81a0
CM
4786 ioff = btrfs_token_item_offset(leaf, item, &token);
4787 btrfs_set_token_item_offset(leaf, item,
4788 ioff - total_data, &token);
0783fcfc 4789 }
be0e5c09 4790 /* shift the items */
9c58309d 4791 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4792 btrfs_item_nr_offset(slot),
d6025579 4793 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4794
4795 /* shift the data */
3d9ec8c4
NB
4796 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4797 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
d6025579 4798 data_end, old_data - data_end);
be0e5c09
CM
4799 data_end = old_data;
4800 }
5f39d397 4801
62e2749e 4802 /* setup the item for the new data */
9c58309d
CM
4803 for (i = 0; i < nr; i++) {
4804 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4805 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4806 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4807 btrfs_set_token_item_offset(leaf, item,
4808 data_end - data_size[i], &token);
9c58309d 4809 data_end -= data_size[i];
cfed81a0 4810 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4811 }
44871b1b 4812
9c58309d 4813 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4814 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4815
2ff7e61e 4816 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4817 btrfs_print_leaf(leaf);
be0e5c09 4818 BUG();
5f39d397 4819 }
44871b1b
CM
4820}
4821
4822/*
4823 * Given a key and some data, insert items into the tree.
4824 * This does all the path init required, making room in the tree if needed.
4825 */
4826int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4827 struct btrfs_root *root,
4828 struct btrfs_path *path,
310712b2 4829 const struct btrfs_key *cpu_key, u32 *data_size,
44871b1b
CM
4830 int nr)
4831{
44871b1b
CM
4832 int ret = 0;
4833 int slot;
4834 int i;
4835 u32 total_size = 0;
4836 u32 total_data = 0;
4837
4838 for (i = 0; i < nr; i++)
4839 total_data += data_size[i];
4840
4841 total_size = total_data + (nr * sizeof(struct btrfs_item));
4842 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4843 if (ret == 0)
4844 return -EEXIST;
4845 if (ret < 0)
143bede5 4846 return ret;
44871b1b 4847
44871b1b
CM
4848 slot = path->slots[0];
4849 BUG_ON(slot < 0);
4850
afe5fea7 4851 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4852 total_data, total_size, nr);
143bede5 4853 return 0;
62e2749e
CM
4854}
4855
4856/*
4857 * Given a key and some data, insert an item into the tree.
4858 * This does all the path init required, making room in the tree if needed.
4859 */
310712b2
OS
4860int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4861 const struct btrfs_key *cpu_key, void *data,
4862 u32 data_size)
62e2749e
CM
4863{
4864 int ret = 0;
2c90e5d6 4865 struct btrfs_path *path;
5f39d397
CM
4866 struct extent_buffer *leaf;
4867 unsigned long ptr;
62e2749e 4868
2c90e5d6 4869 path = btrfs_alloc_path();
db5b493a
TI
4870 if (!path)
4871 return -ENOMEM;
2c90e5d6 4872 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4873 if (!ret) {
5f39d397
CM
4874 leaf = path->nodes[0];
4875 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4876 write_extent_buffer(leaf, data, ptr, data_size);
4877 btrfs_mark_buffer_dirty(leaf);
62e2749e 4878 }
2c90e5d6 4879 btrfs_free_path(path);
aa5d6bed 4880 return ret;
be0e5c09
CM
4881}
4882
74123bd7 4883/*
5de08d7d 4884 * delete the pointer from a given node.
74123bd7 4885 *
d352ac68
CM
4886 * the tree should have been previously balanced so the deletion does not
4887 * empty a node.
74123bd7 4888 */
afe5fea7
TI
4889static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4890 int level, int slot)
be0e5c09 4891{
5f39d397 4892 struct extent_buffer *parent = path->nodes[level];
7518a238 4893 u32 nritems;
f3ea38da 4894 int ret;
be0e5c09 4895
5f39d397 4896 nritems = btrfs_header_nritems(parent);
d397712b 4897 if (slot != nritems - 1) {
bf1d3425
DS
4898 if (level) {
4899 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
a446a979 4900 nritems - slot - 1);
bf1d3425
DS
4901 BUG_ON(ret < 0);
4902 }
5f39d397
CM
4903 memmove_extent_buffer(parent,
4904 btrfs_node_key_ptr_offset(slot),
4905 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4906 sizeof(struct btrfs_key_ptr) *
4907 (nritems - slot - 1));
57ba86c0 4908 } else if (level) {
e09c2efe
DS
4909 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4910 GFP_NOFS);
57ba86c0 4911 BUG_ON(ret < 0);
bb803951 4912 }
f3ea38da 4913
7518a238 4914 nritems--;
5f39d397 4915 btrfs_set_header_nritems(parent, nritems);
7518a238 4916 if (nritems == 0 && parent == root->node) {
5f39d397 4917 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4918 /* just turn the root into a leaf and break */
5f39d397 4919 btrfs_set_header_level(root->node, 0);
bb803951 4920 } else if (slot == 0) {
5f39d397
CM
4921 struct btrfs_disk_key disk_key;
4922
4923 btrfs_node_key(parent, &disk_key, 0);
b167fa91 4924 fixup_low_keys(path, &disk_key, level + 1);
be0e5c09 4925 }
d6025579 4926 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4927}
4928
323ac95b
CM
4929/*
4930 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4931 * path->nodes[1].
323ac95b
CM
4932 *
4933 * This deletes the pointer in path->nodes[1] and frees the leaf
4934 * block extent. zero is returned if it all worked out, < 0 otherwise.
4935 *
4936 * The path must have already been setup for deleting the leaf, including
4937 * all the proper balancing. path->nodes[1] must be locked.
4938 */
143bede5
JM
4939static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4940 struct btrfs_root *root,
4941 struct btrfs_path *path,
4942 struct extent_buffer *leaf)
323ac95b 4943{
5d4f98a2 4944 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4945 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4946
4d081c41
CM
4947 /*
4948 * btrfs_free_extent is expensive, we want to make sure we
4949 * aren't holding any locks when we call it
4950 */
4951 btrfs_unlock_up_safe(path, 0);
4952
f0486c68
YZ
4953 root_sub_used(root, leaf->len);
4954
3083ee2e 4955 extent_buffer_get(leaf);
5581a51a 4956 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4957 free_extent_buffer_stale(leaf);
323ac95b 4958}
74123bd7
CM
4959/*
4960 * delete the item at the leaf level in path. If that empties
4961 * the leaf, remove it from the tree
4962 */
85e21bac
CM
4963int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4964 struct btrfs_path *path, int slot, int nr)
be0e5c09 4965{
0b246afa 4966 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
4967 struct extent_buffer *leaf;
4968 struct btrfs_item *item;
ce0eac2a
AM
4969 u32 last_off;
4970 u32 dsize = 0;
aa5d6bed
CM
4971 int ret = 0;
4972 int wret;
85e21bac 4973 int i;
7518a238 4974 u32 nritems;
cfed81a0
CM
4975 struct btrfs_map_token token;
4976
4977 btrfs_init_map_token(&token);
be0e5c09 4978
5f39d397 4979 leaf = path->nodes[0];
85e21bac
CM
4980 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4981
4982 for (i = 0; i < nr; i++)
4983 dsize += btrfs_item_size_nr(leaf, slot + i);
4984
5f39d397 4985 nritems = btrfs_header_nritems(leaf);
be0e5c09 4986
85e21bac 4987 if (slot + nr != nritems) {
2ff7e61e 4988 int data_end = leaf_data_end(fs_info, leaf);
5f39d397 4989
3d9ec8c4 4990 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
d6025579 4991 data_end + dsize,
3d9ec8c4 4992 BTRFS_LEAF_DATA_OFFSET + data_end,
85e21bac 4993 last_off - data_end);
5f39d397 4994
85e21bac 4995 for (i = slot + nr; i < nritems; i++) {
5f39d397 4996 u32 ioff;
db94535d 4997
dd3cc16b 4998 item = btrfs_item_nr(i);
cfed81a0
CM
4999 ioff = btrfs_token_item_offset(leaf, item, &token);
5000 btrfs_set_token_item_offset(leaf, item,
5001 ioff + dsize, &token);
0783fcfc 5002 }
db94535d 5003
5f39d397 5004 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 5005 btrfs_item_nr_offset(slot + nr),
d6025579 5006 sizeof(struct btrfs_item) *
85e21bac 5007 (nritems - slot - nr));
be0e5c09 5008 }
85e21bac
CM
5009 btrfs_set_header_nritems(leaf, nritems - nr);
5010 nritems -= nr;
5f39d397 5011
74123bd7 5012 /* delete the leaf if we've emptied it */
7518a238 5013 if (nritems == 0) {
5f39d397
CM
5014 if (leaf == root->node) {
5015 btrfs_set_header_level(leaf, 0);
9a8dd150 5016 } else {
f0486c68 5017 btrfs_set_path_blocking(path);
7c302b49 5018 clean_tree_block(fs_info, leaf);
143bede5 5019 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 5020 }
be0e5c09 5021 } else {
7518a238 5022 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 5023 if (slot == 0) {
5f39d397
CM
5024 struct btrfs_disk_key disk_key;
5025
5026 btrfs_item_key(leaf, &disk_key, 0);
b167fa91 5027 fixup_low_keys(path, &disk_key, 1);
aa5d6bed 5028 }
aa5d6bed 5029
74123bd7 5030 /* delete the leaf if it is mostly empty */
0b246afa 5031 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
be0e5c09
CM
5032 /* push_leaf_left fixes the path.
5033 * make sure the path still points to our leaf
5034 * for possible call to del_ptr below
5035 */
4920c9ac 5036 slot = path->slots[1];
5f39d397
CM
5037 extent_buffer_get(leaf);
5038
b9473439 5039 btrfs_set_path_blocking(path);
99d8f83c
CM
5040 wret = push_leaf_left(trans, root, path, 1, 1,
5041 1, (u32)-1);
54aa1f4d 5042 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5043 ret = wret;
5f39d397
CM
5044
5045 if (path->nodes[0] == leaf &&
5046 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5047 wret = push_leaf_right(trans, root, path, 1,
5048 1, 1, 0);
54aa1f4d 5049 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5050 ret = wret;
5051 }
5f39d397
CM
5052
5053 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5054 path->slots[1] = slot;
143bede5 5055 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5056 free_extent_buffer(leaf);
143bede5 5057 ret = 0;
5de08d7d 5058 } else {
925baedd
CM
5059 /* if we're still in the path, make sure
5060 * we're dirty. Otherwise, one of the
5061 * push_leaf functions must have already
5062 * dirtied this buffer
5063 */
5064 if (path->nodes[0] == leaf)
5065 btrfs_mark_buffer_dirty(leaf);
5f39d397 5066 free_extent_buffer(leaf);
be0e5c09 5067 }
d5719762 5068 } else {
5f39d397 5069 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5070 }
5071 }
aa5d6bed 5072 return ret;
be0e5c09
CM
5073}
5074
7bb86316 5075/*
925baedd 5076 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5077 * returns 0 if it found something or 1 if there are no lesser leaves.
5078 * returns < 0 on io errors.
d352ac68
CM
5079 *
5080 * This may release the path, and so you may lose any locks held at the
5081 * time you call it.
7bb86316 5082 */
16e7549f 5083int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5084{
925baedd
CM
5085 struct btrfs_key key;
5086 struct btrfs_disk_key found_key;
5087 int ret;
7bb86316 5088
925baedd 5089 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5090
e8b0d724 5091 if (key.offset > 0) {
925baedd 5092 key.offset--;
e8b0d724 5093 } else if (key.type > 0) {
925baedd 5094 key.type--;
e8b0d724
FDBM
5095 key.offset = (u64)-1;
5096 } else if (key.objectid > 0) {
925baedd 5097 key.objectid--;
e8b0d724
FDBM
5098 key.type = (u8)-1;
5099 key.offset = (u64)-1;
5100 } else {
925baedd 5101 return 1;
e8b0d724 5102 }
7bb86316 5103
b3b4aa74 5104 btrfs_release_path(path);
925baedd
CM
5105 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5106 if (ret < 0)
5107 return ret;
5108 btrfs_item_key(path->nodes[0], &found_key, 0);
5109 ret = comp_keys(&found_key, &key);
337c6f68
FM
5110 /*
5111 * We might have had an item with the previous key in the tree right
5112 * before we released our path. And after we released our path, that
5113 * item might have been pushed to the first slot (0) of the leaf we
5114 * were holding due to a tree balance. Alternatively, an item with the
5115 * previous key can exist as the only element of a leaf (big fat item).
5116 * Therefore account for these 2 cases, so that our callers (like
5117 * btrfs_previous_item) don't miss an existing item with a key matching
5118 * the previous key we computed above.
5119 */
5120 if (ret <= 0)
925baedd
CM
5121 return 0;
5122 return 1;
7bb86316
CM
5123}
5124
3f157a2f
CM
5125/*
5126 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5127 * for nodes or leaves that are have a minimum transaction id.
5128 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5129 *
5130 * This does not cow, but it does stuff the starting key it finds back
5131 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5132 * key and get a writable path.
5133 *
3f157a2f
CM
5134 * This honors path->lowest_level to prevent descent past a given level
5135 * of the tree.
5136 *
d352ac68
CM
5137 * min_trans indicates the oldest transaction that you are interested
5138 * in walking through. Any nodes or leaves older than min_trans are
5139 * skipped over (without reading them).
5140 *
3f157a2f
CM
5141 * returns zero if something useful was found, < 0 on error and 1 if there
5142 * was nothing in the tree that matched the search criteria.
5143 */
5144int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5145 struct btrfs_path *path,
3f157a2f
CM
5146 u64 min_trans)
5147{
2ff7e61e 5148 struct btrfs_fs_info *fs_info = root->fs_info;
3f157a2f
CM
5149 struct extent_buffer *cur;
5150 struct btrfs_key found_key;
5151 int slot;
9652480b 5152 int sret;
3f157a2f
CM
5153 u32 nritems;
5154 int level;
5155 int ret = 1;
f98de9b9 5156 int keep_locks = path->keep_locks;
3f157a2f 5157
f98de9b9 5158 path->keep_locks = 1;
3f157a2f 5159again:
bd681513 5160 cur = btrfs_read_lock_root_node(root);
3f157a2f 5161 level = btrfs_header_level(cur);
e02119d5 5162 WARN_ON(path->nodes[level]);
3f157a2f 5163 path->nodes[level] = cur;
bd681513 5164 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5165
5166 if (btrfs_header_generation(cur) < min_trans) {
5167 ret = 1;
5168 goto out;
5169 }
d397712b 5170 while (1) {
3f157a2f
CM
5171 nritems = btrfs_header_nritems(cur);
5172 level = btrfs_header_level(cur);
a74b35ec 5173 sret = btrfs_bin_search(cur, min_key, level, &slot);
3f157a2f 5174
323ac95b
CM
5175 /* at the lowest level, we're done, setup the path and exit */
5176 if (level == path->lowest_level) {
e02119d5
CM
5177 if (slot >= nritems)
5178 goto find_next_key;
3f157a2f
CM
5179 ret = 0;
5180 path->slots[level] = slot;
5181 btrfs_item_key_to_cpu(cur, &found_key, slot);
5182 goto out;
5183 }
9652480b
Y
5184 if (sret && slot > 0)
5185 slot--;
3f157a2f 5186 /*
de78b51a
ES
5187 * check this node pointer against the min_trans parameters.
5188 * If it is too old, old, skip to the next one.
3f157a2f 5189 */
d397712b 5190 while (slot < nritems) {
3f157a2f 5191 u64 gen;
e02119d5 5192
3f157a2f
CM
5193 gen = btrfs_node_ptr_generation(cur, slot);
5194 if (gen < min_trans) {
5195 slot++;
5196 continue;
5197 }
de78b51a 5198 break;
3f157a2f 5199 }
e02119d5 5200find_next_key:
3f157a2f
CM
5201 /*
5202 * we didn't find a candidate key in this node, walk forward
5203 * and find another one
5204 */
5205 if (slot >= nritems) {
e02119d5 5206 path->slots[level] = slot;
b4ce94de 5207 btrfs_set_path_blocking(path);
e02119d5 5208 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5209 min_trans);
e02119d5 5210 if (sret == 0) {
b3b4aa74 5211 btrfs_release_path(path);
3f157a2f
CM
5212 goto again;
5213 } else {
5214 goto out;
5215 }
5216 }
5217 /* save our key for returning back */
5218 btrfs_node_key_to_cpu(cur, &found_key, slot);
5219 path->slots[level] = slot;
5220 if (level == path->lowest_level) {
5221 ret = 0;
3f157a2f
CM
5222 goto out;
5223 }
b4ce94de 5224 btrfs_set_path_blocking(path);
2ff7e61e 5225 cur = read_node_slot(fs_info, cur, slot);
fb770ae4
LB
5226 if (IS_ERR(cur)) {
5227 ret = PTR_ERR(cur);
5228 goto out;
5229 }
3f157a2f 5230
bd681513 5231 btrfs_tree_read_lock(cur);
b4ce94de 5232
bd681513 5233 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5234 path->nodes[level - 1] = cur;
f7c79f30 5235 unlock_up(path, level, 1, 0, NULL);
3f157a2f
CM
5236 }
5237out:
f98de9b9
FM
5238 path->keep_locks = keep_locks;
5239 if (ret == 0) {
5240 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5241 btrfs_set_path_blocking(path);
3f157a2f 5242 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5243 }
3f157a2f
CM
5244 return ret;
5245}
5246
2ff7e61e 5247static int tree_move_down(struct btrfs_fs_info *fs_info,
7069830a 5248 struct btrfs_path *path,
ab6a43e1 5249 int *level)
7069830a 5250{
fb770ae4
LB
5251 struct extent_buffer *eb;
5252
74dd17fb 5253 BUG_ON(*level == 0);
2ff7e61e 5254 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
fb770ae4
LB
5255 if (IS_ERR(eb))
5256 return PTR_ERR(eb);
5257
5258 path->nodes[*level - 1] = eb;
7069830a
AB
5259 path->slots[*level - 1] = 0;
5260 (*level)--;
fb770ae4 5261 return 0;
7069830a
AB
5262}
5263
f1e30261 5264static int tree_move_next_or_upnext(struct btrfs_path *path,
7069830a
AB
5265 int *level, int root_level)
5266{
5267 int ret = 0;
5268 int nritems;
5269 nritems = btrfs_header_nritems(path->nodes[*level]);
5270
5271 path->slots[*level]++;
5272
74dd17fb 5273 while (path->slots[*level] >= nritems) {
7069830a
AB
5274 if (*level == root_level)
5275 return -1;
5276
5277 /* move upnext */
5278 path->slots[*level] = 0;
5279 free_extent_buffer(path->nodes[*level]);
5280 path->nodes[*level] = NULL;
5281 (*level)++;
5282 path->slots[*level]++;
5283
5284 nritems = btrfs_header_nritems(path->nodes[*level]);
5285 ret = 1;
5286 }
5287 return ret;
5288}
5289
5290/*
5291 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5292 * or down.
5293 */
2ff7e61e 5294static int tree_advance(struct btrfs_fs_info *fs_info,
7069830a
AB
5295 struct btrfs_path *path,
5296 int *level, int root_level,
5297 int allow_down,
5298 struct btrfs_key *key)
5299{
5300 int ret;
5301
5302 if (*level == 0 || !allow_down) {
f1e30261 5303 ret = tree_move_next_or_upnext(path, level, root_level);
7069830a 5304 } else {
ab6a43e1 5305 ret = tree_move_down(fs_info, path, level);
7069830a
AB
5306 }
5307 if (ret >= 0) {
5308 if (*level == 0)
5309 btrfs_item_key_to_cpu(path->nodes[*level], key,
5310 path->slots[*level]);
5311 else
5312 btrfs_node_key_to_cpu(path->nodes[*level], key,
5313 path->slots[*level]);
5314 }
5315 return ret;
5316}
5317
2ff7e61e 5318static int tree_compare_item(struct btrfs_path *left_path,
7069830a
AB
5319 struct btrfs_path *right_path,
5320 char *tmp_buf)
5321{
5322 int cmp;
5323 int len1, len2;
5324 unsigned long off1, off2;
5325
5326 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5327 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5328 if (len1 != len2)
5329 return 1;
5330
5331 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5332 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5333 right_path->slots[0]);
5334
5335 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5336
5337 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5338 if (cmp)
5339 return 1;
5340 return 0;
5341}
5342
5343#define ADVANCE 1
5344#define ADVANCE_ONLY_NEXT -1
5345
5346/*
5347 * This function compares two trees and calls the provided callback for
5348 * every changed/new/deleted item it finds.
5349 * If shared tree blocks are encountered, whole subtrees are skipped, making
5350 * the compare pretty fast on snapshotted subvolumes.
5351 *
5352 * This currently works on commit roots only. As commit roots are read only,
5353 * we don't do any locking. The commit roots are protected with transactions.
5354 * Transactions are ended and rejoined when a commit is tried in between.
5355 *
5356 * This function checks for modifications done to the trees while comparing.
5357 * If it detects a change, it aborts immediately.
5358 */
5359int btrfs_compare_trees(struct btrfs_root *left_root,
5360 struct btrfs_root *right_root,
5361 btrfs_changed_cb_t changed_cb, void *ctx)
5362{
0b246afa 5363 struct btrfs_fs_info *fs_info = left_root->fs_info;
7069830a
AB
5364 int ret;
5365 int cmp;
7069830a
AB
5366 struct btrfs_path *left_path = NULL;
5367 struct btrfs_path *right_path = NULL;
5368 struct btrfs_key left_key;
5369 struct btrfs_key right_key;
5370 char *tmp_buf = NULL;
5371 int left_root_level;
5372 int right_root_level;
5373 int left_level;
5374 int right_level;
5375 int left_end_reached;
5376 int right_end_reached;
5377 int advance_left;
5378 int advance_right;
5379 u64 left_blockptr;
5380 u64 right_blockptr;
6baa4293
FM
5381 u64 left_gen;
5382 u64 right_gen;
7069830a
AB
5383
5384 left_path = btrfs_alloc_path();
5385 if (!left_path) {
5386 ret = -ENOMEM;
5387 goto out;
5388 }
5389 right_path = btrfs_alloc_path();
5390 if (!right_path) {
5391 ret = -ENOMEM;
5392 goto out;
5393 }
5394
752ade68 5395 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7069830a 5396 if (!tmp_buf) {
752ade68
MH
5397 ret = -ENOMEM;
5398 goto out;
7069830a
AB
5399 }
5400
5401 left_path->search_commit_root = 1;
5402 left_path->skip_locking = 1;
5403 right_path->search_commit_root = 1;
5404 right_path->skip_locking = 1;
5405
7069830a
AB
5406 /*
5407 * Strategy: Go to the first items of both trees. Then do
5408 *
5409 * If both trees are at level 0
5410 * Compare keys of current items
5411 * If left < right treat left item as new, advance left tree
5412 * and repeat
5413 * If left > right treat right item as deleted, advance right tree
5414 * and repeat
5415 * If left == right do deep compare of items, treat as changed if
5416 * needed, advance both trees and repeat
5417 * If both trees are at the same level but not at level 0
5418 * Compare keys of current nodes/leafs
5419 * If left < right advance left tree and repeat
5420 * If left > right advance right tree and repeat
5421 * If left == right compare blockptrs of the next nodes/leafs
5422 * If they match advance both trees but stay at the same level
5423 * and repeat
5424 * If they don't match advance both trees while allowing to go
5425 * deeper and repeat
5426 * If tree levels are different
5427 * Advance the tree that needs it and repeat
5428 *
5429 * Advancing a tree means:
5430 * If we are at level 0, try to go to the next slot. If that's not
5431 * possible, go one level up and repeat. Stop when we found a level
5432 * where we could go to the next slot. We may at this point be on a
5433 * node or a leaf.
5434 *
5435 * If we are not at level 0 and not on shared tree blocks, go one
5436 * level deeper.
5437 *
5438 * If we are not at level 0 and on shared tree blocks, go one slot to
5439 * the right if possible or go up and right.
5440 */
5441
0b246afa 5442 down_read(&fs_info->commit_root_sem);
7069830a
AB
5443 left_level = btrfs_header_level(left_root->commit_root);
5444 left_root_level = left_level;
6f2f0b39
RK
5445 left_path->nodes[left_level] =
5446 btrfs_clone_extent_buffer(left_root->commit_root);
5447 if (!left_path->nodes[left_level]) {
5448 up_read(&fs_info->commit_root_sem);
5449 ret = -ENOMEM;
5450 goto out;
5451 }
7069830a
AB
5452
5453 right_level = btrfs_header_level(right_root->commit_root);
5454 right_root_level = right_level;
6f2f0b39
RK
5455 right_path->nodes[right_level] =
5456 btrfs_clone_extent_buffer(right_root->commit_root);
5457 if (!right_path->nodes[right_level]) {
5458 up_read(&fs_info->commit_root_sem);
5459 ret = -ENOMEM;
5460 goto out;
5461 }
0b246afa 5462 up_read(&fs_info->commit_root_sem);
7069830a
AB
5463
5464 if (left_level == 0)
5465 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5466 &left_key, left_path->slots[left_level]);
5467 else
5468 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5469 &left_key, left_path->slots[left_level]);
5470 if (right_level == 0)
5471 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5472 &right_key, right_path->slots[right_level]);
5473 else
5474 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5475 &right_key, right_path->slots[right_level]);
5476
5477 left_end_reached = right_end_reached = 0;
5478 advance_left = advance_right = 0;
5479
5480 while (1) {
7069830a 5481 if (advance_left && !left_end_reached) {
2ff7e61e 5482 ret = tree_advance(fs_info, left_path, &left_level,
7069830a
AB
5483 left_root_level,
5484 advance_left != ADVANCE_ONLY_NEXT,
5485 &left_key);
fb770ae4 5486 if (ret == -1)
7069830a 5487 left_end_reached = ADVANCE;
fb770ae4
LB
5488 else if (ret < 0)
5489 goto out;
7069830a
AB
5490 advance_left = 0;
5491 }
5492 if (advance_right && !right_end_reached) {
2ff7e61e 5493 ret = tree_advance(fs_info, right_path, &right_level,
7069830a
AB
5494 right_root_level,
5495 advance_right != ADVANCE_ONLY_NEXT,
5496 &right_key);
fb770ae4 5497 if (ret == -1)
7069830a 5498 right_end_reached = ADVANCE;
fb770ae4
LB
5499 else if (ret < 0)
5500 goto out;
7069830a
AB
5501 advance_right = 0;
5502 }
5503
5504 if (left_end_reached && right_end_reached) {
5505 ret = 0;
5506 goto out;
5507 } else if (left_end_reached) {
5508 if (right_level == 0) {
ee8c494f 5509 ret = changed_cb(left_path, right_path,
7069830a
AB
5510 &right_key,
5511 BTRFS_COMPARE_TREE_DELETED,
5512 ctx);
5513 if (ret < 0)
5514 goto out;
5515 }
5516 advance_right = ADVANCE;
5517 continue;
5518 } else if (right_end_reached) {
5519 if (left_level == 0) {
ee8c494f 5520 ret = changed_cb(left_path, right_path,
7069830a
AB
5521 &left_key,
5522 BTRFS_COMPARE_TREE_NEW,
5523 ctx);
5524 if (ret < 0)
5525 goto out;
5526 }
5527 advance_left = ADVANCE;
5528 continue;
5529 }
5530
5531 if (left_level == 0 && right_level == 0) {
5532 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5533 if (cmp < 0) {
ee8c494f 5534 ret = changed_cb(left_path, right_path,
7069830a
AB
5535 &left_key,
5536 BTRFS_COMPARE_TREE_NEW,
5537 ctx);
5538 if (ret < 0)
5539 goto out;
5540 advance_left = ADVANCE;
5541 } else if (cmp > 0) {
ee8c494f 5542 ret = changed_cb(left_path, right_path,
7069830a
AB
5543 &right_key,
5544 BTRFS_COMPARE_TREE_DELETED,
5545 ctx);
5546 if (ret < 0)
5547 goto out;
5548 advance_right = ADVANCE;
5549 } else {
b99d9a6a 5550 enum btrfs_compare_tree_result result;
ba5e8f2e 5551
74dd17fb 5552 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
2ff7e61e
JM
5553 ret = tree_compare_item(left_path, right_path,
5554 tmp_buf);
ba5e8f2e 5555 if (ret)
b99d9a6a 5556 result = BTRFS_COMPARE_TREE_CHANGED;
ba5e8f2e 5557 else
b99d9a6a 5558 result = BTRFS_COMPARE_TREE_SAME;
ee8c494f 5559 ret = changed_cb(left_path, right_path,
b99d9a6a 5560 &left_key, result, ctx);
ba5e8f2e
JB
5561 if (ret < 0)
5562 goto out;
7069830a
AB
5563 advance_left = ADVANCE;
5564 advance_right = ADVANCE;
5565 }
5566 } else if (left_level == right_level) {
5567 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5568 if (cmp < 0) {
5569 advance_left = ADVANCE;
5570 } else if (cmp > 0) {
5571 advance_right = ADVANCE;
5572 } else {
5573 left_blockptr = btrfs_node_blockptr(
5574 left_path->nodes[left_level],
5575 left_path->slots[left_level]);
5576 right_blockptr = btrfs_node_blockptr(
5577 right_path->nodes[right_level],
5578 right_path->slots[right_level]);
6baa4293
FM
5579 left_gen = btrfs_node_ptr_generation(
5580 left_path->nodes[left_level],
5581 left_path->slots[left_level]);
5582 right_gen = btrfs_node_ptr_generation(
5583 right_path->nodes[right_level],
5584 right_path->slots[right_level]);
5585 if (left_blockptr == right_blockptr &&
5586 left_gen == right_gen) {
7069830a
AB
5587 /*
5588 * As we're on a shared block, don't
5589 * allow to go deeper.
5590 */
5591 advance_left = ADVANCE_ONLY_NEXT;
5592 advance_right = ADVANCE_ONLY_NEXT;
5593 } else {
5594 advance_left = ADVANCE;
5595 advance_right = ADVANCE;
5596 }
5597 }
5598 } else if (left_level < right_level) {
5599 advance_right = ADVANCE;
5600 } else {
5601 advance_left = ADVANCE;
5602 }
5603 }
5604
5605out:
5606 btrfs_free_path(left_path);
5607 btrfs_free_path(right_path);
8f282f71 5608 kvfree(tmp_buf);
7069830a
AB
5609 return ret;
5610}
5611
3f157a2f
CM
5612/*
5613 * this is similar to btrfs_next_leaf, but does not try to preserve
5614 * and fixup the path. It looks for and returns the next key in the
de78b51a 5615 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5616 *
5617 * 0 is returned if another key is found, < 0 if there are any errors
5618 * and 1 is returned if there are no higher keys in the tree
5619 *
5620 * path->keep_locks should be set to 1 on the search made before
5621 * calling this function.
5622 */
e7a84565 5623int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5624 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5625{
e7a84565
CM
5626 int slot;
5627 struct extent_buffer *c;
5628
934d375b 5629 WARN_ON(!path->keep_locks);
d397712b 5630 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5631 if (!path->nodes[level])
5632 return 1;
5633
5634 slot = path->slots[level] + 1;
5635 c = path->nodes[level];
3f157a2f 5636next:
e7a84565 5637 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5638 int ret;
5639 int orig_lowest;
5640 struct btrfs_key cur_key;
5641 if (level + 1 >= BTRFS_MAX_LEVEL ||
5642 !path->nodes[level + 1])
e7a84565 5643 return 1;
33c66f43
YZ
5644
5645 if (path->locks[level + 1]) {
5646 level++;
5647 continue;
5648 }
5649
5650 slot = btrfs_header_nritems(c) - 1;
5651 if (level == 0)
5652 btrfs_item_key_to_cpu(c, &cur_key, slot);
5653 else
5654 btrfs_node_key_to_cpu(c, &cur_key, slot);
5655
5656 orig_lowest = path->lowest_level;
b3b4aa74 5657 btrfs_release_path(path);
33c66f43
YZ
5658 path->lowest_level = level;
5659 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5660 0, 0);
5661 path->lowest_level = orig_lowest;
5662 if (ret < 0)
5663 return ret;
5664
5665 c = path->nodes[level];
5666 slot = path->slots[level];
5667 if (ret == 0)
5668 slot++;
5669 goto next;
e7a84565 5670 }
33c66f43 5671
e7a84565
CM
5672 if (level == 0)
5673 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5674 else {
3f157a2f
CM
5675 u64 gen = btrfs_node_ptr_generation(c, slot);
5676
3f157a2f
CM
5677 if (gen < min_trans) {
5678 slot++;
5679 goto next;
5680 }
e7a84565 5681 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5682 }
e7a84565
CM
5683 return 0;
5684 }
5685 return 1;
5686}
5687
97571fd0 5688/*
925baedd 5689 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5690 * returns 0 if it found something or 1 if there are no greater leaves.
5691 * returns < 0 on io errors.
97571fd0 5692 */
234b63a0 5693int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5694{
5695 return btrfs_next_old_leaf(root, path, 0);
5696}
5697
5698int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5699 u64 time_seq)
d97e63b6
CM
5700{
5701 int slot;
8e73f275 5702 int level;
5f39d397 5703 struct extent_buffer *c;
8e73f275 5704 struct extent_buffer *next;
925baedd
CM
5705 struct btrfs_key key;
5706 u32 nritems;
5707 int ret;
8e73f275 5708 int old_spinning = path->leave_spinning;
bd681513 5709 int next_rw_lock = 0;
925baedd
CM
5710
5711 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5712 if (nritems == 0)
925baedd 5713 return 1;
925baedd 5714
8e73f275
CM
5715 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5716again:
5717 level = 1;
5718 next = NULL;
bd681513 5719 next_rw_lock = 0;
b3b4aa74 5720 btrfs_release_path(path);
8e73f275 5721
a2135011 5722 path->keep_locks = 1;
31533fb2 5723 path->leave_spinning = 1;
8e73f275 5724
3d7806ec
JS
5725 if (time_seq)
5726 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5727 else
5728 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5729 path->keep_locks = 0;
5730
5731 if (ret < 0)
5732 return ret;
5733
a2135011 5734 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5735 /*
5736 * by releasing the path above we dropped all our locks. A balance
5737 * could have added more items next to the key that used to be
5738 * at the very end of the block. So, check again here and
5739 * advance the path if there are now more items available.
5740 */
a2135011 5741 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5742 if (ret == 0)
5743 path->slots[0]++;
8e73f275 5744 ret = 0;
925baedd
CM
5745 goto done;
5746 }
0b43e04f
LB
5747 /*
5748 * So the above check misses one case:
5749 * - after releasing the path above, someone has removed the item that
5750 * used to be at the very end of the block, and balance between leafs
5751 * gets another one with bigger key.offset to replace it.
5752 *
5753 * This one should be returned as well, or we can get leaf corruption
5754 * later(esp. in __btrfs_drop_extents()).
5755 *
5756 * And a bit more explanation about this check,
5757 * with ret > 0, the key isn't found, the path points to the slot
5758 * where it should be inserted, so the path->slots[0] item must be the
5759 * bigger one.
5760 */
5761 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5762 ret = 0;
5763 goto done;
5764 }
d97e63b6 5765
d397712b 5766 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5767 if (!path->nodes[level]) {
5768 ret = 1;
5769 goto done;
5770 }
5f39d397 5771
d97e63b6
CM
5772 slot = path->slots[level] + 1;
5773 c = path->nodes[level];
5f39d397 5774 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5775 level++;
8e73f275
CM
5776 if (level == BTRFS_MAX_LEVEL) {
5777 ret = 1;
5778 goto done;
5779 }
d97e63b6
CM
5780 continue;
5781 }
5f39d397 5782
925baedd 5783 if (next) {
bd681513 5784 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5785 free_extent_buffer(next);
925baedd 5786 }
5f39d397 5787
8e73f275 5788 next = c;
bd681513 5789 next_rw_lock = path->locks[level];
d07b8528 5790 ret = read_block_for_search(root, path, &next, level,
cda79c54 5791 slot, &key);
8e73f275
CM
5792 if (ret == -EAGAIN)
5793 goto again;
5f39d397 5794
76a05b35 5795 if (ret < 0) {
b3b4aa74 5796 btrfs_release_path(path);
76a05b35
CM
5797 goto done;
5798 }
5799
5cd57b2c 5800 if (!path->skip_locking) {
bd681513 5801 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5802 if (!ret && time_seq) {
5803 /*
5804 * If we don't get the lock, we may be racing
5805 * with push_leaf_left, holding that lock while
5806 * itself waiting for the leaf we've currently
5807 * locked. To solve this situation, we give up
5808 * on our lock and cycle.
5809 */
cf538830 5810 free_extent_buffer(next);
d42244a0
JS
5811 btrfs_release_path(path);
5812 cond_resched();
5813 goto again;
5814 }
8e73f275
CM
5815 if (!ret) {
5816 btrfs_set_path_blocking(path);
bd681513 5817 btrfs_tree_read_lock(next);
8e73f275 5818 }
31533fb2 5819 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5820 }
d97e63b6
CM
5821 break;
5822 }
5823 path->slots[level] = slot;
d397712b 5824 while (1) {
d97e63b6
CM
5825 level--;
5826 c = path->nodes[level];
925baedd 5827 if (path->locks[level])
bd681513 5828 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5829
5f39d397 5830 free_extent_buffer(c);
d97e63b6
CM
5831 path->nodes[level] = next;
5832 path->slots[level] = 0;
a74a4b97 5833 if (!path->skip_locking)
bd681513 5834 path->locks[level] = next_rw_lock;
d97e63b6
CM
5835 if (!level)
5836 break;
b4ce94de 5837
d07b8528 5838 ret = read_block_for_search(root, path, &next, level,
cda79c54 5839 0, &key);
8e73f275
CM
5840 if (ret == -EAGAIN)
5841 goto again;
5842
76a05b35 5843 if (ret < 0) {
b3b4aa74 5844 btrfs_release_path(path);
76a05b35
CM
5845 goto done;
5846 }
5847
5cd57b2c 5848 if (!path->skip_locking) {
bd681513 5849 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5850 if (!ret) {
5851 btrfs_set_path_blocking(path);
bd681513 5852 btrfs_tree_read_lock(next);
bd681513 5853 }
31533fb2 5854 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5855 }
d97e63b6 5856 }
8e73f275 5857 ret = 0;
925baedd 5858done:
f7c79f30 5859 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5860 path->leave_spinning = old_spinning;
5861 if (!old_spinning)
5862 btrfs_set_path_blocking(path);
5863
5864 return ret;
d97e63b6 5865}
0b86a832 5866
3f157a2f
CM
5867/*
5868 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5869 * searching until it gets past min_objectid or finds an item of 'type'
5870 *
5871 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5872 */
0b86a832
CM
5873int btrfs_previous_item(struct btrfs_root *root,
5874 struct btrfs_path *path, u64 min_objectid,
5875 int type)
5876{
5877 struct btrfs_key found_key;
5878 struct extent_buffer *leaf;
e02119d5 5879 u32 nritems;
0b86a832
CM
5880 int ret;
5881
d397712b 5882 while (1) {
0b86a832 5883 if (path->slots[0] == 0) {
b4ce94de 5884 btrfs_set_path_blocking(path);
0b86a832
CM
5885 ret = btrfs_prev_leaf(root, path);
5886 if (ret != 0)
5887 return ret;
5888 } else {
5889 path->slots[0]--;
5890 }
5891 leaf = path->nodes[0];
e02119d5
CM
5892 nritems = btrfs_header_nritems(leaf);
5893 if (nritems == 0)
5894 return 1;
5895 if (path->slots[0] == nritems)
5896 path->slots[0]--;
5897
0b86a832 5898 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5899 if (found_key.objectid < min_objectid)
5900 break;
0a4eefbb
YZ
5901 if (found_key.type == type)
5902 return 0;
e02119d5
CM
5903 if (found_key.objectid == min_objectid &&
5904 found_key.type < type)
5905 break;
0b86a832
CM
5906 }
5907 return 1;
5908}
ade2e0b3
WS
5909
5910/*
5911 * search in extent tree to find a previous Metadata/Data extent item with
5912 * min objecitd.
5913 *
5914 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5915 */
5916int btrfs_previous_extent_item(struct btrfs_root *root,
5917 struct btrfs_path *path, u64 min_objectid)
5918{
5919 struct btrfs_key found_key;
5920 struct extent_buffer *leaf;
5921 u32 nritems;
5922 int ret;
5923
5924 while (1) {
5925 if (path->slots[0] == 0) {
5926 btrfs_set_path_blocking(path);
5927 ret = btrfs_prev_leaf(root, path);
5928 if (ret != 0)
5929 return ret;
5930 } else {
5931 path->slots[0]--;
5932 }
5933 leaf = path->nodes[0];
5934 nritems = btrfs_header_nritems(leaf);
5935 if (nritems == 0)
5936 return 1;
5937 if (path->slots[0] == nritems)
5938 path->slots[0]--;
5939
5940 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5941 if (found_key.objectid < min_objectid)
5942 break;
5943 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5944 found_key.type == BTRFS_METADATA_ITEM_KEY)
5945 return 0;
5946 if (found_key.objectid == min_objectid &&
5947 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5948 break;
5949 }
5950 return 1;
5951}