btrfs: drop fs_info parameter from tree_mod_log_insert_move
[linux-2.6-block.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
adf02123 22#include <linux/mm.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
7f5c1516 25#include "transaction.h"
5f39d397 26#include "print-tree.h"
925baedd 27#include "locking.h"
9a8dd150 28
e089f05c
CM
29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
310712b2
OS
31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
5f39d397 34static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
35 struct btrfs_fs_info *fs_info,
36 struct extent_buffer *dst,
971a1f66 37 struct extent_buffer *src, int empty);
5f39d397 38static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 39 struct btrfs_fs_info *fs_info,
5f39d397
CM
40 struct extent_buffer *dst_buf,
41 struct extent_buffer *src_buf);
afe5fea7
TI
42static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 int level, int slot);
5de865ee 44static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
f230475e 45 struct extent_buffer *eb);
d97e63b6 46
df24a2b9 47struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 48{
e2c89907 49 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
2c90e5d6
CM
50}
51
b4ce94de
CM
52/*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57{
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
67 }
68}
69
70/*
71 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
b4ce94de 77 */
4008c04a 78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 79 struct extent_buffer *held, int held_rw)
b4ce94de
CM
80{
81 int i;
4008c04a 82
bd681513
CM
83 if (held) {
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
89 }
4008c04a 90 btrfs_set_path_blocking(p);
4008c04a
CM
91
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
99 }
b4ce94de 100 }
4008c04a 101
4008c04a 102 if (held)
bd681513 103 btrfs_clear_lock_blocking_rw(held, held_rw);
b4ce94de
CM
104}
105
d352ac68 106/* this also releases the path */
df24a2b9 107void btrfs_free_path(struct btrfs_path *p)
be0e5c09 108{
ff175d57
JJ
109 if (!p)
110 return;
b3b4aa74 111 btrfs_release_path(p);
df24a2b9 112 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
113}
114
d352ac68
CM
115/*
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
118 *
119 * It is safe to call this on paths that no locks or extent buffers held.
120 */
b3b4aa74 121noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
122{
123 int i;
a2135011 124
234b63a0 125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 126 p->slots[i] = 0;
eb60ceac 127 if (!p->nodes[i])
925baedd
CM
128 continue;
129 if (p->locks[i]) {
bd681513 130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
131 p->locks[i] = 0;
132 }
5f39d397 133 free_extent_buffer(p->nodes[i]);
3f157a2f 134 p->nodes[i] = NULL;
eb60ceac
CM
135 }
136}
137
d352ac68
CM
138/*
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
142 * looping required.
143 *
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
147 */
925baedd
CM
148struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149{
150 struct extent_buffer *eb;
240f62c8 151
3083ee2e
JB
152 while (1) {
153 rcu_read_lock();
154 eb = rcu_dereference(root->node);
155
156 /*
157 * RCU really hurts here, we could free up the root node because
01327610 158 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
161 */
162 if (atomic_inc_not_zero(&eb->refs)) {
163 rcu_read_unlock();
164 break;
165 }
166 rcu_read_unlock();
167 synchronize_rcu();
168 }
925baedd
CM
169 return eb;
170}
171
d352ac68
CM
172/* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
175 */
925baedd
CM
176struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177{
178 struct extent_buffer *eb;
179
d397712b 180 while (1) {
925baedd
CM
181 eb = btrfs_root_node(root);
182 btrfs_tree_lock(eb);
240f62c8 183 if (eb == root->node)
925baedd 184 break;
925baedd
CM
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
187 }
188 return eb;
189}
190
bd681513
CM
191/* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
194 */
84f7d8e6 195struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
196{
197 struct extent_buffer *eb;
198
199 while (1) {
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
203 break;
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
206 }
207 return eb;
208}
209
d352ac68
CM
210/* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
213 */
0b86a832
CM
214static void add_root_to_dirty_list(struct btrfs_root *root)
215{
0b246afa
JM
216 struct btrfs_fs_info *fs_info = root->fs_info;
217
e7070be1
JB
218 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
219 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
220 return;
221
0b246afa 222 spin_lock(&fs_info->trans_lock);
e7070be1
JB
223 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
224 /* Want the extent tree to be the last on the list */
225 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
226 list_move_tail(&root->dirty_list,
0b246afa 227 &fs_info->dirty_cowonly_roots);
e7070be1
JB
228 else
229 list_move(&root->dirty_list,
0b246afa 230 &fs_info->dirty_cowonly_roots);
0b86a832 231 }
0b246afa 232 spin_unlock(&fs_info->trans_lock);
0b86a832
CM
233}
234
d352ac68
CM
235/*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
be20aa9d
CM
240int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244{
0b246afa 245 struct btrfs_fs_info *fs_info = root->fs_info;
be20aa9d 246 struct extent_buffer *cow;
be20aa9d
CM
247 int ret = 0;
248 int level;
5d4f98a2 249 struct btrfs_disk_key disk_key;
be20aa9d 250
27cdeb70 251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 252 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
253 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
254 trans->transid != root->last_trans);
be20aa9d
CM
255
256 level = btrfs_header_level(buf);
5d4f98a2
YZ
257 if (level == 0)
258 btrfs_item_key(buf, &disk_key, 0);
259 else
260 btrfs_node_key(buf, &disk_key, 0);
31840ae1 261
4d75f8a9
DS
262 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
263 &disk_key, level, buf->start, 0);
5d4f98a2 264 if (IS_ERR(cow))
be20aa9d
CM
265 return PTR_ERR(cow);
266
58e8012c 267 copy_extent_buffer_full(cow, buf);
be20aa9d
CM
268 btrfs_set_header_bytenr(cow, cow->start);
269 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272 BTRFS_HEADER_FLAG_RELOC);
273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275 else
276 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 277
0b246afa 278 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 279
be20aa9d 280 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 282 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 283 else
e339a6b0 284 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 285
be20aa9d
CM
286 if (ret)
287 return ret;
288
289 btrfs_mark_buffer_dirty(cow);
290 *cow_ret = cow;
291 return 0;
292}
293
bd989ba3
JS
294enum mod_log_op {
295 MOD_LOG_KEY_REPLACE,
296 MOD_LOG_KEY_ADD,
297 MOD_LOG_KEY_REMOVE,
298 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 MOD_LOG_MOVE_KEYS,
301 MOD_LOG_ROOT_REPLACE,
302};
303
304struct tree_mod_move {
305 int dst_slot;
306 int nr_items;
307};
308
309struct tree_mod_root {
310 u64 logical;
311 u8 level;
312};
313
314struct tree_mod_elem {
315 struct rb_node node;
298cfd36 316 u64 logical;
097b8a7c 317 u64 seq;
bd989ba3
JS
318 enum mod_log_op op;
319
320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 int slot;
322
323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 u64 generation;
325
326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 struct btrfs_disk_key key;
328 u64 blockptr;
329
330 /* this is used for op == MOD_LOG_MOVE_KEYS */
331 struct tree_mod_move move;
332
333 /* this is used for op == MOD_LOG_ROOT_REPLACE */
334 struct tree_mod_root old_root;
335};
336
097b8a7c 337static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 338{
097b8a7c 339 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
340}
341
097b8a7c
JS
342static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343{
344 read_unlock(&fs_info->tree_mod_log_lock);
345}
346
347static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348{
349 write_lock(&fs_info->tree_mod_log_lock);
350}
351
352static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353{
354 write_unlock(&fs_info->tree_mod_log_lock);
355}
356
fc36ed7e 357/*
fcebe456 358 * Pull a new tree mod seq number for our operation.
fc36ed7e 359 */
fcebe456 360static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
361{
362 return atomic64_inc_return(&fs_info->tree_mod_seq);
363}
364
097b8a7c
JS
365/*
366 * This adds a new blocker to the tree mod log's blocker list if the @elem
367 * passed does not already have a sequence number set. So when a caller expects
368 * to record tree modifications, it should ensure to set elem->seq to zero
369 * before calling btrfs_get_tree_mod_seq.
370 * Returns a fresh, unused tree log modification sequence number, even if no new
371 * blocker was added.
372 */
373u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
374 struct seq_list *elem)
bd989ba3 375{
097b8a7c 376 tree_mod_log_write_lock(fs_info);
bd989ba3 377 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 378 if (!elem->seq) {
fcebe456 379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 }
bd989ba3 382 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
383 tree_mod_log_write_unlock(fs_info);
384
fcebe456 385 return elem->seq;
bd989ba3
JS
386}
387
388void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
389 struct seq_list *elem)
390{
391 struct rb_root *tm_root;
392 struct rb_node *node;
393 struct rb_node *next;
394 struct seq_list *cur_elem;
395 struct tree_mod_elem *tm;
396 u64 min_seq = (u64)-1;
397 u64 seq_putting = elem->seq;
398
399 if (!seq_putting)
400 return;
401
bd989ba3
JS
402 spin_lock(&fs_info->tree_mod_seq_lock);
403 list_del(&elem->list);
097b8a7c 404 elem->seq = 0;
bd989ba3
JS
405
406 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 407 if (cur_elem->seq < min_seq) {
bd989ba3
JS
408 if (seq_putting > cur_elem->seq) {
409 /*
410 * blocker with lower sequence number exists, we
411 * cannot remove anything from the log
412 */
097b8a7c
JS
413 spin_unlock(&fs_info->tree_mod_seq_lock);
414 return;
bd989ba3
JS
415 }
416 min_seq = cur_elem->seq;
417 }
418 }
097b8a7c
JS
419 spin_unlock(&fs_info->tree_mod_seq_lock);
420
bd989ba3
JS
421 /*
422 * anything that's lower than the lowest existing (read: blocked)
423 * sequence number can be removed from the tree.
424 */
097b8a7c 425 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
426 tm_root = &fs_info->tree_mod_log;
427 for (node = rb_first(tm_root); node; node = next) {
428 next = rb_next(node);
6b4df8b6 429 tm = rb_entry(node, struct tree_mod_elem, node);
097b8a7c 430 if (tm->seq > min_seq)
bd989ba3
JS
431 continue;
432 rb_erase(node, tm_root);
bd989ba3
JS
433 kfree(tm);
434 }
097b8a7c 435 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
436}
437
438/*
439 * key order of the log:
298cfd36 440 * node/leaf start address -> sequence
bd989ba3 441 *
298cfd36
CR
442 * The 'start address' is the logical address of the *new* root node
443 * for root replace operations, or the logical address of the affected
444 * block for all other operations.
5de865ee
FDBM
445 *
446 * Note: must be called with write lock (tree_mod_log_write_lock).
bd989ba3
JS
447 */
448static noinline int
449__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450{
451 struct rb_root *tm_root;
452 struct rb_node **new;
453 struct rb_node *parent = NULL;
454 struct tree_mod_elem *cur;
c8cc6341 455
fcebe456 456 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 457
bd989ba3
JS
458 tm_root = &fs_info->tree_mod_log;
459 new = &tm_root->rb_node;
460 while (*new) {
6b4df8b6 461 cur = rb_entry(*new, struct tree_mod_elem, node);
bd989ba3 462 parent = *new;
298cfd36 463 if (cur->logical < tm->logical)
bd989ba3 464 new = &((*new)->rb_left);
298cfd36 465 else if (cur->logical > tm->logical)
bd989ba3 466 new = &((*new)->rb_right);
097b8a7c 467 else if (cur->seq < tm->seq)
bd989ba3 468 new = &((*new)->rb_left);
097b8a7c 469 else if (cur->seq > tm->seq)
bd989ba3 470 new = &((*new)->rb_right);
5de865ee
FDBM
471 else
472 return -EEXIST;
bd989ba3
JS
473 }
474
475 rb_link_node(&tm->node, parent, new);
476 rb_insert_color(&tm->node, tm_root);
5de865ee 477 return 0;
bd989ba3
JS
478}
479
097b8a7c
JS
480/*
481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482 * returns zero with the tree_mod_log_lock acquired. The caller must hold
483 * this until all tree mod log insertions are recorded in the rb tree and then
484 * call tree_mod_log_write_unlock() to release.
485 */
e9b7fd4d
JS
486static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487 struct extent_buffer *eb) {
488 smp_mb();
489 if (list_empty(&(fs_info)->tree_mod_seq_list))
490 return 1;
097b8a7c
JS
491 if (eb && btrfs_header_level(eb) == 0)
492 return 1;
5de865ee
FDBM
493
494 tree_mod_log_write_lock(fs_info);
495 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496 tree_mod_log_write_unlock(fs_info);
497 return 1;
498 }
499
e9b7fd4d
JS
500 return 0;
501}
502
5de865ee
FDBM
503/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505 struct extent_buffer *eb)
506{
507 smp_mb();
508 if (list_empty(&(fs_info)->tree_mod_seq_list))
509 return 0;
510 if (eb && btrfs_header_level(eb) == 0)
511 return 0;
512
513 return 1;
514}
515
516static struct tree_mod_elem *
517alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518 enum mod_log_op op, gfp_t flags)
bd989ba3 519{
097b8a7c 520 struct tree_mod_elem *tm;
bd989ba3 521
c8cc6341
JB
522 tm = kzalloc(sizeof(*tm), flags);
523 if (!tm)
5de865ee 524 return NULL;
bd989ba3 525
298cfd36 526 tm->logical = eb->start;
bd989ba3
JS
527 if (op != MOD_LOG_KEY_ADD) {
528 btrfs_node_key(eb, &tm->key, slot);
529 tm->blockptr = btrfs_node_blockptr(eb, slot);
530 }
531 tm->op = op;
532 tm->slot = slot;
533 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 534 RB_CLEAR_NODE(&tm->node);
bd989ba3 535
5de865ee 536 return tm;
097b8a7c
JS
537}
538
539static noinline int
c8cc6341
JB
540tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541 struct extent_buffer *eb, int slot,
542 enum mod_log_op op, gfp_t flags)
097b8a7c 543{
5de865ee
FDBM
544 struct tree_mod_elem *tm;
545 int ret;
546
547 if (!tree_mod_need_log(fs_info, eb))
548 return 0;
549
550 tm = alloc_tree_mod_elem(eb, slot, op, flags);
551 if (!tm)
552 return -ENOMEM;
553
554 if (tree_mod_dont_log(fs_info, eb)) {
555 kfree(tm);
097b8a7c 556 return 0;
5de865ee
FDBM
557 }
558
559 ret = __tree_mod_log_insert(fs_info, tm);
560 tree_mod_log_write_unlock(fs_info);
561 if (ret)
562 kfree(tm);
097b8a7c 563
5de865ee 564 return ret;
097b8a7c
JS
565}
566
6074d45f
DS
567static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
568 int dst_slot, int src_slot, int nr_items)
bd989ba3 569{
5de865ee
FDBM
570 struct tree_mod_elem *tm = NULL;
571 struct tree_mod_elem **tm_list = NULL;
572 int ret = 0;
bd989ba3 573 int i;
5de865ee 574 int locked = 0;
bd989ba3 575
6074d45f 576 if (!tree_mod_need_log(eb->fs_info, eb))
f395694c 577 return 0;
bd989ba3 578
176ef8f5 579 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
580 if (!tm_list)
581 return -ENOMEM;
582
176ef8f5 583 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
584 if (!tm) {
585 ret = -ENOMEM;
586 goto free_tms;
587 }
588
298cfd36 589 tm->logical = eb->start;
5de865ee
FDBM
590 tm->slot = src_slot;
591 tm->move.dst_slot = dst_slot;
592 tm->move.nr_items = nr_items;
593 tm->op = MOD_LOG_MOVE_KEYS;
594
595 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
596 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
176ef8f5 597 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
5de865ee
FDBM
598 if (!tm_list[i]) {
599 ret = -ENOMEM;
600 goto free_tms;
601 }
602 }
603
6074d45f 604 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
605 goto free_tms;
606 locked = 1;
607
01763a2e
JS
608 /*
609 * When we override something during the move, we log these removals.
610 * This can only happen when we move towards the beginning of the
611 * buffer, i.e. dst_slot < src_slot.
612 */
bd989ba3 613 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
6074d45f 614 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
5de865ee
FDBM
615 if (ret)
616 goto free_tms;
bd989ba3
JS
617 }
618
6074d45f 619 ret = __tree_mod_log_insert(eb->fs_info, tm);
5de865ee
FDBM
620 if (ret)
621 goto free_tms;
6074d45f 622 tree_mod_log_write_unlock(eb->fs_info);
5de865ee 623 kfree(tm_list);
f395694c 624
5de865ee
FDBM
625 return 0;
626free_tms:
627 for (i = 0; i < nr_items; i++) {
628 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
6074d45f 629 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
5de865ee
FDBM
630 kfree(tm_list[i]);
631 }
632 if (locked)
6074d45f 633 tree_mod_log_write_unlock(eb->fs_info);
5de865ee
FDBM
634 kfree(tm_list);
635 kfree(tm);
bd989ba3 636
5de865ee 637 return ret;
bd989ba3
JS
638}
639
5de865ee
FDBM
640static inline int
641__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
642 struct tree_mod_elem **tm_list,
643 int nritems)
097b8a7c 644{
5de865ee 645 int i, j;
097b8a7c
JS
646 int ret;
647
097b8a7c 648 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
649 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
650 if (ret) {
651 for (j = nritems - 1; j > i; j--)
652 rb_erase(&tm_list[j]->node,
653 &fs_info->tree_mod_log);
654 return ret;
655 }
097b8a7c 656 }
5de865ee
FDBM
657
658 return 0;
097b8a7c
JS
659}
660
bd989ba3
JS
661static noinline int
662tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
663 struct extent_buffer *old_root,
bcc8e07f 664 struct extent_buffer *new_root,
90f8d62e 665 int log_removal)
bd989ba3 666{
5de865ee
FDBM
667 struct tree_mod_elem *tm = NULL;
668 struct tree_mod_elem **tm_list = NULL;
669 int nritems = 0;
670 int ret = 0;
671 int i;
bd989ba3 672
5de865ee 673 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
674 return 0;
675
5de865ee
FDBM
676 if (log_removal && btrfs_header_level(old_root) > 0) {
677 nritems = btrfs_header_nritems(old_root);
31e818fe 678 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
bcc8e07f 679 GFP_NOFS);
5de865ee
FDBM
680 if (!tm_list) {
681 ret = -ENOMEM;
682 goto free_tms;
683 }
684 for (i = 0; i < nritems; i++) {
685 tm_list[i] = alloc_tree_mod_elem(old_root, i,
bcc8e07f 686 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
5de865ee
FDBM
687 if (!tm_list[i]) {
688 ret = -ENOMEM;
689 goto free_tms;
690 }
691 }
692 }
d9abbf1c 693
bcc8e07f 694 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
695 if (!tm) {
696 ret = -ENOMEM;
697 goto free_tms;
698 }
bd989ba3 699
298cfd36 700 tm->logical = new_root->start;
bd989ba3
JS
701 tm->old_root.logical = old_root->start;
702 tm->old_root.level = btrfs_header_level(old_root);
703 tm->generation = btrfs_header_generation(old_root);
704 tm->op = MOD_LOG_ROOT_REPLACE;
705
5de865ee
FDBM
706 if (tree_mod_dont_log(fs_info, NULL))
707 goto free_tms;
708
709 if (tm_list)
710 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
711 if (!ret)
712 ret = __tree_mod_log_insert(fs_info, tm);
713
714 tree_mod_log_write_unlock(fs_info);
715 if (ret)
716 goto free_tms;
717 kfree(tm_list);
718
719 return ret;
720
721free_tms:
722 if (tm_list) {
723 for (i = 0; i < nritems; i++)
724 kfree(tm_list[i]);
725 kfree(tm_list);
726 }
727 kfree(tm);
728
729 return ret;
bd989ba3
JS
730}
731
732static struct tree_mod_elem *
733__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
734 int smallest)
735{
736 struct rb_root *tm_root;
737 struct rb_node *node;
738 struct tree_mod_elem *cur = NULL;
739 struct tree_mod_elem *found = NULL;
bd989ba3 740
097b8a7c 741 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
742 tm_root = &fs_info->tree_mod_log;
743 node = tm_root->rb_node;
744 while (node) {
6b4df8b6 745 cur = rb_entry(node, struct tree_mod_elem, node);
298cfd36 746 if (cur->logical < start) {
bd989ba3 747 node = node->rb_left;
298cfd36 748 } else if (cur->logical > start) {
bd989ba3 749 node = node->rb_right;
097b8a7c 750 } else if (cur->seq < min_seq) {
bd989ba3
JS
751 node = node->rb_left;
752 } else if (!smallest) {
753 /* we want the node with the highest seq */
754 if (found)
097b8a7c 755 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
756 found = cur;
757 node = node->rb_left;
097b8a7c 758 } else if (cur->seq > min_seq) {
bd989ba3
JS
759 /* we want the node with the smallest seq */
760 if (found)
097b8a7c 761 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
762 found = cur;
763 node = node->rb_right;
764 } else {
765 found = cur;
766 break;
767 }
768 }
097b8a7c 769 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
770
771 return found;
772}
773
774/*
775 * this returns the element from the log with the smallest time sequence
776 * value that's in the log (the oldest log item). any element with a time
777 * sequence lower than min_seq will be ignored.
778 */
779static struct tree_mod_elem *
780tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
781 u64 min_seq)
782{
783 return __tree_mod_log_search(fs_info, start, min_seq, 1);
784}
785
786/*
787 * this returns the element from the log with the largest time sequence
788 * value that's in the log (the most recent log item). any element with
789 * a time sequence lower than min_seq will be ignored.
790 */
791static struct tree_mod_elem *
792tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
793{
794 return __tree_mod_log_search(fs_info, start, min_seq, 0);
795}
796
5de865ee 797static noinline int
bd989ba3
JS
798tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
799 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 800 unsigned long src_offset, int nr_items)
bd989ba3 801{
5de865ee
FDBM
802 int ret = 0;
803 struct tree_mod_elem **tm_list = NULL;
804 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 805 int i;
5de865ee 806 int locked = 0;
bd989ba3 807
5de865ee
FDBM
808 if (!tree_mod_need_log(fs_info, NULL))
809 return 0;
bd989ba3 810
c8cc6341 811 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
812 return 0;
813
31e818fe 814 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
815 GFP_NOFS);
816 if (!tm_list)
817 return -ENOMEM;
bd989ba3 818
5de865ee
FDBM
819 tm_list_add = tm_list;
820 tm_list_rem = tm_list + nr_items;
bd989ba3 821 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
822 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
823 MOD_LOG_KEY_REMOVE, GFP_NOFS);
824 if (!tm_list_rem[i]) {
825 ret = -ENOMEM;
826 goto free_tms;
827 }
828
829 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
830 MOD_LOG_KEY_ADD, GFP_NOFS);
831 if (!tm_list_add[i]) {
832 ret = -ENOMEM;
833 goto free_tms;
834 }
835 }
836
837 if (tree_mod_dont_log(fs_info, NULL))
838 goto free_tms;
839 locked = 1;
840
841 for (i = 0; i < nr_items; i++) {
842 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
843 if (ret)
844 goto free_tms;
845 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
846 if (ret)
847 goto free_tms;
bd989ba3 848 }
5de865ee
FDBM
849
850 tree_mod_log_write_unlock(fs_info);
851 kfree(tm_list);
852
853 return 0;
854
855free_tms:
856 for (i = 0; i < nr_items * 2; i++) {
857 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
858 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
859 kfree(tm_list[i]);
860 }
861 if (locked)
862 tree_mod_log_write_unlock(fs_info);
863 kfree(tm_list);
864
865 return ret;
bd989ba3
JS
866}
867
868static inline void
869tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
870 int dst_offset, int src_offset, int nr_items)
871{
872 int ret;
6074d45f 873 ret = tree_mod_log_insert_move(dst, dst_offset, src_offset, nr_items);
bd989ba3
JS
874 BUG_ON(ret < 0);
875}
876
3ac6de1a
DS
877static noinline void tree_mod_log_set_node_key(struct extent_buffer *eb,
878 int slot, int atomic)
bd989ba3
JS
879{
880 int ret;
881
3ac6de1a 882 ret = tree_mod_log_insert_key(eb->fs_info, eb, slot,
c8cc6341
JB
883 MOD_LOG_KEY_REPLACE,
884 atomic ? GFP_ATOMIC : GFP_NOFS);
bd989ba3
JS
885 BUG_ON(ret < 0);
886}
887
5de865ee 888static noinline int
097b8a7c 889tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 890{
5de865ee
FDBM
891 struct tree_mod_elem **tm_list = NULL;
892 int nritems = 0;
893 int i;
894 int ret = 0;
895
896 if (btrfs_header_level(eb) == 0)
897 return 0;
898
899 if (!tree_mod_need_log(fs_info, NULL))
900 return 0;
901
902 nritems = btrfs_header_nritems(eb);
31e818fe 903 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
904 if (!tm_list)
905 return -ENOMEM;
906
907 for (i = 0; i < nritems; i++) {
908 tm_list[i] = alloc_tree_mod_elem(eb, i,
909 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
910 if (!tm_list[i]) {
911 ret = -ENOMEM;
912 goto free_tms;
913 }
914 }
915
e9b7fd4d 916 if (tree_mod_dont_log(fs_info, eb))
5de865ee
FDBM
917 goto free_tms;
918
919 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
920 tree_mod_log_write_unlock(fs_info);
921 if (ret)
922 goto free_tms;
923 kfree(tm_list);
924
925 return 0;
926
927free_tms:
928 for (i = 0; i < nritems; i++)
929 kfree(tm_list[i]);
930 kfree(tm_list);
931
932 return ret;
bd989ba3
JS
933}
934
097b8a7c 935static noinline void
bd989ba3 936tree_mod_log_set_root_pointer(struct btrfs_root *root,
90f8d62e
JS
937 struct extent_buffer *new_root_node,
938 int log_removal)
bd989ba3
JS
939{
940 int ret;
bd989ba3 941 ret = tree_mod_log_insert_root(root->fs_info, root->node,
bcc8e07f 942 new_root_node, log_removal);
bd989ba3
JS
943 BUG_ON(ret < 0);
944}
945
5d4f98a2
YZ
946/*
947 * check if the tree block can be shared by multiple trees
948 */
949int btrfs_block_can_be_shared(struct btrfs_root *root,
950 struct extent_buffer *buf)
951{
952 /*
01327610 953 * Tree blocks not in reference counted trees and tree roots
5d4f98a2
YZ
954 * are never shared. If a block was allocated after the last
955 * snapshot and the block was not allocated by tree relocation,
956 * we know the block is not shared.
957 */
27cdeb70 958 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
959 buf != root->node && buf != root->commit_root &&
960 (btrfs_header_generation(buf) <=
961 btrfs_root_last_snapshot(&root->root_item) ||
962 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
963 return 1;
964#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
27cdeb70 965 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
966 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
967 return 1;
968#endif
969 return 0;
970}
971
972static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
973 struct btrfs_root *root,
974 struct extent_buffer *buf,
f0486c68
YZ
975 struct extent_buffer *cow,
976 int *last_ref)
5d4f98a2 977{
0b246afa 978 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
979 u64 refs;
980 u64 owner;
981 u64 flags;
982 u64 new_flags = 0;
983 int ret;
984
985 /*
986 * Backrefs update rules:
987 *
988 * Always use full backrefs for extent pointers in tree block
989 * allocated by tree relocation.
990 *
991 * If a shared tree block is no longer referenced by its owner
992 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
993 * use full backrefs for extent pointers in tree block.
994 *
995 * If a tree block is been relocating
996 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
997 * use full backrefs for extent pointers in tree block.
998 * The reason for this is some operations (such as drop tree)
999 * are only allowed for blocks use full backrefs.
1000 */
1001
1002 if (btrfs_block_can_be_shared(root, buf)) {
2ff7e61e 1003 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
3173a18f
JB
1004 btrfs_header_level(buf), 1,
1005 &refs, &flags);
be1a5564
MF
1006 if (ret)
1007 return ret;
e5df9573
MF
1008 if (refs == 0) {
1009 ret = -EROFS;
0b246afa 1010 btrfs_handle_fs_error(fs_info, ret, NULL);
e5df9573
MF
1011 return ret;
1012 }
5d4f98a2
YZ
1013 } else {
1014 refs = 1;
1015 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1016 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1017 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1018 else
1019 flags = 0;
1020 }
1021
1022 owner = btrfs_header_owner(buf);
1023 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1024 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1025
1026 if (refs > 1) {
1027 if ((owner == root->root_key.objectid ||
1028 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1029 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 1030 ret = btrfs_inc_ref(trans, root, buf, 1);
692826b2
JM
1031 if (ret)
1032 return ret;
5d4f98a2
YZ
1033
1034 if (root->root_key.objectid ==
1035 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 1036 ret = btrfs_dec_ref(trans, root, buf, 0);
692826b2
JM
1037 if (ret)
1038 return ret;
e339a6b0 1039 ret = btrfs_inc_ref(trans, root, cow, 1);
692826b2
JM
1040 if (ret)
1041 return ret;
5d4f98a2
YZ
1042 }
1043 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1044 } else {
1045
1046 if (root->root_key.objectid ==
1047 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1048 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1049 else
e339a6b0 1050 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
1051 if (ret)
1052 return ret;
5d4f98a2
YZ
1053 }
1054 if (new_flags != 0) {
b1c79e09
JB
1055 int level = btrfs_header_level(buf);
1056
2ff7e61e 1057 ret = btrfs_set_disk_extent_flags(trans, fs_info,
5d4f98a2
YZ
1058 buf->start,
1059 buf->len,
b1c79e09 1060 new_flags, level, 0);
be1a5564
MF
1061 if (ret)
1062 return ret;
5d4f98a2
YZ
1063 }
1064 } else {
1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 if (root->root_key.objectid ==
1067 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1068 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1069 else
e339a6b0 1070 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
1071 if (ret)
1072 return ret;
e339a6b0 1073 ret = btrfs_dec_ref(trans, root, buf, 1);
692826b2
JM
1074 if (ret)
1075 return ret;
5d4f98a2 1076 }
7c302b49 1077 clean_tree_block(fs_info, buf);
f0486c68 1078 *last_ref = 1;
5d4f98a2
YZ
1079 }
1080 return 0;
1081}
1082
d352ac68 1083/*
d397712b
CM
1084 * does the dirty work in cow of a single block. The parent block (if
1085 * supplied) is updated to point to the new cow copy. The new buffer is marked
1086 * dirty and returned locked. If you modify the block it needs to be marked
1087 * dirty again.
d352ac68
CM
1088 *
1089 * search_start -- an allocation hint for the new block
1090 *
d397712b
CM
1091 * empty_size -- a hint that you plan on doing more cow. This is the size in
1092 * bytes the allocator should try to find free next to the block it returns.
1093 * This is just a hint and may be ignored by the allocator.
d352ac68 1094 */
d397712b 1095static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1096 struct btrfs_root *root,
1097 struct extent_buffer *buf,
1098 struct extent_buffer *parent, int parent_slot,
1099 struct extent_buffer **cow_ret,
9fa8cfe7 1100 u64 search_start, u64 empty_size)
02217ed2 1101{
0b246afa 1102 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2 1103 struct btrfs_disk_key disk_key;
5f39d397 1104 struct extent_buffer *cow;
be1a5564 1105 int level, ret;
f0486c68 1106 int last_ref = 0;
925baedd 1107 int unlock_orig = 0;
0f5053eb 1108 u64 parent_start = 0;
7bb86316 1109
925baedd
CM
1110 if (*cow_ret == buf)
1111 unlock_orig = 1;
1112
b9447ef8 1113 btrfs_assert_tree_locked(buf);
925baedd 1114
27cdeb70 1115 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 1116 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
1117 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1118 trans->transid != root->last_trans);
5f39d397 1119
7bb86316 1120 level = btrfs_header_level(buf);
31840ae1 1121
5d4f98a2
YZ
1122 if (level == 0)
1123 btrfs_item_key(buf, &disk_key, 0);
1124 else
1125 btrfs_node_key(buf, &disk_key, 0);
1126
0f5053eb
GR
1127 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1128 parent_start = parent->start;
5d4f98a2 1129
4d75f8a9
DS
1130 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1131 root->root_key.objectid, &disk_key, level,
1132 search_start, empty_size);
54aa1f4d
CM
1133 if (IS_ERR(cow))
1134 return PTR_ERR(cow);
6702ed49 1135
b4ce94de
CM
1136 /* cow is set to blocking by btrfs_init_new_buffer */
1137
58e8012c 1138 copy_extent_buffer_full(cow, buf);
db94535d 1139 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1140 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1141 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1142 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1143 BTRFS_HEADER_FLAG_RELOC);
1144 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1145 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1146 else
1147 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1148
0b246afa 1149 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 1150
be1a5564 1151 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1152 if (ret) {
66642832 1153 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1154 return ret;
1155 }
1a40e23b 1156
27cdeb70 1157 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1158 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1159 if (ret) {
66642832 1160 btrfs_abort_transaction(trans, ret);
83d4cfd4 1161 return ret;
93314e3b 1162 }
83d4cfd4 1163 }
3fd0a558 1164
02217ed2 1165 if (buf == root->node) {
925baedd 1166 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1167 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1168 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1169 parent_start = buf->start;
925baedd 1170
5f39d397 1171 extent_buffer_get(cow);
90f8d62e 1172 tree_mod_log_set_root_pointer(root, cow, 1);
240f62c8 1173 rcu_assign_pointer(root->node, cow);
925baedd 1174
f0486c68 1175 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1176 last_ref);
5f39d397 1177 free_extent_buffer(buf);
0b86a832 1178 add_root_to_dirty_list(root);
02217ed2 1179 } else {
5d4f98a2 1180 WARN_ON(trans->transid != btrfs_header_generation(parent));
0b246afa 1181 tree_mod_log_insert_key(fs_info, parent, parent_slot,
c8cc6341 1182 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1183 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1184 cow->start);
74493f7a
CM
1185 btrfs_set_node_ptr_generation(parent, parent_slot,
1186 trans->transid);
d6025579 1187 btrfs_mark_buffer_dirty(parent);
5de865ee 1188 if (last_ref) {
0b246afa 1189 ret = tree_mod_log_free_eb(fs_info, buf);
5de865ee 1190 if (ret) {
66642832 1191 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1192 return ret;
1193 }
1194 }
f0486c68 1195 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1196 last_ref);
02217ed2 1197 }
925baedd
CM
1198 if (unlock_orig)
1199 btrfs_tree_unlock(buf);
3083ee2e 1200 free_extent_buffer_stale(buf);
ccd467d6 1201 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1202 *cow_ret = cow;
02217ed2
CM
1203 return 0;
1204}
1205
5d9e75c4
JS
1206/*
1207 * returns the logical address of the oldest predecessor of the given root.
1208 * entries older than time_seq are ignored.
1209 */
1210static struct tree_mod_elem *
1211__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
30b0463a 1212 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1213{
1214 struct tree_mod_elem *tm;
1215 struct tree_mod_elem *found = NULL;
30b0463a 1216 u64 root_logical = eb_root->start;
5d9e75c4
JS
1217 int looped = 0;
1218
1219 if (!time_seq)
35a3621b 1220 return NULL;
5d9e75c4
JS
1221
1222 /*
298cfd36
CR
1223 * the very last operation that's logged for a root is the
1224 * replacement operation (if it is replaced at all). this has
1225 * the logical address of the *new* root, making it the very
1226 * first operation that's logged for this root.
5d9e75c4
JS
1227 */
1228 while (1) {
1229 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1230 time_seq);
1231 if (!looped && !tm)
35a3621b 1232 return NULL;
5d9e75c4 1233 /*
28da9fb4
JS
1234 * if there are no tree operation for the oldest root, we simply
1235 * return it. this should only happen if that (old) root is at
1236 * level 0.
5d9e75c4 1237 */
28da9fb4
JS
1238 if (!tm)
1239 break;
5d9e75c4 1240
28da9fb4
JS
1241 /*
1242 * if there's an operation that's not a root replacement, we
1243 * found the oldest version of our root. normally, we'll find a
1244 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1245 */
5d9e75c4
JS
1246 if (tm->op != MOD_LOG_ROOT_REPLACE)
1247 break;
1248
1249 found = tm;
1250 root_logical = tm->old_root.logical;
5d9e75c4
JS
1251 looped = 1;
1252 }
1253
a95236d9
JS
1254 /* if there's no old root to return, return what we found instead */
1255 if (!found)
1256 found = tm;
1257
5d9e75c4
JS
1258 return found;
1259}
1260
1261/*
1262 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1263 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1264 * time_seq).
1265 */
1266static void
f1ca7e98
JB
1267__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1268 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1269{
1270 u32 n;
1271 struct rb_node *next;
1272 struct tree_mod_elem *tm = first_tm;
1273 unsigned long o_dst;
1274 unsigned long o_src;
1275 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1276
1277 n = btrfs_header_nritems(eb);
f1ca7e98 1278 tree_mod_log_read_lock(fs_info);
097b8a7c 1279 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1280 /*
1281 * all the operations are recorded with the operator used for
1282 * the modification. as we're going backwards, we do the
1283 * opposite of each operation here.
1284 */
1285 switch (tm->op) {
1286 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1287 BUG_ON(tm->slot < n);
1c697d4a 1288 /* Fallthrough */
95c80bb1 1289 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1290 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1291 btrfs_set_node_key(eb, &tm->key, tm->slot);
1292 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1293 btrfs_set_node_ptr_generation(eb, tm->slot,
1294 tm->generation);
4c3e6969 1295 n++;
5d9e75c4
JS
1296 break;
1297 case MOD_LOG_KEY_REPLACE:
1298 BUG_ON(tm->slot >= n);
1299 btrfs_set_node_key(eb, &tm->key, tm->slot);
1300 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1301 btrfs_set_node_ptr_generation(eb, tm->slot,
1302 tm->generation);
1303 break;
1304 case MOD_LOG_KEY_ADD:
19956c7e 1305 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1306 n--;
1307 break;
1308 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1309 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1310 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1311 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1312 tm->move.nr_items * p_size);
1313 break;
1314 case MOD_LOG_ROOT_REPLACE:
1315 /*
1316 * this operation is special. for roots, this must be
1317 * handled explicitly before rewinding.
1318 * for non-roots, this operation may exist if the node
1319 * was a root: root A -> child B; then A gets empty and
1320 * B is promoted to the new root. in the mod log, we'll
1321 * have a root-replace operation for B, a tree block
1322 * that is no root. we simply ignore that operation.
1323 */
1324 break;
1325 }
1326 next = rb_next(&tm->node);
1327 if (!next)
1328 break;
6b4df8b6 1329 tm = rb_entry(next, struct tree_mod_elem, node);
298cfd36 1330 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1331 break;
1332 }
f1ca7e98 1333 tree_mod_log_read_unlock(fs_info);
5d9e75c4
JS
1334 btrfs_set_header_nritems(eb, n);
1335}
1336
47fb091f 1337/*
01327610 1338 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1339 * is returned. If rewind operations happen, a fresh buffer is returned. The
1340 * returned buffer is always read-locked. If the returned buffer is not the
1341 * input buffer, the lock on the input buffer is released and the input buffer
1342 * is freed (its refcount is decremented).
1343 */
5d9e75c4 1344static struct extent_buffer *
9ec72677
JB
1345tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1346 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1347{
1348 struct extent_buffer *eb_rewin;
1349 struct tree_mod_elem *tm;
1350
1351 if (!time_seq)
1352 return eb;
1353
1354 if (btrfs_header_level(eb) == 0)
1355 return eb;
1356
1357 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1358 if (!tm)
1359 return eb;
1360
9ec72677
JB
1361 btrfs_set_path_blocking(path);
1362 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1363
5d9e75c4
JS
1364 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1365 BUG_ON(tm->slot != 0);
da17066c 1366 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1367 if (!eb_rewin) {
9ec72677 1368 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1369 free_extent_buffer(eb);
1370 return NULL;
1371 }
5d9e75c4
JS
1372 btrfs_set_header_bytenr(eb_rewin, eb->start);
1373 btrfs_set_header_backref_rev(eb_rewin,
1374 btrfs_header_backref_rev(eb));
1375 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1376 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1377 } else {
1378 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1379 if (!eb_rewin) {
9ec72677 1380 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1381 free_extent_buffer(eb);
1382 return NULL;
1383 }
5d9e75c4
JS
1384 }
1385
9ec72677
JB
1386 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1387 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1388 free_extent_buffer(eb);
1389
47fb091f
JS
1390 extent_buffer_get(eb_rewin);
1391 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1392 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1393 WARN_ON(btrfs_header_nritems(eb_rewin) >
da17066c 1394 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1395
1396 return eb_rewin;
1397}
1398
8ba97a15
JS
1399/*
1400 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1401 * value. If there are no changes, the current root->root_node is returned. If
1402 * anything changed in between, there's a fresh buffer allocated on which the
1403 * rewind operations are done. In any case, the returned buffer is read locked.
1404 * Returns NULL on error (with no locks held).
1405 */
5d9e75c4
JS
1406static inline struct extent_buffer *
1407get_old_root(struct btrfs_root *root, u64 time_seq)
1408{
0b246afa 1409 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4 1410 struct tree_mod_elem *tm;
30b0463a
JS
1411 struct extent_buffer *eb = NULL;
1412 struct extent_buffer *eb_root;
7bfdcf7f 1413 struct extent_buffer *old;
a95236d9 1414 struct tree_mod_root *old_root = NULL;
4325edd0 1415 u64 old_generation = 0;
a95236d9 1416 u64 logical;
5d9e75c4 1417
30b0463a 1418 eb_root = btrfs_read_lock_root_node(root);
0b246afa 1419 tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
5d9e75c4 1420 if (!tm)
30b0463a 1421 return eb_root;
5d9e75c4 1422
a95236d9
JS
1423 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1424 old_root = &tm->old_root;
1425 old_generation = tm->generation;
1426 logical = old_root->logical;
1427 } else {
30b0463a 1428 logical = eb_root->start;
a95236d9 1429 }
5d9e75c4 1430
0b246afa 1431 tm = tree_mod_log_search(fs_info, logical, time_seq);
834328a8 1432 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1433 btrfs_tree_read_unlock(eb_root);
1434 free_extent_buffer(eb_root);
2ff7e61e 1435 old = read_tree_block(fs_info, logical, 0);
64c043de
LB
1436 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1437 if (!IS_ERR(old))
1438 free_extent_buffer(old);
0b246afa
JM
1439 btrfs_warn(fs_info,
1440 "failed to read tree block %llu from get_old_root",
1441 logical);
834328a8 1442 } else {
7bfdcf7f
LB
1443 eb = btrfs_clone_extent_buffer(old);
1444 free_extent_buffer(old);
834328a8
JS
1445 }
1446 } else if (old_root) {
30b0463a
JS
1447 btrfs_tree_read_unlock(eb_root);
1448 free_extent_buffer(eb_root);
0b246afa 1449 eb = alloc_dummy_extent_buffer(fs_info, logical);
834328a8 1450 } else {
9ec72677 1451 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1452 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1453 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1454 free_extent_buffer(eb_root);
834328a8
JS
1455 }
1456
8ba97a15
JS
1457 if (!eb)
1458 return NULL;
d6381084 1459 extent_buffer_get(eb);
8ba97a15 1460 btrfs_tree_read_lock(eb);
a95236d9 1461 if (old_root) {
5d9e75c4
JS
1462 btrfs_set_header_bytenr(eb, eb->start);
1463 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1464 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1465 btrfs_set_header_level(eb, old_root->level);
1466 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1467 }
28da9fb4 1468 if (tm)
0b246afa 1469 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
28da9fb4
JS
1470 else
1471 WARN_ON(btrfs_header_level(eb) != 0);
0b246afa 1472 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1473
1474 return eb;
1475}
1476
5b6602e7
JS
1477int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1478{
1479 struct tree_mod_elem *tm;
1480 int level;
30b0463a 1481 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1482
30b0463a 1483 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5b6602e7
JS
1484 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1485 level = tm->old_root.level;
1486 } else {
30b0463a 1487 level = btrfs_header_level(eb_root);
5b6602e7 1488 }
30b0463a 1489 free_extent_buffer(eb_root);
5b6602e7
JS
1490
1491 return level;
1492}
1493
5d4f98a2
YZ
1494static inline int should_cow_block(struct btrfs_trans_handle *trans,
1495 struct btrfs_root *root,
1496 struct extent_buffer *buf)
1497{
f5ee5c9a 1498 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1499 return 0;
fccb84c9 1500
f1ebcc74
LB
1501 /* ensure we can see the force_cow */
1502 smp_rmb();
1503
1504 /*
1505 * We do not need to cow a block if
1506 * 1) this block is not created or changed in this transaction;
1507 * 2) this block does not belong to TREE_RELOC tree;
1508 * 3) the root is not forced COW.
1509 *
1510 * What is forced COW:
01327610 1511 * when we create snapshot during committing the transaction,
f1ebcc74
LB
1512 * after we've finished coping src root, we must COW the shared
1513 * block to ensure the metadata consistency.
1514 */
5d4f98a2
YZ
1515 if (btrfs_header_generation(buf) == trans->transid &&
1516 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1517 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1518 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1519 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1520 return 0;
1521 return 1;
1522}
1523
d352ac68
CM
1524/*
1525 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1526 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1527 * once per transaction, as long as it hasn't been written yet
1528 */
d397712b 1529noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1530 struct btrfs_root *root, struct extent_buffer *buf,
1531 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1532 struct extent_buffer **cow_ret)
6702ed49 1533{
0b246afa 1534 struct btrfs_fs_info *fs_info = root->fs_info;
6702ed49 1535 u64 search_start;
f510cfec 1536 int ret;
dc17ff8f 1537
0b246afa 1538 if (trans->transaction != fs_info->running_transaction)
31b1a2bd 1539 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1540 trans->transid,
0b246afa 1541 fs_info->running_transaction->transid);
31b1a2bd 1542
0b246afa 1543 if (trans->transid != fs_info->generation)
31b1a2bd 1544 WARN(1, KERN_CRIT "trans %llu running %llu\n",
0b246afa 1545 trans->transid, fs_info->generation);
dc17ff8f 1546
5d4f98a2 1547 if (!should_cow_block(trans, root, buf)) {
64c12921 1548 trans->dirty = true;
6702ed49
CM
1549 *cow_ret = buf;
1550 return 0;
1551 }
c487685d 1552
ee22184b 1553 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1554
1555 if (parent)
1556 btrfs_set_lock_blocking(parent);
1557 btrfs_set_lock_blocking(buf);
1558
f510cfec 1559 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1560 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1561
1562 trace_btrfs_cow_block(root, buf, *cow_ret);
1563
f510cfec 1564 return ret;
6702ed49
CM
1565}
1566
d352ac68
CM
1567/*
1568 * helper function for defrag to decide if two blocks pointed to by a
1569 * node are actually close by
1570 */
6b80053d 1571static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1572{
6b80053d 1573 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1574 return 1;
6b80053d 1575 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1576 return 1;
1577 return 0;
1578}
1579
081e9573
CM
1580/*
1581 * compare two keys in a memcmp fashion
1582 */
310712b2
OS
1583static int comp_keys(const struct btrfs_disk_key *disk,
1584 const struct btrfs_key *k2)
081e9573
CM
1585{
1586 struct btrfs_key k1;
1587
1588 btrfs_disk_key_to_cpu(&k1, disk);
1589
20736aba 1590 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1591}
1592
f3465ca4
JB
1593/*
1594 * same as comp_keys only with two btrfs_key's
1595 */
310712b2 1596int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
f3465ca4
JB
1597{
1598 if (k1->objectid > k2->objectid)
1599 return 1;
1600 if (k1->objectid < k2->objectid)
1601 return -1;
1602 if (k1->type > k2->type)
1603 return 1;
1604 if (k1->type < k2->type)
1605 return -1;
1606 if (k1->offset > k2->offset)
1607 return 1;
1608 if (k1->offset < k2->offset)
1609 return -1;
1610 return 0;
1611}
081e9573 1612
d352ac68
CM
1613/*
1614 * this is used by the defrag code to go through all the
1615 * leaves pointed to by a node and reallocate them so that
1616 * disk order is close to key order
1617 */
6702ed49 1618int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1619 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1620 int start_slot, u64 *last_ret,
a6b6e75e 1621 struct btrfs_key *progress)
6702ed49 1622{
0b246afa 1623 struct btrfs_fs_info *fs_info = root->fs_info;
6b80053d 1624 struct extent_buffer *cur;
6702ed49 1625 u64 blocknr;
ca7a79ad 1626 u64 gen;
e9d0b13b
CM
1627 u64 search_start = *last_ret;
1628 u64 last_block = 0;
6702ed49
CM
1629 u64 other;
1630 u32 parent_nritems;
6702ed49
CM
1631 int end_slot;
1632 int i;
1633 int err = 0;
f2183bde 1634 int parent_level;
6b80053d
CM
1635 int uptodate;
1636 u32 blocksize;
081e9573
CM
1637 int progress_passed = 0;
1638 struct btrfs_disk_key disk_key;
6702ed49 1639
5708b959 1640 parent_level = btrfs_header_level(parent);
5708b959 1641
0b246afa
JM
1642 WARN_ON(trans->transaction != fs_info->running_transaction);
1643 WARN_ON(trans->transid != fs_info->generation);
86479a04 1644
6b80053d 1645 parent_nritems = btrfs_header_nritems(parent);
0b246afa 1646 blocksize = fs_info->nodesize;
5dfe2be7 1647 end_slot = parent_nritems - 1;
6702ed49 1648
5dfe2be7 1649 if (parent_nritems <= 1)
6702ed49
CM
1650 return 0;
1651
b4ce94de
CM
1652 btrfs_set_lock_blocking(parent);
1653
5dfe2be7 1654 for (i = start_slot; i <= end_slot; i++) {
6702ed49 1655 int close = 1;
a6b6e75e 1656
081e9573
CM
1657 btrfs_node_key(parent, &disk_key, i);
1658 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1659 continue;
1660
1661 progress_passed = 1;
6b80053d 1662 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1663 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1664 if (last_block == 0)
1665 last_block = blocknr;
5708b959 1666
6702ed49 1667 if (i > 0) {
6b80053d
CM
1668 other = btrfs_node_blockptr(parent, i - 1);
1669 close = close_blocks(blocknr, other, blocksize);
6702ed49 1670 }
5dfe2be7 1671 if (!close && i < end_slot) {
6b80053d
CM
1672 other = btrfs_node_blockptr(parent, i + 1);
1673 close = close_blocks(blocknr, other, blocksize);
6702ed49 1674 }
e9d0b13b
CM
1675 if (close) {
1676 last_block = blocknr;
6702ed49 1677 continue;
e9d0b13b 1678 }
6702ed49 1679
0b246afa 1680 cur = find_extent_buffer(fs_info, blocknr);
6b80053d 1681 if (cur)
b9fab919 1682 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1683 else
1684 uptodate = 0;
5708b959 1685 if (!cur || !uptodate) {
6b80053d 1686 if (!cur) {
2ff7e61e 1687 cur = read_tree_block(fs_info, blocknr, gen);
64c043de
LB
1688 if (IS_ERR(cur)) {
1689 return PTR_ERR(cur);
1690 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1691 free_extent_buffer(cur);
97d9a8a4 1692 return -EIO;
416bc658 1693 }
6b80053d 1694 } else if (!uptodate) {
018642a1
TI
1695 err = btrfs_read_buffer(cur, gen);
1696 if (err) {
1697 free_extent_buffer(cur);
1698 return err;
1699 }
f2183bde 1700 }
6702ed49 1701 }
e9d0b13b 1702 if (search_start == 0)
6b80053d 1703 search_start = last_block;
e9d0b13b 1704
e7a84565 1705 btrfs_tree_lock(cur);
b4ce94de 1706 btrfs_set_lock_blocking(cur);
6b80053d 1707 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1708 &cur, search_start,
6b80053d 1709 min(16 * blocksize,
9fa8cfe7 1710 (end_slot - i) * blocksize));
252c38f0 1711 if (err) {
e7a84565 1712 btrfs_tree_unlock(cur);
6b80053d 1713 free_extent_buffer(cur);
6702ed49 1714 break;
252c38f0 1715 }
e7a84565
CM
1716 search_start = cur->start;
1717 last_block = cur->start;
f2183bde 1718 *last_ret = search_start;
e7a84565
CM
1719 btrfs_tree_unlock(cur);
1720 free_extent_buffer(cur);
6702ed49
CM
1721 }
1722 return err;
1723}
1724
74123bd7 1725/*
5f39d397
CM
1726 * search for key in the extent_buffer. The items start at offset p,
1727 * and they are item_size apart. There are 'max' items in p.
1728 *
74123bd7
CM
1729 * the slot in the array is returned via slot, and it points to
1730 * the place where you would insert key if it is not found in
1731 * the array.
1732 *
1733 * slot may point to max if the key is bigger than all of the keys
1734 */
e02119d5 1735static noinline int generic_bin_search(struct extent_buffer *eb,
310712b2
OS
1736 unsigned long p, int item_size,
1737 const struct btrfs_key *key,
e02119d5 1738 int max, int *slot)
be0e5c09
CM
1739{
1740 int low = 0;
1741 int high = max;
1742 int mid;
1743 int ret;
479965d6 1744 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1745 struct btrfs_disk_key unaligned;
1746 unsigned long offset;
5f39d397
CM
1747 char *kaddr = NULL;
1748 unsigned long map_start = 0;
1749 unsigned long map_len = 0;
479965d6 1750 int err;
be0e5c09 1751
5e24e9af
LB
1752 if (low > high) {
1753 btrfs_err(eb->fs_info,
1754 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1755 __func__, low, high, eb->start,
1756 btrfs_header_owner(eb), btrfs_header_level(eb));
1757 return -EINVAL;
1758 }
1759
d397712b 1760 while (low < high) {
be0e5c09 1761 mid = (low + high) / 2;
5f39d397
CM
1762 offset = p + mid * item_size;
1763
a6591715 1764 if (!kaddr || offset < map_start ||
5f39d397
CM
1765 (offset + sizeof(struct btrfs_disk_key)) >
1766 map_start + map_len) {
934d375b
CM
1767
1768 err = map_private_extent_buffer(eb, offset,
479965d6 1769 sizeof(struct btrfs_disk_key),
a6591715 1770 &kaddr, &map_start, &map_len);
479965d6
CM
1771
1772 if (!err) {
1773 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1774 map_start);
415b35a5 1775 } else if (err == 1) {
479965d6
CM
1776 read_extent_buffer(eb, &unaligned,
1777 offset, sizeof(unaligned));
1778 tmp = &unaligned;
415b35a5
LB
1779 } else {
1780 return err;
479965d6 1781 }
5f39d397 1782
5f39d397
CM
1783 } else {
1784 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1785 map_start);
1786 }
be0e5c09
CM
1787 ret = comp_keys(tmp, key);
1788
1789 if (ret < 0)
1790 low = mid + 1;
1791 else if (ret > 0)
1792 high = mid;
1793 else {
1794 *slot = mid;
1795 return 0;
1796 }
1797 }
1798 *slot = low;
1799 return 1;
1800}
1801
97571fd0
CM
1802/*
1803 * simple bin_search frontend that does the right thing for
1804 * leaves vs nodes
1805 */
a74b35ec
NB
1806int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1807 int level, int *slot)
be0e5c09 1808{
f775738f 1809 if (level == 0)
5f39d397
CM
1810 return generic_bin_search(eb,
1811 offsetof(struct btrfs_leaf, items),
0783fcfc 1812 sizeof(struct btrfs_item),
5f39d397 1813 key, btrfs_header_nritems(eb),
7518a238 1814 slot);
f775738f 1815 else
5f39d397
CM
1816 return generic_bin_search(eb,
1817 offsetof(struct btrfs_node, ptrs),
123abc88 1818 sizeof(struct btrfs_key_ptr),
5f39d397 1819 key, btrfs_header_nritems(eb),
7518a238 1820 slot);
be0e5c09
CM
1821}
1822
f0486c68
YZ
1823static void root_add_used(struct btrfs_root *root, u32 size)
1824{
1825 spin_lock(&root->accounting_lock);
1826 btrfs_set_root_used(&root->root_item,
1827 btrfs_root_used(&root->root_item) + size);
1828 spin_unlock(&root->accounting_lock);
1829}
1830
1831static void root_sub_used(struct btrfs_root *root, u32 size)
1832{
1833 spin_lock(&root->accounting_lock);
1834 btrfs_set_root_used(&root->root_item,
1835 btrfs_root_used(&root->root_item) - size);
1836 spin_unlock(&root->accounting_lock);
1837}
1838
d352ac68
CM
1839/* given a node and slot number, this reads the blocks it points to. The
1840 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1841 */
2ff7e61e
JM
1842static noinline struct extent_buffer *
1843read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1844 int slot)
bb803951 1845{
ca7a79ad 1846 int level = btrfs_header_level(parent);
416bc658
JB
1847 struct extent_buffer *eb;
1848
fb770ae4
LB
1849 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1850 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1851
1852 BUG_ON(level == 0);
1853
2ff7e61e 1854 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
416bc658 1855 btrfs_node_ptr_generation(parent, slot));
fb770ae4
LB
1856 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1857 free_extent_buffer(eb);
1858 eb = ERR_PTR(-EIO);
416bc658
JB
1859 }
1860
1861 return eb;
bb803951
CM
1862}
1863
d352ac68
CM
1864/*
1865 * node level balancing, used to make sure nodes are in proper order for
1866 * item deletion. We balance from the top down, so we have to make sure
1867 * that a deletion won't leave an node completely empty later on.
1868 */
e02119d5 1869static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1870 struct btrfs_root *root,
1871 struct btrfs_path *path, int level)
bb803951 1872{
0b246afa 1873 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
1874 struct extent_buffer *right = NULL;
1875 struct extent_buffer *mid;
1876 struct extent_buffer *left = NULL;
1877 struct extent_buffer *parent = NULL;
bb803951
CM
1878 int ret = 0;
1879 int wret;
1880 int pslot;
bb803951 1881 int orig_slot = path->slots[level];
79f95c82 1882 u64 orig_ptr;
bb803951
CM
1883
1884 if (level == 0)
1885 return 0;
1886
5f39d397 1887 mid = path->nodes[level];
b4ce94de 1888
bd681513
CM
1889 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1890 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1891 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1892
1d4f8a0c 1893 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1894
a05a9bb1 1895 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1896 parent = path->nodes[level + 1];
a05a9bb1
LZ
1897 pslot = path->slots[level + 1];
1898 }
bb803951 1899
40689478
CM
1900 /*
1901 * deal with the case where there is only one pointer in the root
1902 * by promoting the node below to a root
1903 */
5f39d397
CM
1904 if (!parent) {
1905 struct extent_buffer *child;
bb803951 1906
5f39d397 1907 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1908 return 0;
1909
1910 /* promote the child to a root */
2ff7e61e 1911 child = read_node_slot(fs_info, mid, 0);
fb770ae4
LB
1912 if (IS_ERR(child)) {
1913 ret = PTR_ERR(child);
0b246afa 1914 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1915 goto enospc;
1916 }
1917
925baedd 1918 btrfs_tree_lock(child);
b4ce94de 1919 btrfs_set_lock_blocking(child);
9fa8cfe7 1920 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1921 if (ret) {
1922 btrfs_tree_unlock(child);
1923 free_extent_buffer(child);
1924 goto enospc;
1925 }
2f375ab9 1926
90f8d62e 1927 tree_mod_log_set_root_pointer(root, child, 1);
240f62c8 1928 rcu_assign_pointer(root->node, child);
925baedd 1929
0b86a832 1930 add_root_to_dirty_list(root);
925baedd 1931 btrfs_tree_unlock(child);
b4ce94de 1932
925baedd 1933 path->locks[level] = 0;
bb803951 1934 path->nodes[level] = NULL;
7c302b49 1935 clean_tree_block(fs_info, mid);
925baedd 1936 btrfs_tree_unlock(mid);
bb803951 1937 /* once for the path */
5f39d397 1938 free_extent_buffer(mid);
f0486c68
YZ
1939
1940 root_sub_used(root, mid->len);
5581a51a 1941 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1942 /* once for the root ptr */
3083ee2e 1943 free_extent_buffer_stale(mid);
f0486c68 1944 return 0;
bb803951 1945 }
5f39d397 1946 if (btrfs_header_nritems(mid) >
0b246afa 1947 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
bb803951
CM
1948 return 0;
1949
2ff7e61e 1950 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
1951 if (IS_ERR(left))
1952 left = NULL;
1953
5f39d397 1954 if (left) {
925baedd 1955 btrfs_tree_lock(left);
b4ce94de 1956 btrfs_set_lock_blocking(left);
5f39d397 1957 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1958 parent, pslot - 1, &left);
54aa1f4d
CM
1959 if (wret) {
1960 ret = wret;
1961 goto enospc;
1962 }
2cc58cf2 1963 }
fb770ae4 1964
2ff7e61e 1965 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
1966 if (IS_ERR(right))
1967 right = NULL;
1968
5f39d397 1969 if (right) {
925baedd 1970 btrfs_tree_lock(right);
b4ce94de 1971 btrfs_set_lock_blocking(right);
5f39d397 1972 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1973 parent, pslot + 1, &right);
2cc58cf2
CM
1974 if (wret) {
1975 ret = wret;
1976 goto enospc;
1977 }
1978 }
1979
1980 /* first, try to make some room in the middle buffer */
5f39d397
CM
1981 if (left) {
1982 orig_slot += btrfs_header_nritems(left);
2ff7e61e 1983 wret = push_node_left(trans, fs_info, left, mid, 1);
79f95c82
CM
1984 if (wret < 0)
1985 ret = wret;
bb803951 1986 }
79f95c82
CM
1987
1988 /*
1989 * then try to empty the right most buffer into the middle
1990 */
5f39d397 1991 if (right) {
2ff7e61e 1992 wret = push_node_left(trans, fs_info, mid, right, 1);
54aa1f4d 1993 if (wret < 0 && wret != -ENOSPC)
79f95c82 1994 ret = wret;
5f39d397 1995 if (btrfs_header_nritems(right) == 0) {
7c302b49 1996 clean_tree_block(fs_info, right);
925baedd 1997 btrfs_tree_unlock(right);
afe5fea7 1998 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 1999 root_sub_used(root, right->len);
5581a51a 2000 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 2001 free_extent_buffer_stale(right);
f0486c68 2002 right = NULL;
bb803951 2003 } else {
5f39d397
CM
2004 struct btrfs_disk_key right_key;
2005 btrfs_node_key(right, &right_key, 0);
3ac6de1a 2006 tree_mod_log_set_node_key(parent, pslot + 1, 0);
5f39d397
CM
2007 btrfs_set_node_key(parent, &right_key, pslot + 1);
2008 btrfs_mark_buffer_dirty(parent);
bb803951
CM
2009 }
2010 }
5f39d397 2011 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
2012 /*
2013 * we're not allowed to leave a node with one item in the
2014 * tree during a delete. A deletion from lower in the tree
2015 * could try to delete the only pointer in this node.
2016 * So, pull some keys from the left.
2017 * There has to be a left pointer at this point because
2018 * otherwise we would have pulled some pointers from the
2019 * right
2020 */
305a26af
MF
2021 if (!left) {
2022 ret = -EROFS;
0b246afa 2023 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
2024 goto enospc;
2025 }
2ff7e61e 2026 wret = balance_node_right(trans, fs_info, mid, left);
54aa1f4d 2027 if (wret < 0) {
79f95c82 2028 ret = wret;
54aa1f4d
CM
2029 goto enospc;
2030 }
bce4eae9 2031 if (wret == 1) {
2ff7e61e 2032 wret = push_node_left(trans, fs_info, left, mid, 1);
bce4eae9
CM
2033 if (wret < 0)
2034 ret = wret;
2035 }
79f95c82
CM
2036 BUG_ON(wret == 1);
2037 }
5f39d397 2038 if (btrfs_header_nritems(mid) == 0) {
7c302b49 2039 clean_tree_block(fs_info, mid);
925baedd 2040 btrfs_tree_unlock(mid);
afe5fea7 2041 del_ptr(root, path, level + 1, pslot);
f0486c68 2042 root_sub_used(root, mid->len);
5581a51a 2043 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 2044 free_extent_buffer_stale(mid);
f0486c68 2045 mid = NULL;
79f95c82
CM
2046 } else {
2047 /* update the parent key to reflect our changes */
5f39d397
CM
2048 struct btrfs_disk_key mid_key;
2049 btrfs_node_key(mid, &mid_key, 0);
3ac6de1a 2050 tree_mod_log_set_node_key(parent, pslot, 0);
5f39d397
CM
2051 btrfs_set_node_key(parent, &mid_key, pslot);
2052 btrfs_mark_buffer_dirty(parent);
79f95c82 2053 }
bb803951 2054
79f95c82 2055 /* update the path */
5f39d397
CM
2056 if (left) {
2057 if (btrfs_header_nritems(left) > orig_slot) {
2058 extent_buffer_get(left);
925baedd 2059 /* left was locked after cow */
5f39d397 2060 path->nodes[level] = left;
bb803951
CM
2061 path->slots[level + 1] -= 1;
2062 path->slots[level] = orig_slot;
925baedd
CM
2063 if (mid) {
2064 btrfs_tree_unlock(mid);
5f39d397 2065 free_extent_buffer(mid);
925baedd 2066 }
bb803951 2067 } else {
5f39d397 2068 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2069 path->slots[level] = orig_slot;
2070 }
2071 }
79f95c82 2072 /* double check we haven't messed things up */
e20d96d6 2073 if (orig_ptr !=
5f39d397 2074 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2075 BUG();
54aa1f4d 2076enospc:
925baedd
CM
2077 if (right) {
2078 btrfs_tree_unlock(right);
5f39d397 2079 free_extent_buffer(right);
925baedd
CM
2080 }
2081 if (left) {
2082 if (path->nodes[level] != left)
2083 btrfs_tree_unlock(left);
5f39d397 2084 free_extent_buffer(left);
925baedd 2085 }
bb803951
CM
2086 return ret;
2087}
2088
d352ac68
CM
2089/* Node balancing for insertion. Here we only split or push nodes around
2090 * when they are completely full. This is also done top down, so we
2091 * have to be pessimistic.
2092 */
d397712b 2093static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2094 struct btrfs_root *root,
2095 struct btrfs_path *path, int level)
e66f709b 2096{
0b246afa 2097 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
2098 struct extent_buffer *right = NULL;
2099 struct extent_buffer *mid;
2100 struct extent_buffer *left = NULL;
2101 struct extent_buffer *parent = NULL;
e66f709b
CM
2102 int ret = 0;
2103 int wret;
2104 int pslot;
2105 int orig_slot = path->slots[level];
e66f709b
CM
2106
2107 if (level == 0)
2108 return 1;
2109
5f39d397 2110 mid = path->nodes[level];
7bb86316 2111 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2112
a05a9bb1 2113 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2114 parent = path->nodes[level + 1];
a05a9bb1
LZ
2115 pslot = path->slots[level + 1];
2116 }
e66f709b 2117
5f39d397 2118 if (!parent)
e66f709b 2119 return 1;
e66f709b 2120
2ff7e61e 2121 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
2122 if (IS_ERR(left))
2123 left = NULL;
e66f709b
CM
2124
2125 /* first, try to make some room in the middle buffer */
5f39d397 2126 if (left) {
e66f709b 2127 u32 left_nr;
925baedd
CM
2128
2129 btrfs_tree_lock(left);
b4ce94de
CM
2130 btrfs_set_lock_blocking(left);
2131
5f39d397 2132 left_nr = btrfs_header_nritems(left);
0b246afa 2133 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2134 wret = 1;
2135 } else {
5f39d397 2136 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2137 pslot - 1, &left);
54aa1f4d
CM
2138 if (ret)
2139 wret = 1;
2140 else {
2ff7e61e 2141 wret = push_node_left(trans, fs_info,
971a1f66 2142 left, mid, 0);
54aa1f4d 2143 }
33ade1f8 2144 }
e66f709b
CM
2145 if (wret < 0)
2146 ret = wret;
2147 if (wret == 0) {
5f39d397 2148 struct btrfs_disk_key disk_key;
e66f709b 2149 orig_slot += left_nr;
5f39d397 2150 btrfs_node_key(mid, &disk_key, 0);
3ac6de1a 2151 tree_mod_log_set_node_key(parent, pslot, 0);
5f39d397
CM
2152 btrfs_set_node_key(parent, &disk_key, pslot);
2153 btrfs_mark_buffer_dirty(parent);
2154 if (btrfs_header_nritems(left) > orig_slot) {
2155 path->nodes[level] = left;
e66f709b
CM
2156 path->slots[level + 1] -= 1;
2157 path->slots[level] = orig_slot;
925baedd 2158 btrfs_tree_unlock(mid);
5f39d397 2159 free_extent_buffer(mid);
e66f709b
CM
2160 } else {
2161 orig_slot -=
5f39d397 2162 btrfs_header_nritems(left);
e66f709b 2163 path->slots[level] = orig_slot;
925baedd 2164 btrfs_tree_unlock(left);
5f39d397 2165 free_extent_buffer(left);
e66f709b 2166 }
e66f709b
CM
2167 return 0;
2168 }
925baedd 2169 btrfs_tree_unlock(left);
5f39d397 2170 free_extent_buffer(left);
e66f709b 2171 }
2ff7e61e 2172 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
2173 if (IS_ERR(right))
2174 right = NULL;
e66f709b
CM
2175
2176 /*
2177 * then try to empty the right most buffer into the middle
2178 */
5f39d397 2179 if (right) {
33ade1f8 2180 u32 right_nr;
b4ce94de 2181
925baedd 2182 btrfs_tree_lock(right);
b4ce94de
CM
2183 btrfs_set_lock_blocking(right);
2184
5f39d397 2185 right_nr = btrfs_header_nritems(right);
0b246afa 2186 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2187 wret = 1;
2188 } else {
5f39d397
CM
2189 ret = btrfs_cow_block(trans, root, right,
2190 parent, pslot + 1,
9fa8cfe7 2191 &right);
54aa1f4d
CM
2192 if (ret)
2193 wret = 1;
2194 else {
2ff7e61e 2195 wret = balance_node_right(trans, fs_info,
5f39d397 2196 right, mid);
54aa1f4d 2197 }
33ade1f8 2198 }
e66f709b
CM
2199 if (wret < 0)
2200 ret = wret;
2201 if (wret == 0) {
5f39d397
CM
2202 struct btrfs_disk_key disk_key;
2203
2204 btrfs_node_key(right, &disk_key, 0);
3ac6de1a 2205 tree_mod_log_set_node_key(parent, pslot + 1, 0);
5f39d397
CM
2206 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2207 btrfs_mark_buffer_dirty(parent);
2208
2209 if (btrfs_header_nritems(mid) <= orig_slot) {
2210 path->nodes[level] = right;
e66f709b
CM
2211 path->slots[level + 1] += 1;
2212 path->slots[level] = orig_slot -
5f39d397 2213 btrfs_header_nritems(mid);
925baedd 2214 btrfs_tree_unlock(mid);
5f39d397 2215 free_extent_buffer(mid);
e66f709b 2216 } else {
925baedd 2217 btrfs_tree_unlock(right);
5f39d397 2218 free_extent_buffer(right);
e66f709b 2219 }
e66f709b
CM
2220 return 0;
2221 }
925baedd 2222 btrfs_tree_unlock(right);
5f39d397 2223 free_extent_buffer(right);
e66f709b 2224 }
e66f709b
CM
2225 return 1;
2226}
2227
3c69faec 2228/*
d352ac68
CM
2229 * readahead one full node of leaves, finding things that are close
2230 * to the block in 'slot', and triggering ra on them.
3c69faec 2231 */
2ff7e61e 2232static void reada_for_search(struct btrfs_fs_info *fs_info,
c8c42864
CM
2233 struct btrfs_path *path,
2234 int level, int slot, u64 objectid)
3c69faec 2235{
5f39d397 2236 struct extent_buffer *node;
01f46658 2237 struct btrfs_disk_key disk_key;
3c69faec 2238 u32 nritems;
3c69faec 2239 u64 search;
a7175319 2240 u64 target;
6b80053d 2241 u64 nread = 0;
5f39d397 2242 struct extent_buffer *eb;
6b80053d
CM
2243 u32 nr;
2244 u32 blocksize;
2245 u32 nscan = 0;
db94535d 2246
a6b6e75e 2247 if (level != 1)
6702ed49
CM
2248 return;
2249
2250 if (!path->nodes[level])
3c69faec
CM
2251 return;
2252
5f39d397 2253 node = path->nodes[level];
925baedd 2254
3c69faec 2255 search = btrfs_node_blockptr(node, slot);
0b246afa
JM
2256 blocksize = fs_info->nodesize;
2257 eb = find_extent_buffer(fs_info, search);
5f39d397
CM
2258 if (eb) {
2259 free_extent_buffer(eb);
3c69faec
CM
2260 return;
2261 }
2262
a7175319 2263 target = search;
6b80053d 2264
5f39d397 2265 nritems = btrfs_header_nritems(node);
6b80053d 2266 nr = slot;
25b8b936 2267
d397712b 2268 while (1) {
e4058b54 2269 if (path->reada == READA_BACK) {
6b80053d
CM
2270 if (nr == 0)
2271 break;
2272 nr--;
e4058b54 2273 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2274 nr++;
2275 if (nr >= nritems)
2276 break;
3c69faec 2277 }
e4058b54 2278 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2279 btrfs_node_key(node, &disk_key, nr);
2280 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2281 break;
2282 }
6b80053d 2283 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2284 if ((search <= target && target - search <= 65536) ||
2285 (search > target && search - target <= 65536)) {
2ff7e61e 2286 readahead_tree_block(fs_info, search);
6b80053d
CM
2287 nread += blocksize;
2288 }
2289 nscan++;
a7175319 2290 if ((nread > 65536 || nscan > 32))
6b80053d 2291 break;
3c69faec
CM
2292 }
2293}
925baedd 2294
2ff7e61e 2295static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
0b08851f 2296 struct btrfs_path *path, int level)
b4ce94de
CM
2297{
2298 int slot;
2299 int nritems;
2300 struct extent_buffer *parent;
2301 struct extent_buffer *eb;
2302 u64 gen;
2303 u64 block1 = 0;
2304 u64 block2 = 0;
b4ce94de 2305
8c594ea8 2306 parent = path->nodes[level + 1];
b4ce94de 2307 if (!parent)
0b08851f 2308 return;
b4ce94de
CM
2309
2310 nritems = btrfs_header_nritems(parent);
8c594ea8 2311 slot = path->slots[level + 1];
b4ce94de
CM
2312
2313 if (slot > 0) {
2314 block1 = btrfs_node_blockptr(parent, slot - 1);
2315 gen = btrfs_node_ptr_generation(parent, slot - 1);
0b246afa 2316 eb = find_extent_buffer(fs_info, block1);
b9fab919
CM
2317 /*
2318 * if we get -eagain from btrfs_buffer_uptodate, we
2319 * don't want to return eagain here. That will loop
2320 * forever
2321 */
2322 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2323 block1 = 0;
2324 free_extent_buffer(eb);
2325 }
8c594ea8 2326 if (slot + 1 < nritems) {
b4ce94de
CM
2327 block2 = btrfs_node_blockptr(parent, slot + 1);
2328 gen = btrfs_node_ptr_generation(parent, slot + 1);
0b246afa 2329 eb = find_extent_buffer(fs_info, block2);
b9fab919 2330 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2331 block2 = 0;
2332 free_extent_buffer(eb);
2333 }
8c594ea8 2334
0b08851f 2335 if (block1)
2ff7e61e 2336 readahead_tree_block(fs_info, block1);
0b08851f 2337 if (block2)
2ff7e61e 2338 readahead_tree_block(fs_info, block2);
b4ce94de
CM
2339}
2340
2341
d352ac68 2342/*
d397712b
CM
2343 * when we walk down the tree, it is usually safe to unlock the higher layers
2344 * in the tree. The exceptions are when our path goes through slot 0, because
2345 * operations on the tree might require changing key pointers higher up in the
2346 * tree.
d352ac68 2347 *
d397712b
CM
2348 * callers might also have set path->keep_locks, which tells this code to keep
2349 * the lock if the path points to the last slot in the block. This is part of
2350 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2351 *
d397712b
CM
2352 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2353 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2354 */
e02119d5 2355static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2356 int lowest_unlock, int min_write_lock_level,
2357 int *write_lock_level)
925baedd
CM
2358{
2359 int i;
2360 int skip_level = level;
051e1b9f 2361 int no_skips = 0;
925baedd
CM
2362 struct extent_buffer *t;
2363
2364 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2365 if (!path->nodes[i])
2366 break;
2367 if (!path->locks[i])
2368 break;
051e1b9f 2369 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2370 skip_level = i + 1;
2371 continue;
2372 }
051e1b9f 2373 if (!no_skips && path->keep_locks) {
925baedd
CM
2374 u32 nritems;
2375 t = path->nodes[i];
2376 nritems = btrfs_header_nritems(t);
051e1b9f 2377 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2378 skip_level = i + 1;
2379 continue;
2380 }
2381 }
051e1b9f
CM
2382 if (skip_level < i && i >= lowest_unlock)
2383 no_skips = 1;
2384
925baedd
CM
2385 t = path->nodes[i];
2386 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2387 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2388 path->locks[i] = 0;
f7c79f30
CM
2389 if (write_lock_level &&
2390 i > min_write_lock_level &&
2391 i <= *write_lock_level) {
2392 *write_lock_level = i - 1;
2393 }
925baedd
CM
2394 }
2395 }
2396}
2397
b4ce94de
CM
2398/*
2399 * This releases any locks held in the path starting at level and
2400 * going all the way up to the root.
2401 *
2402 * btrfs_search_slot will keep the lock held on higher nodes in a few
2403 * corner cases, such as COW of the block at slot zero in the node. This
2404 * ignores those rules, and it should only be called when there are no
2405 * more updates to be done higher up in the tree.
2406 */
2407noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2408{
2409 int i;
2410
09a2a8f9 2411 if (path->keep_locks)
b4ce94de
CM
2412 return;
2413
2414 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2415 if (!path->nodes[i])
12f4dacc 2416 continue;
b4ce94de 2417 if (!path->locks[i])
12f4dacc 2418 continue;
bd681513 2419 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2420 path->locks[i] = 0;
2421 }
2422}
2423
c8c42864
CM
2424/*
2425 * helper function for btrfs_search_slot. The goal is to find a block
2426 * in cache without setting the path to blocking. If we find the block
2427 * we return zero and the path is unchanged.
2428 *
2429 * If we can't find the block, we set the path blocking and do some
2430 * reada. -EAGAIN is returned and the search must be repeated.
2431 */
2432static int
d07b8528
LB
2433read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2434 struct extent_buffer **eb_ret, int level, int slot,
cda79c54 2435 const struct btrfs_key *key)
c8c42864 2436{
0b246afa 2437 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864
CM
2438 u64 blocknr;
2439 u64 gen;
c8c42864
CM
2440 struct extent_buffer *b = *eb_ret;
2441 struct extent_buffer *tmp;
76a05b35 2442 int ret;
c8c42864
CM
2443
2444 blocknr = btrfs_node_blockptr(b, slot);
2445 gen = btrfs_node_ptr_generation(b, slot);
c8c42864 2446
0b246afa 2447 tmp = find_extent_buffer(fs_info, blocknr);
cb44921a 2448 if (tmp) {
b9fab919 2449 /* first we do an atomic uptodate check */
bdf7c00e
JB
2450 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2451 *eb_ret = tmp;
2452 return 0;
2453 }
2454
2455 /* the pages were up to date, but we failed
2456 * the generation number check. Do a full
2457 * read for the generation number that is correct.
2458 * We must do this without dropping locks so
2459 * we can trust our generation number
2460 */
2461 btrfs_set_path_blocking(p);
2462
2463 /* now we're allowed to do a blocking uptodate check */
2464 ret = btrfs_read_buffer(tmp, gen);
2465 if (!ret) {
2466 *eb_ret = tmp;
2467 return 0;
cb44921a 2468 }
bdf7c00e
JB
2469 free_extent_buffer(tmp);
2470 btrfs_release_path(p);
2471 return -EIO;
c8c42864
CM
2472 }
2473
2474 /*
2475 * reduce lock contention at high levels
2476 * of the btree by dropping locks before
76a05b35
CM
2477 * we read. Don't release the lock on the current
2478 * level because we need to walk this node to figure
2479 * out which blocks to read.
c8c42864 2480 */
8c594ea8
CM
2481 btrfs_unlock_up_safe(p, level + 1);
2482 btrfs_set_path_blocking(p);
2483
cb44921a 2484 free_extent_buffer(tmp);
e4058b54 2485 if (p->reada != READA_NONE)
2ff7e61e 2486 reada_for_search(fs_info, p, level, slot, key->objectid);
c8c42864 2487
b3b4aa74 2488 btrfs_release_path(p);
76a05b35
CM
2489
2490 ret = -EAGAIN;
2ff7e61e 2491 tmp = read_tree_block(fs_info, blocknr, 0);
64c043de 2492 if (!IS_ERR(tmp)) {
76a05b35
CM
2493 /*
2494 * If the read above didn't mark this buffer up to date,
2495 * it will never end up being up to date. Set ret to EIO now
2496 * and give up so that our caller doesn't loop forever
2497 * on our EAGAINs.
2498 */
b9fab919 2499 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2500 ret = -EIO;
c8c42864 2501 free_extent_buffer(tmp);
c871b0f2
LB
2502 } else {
2503 ret = PTR_ERR(tmp);
76a05b35
CM
2504 }
2505 return ret;
c8c42864
CM
2506}
2507
2508/*
2509 * helper function for btrfs_search_slot. This does all of the checks
2510 * for node-level blocks and does any balancing required based on
2511 * the ins_len.
2512 *
2513 * If no extra work was required, zero is returned. If we had to
2514 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2515 * start over
2516 */
2517static int
2518setup_nodes_for_search(struct btrfs_trans_handle *trans,
2519 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2520 struct extent_buffer *b, int level, int ins_len,
2521 int *write_lock_level)
c8c42864 2522{
0b246afa 2523 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864 2524 int ret;
0b246afa 2525
c8c42864 2526 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
0b246afa 2527 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
c8c42864
CM
2528 int sret;
2529
bd681513
CM
2530 if (*write_lock_level < level + 1) {
2531 *write_lock_level = level + 1;
2532 btrfs_release_path(p);
2533 goto again;
2534 }
2535
c8c42864 2536 btrfs_set_path_blocking(p);
2ff7e61e 2537 reada_for_balance(fs_info, p, level);
c8c42864 2538 sret = split_node(trans, root, p, level);
bd681513 2539 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2540
2541 BUG_ON(sret > 0);
2542 if (sret) {
2543 ret = sret;
2544 goto done;
2545 }
2546 b = p->nodes[level];
2547 } else if (ins_len < 0 && btrfs_header_nritems(b) <
0b246afa 2548 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
c8c42864
CM
2549 int sret;
2550
bd681513
CM
2551 if (*write_lock_level < level + 1) {
2552 *write_lock_level = level + 1;
2553 btrfs_release_path(p);
2554 goto again;
2555 }
2556
c8c42864 2557 btrfs_set_path_blocking(p);
2ff7e61e 2558 reada_for_balance(fs_info, p, level);
c8c42864 2559 sret = balance_level(trans, root, p, level);
bd681513 2560 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2561
2562 if (sret) {
2563 ret = sret;
2564 goto done;
2565 }
2566 b = p->nodes[level];
2567 if (!b) {
b3b4aa74 2568 btrfs_release_path(p);
c8c42864
CM
2569 goto again;
2570 }
2571 BUG_ON(btrfs_header_nritems(b) == 1);
2572 }
2573 return 0;
2574
2575again:
2576 ret = -EAGAIN;
2577done:
2578 return ret;
2579}
2580
d7396f07 2581static void key_search_validate(struct extent_buffer *b,
310712b2 2582 const struct btrfs_key *key,
d7396f07
FDBM
2583 int level)
2584{
2585#ifdef CONFIG_BTRFS_ASSERT
2586 struct btrfs_disk_key disk_key;
2587
2588 btrfs_cpu_key_to_disk(&disk_key, key);
2589
2590 if (level == 0)
2591 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2592 offsetof(struct btrfs_leaf, items[0].key),
2593 sizeof(disk_key)));
2594 else
2595 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2596 offsetof(struct btrfs_node, ptrs[0].key),
2597 sizeof(disk_key)));
2598#endif
2599}
2600
310712b2 2601static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
d7396f07
FDBM
2602 int level, int *prev_cmp, int *slot)
2603{
2604 if (*prev_cmp != 0) {
a74b35ec 2605 *prev_cmp = btrfs_bin_search(b, key, level, slot);
d7396f07
FDBM
2606 return *prev_cmp;
2607 }
2608
2609 key_search_validate(b, key, level);
2610 *slot = 0;
2611
2612 return 0;
2613}
2614
381cf658 2615int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2616 u64 iobjectid, u64 ioff, u8 key_type,
2617 struct btrfs_key *found_key)
2618{
2619 int ret;
2620 struct btrfs_key key;
2621 struct extent_buffer *eb;
381cf658
DS
2622
2623 ASSERT(path);
1d4c08e0 2624 ASSERT(found_key);
e33d5c3d
KN
2625
2626 key.type = key_type;
2627 key.objectid = iobjectid;
2628 key.offset = ioff;
2629
2630 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2631 if (ret < 0)
e33d5c3d
KN
2632 return ret;
2633
2634 eb = path->nodes[0];
2635 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2636 ret = btrfs_next_leaf(fs_root, path);
2637 if (ret)
2638 return ret;
2639 eb = path->nodes[0];
2640 }
2641
2642 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2643 if (found_key->type != key.type ||
2644 found_key->objectid != key.objectid)
2645 return 1;
2646
2647 return 0;
2648}
2649
74123bd7 2650/*
4271ecea
NB
2651 * btrfs_search_slot - look for a key in a tree and perform necessary
2652 * modifications to preserve tree invariants.
74123bd7 2653 *
4271ecea
NB
2654 * @trans: Handle of transaction, used when modifying the tree
2655 * @p: Holds all btree nodes along the search path
2656 * @root: The root node of the tree
2657 * @key: The key we are looking for
2658 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2659 * deletions it's -1. 0 for plain searches
2660 * @cow: boolean should CoW operations be performed. Must always be 1
2661 * when modifying the tree.
97571fd0 2662 *
4271ecea
NB
2663 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2664 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2665 *
2666 * If @key is found, 0 is returned and you can find the item in the leaf level
2667 * of the path (level 0)
2668 *
2669 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2670 * points to the slot where it should be inserted
2671 *
2672 * If an error is encountered while searching the tree a negative error number
2673 * is returned
74123bd7 2674 */
310712b2
OS
2675int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2676 const struct btrfs_key *key, struct btrfs_path *p,
2677 int ins_len, int cow)
be0e5c09 2678{
0b246afa 2679 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 2680 struct extent_buffer *b;
be0e5c09
CM
2681 int slot;
2682 int ret;
33c66f43 2683 int err;
be0e5c09 2684 int level;
925baedd 2685 int lowest_unlock = 1;
bd681513
CM
2686 int root_lock;
2687 /* everything at write_lock_level or lower must be write locked */
2688 int write_lock_level = 0;
9f3a7427 2689 u8 lowest_level = 0;
f7c79f30 2690 int min_write_lock_level;
d7396f07 2691 int prev_cmp;
9f3a7427 2692
6702ed49 2693 lowest_level = p->lowest_level;
323ac95b 2694 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2695 WARN_ON(p->nodes[0] != NULL);
eb653de1 2696 BUG_ON(!cow && ins_len);
25179201 2697
bd681513 2698 if (ins_len < 0) {
925baedd 2699 lowest_unlock = 2;
65b51a00 2700
bd681513
CM
2701 /* when we are removing items, we might have to go up to level
2702 * two as we update tree pointers Make sure we keep write
2703 * for those levels as well
2704 */
2705 write_lock_level = 2;
2706 } else if (ins_len > 0) {
2707 /*
2708 * for inserting items, make sure we have a write lock on
2709 * level 1 so we can update keys
2710 */
2711 write_lock_level = 1;
2712 }
2713
2714 if (!cow)
2715 write_lock_level = -1;
2716
09a2a8f9 2717 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2718 write_lock_level = BTRFS_MAX_LEVEL;
2719
f7c79f30
CM
2720 min_write_lock_level = write_lock_level;
2721
bb803951 2722again:
d7396f07 2723 prev_cmp = -1;
bd681513
CM
2724 /*
2725 * we try very hard to do read locks on the root
2726 */
2727 root_lock = BTRFS_READ_LOCK;
2728 level = 0;
5d4f98a2 2729 if (p->search_commit_root) {
bd681513
CM
2730 /*
2731 * the commit roots are read only
2732 * so we always do read locks
2733 */
3f8a18cc 2734 if (p->need_commit_sem)
0b246afa 2735 down_read(&fs_info->commit_root_sem);
5d4f98a2
YZ
2736 b = root->commit_root;
2737 extent_buffer_get(b);
bd681513 2738 level = btrfs_header_level(b);
3f8a18cc 2739 if (p->need_commit_sem)
0b246afa 2740 up_read(&fs_info->commit_root_sem);
5d4f98a2 2741 if (!p->skip_locking)
bd681513 2742 btrfs_tree_read_lock(b);
5d4f98a2 2743 } else {
bd681513 2744 if (p->skip_locking) {
5d4f98a2 2745 b = btrfs_root_node(root);
bd681513
CM
2746 level = btrfs_header_level(b);
2747 } else {
2748 /* we don't know the level of the root node
2749 * until we actually have it read locked
2750 */
2751 b = btrfs_read_lock_root_node(root);
2752 level = btrfs_header_level(b);
2753 if (level <= write_lock_level) {
2754 /* whoops, must trade for write lock */
2755 btrfs_tree_read_unlock(b);
2756 free_extent_buffer(b);
2757 b = btrfs_lock_root_node(root);
2758 root_lock = BTRFS_WRITE_LOCK;
2759
2760 /* the level might have changed, check again */
2761 level = btrfs_header_level(b);
2762 }
2763 }
5d4f98a2 2764 }
bd681513
CM
2765 p->nodes[level] = b;
2766 if (!p->skip_locking)
2767 p->locks[level] = root_lock;
925baedd 2768
eb60ceac 2769 while (b) {
5f39d397 2770 level = btrfs_header_level(b);
65b51a00
CM
2771
2772 /*
2773 * setup the path here so we can release it under lock
2774 * contention with the cow code
2775 */
02217ed2 2776 if (cow) {
9ea2c7c9
NB
2777 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2778
c8c42864
CM
2779 /*
2780 * if we don't really need to cow this block
2781 * then we don't want to set the path blocking,
2782 * so we test it here
2783 */
64c12921
JM
2784 if (!should_cow_block(trans, root, b)) {
2785 trans->dirty = true;
65b51a00 2786 goto cow_done;
64c12921 2787 }
5d4f98a2 2788
bd681513
CM
2789 /*
2790 * must have write locks on this node and the
2791 * parent
2792 */
5124e00e
JB
2793 if (level > write_lock_level ||
2794 (level + 1 > write_lock_level &&
2795 level + 1 < BTRFS_MAX_LEVEL &&
2796 p->nodes[level + 1])) {
bd681513
CM
2797 write_lock_level = level + 1;
2798 btrfs_release_path(p);
2799 goto again;
2800 }
2801
160f4089 2802 btrfs_set_path_blocking(p);
9ea2c7c9
NB
2803 if (last_level)
2804 err = btrfs_cow_block(trans, root, b, NULL, 0,
2805 &b);
2806 else
2807 err = btrfs_cow_block(trans, root, b,
2808 p->nodes[level + 1],
2809 p->slots[level + 1], &b);
33c66f43 2810 if (err) {
33c66f43 2811 ret = err;
65b51a00 2812 goto done;
54aa1f4d 2813 }
02217ed2 2814 }
65b51a00 2815cow_done:
eb60ceac 2816 p->nodes[level] = b;
bd681513 2817 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2818
2819 /*
2820 * we have a lock on b and as long as we aren't changing
2821 * the tree, there is no way to for the items in b to change.
2822 * It is safe to drop the lock on our parent before we
2823 * go through the expensive btree search on b.
2824 *
eb653de1
FDBM
2825 * If we're inserting or deleting (ins_len != 0), then we might
2826 * be changing slot zero, which may require changing the parent.
2827 * So, we can't drop the lock until after we know which slot
2828 * we're operating on.
b4ce94de 2829 */
eb653de1
FDBM
2830 if (!ins_len && !p->keep_locks) {
2831 int u = level + 1;
2832
2833 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2834 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2835 p->locks[u] = 0;
2836 }
2837 }
b4ce94de 2838
d7396f07 2839 ret = key_search(b, key, level, &prev_cmp, &slot);
415b35a5
LB
2840 if (ret < 0)
2841 goto done;
b4ce94de 2842
5f39d397 2843 if (level != 0) {
33c66f43
YZ
2844 int dec = 0;
2845 if (ret && slot > 0) {
2846 dec = 1;
be0e5c09 2847 slot -= 1;
33c66f43 2848 }
be0e5c09 2849 p->slots[level] = slot;
33c66f43 2850 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2851 ins_len, &write_lock_level);
33c66f43 2852 if (err == -EAGAIN)
c8c42864 2853 goto again;
33c66f43
YZ
2854 if (err) {
2855 ret = err;
c8c42864 2856 goto done;
33c66f43 2857 }
c8c42864
CM
2858 b = p->nodes[level];
2859 slot = p->slots[level];
b4ce94de 2860
bd681513
CM
2861 /*
2862 * slot 0 is special, if we change the key
2863 * we have to update the parent pointer
2864 * which means we must have a write lock
2865 * on the parent
2866 */
eb653de1 2867 if (slot == 0 && ins_len &&
bd681513
CM
2868 write_lock_level < level + 1) {
2869 write_lock_level = level + 1;
2870 btrfs_release_path(p);
2871 goto again;
2872 }
2873
f7c79f30
CM
2874 unlock_up(p, level, lowest_unlock,
2875 min_write_lock_level, &write_lock_level);
f9efa9c7 2876
925baedd 2877 if (level == lowest_level) {
33c66f43
YZ
2878 if (dec)
2879 p->slots[level]++;
5b21f2ed 2880 goto done;
925baedd 2881 }
ca7a79ad 2882
d07b8528 2883 err = read_block_for_search(root, p, &b, level,
cda79c54 2884 slot, key);
33c66f43 2885 if (err == -EAGAIN)
c8c42864 2886 goto again;
33c66f43
YZ
2887 if (err) {
2888 ret = err;
76a05b35 2889 goto done;
33c66f43 2890 }
76a05b35 2891
b4ce94de 2892 if (!p->skip_locking) {
bd681513
CM
2893 level = btrfs_header_level(b);
2894 if (level <= write_lock_level) {
2895 err = btrfs_try_tree_write_lock(b);
2896 if (!err) {
2897 btrfs_set_path_blocking(p);
2898 btrfs_tree_lock(b);
2899 btrfs_clear_path_blocking(p, b,
2900 BTRFS_WRITE_LOCK);
2901 }
2902 p->locks[level] = BTRFS_WRITE_LOCK;
2903 } else {
f82c458a 2904 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2905 if (!err) {
2906 btrfs_set_path_blocking(p);
2907 btrfs_tree_read_lock(b);
2908 btrfs_clear_path_blocking(p, b,
2909 BTRFS_READ_LOCK);
2910 }
2911 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2912 }
bd681513 2913 p->nodes[level] = b;
b4ce94de 2914 }
be0e5c09
CM
2915 } else {
2916 p->slots[level] = slot;
87b29b20 2917 if (ins_len > 0 &&
2ff7e61e 2918 btrfs_leaf_free_space(fs_info, b) < ins_len) {
bd681513
CM
2919 if (write_lock_level < 1) {
2920 write_lock_level = 1;
2921 btrfs_release_path(p);
2922 goto again;
2923 }
2924
b4ce94de 2925 btrfs_set_path_blocking(p);
33c66f43
YZ
2926 err = split_leaf(trans, root, key,
2927 p, ins_len, ret == 0);
bd681513 2928 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2929
33c66f43
YZ
2930 BUG_ON(err > 0);
2931 if (err) {
2932 ret = err;
65b51a00
CM
2933 goto done;
2934 }
5c680ed6 2935 }
459931ec 2936 if (!p->search_for_split)
f7c79f30
CM
2937 unlock_up(p, level, lowest_unlock,
2938 min_write_lock_level, &write_lock_level);
65b51a00 2939 goto done;
be0e5c09
CM
2940 }
2941 }
65b51a00
CM
2942 ret = 1;
2943done:
b4ce94de
CM
2944 /*
2945 * we don't really know what they plan on doing with the path
2946 * from here on, so for now just mark it as blocking
2947 */
b9473439
CM
2948 if (!p->leave_spinning)
2949 btrfs_set_path_blocking(p);
5f5bc6b1 2950 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2951 btrfs_release_path(p);
65b51a00 2952 return ret;
be0e5c09
CM
2953}
2954
5d9e75c4
JS
2955/*
2956 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2957 * current state of the tree together with the operations recorded in the tree
2958 * modification log to search for the key in a previous version of this tree, as
2959 * denoted by the time_seq parameter.
2960 *
2961 * Naturally, there is no support for insert, delete or cow operations.
2962 *
2963 * The resulting path and return value will be set up as if we called
2964 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2965 */
310712b2 2966int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
5d9e75c4
JS
2967 struct btrfs_path *p, u64 time_seq)
2968{
0b246afa 2969 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4
JS
2970 struct extent_buffer *b;
2971 int slot;
2972 int ret;
2973 int err;
2974 int level;
2975 int lowest_unlock = 1;
2976 u8 lowest_level = 0;
d4b4087c 2977 int prev_cmp = -1;
5d9e75c4
JS
2978
2979 lowest_level = p->lowest_level;
2980 WARN_ON(p->nodes[0] != NULL);
2981
2982 if (p->search_commit_root) {
2983 BUG_ON(time_seq);
2984 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2985 }
2986
2987again:
5d9e75c4 2988 b = get_old_root(root, time_seq);
5d9e75c4 2989 level = btrfs_header_level(b);
5d9e75c4
JS
2990 p->locks[level] = BTRFS_READ_LOCK;
2991
2992 while (b) {
2993 level = btrfs_header_level(b);
2994 p->nodes[level] = b;
2995 btrfs_clear_path_blocking(p, NULL, 0);
2996
2997 /*
2998 * we have a lock on b and as long as we aren't changing
2999 * the tree, there is no way to for the items in b to change.
3000 * It is safe to drop the lock on our parent before we
3001 * go through the expensive btree search on b.
3002 */
3003 btrfs_unlock_up_safe(p, level + 1);
3004
d4b4087c 3005 /*
01327610 3006 * Since we can unwind ebs we want to do a real search every
d4b4087c
JB
3007 * time.
3008 */
3009 prev_cmp = -1;
d7396f07 3010 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
3011
3012 if (level != 0) {
3013 int dec = 0;
3014 if (ret && slot > 0) {
3015 dec = 1;
3016 slot -= 1;
3017 }
3018 p->slots[level] = slot;
3019 unlock_up(p, level, lowest_unlock, 0, NULL);
3020
3021 if (level == lowest_level) {
3022 if (dec)
3023 p->slots[level]++;
3024 goto done;
3025 }
3026
d07b8528 3027 err = read_block_for_search(root, p, &b, level,
cda79c54 3028 slot, key);
5d9e75c4
JS
3029 if (err == -EAGAIN)
3030 goto again;
3031 if (err) {
3032 ret = err;
3033 goto done;
3034 }
3035
3036 level = btrfs_header_level(b);
f82c458a 3037 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
3038 if (!err) {
3039 btrfs_set_path_blocking(p);
3040 btrfs_tree_read_lock(b);
3041 btrfs_clear_path_blocking(p, b,
3042 BTRFS_READ_LOCK);
3043 }
0b246afa 3044 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
db7f3436
JB
3045 if (!b) {
3046 ret = -ENOMEM;
3047 goto done;
3048 }
5d9e75c4
JS
3049 p->locks[level] = BTRFS_READ_LOCK;
3050 p->nodes[level] = b;
5d9e75c4
JS
3051 } else {
3052 p->slots[level] = slot;
3053 unlock_up(p, level, lowest_unlock, 0, NULL);
3054 goto done;
3055 }
3056 }
3057 ret = 1;
3058done:
3059 if (!p->leave_spinning)
3060 btrfs_set_path_blocking(p);
3061 if (ret < 0)
3062 btrfs_release_path(p);
3063
3064 return ret;
3065}
3066
2f38b3e1
AJ
3067/*
3068 * helper to use instead of search slot if no exact match is needed but
3069 * instead the next or previous item should be returned.
3070 * When find_higher is true, the next higher item is returned, the next lower
3071 * otherwise.
3072 * When return_any and find_higher are both true, and no higher item is found,
3073 * return the next lower instead.
3074 * When return_any is true and find_higher is false, and no lower item is found,
3075 * return the next higher instead.
3076 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3077 * < 0 on error
3078 */
3079int btrfs_search_slot_for_read(struct btrfs_root *root,
310712b2
OS
3080 const struct btrfs_key *key,
3081 struct btrfs_path *p, int find_higher,
3082 int return_any)
2f38b3e1
AJ
3083{
3084 int ret;
3085 struct extent_buffer *leaf;
3086
3087again:
3088 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3089 if (ret <= 0)
3090 return ret;
3091 /*
3092 * a return value of 1 means the path is at the position where the
3093 * item should be inserted. Normally this is the next bigger item,
3094 * but in case the previous item is the last in a leaf, path points
3095 * to the first free slot in the previous leaf, i.e. at an invalid
3096 * item.
3097 */
3098 leaf = p->nodes[0];
3099
3100 if (find_higher) {
3101 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3102 ret = btrfs_next_leaf(root, p);
3103 if (ret <= 0)
3104 return ret;
3105 if (!return_any)
3106 return 1;
3107 /*
3108 * no higher item found, return the next
3109 * lower instead
3110 */
3111 return_any = 0;
3112 find_higher = 0;
3113 btrfs_release_path(p);
3114 goto again;
3115 }
3116 } else {
e6793769
AJ
3117 if (p->slots[0] == 0) {
3118 ret = btrfs_prev_leaf(root, p);
3119 if (ret < 0)
3120 return ret;
3121 if (!ret) {
23c6bf6a
FDBM
3122 leaf = p->nodes[0];
3123 if (p->slots[0] == btrfs_header_nritems(leaf))
3124 p->slots[0]--;
e6793769 3125 return 0;
2f38b3e1 3126 }
e6793769
AJ
3127 if (!return_any)
3128 return 1;
3129 /*
3130 * no lower item found, return the next
3131 * higher instead
3132 */
3133 return_any = 0;
3134 find_higher = 1;
3135 btrfs_release_path(p);
3136 goto again;
3137 } else {
2f38b3e1
AJ
3138 --p->slots[0];
3139 }
3140 }
3141 return 0;
3142}
3143
74123bd7
CM
3144/*
3145 * adjust the pointers going up the tree, starting at level
3146 * making sure the right key of each node is points to 'key'.
3147 * This is used after shifting pointers to the left, so it stops
3148 * fixing up pointers when a given leaf/node is not in slot 0 of the
3149 * higher levels
aa5d6bed 3150 *
74123bd7 3151 */
b7a0365e
DD
3152static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3153 struct btrfs_path *path,
143bede5 3154 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3155{
3156 int i;
5f39d397
CM
3157 struct extent_buffer *t;
3158
234b63a0 3159 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3160 int tslot = path->slots[i];
eb60ceac 3161 if (!path->nodes[i])
be0e5c09 3162 break;
5f39d397 3163 t = path->nodes[i];
3ac6de1a 3164 tree_mod_log_set_node_key(t, tslot, 1);
5f39d397 3165 btrfs_set_node_key(t, key, tslot);
d6025579 3166 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3167 if (tslot != 0)
3168 break;
3169 }
3170}
3171
31840ae1
ZY
3172/*
3173 * update item key.
3174 *
3175 * This function isn't completely safe. It's the caller's responsibility
3176 * that the new key won't break the order
3177 */
b7a0365e
DD
3178void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3179 struct btrfs_path *path,
310712b2 3180 const struct btrfs_key *new_key)
31840ae1
ZY
3181{
3182 struct btrfs_disk_key disk_key;
3183 struct extent_buffer *eb;
3184 int slot;
3185
3186 eb = path->nodes[0];
3187 slot = path->slots[0];
3188 if (slot > 0) {
3189 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3190 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3191 }
3192 if (slot < btrfs_header_nritems(eb) - 1) {
3193 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3194 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3195 }
3196
3197 btrfs_cpu_key_to_disk(&disk_key, new_key);
3198 btrfs_set_item_key(eb, &disk_key, slot);
3199 btrfs_mark_buffer_dirty(eb);
3200 if (slot == 0)
b7a0365e 3201 fixup_low_keys(fs_info, path, &disk_key, 1);
31840ae1
ZY
3202}
3203
74123bd7
CM
3204/*
3205 * try to push data from one node into the next node left in the
79f95c82 3206 * tree.
aa5d6bed
CM
3207 *
3208 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3209 * error, and > 0 if there was no room in the left hand block.
74123bd7 3210 */
98ed5174 3211static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
3212 struct btrfs_fs_info *fs_info,
3213 struct extent_buffer *dst,
971a1f66 3214 struct extent_buffer *src, int empty)
be0e5c09 3215{
be0e5c09 3216 int push_items = 0;
bb803951
CM
3217 int src_nritems;
3218 int dst_nritems;
aa5d6bed 3219 int ret = 0;
be0e5c09 3220
5f39d397
CM
3221 src_nritems = btrfs_header_nritems(src);
3222 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3223 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
7bb86316
CM
3224 WARN_ON(btrfs_header_generation(src) != trans->transid);
3225 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3226
bce4eae9 3227 if (!empty && src_nritems <= 8)
971a1f66
CM
3228 return 1;
3229
d397712b 3230 if (push_items <= 0)
be0e5c09
CM
3231 return 1;
3232
bce4eae9 3233 if (empty) {
971a1f66 3234 push_items = min(src_nritems, push_items);
bce4eae9
CM
3235 if (push_items < src_nritems) {
3236 /* leave at least 8 pointers in the node if
3237 * we aren't going to empty it
3238 */
3239 if (src_nritems - push_items < 8) {
3240 if (push_items <= 8)
3241 return 1;
3242 push_items -= 8;
3243 }
3244 }
3245 } else
3246 push_items = min(src_nritems - 8, push_items);
79f95c82 3247
0b246afa 3248 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
5de865ee
FDBM
3249 push_items);
3250 if (ret) {
66642832 3251 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3252 return ret;
3253 }
5f39d397
CM
3254 copy_extent_buffer(dst, src,
3255 btrfs_node_key_ptr_offset(dst_nritems),
3256 btrfs_node_key_ptr_offset(0),
d397712b 3257 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3258
bb803951 3259 if (push_items < src_nritems) {
57911b8b
JS
3260 /*
3261 * don't call tree_mod_log_eb_move here, key removal was already
3262 * fully logged by tree_mod_log_eb_copy above.
3263 */
5f39d397
CM
3264 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3265 btrfs_node_key_ptr_offset(push_items),
3266 (src_nritems - push_items) *
3267 sizeof(struct btrfs_key_ptr));
3268 }
3269 btrfs_set_header_nritems(src, src_nritems - push_items);
3270 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3271 btrfs_mark_buffer_dirty(src);
3272 btrfs_mark_buffer_dirty(dst);
31840ae1 3273
79f95c82
CM
3274 return ret;
3275}
3276
3277/*
3278 * try to push data from one node into the next node right in the
3279 * tree.
3280 *
3281 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3282 * error, and > 0 if there was no room in the right hand block.
3283 *
3284 * this will only push up to 1/2 the contents of the left node over
3285 */
5f39d397 3286static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 3287 struct btrfs_fs_info *fs_info,
5f39d397
CM
3288 struct extent_buffer *dst,
3289 struct extent_buffer *src)
79f95c82 3290{
79f95c82
CM
3291 int push_items = 0;
3292 int max_push;
3293 int src_nritems;
3294 int dst_nritems;
3295 int ret = 0;
79f95c82 3296
7bb86316
CM
3297 WARN_ON(btrfs_header_generation(src) != trans->transid);
3298 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3299
5f39d397
CM
3300 src_nritems = btrfs_header_nritems(src);
3301 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3302 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
d397712b 3303 if (push_items <= 0)
79f95c82 3304 return 1;
bce4eae9 3305
d397712b 3306 if (src_nritems < 4)
bce4eae9 3307 return 1;
79f95c82
CM
3308
3309 max_push = src_nritems / 2 + 1;
3310 /* don't try to empty the node */
d397712b 3311 if (max_push >= src_nritems)
79f95c82 3312 return 1;
252c38f0 3313
79f95c82
CM
3314 if (max_push < push_items)
3315 push_items = max_push;
3316
0b246afa 3317 tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3318 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3319 btrfs_node_key_ptr_offset(0),
3320 (dst_nritems) *
3321 sizeof(struct btrfs_key_ptr));
d6025579 3322
0b246afa 3323 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
5de865ee
FDBM
3324 src_nritems - push_items, push_items);
3325 if (ret) {
66642832 3326 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3327 return ret;
3328 }
5f39d397
CM
3329 copy_extent_buffer(dst, src,
3330 btrfs_node_key_ptr_offset(0),
3331 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3332 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3333
5f39d397
CM
3334 btrfs_set_header_nritems(src, src_nritems - push_items);
3335 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3336
5f39d397
CM
3337 btrfs_mark_buffer_dirty(src);
3338 btrfs_mark_buffer_dirty(dst);
31840ae1 3339
aa5d6bed 3340 return ret;
be0e5c09
CM
3341}
3342
97571fd0
CM
3343/*
3344 * helper function to insert a new root level in the tree.
3345 * A new node is allocated, and a single item is inserted to
3346 * point to the existing root
aa5d6bed
CM
3347 *
3348 * returns zero on success or < 0 on failure.
97571fd0 3349 */
d397712b 3350static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3351 struct btrfs_root *root,
fdd99c72 3352 struct btrfs_path *path, int level)
5c680ed6 3353{
0b246afa 3354 struct btrfs_fs_info *fs_info = root->fs_info;
7bb86316 3355 u64 lower_gen;
5f39d397
CM
3356 struct extent_buffer *lower;
3357 struct extent_buffer *c;
925baedd 3358 struct extent_buffer *old;
5f39d397 3359 struct btrfs_disk_key lower_key;
5c680ed6
CM
3360
3361 BUG_ON(path->nodes[level]);
3362 BUG_ON(path->nodes[level-1] != root->node);
3363
7bb86316
CM
3364 lower = path->nodes[level-1];
3365 if (level == 1)
3366 btrfs_item_key(lower, &lower_key, 0);
3367 else
3368 btrfs_node_key(lower, &lower_key, 0);
3369
4d75f8a9
DS
3370 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3371 &lower_key, level, root->node->start, 0);
5f39d397
CM
3372 if (IS_ERR(c))
3373 return PTR_ERR(c);
925baedd 3374
0b246afa 3375 root_add_used(root, fs_info->nodesize);
f0486c68 3376
b159fa28 3377 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
5f39d397
CM
3378 btrfs_set_header_nritems(c, 1);
3379 btrfs_set_header_level(c, level);
db94535d 3380 btrfs_set_header_bytenr(c, c->start);
5f39d397 3381 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3382 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3383 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397 3384
0b246afa
JM
3385 write_extent_buffer_fsid(c, fs_info->fsid);
3386 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
e17cade2 3387
5f39d397 3388 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3389 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3390 lower_gen = btrfs_header_generation(lower);
31840ae1 3391 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3392
3393 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3394
5f39d397 3395 btrfs_mark_buffer_dirty(c);
d5719762 3396
925baedd 3397 old = root->node;
fdd99c72 3398 tree_mod_log_set_root_pointer(root, c, 0);
240f62c8 3399 rcu_assign_pointer(root->node, c);
925baedd
CM
3400
3401 /* the super has an extra ref to root->node */
3402 free_extent_buffer(old);
3403
0b86a832 3404 add_root_to_dirty_list(root);
5f39d397
CM
3405 extent_buffer_get(c);
3406 path->nodes[level] = c;
95449a16 3407 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3408 path->slots[level] = 0;
3409 return 0;
3410}
3411
74123bd7
CM
3412/*
3413 * worker function to insert a single pointer in a node.
3414 * the node should have enough room for the pointer already
97571fd0 3415 *
74123bd7
CM
3416 * slot and level indicate where you want the key to go, and
3417 * blocknr is the block the key points to.
3418 */
143bede5 3419static void insert_ptr(struct btrfs_trans_handle *trans,
2ff7e61e 3420 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 3421 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3422 int slot, int level)
74123bd7 3423{
5f39d397 3424 struct extent_buffer *lower;
74123bd7 3425 int nritems;
f3ea38da 3426 int ret;
5c680ed6
CM
3427
3428 BUG_ON(!path->nodes[level]);
f0486c68 3429 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3430 lower = path->nodes[level];
3431 nritems = btrfs_header_nritems(lower);
c293498b 3432 BUG_ON(slot > nritems);
0b246afa 3433 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
74123bd7 3434 if (slot != nritems) {
c3e06965 3435 if (level)
0b246afa 3436 tree_mod_log_eb_move(fs_info, lower, slot + 1,
f3ea38da 3437 slot, nritems - slot);
5f39d397
CM
3438 memmove_extent_buffer(lower,
3439 btrfs_node_key_ptr_offset(slot + 1),
3440 btrfs_node_key_ptr_offset(slot),
d6025579 3441 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3442 }
c3e06965 3443 if (level) {
0b246afa 3444 ret = tree_mod_log_insert_key(fs_info, lower, slot,
c8cc6341 3445 MOD_LOG_KEY_ADD, GFP_NOFS);
f3ea38da
JS
3446 BUG_ON(ret < 0);
3447 }
5f39d397 3448 btrfs_set_node_key(lower, key, slot);
db94535d 3449 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3450 WARN_ON(trans->transid == 0);
3451 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3452 btrfs_set_header_nritems(lower, nritems + 1);
3453 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3454}
3455
97571fd0
CM
3456/*
3457 * split the node at the specified level in path in two.
3458 * The path is corrected to point to the appropriate node after the split
3459 *
3460 * Before splitting this tries to make some room in the node by pushing
3461 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3462 *
3463 * returns 0 on success and < 0 on failure
97571fd0 3464 */
e02119d5
CM
3465static noinline int split_node(struct btrfs_trans_handle *trans,
3466 struct btrfs_root *root,
3467 struct btrfs_path *path, int level)
be0e5c09 3468{
0b246afa 3469 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
3470 struct extent_buffer *c;
3471 struct extent_buffer *split;
3472 struct btrfs_disk_key disk_key;
be0e5c09 3473 int mid;
5c680ed6 3474 int ret;
7518a238 3475 u32 c_nritems;
eb60ceac 3476
5f39d397 3477 c = path->nodes[level];
7bb86316 3478 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3479 if (c == root->node) {
d9abbf1c 3480 /*
90f8d62e
JS
3481 * trying to split the root, lets make a new one
3482 *
fdd99c72 3483 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3484 * insert_new_root, because that root buffer will be kept as a
3485 * normal node. We are going to log removal of half of the
3486 * elements below with tree_mod_log_eb_copy. We're holding a
3487 * tree lock on the buffer, which is why we cannot race with
3488 * other tree_mod_log users.
d9abbf1c 3489 */
fdd99c72 3490 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3491 if (ret)
3492 return ret;
b3612421 3493 } else {
e66f709b 3494 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3495 c = path->nodes[level];
3496 if (!ret && btrfs_header_nritems(c) <
0b246afa 3497 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
e66f709b 3498 return 0;
54aa1f4d
CM
3499 if (ret < 0)
3500 return ret;
be0e5c09 3501 }
e66f709b 3502
5f39d397 3503 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3504 mid = (c_nritems + 1) / 2;
3505 btrfs_node_key(c, &disk_key, mid);
7bb86316 3506
4d75f8a9
DS
3507 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3508 &disk_key, level, c->start, 0);
5f39d397
CM
3509 if (IS_ERR(split))
3510 return PTR_ERR(split);
3511
0b246afa 3512 root_add_used(root, fs_info->nodesize);
f0486c68 3513
b159fa28 3514 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
5f39d397 3515 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3516 btrfs_set_header_bytenr(split, split->start);
5f39d397 3517 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3518 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397 3519 btrfs_set_header_owner(split, root->root_key.objectid);
0b246afa
JM
3520 write_extent_buffer_fsid(split, fs_info->fsid);
3521 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
54aa1f4d 3522
0b246afa 3523 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
5de865ee 3524 if (ret) {
66642832 3525 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3526 return ret;
3527 }
5f39d397
CM
3528 copy_extent_buffer(split, c,
3529 btrfs_node_key_ptr_offset(0),
3530 btrfs_node_key_ptr_offset(mid),
3531 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3532 btrfs_set_header_nritems(split, c_nritems - mid);
3533 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3534 ret = 0;
3535
5f39d397
CM
3536 btrfs_mark_buffer_dirty(c);
3537 btrfs_mark_buffer_dirty(split);
3538
2ff7e61e 3539 insert_ptr(trans, fs_info, path, &disk_key, split->start,
c3e06965 3540 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3541
5de08d7d 3542 if (path->slots[level] >= mid) {
5c680ed6 3543 path->slots[level] -= mid;
925baedd 3544 btrfs_tree_unlock(c);
5f39d397
CM
3545 free_extent_buffer(c);
3546 path->nodes[level] = split;
5c680ed6
CM
3547 path->slots[level + 1] += 1;
3548 } else {
925baedd 3549 btrfs_tree_unlock(split);
5f39d397 3550 free_extent_buffer(split);
be0e5c09 3551 }
aa5d6bed 3552 return ret;
be0e5c09
CM
3553}
3554
74123bd7
CM
3555/*
3556 * how many bytes are required to store the items in a leaf. start
3557 * and nr indicate which items in the leaf to check. This totals up the
3558 * space used both by the item structs and the item data
3559 */
5f39d397 3560static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3561{
41be1f3b
JB
3562 struct btrfs_item *start_item;
3563 struct btrfs_item *end_item;
3564 struct btrfs_map_token token;
be0e5c09 3565 int data_len;
5f39d397 3566 int nritems = btrfs_header_nritems(l);
d4dbff95 3567 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3568
3569 if (!nr)
3570 return 0;
41be1f3b 3571 btrfs_init_map_token(&token);
dd3cc16b
RK
3572 start_item = btrfs_item_nr(start);
3573 end_item = btrfs_item_nr(end);
41be1f3b
JB
3574 data_len = btrfs_token_item_offset(l, start_item, &token) +
3575 btrfs_token_item_size(l, start_item, &token);
3576 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3577 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3578 WARN_ON(data_len < 0);
be0e5c09
CM
3579 return data_len;
3580}
3581
d4dbff95
CM
3582/*
3583 * The space between the end of the leaf items and
3584 * the start of the leaf data. IOW, how much room
3585 * the leaf has left for both items and data
3586 */
2ff7e61e 3587noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
e02119d5 3588 struct extent_buffer *leaf)
d4dbff95 3589{
5f39d397
CM
3590 int nritems = btrfs_header_nritems(leaf);
3591 int ret;
0b246afa
JM
3592
3593 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
5f39d397 3594 if (ret < 0) {
0b246afa
JM
3595 btrfs_crit(fs_info,
3596 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3597 ret,
3598 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3599 leaf_space_used(leaf, 0, nritems), nritems);
5f39d397
CM
3600 }
3601 return ret;
d4dbff95
CM
3602}
3603
99d8f83c
CM
3604/*
3605 * min slot controls the lowest index we're willing to push to the
3606 * right. We'll push up to and including min_slot, but no lower
3607 */
1e47eef2 3608static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
44871b1b
CM
3609 struct btrfs_path *path,
3610 int data_size, int empty,
3611 struct extent_buffer *right,
99d8f83c
CM
3612 int free_space, u32 left_nritems,
3613 u32 min_slot)
00ec4c51 3614{
5f39d397 3615 struct extent_buffer *left = path->nodes[0];
44871b1b 3616 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3617 struct btrfs_map_token token;
5f39d397 3618 struct btrfs_disk_key disk_key;
00ec4c51 3619 int slot;
34a38218 3620 u32 i;
00ec4c51
CM
3621 int push_space = 0;
3622 int push_items = 0;
0783fcfc 3623 struct btrfs_item *item;
34a38218 3624 u32 nr;
7518a238 3625 u32 right_nritems;
5f39d397 3626 u32 data_end;
db94535d 3627 u32 this_item_size;
00ec4c51 3628
cfed81a0
CM
3629 btrfs_init_map_token(&token);
3630
34a38218
CM
3631 if (empty)
3632 nr = 0;
3633 else
99d8f83c 3634 nr = max_t(u32, 1, min_slot);
34a38218 3635
31840ae1 3636 if (path->slots[0] >= left_nritems)
87b29b20 3637 push_space += data_size;
31840ae1 3638
44871b1b 3639 slot = path->slots[1];
34a38218
CM
3640 i = left_nritems - 1;
3641 while (i >= nr) {
dd3cc16b 3642 item = btrfs_item_nr(i);
db94535d 3643
31840ae1
ZY
3644 if (!empty && push_items > 0) {
3645 if (path->slots[0] > i)
3646 break;
3647 if (path->slots[0] == i) {
2ff7e61e 3648 int space = btrfs_leaf_free_space(fs_info, left);
31840ae1
ZY
3649 if (space + push_space * 2 > free_space)
3650 break;
3651 }
3652 }
3653
00ec4c51 3654 if (path->slots[0] == i)
87b29b20 3655 push_space += data_size;
db94535d 3656
db94535d
CM
3657 this_item_size = btrfs_item_size(left, item);
3658 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3659 break;
31840ae1 3660
00ec4c51 3661 push_items++;
db94535d 3662 push_space += this_item_size + sizeof(*item);
34a38218
CM
3663 if (i == 0)
3664 break;
3665 i--;
db94535d 3666 }
5f39d397 3667
925baedd
CM
3668 if (push_items == 0)
3669 goto out_unlock;
5f39d397 3670
6c1500f2 3671 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3672
00ec4c51 3673 /* push left to right */
5f39d397 3674 right_nritems = btrfs_header_nritems(right);
34a38218 3675
5f39d397 3676 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2ff7e61e 3677 push_space -= leaf_data_end(fs_info, left);
5f39d397 3678
00ec4c51 3679 /* make room in the right data area */
2ff7e61e 3680 data_end = leaf_data_end(fs_info, right);
5f39d397 3681 memmove_extent_buffer(right,
3d9ec8c4
NB
3682 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3683 BTRFS_LEAF_DATA_OFFSET + data_end,
0b246afa 3684 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
5f39d397 3685
00ec4c51 3686 /* copy from the left data area */
3d9ec8c4 3687 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3688 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3689 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
d6025579 3690 push_space);
5f39d397
CM
3691
3692 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3693 btrfs_item_nr_offset(0),
3694 right_nritems * sizeof(struct btrfs_item));
3695
00ec4c51 3696 /* copy the items from left to right */
5f39d397
CM
3697 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3698 btrfs_item_nr_offset(left_nritems - push_items),
3699 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3700
3701 /* update the item pointers */
7518a238 3702 right_nritems += push_items;
5f39d397 3703 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3704 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
7518a238 3705 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3706 item = btrfs_item_nr(i);
cfed81a0
CM
3707 push_space -= btrfs_token_item_size(right, item, &token);
3708 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3709 }
3710
7518a238 3711 left_nritems -= push_items;
5f39d397 3712 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3713
34a38218
CM
3714 if (left_nritems)
3715 btrfs_mark_buffer_dirty(left);
f0486c68 3716 else
7c302b49 3717 clean_tree_block(fs_info, left);
f0486c68 3718
5f39d397 3719 btrfs_mark_buffer_dirty(right);
a429e513 3720
5f39d397
CM
3721 btrfs_item_key(right, &disk_key, 0);
3722 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3723 btrfs_mark_buffer_dirty(upper);
02217ed2 3724
00ec4c51 3725 /* then fixup the leaf pointer in the path */
7518a238
CM
3726 if (path->slots[0] >= left_nritems) {
3727 path->slots[0] -= left_nritems;
925baedd 3728 if (btrfs_header_nritems(path->nodes[0]) == 0)
7c302b49 3729 clean_tree_block(fs_info, path->nodes[0]);
925baedd 3730 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3731 free_extent_buffer(path->nodes[0]);
3732 path->nodes[0] = right;
00ec4c51
CM
3733 path->slots[1] += 1;
3734 } else {
925baedd 3735 btrfs_tree_unlock(right);
5f39d397 3736 free_extent_buffer(right);
00ec4c51
CM
3737 }
3738 return 0;
925baedd
CM
3739
3740out_unlock:
3741 btrfs_tree_unlock(right);
3742 free_extent_buffer(right);
3743 return 1;
00ec4c51 3744}
925baedd 3745
44871b1b
CM
3746/*
3747 * push some data in the path leaf to the right, trying to free up at
3748 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3749 *
3750 * returns 1 if the push failed because the other node didn't have enough
3751 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3752 *
3753 * this will push starting from min_slot to the end of the leaf. It won't
3754 * push any slot lower than min_slot
44871b1b
CM
3755 */
3756static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3757 *root, struct btrfs_path *path,
3758 int min_data_size, int data_size,
3759 int empty, u32 min_slot)
44871b1b 3760{
2ff7e61e 3761 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3762 struct extent_buffer *left = path->nodes[0];
3763 struct extent_buffer *right;
3764 struct extent_buffer *upper;
3765 int slot;
3766 int free_space;
3767 u32 left_nritems;
3768 int ret;
3769
3770 if (!path->nodes[1])
3771 return 1;
3772
3773 slot = path->slots[1];
3774 upper = path->nodes[1];
3775 if (slot >= btrfs_header_nritems(upper) - 1)
3776 return 1;
3777
3778 btrfs_assert_tree_locked(path->nodes[1]);
3779
2ff7e61e 3780 right = read_node_slot(fs_info, upper, slot + 1);
fb770ae4
LB
3781 /*
3782 * slot + 1 is not valid or we fail to read the right node,
3783 * no big deal, just return.
3784 */
3785 if (IS_ERR(right))
91ca338d
TI
3786 return 1;
3787
44871b1b
CM
3788 btrfs_tree_lock(right);
3789 btrfs_set_lock_blocking(right);
3790
2ff7e61e 3791 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3792 if (free_space < data_size)
3793 goto out_unlock;
3794
3795 /* cow and double check */
3796 ret = btrfs_cow_block(trans, root, right, upper,
3797 slot + 1, &right);
3798 if (ret)
3799 goto out_unlock;
3800
2ff7e61e 3801 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3802 if (free_space < data_size)
3803 goto out_unlock;
3804
3805 left_nritems = btrfs_header_nritems(left);
3806 if (left_nritems == 0)
3807 goto out_unlock;
3808
2ef1fed2
FDBM
3809 if (path->slots[0] == left_nritems && !empty) {
3810 /* Key greater than all keys in the leaf, right neighbor has
3811 * enough room for it and we're not emptying our leaf to delete
3812 * it, therefore use right neighbor to insert the new item and
3813 * no need to touch/dirty our left leaft. */
3814 btrfs_tree_unlock(left);
3815 free_extent_buffer(left);
3816 path->nodes[0] = right;
3817 path->slots[0] = 0;
3818 path->slots[1]++;
3819 return 0;
3820 }
3821
1e47eef2 3822 return __push_leaf_right(fs_info, path, min_data_size, empty,
99d8f83c 3823 right, free_space, left_nritems, min_slot);
44871b1b
CM
3824out_unlock:
3825 btrfs_tree_unlock(right);
3826 free_extent_buffer(right);
3827 return 1;
3828}
3829
74123bd7
CM
3830/*
3831 * push some data in the path leaf to the left, trying to free up at
3832 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3833 *
3834 * max_slot can put a limit on how far into the leaf we'll push items. The
3835 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3836 * items
74123bd7 3837 */
66cb7ddb 3838static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
44871b1b
CM
3839 struct btrfs_path *path, int data_size,
3840 int empty, struct extent_buffer *left,
99d8f83c
CM
3841 int free_space, u32 right_nritems,
3842 u32 max_slot)
be0e5c09 3843{
5f39d397
CM
3844 struct btrfs_disk_key disk_key;
3845 struct extent_buffer *right = path->nodes[0];
be0e5c09 3846 int i;
be0e5c09
CM
3847 int push_space = 0;
3848 int push_items = 0;
0783fcfc 3849 struct btrfs_item *item;
7518a238 3850 u32 old_left_nritems;
34a38218 3851 u32 nr;
aa5d6bed 3852 int ret = 0;
db94535d
CM
3853 u32 this_item_size;
3854 u32 old_left_item_size;
cfed81a0
CM
3855 struct btrfs_map_token token;
3856
3857 btrfs_init_map_token(&token);
be0e5c09 3858
34a38218 3859 if (empty)
99d8f83c 3860 nr = min(right_nritems, max_slot);
34a38218 3861 else
99d8f83c 3862 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3863
3864 for (i = 0; i < nr; i++) {
dd3cc16b 3865 item = btrfs_item_nr(i);
db94535d 3866
31840ae1
ZY
3867 if (!empty && push_items > 0) {
3868 if (path->slots[0] < i)
3869 break;
3870 if (path->slots[0] == i) {
2ff7e61e 3871 int space = btrfs_leaf_free_space(fs_info, right);
31840ae1
ZY
3872 if (space + push_space * 2 > free_space)
3873 break;
3874 }
3875 }
3876
be0e5c09 3877 if (path->slots[0] == i)
87b29b20 3878 push_space += data_size;
db94535d
CM
3879
3880 this_item_size = btrfs_item_size(right, item);
3881 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3882 break;
db94535d 3883
be0e5c09 3884 push_items++;
db94535d
CM
3885 push_space += this_item_size + sizeof(*item);
3886 }
3887
be0e5c09 3888 if (push_items == 0) {
925baedd
CM
3889 ret = 1;
3890 goto out;
be0e5c09 3891 }
fae7f21c 3892 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3893
be0e5c09 3894 /* push data from right to left */
5f39d397
CM
3895 copy_extent_buffer(left, right,
3896 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3897 btrfs_item_nr_offset(0),
3898 push_items * sizeof(struct btrfs_item));
3899
0b246afa 3900 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
d397712b 3901 btrfs_item_offset_nr(right, push_items - 1);
5f39d397 3902
3d9ec8c4 3903 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3904 leaf_data_end(fs_info, left) - push_space,
3d9ec8c4 3905 BTRFS_LEAF_DATA_OFFSET +
5f39d397 3906 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3907 push_space);
5f39d397 3908 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3909 BUG_ON(old_left_nritems <= 0);
eb60ceac 3910
db94535d 3911 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3912 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3913 u32 ioff;
db94535d 3914
dd3cc16b 3915 item = btrfs_item_nr(i);
db94535d 3916
cfed81a0
CM
3917 ioff = btrfs_token_item_offset(left, item, &token);
3918 btrfs_set_token_item_offset(left, item,
0b246afa 3919 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
cfed81a0 3920 &token);
be0e5c09 3921 }
5f39d397 3922 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3923
3924 /* fixup right node */
31b1a2bd
JL
3925 if (push_items > right_nritems)
3926 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3927 right_nritems);
34a38218
CM
3928
3929 if (push_items < right_nritems) {
3930 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2ff7e61e 3931 leaf_data_end(fs_info, right);
3d9ec8c4 3932 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3933 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3934 BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3935 leaf_data_end(fs_info, right), push_space);
34a38218
CM
3936
3937 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3938 btrfs_item_nr_offset(push_items),
3939 (btrfs_header_nritems(right) - push_items) *
3940 sizeof(struct btrfs_item));
34a38218 3941 }
eef1c494
Y
3942 right_nritems -= push_items;
3943 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3944 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
5f39d397 3945 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3946 item = btrfs_item_nr(i);
db94535d 3947
cfed81a0
CM
3948 push_space = push_space - btrfs_token_item_size(right,
3949 item, &token);
3950 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3951 }
eb60ceac 3952
5f39d397 3953 btrfs_mark_buffer_dirty(left);
34a38218
CM
3954 if (right_nritems)
3955 btrfs_mark_buffer_dirty(right);
f0486c68 3956 else
7c302b49 3957 clean_tree_block(fs_info, right);
098f59c2 3958
5f39d397 3959 btrfs_item_key(right, &disk_key, 0);
0b246afa 3960 fixup_low_keys(fs_info, path, &disk_key, 1);
be0e5c09
CM
3961
3962 /* then fixup the leaf pointer in the path */
3963 if (path->slots[0] < push_items) {
3964 path->slots[0] += old_left_nritems;
925baedd 3965 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3966 free_extent_buffer(path->nodes[0]);
3967 path->nodes[0] = left;
be0e5c09
CM
3968 path->slots[1] -= 1;
3969 } else {
925baedd 3970 btrfs_tree_unlock(left);
5f39d397 3971 free_extent_buffer(left);
be0e5c09
CM
3972 path->slots[0] -= push_items;
3973 }
eb60ceac 3974 BUG_ON(path->slots[0] < 0);
aa5d6bed 3975 return ret;
925baedd
CM
3976out:
3977 btrfs_tree_unlock(left);
3978 free_extent_buffer(left);
3979 return ret;
be0e5c09
CM
3980}
3981
44871b1b
CM
3982/*
3983 * push some data in the path leaf to the left, trying to free up at
3984 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3985 *
3986 * max_slot can put a limit on how far into the leaf we'll push items. The
3987 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3988 * items
44871b1b
CM
3989 */
3990static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3991 *root, struct btrfs_path *path, int min_data_size,
3992 int data_size, int empty, u32 max_slot)
44871b1b 3993{
2ff7e61e 3994 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3995 struct extent_buffer *right = path->nodes[0];
3996 struct extent_buffer *left;
3997 int slot;
3998 int free_space;
3999 u32 right_nritems;
4000 int ret = 0;
4001
4002 slot = path->slots[1];
4003 if (slot == 0)
4004 return 1;
4005 if (!path->nodes[1])
4006 return 1;
4007
4008 right_nritems = btrfs_header_nritems(right);
4009 if (right_nritems == 0)
4010 return 1;
4011
4012 btrfs_assert_tree_locked(path->nodes[1]);
4013
2ff7e61e 4014 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
fb770ae4
LB
4015 /*
4016 * slot - 1 is not valid or we fail to read the left node,
4017 * no big deal, just return.
4018 */
4019 if (IS_ERR(left))
91ca338d
TI
4020 return 1;
4021
44871b1b
CM
4022 btrfs_tree_lock(left);
4023 btrfs_set_lock_blocking(left);
4024
2ff7e61e 4025 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4026 if (free_space < data_size) {
4027 ret = 1;
4028 goto out;
4029 }
4030
4031 /* cow and double check */
4032 ret = btrfs_cow_block(trans, root, left,
4033 path->nodes[1], slot - 1, &left);
4034 if (ret) {
4035 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4036 if (ret == -ENOSPC)
4037 ret = 1;
44871b1b
CM
4038 goto out;
4039 }
4040
2ff7e61e 4041 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4042 if (free_space < data_size) {
4043 ret = 1;
4044 goto out;
4045 }
4046
66cb7ddb 4047 return __push_leaf_left(fs_info, path, min_data_size,
99d8f83c
CM
4048 empty, left, free_space, right_nritems,
4049 max_slot);
44871b1b
CM
4050out:
4051 btrfs_tree_unlock(left);
4052 free_extent_buffer(left);
4053 return ret;
4054}
4055
4056/*
4057 * split the path's leaf in two, making sure there is at least data_size
4058 * available for the resulting leaf level of the path.
44871b1b 4059 */
143bede5 4060static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2ff7e61e 4061 struct btrfs_fs_info *fs_info,
143bede5
JM
4062 struct btrfs_path *path,
4063 struct extent_buffer *l,
4064 struct extent_buffer *right,
4065 int slot, int mid, int nritems)
44871b1b
CM
4066{
4067 int data_copy_size;
4068 int rt_data_off;
4069 int i;
44871b1b 4070 struct btrfs_disk_key disk_key;
cfed81a0
CM
4071 struct btrfs_map_token token;
4072
4073 btrfs_init_map_token(&token);
44871b1b
CM
4074
4075 nritems = nritems - mid;
4076 btrfs_set_header_nritems(right, nritems);
2ff7e61e 4077 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
44871b1b
CM
4078
4079 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4080 btrfs_item_nr_offset(mid),
4081 nritems * sizeof(struct btrfs_item));
4082
4083 copy_extent_buffer(right, l,
3d9ec8c4
NB
4084 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4085 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 4086 leaf_data_end(fs_info, l), data_copy_size);
44871b1b 4087
0b246afa 4088 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
44871b1b
CM
4089
4090 for (i = 0; i < nritems; i++) {
dd3cc16b 4091 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4092 u32 ioff;
4093
cfed81a0
CM
4094 ioff = btrfs_token_item_offset(right, item, &token);
4095 btrfs_set_token_item_offset(right, item,
4096 ioff + rt_data_off, &token);
44871b1b
CM
4097 }
4098
44871b1b 4099 btrfs_set_header_nritems(l, mid);
44871b1b 4100 btrfs_item_key(right, &disk_key, 0);
2ff7e61e 4101 insert_ptr(trans, fs_info, path, &disk_key, right->start,
c3e06965 4102 path->slots[1] + 1, 1);
44871b1b
CM
4103
4104 btrfs_mark_buffer_dirty(right);
4105 btrfs_mark_buffer_dirty(l);
4106 BUG_ON(path->slots[0] != slot);
4107
44871b1b
CM
4108 if (mid <= slot) {
4109 btrfs_tree_unlock(path->nodes[0]);
4110 free_extent_buffer(path->nodes[0]);
4111 path->nodes[0] = right;
4112 path->slots[0] -= mid;
4113 path->slots[1] += 1;
4114 } else {
4115 btrfs_tree_unlock(right);
4116 free_extent_buffer(right);
4117 }
4118
4119 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4120}
4121
99d8f83c
CM
4122/*
4123 * double splits happen when we need to insert a big item in the middle
4124 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4125 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4126 * A B C
4127 *
4128 * We avoid this by trying to push the items on either side of our target
4129 * into the adjacent leaves. If all goes well we can avoid the double split
4130 * completely.
4131 */
4132static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4133 struct btrfs_root *root,
4134 struct btrfs_path *path,
4135 int data_size)
4136{
2ff7e61e 4137 struct btrfs_fs_info *fs_info = root->fs_info;
99d8f83c
CM
4138 int ret;
4139 int progress = 0;
4140 int slot;
4141 u32 nritems;
5a4267ca 4142 int space_needed = data_size;
99d8f83c
CM
4143
4144 slot = path->slots[0];
5a4267ca 4145 if (slot < btrfs_header_nritems(path->nodes[0]))
2ff7e61e 4146 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
99d8f83c
CM
4147
4148 /*
4149 * try to push all the items after our slot into the
4150 * right leaf
4151 */
5a4267ca 4152 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4153 if (ret < 0)
4154 return ret;
4155
4156 if (ret == 0)
4157 progress++;
4158
4159 nritems = btrfs_header_nritems(path->nodes[0]);
4160 /*
4161 * our goal is to get our slot at the start or end of a leaf. If
4162 * we've done so we're done
4163 */
4164 if (path->slots[0] == 0 || path->slots[0] == nritems)
4165 return 0;
4166
2ff7e61e 4167 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4168 return 0;
4169
4170 /* try to push all the items before our slot into the next leaf */
4171 slot = path->slots[0];
263d3995
FM
4172 space_needed = data_size;
4173 if (slot > 0)
4174 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
5a4267ca 4175 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4176 if (ret < 0)
4177 return ret;
4178
4179 if (ret == 0)
4180 progress++;
4181
4182 if (progress)
4183 return 0;
4184 return 1;
4185}
4186
74123bd7
CM
4187/*
4188 * split the path's leaf in two, making sure there is at least data_size
4189 * available for the resulting leaf level of the path.
aa5d6bed
CM
4190 *
4191 * returns 0 if all went well and < 0 on failure.
74123bd7 4192 */
e02119d5
CM
4193static noinline int split_leaf(struct btrfs_trans_handle *trans,
4194 struct btrfs_root *root,
310712b2 4195 const struct btrfs_key *ins_key,
e02119d5
CM
4196 struct btrfs_path *path, int data_size,
4197 int extend)
be0e5c09 4198{
5d4f98a2 4199 struct btrfs_disk_key disk_key;
5f39d397 4200 struct extent_buffer *l;
7518a238 4201 u32 nritems;
eb60ceac
CM
4202 int mid;
4203 int slot;
5f39d397 4204 struct extent_buffer *right;
b7a0365e 4205 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4206 int ret = 0;
aa5d6bed 4207 int wret;
5d4f98a2 4208 int split;
cc0c5538 4209 int num_doubles = 0;
99d8f83c 4210 int tried_avoid_double = 0;
aa5d6bed 4211
a5719521
YZ
4212 l = path->nodes[0];
4213 slot = path->slots[0];
4214 if (extend && data_size + btrfs_item_size_nr(l, slot) +
0b246afa 4215 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
a5719521
YZ
4216 return -EOVERFLOW;
4217
40689478 4218 /* first try to make some room by pushing left and right */
33157e05 4219 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4220 int space_needed = data_size;
4221
4222 if (slot < btrfs_header_nritems(l))
2ff7e61e 4223 space_needed -= btrfs_leaf_free_space(fs_info, l);
5a4267ca
FDBM
4224
4225 wret = push_leaf_right(trans, root, path, space_needed,
4226 space_needed, 0, 0);
d397712b 4227 if (wret < 0)
eaee50e8 4228 return wret;
3685f791 4229 if (wret) {
263d3995
FM
4230 space_needed = data_size;
4231 if (slot > 0)
4232 space_needed -= btrfs_leaf_free_space(fs_info,
4233 l);
5a4267ca
FDBM
4234 wret = push_leaf_left(trans, root, path, space_needed,
4235 space_needed, 0, (u32)-1);
3685f791
CM
4236 if (wret < 0)
4237 return wret;
4238 }
4239 l = path->nodes[0];
aa5d6bed 4240
3685f791 4241 /* did the pushes work? */
2ff7e61e 4242 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
3685f791 4243 return 0;
3326d1b0 4244 }
aa5d6bed 4245
5c680ed6 4246 if (!path->nodes[1]) {
fdd99c72 4247 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4248 if (ret)
4249 return ret;
4250 }
cc0c5538 4251again:
5d4f98a2 4252 split = 1;
cc0c5538 4253 l = path->nodes[0];
eb60ceac 4254 slot = path->slots[0];
5f39d397 4255 nritems = btrfs_header_nritems(l);
d397712b 4256 mid = (nritems + 1) / 2;
54aa1f4d 4257
5d4f98a2
YZ
4258 if (mid <= slot) {
4259 if (nritems == 1 ||
4260 leaf_space_used(l, mid, nritems - mid) + data_size >
0b246afa 4261 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4262 if (slot >= nritems) {
4263 split = 0;
4264 } else {
4265 mid = slot;
4266 if (mid != nritems &&
4267 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4268 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4269 if (data_size && !tried_avoid_double)
4270 goto push_for_double;
5d4f98a2
YZ
4271 split = 2;
4272 }
4273 }
4274 }
4275 } else {
4276 if (leaf_space_used(l, 0, mid) + data_size >
0b246afa 4277 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4278 if (!extend && data_size && slot == 0) {
4279 split = 0;
4280 } else if ((extend || !data_size) && slot == 0) {
4281 mid = 1;
4282 } else {
4283 mid = slot;
4284 if (mid != nritems &&
4285 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4286 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4287 if (data_size && !tried_avoid_double)
4288 goto push_for_double;
67871254 4289 split = 2;
5d4f98a2
YZ
4290 }
4291 }
4292 }
4293 }
4294
4295 if (split == 0)
4296 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4297 else
4298 btrfs_item_key(l, &disk_key, mid);
4299
4d75f8a9
DS
4300 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4301 &disk_key, 0, l->start, 0);
f0486c68 4302 if (IS_ERR(right))
5f39d397 4303 return PTR_ERR(right);
f0486c68 4304
0b246afa 4305 root_add_used(root, fs_info->nodesize);
5f39d397 4306
b159fa28 4307 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
db94535d 4308 btrfs_set_header_bytenr(right, right->start);
5f39d397 4309 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4310 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4311 btrfs_set_header_owner(right, root->root_key.objectid);
4312 btrfs_set_header_level(right, 0);
d24ee97b
DS
4313 write_extent_buffer_fsid(right, fs_info->fsid);
4314 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
44871b1b 4315
5d4f98a2
YZ
4316 if (split == 0) {
4317 if (mid <= slot) {
4318 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4319 insert_ptr(trans, fs_info, path, &disk_key,
4320 right->start, path->slots[1] + 1, 1);
5d4f98a2
YZ
4321 btrfs_tree_unlock(path->nodes[0]);
4322 free_extent_buffer(path->nodes[0]);
4323 path->nodes[0] = right;
4324 path->slots[0] = 0;
4325 path->slots[1] += 1;
4326 } else {
4327 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4328 insert_ptr(trans, fs_info, path, &disk_key,
4329 right->start, path->slots[1], 1);
5d4f98a2
YZ
4330 btrfs_tree_unlock(path->nodes[0]);
4331 free_extent_buffer(path->nodes[0]);
4332 path->nodes[0] = right;
4333 path->slots[0] = 0;
143bede5 4334 if (path->slots[1] == 0)
b7a0365e 4335 fixup_low_keys(fs_info, path, &disk_key, 1);
d4dbff95 4336 }
196e0249
LB
4337 /*
4338 * We create a new leaf 'right' for the required ins_len and
4339 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4340 * the content of ins_len to 'right'.
4341 */
5d4f98a2 4342 return ret;
d4dbff95 4343 }
74123bd7 4344
2ff7e61e 4345 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
31840ae1 4346
5d4f98a2 4347 if (split == 2) {
cc0c5538
CM
4348 BUG_ON(num_doubles != 0);
4349 num_doubles++;
4350 goto again;
a429e513 4351 }
44871b1b 4352
143bede5 4353 return 0;
99d8f83c
CM
4354
4355push_for_double:
4356 push_for_double_split(trans, root, path, data_size);
4357 tried_avoid_double = 1;
2ff7e61e 4358 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4359 return 0;
4360 goto again;
be0e5c09
CM
4361}
4362
ad48fd75
YZ
4363static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4364 struct btrfs_root *root,
4365 struct btrfs_path *path, int ins_len)
459931ec 4366{
2ff7e61e 4367 struct btrfs_fs_info *fs_info = root->fs_info;
ad48fd75 4368 struct btrfs_key key;
459931ec 4369 struct extent_buffer *leaf;
ad48fd75
YZ
4370 struct btrfs_file_extent_item *fi;
4371 u64 extent_len = 0;
4372 u32 item_size;
4373 int ret;
459931ec
CM
4374
4375 leaf = path->nodes[0];
ad48fd75
YZ
4376 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4377
4378 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4379 key.type != BTRFS_EXTENT_CSUM_KEY);
4380
2ff7e61e 4381 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
ad48fd75 4382 return 0;
459931ec
CM
4383
4384 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4385 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4386 fi = btrfs_item_ptr(leaf, path->slots[0],
4387 struct btrfs_file_extent_item);
4388 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4389 }
b3b4aa74 4390 btrfs_release_path(path);
459931ec 4391
459931ec 4392 path->keep_locks = 1;
ad48fd75
YZ
4393 path->search_for_split = 1;
4394 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4395 path->search_for_split = 0;
a8df6fe6
FM
4396 if (ret > 0)
4397 ret = -EAGAIN;
ad48fd75
YZ
4398 if (ret < 0)
4399 goto err;
459931ec 4400
ad48fd75
YZ
4401 ret = -EAGAIN;
4402 leaf = path->nodes[0];
a8df6fe6
FM
4403 /* if our item isn't there, return now */
4404 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4405 goto err;
4406
109f6aef 4407 /* the leaf has changed, it now has room. return now */
2ff7e61e 4408 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
109f6aef
CM
4409 goto err;
4410
ad48fd75
YZ
4411 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4412 fi = btrfs_item_ptr(leaf, path->slots[0],
4413 struct btrfs_file_extent_item);
4414 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4415 goto err;
459931ec
CM
4416 }
4417
b9473439 4418 btrfs_set_path_blocking(path);
ad48fd75 4419 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4420 if (ret)
4421 goto err;
459931ec 4422
ad48fd75 4423 path->keep_locks = 0;
b9473439 4424 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4425 return 0;
4426err:
4427 path->keep_locks = 0;
4428 return ret;
4429}
4430
4961e293 4431static noinline int split_item(struct btrfs_fs_info *fs_info,
ad48fd75 4432 struct btrfs_path *path,
310712b2 4433 const struct btrfs_key *new_key,
ad48fd75
YZ
4434 unsigned long split_offset)
4435{
4436 struct extent_buffer *leaf;
4437 struct btrfs_item *item;
4438 struct btrfs_item *new_item;
4439 int slot;
4440 char *buf;
4441 u32 nritems;
4442 u32 item_size;
4443 u32 orig_offset;
4444 struct btrfs_disk_key disk_key;
4445
b9473439 4446 leaf = path->nodes[0];
2ff7e61e 4447 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
b9473439 4448
b4ce94de
CM
4449 btrfs_set_path_blocking(path);
4450
dd3cc16b 4451 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4452 orig_offset = btrfs_item_offset(leaf, item);
4453 item_size = btrfs_item_size(leaf, item);
4454
459931ec 4455 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4456 if (!buf)
4457 return -ENOMEM;
4458
459931ec
CM
4459 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4460 path->slots[0]), item_size);
459931ec 4461
ad48fd75 4462 slot = path->slots[0] + 1;
459931ec 4463 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4464 if (slot != nritems) {
4465 /* shift the items */
4466 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4467 btrfs_item_nr_offset(slot),
4468 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4469 }
4470
4471 btrfs_cpu_key_to_disk(&disk_key, new_key);
4472 btrfs_set_item_key(leaf, &disk_key, slot);
4473
dd3cc16b 4474 new_item = btrfs_item_nr(slot);
459931ec
CM
4475
4476 btrfs_set_item_offset(leaf, new_item, orig_offset);
4477 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4478
4479 btrfs_set_item_offset(leaf, item,
4480 orig_offset + item_size - split_offset);
4481 btrfs_set_item_size(leaf, item, split_offset);
4482
4483 btrfs_set_header_nritems(leaf, nritems + 1);
4484
4485 /* write the data for the start of the original item */
4486 write_extent_buffer(leaf, buf,
4487 btrfs_item_ptr_offset(leaf, path->slots[0]),
4488 split_offset);
4489
4490 /* write the data for the new item */
4491 write_extent_buffer(leaf, buf + split_offset,
4492 btrfs_item_ptr_offset(leaf, slot),
4493 item_size - split_offset);
4494 btrfs_mark_buffer_dirty(leaf);
4495
2ff7e61e 4496 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
459931ec 4497 kfree(buf);
ad48fd75
YZ
4498 return 0;
4499}
4500
4501/*
4502 * This function splits a single item into two items,
4503 * giving 'new_key' to the new item and splitting the
4504 * old one at split_offset (from the start of the item).
4505 *
4506 * The path may be released by this operation. After
4507 * the split, the path is pointing to the old item. The
4508 * new item is going to be in the same node as the old one.
4509 *
4510 * Note, the item being split must be smaller enough to live alone on
4511 * a tree block with room for one extra struct btrfs_item
4512 *
4513 * This allows us to split the item in place, keeping a lock on the
4514 * leaf the entire time.
4515 */
4516int btrfs_split_item(struct btrfs_trans_handle *trans,
4517 struct btrfs_root *root,
4518 struct btrfs_path *path,
310712b2 4519 const struct btrfs_key *new_key,
ad48fd75
YZ
4520 unsigned long split_offset)
4521{
4522 int ret;
4523 ret = setup_leaf_for_split(trans, root, path,
4524 sizeof(struct btrfs_item));
4525 if (ret)
4526 return ret;
4527
4961e293 4528 ret = split_item(root->fs_info, path, new_key, split_offset);
459931ec
CM
4529 return ret;
4530}
4531
ad48fd75
YZ
4532/*
4533 * This function duplicate a item, giving 'new_key' to the new item.
4534 * It guarantees both items live in the same tree leaf and the new item
4535 * is contiguous with the original item.
4536 *
4537 * This allows us to split file extent in place, keeping a lock on the
4538 * leaf the entire time.
4539 */
4540int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4541 struct btrfs_root *root,
4542 struct btrfs_path *path,
310712b2 4543 const struct btrfs_key *new_key)
ad48fd75
YZ
4544{
4545 struct extent_buffer *leaf;
4546 int ret;
4547 u32 item_size;
4548
4549 leaf = path->nodes[0];
4550 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4551 ret = setup_leaf_for_split(trans, root, path,
4552 item_size + sizeof(struct btrfs_item));
4553 if (ret)
4554 return ret;
4555
4556 path->slots[0]++;
afe5fea7 4557 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4558 item_size, item_size +
4559 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4560 leaf = path->nodes[0];
4561 memcpy_extent_buffer(leaf,
4562 btrfs_item_ptr_offset(leaf, path->slots[0]),
4563 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4564 item_size);
4565 return 0;
4566}
4567
d352ac68
CM
4568/*
4569 * make the item pointed to by the path smaller. new_size indicates
4570 * how small to make it, and from_end tells us if we just chop bytes
4571 * off the end of the item or if we shift the item to chop bytes off
4572 * the front.
4573 */
2ff7e61e
JM
4574void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4575 struct btrfs_path *path, u32 new_size, int from_end)
b18c6685 4576{
b18c6685 4577 int slot;
5f39d397
CM
4578 struct extent_buffer *leaf;
4579 struct btrfs_item *item;
b18c6685
CM
4580 u32 nritems;
4581 unsigned int data_end;
4582 unsigned int old_data_start;
4583 unsigned int old_size;
4584 unsigned int size_diff;
4585 int i;
cfed81a0
CM
4586 struct btrfs_map_token token;
4587
4588 btrfs_init_map_token(&token);
b18c6685 4589
5f39d397 4590 leaf = path->nodes[0];
179e29e4
CM
4591 slot = path->slots[0];
4592
4593 old_size = btrfs_item_size_nr(leaf, slot);
4594 if (old_size == new_size)
143bede5 4595 return;
b18c6685 4596
5f39d397 4597 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4598 data_end = leaf_data_end(fs_info, leaf);
b18c6685 4599
5f39d397 4600 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4601
b18c6685
CM
4602 size_diff = old_size - new_size;
4603
4604 BUG_ON(slot < 0);
4605 BUG_ON(slot >= nritems);
4606
4607 /*
4608 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4609 */
4610 /* first correct the data pointers */
4611 for (i = slot; i < nritems; i++) {
5f39d397 4612 u32 ioff;
dd3cc16b 4613 item = btrfs_item_nr(i);
db94535d 4614
cfed81a0
CM
4615 ioff = btrfs_token_item_offset(leaf, item, &token);
4616 btrfs_set_token_item_offset(leaf, item,
4617 ioff + size_diff, &token);
b18c6685 4618 }
db94535d 4619
b18c6685 4620 /* shift the data */
179e29e4 4621 if (from_end) {
3d9ec8c4
NB
4622 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4623 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4624 data_end, old_data_start + new_size - data_end);
4625 } else {
4626 struct btrfs_disk_key disk_key;
4627 u64 offset;
4628
4629 btrfs_item_key(leaf, &disk_key, slot);
4630
4631 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4632 unsigned long ptr;
4633 struct btrfs_file_extent_item *fi;
4634
4635 fi = btrfs_item_ptr(leaf, slot,
4636 struct btrfs_file_extent_item);
4637 fi = (struct btrfs_file_extent_item *)(
4638 (unsigned long)fi - size_diff);
4639
4640 if (btrfs_file_extent_type(leaf, fi) ==
4641 BTRFS_FILE_EXTENT_INLINE) {
4642 ptr = btrfs_item_ptr_offset(leaf, slot);
4643 memmove_extent_buffer(leaf, ptr,
d397712b 4644 (unsigned long)fi,
7ec20afb 4645 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4646 }
4647 }
4648
3d9ec8c4
NB
4649 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4650 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4651 data_end, old_data_start - data_end);
4652
4653 offset = btrfs_disk_key_offset(&disk_key);
4654 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4655 btrfs_set_item_key(leaf, &disk_key, slot);
4656 if (slot == 0)
0b246afa 4657 fixup_low_keys(fs_info, path, &disk_key, 1);
179e29e4 4658 }
5f39d397 4659
dd3cc16b 4660 item = btrfs_item_nr(slot);
5f39d397
CM
4661 btrfs_set_item_size(leaf, item, new_size);
4662 btrfs_mark_buffer_dirty(leaf);
b18c6685 4663
2ff7e61e 4664 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4665 btrfs_print_leaf(leaf);
b18c6685 4666 BUG();
5f39d397 4667 }
b18c6685
CM
4668}
4669
d352ac68 4670/*
8f69dbd2 4671 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4672 */
2ff7e61e 4673void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 4674 u32 data_size)
6567e837 4675{
6567e837 4676 int slot;
5f39d397
CM
4677 struct extent_buffer *leaf;
4678 struct btrfs_item *item;
6567e837
CM
4679 u32 nritems;
4680 unsigned int data_end;
4681 unsigned int old_data;
4682 unsigned int old_size;
4683 int i;
cfed81a0
CM
4684 struct btrfs_map_token token;
4685
4686 btrfs_init_map_token(&token);
6567e837 4687
5f39d397 4688 leaf = path->nodes[0];
6567e837 4689
5f39d397 4690 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4691 data_end = leaf_data_end(fs_info, leaf);
6567e837 4692
2ff7e61e 4693 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
a4f78750 4694 btrfs_print_leaf(leaf);
6567e837 4695 BUG();
5f39d397 4696 }
6567e837 4697 slot = path->slots[0];
5f39d397 4698 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4699
4700 BUG_ON(slot < 0);
3326d1b0 4701 if (slot >= nritems) {
a4f78750 4702 btrfs_print_leaf(leaf);
0b246afa
JM
4703 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4704 slot, nritems);
3326d1b0
CM
4705 BUG_ON(1);
4706 }
6567e837
CM
4707
4708 /*
4709 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4710 */
4711 /* first correct the data pointers */
4712 for (i = slot; i < nritems; i++) {
5f39d397 4713 u32 ioff;
dd3cc16b 4714 item = btrfs_item_nr(i);
db94535d 4715
cfed81a0
CM
4716 ioff = btrfs_token_item_offset(leaf, item, &token);
4717 btrfs_set_token_item_offset(leaf, item,
4718 ioff - data_size, &token);
6567e837 4719 }
5f39d397 4720
6567e837 4721 /* shift the data */
3d9ec8c4
NB
4722 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4723 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
6567e837 4724 data_end, old_data - data_end);
5f39d397 4725
6567e837 4726 data_end = old_data;
5f39d397 4727 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4728 item = btrfs_item_nr(slot);
5f39d397
CM
4729 btrfs_set_item_size(leaf, item, old_size + data_size);
4730 btrfs_mark_buffer_dirty(leaf);
6567e837 4731
2ff7e61e 4732 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4733 btrfs_print_leaf(leaf);
6567e837 4734 BUG();
5f39d397 4735 }
6567e837
CM
4736}
4737
74123bd7 4738/*
44871b1b
CM
4739 * this is a helper for btrfs_insert_empty_items, the main goal here is
4740 * to save stack depth by doing the bulk of the work in a function
4741 * that doesn't call btrfs_search_slot
74123bd7 4742 */
afe5fea7 4743void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
310712b2 4744 const struct btrfs_key *cpu_key, u32 *data_size,
143bede5 4745 u32 total_data, u32 total_size, int nr)
be0e5c09 4746{
0b246afa 4747 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4748 struct btrfs_item *item;
9c58309d 4749 int i;
7518a238 4750 u32 nritems;
be0e5c09 4751 unsigned int data_end;
e2fa7227 4752 struct btrfs_disk_key disk_key;
44871b1b
CM
4753 struct extent_buffer *leaf;
4754 int slot;
cfed81a0
CM
4755 struct btrfs_map_token token;
4756
24cdc847
FM
4757 if (path->slots[0] == 0) {
4758 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
0b246afa 4759 fixup_low_keys(fs_info, path, &disk_key, 1);
24cdc847
FM
4760 }
4761 btrfs_unlock_up_safe(path, 1);
4762
cfed81a0 4763 btrfs_init_map_token(&token);
e2fa7227 4764
5f39d397 4765 leaf = path->nodes[0];
44871b1b 4766 slot = path->slots[0];
74123bd7 4767
5f39d397 4768 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4769 data_end = leaf_data_end(fs_info, leaf);
eb60ceac 4770
2ff7e61e 4771 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
a4f78750 4772 btrfs_print_leaf(leaf);
0b246afa 4773 btrfs_crit(fs_info, "not enough freespace need %u have %d",
2ff7e61e 4774 total_size, btrfs_leaf_free_space(fs_info, leaf));
be0e5c09 4775 BUG();
d4dbff95 4776 }
5f39d397 4777
be0e5c09 4778 if (slot != nritems) {
5f39d397 4779 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4780
5f39d397 4781 if (old_data < data_end) {
a4f78750 4782 btrfs_print_leaf(leaf);
0b246afa 4783 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
5d163e0e 4784 slot, old_data, data_end);
5f39d397
CM
4785 BUG_ON(1);
4786 }
be0e5c09
CM
4787 /*
4788 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4789 */
4790 /* first correct the data pointers */
0783fcfc 4791 for (i = slot; i < nritems; i++) {
5f39d397 4792 u32 ioff;
db94535d 4793
62e85577 4794 item = btrfs_item_nr(i);
cfed81a0
CM
4795 ioff = btrfs_token_item_offset(leaf, item, &token);
4796 btrfs_set_token_item_offset(leaf, item,
4797 ioff - total_data, &token);
0783fcfc 4798 }
be0e5c09 4799 /* shift the items */
9c58309d 4800 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4801 btrfs_item_nr_offset(slot),
d6025579 4802 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4803
4804 /* shift the data */
3d9ec8c4
NB
4805 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4806 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
d6025579 4807 data_end, old_data - data_end);
be0e5c09
CM
4808 data_end = old_data;
4809 }
5f39d397 4810
62e2749e 4811 /* setup the item for the new data */
9c58309d
CM
4812 for (i = 0; i < nr; i++) {
4813 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4814 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4815 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4816 btrfs_set_token_item_offset(leaf, item,
4817 data_end - data_size[i], &token);
9c58309d 4818 data_end -= data_size[i];
cfed81a0 4819 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4820 }
44871b1b 4821
9c58309d 4822 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4823 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4824
2ff7e61e 4825 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4826 btrfs_print_leaf(leaf);
be0e5c09 4827 BUG();
5f39d397 4828 }
44871b1b
CM
4829}
4830
4831/*
4832 * Given a key and some data, insert items into the tree.
4833 * This does all the path init required, making room in the tree if needed.
4834 */
4835int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4836 struct btrfs_root *root,
4837 struct btrfs_path *path,
310712b2 4838 const struct btrfs_key *cpu_key, u32 *data_size,
44871b1b
CM
4839 int nr)
4840{
44871b1b
CM
4841 int ret = 0;
4842 int slot;
4843 int i;
4844 u32 total_size = 0;
4845 u32 total_data = 0;
4846
4847 for (i = 0; i < nr; i++)
4848 total_data += data_size[i];
4849
4850 total_size = total_data + (nr * sizeof(struct btrfs_item));
4851 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4852 if (ret == 0)
4853 return -EEXIST;
4854 if (ret < 0)
143bede5 4855 return ret;
44871b1b 4856
44871b1b
CM
4857 slot = path->slots[0];
4858 BUG_ON(slot < 0);
4859
afe5fea7 4860 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4861 total_data, total_size, nr);
143bede5 4862 return 0;
62e2749e
CM
4863}
4864
4865/*
4866 * Given a key and some data, insert an item into the tree.
4867 * This does all the path init required, making room in the tree if needed.
4868 */
310712b2
OS
4869int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4870 const struct btrfs_key *cpu_key, void *data,
4871 u32 data_size)
62e2749e
CM
4872{
4873 int ret = 0;
2c90e5d6 4874 struct btrfs_path *path;
5f39d397
CM
4875 struct extent_buffer *leaf;
4876 unsigned long ptr;
62e2749e 4877
2c90e5d6 4878 path = btrfs_alloc_path();
db5b493a
TI
4879 if (!path)
4880 return -ENOMEM;
2c90e5d6 4881 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4882 if (!ret) {
5f39d397
CM
4883 leaf = path->nodes[0];
4884 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4885 write_extent_buffer(leaf, data, ptr, data_size);
4886 btrfs_mark_buffer_dirty(leaf);
62e2749e 4887 }
2c90e5d6 4888 btrfs_free_path(path);
aa5d6bed 4889 return ret;
be0e5c09
CM
4890}
4891
74123bd7 4892/*
5de08d7d 4893 * delete the pointer from a given node.
74123bd7 4894 *
d352ac68
CM
4895 * the tree should have been previously balanced so the deletion does not
4896 * empty a node.
74123bd7 4897 */
afe5fea7
TI
4898static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4899 int level, int slot)
be0e5c09 4900{
0b246afa 4901 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4902 struct extent_buffer *parent = path->nodes[level];
7518a238 4903 u32 nritems;
f3ea38da 4904 int ret;
be0e5c09 4905
5f39d397 4906 nritems = btrfs_header_nritems(parent);
d397712b 4907 if (slot != nritems - 1) {
0e411ece 4908 if (level)
0b246afa 4909 tree_mod_log_eb_move(fs_info, parent, slot,
f3ea38da 4910 slot + 1, nritems - slot - 1);
5f39d397
CM
4911 memmove_extent_buffer(parent,
4912 btrfs_node_key_ptr_offset(slot),
4913 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4914 sizeof(struct btrfs_key_ptr) *
4915 (nritems - slot - 1));
57ba86c0 4916 } else if (level) {
0b246afa 4917 ret = tree_mod_log_insert_key(fs_info, parent, slot,
c8cc6341 4918 MOD_LOG_KEY_REMOVE, GFP_NOFS);
57ba86c0 4919 BUG_ON(ret < 0);
bb803951 4920 }
f3ea38da 4921
7518a238 4922 nritems--;
5f39d397 4923 btrfs_set_header_nritems(parent, nritems);
7518a238 4924 if (nritems == 0 && parent == root->node) {
5f39d397 4925 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4926 /* just turn the root into a leaf and break */
5f39d397 4927 btrfs_set_header_level(root->node, 0);
bb803951 4928 } else if (slot == 0) {
5f39d397
CM
4929 struct btrfs_disk_key disk_key;
4930
4931 btrfs_node_key(parent, &disk_key, 0);
0b246afa 4932 fixup_low_keys(fs_info, path, &disk_key, level + 1);
be0e5c09 4933 }
d6025579 4934 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4935}
4936
323ac95b
CM
4937/*
4938 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4939 * path->nodes[1].
323ac95b
CM
4940 *
4941 * This deletes the pointer in path->nodes[1] and frees the leaf
4942 * block extent. zero is returned if it all worked out, < 0 otherwise.
4943 *
4944 * The path must have already been setup for deleting the leaf, including
4945 * all the proper balancing. path->nodes[1] must be locked.
4946 */
143bede5
JM
4947static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4948 struct btrfs_root *root,
4949 struct btrfs_path *path,
4950 struct extent_buffer *leaf)
323ac95b 4951{
5d4f98a2 4952 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4953 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4954
4d081c41
CM
4955 /*
4956 * btrfs_free_extent is expensive, we want to make sure we
4957 * aren't holding any locks when we call it
4958 */
4959 btrfs_unlock_up_safe(path, 0);
4960
f0486c68
YZ
4961 root_sub_used(root, leaf->len);
4962
3083ee2e 4963 extent_buffer_get(leaf);
5581a51a 4964 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4965 free_extent_buffer_stale(leaf);
323ac95b 4966}
74123bd7
CM
4967/*
4968 * delete the item at the leaf level in path. If that empties
4969 * the leaf, remove it from the tree
4970 */
85e21bac
CM
4971int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4972 struct btrfs_path *path, int slot, int nr)
be0e5c09 4973{
0b246afa 4974 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
4975 struct extent_buffer *leaf;
4976 struct btrfs_item *item;
ce0eac2a
AM
4977 u32 last_off;
4978 u32 dsize = 0;
aa5d6bed
CM
4979 int ret = 0;
4980 int wret;
85e21bac 4981 int i;
7518a238 4982 u32 nritems;
cfed81a0
CM
4983 struct btrfs_map_token token;
4984
4985 btrfs_init_map_token(&token);
be0e5c09 4986
5f39d397 4987 leaf = path->nodes[0];
85e21bac
CM
4988 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4989
4990 for (i = 0; i < nr; i++)
4991 dsize += btrfs_item_size_nr(leaf, slot + i);
4992
5f39d397 4993 nritems = btrfs_header_nritems(leaf);
be0e5c09 4994
85e21bac 4995 if (slot + nr != nritems) {
2ff7e61e 4996 int data_end = leaf_data_end(fs_info, leaf);
5f39d397 4997
3d9ec8c4 4998 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
d6025579 4999 data_end + dsize,
3d9ec8c4 5000 BTRFS_LEAF_DATA_OFFSET + data_end,
85e21bac 5001 last_off - data_end);
5f39d397 5002
85e21bac 5003 for (i = slot + nr; i < nritems; i++) {
5f39d397 5004 u32 ioff;
db94535d 5005
dd3cc16b 5006 item = btrfs_item_nr(i);
cfed81a0
CM
5007 ioff = btrfs_token_item_offset(leaf, item, &token);
5008 btrfs_set_token_item_offset(leaf, item,
5009 ioff + dsize, &token);
0783fcfc 5010 }
db94535d 5011
5f39d397 5012 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 5013 btrfs_item_nr_offset(slot + nr),
d6025579 5014 sizeof(struct btrfs_item) *
85e21bac 5015 (nritems - slot - nr));
be0e5c09 5016 }
85e21bac
CM
5017 btrfs_set_header_nritems(leaf, nritems - nr);
5018 nritems -= nr;
5f39d397 5019
74123bd7 5020 /* delete the leaf if we've emptied it */
7518a238 5021 if (nritems == 0) {
5f39d397
CM
5022 if (leaf == root->node) {
5023 btrfs_set_header_level(leaf, 0);
9a8dd150 5024 } else {
f0486c68 5025 btrfs_set_path_blocking(path);
7c302b49 5026 clean_tree_block(fs_info, leaf);
143bede5 5027 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 5028 }
be0e5c09 5029 } else {
7518a238 5030 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 5031 if (slot == 0) {
5f39d397
CM
5032 struct btrfs_disk_key disk_key;
5033
5034 btrfs_item_key(leaf, &disk_key, 0);
0b246afa 5035 fixup_low_keys(fs_info, path, &disk_key, 1);
aa5d6bed 5036 }
aa5d6bed 5037
74123bd7 5038 /* delete the leaf if it is mostly empty */
0b246afa 5039 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
be0e5c09
CM
5040 /* push_leaf_left fixes the path.
5041 * make sure the path still points to our leaf
5042 * for possible call to del_ptr below
5043 */
4920c9ac 5044 slot = path->slots[1];
5f39d397
CM
5045 extent_buffer_get(leaf);
5046
b9473439 5047 btrfs_set_path_blocking(path);
99d8f83c
CM
5048 wret = push_leaf_left(trans, root, path, 1, 1,
5049 1, (u32)-1);
54aa1f4d 5050 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5051 ret = wret;
5f39d397
CM
5052
5053 if (path->nodes[0] == leaf &&
5054 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5055 wret = push_leaf_right(trans, root, path, 1,
5056 1, 1, 0);
54aa1f4d 5057 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5058 ret = wret;
5059 }
5f39d397
CM
5060
5061 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5062 path->slots[1] = slot;
143bede5 5063 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5064 free_extent_buffer(leaf);
143bede5 5065 ret = 0;
5de08d7d 5066 } else {
925baedd
CM
5067 /* if we're still in the path, make sure
5068 * we're dirty. Otherwise, one of the
5069 * push_leaf functions must have already
5070 * dirtied this buffer
5071 */
5072 if (path->nodes[0] == leaf)
5073 btrfs_mark_buffer_dirty(leaf);
5f39d397 5074 free_extent_buffer(leaf);
be0e5c09 5075 }
d5719762 5076 } else {
5f39d397 5077 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5078 }
5079 }
aa5d6bed 5080 return ret;
be0e5c09
CM
5081}
5082
7bb86316 5083/*
925baedd 5084 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5085 * returns 0 if it found something or 1 if there are no lesser leaves.
5086 * returns < 0 on io errors.
d352ac68
CM
5087 *
5088 * This may release the path, and so you may lose any locks held at the
5089 * time you call it.
7bb86316 5090 */
16e7549f 5091int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5092{
925baedd
CM
5093 struct btrfs_key key;
5094 struct btrfs_disk_key found_key;
5095 int ret;
7bb86316 5096
925baedd 5097 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5098
e8b0d724 5099 if (key.offset > 0) {
925baedd 5100 key.offset--;
e8b0d724 5101 } else if (key.type > 0) {
925baedd 5102 key.type--;
e8b0d724
FDBM
5103 key.offset = (u64)-1;
5104 } else if (key.objectid > 0) {
925baedd 5105 key.objectid--;
e8b0d724
FDBM
5106 key.type = (u8)-1;
5107 key.offset = (u64)-1;
5108 } else {
925baedd 5109 return 1;
e8b0d724 5110 }
7bb86316 5111
b3b4aa74 5112 btrfs_release_path(path);
925baedd
CM
5113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5114 if (ret < 0)
5115 return ret;
5116 btrfs_item_key(path->nodes[0], &found_key, 0);
5117 ret = comp_keys(&found_key, &key);
337c6f68
FM
5118 /*
5119 * We might have had an item with the previous key in the tree right
5120 * before we released our path. And after we released our path, that
5121 * item might have been pushed to the first slot (0) of the leaf we
5122 * were holding due to a tree balance. Alternatively, an item with the
5123 * previous key can exist as the only element of a leaf (big fat item).
5124 * Therefore account for these 2 cases, so that our callers (like
5125 * btrfs_previous_item) don't miss an existing item with a key matching
5126 * the previous key we computed above.
5127 */
5128 if (ret <= 0)
925baedd
CM
5129 return 0;
5130 return 1;
7bb86316
CM
5131}
5132
3f157a2f
CM
5133/*
5134 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5135 * for nodes or leaves that are have a minimum transaction id.
5136 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5137 *
5138 * This does not cow, but it does stuff the starting key it finds back
5139 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5140 * key and get a writable path.
5141 *
3f157a2f
CM
5142 * This honors path->lowest_level to prevent descent past a given level
5143 * of the tree.
5144 *
d352ac68
CM
5145 * min_trans indicates the oldest transaction that you are interested
5146 * in walking through. Any nodes or leaves older than min_trans are
5147 * skipped over (without reading them).
5148 *
3f157a2f
CM
5149 * returns zero if something useful was found, < 0 on error and 1 if there
5150 * was nothing in the tree that matched the search criteria.
5151 */
5152int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5153 struct btrfs_path *path,
3f157a2f
CM
5154 u64 min_trans)
5155{
2ff7e61e 5156 struct btrfs_fs_info *fs_info = root->fs_info;
3f157a2f
CM
5157 struct extent_buffer *cur;
5158 struct btrfs_key found_key;
5159 int slot;
9652480b 5160 int sret;
3f157a2f
CM
5161 u32 nritems;
5162 int level;
5163 int ret = 1;
f98de9b9 5164 int keep_locks = path->keep_locks;
3f157a2f 5165
f98de9b9 5166 path->keep_locks = 1;
3f157a2f 5167again:
bd681513 5168 cur = btrfs_read_lock_root_node(root);
3f157a2f 5169 level = btrfs_header_level(cur);
e02119d5 5170 WARN_ON(path->nodes[level]);
3f157a2f 5171 path->nodes[level] = cur;
bd681513 5172 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5173
5174 if (btrfs_header_generation(cur) < min_trans) {
5175 ret = 1;
5176 goto out;
5177 }
d397712b 5178 while (1) {
3f157a2f
CM
5179 nritems = btrfs_header_nritems(cur);
5180 level = btrfs_header_level(cur);
a74b35ec 5181 sret = btrfs_bin_search(cur, min_key, level, &slot);
3f157a2f 5182
323ac95b
CM
5183 /* at the lowest level, we're done, setup the path and exit */
5184 if (level == path->lowest_level) {
e02119d5
CM
5185 if (slot >= nritems)
5186 goto find_next_key;
3f157a2f
CM
5187 ret = 0;
5188 path->slots[level] = slot;
5189 btrfs_item_key_to_cpu(cur, &found_key, slot);
5190 goto out;
5191 }
9652480b
Y
5192 if (sret && slot > 0)
5193 slot--;
3f157a2f 5194 /*
de78b51a
ES
5195 * check this node pointer against the min_trans parameters.
5196 * If it is too old, old, skip to the next one.
3f157a2f 5197 */
d397712b 5198 while (slot < nritems) {
3f157a2f 5199 u64 gen;
e02119d5 5200
3f157a2f
CM
5201 gen = btrfs_node_ptr_generation(cur, slot);
5202 if (gen < min_trans) {
5203 slot++;
5204 continue;
5205 }
de78b51a 5206 break;
3f157a2f 5207 }
e02119d5 5208find_next_key:
3f157a2f
CM
5209 /*
5210 * we didn't find a candidate key in this node, walk forward
5211 * and find another one
5212 */
5213 if (slot >= nritems) {
e02119d5 5214 path->slots[level] = slot;
b4ce94de 5215 btrfs_set_path_blocking(path);
e02119d5 5216 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5217 min_trans);
e02119d5 5218 if (sret == 0) {
b3b4aa74 5219 btrfs_release_path(path);
3f157a2f
CM
5220 goto again;
5221 } else {
5222 goto out;
5223 }
5224 }
5225 /* save our key for returning back */
5226 btrfs_node_key_to_cpu(cur, &found_key, slot);
5227 path->slots[level] = slot;
5228 if (level == path->lowest_level) {
5229 ret = 0;
3f157a2f
CM
5230 goto out;
5231 }
b4ce94de 5232 btrfs_set_path_blocking(path);
2ff7e61e 5233 cur = read_node_slot(fs_info, cur, slot);
fb770ae4
LB
5234 if (IS_ERR(cur)) {
5235 ret = PTR_ERR(cur);
5236 goto out;
5237 }
3f157a2f 5238
bd681513 5239 btrfs_tree_read_lock(cur);
b4ce94de 5240
bd681513 5241 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5242 path->nodes[level - 1] = cur;
f7c79f30 5243 unlock_up(path, level, 1, 0, NULL);
bd681513 5244 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
5245 }
5246out:
f98de9b9
FM
5247 path->keep_locks = keep_locks;
5248 if (ret == 0) {
5249 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5250 btrfs_set_path_blocking(path);
3f157a2f 5251 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5252 }
3f157a2f
CM
5253 return ret;
5254}
5255
2ff7e61e 5256static int tree_move_down(struct btrfs_fs_info *fs_info,
7069830a 5257 struct btrfs_path *path,
ab6a43e1 5258 int *level)
7069830a 5259{
fb770ae4
LB
5260 struct extent_buffer *eb;
5261
74dd17fb 5262 BUG_ON(*level == 0);
2ff7e61e 5263 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
fb770ae4
LB
5264 if (IS_ERR(eb))
5265 return PTR_ERR(eb);
5266
5267 path->nodes[*level - 1] = eb;
7069830a
AB
5268 path->slots[*level - 1] = 0;
5269 (*level)--;
fb770ae4 5270 return 0;
7069830a
AB
5271}
5272
f1e30261 5273static int tree_move_next_or_upnext(struct btrfs_path *path,
7069830a
AB
5274 int *level, int root_level)
5275{
5276 int ret = 0;
5277 int nritems;
5278 nritems = btrfs_header_nritems(path->nodes[*level]);
5279
5280 path->slots[*level]++;
5281
74dd17fb 5282 while (path->slots[*level] >= nritems) {
7069830a
AB
5283 if (*level == root_level)
5284 return -1;
5285
5286 /* move upnext */
5287 path->slots[*level] = 0;
5288 free_extent_buffer(path->nodes[*level]);
5289 path->nodes[*level] = NULL;
5290 (*level)++;
5291 path->slots[*level]++;
5292
5293 nritems = btrfs_header_nritems(path->nodes[*level]);
5294 ret = 1;
5295 }
5296 return ret;
5297}
5298
5299/*
5300 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5301 * or down.
5302 */
2ff7e61e 5303static int tree_advance(struct btrfs_fs_info *fs_info,
7069830a
AB
5304 struct btrfs_path *path,
5305 int *level, int root_level,
5306 int allow_down,
5307 struct btrfs_key *key)
5308{
5309 int ret;
5310
5311 if (*level == 0 || !allow_down) {
f1e30261 5312 ret = tree_move_next_or_upnext(path, level, root_level);
7069830a 5313 } else {
ab6a43e1 5314 ret = tree_move_down(fs_info, path, level);
7069830a
AB
5315 }
5316 if (ret >= 0) {
5317 if (*level == 0)
5318 btrfs_item_key_to_cpu(path->nodes[*level], key,
5319 path->slots[*level]);
5320 else
5321 btrfs_node_key_to_cpu(path->nodes[*level], key,
5322 path->slots[*level]);
5323 }
5324 return ret;
5325}
5326
2ff7e61e 5327static int tree_compare_item(struct btrfs_path *left_path,
7069830a
AB
5328 struct btrfs_path *right_path,
5329 char *tmp_buf)
5330{
5331 int cmp;
5332 int len1, len2;
5333 unsigned long off1, off2;
5334
5335 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5336 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5337 if (len1 != len2)
5338 return 1;
5339
5340 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5341 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5342 right_path->slots[0]);
5343
5344 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5345
5346 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5347 if (cmp)
5348 return 1;
5349 return 0;
5350}
5351
5352#define ADVANCE 1
5353#define ADVANCE_ONLY_NEXT -1
5354
5355/*
5356 * This function compares two trees and calls the provided callback for
5357 * every changed/new/deleted item it finds.
5358 * If shared tree blocks are encountered, whole subtrees are skipped, making
5359 * the compare pretty fast on snapshotted subvolumes.
5360 *
5361 * This currently works on commit roots only. As commit roots are read only,
5362 * we don't do any locking. The commit roots are protected with transactions.
5363 * Transactions are ended and rejoined when a commit is tried in between.
5364 *
5365 * This function checks for modifications done to the trees while comparing.
5366 * If it detects a change, it aborts immediately.
5367 */
5368int btrfs_compare_trees(struct btrfs_root *left_root,
5369 struct btrfs_root *right_root,
5370 btrfs_changed_cb_t changed_cb, void *ctx)
5371{
0b246afa 5372 struct btrfs_fs_info *fs_info = left_root->fs_info;
7069830a
AB
5373 int ret;
5374 int cmp;
7069830a
AB
5375 struct btrfs_path *left_path = NULL;
5376 struct btrfs_path *right_path = NULL;
5377 struct btrfs_key left_key;
5378 struct btrfs_key right_key;
5379 char *tmp_buf = NULL;
5380 int left_root_level;
5381 int right_root_level;
5382 int left_level;
5383 int right_level;
5384 int left_end_reached;
5385 int right_end_reached;
5386 int advance_left;
5387 int advance_right;
5388 u64 left_blockptr;
5389 u64 right_blockptr;
6baa4293
FM
5390 u64 left_gen;
5391 u64 right_gen;
7069830a
AB
5392
5393 left_path = btrfs_alloc_path();
5394 if (!left_path) {
5395 ret = -ENOMEM;
5396 goto out;
5397 }
5398 right_path = btrfs_alloc_path();
5399 if (!right_path) {
5400 ret = -ENOMEM;
5401 goto out;
5402 }
5403
752ade68 5404 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7069830a 5405 if (!tmp_buf) {
752ade68
MH
5406 ret = -ENOMEM;
5407 goto out;
7069830a
AB
5408 }
5409
5410 left_path->search_commit_root = 1;
5411 left_path->skip_locking = 1;
5412 right_path->search_commit_root = 1;
5413 right_path->skip_locking = 1;
5414
7069830a
AB
5415 /*
5416 * Strategy: Go to the first items of both trees. Then do
5417 *
5418 * If both trees are at level 0
5419 * Compare keys of current items
5420 * If left < right treat left item as new, advance left tree
5421 * and repeat
5422 * If left > right treat right item as deleted, advance right tree
5423 * and repeat
5424 * If left == right do deep compare of items, treat as changed if
5425 * needed, advance both trees and repeat
5426 * If both trees are at the same level but not at level 0
5427 * Compare keys of current nodes/leafs
5428 * If left < right advance left tree and repeat
5429 * If left > right advance right tree and repeat
5430 * If left == right compare blockptrs of the next nodes/leafs
5431 * If they match advance both trees but stay at the same level
5432 * and repeat
5433 * If they don't match advance both trees while allowing to go
5434 * deeper and repeat
5435 * If tree levels are different
5436 * Advance the tree that needs it and repeat
5437 *
5438 * Advancing a tree means:
5439 * If we are at level 0, try to go to the next slot. If that's not
5440 * possible, go one level up and repeat. Stop when we found a level
5441 * where we could go to the next slot. We may at this point be on a
5442 * node or a leaf.
5443 *
5444 * If we are not at level 0 and not on shared tree blocks, go one
5445 * level deeper.
5446 *
5447 * If we are not at level 0 and on shared tree blocks, go one slot to
5448 * the right if possible or go up and right.
5449 */
5450
0b246afa 5451 down_read(&fs_info->commit_root_sem);
7069830a
AB
5452 left_level = btrfs_header_level(left_root->commit_root);
5453 left_root_level = left_level;
5454 left_path->nodes[left_level] = left_root->commit_root;
5455 extent_buffer_get(left_path->nodes[left_level]);
5456
5457 right_level = btrfs_header_level(right_root->commit_root);
5458 right_root_level = right_level;
5459 right_path->nodes[right_level] = right_root->commit_root;
5460 extent_buffer_get(right_path->nodes[right_level]);
0b246afa 5461 up_read(&fs_info->commit_root_sem);
7069830a
AB
5462
5463 if (left_level == 0)
5464 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5465 &left_key, left_path->slots[left_level]);
5466 else
5467 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5468 &left_key, left_path->slots[left_level]);
5469 if (right_level == 0)
5470 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5471 &right_key, right_path->slots[right_level]);
5472 else
5473 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5474 &right_key, right_path->slots[right_level]);
5475
5476 left_end_reached = right_end_reached = 0;
5477 advance_left = advance_right = 0;
5478
5479 while (1) {
7069830a 5480 if (advance_left && !left_end_reached) {
2ff7e61e 5481 ret = tree_advance(fs_info, left_path, &left_level,
7069830a
AB
5482 left_root_level,
5483 advance_left != ADVANCE_ONLY_NEXT,
5484 &left_key);
fb770ae4 5485 if (ret == -1)
7069830a 5486 left_end_reached = ADVANCE;
fb770ae4
LB
5487 else if (ret < 0)
5488 goto out;
7069830a
AB
5489 advance_left = 0;
5490 }
5491 if (advance_right && !right_end_reached) {
2ff7e61e 5492 ret = tree_advance(fs_info, right_path, &right_level,
7069830a
AB
5493 right_root_level,
5494 advance_right != ADVANCE_ONLY_NEXT,
5495 &right_key);
fb770ae4 5496 if (ret == -1)
7069830a 5497 right_end_reached = ADVANCE;
fb770ae4
LB
5498 else if (ret < 0)
5499 goto out;
7069830a
AB
5500 advance_right = 0;
5501 }
5502
5503 if (left_end_reached && right_end_reached) {
5504 ret = 0;
5505 goto out;
5506 } else if (left_end_reached) {
5507 if (right_level == 0) {
ee8c494f 5508 ret = changed_cb(left_path, right_path,
7069830a
AB
5509 &right_key,
5510 BTRFS_COMPARE_TREE_DELETED,
5511 ctx);
5512 if (ret < 0)
5513 goto out;
5514 }
5515 advance_right = ADVANCE;
5516 continue;
5517 } else if (right_end_reached) {
5518 if (left_level == 0) {
ee8c494f 5519 ret = changed_cb(left_path, right_path,
7069830a
AB
5520 &left_key,
5521 BTRFS_COMPARE_TREE_NEW,
5522 ctx);
5523 if (ret < 0)
5524 goto out;
5525 }
5526 advance_left = ADVANCE;
5527 continue;
5528 }
5529
5530 if (left_level == 0 && right_level == 0) {
5531 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5532 if (cmp < 0) {
ee8c494f 5533 ret = changed_cb(left_path, right_path,
7069830a
AB
5534 &left_key,
5535 BTRFS_COMPARE_TREE_NEW,
5536 ctx);
5537 if (ret < 0)
5538 goto out;
5539 advance_left = ADVANCE;
5540 } else if (cmp > 0) {
ee8c494f 5541 ret = changed_cb(left_path, right_path,
7069830a
AB
5542 &right_key,
5543 BTRFS_COMPARE_TREE_DELETED,
5544 ctx);
5545 if (ret < 0)
5546 goto out;
5547 advance_right = ADVANCE;
5548 } else {
b99d9a6a 5549 enum btrfs_compare_tree_result result;
ba5e8f2e 5550
74dd17fb 5551 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
2ff7e61e
JM
5552 ret = tree_compare_item(left_path, right_path,
5553 tmp_buf);
ba5e8f2e 5554 if (ret)
b99d9a6a 5555 result = BTRFS_COMPARE_TREE_CHANGED;
ba5e8f2e 5556 else
b99d9a6a 5557 result = BTRFS_COMPARE_TREE_SAME;
ee8c494f 5558 ret = changed_cb(left_path, right_path,
b99d9a6a 5559 &left_key, result, ctx);
ba5e8f2e
JB
5560 if (ret < 0)
5561 goto out;
7069830a
AB
5562 advance_left = ADVANCE;
5563 advance_right = ADVANCE;
5564 }
5565 } else if (left_level == right_level) {
5566 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5567 if (cmp < 0) {
5568 advance_left = ADVANCE;
5569 } else if (cmp > 0) {
5570 advance_right = ADVANCE;
5571 } else {
5572 left_blockptr = btrfs_node_blockptr(
5573 left_path->nodes[left_level],
5574 left_path->slots[left_level]);
5575 right_blockptr = btrfs_node_blockptr(
5576 right_path->nodes[right_level],
5577 right_path->slots[right_level]);
6baa4293
FM
5578 left_gen = btrfs_node_ptr_generation(
5579 left_path->nodes[left_level],
5580 left_path->slots[left_level]);
5581 right_gen = btrfs_node_ptr_generation(
5582 right_path->nodes[right_level],
5583 right_path->slots[right_level]);
5584 if (left_blockptr == right_blockptr &&
5585 left_gen == right_gen) {
7069830a
AB
5586 /*
5587 * As we're on a shared block, don't
5588 * allow to go deeper.
5589 */
5590 advance_left = ADVANCE_ONLY_NEXT;
5591 advance_right = ADVANCE_ONLY_NEXT;
5592 } else {
5593 advance_left = ADVANCE;
5594 advance_right = ADVANCE;
5595 }
5596 }
5597 } else if (left_level < right_level) {
5598 advance_right = ADVANCE;
5599 } else {
5600 advance_left = ADVANCE;
5601 }
5602 }
5603
5604out:
5605 btrfs_free_path(left_path);
5606 btrfs_free_path(right_path);
8f282f71 5607 kvfree(tmp_buf);
7069830a
AB
5608 return ret;
5609}
5610
3f157a2f
CM
5611/*
5612 * this is similar to btrfs_next_leaf, but does not try to preserve
5613 * and fixup the path. It looks for and returns the next key in the
de78b51a 5614 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5615 *
5616 * 0 is returned if another key is found, < 0 if there are any errors
5617 * and 1 is returned if there are no higher keys in the tree
5618 *
5619 * path->keep_locks should be set to 1 on the search made before
5620 * calling this function.
5621 */
e7a84565 5622int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5623 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5624{
e7a84565
CM
5625 int slot;
5626 struct extent_buffer *c;
5627
934d375b 5628 WARN_ON(!path->keep_locks);
d397712b 5629 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5630 if (!path->nodes[level])
5631 return 1;
5632
5633 slot = path->slots[level] + 1;
5634 c = path->nodes[level];
3f157a2f 5635next:
e7a84565 5636 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5637 int ret;
5638 int orig_lowest;
5639 struct btrfs_key cur_key;
5640 if (level + 1 >= BTRFS_MAX_LEVEL ||
5641 !path->nodes[level + 1])
e7a84565 5642 return 1;
33c66f43
YZ
5643
5644 if (path->locks[level + 1]) {
5645 level++;
5646 continue;
5647 }
5648
5649 slot = btrfs_header_nritems(c) - 1;
5650 if (level == 0)
5651 btrfs_item_key_to_cpu(c, &cur_key, slot);
5652 else
5653 btrfs_node_key_to_cpu(c, &cur_key, slot);
5654
5655 orig_lowest = path->lowest_level;
b3b4aa74 5656 btrfs_release_path(path);
33c66f43
YZ
5657 path->lowest_level = level;
5658 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5659 0, 0);
5660 path->lowest_level = orig_lowest;
5661 if (ret < 0)
5662 return ret;
5663
5664 c = path->nodes[level];
5665 slot = path->slots[level];
5666 if (ret == 0)
5667 slot++;
5668 goto next;
e7a84565 5669 }
33c66f43 5670
e7a84565
CM
5671 if (level == 0)
5672 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5673 else {
3f157a2f
CM
5674 u64 gen = btrfs_node_ptr_generation(c, slot);
5675
3f157a2f
CM
5676 if (gen < min_trans) {
5677 slot++;
5678 goto next;
5679 }
e7a84565 5680 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5681 }
e7a84565
CM
5682 return 0;
5683 }
5684 return 1;
5685}
5686
97571fd0 5687/*
925baedd 5688 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5689 * returns 0 if it found something or 1 if there are no greater leaves.
5690 * returns < 0 on io errors.
97571fd0 5691 */
234b63a0 5692int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5693{
5694 return btrfs_next_old_leaf(root, path, 0);
5695}
5696
5697int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5698 u64 time_seq)
d97e63b6
CM
5699{
5700 int slot;
8e73f275 5701 int level;
5f39d397 5702 struct extent_buffer *c;
8e73f275 5703 struct extent_buffer *next;
925baedd
CM
5704 struct btrfs_key key;
5705 u32 nritems;
5706 int ret;
8e73f275 5707 int old_spinning = path->leave_spinning;
bd681513 5708 int next_rw_lock = 0;
925baedd
CM
5709
5710 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5711 if (nritems == 0)
925baedd 5712 return 1;
925baedd 5713
8e73f275
CM
5714 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5715again:
5716 level = 1;
5717 next = NULL;
bd681513 5718 next_rw_lock = 0;
b3b4aa74 5719 btrfs_release_path(path);
8e73f275 5720
a2135011 5721 path->keep_locks = 1;
31533fb2 5722 path->leave_spinning = 1;
8e73f275 5723
3d7806ec
JS
5724 if (time_seq)
5725 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5726 else
5727 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5728 path->keep_locks = 0;
5729
5730 if (ret < 0)
5731 return ret;
5732
a2135011 5733 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5734 /*
5735 * by releasing the path above we dropped all our locks. A balance
5736 * could have added more items next to the key that used to be
5737 * at the very end of the block. So, check again here and
5738 * advance the path if there are now more items available.
5739 */
a2135011 5740 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5741 if (ret == 0)
5742 path->slots[0]++;
8e73f275 5743 ret = 0;
925baedd
CM
5744 goto done;
5745 }
0b43e04f
LB
5746 /*
5747 * So the above check misses one case:
5748 * - after releasing the path above, someone has removed the item that
5749 * used to be at the very end of the block, and balance between leafs
5750 * gets another one with bigger key.offset to replace it.
5751 *
5752 * This one should be returned as well, or we can get leaf corruption
5753 * later(esp. in __btrfs_drop_extents()).
5754 *
5755 * And a bit more explanation about this check,
5756 * with ret > 0, the key isn't found, the path points to the slot
5757 * where it should be inserted, so the path->slots[0] item must be the
5758 * bigger one.
5759 */
5760 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5761 ret = 0;
5762 goto done;
5763 }
d97e63b6 5764
d397712b 5765 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5766 if (!path->nodes[level]) {
5767 ret = 1;
5768 goto done;
5769 }
5f39d397 5770
d97e63b6
CM
5771 slot = path->slots[level] + 1;
5772 c = path->nodes[level];
5f39d397 5773 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5774 level++;
8e73f275
CM
5775 if (level == BTRFS_MAX_LEVEL) {
5776 ret = 1;
5777 goto done;
5778 }
d97e63b6
CM
5779 continue;
5780 }
5f39d397 5781
925baedd 5782 if (next) {
bd681513 5783 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5784 free_extent_buffer(next);
925baedd 5785 }
5f39d397 5786
8e73f275 5787 next = c;
bd681513 5788 next_rw_lock = path->locks[level];
d07b8528 5789 ret = read_block_for_search(root, path, &next, level,
cda79c54 5790 slot, &key);
8e73f275
CM
5791 if (ret == -EAGAIN)
5792 goto again;
5f39d397 5793
76a05b35 5794 if (ret < 0) {
b3b4aa74 5795 btrfs_release_path(path);
76a05b35
CM
5796 goto done;
5797 }
5798
5cd57b2c 5799 if (!path->skip_locking) {
bd681513 5800 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5801 if (!ret && time_seq) {
5802 /*
5803 * If we don't get the lock, we may be racing
5804 * with push_leaf_left, holding that lock while
5805 * itself waiting for the leaf we've currently
5806 * locked. To solve this situation, we give up
5807 * on our lock and cycle.
5808 */
cf538830 5809 free_extent_buffer(next);
d42244a0
JS
5810 btrfs_release_path(path);
5811 cond_resched();
5812 goto again;
5813 }
8e73f275
CM
5814 if (!ret) {
5815 btrfs_set_path_blocking(path);
bd681513 5816 btrfs_tree_read_lock(next);
31533fb2 5817 btrfs_clear_path_blocking(path, next,
bd681513 5818 BTRFS_READ_LOCK);
8e73f275 5819 }
31533fb2 5820 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5821 }
d97e63b6
CM
5822 break;
5823 }
5824 path->slots[level] = slot;
d397712b 5825 while (1) {
d97e63b6
CM
5826 level--;
5827 c = path->nodes[level];
925baedd 5828 if (path->locks[level])
bd681513 5829 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5830
5f39d397 5831 free_extent_buffer(c);
d97e63b6
CM
5832 path->nodes[level] = next;
5833 path->slots[level] = 0;
a74a4b97 5834 if (!path->skip_locking)
bd681513 5835 path->locks[level] = next_rw_lock;
d97e63b6
CM
5836 if (!level)
5837 break;
b4ce94de 5838
d07b8528 5839 ret = read_block_for_search(root, path, &next, level,
cda79c54 5840 0, &key);
8e73f275
CM
5841 if (ret == -EAGAIN)
5842 goto again;
5843
76a05b35 5844 if (ret < 0) {
b3b4aa74 5845 btrfs_release_path(path);
76a05b35
CM
5846 goto done;
5847 }
5848
5cd57b2c 5849 if (!path->skip_locking) {
bd681513 5850 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5851 if (!ret) {
5852 btrfs_set_path_blocking(path);
bd681513 5853 btrfs_tree_read_lock(next);
31533fb2 5854 btrfs_clear_path_blocking(path, next,
bd681513
CM
5855 BTRFS_READ_LOCK);
5856 }
31533fb2 5857 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5858 }
d97e63b6 5859 }
8e73f275 5860 ret = 0;
925baedd 5861done:
f7c79f30 5862 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5863 path->leave_spinning = old_spinning;
5864 if (!old_spinning)
5865 btrfs_set_path_blocking(path);
5866
5867 return ret;
d97e63b6 5868}
0b86a832 5869
3f157a2f
CM
5870/*
5871 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5872 * searching until it gets past min_objectid or finds an item of 'type'
5873 *
5874 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5875 */
0b86a832
CM
5876int btrfs_previous_item(struct btrfs_root *root,
5877 struct btrfs_path *path, u64 min_objectid,
5878 int type)
5879{
5880 struct btrfs_key found_key;
5881 struct extent_buffer *leaf;
e02119d5 5882 u32 nritems;
0b86a832
CM
5883 int ret;
5884
d397712b 5885 while (1) {
0b86a832 5886 if (path->slots[0] == 0) {
b4ce94de 5887 btrfs_set_path_blocking(path);
0b86a832
CM
5888 ret = btrfs_prev_leaf(root, path);
5889 if (ret != 0)
5890 return ret;
5891 } else {
5892 path->slots[0]--;
5893 }
5894 leaf = path->nodes[0];
e02119d5
CM
5895 nritems = btrfs_header_nritems(leaf);
5896 if (nritems == 0)
5897 return 1;
5898 if (path->slots[0] == nritems)
5899 path->slots[0]--;
5900
0b86a832 5901 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5902 if (found_key.objectid < min_objectid)
5903 break;
0a4eefbb
YZ
5904 if (found_key.type == type)
5905 return 0;
e02119d5
CM
5906 if (found_key.objectid == min_objectid &&
5907 found_key.type < type)
5908 break;
0b86a832
CM
5909 }
5910 return 1;
5911}
ade2e0b3
WS
5912
5913/*
5914 * search in extent tree to find a previous Metadata/Data extent item with
5915 * min objecitd.
5916 *
5917 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5918 */
5919int btrfs_previous_extent_item(struct btrfs_root *root,
5920 struct btrfs_path *path, u64 min_objectid)
5921{
5922 struct btrfs_key found_key;
5923 struct extent_buffer *leaf;
5924 u32 nritems;
5925 int ret;
5926
5927 while (1) {
5928 if (path->slots[0] == 0) {
5929 btrfs_set_path_blocking(path);
5930 ret = btrfs_prev_leaf(root, path);
5931 if (ret != 0)
5932 return ret;
5933 } else {
5934 path->slots[0]--;
5935 }
5936 leaf = path->nodes[0];
5937 nritems = btrfs_header_nritems(leaf);
5938 if (nritems == 0)
5939 return 1;
5940 if (path->slots[0] == nritems)
5941 path->slots[0]--;
5942
5943 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5944 if (found_key.objectid < min_objectid)
5945 break;
5946 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5947 found_key.type == BTRFS_METADATA_ITEM_KEY)
5948 return 0;
5949 if (found_key.objectid == min_objectid &&
5950 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5951 break;
5952 }
5953 return 1;
5954}