Btrfs: kill unnecessary arguments in del_ptr
[linux-block.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
7f5c1516 24#include "transaction.h"
5f39d397 25#include "print-tree.h"
925baedd 26#include "locking.h"
9a8dd150 27
e089f05c
CM
28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
d4dbff95 31 *root, struct btrfs_key *ins_key,
cc0c5538 32 struct btrfs_path *path, int data_size, int extend);
5f39d397
CM
33static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 35 struct extent_buffer *src, int empty);
5f39d397
CM
36static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
143bede5 40static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
0e411ece 41 struct btrfs_path *path, int level, int slot);
f230475e
JS
42static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
45 u32 blocksize, u64 parent_transid,
46 u64 time_seq);
47struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
48 u64 bytenr, u32 blocksize,
49 u64 time_seq);
d97e63b6 50
df24a2b9 51struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 52{
df24a2b9 53 struct btrfs_path *path;
e00f7308 54 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
df24a2b9 55 return path;
2c90e5d6
CM
56}
57
b4ce94de
CM
58/*
59 * set all locked nodes in the path to blocking locks. This should
60 * be done before scheduling
61 */
62noinline void btrfs_set_path_blocking(struct btrfs_path *p)
63{
64 int i;
65 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
66 if (!p->nodes[i] || !p->locks[i])
67 continue;
68 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
69 if (p->locks[i] == BTRFS_READ_LOCK)
70 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
71 else if (p->locks[i] == BTRFS_WRITE_LOCK)
72 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
73 }
74}
75
76/*
77 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
78 *
79 * held is used to keep lockdep happy, when lockdep is enabled
80 * we set held to a blocking lock before we go around and
81 * retake all the spinlocks in the path. You can safely use NULL
82 * for held
b4ce94de 83 */
4008c04a 84noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 85 struct extent_buffer *held, int held_rw)
b4ce94de
CM
86{
87 int i;
4008c04a
CM
88
89#ifdef CONFIG_DEBUG_LOCK_ALLOC
90 /* lockdep really cares that we take all of these spinlocks
91 * in the right order. If any of the locks in the path are not
92 * currently blocking, it is going to complain. So, make really
93 * really sure by forcing the path to blocking before we clear
94 * the path blocking.
95 */
bd681513
CM
96 if (held) {
97 btrfs_set_lock_blocking_rw(held, held_rw);
98 if (held_rw == BTRFS_WRITE_LOCK)
99 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
100 else if (held_rw == BTRFS_READ_LOCK)
101 held_rw = BTRFS_READ_LOCK_BLOCKING;
102 }
4008c04a
CM
103 btrfs_set_path_blocking(p);
104#endif
105
106 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
107 if (p->nodes[i] && p->locks[i]) {
108 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
109 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
110 p->locks[i] = BTRFS_WRITE_LOCK;
111 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
112 p->locks[i] = BTRFS_READ_LOCK;
113 }
b4ce94de 114 }
4008c04a
CM
115
116#ifdef CONFIG_DEBUG_LOCK_ALLOC
117 if (held)
bd681513 118 btrfs_clear_lock_blocking_rw(held, held_rw);
4008c04a 119#endif
b4ce94de
CM
120}
121
d352ac68 122/* this also releases the path */
df24a2b9 123void btrfs_free_path(struct btrfs_path *p)
be0e5c09 124{
ff175d57
JJ
125 if (!p)
126 return;
b3b4aa74 127 btrfs_release_path(p);
df24a2b9 128 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
129}
130
d352ac68
CM
131/*
132 * path release drops references on the extent buffers in the path
133 * and it drops any locks held by this path
134 *
135 * It is safe to call this on paths that no locks or extent buffers held.
136 */
b3b4aa74 137noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
138{
139 int i;
a2135011 140
234b63a0 141 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 142 p->slots[i] = 0;
eb60ceac 143 if (!p->nodes[i])
925baedd
CM
144 continue;
145 if (p->locks[i]) {
bd681513 146 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
147 p->locks[i] = 0;
148 }
5f39d397 149 free_extent_buffer(p->nodes[i]);
3f157a2f 150 p->nodes[i] = NULL;
eb60ceac
CM
151 }
152}
153
d352ac68
CM
154/*
155 * safely gets a reference on the root node of a tree. A lock
156 * is not taken, so a concurrent writer may put a different node
157 * at the root of the tree. See btrfs_lock_root_node for the
158 * looping required.
159 *
160 * The extent buffer returned by this has a reference taken, so
161 * it won't disappear. It may stop being the root of the tree
162 * at any time because there are no locks held.
163 */
925baedd
CM
164struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
165{
166 struct extent_buffer *eb;
240f62c8 167
3083ee2e
JB
168 while (1) {
169 rcu_read_lock();
170 eb = rcu_dereference(root->node);
171
172 /*
173 * RCU really hurts here, we could free up the root node because
174 * it was cow'ed but we may not get the new root node yet so do
175 * the inc_not_zero dance and if it doesn't work then
176 * synchronize_rcu and try again.
177 */
178 if (atomic_inc_not_zero(&eb->refs)) {
179 rcu_read_unlock();
180 break;
181 }
182 rcu_read_unlock();
183 synchronize_rcu();
184 }
925baedd
CM
185 return eb;
186}
187
d352ac68
CM
188/* loop around taking references on and locking the root node of the
189 * tree until you end up with a lock on the root. A locked buffer
190 * is returned, with a reference held.
191 */
925baedd
CM
192struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
193{
194 struct extent_buffer *eb;
195
d397712b 196 while (1) {
925baedd
CM
197 eb = btrfs_root_node(root);
198 btrfs_tree_lock(eb);
240f62c8 199 if (eb == root->node)
925baedd 200 break;
925baedd
CM
201 btrfs_tree_unlock(eb);
202 free_extent_buffer(eb);
203 }
204 return eb;
205}
206
bd681513
CM
207/* loop around taking references on and locking the root node of the
208 * tree until you end up with a lock on the root. A locked buffer
209 * is returned, with a reference held.
210 */
211struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
212{
213 struct extent_buffer *eb;
214
215 while (1) {
216 eb = btrfs_root_node(root);
217 btrfs_tree_read_lock(eb);
218 if (eb == root->node)
219 break;
220 btrfs_tree_read_unlock(eb);
221 free_extent_buffer(eb);
222 }
223 return eb;
224}
225
d352ac68
CM
226/* cowonly root (everything not a reference counted cow subvolume), just get
227 * put onto a simple dirty list. transaction.c walks this to make sure they
228 * get properly updated on disk.
229 */
0b86a832
CM
230static void add_root_to_dirty_list(struct btrfs_root *root)
231{
e5846fc6 232 spin_lock(&root->fs_info->trans_lock);
0b86a832
CM
233 if (root->track_dirty && list_empty(&root->dirty_list)) {
234 list_add(&root->dirty_list,
235 &root->fs_info->dirty_cowonly_roots);
236 }
e5846fc6 237 spin_unlock(&root->fs_info->trans_lock);
0b86a832
CM
238}
239
d352ac68
CM
240/*
241 * used by snapshot creation to make a copy of a root for a tree with
242 * a given objectid. The buffer with the new root node is returned in
243 * cow_ret, and this func returns zero on success or a negative error code.
244 */
be20aa9d
CM
245int btrfs_copy_root(struct btrfs_trans_handle *trans,
246 struct btrfs_root *root,
247 struct extent_buffer *buf,
248 struct extent_buffer **cow_ret, u64 new_root_objectid)
249{
250 struct extent_buffer *cow;
be20aa9d
CM
251 int ret = 0;
252 int level;
5d4f98a2 253 struct btrfs_disk_key disk_key;
be20aa9d
CM
254
255 WARN_ON(root->ref_cows && trans->transid !=
256 root->fs_info->running_transaction->transid);
257 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
258
259 level = btrfs_header_level(buf);
5d4f98a2
YZ
260 if (level == 0)
261 btrfs_item_key(buf, &disk_key, 0);
262 else
263 btrfs_node_key(buf, &disk_key, 0);
31840ae1 264
5d4f98a2
YZ
265 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
266 new_root_objectid, &disk_key, level,
5581a51a 267 buf->start, 0);
5d4f98a2 268 if (IS_ERR(cow))
be20aa9d
CM
269 return PTR_ERR(cow);
270
271 copy_extent_buffer(cow, buf, 0, 0, cow->len);
272 btrfs_set_header_bytenr(cow, cow->start);
273 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
274 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
275 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
276 BTRFS_HEADER_FLAG_RELOC);
277 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
279 else
280 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 281
2b82032c
YZ
282 write_extent_buffer(cow, root->fs_info->fsid,
283 (unsigned long)btrfs_header_fsid(cow),
284 BTRFS_FSID_SIZE);
285
be20aa9d 286 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 287 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 288 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 289 else
66d7e7f0 290 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
4aec2b52 291
be20aa9d
CM
292 if (ret)
293 return ret;
294
295 btrfs_mark_buffer_dirty(cow);
296 *cow_ret = cow;
297 return 0;
298}
299
bd989ba3
JS
300enum mod_log_op {
301 MOD_LOG_KEY_REPLACE,
302 MOD_LOG_KEY_ADD,
303 MOD_LOG_KEY_REMOVE,
304 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
305 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
306 MOD_LOG_MOVE_KEYS,
307 MOD_LOG_ROOT_REPLACE,
308};
309
310struct tree_mod_move {
311 int dst_slot;
312 int nr_items;
313};
314
315struct tree_mod_root {
316 u64 logical;
317 u8 level;
318};
319
320struct tree_mod_elem {
321 struct rb_node node;
322 u64 index; /* shifted logical */
097b8a7c 323 u64 seq;
bd989ba3
JS
324 enum mod_log_op op;
325
326 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
327 int slot;
328
329 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
330 u64 generation;
331
332 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333 struct btrfs_disk_key key;
334 u64 blockptr;
335
336 /* this is used for op == MOD_LOG_MOVE_KEYS */
337 struct tree_mod_move move;
338
339 /* this is used for op == MOD_LOG_ROOT_REPLACE */
340 struct tree_mod_root old_root;
341};
342
097b8a7c 343static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 344{
097b8a7c 345 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
346}
347
097b8a7c
JS
348static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
349{
350 read_unlock(&fs_info->tree_mod_log_lock);
351}
352
353static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
354{
355 write_lock(&fs_info->tree_mod_log_lock);
356}
357
358static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
359{
360 write_unlock(&fs_info->tree_mod_log_lock);
361}
362
363/*
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
369 * blocker was added.
370 */
371u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 struct seq_list *elem)
bd989ba3 373{
097b8a7c
JS
374 u64 seq;
375
376 tree_mod_log_write_lock(fs_info);
bd989ba3 377 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
378 if (!elem->seq) {
379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 }
382 seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 383 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
384 tree_mod_log_write_unlock(fs_info);
385
386 return seq;
bd989ba3
JS
387}
388
389void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390 struct seq_list *elem)
391{
392 struct rb_root *tm_root;
393 struct rb_node *node;
394 struct rb_node *next;
395 struct seq_list *cur_elem;
396 struct tree_mod_elem *tm;
397 u64 min_seq = (u64)-1;
398 u64 seq_putting = elem->seq;
399
400 if (!seq_putting)
401 return;
402
bd989ba3
JS
403 spin_lock(&fs_info->tree_mod_seq_lock);
404 list_del(&elem->list);
097b8a7c 405 elem->seq = 0;
bd989ba3
JS
406
407 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 408 if (cur_elem->seq < min_seq) {
bd989ba3
JS
409 if (seq_putting > cur_elem->seq) {
410 /*
411 * blocker with lower sequence number exists, we
412 * cannot remove anything from the log
413 */
097b8a7c
JS
414 spin_unlock(&fs_info->tree_mod_seq_lock);
415 return;
bd989ba3
JS
416 }
417 min_seq = cur_elem->seq;
418 }
419 }
097b8a7c
JS
420 spin_unlock(&fs_info->tree_mod_seq_lock);
421
bd989ba3
JS
422 /*
423 * anything that's lower than the lowest existing (read: blocked)
424 * sequence number can be removed from the tree.
425 */
097b8a7c 426 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
427 tm_root = &fs_info->tree_mod_log;
428 for (node = rb_first(tm_root); node; node = next) {
429 next = rb_next(node);
430 tm = container_of(node, struct tree_mod_elem, node);
097b8a7c 431 if (tm->seq > min_seq)
bd989ba3
JS
432 continue;
433 rb_erase(node, tm_root);
bd989ba3
JS
434 kfree(tm);
435 }
097b8a7c 436 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
437}
438
439/*
440 * key order of the log:
441 * index -> sequence
442 *
443 * the index is the shifted logical of the *new* root node for root replace
444 * operations, or the shifted logical of the affected block for all other
445 * operations.
446 */
447static noinline int
448__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449{
450 struct rb_root *tm_root;
451 struct rb_node **new;
452 struct rb_node *parent = NULL;
453 struct tree_mod_elem *cur;
bd989ba3 454
097b8a7c 455 BUG_ON(!tm || !tm->seq);
bd989ba3 456
bd989ba3
JS
457 tm_root = &fs_info->tree_mod_log;
458 new = &tm_root->rb_node;
459 while (*new) {
460 cur = container_of(*new, struct tree_mod_elem, node);
461 parent = *new;
462 if (cur->index < tm->index)
463 new = &((*new)->rb_left);
464 else if (cur->index > tm->index)
465 new = &((*new)->rb_right);
097b8a7c 466 else if (cur->seq < tm->seq)
bd989ba3 467 new = &((*new)->rb_left);
097b8a7c 468 else if (cur->seq > tm->seq)
bd989ba3
JS
469 new = &((*new)->rb_right);
470 else {
471 kfree(tm);
097b8a7c 472 return -EEXIST;
bd989ba3
JS
473 }
474 }
475
476 rb_link_node(&tm->node, parent, new);
477 rb_insert_color(&tm->node, tm_root);
097b8a7c 478 return 0;
bd989ba3
JS
479}
480
097b8a7c
JS
481/*
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
486 */
e9b7fd4d
JS
487static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 struct extent_buffer *eb) {
489 smp_mb();
490 if (list_empty(&(fs_info)->tree_mod_seq_list))
491 return 1;
097b8a7c
JS
492 if (eb && btrfs_header_level(eb) == 0)
493 return 1;
494
495 tree_mod_log_write_lock(fs_info);
496 if (list_empty(&fs_info->tree_mod_seq_list)) {
497 /*
498 * someone emptied the list while we were waiting for the lock.
499 * we must not add to the list when no blocker exists.
500 */
501 tree_mod_log_write_unlock(fs_info);
e9b7fd4d 502 return 1;
097b8a7c
JS
503 }
504
e9b7fd4d
JS
505 return 0;
506}
507
3310c36e 508/*
097b8a7c 509 * This allocates memory and gets a tree modification sequence number.
3310c36e 510 *
097b8a7c
JS
511 * Returns <0 on error.
512 * Returns >0 (the added sequence number) on success.
3310c36e 513 */
926dd8a6
JS
514static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
515 struct tree_mod_elem **tm_ret)
bd989ba3
JS
516{
517 struct tree_mod_elem *tm;
bd989ba3 518
097b8a7c
JS
519 /*
520 * once we switch from spin locks to something different, we should
521 * honor the flags parameter here.
522 */
523 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
bd989ba3
JS
524 if (!tm)
525 return -ENOMEM;
526
097b8a7c
JS
527 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
528 return tm->seq;
bd989ba3
JS
529}
530
097b8a7c
JS
531static inline int
532__tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533 struct extent_buffer *eb, int slot,
534 enum mod_log_op op, gfp_t flags)
bd989ba3 535{
bd989ba3 536 int ret;
097b8a7c 537 struct tree_mod_elem *tm;
bd989ba3
JS
538
539 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c 540 if (ret < 0)
bd989ba3
JS
541 return ret;
542
543 tm->index = eb->start >> PAGE_CACHE_SHIFT;
544 if (op != MOD_LOG_KEY_ADD) {
545 btrfs_node_key(eb, &tm->key, slot);
546 tm->blockptr = btrfs_node_blockptr(eb, slot);
547 }
548 tm->op = op;
549 tm->slot = slot;
550 tm->generation = btrfs_node_ptr_generation(eb, slot);
551
097b8a7c
JS
552 return __tree_mod_log_insert(fs_info, tm);
553}
554
555static noinline int
556tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
557 struct extent_buffer *eb, int slot,
558 enum mod_log_op op, gfp_t flags)
559{
560 int ret;
561
562 if (tree_mod_dont_log(fs_info, eb))
563 return 0;
564
565 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
566
567 tree_mod_log_write_unlock(fs_info);
3310c36e 568 return ret;
bd989ba3
JS
569}
570
571static noinline int
572tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
573 int slot, enum mod_log_op op)
574{
575 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
576}
577
097b8a7c
JS
578static noinline int
579tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
580 struct extent_buffer *eb, int slot,
581 enum mod_log_op op)
582{
583 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
584}
585
bd989ba3
JS
586static noinline int
587tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
588 struct extent_buffer *eb, int dst_slot, int src_slot,
589 int nr_items, gfp_t flags)
590{
591 struct tree_mod_elem *tm;
592 int ret;
593 int i;
594
f395694c
JS
595 if (tree_mod_dont_log(fs_info, eb))
596 return 0;
bd989ba3 597
01763a2e
JS
598 /*
599 * When we override something during the move, we log these removals.
600 * This can only happen when we move towards the beginning of the
601 * buffer, i.e. dst_slot < src_slot.
602 */
bd989ba3 603 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
097b8a7c 604 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
bd989ba3
JS
605 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
606 BUG_ON(ret < 0);
607 }
608
f395694c 609 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c
JS
610 if (ret < 0)
611 goto out;
f395694c 612
bd989ba3
JS
613 tm->index = eb->start >> PAGE_CACHE_SHIFT;
614 tm->slot = src_slot;
615 tm->move.dst_slot = dst_slot;
616 tm->move.nr_items = nr_items;
617 tm->op = MOD_LOG_MOVE_KEYS;
618
3310c36e 619 ret = __tree_mod_log_insert(fs_info, tm);
097b8a7c
JS
620out:
621 tree_mod_log_write_unlock(fs_info);
3310c36e 622 return ret;
bd989ba3
JS
623}
624
097b8a7c
JS
625static inline void
626__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
627{
628 int i;
629 u32 nritems;
630 int ret;
631
b12a3b1e
CM
632 if (btrfs_header_level(eb) == 0)
633 return;
634
097b8a7c
JS
635 nritems = btrfs_header_nritems(eb);
636 for (i = nritems - 1; i >= 0; i--) {
637 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
638 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
639 BUG_ON(ret < 0);
640 }
641}
642
bd989ba3
JS
643static noinline int
644tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
645 struct extent_buffer *old_root,
646 struct extent_buffer *new_root, gfp_t flags)
647{
648 struct tree_mod_elem *tm;
649 int ret;
650
097b8a7c
JS
651 if (tree_mod_dont_log(fs_info, NULL))
652 return 0;
653
bd989ba3 654 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c
JS
655 if (ret < 0)
656 goto out;
bd989ba3
JS
657
658 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
659 tm->old_root.logical = old_root->start;
660 tm->old_root.level = btrfs_header_level(old_root);
661 tm->generation = btrfs_header_generation(old_root);
662 tm->op = MOD_LOG_ROOT_REPLACE;
663
3310c36e 664 ret = __tree_mod_log_insert(fs_info, tm);
097b8a7c
JS
665out:
666 tree_mod_log_write_unlock(fs_info);
3310c36e 667 return ret;
bd989ba3
JS
668}
669
670static struct tree_mod_elem *
671__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
672 int smallest)
673{
674 struct rb_root *tm_root;
675 struct rb_node *node;
676 struct tree_mod_elem *cur = NULL;
677 struct tree_mod_elem *found = NULL;
678 u64 index = start >> PAGE_CACHE_SHIFT;
679
097b8a7c 680 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
681 tm_root = &fs_info->tree_mod_log;
682 node = tm_root->rb_node;
683 while (node) {
684 cur = container_of(node, struct tree_mod_elem, node);
685 if (cur->index < index) {
686 node = node->rb_left;
687 } else if (cur->index > index) {
688 node = node->rb_right;
097b8a7c 689 } else if (cur->seq < min_seq) {
bd989ba3
JS
690 node = node->rb_left;
691 } else if (!smallest) {
692 /* we want the node with the highest seq */
693 if (found)
097b8a7c 694 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
695 found = cur;
696 node = node->rb_left;
097b8a7c 697 } else if (cur->seq > min_seq) {
bd989ba3
JS
698 /* we want the node with the smallest seq */
699 if (found)
097b8a7c 700 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
701 found = cur;
702 node = node->rb_right;
703 } else {
704 found = cur;
705 break;
706 }
707 }
097b8a7c 708 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
709
710 return found;
711}
712
713/*
714 * this returns the element from the log with the smallest time sequence
715 * value that's in the log (the oldest log item). any element with a time
716 * sequence lower than min_seq will be ignored.
717 */
718static struct tree_mod_elem *
719tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
720 u64 min_seq)
721{
722 return __tree_mod_log_search(fs_info, start, min_seq, 1);
723}
724
725/*
726 * this returns the element from the log with the largest time sequence
727 * value that's in the log (the most recent log item). any element with
728 * a time sequence lower than min_seq will be ignored.
729 */
730static struct tree_mod_elem *
731tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
732{
733 return __tree_mod_log_search(fs_info, start, min_seq, 0);
734}
735
097b8a7c 736static noinline void
bd989ba3
JS
737tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
738 struct extent_buffer *src, unsigned long dst_offset,
739 unsigned long src_offset, int nr_items)
740{
741 int ret;
742 int i;
743
e9b7fd4d 744 if (tree_mod_dont_log(fs_info, NULL))
bd989ba3
JS
745 return;
746
097b8a7c
JS
747 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
748 tree_mod_log_write_unlock(fs_info);
bd989ba3 749 return;
097b8a7c 750 }
bd989ba3 751
bd989ba3 752 for (i = 0; i < nr_items; i++) {
097b8a7c
JS
753 ret = tree_mod_log_insert_key_locked(fs_info, src,
754 i + src_offset,
755 MOD_LOG_KEY_REMOVE);
bd989ba3 756 BUG_ON(ret < 0);
097b8a7c
JS
757 ret = tree_mod_log_insert_key_locked(fs_info, dst,
758 i + dst_offset,
759 MOD_LOG_KEY_ADD);
bd989ba3
JS
760 BUG_ON(ret < 0);
761 }
097b8a7c
JS
762
763 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
764}
765
766static inline void
767tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
768 int dst_offset, int src_offset, int nr_items)
769{
770 int ret;
771 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
772 nr_items, GFP_NOFS);
773 BUG_ON(ret < 0);
774}
775
097b8a7c 776static noinline void
bd989ba3
JS
777tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
778 struct extent_buffer *eb,
779 struct btrfs_disk_key *disk_key, int slot, int atomic)
780{
781 int ret;
782
783 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
784 MOD_LOG_KEY_REPLACE,
785 atomic ? GFP_ATOMIC : GFP_NOFS);
786 BUG_ON(ret < 0);
787}
788
097b8a7c
JS
789static noinline void
790tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 791{
e9b7fd4d 792 if (tree_mod_dont_log(fs_info, eb))
bd989ba3
JS
793 return;
794
097b8a7c
JS
795 __tree_mod_log_free_eb(fs_info, eb);
796
797 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
798}
799
097b8a7c 800static noinline void
bd989ba3
JS
801tree_mod_log_set_root_pointer(struct btrfs_root *root,
802 struct extent_buffer *new_root_node)
803{
804 int ret;
bd989ba3
JS
805 ret = tree_mod_log_insert_root(root->fs_info, root->node,
806 new_root_node, GFP_NOFS);
807 BUG_ON(ret < 0);
808}
809
5d4f98a2
YZ
810/*
811 * check if the tree block can be shared by multiple trees
812 */
813int btrfs_block_can_be_shared(struct btrfs_root *root,
814 struct extent_buffer *buf)
815{
816 /*
817 * Tree blocks not in refernece counted trees and tree roots
818 * are never shared. If a block was allocated after the last
819 * snapshot and the block was not allocated by tree relocation,
820 * we know the block is not shared.
821 */
822 if (root->ref_cows &&
823 buf != root->node && buf != root->commit_root &&
824 (btrfs_header_generation(buf) <=
825 btrfs_root_last_snapshot(&root->root_item) ||
826 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
827 return 1;
828#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
829 if (root->ref_cows &&
830 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
831 return 1;
832#endif
833 return 0;
834}
835
836static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
837 struct btrfs_root *root,
838 struct extent_buffer *buf,
f0486c68
YZ
839 struct extent_buffer *cow,
840 int *last_ref)
5d4f98a2
YZ
841{
842 u64 refs;
843 u64 owner;
844 u64 flags;
845 u64 new_flags = 0;
846 int ret;
847
848 /*
849 * Backrefs update rules:
850 *
851 * Always use full backrefs for extent pointers in tree block
852 * allocated by tree relocation.
853 *
854 * If a shared tree block is no longer referenced by its owner
855 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
856 * use full backrefs for extent pointers in tree block.
857 *
858 * If a tree block is been relocating
859 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
860 * use full backrefs for extent pointers in tree block.
861 * The reason for this is some operations (such as drop tree)
862 * are only allowed for blocks use full backrefs.
863 */
864
865 if (btrfs_block_can_be_shared(root, buf)) {
866 ret = btrfs_lookup_extent_info(trans, root, buf->start,
867 buf->len, &refs, &flags);
be1a5564
MF
868 if (ret)
869 return ret;
e5df9573
MF
870 if (refs == 0) {
871 ret = -EROFS;
872 btrfs_std_error(root->fs_info, ret);
873 return ret;
874 }
5d4f98a2
YZ
875 } else {
876 refs = 1;
877 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
878 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
879 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
880 else
881 flags = 0;
882 }
883
884 owner = btrfs_header_owner(buf);
885 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
886 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
887
888 if (refs > 1) {
889 if ((owner == root->root_key.objectid ||
890 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
891 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
66d7e7f0 892 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
79787eaa 893 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
894
895 if (root->root_key.objectid ==
896 BTRFS_TREE_RELOC_OBJECTID) {
66d7e7f0 897 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
79787eaa 898 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 899 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
79787eaa 900 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
901 }
902 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
903 } else {
904
905 if (root->root_key.objectid ==
906 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 907 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 908 else
66d7e7f0 909 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 910 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
911 }
912 if (new_flags != 0) {
913 ret = btrfs_set_disk_extent_flags(trans, root,
914 buf->start,
915 buf->len,
916 new_flags, 0);
be1a5564
MF
917 if (ret)
918 return ret;
5d4f98a2
YZ
919 }
920 } else {
921 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
922 if (root->root_key.objectid ==
923 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 924 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 925 else
66d7e7f0 926 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 927 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 928 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
79787eaa 929 BUG_ON(ret); /* -ENOMEM */
5d4f98a2 930 }
ba1bfbd5 931 tree_mod_log_free_eb(root->fs_info, buf);
5d4f98a2 932 clean_tree_block(trans, root, buf);
f0486c68 933 *last_ref = 1;
5d4f98a2
YZ
934 }
935 return 0;
936}
937
d352ac68 938/*
d397712b
CM
939 * does the dirty work in cow of a single block. The parent block (if
940 * supplied) is updated to point to the new cow copy. The new buffer is marked
941 * dirty and returned locked. If you modify the block it needs to be marked
942 * dirty again.
d352ac68
CM
943 *
944 * search_start -- an allocation hint for the new block
945 *
d397712b
CM
946 * empty_size -- a hint that you plan on doing more cow. This is the size in
947 * bytes the allocator should try to find free next to the block it returns.
948 * This is just a hint and may be ignored by the allocator.
d352ac68 949 */
d397712b 950static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
951 struct btrfs_root *root,
952 struct extent_buffer *buf,
953 struct extent_buffer *parent, int parent_slot,
954 struct extent_buffer **cow_ret,
9fa8cfe7 955 u64 search_start, u64 empty_size)
02217ed2 956{
5d4f98a2 957 struct btrfs_disk_key disk_key;
5f39d397 958 struct extent_buffer *cow;
be1a5564 959 int level, ret;
f0486c68 960 int last_ref = 0;
925baedd 961 int unlock_orig = 0;
5d4f98a2 962 u64 parent_start;
7bb86316 963
925baedd
CM
964 if (*cow_ret == buf)
965 unlock_orig = 1;
966
b9447ef8 967 btrfs_assert_tree_locked(buf);
925baedd 968
7bb86316
CM
969 WARN_ON(root->ref_cows && trans->transid !=
970 root->fs_info->running_transaction->transid);
6702ed49 971 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
5f39d397 972
7bb86316 973 level = btrfs_header_level(buf);
31840ae1 974
5d4f98a2
YZ
975 if (level == 0)
976 btrfs_item_key(buf, &disk_key, 0);
977 else
978 btrfs_node_key(buf, &disk_key, 0);
979
980 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
981 if (parent)
982 parent_start = parent->start;
983 else
984 parent_start = 0;
985 } else
986 parent_start = 0;
987
988 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
989 root->root_key.objectid, &disk_key,
5581a51a 990 level, search_start, empty_size);
54aa1f4d
CM
991 if (IS_ERR(cow))
992 return PTR_ERR(cow);
6702ed49 993
b4ce94de
CM
994 /* cow is set to blocking by btrfs_init_new_buffer */
995
5f39d397 996 copy_extent_buffer(cow, buf, 0, 0, cow->len);
db94535d 997 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 998 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
999 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1000 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1001 BTRFS_HEADER_FLAG_RELOC);
1002 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1003 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1004 else
1005 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1006
2b82032c
YZ
1007 write_extent_buffer(cow, root->fs_info->fsid,
1008 (unsigned long)btrfs_header_fsid(cow),
1009 BTRFS_FSID_SIZE);
1010
be1a5564 1011 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1012 if (ret) {
79787eaa 1013 btrfs_abort_transaction(trans, root, ret);
b68dc2a9
MF
1014 return ret;
1015 }
1a40e23b 1016
3fd0a558
YZ
1017 if (root->ref_cows)
1018 btrfs_reloc_cow_block(trans, root, buf, cow);
1019
02217ed2 1020 if (buf == root->node) {
925baedd 1021 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1022 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1023 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1024 parent_start = buf->start;
1025 else
1026 parent_start = 0;
925baedd 1027
5f39d397 1028 extent_buffer_get(cow);
f230475e 1029 tree_mod_log_set_root_pointer(root, cow);
240f62c8 1030 rcu_assign_pointer(root->node, cow);
925baedd 1031
f0486c68 1032 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1033 last_ref);
5f39d397 1034 free_extent_buffer(buf);
0b86a832 1035 add_root_to_dirty_list(root);
02217ed2 1036 } else {
5d4f98a2
YZ
1037 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1038 parent_start = parent->start;
1039 else
1040 parent_start = 0;
1041
1042 WARN_ON(trans->transid != btrfs_header_generation(parent));
f230475e
JS
1043 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1044 MOD_LOG_KEY_REPLACE);
5f39d397 1045 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1046 cow->start);
74493f7a
CM
1047 btrfs_set_node_ptr_generation(parent, parent_slot,
1048 trans->transid);
d6025579 1049 btrfs_mark_buffer_dirty(parent);
f0486c68 1050 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1051 last_ref);
02217ed2 1052 }
925baedd
CM
1053 if (unlock_orig)
1054 btrfs_tree_unlock(buf);
3083ee2e 1055 free_extent_buffer_stale(buf);
ccd467d6 1056 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1057 *cow_ret = cow;
02217ed2
CM
1058 return 0;
1059}
1060
5d9e75c4
JS
1061/*
1062 * returns the logical address of the oldest predecessor of the given root.
1063 * entries older than time_seq are ignored.
1064 */
1065static struct tree_mod_elem *
1066__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1067 struct btrfs_root *root, u64 time_seq)
1068{
1069 struct tree_mod_elem *tm;
1070 struct tree_mod_elem *found = NULL;
1071 u64 root_logical = root->node->start;
1072 int looped = 0;
1073
1074 if (!time_seq)
1075 return 0;
1076
1077 /*
1078 * the very last operation that's logged for a root is the replacement
1079 * operation (if it is replaced at all). this has the index of the *new*
1080 * root, making it the very first operation that's logged for this root.
1081 */
1082 while (1) {
1083 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1084 time_seq);
1085 if (!looped && !tm)
1086 return 0;
1087 /*
28da9fb4
JS
1088 * if there are no tree operation for the oldest root, we simply
1089 * return it. this should only happen if that (old) root is at
1090 * level 0.
5d9e75c4 1091 */
28da9fb4
JS
1092 if (!tm)
1093 break;
5d9e75c4 1094
28da9fb4
JS
1095 /*
1096 * if there's an operation that's not a root replacement, we
1097 * found the oldest version of our root. normally, we'll find a
1098 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1099 */
5d9e75c4
JS
1100 if (tm->op != MOD_LOG_ROOT_REPLACE)
1101 break;
1102
1103 found = tm;
1104 root_logical = tm->old_root.logical;
1105 BUG_ON(root_logical == root->node->start);
1106 looped = 1;
1107 }
1108
a95236d9
JS
1109 /* if there's no old root to return, return what we found instead */
1110 if (!found)
1111 found = tm;
1112
5d9e75c4
JS
1113 return found;
1114}
1115
1116/*
1117 * tm is a pointer to the first operation to rewind within eb. then, all
1118 * previous operations will be rewinded (until we reach something older than
1119 * time_seq).
1120 */
1121static void
1122__tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1123 struct tree_mod_elem *first_tm)
1124{
1125 u32 n;
1126 struct rb_node *next;
1127 struct tree_mod_elem *tm = first_tm;
1128 unsigned long o_dst;
1129 unsigned long o_src;
1130 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1131
1132 n = btrfs_header_nritems(eb);
097b8a7c 1133 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1134 /*
1135 * all the operations are recorded with the operator used for
1136 * the modification. as we're going backwards, we do the
1137 * opposite of each operation here.
1138 */
1139 switch (tm->op) {
1140 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1141 BUG_ON(tm->slot < n);
5d9e75c4 1142 case MOD_LOG_KEY_REMOVE:
95c80bb1
LB
1143 n++;
1144 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
5d9e75c4
JS
1145 btrfs_set_node_key(eb, &tm->key, tm->slot);
1146 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1147 btrfs_set_node_ptr_generation(eb, tm->slot,
1148 tm->generation);
5d9e75c4
JS
1149 break;
1150 case MOD_LOG_KEY_REPLACE:
1151 BUG_ON(tm->slot >= n);
1152 btrfs_set_node_key(eb, &tm->key, tm->slot);
1153 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1154 btrfs_set_node_ptr_generation(eb, tm->slot,
1155 tm->generation);
1156 break;
1157 case MOD_LOG_KEY_ADD:
19956c7e 1158 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1159 n--;
1160 break;
1161 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1162 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1163 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1164 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1165 tm->move.nr_items * p_size);
1166 break;
1167 case MOD_LOG_ROOT_REPLACE:
1168 /*
1169 * this operation is special. for roots, this must be
1170 * handled explicitly before rewinding.
1171 * for non-roots, this operation may exist if the node
1172 * was a root: root A -> child B; then A gets empty and
1173 * B is promoted to the new root. in the mod log, we'll
1174 * have a root-replace operation for B, a tree block
1175 * that is no root. we simply ignore that operation.
1176 */
1177 break;
1178 }
1179 next = rb_next(&tm->node);
1180 if (!next)
1181 break;
1182 tm = container_of(next, struct tree_mod_elem, node);
1183 if (tm->index != first_tm->index)
1184 break;
1185 }
1186 btrfs_set_header_nritems(eb, n);
1187}
1188
1189static struct extent_buffer *
1190tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1191 u64 time_seq)
1192{
1193 struct extent_buffer *eb_rewin;
1194 struct tree_mod_elem *tm;
1195
1196 if (!time_seq)
1197 return eb;
1198
1199 if (btrfs_header_level(eb) == 0)
1200 return eb;
1201
1202 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1203 if (!tm)
1204 return eb;
1205
1206 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1207 BUG_ON(tm->slot != 0);
1208 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1209 fs_info->tree_root->nodesize);
1210 BUG_ON(!eb_rewin);
1211 btrfs_set_header_bytenr(eb_rewin, eb->start);
1212 btrfs_set_header_backref_rev(eb_rewin,
1213 btrfs_header_backref_rev(eb));
1214 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1215 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1216 } else {
1217 eb_rewin = btrfs_clone_extent_buffer(eb);
1218 BUG_ON(!eb_rewin);
1219 }
1220
1221 extent_buffer_get(eb_rewin);
1222 free_extent_buffer(eb);
1223
1224 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
57911b8b
JS
1225 WARN_ON(btrfs_header_nritems(eb_rewin) >
1226 BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root));
5d9e75c4
JS
1227
1228 return eb_rewin;
1229}
1230
8ba97a15
JS
1231/*
1232 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1233 * value. If there are no changes, the current root->root_node is returned. If
1234 * anything changed in between, there's a fresh buffer allocated on which the
1235 * rewind operations are done. In any case, the returned buffer is read locked.
1236 * Returns NULL on error (with no locks held).
1237 */
5d9e75c4
JS
1238static inline struct extent_buffer *
1239get_old_root(struct btrfs_root *root, u64 time_seq)
1240{
1241 struct tree_mod_elem *tm;
1242 struct extent_buffer *eb;
7bfdcf7f 1243 struct extent_buffer *old;
a95236d9 1244 struct tree_mod_root *old_root = NULL;
4325edd0 1245 u64 old_generation = 0;
a95236d9 1246 u64 logical;
834328a8 1247 u32 blocksize;
5d9e75c4 1248
8ba97a15 1249 eb = btrfs_read_lock_root_node(root);
5d9e75c4
JS
1250 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1251 if (!tm)
1252 return root->node;
1253
a95236d9
JS
1254 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1255 old_root = &tm->old_root;
1256 old_generation = tm->generation;
1257 logical = old_root->logical;
1258 } else {
1259 logical = root->node->start;
1260 }
5d9e75c4 1261
a95236d9 1262 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
834328a8
JS
1263 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1264 btrfs_tree_read_unlock(root->node);
1265 free_extent_buffer(root->node);
1266 blocksize = btrfs_level_size(root, old_root->level);
7bfdcf7f
LB
1267 old = read_tree_block(root, logical, blocksize, 0);
1268 if (!old) {
834328a8
JS
1269 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1270 logical);
1271 WARN_ON(1);
1272 } else {
7bfdcf7f
LB
1273 eb = btrfs_clone_extent_buffer(old);
1274 free_extent_buffer(old);
834328a8
JS
1275 }
1276 } else if (old_root) {
1277 btrfs_tree_read_unlock(root->node);
1278 free_extent_buffer(root->node);
28da9fb4 1279 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
834328a8 1280 } else {
a95236d9 1281 eb = btrfs_clone_extent_buffer(root->node);
834328a8
JS
1282 btrfs_tree_read_unlock(root->node);
1283 free_extent_buffer(root->node);
1284 }
1285
8ba97a15
JS
1286 if (!eb)
1287 return NULL;
d6381084 1288 extent_buffer_get(eb);
8ba97a15 1289 btrfs_tree_read_lock(eb);
a95236d9 1290 if (old_root) {
5d9e75c4
JS
1291 btrfs_set_header_bytenr(eb, eb->start);
1292 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1293 btrfs_set_header_owner(eb, root->root_key.objectid);
a95236d9
JS
1294 btrfs_set_header_level(eb, old_root->level);
1295 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1296 }
28da9fb4
JS
1297 if (tm)
1298 __tree_mod_log_rewind(eb, time_seq, tm);
1299 else
1300 WARN_ON(btrfs_header_level(eb) != 0);
57911b8b 1301 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
5d9e75c4
JS
1302
1303 return eb;
1304}
1305
5b6602e7
JS
1306int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1307{
1308 struct tree_mod_elem *tm;
1309 int level;
1310
1311 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1312 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1313 level = tm->old_root.level;
1314 } else {
1315 rcu_read_lock();
1316 level = btrfs_header_level(root->node);
1317 rcu_read_unlock();
1318 }
1319
1320 return level;
1321}
1322
5d4f98a2
YZ
1323static inline int should_cow_block(struct btrfs_trans_handle *trans,
1324 struct btrfs_root *root,
1325 struct extent_buffer *buf)
1326{
f1ebcc74
LB
1327 /* ensure we can see the force_cow */
1328 smp_rmb();
1329
1330 /*
1331 * We do not need to cow a block if
1332 * 1) this block is not created or changed in this transaction;
1333 * 2) this block does not belong to TREE_RELOC tree;
1334 * 3) the root is not forced COW.
1335 *
1336 * What is forced COW:
1337 * when we create snapshot during commiting the transaction,
1338 * after we've finished coping src root, we must COW the shared
1339 * block to ensure the metadata consistency.
1340 */
5d4f98a2
YZ
1341 if (btrfs_header_generation(buf) == trans->transid &&
1342 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1343 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74
LB
1344 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1345 !root->force_cow)
5d4f98a2
YZ
1346 return 0;
1347 return 1;
1348}
1349
d352ac68
CM
1350/*
1351 * cows a single block, see __btrfs_cow_block for the real work.
1352 * This version of it has extra checks so that a block isn't cow'd more than
1353 * once per transaction, as long as it hasn't been written yet
1354 */
d397712b 1355noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1356 struct btrfs_root *root, struct extent_buffer *buf,
1357 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1358 struct extent_buffer **cow_ret)
6702ed49
CM
1359{
1360 u64 search_start;
f510cfec 1361 int ret;
dc17ff8f 1362
6702ed49 1363 if (trans->transaction != root->fs_info->running_transaction) {
d397712b
CM
1364 printk(KERN_CRIT "trans %llu running %llu\n",
1365 (unsigned long long)trans->transid,
1366 (unsigned long long)
6702ed49
CM
1367 root->fs_info->running_transaction->transid);
1368 WARN_ON(1);
1369 }
1370 if (trans->transid != root->fs_info->generation) {
d397712b
CM
1371 printk(KERN_CRIT "trans %llu running %llu\n",
1372 (unsigned long long)trans->transid,
1373 (unsigned long long)root->fs_info->generation);
6702ed49
CM
1374 WARN_ON(1);
1375 }
dc17ff8f 1376
5d4f98a2 1377 if (!should_cow_block(trans, root, buf)) {
6702ed49
CM
1378 *cow_ret = buf;
1379 return 0;
1380 }
c487685d 1381
0b86a832 1382 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
b4ce94de
CM
1383
1384 if (parent)
1385 btrfs_set_lock_blocking(parent);
1386 btrfs_set_lock_blocking(buf);
1387
f510cfec 1388 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1389 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1390
1391 trace_btrfs_cow_block(root, buf, *cow_ret);
1392
f510cfec 1393 return ret;
6702ed49
CM
1394}
1395
d352ac68
CM
1396/*
1397 * helper function for defrag to decide if two blocks pointed to by a
1398 * node are actually close by
1399 */
6b80053d 1400static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1401{
6b80053d 1402 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1403 return 1;
6b80053d 1404 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1405 return 1;
1406 return 0;
1407}
1408
081e9573
CM
1409/*
1410 * compare two keys in a memcmp fashion
1411 */
1412static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1413{
1414 struct btrfs_key k1;
1415
1416 btrfs_disk_key_to_cpu(&k1, disk);
1417
20736aba 1418 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1419}
1420
f3465ca4
JB
1421/*
1422 * same as comp_keys only with two btrfs_key's
1423 */
5d4f98a2 1424int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
f3465ca4
JB
1425{
1426 if (k1->objectid > k2->objectid)
1427 return 1;
1428 if (k1->objectid < k2->objectid)
1429 return -1;
1430 if (k1->type > k2->type)
1431 return 1;
1432 if (k1->type < k2->type)
1433 return -1;
1434 if (k1->offset > k2->offset)
1435 return 1;
1436 if (k1->offset < k2->offset)
1437 return -1;
1438 return 0;
1439}
081e9573 1440
d352ac68
CM
1441/*
1442 * this is used by the defrag code to go through all the
1443 * leaves pointed to by a node and reallocate them so that
1444 * disk order is close to key order
1445 */
6702ed49 1446int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1447 struct btrfs_root *root, struct extent_buffer *parent,
a6b6e75e
CM
1448 int start_slot, int cache_only, u64 *last_ret,
1449 struct btrfs_key *progress)
6702ed49 1450{
6b80053d 1451 struct extent_buffer *cur;
6702ed49 1452 u64 blocknr;
ca7a79ad 1453 u64 gen;
e9d0b13b
CM
1454 u64 search_start = *last_ret;
1455 u64 last_block = 0;
6702ed49
CM
1456 u64 other;
1457 u32 parent_nritems;
6702ed49
CM
1458 int end_slot;
1459 int i;
1460 int err = 0;
f2183bde 1461 int parent_level;
6b80053d
CM
1462 int uptodate;
1463 u32 blocksize;
081e9573
CM
1464 int progress_passed = 0;
1465 struct btrfs_disk_key disk_key;
6702ed49 1466
5708b959
CM
1467 parent_level = btrfs_header_level(parent);
1468 if (cache_only && parent_level != 1)
1469 return 0;
1470
d397712b 1471 if (trans->transaction != root->fs_info->running_transaction)
6702ed49 1472 WARN_ON(1);
d397712b 1473 if (trans->transid != root->fs_info->generation)
6702ed49 1474 WARN_ON(1);
86479a04 1475
6b80053d 1476 parent_nritems = btrfs_header_nritems(parent);
6b80053d 1477 blocksize = btrfs_level_size(root, parent_level - 1);
6702ed49
CM
1478 end_slot = parent_nritems;
1479
1480 if (parent_nritems == 1)
1481 return 0;
1482
b4ce94de
CM
1483 btrfs_set_lock_blocking(parent);
1484
6702ed49
CM
1485 for (i = start_slot; i < end_slot; i++) {
1486 int close = 1;
a6b6e75e 1487
081e9573
CM
1488 btrfs_node_key(parent, &disk_key, i);
1489 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1490 continue;
1491
1492 progress_passed = 1;
6b80053d 1493 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1494 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1495 if (last_block == 0)
1496 last_block = blocknr;
5708b959 1497
6702ed49 1498 if (i > 0) {
6b80053d
CM
1499 other = btrfs_node_blockptr(parent, i - 1);
1500 close = close_blocks(blocknr, other, blocksize);
6702ed49 1501 }
0ef3e66b 1502 if (!close && i < end_slot - 2) {
6b80053d
CM
1503 other = btrfs_node_blockptr(parent, i + 1);
1504 close = close_blocks(blocknr, other, blocksize);
6702ed49 1505 }
e9d0b13b
CM
1506 if (close) {
1507 last_block = blocknr;
6702ed49 1508 continue;
e9d0b13b 1509 }
6702ed49 1510
6b80053d
CM
1511 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1512 if (cur)
b9fab919 1513 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1514 else
1515 uptodate = 0;
5708b959 1516 if (!cur || !uptodate) {
6702ed49 1517 if (cache_only) {
6b80053d 1518 free_extent_buffer(cur);
6702ed49
CM
1519 continue;
1520 }
6b80053d
CM
1521 if (!cur) {
1522 cur = read_tree_block(root, blocknr,
ca7a79ad 1523 blocksize, gen);
97d9a8a4
TI
1524 if (!cur)
1525 return -EIO;
6b80053d 1526 } else if (!uptodate) {
018642a1
TI
1527 err = btrfs_read_buffer(cur, gen);
1528 if (err) {
1529 free_extent_buffer(cur);
1530 return err;
1531 }
f2183bde 1532 }
6702ed49 1533 }
e9d0b13b 1534 if (search_start == 0)
6b80053d 1535 search_start = last_block;
e9d0b13b 1536
e7a84565 1537 btrfs_tree_lock(cur);
b4ce94de 1538 btrfs_set_lock_blocking(cur);
6b80053d 1539 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1540 &cur, search_start,
6b80053d 1541 min(16 * blocksize,
9fa8cfe7 1542 (end_slot - i) * blocksize));
252c38f0 1543 if (err) {
e7a84565 1544 btrfs_tree_unlock(cur);
6b80053d 1545 free_extent_buffer(cur);
6702ed49 1546 break;
252c38f0 1547 }
e7a84565
CM
1548 search_start = cur->start;
1549 last_block = cur->start;
f2183bde 1550 *last_ret = search_start;
e7a84565
CM
1551 btrfs_tree_unlock(cur);
1552 free_extent_buffer(cur);
6702ed49
CM
1553 }
1554 return err;
1555}
1556
74123bd7
CM
1557/*
1558 * The leaf data grows from end-to-front in the node.
1559 * this returns the address of the start of the last item,
1560 * which is the stop of the leaf data stack
1561 */
123abc88 1562static inline unsigned int leaf_data_end(struct btrfs_root *root,
5f39d397 1563 struct extent_buffer *leaf)
be0e5c09 1564{
5f39d397 1565 u32 nr = btrfs_header_nritems(leaf);
be0e5c09 1566 if (nr == 0)
123abc88 1567 return BTRFS_LEAF_DATA_SIZE(root);
5f39d397 1568 return btrfs_item_offset_nr(leaf, nr - 1);
be0e5c09
CM
1569}
1570
aa5d6bed 1571
74123bd7 1572/*
5f39d397
CM
1573 * search for key in the extent_buffer. The items start at offset p,
1574 * and they are item_size apart. There are 'max' items in p.
1575 *
74123bd7
CM
1576 * the slot in the array is returned via slot, and it points to
1577 * the place where you would insert key if it is not found in
1578 * the array.
1579 *
1580 * slot may point to max if the key is bigger than all of the keys
1581 */
e02119d5
CM
1582static noinline int generic_bin_search(struct extent_buffer *eb,
1583 unsigned long p,
1584 int item_size, struct btrfs_key *key,
1585 int max, int *slot)
be0e5c09
CM
1586{
1587 int low = 0;
1588 int high = max;
1589 int mid;
1590 int ret;
479965d6 1591 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1592 struct btrfs_disk_key unaligned;
1593 unsigned long offset;
5f39d397
CM
1594 char *kaddr = NULL;
1595 unsigned long map_start = 0;
1596 unsigned long map_len = 0;
479965d6 1597 int err;
be0e5c09 1598
d397712b 1599 while (low < high) {
be0e5c09 1600 mid = (low + high) / 2;
5f39d397
CM
1601 offset = p + mid * item_size;
1602
a6591715 1603 if (!kaddr || offset < map_start ||
5f39d397
CM
1604 (offset + sizeof(struct btrfs_disk_key)) >
1605 map_start + map_len) {
934d375b
CM
1606
1607 err = map_private_extent_buffer(eb, offset,
479965d6 1608 sizeof(struct btrfs_disk_key),
a6591715 1609 &kaddr, &map_start, &map_len);
479965d6
CM
1610
1611 if (!err) {
1612 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1613 map_start);
1614 } else {
1615 read_extent_buffer(eb, &unaligned,
1616 offset, sizeof(unaligned));
1617 tmp = &unaligned;
1618 }
5f39d397 1619
5f39d397
CM
1620 } else {
1621 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1622 map_start);
1623 }
be0e5c09
CM
1624 ret = comp_keys(tmp, key);
1625
1626 if (ret < 0)
1627 low = mid + 1;
1628 else if (ret > 0)
1629 high = mid;
1630 else {
1631 *slot = mid;
1632 return 0;
1633 }
1634 }
1635 *slot = low;
1636 return 1;
1637}
1638
97571fd0
CM
1639/*
1640 * simple bin_search frontend that does the right thing for
1641 * leaves vs nodes
1642 */
5f39d397
CM
1643static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1644 int level, int *slot)
be0e5c09 1645{
f775738f 1646 if (level == 0)
5f39d397
CM
1647 return generic_bin_search(eb,
1648 offsetof(struct btrfs_leaf, items),
0783fcfc 1649 sizeof(struct btrfs_item),
5f39d397 1650 key, btrfs_header_nritems(eb),
7518a238 1651 slot);
f775738f 1652 else
5f39d397
CM
1653 return generic_bin_search(eb,
1654 offsetof(struct btrfs_node, ptrs),
123abc88 1655 sizeof(struct btrfs_key_ptr),
5f39d397 1656 key, btrfs_header_nritems(eb),
7518a238 1657 slot);
be0e5c09
CM
1658}
1659
5d4f98a2
YZ
1660int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1661 int level, int *slot)
1662{
1663 return bin_search(eb, key, level, slot);
1664}
1665
f0486c68
YZ
1666static void root_add_used(struct btrfs_root *root, u32 size)
1667{
1668 spin_lock(&root->accounting_lock);
1669 btrfs_set_root_used(&root->root_item,
1670 btrfs_root_used(&root->root_item) + size);
1671 spin_unlock(&root->accounting_lock);
1672}
1673
1674static void root_sub_used(struct btrfs_root *root, u32 size)
1675{
1676 spin_lock(&root->accounting_lock);
1677 btrfs_set_root_used(&root->root_item,
1678 btrfs_root_used(&root->root_item) - size);
1679 spin_unlock(&root->accounting_lock);
1680}
1681
d352ac68
CM
1682/* given a node and slot number, this reads the blocks it points to. The
1683 * extent buffer is returned with a reference taken (but unlocked).
1684 * NULL is returned on error.
1685 */
e02119d5 1686static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
5f39d397 1687 struct extent_buffer *parent, int slot)
bb803951 1688{
ca7a79ad 1689 int level = btrfs_header_level(parent);
bb803951
CM
1690 if (slot < 0)
1691 return NULL;
5f39d397 1692 if (slot >= btrfs_header_nritems(parent))
bb803951 1693 return NULL;
ca7a79ad
CM
1694
1695 BUG_ON(level == 0);
1696
db94535d 1697 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
ca7a79ad
CM
1698 btrfs_level_size(root, level - 1),
1699 btrfs_node_ptr_generation(parent, slot));
bb803951
CM
1700}
1701
d352ac68
CM
1702/*
1703 * node level balancing, used to make sure nodes are in proper order for
1704 * item deletion. We balance from the top down, so we have to make sure
1705 * that a deletion won't leave an node completely empty later on.
1706 */
e02119d5 1707static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1708 struct btrfs_root *root,
1709 struct btrfs_path *path, int level)
bb803951 1710{
5f39d397
CM
1711 struct extent_buffer *right = NULL;
1712 struct extent_buffer *mid;
1713 struct extent_buffer *left = NULL;
1714 struct extent_buffer *parent = NULL;
bb803951
CM
1715 int ret = 0;
1716 int wret;
1717 int pslot;
bb803951 1718 int orig_slot = path->slots[level];
79f95c82 1719 u64 orig_ptr;
bb803951
CM
1720
1721 if (level == 0)
1722 return 0;
1723
5f39d397 1724 mid = path->nodes[level];
b4ce94de 1725
bd681513
CM
1726 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1727 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1728 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1729
1d4f8a0c 1730 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1731
a05a9bb1 1732 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1733 parent = path->nodes[level + 1];
a05a9bb1
LZ
1734 pslot = path->slots[level + 1];
1735 }
bb803951 1736
40689478
CM
1737 /*
1738 * deal with the case where there is only one pointer in the root
1739 * by promoting the node below to a root
1740 */
5f39d397
CM
1741 if (!parent) {
1742 struct extent_buffer *child;
bb803951 1743
5f39d397 1744 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1745 return 0;
1746
1747 /* promote the child to a root */
5f39d397 1748 child = read_node_slot(root, mid, 0);
305a26af
MF
1749 if (!child) {
1750 ret = -EROFS;
1751 btrfs_std_error(root->fs_info, ret);
1752 goto enospc;
1753 }
1754
925baedd 1755 btrfs_tree_lock(child);
b4ce94de 1756 btrfs_set_lock_blocking(child);
9fa8cfe7 1757 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1758 if (ret) {
1759 btrfs_tree_unlock(child);
1760 free_extent_buffer(child);
1761 goto enospc;
1762 }
2f375ab9 1763
ba1bfbd5 1764 tree_mod_log_free_eb(root->fs_info, root->node);
f230475e 1765 tree_mod_log_set_root_pointer(root, child);
240f62c8 1766 rcu_assign_pointer(root->node, child);
925baedd 1767
0b86a832 1768 add_root_to_dirty_list(root);
925baedd 1769 btrfs_tree_unlock(child);
b4ce94de 1770
925baedd 1771 path->locks[level] = 0;
bb803951 1772 path->nodes[level] = NULL;
5f39d397 1773 clean_tree_block(trans, root, mid);
925baedd 1774 btrfs_tree_unlock(mid);
bb803951 1775 /* once for the path */
5f39d397 1776 free_extent_buffer(mid);
f0486c68
YZ
1777
1778 root_sub_used(root, mid->len);
5581a51a 1779 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1780 /* once for the root ptr */
3083ee2e 1781 free_extent_buffer_stale(mid);
f0486c68 1782 return 0;
bb803951 1783 }
5f39d397 1784 if (btrfs_header_nritems(mid) >
123abc88 1785 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
bb803951
CM
1786 return 0;
1787
5f39d397
CM
1788 left = read_node_slot(root, parent, pslot - 1);
1789 if (left) {
925baedd 1790 btrfs_tree_lock(left);
b4ce94de 1791 btrfs_set_lock_blocking(left);
5f39d397 1792 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1793 parent, pslot - 1, &left);
54aa1f4d
CM
1794 if (wret) {
1795 ret = wret;
1796 goto enospc;
1797 }
2cc58cf2 1798 }
5f39d397
CM
1799 right = read_node_slot(root, parent, pslot + 1);
1800 if (right) {
925baedd 1801 btrfs_tree_lock(right);
b4ce94de 1802 btrfs_set_lock_blocking(right);
5f39d397 1803 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1804 parent, pslot + 1, &right);
2cc58cf2
CM
1805 if (wret) {
1806 ret = wret;
1807 goto enospc;
1808 }
1809 }
1810
1811 /* first, try to make some room in the middle buffer */
5f39d397
CM
1812 if (left) {
1813 orig_slot += btrfs_header_nritems(left);
bce4eae9 1814 wret = push_node_left(trans, root, left, mid, 1);
79f95c82
CM
1815 if (wret < 0)
1816 ret = wret;
bb803951 1817 }
79f95c82
CM
1818
1819 /*
1820 * then try to empty the right most buffer into the middle
1821 */
5f39d397 1822 if (right) {
971a1f66 1823 wret = push_node_left(trans, root, mid, right, 1);
54aa1f4d 1824 if (wret < 0 && wret != -ENOSPC)
79f95c82 1825 ret = wret;
5f39d397 1826 if (btrfs_header_nritems(right) == 0) {
5f39d397 1827 clean_tree_block(trans, root, right);
925baedd 1828 btrfs_tree_unlock(right);
0e411ece 1829 del_ptr(trans, root, path, level + 1, pslot + 1);
f0486c68 1830 root_sub_used(root, right->len);
5581a51a 1831 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1832 free_extent_buffer_stale(right);
f0486c68 1833 right = NULL;
bb803951 1834 } else {
5f39d397
CM
1835 struct btrfs_disk_key right_key;
1836 btrfs_node_key(right, &right_key, 0);
f230475e
JS
1837 tree_mod_log_set_node_key(root->fs_info, parent,
1838 &right_key, pslot + 1, 0);
5f39d397
CM
1839 btrfs_set_node_key(parent, &right_key, pslot + 1);
1840 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1841 }
1842 }
5f39d397 1843 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1844 /*
1845 * we're not allowed to leave a node with one item in the
1846 * tree during a delete. A deletion from lower in the tree
1847 * could try to delete the only pointer in this node.
1848 * So, pull some keys from the left.
1849 * There has to be a left pointer at this point because
1850 * otherwise we would have pulled some pointers from the
1851 * right
1852 */
305a26af
MF
1853 if (!left) {
1854 ret = -EROFS;
1855 btrfs_std_error(root->fs_info, ret);
1856 goto enospc;
1857 }
5f39d397 1858 wret = balance_node_right(trans, root, mid, left);
54aa1f4d 1859 if (wret < 0) {
79f95c82 1860 ret = wret;
54aa1f4d
CM
1861 goto enospc;
1862 }
bce4eae9
CM
1863 if (wret == 1) {
1864 wret = push_node_left(trans, root, left, mid, 1);
1865 if (wret < 0)
1866 ret = wret;
1867 }
79f95c82
CM
1868 BUG_ON(wret == 1);
1869 }
5f39d397 1870 if (btrfs_header_nritems(mid) == 0) {
5f39d397 1871 clean_tree_block(trans, root, mid);
925baedd 1872 btrfs_tree_unlock(mid);
0e411ece 1873 del_ptr(trans, root, path, level + 1, pslot);
f0486c68 1874 root_sub_used(root, mid->len);
5581a51a 1875 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 1876 free_extent_buffer_stale(mid);
f0486c68 1877 mid = NULL;
79f95c82
CM
1878 } else {
1879 /* update the parent key to reflect our changes */
5f39d397
CM
1880 struct btrfs_disk_key mid_key;
1881 btrfs_node_key(mid, &mid_key, 0);
f230475e
JS
1882 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1883 pslot, 0);
5f39d397
CM
1884 btrfs_set_node_key(parent, &mid_key, pslot);
1885 btrfs_mark_buffer_dirty(parent);
79f95c82 1886 }
bb803951 1887
79f95c82 1888 /* update the path */
5f39d397
CM
1889 if (left) {
1890 if (btrfs_header_nritems(left) > orig_slot) {
1891 extent_buffer_get(left);
925baedd 1892 /* left was locked after cow */
5f39d397 1893 path->nodes[level] = left;
bb803951
CM
1894 path->slots[level + 1] -= 1;
1895 path->slots[level] = orig_slot;
925baedd
CM
1896 if (mid) {
1897 btrfs_tree_unlock(mid);
5f39d397 1898 free_extent_buffer(mid);
925baedd 1899 }
bb803951 1900 } else {
5f39d397 1901 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
1902 path->slots[level] = orig_slot;
1903 }
1904 }
79f95c82 1905 /* double check we haven't messed things up */
e20d96d6 1906 if (orig_ptr !=
5f39d397 1907 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 1908 BUG();
54aa1f4d 1909enospc:
925baedd
CM
1910 if (right) {
1911 btrfs_tree_unlock(right);
5f39d397 1912 free_extent_buffer(right);
925baedd
CM
1913 }
1914 if (left) {
1915 if (path->nodes[level] != left)
1916 btrfs_tree_unlock(left);
5f39d397 1917 free_extent_buffer(left);
925baedd 1918 }
bb803951
CM
1919 return ret;
1920}
1921
d352ac68
CM
1922/* Node balancing for insertion. Here we only split or push nodes around
1923 * when they are completely full. This is also done top down, so we
1924 * have to be pessimistic.
1925 */
d397712b 1926static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
1927 struct btrfs_root *root,
1928 struct btrfs_path *path, int level)
e66f709b 1929{
5f39d397
CM
1930 struct extent_buffer *right = NULL;
1931 struct extent_buffer *mid;
1932 struct extent_buffer *left = NULL;
1933 struct extent_buffer *parent = NULL;
e66f709b
CM
1934 int ret = 0;
1935 int wret;
1936 int pslot;
1937 int orig_slot = path->slots[level];
e66f709b
CM
1938
1939 if (level == 0)
1940 return 1;
1941
5f39d397 1942 mid = path->nodes[level];
7bb86316 1943 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 1944
a05a9bb1 1945 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1946 parent = path->nodes[level + 1];
a05a9bb1
LZ
1947 pslot = path->slots[level + 1];
1948 }
e66f709b 1949
5f39d397 1950 if (!parent)
e66f709b 1951 return 1;
e66f709b 1952
5f39d397 1953 left = read_node_slot(root, parent, pslot - 1);
e66f709b
CM
1954
1955 /* first, try to make some room in the middle buffer */
5f39d397 1956 if (left) {
e66f709b 1957 u32 left_nr;
925baedd
CM
1958
1959 btrfs_tree_lock(left);
b4ce94de
CM
1960 btrfs_set_lock_blocking(left);
1961
5f39d397 1962 left_nr = btrfs_header_nritems(left);
33ade1f8
CM
1963 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1964 wret = 1;
1965 } else {
5f39d397 1966 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 1967 pslot - 1, &left);
54aa1f4d
CM
1968 if (ret)
1969 wret = 1;
1970 else {
54aa1f4d 1971 wret = push_node_left(trans, root,
971a1f66 1972 left, mid, 0);
54aa1f4d 1973 }
33ade1f8 1974 }
e66f709b
CM
1975 if (wret < 0)
1976 ret = wret;
1977 if (wret == 0) {
5f39d397 1978 struct btrfs_disk_key disk_key;
e66f709b 1979 orig_slot += left_nr;
5f39d397 1980 btrfs_node_key(mid, &disk_key, 0);
f230475e
JS
1981 tree_mod_log_set_node_key(root->fs_info, parent,
1982 &disk_key, pslot, 0);
5f39d397
CM
1983 btrfs_set_node_key(parent, &disk_key, pslot);
1984 btrfs_mark_buffer_dirty(parent);
1985 if (btrfs_header_nritems(left) > orig_slot) {
1986 path->nodes[level] = left;
e66f709b
CM
1987 path->slots[level + 1] -= 1;
1988 path->slots[level] = orig_slot;
925baedd 1989 btrfs_tree_unlock(mid);
5f39d397 1990 free_extent_buffer(mid);
e66f709b
CM
1991 } else {
1992 orig_slot -=
5f39d397 1993 btrfs_header_nritems(left);
e66f709b 1994 path->slots[level] = orig_slot;
925baedd 1995 btrfs_tree_unlock(left);
5f39d397 1996 free_extent_buffer(left);
e66f709b 1997 }
e66f709b
CM
1998 return 0;
1999 }
925baedd 2000 btrfs_tree_unlock(left);
5f39d397 2001 free_extent_buffer(left);
e66f709b 2002 }
925baedd 2003 right = read_node_slot(root, parent, pslot + 1);
e66f709b
CM
2004
2005 /*
2006 * then try to empty the right most buffer into the middle
2007 */
5f39d397 2008 if (right) {
33ade1f8 2009 u32 right_nr;
b4ce94de 2010
925baedd 2011 btrfs_tree_lock(right);
b4ce94de
CM
2012 btrfs_set_lock_blocking(right);
2013
5f39d397 2014 right_nr = btrfs_header_nritems(right);
33ade1f8
CM
2015 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2016 wret = 1;
2017 } else {
5f39d397
CM
2018 ret = btrfs_cow_block(trans, root, right,
2019 parent, pslot + 1,
9fa8cfe7 2020 &right);
54aa1f4d
CM
2021 if (ret)
2022 wret = 1;
2023 else {
54aa1f4d 2024 wret = balance_node_right(trans, root,
5f39d397 2025 right, mid);
54aa1f4d 2026 }
33ade1f8 2027 }
e66f709b
CM
2028 if (wret < 0)
2029 ret = wret;
2030 if (wret == 0) {
5f39d397
CM
2031 struct btrfs_disk_key disk_key;
2032
2033 btrfs_node_key(right, &disk_key, 0);
f230475e
JS
2034 tree_mod_log_set_node_key(root->fs_info, parent,
2035 &disk_key, pslot + 1, 0);
5f39d397
CM
2036 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2037 btrfs_mark_buffer_dirty(parent);
2038
2039 if (btrfs_header_nritems(mid) <= orig_slot) {
2040 path->nodes[level] = right;
e66f709b
CM
2041 path->slots[level + 1] += 1;
2042 path->slots[level] = orig_slot -
5f39d397 2043 btrfs_header_nritems(mid);
925baedd 2044 btrfs_tree_unlock(mid);
5f39d397 2045 free_extent_buffer(mid);
e66f709b 2046 } else {
925baedd 2047 btrfs_tree_unlock(right);
5f39d397 2048 free_extent_buffer(right);
e66f709b 2049 }
e66f709b
CM
2050 return 0;
2051 }
925baedd 2052 btrfs_tree_unlock(right);
5f39d397 2053 free_extent_buffer(right);
e66f709b 2054 }
e66f709b
CM
2055 return 1;
2056}
2057
3c69faec 2058/*
d352ac68
CM
2059 * readahead one full node of leaves, finding things that are close
2060 * to the block in 'slot', and triggering ra on them.
3c69faec 2061 */
c8c42864
CM
2062static void reada_for_search(struct btrfs_root *root,
2063 struct btrfs_path *path,
2064 int level, int slot, u64 objectid)
3c69faec 2065{
5f39d397 2066 struct extent_buffer *node;
01f46658 2067 struct btrfs_disk_key disk_key;
3c69faec 2068 u32 nritems;
3c69faec 2069 u64 search;
a7175319 2070 u64 target;
6b80053d 2071 u64 nread = 0;
cb25c2ea 2072 u64 gen;
3c69faec 2073 int direction = path->reada;
5f39d397 2074 struct extent_buffer *eb;
6b80053d
CM
2075 u32 nr;
2076 u32 blocksize;
2077 u32 nscan = 0;
db94535d 2078
a6b6e75e 2079 if (level != 1)
6702ed49
CM
2080 return;
2081
2082 if (!path->nodes[level])
3c69faec
CM
2083 return;
2084
5f39d397 2085 node = path->nodes[level];
925baedd 2086
3c69faec 2087 search = btrfs_node_blockptr(node, slot);
6b80053d
CM
2088 blocksize = btrfs_level_size(root, level - 1);
2089 eb = btrfs_find_tree_block(root, search, blocksize);
5f39d397
CM
2090 if (eb) {
2091 free_extent_buffer(eb);
3c69faec
CM
2092 return;
2093 }
2094
a7175319 2095 target = search;
6b80053d 2096
5f39d397 2097 nritems = btrfs_header_nritems(node);
6b80053d 2098 nr = slot;
25b8b936 2099
d397712b 2100 while (1) {
6b80053d
CM
2101 if (direction < 0) {
2102 if (nr == 0)
2103 break;
2104 nr--;
2105 } else if (direction > 0) {
2106 nr++;
2107 if (nr >= nritems)
2108 break;
3c69faec 2109 }
01f46658
CM
2110 if (path->reada < 0 && objectid) {
2111 btrfs_node_key(node, &disk_key, nr);
2112 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2113 break;
2114 }
6b80053d 2115 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2116 if ((search <= target && target - search <= 65536) ||
2117 (search > target && search - target <= 65536)) {
cb25c2ea 2118 gen = btrfs_node_ptr_generation(node, nr);
cb25c2ea 2119 readahead_tree_block(root, search, blocksize, gen);
6b80053d
CM
2120 nread += blocksize;
2121 }
2122 nscan++;
a7175319 2123 if ((nread > 65536 || nscan > 32))
6b80053d 2124 break;
3c69faec
CM
2125 }
2126}
925baedd 2127
b4ce94de
CM
2128/*
2129 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2130 * cache
2131 */
2132static noinline int reada_for_balance(struct btrfs_root *root,
2133 struct btrfs_path *path, int level)
2134{
2135 int slot;
2136 int nritems;
2137 struct extent_buffer *parent;
2138 struct extent_buffer *eb;
2139 u64 gen;
2140 u64 block1 = 0;
2141 u64 block2 = 0;
2142 int ret = 0;
2143 int blocksize;
2144
8c594ea8 2145 parent = path->nodes[level + 1];
b4ce94de
CM
2146 if (!parent)
2147 return 0;
2148
2149 nritems = btrfs_header_nritems(parent);
8c594ea8 2150 slot = path->slots[level + 1];
b4ce94de
CM
2151 blocksize = btrfs_level_size(root, level);
2152
2153 if (slot > 0) {
2154 block1 = btrfs_node_blockptr(parent, slot - 1);
2155 gen = btrfs_node_ptr_generation(parent, slot - 1);
2156 eb = btrfs_find_tree_block(root, block1, blocksize);
b9fab919
CM
2157 /*
2158 * if we get -eagain from btrfs_buffer_uptodate, we
2159 * don't want to return eagain here. That will loop
2160 * forever
2161 */
2162 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2163 block1 = 0;
2164 free_extent_buffer(eb);
2165 }
8c594ea8 2166 if (slot + 1 < nritems) {
b4ce94de
CM
2167 block2 = btrfs_node_blockptr(parent, slot + 1);
2168 gen = btrfs_node_ptr_generation(parent, slot + 1);
2169 eb = btrfs_find_tree_block(root, block2, blocksize);
b9fab919 2170 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2171 block2 = 0;
2172 free_extent_buffer(eb);
2173 }
2174 if (block1 || block2) {
2175 ret = -EAGAIN;
8c594ea8
CM
2176
2177 /* release the whole path */
b3b4aa74 2178 btrfs_release_path(path);
8c594ea8
CM
2179
2180 /* read the blocks */
b4ce94de
CM
2181 if (block1)
2182 readahead_tree_block(root, block1, blocksize, 0);
2183 if (block2)
2184 readahead_tree_block(root, block2, blocksize, 0);
2185
2186 if (block1) {
2187 eb = read_tree_block(root, block1, blocksize, 0);
2188 free_extent_buffer(eb);
2189 }
8c594ea8 2190 if (block2) {
b4ce94de
CM
2191 eb = read_tree_block(root, block2, blocksize, 0);
2192 free_extent_buffer(eb);
2193 }
2194 }
2195 return ret;
2196}
2197
2198
d352ac68 2199/*
d397712b
CM
2200 * when we walk down the tree, it is usually safe to unlock the higher layers
2201 * in the tree. The exceptions are when our path goes through slot 0, because
2202 * operations on the tree might require changing key pointers higher up in the
2203 * tree.
d352ac68 2204 *
d397712b
CM
2205 * callers might also have set path->keep_locks, which tells this code to keep
2206 * the lock if the path points to the last slot in the block. This is part of
2207 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2208 *
d397712b
CM
2209 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2210 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2211 */
e02119d5 2212static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2213 int lowest_unlock, int min_write_lock_level,
2214 int *write_lock_level)
925baedd
CM
2215{
2216 int i;
2217 int skip_level = level;
051e1b9f 2218 int no_skips = 0;
925baedd
CM
2219 struct extent_buffer *t;
2220
2221 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2222 if (!path->nodes[i])
2223 break;
2224 if (!path->locks[i])
2225 break;
051e1b9f 2226 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2227 skip_level = i + 1;
2228 continue;
2229 }
051e1b9f 2230 if (!no_skips && path->keep_locks) {
925baedd
CM
2231 u32 nritems;
2232 t = path->nodes[i];
2233 nritems = btrfs_header_nritems(t);
051e1b9f 2234 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2235 skip_level = i + 1;
2236 continue;
2237 }
2238 }
051e1b9f
CM
2239 if (skip_level < i && i >= lowest_unlock)
2240 no_skips = 1;
2241
925baedd
CM
2242 t = path->nodes[i];
2243 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2244 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2245 path->locks[i] = 0;
f7c79f30
CM
2246 if (write_lock_level &&
2247 i > min_write_lock_level &&
2248 i <= *write_lock_level) {
2249 *write_lock_level = i - 1;
2250 }
925baedd
CM
2251 }
2252 }
2253}
2254
b4ce94de
CM
2255/*
2256 * This releases any locks held in the path starting at level and
2257 * going all the way up to the root.
2258 *
2259 * btrfs_search_slot will keep the lock held on higher nodes in a few
2260 * corner cases, such as COW of the block at slot zero in the node. This
2261 * ignores those rules, and it should only be called when there are no
2262 * more updates to be done higher up in the tree.
2263 */
2264noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2265{
2266 int i;
2267
5d4f98a2 2268 if (path->keep_locks)
b4ce94de
CM
2269 return;
2270
2271 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2272 if (!path->nodes[i])
12f4dacc 2273 continue;
b4ce94de 2274 if (!path->locks[i])
12f4dacc 2275 continue;
bd681513 2276 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2277 path->locks[i] = 0;
2278 }
2279}
2280
c8c42864
CM
2281/*
2282 * helper function for btrfs_search_slot. The goal is to find a block
2283 * in cache without setting the path to blocking. If we find the block
2284 * we return zero and the path is unchanged.
2285 *
2286 * If we can't find the block, we set the path blocking and do some
2287 * reada. -EAGAIN is returned and the search must be repeated.
2288 */
2289static int
2290read_block_for_search(struct btrfs_trans_handle *trans,
2291 struct btrfs_root *root, struct btrfs_path *p,
2292 struct extent_buffer **eb_ret, int level, int slot,
5d9e75c4 2293 struct btrfs_key *key, u64 time_seq)
c8c42864
CM
2294{
2295 u64 blocknr;
2296 u64 gen;
2297 u32 blocksize;
2298 struct extent_buffer *b = *eb_ret;
2299 struct extent_buffer *tmp;
76a05b35 2300 int ret;
c8c42864
CM
2301
2302 blocknr = btrfs_node_blockptr(b, slot);
2303 gen = btrfs_node_ptr_generation(b, slot);
2304 blocksize = btrfs_level_size(root, level - 1);
2305
2306 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
cb44921a 2307 if (tmp) {
b9fab919
CM
2308 /* first we do an atomic uptodate check */
2309 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2310 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
cb44921a
CM
2311 /*
2312 * we found an up to date block without
2313 * sleeping, return
2314 * right away
2315 */
2316 *eb_ret = tmp;
2317 return 0;
2318 }
2319 /* the pages were up to date, but we failed
2320 * the generation number check. Do a full
2321 * read for the generation number that is correct.
2322 * We must do this without dropping locks so
2323 * we can trust our generation number
2324 */
2325 free_extent_buffer(tmp);
bd681513
CM
2326 btrfs_set_path_blocking(p);
2327
b9fab919 2328 /* now we're allowed to do a blocking uptodate check */
cb44921a 2329 tmp = read_tree_block(root, blocknr, blocksize, gen);
b9fab919 2330 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
cb44921a
CM
2331 *eb_ret = tmp;
2332 return 0;
2333 }
2334 free_extent_buffer(tmp);
b3b4aa74 2335 btrfs_release_path(p);
cb44921a
CM
2336 return -EIO;
2337 }
c8c42864
CM
2338 }
2339
2340 /*
2341 * reduce lock contention at high levels
2342 * of the btree by dropping locks before
76a05b35
CM
2343 * we read. Don't release the lock on the current
2344 * level because we need to walk this node to figure
2345 * out which blocks to read.
c8c42864 2346 */
8c594ea8
CM
2347 btrfs_unlock_up_safe(p, level + 1);
2348 btrfs_set_path_blocking(p);
2349
cb44921a 2350 free_extent_buffer(tmp);
c8c42864
CM
2351 if (p->reada)
2352 reada_for_search(root, p, level, slot, key->objectid);
2353
b3b4aa74 2354 btrfs_release_path(p);
76a05b35
CM
2355
2356 ret = -EAGAIN;
5bdd3536 2357 tmp = read_tree_block(root, blocknr, blocksize, 0);
76a05b35
CM
2358 if (tmp) {
2359 /*
2360 * If the read above didn't mark this buffer up to date,
2361 * it will never end up being up to date. Set ret to EIO now
2362 * and give up so that our caller doesn't loop forever
2363 * on our EAGAINs.
2364 */
b9fab919 2365 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2366 ret = -EIO;
c8c42864 2367 free_extent_buffer(tmp);
76a05b35
CM
2368 }
2369 return ret;
c8c42864
CM
2370}
2371
2372/*
2373 * helper function for btrfs_search_slot. This does all of the checks
2374 * for node-level blocks and does any balancing required based on
2375 * the ins_len.
2376 *
2377 * If no extra work was required, zero is returned. If we had to
2378 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2379 * start over
2380 */
2381static int
2382setup_nodes_for_search(struct btrfs_trans_handle *trans,
2383 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2384 struct extent_buffer *b, int level, int ins_len,
2385 int *write_lock_level)
c8c42864
CM
2386{
2387 int ret;
2388 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2389 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2390 int sret;
2391
bd681513
CM
2392 if (*write_lock_level < level + 1) {
2393 *write_lock_level = level + 1;
2394 btrfs_release_path(p);
2395 goto again;
2396 }
2397
c8c42864
CM
2398 sret = reada_for_balance(root, p, level);
2399 if (sret)
2400 goto again;
2401
2402 btrfs_set_path_blocking(p);
2403 sret = split_node(trans, root, p, level);
bd681513 2404 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2405
2406 BUG_ON(sret > 0);
2407 if (sret) {
2408 ret = sret;
2409 goto done;
2410 }
2411 b = p->nodes[level];
2412 } else if (ins_len < 0 && btrfs_header_nritems(b) <
cfbb9308 2413 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
c8c42864
CM
2414 int sret;
2415
bd681513
CM
2416 if (*write_lock_level < level + 1) {
2417 *write_lock_level = level + 1;
2418 btrfs_release_path(p);
2419 goto again;
2420 }
2421
c8c42864
CM
2422 sret = reada_for_balance(root, p, level);
2423 if (sret)
2424 goto again;
2425
2426 btrfs_set_path_blocking(p);
2427 sret = balance_level(trans, root, p, level);
bd681513 2428 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2429
2430 if (sret) {
2431 ret = sret;
2432 goto done;
2433 }
2434 b = p->nodes[level];
2435 if (!b) {
b3b4aa74 2436 btrfs_release_path(p);
c8c42864
CM
2437 goto again;
2438 }
2439 BUG_ON(btrfs_header_nritems(b) == 1);
2440 }
2441 return 0;
2442
2443again:
2444 ret = -EAGAIN;
2445done:
2446 return ret;
2447}
2448
74123bd7
CM
2449/*
2450 * look for key in the tree. path is filled in with nodes along the way
2451 * if key is found, we return zero and you can find the item in the leaf
2452 * level of the path (level 0)
2453 *
2454 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2455 * be inserted, and 1 is returned. If there are other errors during the
2456 * search a negative error number is returned.
97571fd0
CM
2457 *
2458 * if ins_len > 0, nodes and leaves will be split as we walk down the
2459 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2460 * possible)
74123bd7 2461 */
e089f05c
CM
2462int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2463 *root, struct btrfs_key *key, struct btrfs_path *p, int
2464 ins_len, int cow)
be0e5c09 2465{
5f39d397 2466 struct extent_buffer *b;
be0e5c09
CM
2467 int slot;
2468 int ret;
33c66f43 2469 int err;
be0e5c09 2470 int level;
925baedd 2471 int lowest_unlock = 1;
bd681513
CM
2472 int root_lock;
2473 /* everything at write_lock_level or lower must be write locked */
2474 int write_lock_level = 0;
9f3a7427 2475 u8 lowest_level = 0;
f7c79f30 2476 int min_write_lock_level;
9f3a7427 2477
6702ed49 2478 lowest_level = p->lowest_level;
323ac95b 2479 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2480 WARN_ON(p->nodes[0] != NULL);
25179201 2481
bd681513 2482 if (ins_len < 0) {
925baedd 2483 lowest_unlock = 2;
65b51a00 2484
bd681513
CM
2485 /* when we are removing items, we might have to go up to level
2486 * two as we update tree pointers Make sure we keep write
2487 * for those levels as well
2488 */
2489 write_lock_level = 2;
2490 } else if (ins_len > 0) {
2491 /*
2492 * for inserting items, make sure we have a write lock on
2493 * level 1 so we can update keys
2494 */
2495 write_lock_level = 1;
2496 }
2497
2498 if (!cow)
2499 write_lock_level = -1;
2500
2501 if (cow && (p->keep_locks || p->lowest_level))
2502 write_lock_level = BTRFS_MAX_LEVEL;
2503
f7c79f30
CM
2504 min_write_lock_level = write_lock_level;
2505
bb803951 2506again:
bd681513
CM
2507 /*
2508 * we try very hard to do read locks on the root
2509 */
2510 root_lock = BTRFS_READ_LOCK;
2511 level = 0;
5d4f98a2 2512 if (p->search_commit_root) {
bd681513
CM
2513 /*
2514 * the commit roots are read only
2515 * so we always do read locks
2516 */
5d4f98a2
YZ
2517 b = root->commit_root;
2518 extent_buffer_get(b);
bd681513 2519 level = btrfs_header_level(b);
5d4f98a2 2520 if (!p->skip_locking)
bd681513 2521 btrfs_tree_read_lock(b);
5d4f98a2 2522 } else {
bd681513 2523 if (p->skip_locking) {
5d4f98a2 2524 b = btrfs_root_node(root);
bd681513
CM
2525 level = btrfs_header_level(b);
2526 } else {
2527 /* we don't know the level of the root node
2528 * until we actually have it read locked
2529 */
2530 b = btrfs_read_lock_root_node(root);
2531 level = btrfs_header_level(b);
2532 if (level <= write_lock_level) {
2533 /* whoops, must trade for write lock */
2534 btrfs_tree_read_unlock(b);
2535 free_extent_buffer(b);
2536 b = btrfs_lock_root_node(root);
2537 root_lock = BTRFS_WRITE_LOCK;
2538
2539 /* the level might have changed, check again */
2540 level = btrfs_header_level(b);
2541 }
2542 }
5d4f98a2 2543 }
bd681513
CM
2544 p->nodes[level] = b;
2545 if (!p->skip_locking)
2546 p->locks[level] = root_lock;
925baedd 2547
eb60ceac 2548 while (b) {
5f39d397 2549 level = btrfs_header_level(b);
65b51a00
CM
2550
2551 /*
2552 * setup the path here so we can release it under lock
2553 * contention with the cow code
2554 */
02217ed2 2555 if (cow) {
c8c42864
CM
2556 /*
2557 * if we don't really need to cow this block
2558 * then we don't want to set the path blocking,
2559 * so we test it here
2560 */
5d4f98a2 2561 if (!should_cow_block(trans, root, b))
65b51a00 2562 goto cow_done;
5d4f98a2 2563
b4ce94de
CM
2564 btrfs_set_path_blocking(p);
2565
bd681513
CM
2566 /*
2567 * must have write locks on this node and the
2568 * parent
2569 */
2570 if (level + 1 > write_lock_level) {
2571 write_lock_level = level + 1;
2572 btrfs_release_path(p);
2573 goto again;
2574 }
2575
33c66f43
YZ
2576 err = btrfs_cow_block(trans, root, b,
2577 p->nodes[level + 1],
2578 p->slots[level + 1], &b);
2579 if (err) {
33c66f43 2580 ret = err;
65b51a00 2581 goto done;
54aa1f4d 2582 }
02217ed2 2583 }
65b51a00 2584cow_done:
02217ed2 2585 BUG_ON(!cow && ins_len);
65b51a00 2586
eb60ceac 2587 p->nodes[level] = b;
bd681513 2588 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2589
2590 /*
2591 * we have a lock on b and as long as we aren't changing
2592 * the tree, there is no way to for the items in b to change.
2593 * It is safe to drop the lock on our parent before we
2594 * go through the expensive btree search on b.
2595 *
2596 * If cow is true, then we might be changing slot zero,
2597 * which may require changing the parent. So, we can't
2598 * drop the lock until after we know which slot we're
2599 * operating on.
2600 */
2601 if (!cow)
2602 btrfs_unlock_up_safe(p, level + 1);
2603
5f39d397 2604 ret = bin_search(b, key, level, &slot);
b4ce94de 2605
5f39d397 2606 if (level != 0) {
33c66f43
YZ
2607 int dec = 0;
2608 if (ret && slot > 0) {
2609 dec = 1;
be0e5c09 2610 slot -= 1;
33c66f43 2611 }
be0e5c09 2612 p->slots[level] = slot;
33c66f43 2613 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2614 ins_len, &write_lock_level);
33c66f43 2615 if (err == -EAGAIN)
c8c42864 2616 goto again;
33c66f43
YZ
2617 if (err) {
2618 ret = err;
c8c42864 2619 goto done;
33c66f43 2620 }
c8c42864
CM
2621 b = p->nodes[level];
2622 slot = p->slots[level];
b4ce94de 2623
bd681513
CM
2624 /*
2625 * slot 0 is special, if we change the key
2626 * we have to update the parent pointer
2627 * which means we must have a write lock
2628 * on the parent
2629 */
2630 if (slot == 0 && cow &&
2631 write_lock_level < level + 1) {
2632 write_lock_level = level + 1;
2633 btrfs_release_path(p);
2634 goto again;
2635 }
2636
f7c79f30
CM
2637 unlock_up(p, level, lowest_unlock,
2638 min_write_lock_level, &write_lock_level);
f9efa9c7 2639
925baedd 2640 if (level == lowest_level) {
33c66f43
YZ
2641 if (dec)
2642 p->slots[level]++;
5b21f2ed 2643 goto done;
925baedd 2644 }
ca7a79ad 2645
33c66f43 2646 err = read_block_for_search(trans, root, p,
5d9e75c4 2647 &b, level, slot, key, 0);
33c66f43 2648 if (err == -EAGAIN)
c8c42864 2649 goto again;
33c66f43
YZ
2650 if (err) {
2651 ret = err;
76a05b35 2652 goto done;
33c66f43 2653 }
76a05b35 2654
b4ce94de 2655 if (!p->skip_locking) {
bd681513
CM
2656 level = btrfs_header_level(b);
2657 if (level <= write_lock_level) {
2658 err = btrfs_try_tree_write_lock(b);
2659 if (!err) {
2660 btrfs_set_path_blocking(p);
2661 btrfs_tree_lock(b);
2662 btrfs_clear_path_blocking(p, b,
2663 BTRFS_WRITE_LOCK);
2664 }
2665 p->locks[level] = BTRFS_WRITE_LOCK;
2666 } else {
2667 err = btrfs_try_tree_read_lock(b);
2668 if (!err) {
2669 btrfs_set_path_blocking(p);
2670 btrfs_tree_read_lock(b);
2671 btrfs_clear_path_blocking(p, b,
2672 BTRFS_READ_LOCK);
2673 }
2674 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2675 }
bd681513 2676 p->nodes[level] = b;
b4ce94de 2677 }
be0e5c09
CM
2678 } else {
2679 p->slots[level] = slot;
87b29b20
YZ
2680 if (ins_len > 0 &&
2681 btrfs_leaf_free_space(root, b) < ins_len) {
bd681513
CM
2682 if (write_lock_level < 1) {
2683 write_lock_level = 1;
2684 btrfs_release_path(p);
2685 goto again;
2686 }
2687
b4ce94de 2688 btrfs_set_path_blocking(p);
33c66f43
YZ
2689 err = split_leaf(trans, root, key,
2690 p, ins_len, ret == 0);
bd681513 2691 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2692
33c66f43
YZ
2693 BUG_ON(err > 0);
2694 if (err) {
2695 ret = err;
65b51a00
CM
2696 goto done;
2697 }
5c680ed6 2698 }
459931ec 2699 if (!p->search_for_split)
f7c79f30
CM
2700 unlock_up(p, level, lowest_unlock,
2701 min_write_lock_level, &write_lock_level);
65b51a00 2702 goto done;
be0e5c09
CM
2703 }
2704 }
65b51a00
CM
2705 ret = 1;
2706done:
b4ce94de
CM
2707 /*
2708 * we don't really know what they plan on doing with the path
2709 * from here on, so for now just mark it as blocking
2710 */
b9473439
CM
2711 if (!p->leave_spinning)
2712 btrfs_set_path_blocking(p);
76a05b35 2713 if (ret < 0)
b3b4aa74 2714 btrfs_release_path(p);
65b51a00 2715 return ret;
be0e5c09
CM
2716}
2717
5d9e75c4
JS
2718/*
2719 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2720 * current state of the tree together with the operations recorded in the tree
2721 * modification log to search for the key in a previous version of this tree, as
2722 * denoted by the time_seq parameter.
2723 *
2724 * Naturally, there is no support for insert, delete or cow operations.
2725 *
2726 * The resulting path and return value will be set up as if we called
2727 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2728 */
2729int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2730 struct btrfs_path *p, u64 time_seq)
2731{
2732 struct extent_buffer *b;
2733 int slot;
2734 int ret;
2735 int err;
2736 int level;
2737 int lowest_unlock = 1;
2738 u8 lowest_level = 0;
2739
2740 lowest_level = p->lowest_level;
2741 WARN_ON(p->nodes[0] != NULL);
2742
2743 if (p->search_commit_root) {
2744 BUG_ON(time_seq);
2745 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2746 }
2747
2748again:
5d9e75c4 2749 b = get_old_root(root, time_seq);
5d9e75c4 2750 level = btrfs_header_level(b);
5d9e75c4
JS
2751 p->locks[level] = BTRFS_READ_LOCK;
2752
2753 while (b) {
2754 level = btrfs_header_level(b);
2755 p->nodes[level] = b;
2756 btrfs_clear_path_blocking(p, NULL, 0);
2757
2758 /*
2759 * we have a lock on b and as long as we aren't changing
2760 * the tree, there is no way to for the items in b to change.
2761 * It is safe to drop the lock on our parent before we
2762 * go through the expensive btree search on b.
2763 */
2764 btrfs_unlock_up_safe(p, level + 1);
2765
2766 ret = bin_search(b, key, level, &slot);
2767
2768 if (level != 0) {
2769 int dec = 0;
2770 if (ret && slot > 0) {
2771 dec = 1;
2772 slot -= 1;
2773 }
2774 p->slots[level] = slot;
2775 unlock_up(p, level, lowest_unlock, 0, NULL);
2776
2777 if (level == lowest_level) {
2778 if (dec)
2779 p->slots[level]++;
2780 goto done;
2781 }
2782
2783 err = read_block_for_search(NULL, root, p, &b, level,
2784 slot, key, time_seq);
2785 if (err == -EAGAIN)
2786 goto again;
2787 if (err) {
2788 ret = err;
2789 goto done;
2790 }
2791
2792 level = btrfs_header_level(b);
2793 err = btrfs_try_tree_read_lock(b);
2794 if (!err) {
2795 btrfs_set_path_blocking(p);
2796 btrfs_tree_read_lock(b);
2797 btrfs_clear_path_blocking(p, b,
2798 BTRFS_READ_LOCK);
2799 }
2800 p->locks[level] = BTRFS_READ_LOCK;
2801 p->nodes[level] = b;
2802 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2803 if (b != p->nodes[level]) {
2804 btrfs_tree_unlock_rw(p->nodes[level],
2805 p->locks[level]);
2806 p->locks[level] = 0;
2807 p->nodes[level] = b;
2808 }
2809 } else {
2810 p->slots[level] = slot;
2811 unlock_up(p, level, lowest_unlock, 0, NULL);
2812 goto done;
2813 }
2814 }
2815 ret = 1;
2816done:
2817 if (!p->leave_spinning)
2818 btrfs_set_path_blocking(p);
2819 if (ret < 0)
2820 btrfs_release_path(p);
2821
2822 return ret;
2823}
2824
2f38b3e1
AJ
2825/*
2826 * helper to use instead of search slot if no exact match is needed but
2827 * instead the next or previous item should be returned.
2828 * When find_higher is true, the next higher item is returned, the next lower
2829 * otherwise.
2830 * When return_any and find_higher are both true, and no higher item is found,
2831 * return the next lower instead.
2832 * When return_any is true and find_higher is false, and no lower item is found,
2833 * return the next higher instead.
2834 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2835 * < 0 on error
2836 */
2837int btrfs_search_slot_for_read(struct btrfs_root *root,
2838 struct btrfs_key *key, struct btrfs_path *p,
2839 int find_higher, int return_any)
2840{
2841 int ret;
2842 struct extent_buffer *leaf;
2843
2844again:
2845 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2846 if (ret <= 0)
2847 return ret;
2848 /*
2849 * a return value of 1 means the path is at the position where the
2850 * item should be inserted. Normally this is the next bigger item,
2851 * but in case the previous item is the last in a leaf, path points
2852 * to the first free slot in the previous leaf, i.e. at an invalid
2853 * item.
2854 */
2855 leaf = p->nodes[0];
2856
2857 if (find_higher) {
2858 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2859 ret = btrfs_next_leaf(root, p);
2860 if (ret <= 0)
2861 return ret;
2862 if (!return_any)
2863 return 1;
2864 /*
2865 * no higher item found, return the next
2866 * lower instead
2867 */
2868 return_any = 0;
2869 find_higher = 0;
2870 btrfs_release_path(p);
2871 goto again;
2872 }
2873 } else {
e6793769
AJ
2874 if (p->slots[0] == 0) {
2875 ret = btrfs_prev_leaf(root, p);
2876 if (ret < 0)
2877 return ret;
2878 if (!ret) {
2879 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2880 return 0;
2f38b3e1 2881 }
e6793769
AJ
2882 if (!return_any)
2883 return 1;
2884 /*
2885 * no lower item found, return the next
2886 * higher instead
2887 */
2888 return_any = 0;
2889 find_higher = 1;
2890 btrfs_release_path(p);
2891 goto again;
2892 } else {
2f38b3e1
AJ
2893 --p->slots[0];
2894 }
2895 }
2896 return 0;
2897}
2898
74123bd7
CM
2899/*
2900 * adjust the pointers going up the tree, starting at level
2901 * making sure the right key of each node is points to 'key'.
2902 * This is used after shifting pointers to the left, so it stops
2903 * fixing up pointers when a given leaf/node is not in slot 0 of the
2904 * higher levels
aa5d6bed 2905 *
74123bd7 2906 */
143bede5
JM
2907static void fixup_low_keys(struct btrfs_trans_handle *trans,
2908 struct btrfs_root *root, struct btrfs_path *path,
2909 struct btrfs_disk_key *key, int level)
be0e5c09
CM
2910{
2911 int i;
5f39d397
CM
2912 struct extent_buffer *t;
2913
234b63a0 2914 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 2915 int tslot = path->slots[i];
eb60ceac 2916 if (!path->nodes[i])
be0e5c09 2917 break;
5f39d397 2918 t = path->nodes[i];
f230475e 2919 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
5f39d397 2920 btrfs_set_node_key(t, key, tslot);
d6025579 2921 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
2922 if (tslot != 0)
2923 break;
2924 }
2925}
2926
31840ae1
ZY
2927/*
2928 * update item key.
2929 *
2930 * This function isn't completely safe. It's the caller's responsibility
2931 * that the new key won't break the order
2932 */
143bede5
JM
2933void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2934 struct btrfs_root *root, struct btrfs_path *path,
2935 struct btrfs_key *new_key)
31840ae1
ZY
2936{
2937 struct btrfs_disk_key disk_key;
2938 struct extent_buffer *eb;
2939 int slot;
2940
2941 eb = path->nodes[0];
2942 slot = path->slots[0];
2943 if (slot > 0) {
2944 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 2945 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
2946 }
2947 if (slot < btrfs_header_nritems(eb) - 1) {
2948 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 2949 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
2950 }
2951
2952 btrfs_cpu_key_to_disk(&disk_key, new_key);
2953 btrfs_set_item_key(eb, &disk_key, slot);
2954 btrfs_mark_buffer_dirty(eb);
2955 if (slot == 0)
2956 fixup_low_keys(trans, root, path, &disk_key, 1);
31840ae1
ZY
2957}
2958
74123bd7
CM
2959/*
2960 * try to push data from one node into the next node left in the
79f95c82 2961 * tree.
aa5d6bed
CM
2962 *
2963 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2964 * error, and > 0 if there was no room in the left hand block.
74123bd7 2965 */
98ed5174
CM
2966static int push_node_left(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 2968 struct extent_buffer *src, int empty)
be0e5c09 2969{
be0e5c09 2970 int push_items = 0;
bb803951
CM
2971 int src_nritems;
2972 int dst_nritems;
aa5d6bed 2973 int ret = 0;
be0e5c09 2974
5f39d397
CM
2975 src_nritems = btrfs_header_nritems(src);
2976 dst_nritems = btrfs_header_nritems(dst);
123abc88 2977 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
7bb86316
CM
2978 WARN_ON(btrfs_header_generation(src) != trans->transid);
2979 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 2980
bce4eae9 2981 if (!empty && src_nritems <= 8)
971a1f66
CM
2982 return 1;
2983
d397712b 2984 if (push_items <= 0)
be0e5c09
CM
2985 return 1;
2986
bce4eae9 2987 if (empty) {
971a1f66 2988 push_items = min(src_nritems, push_items);
bce4eae9
CM
2989 if (push_items < src_nritems) {
2990 /* leave at least 8 pointers in the node if
2991 * we aren't going to empty it
2992 */
2993 if (src_nritems - push_items < 8) {
2994 if (push_items <= 8)
2995 return 1;
2996 push_items -= 8;
2997 }
2998 }
2999 } else
3000 push_items = min(src_nritems - 8, push_items);
79f95c82 3001
f230475e
JS
3002 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3003 push_items);
5f39d397
CM
3004 copy_extent_buffer(dst, src,
3005 btrfs_node_key_ptr_offset(dst_nritems),
3006 btrfs_node_key_ptr_offset(0),
d397712b 3007 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3008
bb803951 3009 if (push_items < src_nritems) {
57911b8b
JS
3010 /*
3011 * don't call tree_mod_log_eb_move here, key removal was already
3012 * fully logged by tree_mod_log_eb_copy above.
3013 */
5f39d397
CM
3014 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3015 btrfs_node_key_ptr_offset(push_items),
3016 (src_nritems - push_items) *
3017 sizeof(struct btrfs_key_ptr));
3018 }
3019 btrfs_set_header_nritems(src, src_nritems - push_items);
3020 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3021 btrfs_mark_buffer_dirty(src);
3022 btrfs_mark_buffer_dirty(dst);
31840ae1 3023
79f95c82
CM
3024 return ret;
3025}
3026
3027/*
3028 * try to push data from one node into the next node right in the
3029 * tree.
3030 *
3031 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3032 * error, and > 0 if there was no room in the right hand block.
3033 *
3034 * this will only push up to 1/2 the contents of the left node over
3035 */
5f39d397
CM
3036static int balance_node_right(struct btrfs_trans_handle *trans,
3037 struct btrfs_root *root,
3038 struct extent_buffer *dst,
3039 struct extent_buffer *src)
79f95c82 3040{
79f95c82
CM
3041 int push_items = 0;
3042 int max_push;
3043 int src_nritems;
3044 int dst_nritems;
3045 int ret = 0;
79f95c82 3046
7bb86316
CM
3047 WARN_ON(btrfs_header_generation(src) != trans->transid);
3048 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3049
5f39d397
CM
3050 src_nritems = btrfs_header_nritems(src);
3051 dst_nritems = btrfs_header_nritems(dst);
123abc88 3052 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
d397712b 3053 if (push_items <= 0)
79f95c82 3054 return 1;
bce4eae9 3055
d397712b 3056 if (src_nritems < 4)
bce4eae9 3057 return 1;
79f95c82
CM
3058
3059 max_push = src_nritems / 2 + 1;
3060 /* don't try to empty the node */
d397712b 3061 if (max_push >= src_nritems)
79f95c82 3062 return 1;
252c38f0 3063
79f95c82
CM
3064 if (max_push < push_items)
3065 push_items = max_push;
3066
f230475e 3067 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3068 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3069 btrfs_node_key_ptr_offset(0),
3070 (dst_nritems) *
3071 sizeof(struct btrfs_key_ptr));
d6025579 3072
f230475e
JS
3073 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3074 src_nritems - push_items, push_items);
5f39d397
CM
3075 copy_extent_buffer(dst, src,
3076 btrfs_node_key_ptr_offset(0),
3077 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3078 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3079
5f39d397
CM
3080 btrfs_set_header_nritems(src, src_nritems - push_items);
3081 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3082
5f39d397
CM
3083 btrfs_mark_buffer_dirty(src);
3084 btrfs_mark_buffer_dirty(dst);
31840ae1 3085
aa5d6bed 3086 return ret;
be0e5c09
CM
3087}
3088
97571fd0
CM
3089/*
3090 * helper function to insert a new root level in the tree.
3091 * A new node is allocated, and a single item is inserted to
3092 * point to the existing root
aa5d6bed
CM
3093 *
3094 * returns zero on success or < 0 on failure.
97571fd0 3095 */
d397712b 3096static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397
CM
3097 struct btrfs_root *root,
3098 struct btrfs_path *path, int level)
5c680ed6 3099{
7bb86316 3100 u64 lower_gen;
5f39d397
CM
3101 struct extent_buffer *lower;
3102 struct extent_buffer *c;
925baedd 3103 struct extent_buffer *old;
5f39d397 3104 struct btrfs_disk_key lower_key;
5c680ed6
CM
3105
3106 BUG_ON(path->nodes[level]);
3107 BUG_ON(path->nodes[level-1] != root->node);
3108
7bb86316
CM
3109 lower = path->nodes[level-1];
3110 if (level == 1)
3111 btrfs_item_key(lower, &lower_key, 0);
3112 else
3113 btrfs_node_key(lower, &lower_key, 0);
3114
31840ae1 3115 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
5d4f98a2 3116 root->root_key.objectid, &lower_key,
5581a51a 3117 level, root->node->start, 0);
5f39d397
CM
3118 if (IS_ERR(c))
3119 return PTR_ERR(c);
925baedd 3120
f0486c68
YZ
3121 root_add_used(root, root->nodesize);
3122
5d4f98a2 3123 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
5f39d397
CM
3124 btrfs_set_header_nritems(c, 1);
3125 btrfs_set_header_level(c, level);
db94535d 3126 btrfs_set_header_bytenr(c, c->start);
5f39d397 3127 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3128 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3129 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397
CM
3130
3131 write_extent_buffer(c, root->fs_info->fsid,
3132 (unsigned long)btrfs_header_fsid(c),
3133 BTRFS_FSID_SIZE);
e17cade2
CM
3134
3135 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3136 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3137 BTRFS_UUID_SIZE);
3138
5f39d397 3139 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3140 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3141 lower_gen = btrfs_header_generation(lower);
31840ae1 3142 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3143
3144 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3145
5f39d397 3146 btrfs_mark_buffer_dirty(c);
d5719762 3147
925baedd 3148 old = root->node;
f230475e 3149 tree_mod_log_set_root_pointer(root, c);
240f62c8 3150 rcu_assign_pointer(root->node, c);
925baedd
CM
3151
3152 /* the super has an extra ref to root->node */
3153 free_extent_buffer(old);
3154
0b86a832 3155 add_root_to_dirty_list(root);
5f39d397
CM
3156 extent_buffer_get(c);
3157 path->nodes[level] = c;
bd681513 3158 path->locks[level] = BTRFS_WRITE_LOCK;
5c680ed6
CM
3159 path->slots[level] = 0;
3160 return 0;
3161}
3162
74123bd7
CM
3163/*
3164 * worker function to insert a single pointer in a node.
3165 * the node should have enough room for the pointer already
97571fd0 3166 *
74123bd7
CM
3167 * slot and level indicate where you want the key to go, and
3168 * blocknr is the block the key points to.
3169 */
143bede5
JM
3170static void insert_ptr(struct btrfs_trans_handle *trans,
3171 struct btrfs_root *root, struct btrfs_path *path,
3172 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3173 int slot, int level)
74123bd7 3174{
5f39d397 3175 struct extent_buffer *lower;
74123bd7 3176 int nritems;
f3ea38da 3177 int ret;
5c680ed6
CM
3178
3179 BUG_ON(!path->nodes[level]);
f0486c68 3180 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3181 lower = path->nodes[level];
3182 nritems = btrfs_header_nritems(lower);
c293498b 3183 BUG_ON(slot > nritems);
143bede5 3184 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
74123bd7 3185 if (slot != nritems) {
c3e06965 3186 if (level)
f3ea38da
JS
3187 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3188 slot, nritems - slot);
5f39d397
CM
3189 memmove_extent_buffer(lower,
3190 btrfs_node_key_ptr_offset(slot + 1),
3191 btrfs_node_key_ptr_offset(slot),
d6025579 3192 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3193 }
c3e06965 3194 if (level) {
f3ea38da
JS
3195 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3196 MOD_LOG_KEY_ADD);
3197 BUG_ON(ret < 0);
3198 }
5f39d397 3199 btrfs_set_node_key(lower, key, slot);
db94535d 3200 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3201 WARN_ON(trans->transid == 0);
3202 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3203 btrfs_set_header_nritems(lower, nritems + 1);
3204 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3205}
3206
97571fd0
CM
3207/*
3208 * split the node at the specified level in path in two.
3209 * The path is corrected to point to the appropriate node after the split
3210 *
3211 * Before splitting this tries to make some room in the node by pushing
3212 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3213 *
3214 * returns 0 on success and < 0 on failure
97571fd0 3215 */
e02119d5
CM
3216static noinline int split_node(struct btrfs_trans_handle *trans,
3217 struct btrfs_root *root,
3218 struct btrfs_path *path, int level)
be0e5c09 3219{
5f39d397
CM
3220 struct extent_buffer *c;
3221 struct extent_buffer *split;
3222 struct btrfs_disk_key disk_key;
be0e5c09 3223 int mid;
5c680ed6 3224 int ret;
7518a238 3225 u32 c_nritems;
eb60ceac 3226
5f39d397 3227 c = path->nodes[level];
7bb86316 3228 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3229 if (c == root->node) {
5c680ed6 3230 /* trying to split the root, lets make a new one */
e089f05c 3231 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3232 if (ret)
3233 return ret;
b3612421 3234 } else {
e66f709b 3235 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3236 c = path->nodes[level];
3237 if (!ret && btrfs_header_nritems(c) <
c448acf0 3238 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
e66f709b 3239 return 0;
54aa1f4d
CM
3240 if (ret < 0)
3241 return ret;
be0e5c09 3242 }
e66f709b 3243
5f39d397 3244 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3245 mid = (c_nritems + 1) / 2;
3246 btrfs_node_key(c, &disk_key, mid);
7bb86316 3247
5d4f98a2 3248 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
31840ae1 3249 root->root_key.objectid,
5581a51a 3250 &disk_key, level, c->start, 0);
5f39d397
CM
3251 if (IS_ERR(split))
3252 return PTR_ERR(split);
3253
f0486c68
YZ
3254 root_add_used(root, root->nodesize);
3255
5d4f98a2 3256 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
5f39d397 3257 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3258 btrfs_set_header_bytenr(split, split->start);
5f39d397 3259 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3260 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
3261 btrfs_set_header_owner(split, root->root_key.objectid);
3262 write_extent_buffer(split, root->fs_info->fsid,
3263 (unsigned long)btrfs_header_fsid(split),
3264 BTRFS_FSID_SIZE);
e17cade2
CM
3265 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3266 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3267 BTRFS_UUID_SIZE);
54aa1f4d 3268
f230475e 3269 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
5f39d397
CM
3270 copy_extent_buffer(split, c,
3271 btrfs_node_key_ptr_offset(0),
3272 btrfs_node_key_ptr_offset(mid),
3273 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3274 btrfs_set_header_nritems(split, c_nritems - mid);
3275 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3276 ret = 0;
3277
5f39d397
CM
3278 btrfs_mark_buffer_dirty(c);
3279 btrfs_mark_buffer_dirty(split);
3280
143bede5 3281 insert_ptr(trans, root, path, &disk_key, split->start,
c3e06965 3282 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3283
5de08d7d 3284 if (path->slots[level] >= mid) {
5c680ed6 3285 path->slots[level] -= mid;
925baedd 3286 btrfs_tree_unlock(c);
5f39d397
CM
3287 free_extent_buffer(c);
3288 path->nodes[level] = split;
5c680ed6
CM
3289 path->slots[level + 1] += 1;
3290 } else {
925baedd 3291 btrfs_tree_unlock(split);
5f39d397 3292 free_extent_buffer(split);
be0e5c09 3293 }
aa5d6bed 3294 return ret;
be0e5c09
CM
3295}
3296
74123bd7
CM
3297/*
3298 * how many bytes are required to store the items in a leaf. start
3299 * and nr indicate which items in the leaf to check. This totals up the
3300 * space used both by the item structs and the item data
3301 */
5f39d397 3302static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09
CM
3303{
3304 int data_len;
5f39d397 3305 int nritems = btrfs_header_nritems(l);
d4dbff95 3306 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3307
3308 if (!nr)
3309 return 0;
5f39d397
CM
3310 data_len = btrfs_item_end_nr(l, start);
3311 data_len = data_len - btrfs_item_offset_nr(l, end);
0783fcfc 3312 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3313 WARN_ON(data_len < 0);
be0e5c09
CM
3314 return data_len;
3315}
3316
d4dbff95
CM
3317/*
3318 * The space between the end of the leaf items and
3319 * the start of the leaf data. IOW, how much room
3320 * the leaf has left for both items and data
3321 */
d397712b 3322noinline int btrfs_leaf_free_space(struct btrfs_root *root,
e02119d5 3323 struct extent_buffer *leaf)
d4dbff95 3324{
5f39d397
CM
3325 int nritems = btrfs_header_nritems(leaf);
3326 int ret;
3327 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3328 if (ret < 0) {
d397712b
CM
3329 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3330 "used %d nritems %d\n",
ae2f5411 3331 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
5f39d397
CM
3332 leaf_space_used(leaf, 0, nritems), nritems);
3333 }
3334 return ret;
d4dbff95
CM
3335}
3336
99d8f83c
CM
3337/*
3338 * min slot controls the lowest index we're willing to push to the
3339 * right. We'll push up to and including min_slot, but no lower
3340 */
44871b1b
CM
3341static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3342 struct btrfs_root *root,
3343 struct btrfs_path *path,
3344 int data_size, int empty,
3345 struct extent_buffer *right,
99d8f83c
CM
3346 int free_space, u32 left_nritems,
3347 u32 min_slot)
00ec4c51 3348{
5f39d397 3349 struct extent_buffer *left = path->nodes[0];
44871b1b 3350 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3351 struct btrfs_map_token token;
5f39d397 3352 struct btrfs_disk_key disk_key;
00ec4c51 3353 int slot;
34a38218 3354 u32 i;
00ec4c51
CM
3355 int push_space = 0;
3356 int push_items = 0;
0783fcfc 3357 struct btrfs_item *item;
34a38218 3358 u32 nr;
7518a238 3359 u32 right_nritems;
5f39d397 3360 u32 data_end;
db94535d 3361 u32 this_item_size;
00ec4c51 3362
cfed81a0
CM
3363 btrfs_init_map_token(&token);
3364
34a38218
CM
3365 if (empty)
3366 nr = 0;
3367 else
99d8f83c 3368 nr = max_t(u32, 1, min_slot);
34a38218 3369
31840ae1 3370 if (path->slots[0] >= left_nritems)
87b29b20 3371 push_space += data_size;
31840ae1 3372
44871b1b 3373 slot = path->slots[1];
34a38218
CM
3374 i = left_nritems - 1;
3375 while (i >= nr) {
5f39d397 3376 item = btrfs_item_nr(left, i);
db94535d 3377
31840ae1
ZY
3378 if (!empty && push_items > 0) {
3379 if (path->slots[0] > i)
3380 break;
3381 if (path->slots[0] == i) {
3382 int space = btrfs_leaf_free_space(root, left);
3383 if (space + push_space * 2 > free_space)
3384 break;
3385 }
3386 }
3387
00ec4c51 3388 if (path->slots[0] == i)
87b29b20 3389 push_space += data_size;
db94535d 3390
db94535d
CM
3391 this_item_size = btrfs_item_size(left, item);
3392 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3393 break;
31840ae1 3394
00ec4c51 3395 push_items++;
db94535d 3396 push_space += this_item_size + sizeof(*item);
34a38218
CM
3397 if (i == 0)
3398 break;
3399 i--;
db94535d 3400 }
5f39d397 3401
925baedd
CM
3402 if (push_items == 0)
3403 goto out_unlock;
5f39d397 3404
34a38218 3405 if (!empty && push_items == left_nritems)
a429e513 3406 WARN_ON(1);
5f39d397 3407
00ec4c51 3408 /* push left to right */
5f39d397 3409 right_nritems = btrfs_header_nritems(right);
34a38218 3410
5f39d397 3411 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
123abc88 3412 push_space -= leaf_data_end(root, left);
5f39d397 3413
00ec4c51 3414 /* make room in the right data area */
5f39d397
CM
3415 data_end = leaf_data_end(root, right);
3416 memmove_extent_buffer(right,
3417 btrfs_leaf_data(right) + data_end - push_space,
3418 btrfs_leaf_data(right) + data_end,
3419 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3420
00ec4c51 3421 /* copy from the left data area */
5f39d397 3422 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
d6025579
CM
3423 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3424 btrfs_leaf_data(left) + leaf_data_end(root, left),
3425 push_space);
5f39d397
CM
3426
3427 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3428 btrfs_item_nr_offset(0),
3429 right_nritems * sizeof(struct btrfs_item));
3430
00ec4c51 3431 /* copy the items from left to right */
5f39d397
CM
3432 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3433 btrfs_item_nr_offset(left_nritems - push_items),
3434 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3435
3436 /* update the item pointers */
7518a238 3437 right_nritems += push_items;
5f39d397 3438 btrfs_set_header_nritems(right, right_nritems);
123abc88 3439 push_space = BTRFS_LEAF_DATA_SIZE(root);
7518a238 3440 for (i = 0; i < right_nritems; i++) {
5f39d397 3441 item = btrfs_item_nr(right, i);
cfed81a0
CM
3442 push_space -= btrfs_token_item_size(right, item, &token);
3443 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3444 }
3445
7518a238 3446 left_nritems -= push_items;
5f39d397 3447 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3448
34a38218
CM
3449 if (left_nritems)
3450 btrfs_mark_buffer_dirty(left);
f0486c68
YZ
3451 else
3452 clean_tree_block(trans, root, left);
3453
5f39d397 3454 btrfs_mark_buffer_dirty(right);
a429e513 3455
5f39d397
CM
3456 btrfs_item_key(right, &disk_key, 0);
3457 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3458 btrfs_mark_buffer_dirty(upper);
02217ed2 3459
00ec4c51 3460 /* then fixup the leaf pointer in the path */
7518a238
CM
3461 if (path->slots[0] >= left_nritems) {
3462 path->slots[0] -= left_nritems;
925baedd
CM
3463 if (btrfs_header_nritems(path->nodes[0]) == 0)
3464 clean_tree_block(trans, root, path->nodes[0]);
3465 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3466 free_extent_buffer(path->nodes[0]);
3467 path->nodes[0] = right;
00ec4c51
CM
3468 path->slots[1] += 1;
3469 } else {
925baedd 3470 btrfs_tree_unlock(right);
5f39d397 3471 free_extent_buffer(right);
00ec4c51
CM
3472 }
3473 return 0;
925baedd
CM
3474
3475out_unlock:
3476 btrfs_tree_unlock(right);
3477 free_extent_buffer(right);
3478 return 1;
00ec4c51 3479}
925baedd 3480
44871b1b
CM
3481/*
3482 * push some data in the path leaf to the right, trying to free up at
3483 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3484 *
3485 * returns 1 if the push failed because the other node didn't have enough
3486 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3487 *
3488 * this will push starting from min_slot to the end of the leaf. It won't
3489 * push any slot lower than min_slot
44871b1b
CM
3490 */
3491static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3492 *root, struct btrfs_path *path,
3493 int min_data_size, int data_size,
3494 int empty, u32 min_slot)
44871b1b
CM
3495{
3496 struct extent_buffer *left = path->nodes[0];
3497 struct extent_buffer *right;
3498 struct extent_buffer *upper;
3499 int slot;
3500 int free_space;
3501 u32 left_nritems;
3502 int ret;
3503
3504 if (!path->nodes[1])
3505 return 1;
3506
3507 slot = path->slots[1];
3508 upper = path->nodes[1];
3509 if (slot >= btrfs_header_nritems(upper) - 1)
3510 return 1;
3511
3512 btrfs_assert_tree_locked(path->nodes[1]);
3513
3514 right = read_node_slot(root, upper, slot + 1);
91ca338d
TI
3515 if (right == NULL)
3516 return 1;
3517
44871b1b
CM
3518 btrfs_tree_lock(right);
3519 btrfs_set_lock_blocking(right);
3520
3521 free_space = btrfs_leaf_free_space(root, right);
3522 if (free_space < data_size)
3523 goto out_unlock;
3524
3525 /* cow and double check */
3526 ret = btrfs_cow_block(trans, root, right, upper,
3527 slot + 1, &right);
3528 if (ret)
3529 goto out_unlock;
3530
3531 free_space = btrfs_leaf_free_space(root, right);
3532 if (free_space < data_size)
3533 goto out_unlock;
3534
3535 left_nritems = btrfs_header_nritems(left);
3536 if (left_nritems == 0)
3537 goto out_unlock;
3538
99d8f83c
CM
3539 return __push_leaf_right(trans, root, path, min_data_size, empty,
3540 right, free_space, left_nritems, min_slot);
44871b1b
CM
3541out_unlock:
3542 btrfs_tree_unlock(right);
3543 free_extent_buffer(right);
3544 return 1;
3545}
3546
74123bd7
CM
3547/*
3548 * push some data in the path leaf to the left, trying to free up at
3549 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3550 *
3551 * max_slot can put a limit on how far into the leaf we'll push items. The
3552 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3553 * items
74123bd7 3554 */
44871b1b
CM
3555static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3556 struct btrfs_root *root,
3557 struct btrfs_path *path, int data_size,
3558 int empty, struct extent_buffer *left,
99d8f83c
CM
3559 int free_space, u32 right_nritems,
3560 u32 max_slot)
be0e5c09 3561{
5f39d397
CM
3562 struct btrfs_disk_key disk_key;
3563 struct extent_buffer *right = path->nodes[0];
be0e5c09 3564 int i;
be0e5c09
CM
3565 int push_space = 0;
3566 int push_items = 0;
0783fcfc 3567 struct btrfs_item *item;
7518a238 3568 u32 old_left_nritems;
34a38218 3569 u32 nr;
aa5d6bed 3570 int ret = 0;
db94535d
CM
3571 u32 this_item_size;
3572 u32 old_left_item_size;
cfed81a0
CM
3573 struct btrfs_map_token token;
3574
3575 btrfs_init_map_token(&token);
be0e5c09 3576
34a38218 3577 if (empty)
99d8f83c 3578 nr = min(right_nritems, max_slot);
34a38218 3579 else
99d8f83c 3580 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3581
3582 for (i = 0; i < nr; i++) {
5f39d397 3583 item = btrfs_item_nr(right, i);
db94535d 3584
31840ae1
ZY
3585 if (!empty && push_items > 0) {
3586 if (path->slots[0] < i)
3587 break;
3588 if (path->slots[0] == i) {
3589 int space = btrfs_leaf_free_space(root, right);
3590 if (space + push_space * 2 > free_space)
3591 break;
3592 }
3593 }
3594
be0e5c09 3595 if (path->slots[0] == i)
87b29b20 3596 push_space += data_size;
db94535d
CM
3597
3598 this_item_size = btrfs_item_size(right, item);
3599 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3600 break;
db94535d 3601
be0e5c09 3602 push_items++;
db94535d
CM
3603 push_space += this_item_size + sizeof(*item);
3604 }
3605
be0e5c09 3606 if (push_items == 0) {
925baedd
CM
3607 ret = 1;
3608 goto out;
be0e5c09 3609 }
34a38218 3610 if (!empty && push_items == btrfs_header_nritems(right))
a429e513 3611 WARN_ON(1);
5f39d397 3612
be0e5c09 3613 /* push data from right to left */
5f39d397
CM
3614 copy_extent_buffer(left, right,
3615 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3616 btrfs_item_nr_offset(0),
3617 push_items * sizeof(struct btrfs_item));
3618
123abc88 3619 push_space = BTRFS_LEAF_DATA_SIZE(root) -
d397712b 3620 btrfs_item_offset_nr(right, push_items - 1);
5f39d397
CM
3621
3622 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
d6025579
CM
3623 leaf_data_end(root, left) - push_space,
3624 btrfs_leaf_data(right) +
5f39d397 3625 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3626 push_space);
5f39d397 3627 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3628 BUG_ON(old_left_nritems <= 0);
eb60ceac 3629
db94535d 3630 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3631 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3632 u32 ioff;
db94535d 3633
5f39d397 3634 item = btrfs_item_nr(left, i);
db94535d 3635
cfed81a0
CM
3636 ioff = btrfs_token_item_offset(left, item, &token);
3637 btrfs_set_token_item_offset(left, item,
3638 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3639 &token);
be0e5c09 3640 }
5f39d397 3641 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3642
3643 /* fixup right node */
34a38218 3644 if (push_items > right_nritems) {
d397712b
CM
3645 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3646 right_nritems);
34a38218
CM
3647 WARN_ON(1);
3648 }
3649
3650 if (push_items < right_nritems) {
3651 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3652 leaf_data_end(root, right);
3653 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3654 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3655 btrfs_leaf_data(right) +
3656 leaf_data_end(root, right), push_space);
3657
3658 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3659 btrfs_item_nr_offset(push_items),
3660 (btrfs_header_nritems(right) - push_items) *
3661 sizeof(struct btrfs_item));
34a38218 3662 }
eef1c494
Y
3663 right_nritems -= push_items;
3664 btrfs_set_header_nritems(right, right_nritems);
123abc88 3665 push_space = BTRFS_LEAF_DATA_SIZE(root);
5f39d397
CM
3666 for (i = 0; i < right_nritems; i++) {
3667 item = btrfs_item_nr(right, i);
db94535d 3668
cfed81a0
CM
3669 push_space = push_space - btrfs_token_item_size(right,
3670 item, &token);
3671 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3672 }
eb60ceac 3673
5f39d397 3674 btrfs_mark_buffer_dirty(left);
34a38218
CM
3675 if (right_nritems)
3676 btrfs_mark_buffer_dirty(right);
f0486c68
YZ
3677 else
3678 clean_tree_block(trans, root, right);
098f59c2 3679
5f39d397 3680 btrfs_item_key(right, &disk_key, 0);
143bede5 3681 fixup_low_keys(trans, root, path, &disk_key, 1);
be0e5c09
CM
3682
3683 /* then fixup the leaf pointer in the path */
3684 if (path->slots[0] < push_items) {
3685 path->slots[0] += old_left_nritems;
925baedd 3686 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3687 free_extent_buffer(path->nodes[0]);
3688 path->nodes[0] = left;
be0e5c09
CM
3689 path->slots[1] -= 1;
3690 } else {
925baedd 3691 btrfs_tree_unlock(left);
5f39d397 3692 free_extent_buffer(left);
be0e5c09
CM
3693 path->slots[0] -= push_items;
3694 }
eb60ceac 3695 BUG_ON(path->slots[0] < 0);
aa5d6bed 3696 return ret;
925baedd
CM
3697out:
3698 btrfs_tree_unlock(left);
3699 free_extent_buffer(left);
3700 return ret;
be0e5c09
CM
3701}
3702
44871b1b
CM
3703/*
3704 * push some data in the path leaf to the left, trying to free up at
3705 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3706 *
3707 * max_slot can put a limit on how far into the leaf we'll push items. The
3708 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3709 * items
44871b1b
CM
3710 */
3711static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3712 *root, struct btrfs_path *path, int min_data_size,
3713 int data_size, int empty, u32 max_slot)
44871b1b
CM
3714{
3715 struct extent_buffer *right = path->nodes[0];
3716 struct extent_buffer *left;
3717 int slot;
3718 int free_space;
3719 u32 right_nritems;
3720 int ret = 0;
3721
3722 slot = path->slots[1];
3723 if (slot == 0)
3724 return 1;
3725 if (!path->nodes[1])
3726 return 1;
3727
3728 right_nritems = btrfs_header_nritems(right);
3729 if (right_nritems == 0)
3730 return 1;
3731
3732 btrfs_assert_tree_locked(path->nodes[1]);
3733
3734 left = read_node_slot(root, path->nodes[1], slot - 1);
91ca338d
TI
3735 if (left == NULL)
3736 return 1;
3737
44871b1b
CM
3738 btrfs_tree_lock(left);
3739 btrfs_set_lock_blocking(left);
3740
3741 free_space = btrfs_leaf_free_space(root, left);
3742 if (free_space < data_size) {
3743 ret = 1;
3744 goto out;
3745 }
3746
3747 /* cow and double check */
3748 ret = btrfs_cow_block(trans, root, left,
3749 path->nodes[1], slot - 1, &left);
3750 if (ret) {
3751 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
3752 if (ret == -ENOSPC)
3753 ret = 1;
44871b1b
CM
3754 goto out;
3755 }
3756
3757 free_space = btrfs_leaf_free_space(root, left);
3758 if (free_space < data_size) {
3759 ret = 1;
3760 goto out;
3761 }
3762
99d8f83c
CM
3763 return __push_leaf_left(trans, root, path, min_data_size,
3764 empty, left, free_space, right_nritems,
3765 max_slot);
44871b1b
CM
3766out:
3767 btrfs_tree_unlock(left);
3768 free_extent_buffer(left);
3769 return ret;
3770}
3771
3772/*
3773 * split the path's leaf in two, making sure there is at least data_size
3774 * available for the resulting leaf level of the path.
44871b1b 3775 */
143bede5
JM
3776static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3777 struct btrfs_root *root,
3778 struct btrfs_path *path,
3779 struct extent_buffer *l,
3780 struct extent_buffer *right,
3781 int slot, int mid, int nritems)
44871b1b
CM
3782{
3783 int data_copy_size;
3784 int rt_data_off;
3785 int i;
44871b1b 3786 struct btrfs_disk_key disk_key;
cfed81a0
CM
3787 struct btrfs_map_token token;
3788
3789 btrfs_init_map_token(&token);
44871b1b
CM
3790
3791 nritems = nritems - mid;
3792 btrfs_set_header_nritems(right, nritems);
3793 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3794
3795 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3796 btrfs_item_nr_offset(mid),
3797 nritems * sizeof(struct btrfs_item));
3798
3799 copy_extent_buffer(right, l,
3800 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3801 data_copy_size, btrfs_leaf_data(l) +
3802 leaf_data_end(root, l), data_copy_size);
3803
3804 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3805 btrfs_item_end_nr(l, mid);
3806
3807 for (i = 0; i < nritems; i++) {
3808 struct btrfs_item *item = btrfs_item_nr(right, i);
3809 u32 ioff;
3810
cfed81a0
CM
3811 ioff = btrfs_token_item_offset(right, item, &token);
3812 btrfs_set_token_item_offset(right, item,
3813 ioff + rt_data_off, &token);
44871b1b
CM
3814 }
3815
44871b1b 3816 btrfs_set_header_nritems(l, mid);
44871b1b 3817 btrfs_item_key(right, &disk_key, 0);
143bede5 3818 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 3819 path->slots[1] + 1, 1);
44871b1b
CM
3820
3821 btrfs_mark_buffer_dirty(right);
3822 btrfs_mark_buffer_dirty(l);
3823 BUG_ON(path->slots[0] != slot);
3824
44871b1b
CM
3825 if (mid <= slot) {
3826 btrfs_tree_unlock(path->nodes[0]);
3827 free_extent_buffer(path->nodes[0]);
3828 path->nodes[0] = right;
3829 path->slots[0] -= mid;
3830 path->slots[1] += 1;
3831 } else {
3832 btrfs_tree_unlock(right);
3833 free_extent_buffer(right);
3834 }
3835
3836 BUG_ON(path->slots[0] < 0);
44871b1b
CM
3837}
3838
99d8f83c
CM
3839/*
3840 * double splits happen when we need to insert a big item in the middle
3841 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3842 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3843 * A B C
3844 *
3845 * We avoid this by trying to push the items on either side of our target
3846 * into the adjacent leaves. If all goes well we can avoid the double split
3847 * completely.
3848 */
3849static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3850 struct btrfs_root *root,
3851 struct btrfs_path *path,
3852 int data_size)
3853{
3854 int ret;
3855 int progress = 0;
3856 int slot;
3857 u32 nritems;
3858
3859 slot = path->slots[0];
3860
3861 /*
3862 * try to push all the items after our slot into the
3863 * right leaf
3864 */
3865 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3866 if (ret < 0)
3867 return ret;
3868
3869 if (ret == 0)
3870 progress++;
3871
3872 nritems = btrfs_header_nritems(path->nodes[0]);
3873 /*
3874 * our goal is to get our slot at the start or end of a leaf. If
3875 * we've done so we're done
3876 */
3877 if (path->slots[0] == 0 || path->slots[0] == nritems)
3878 return 0;
3879
3880 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3881 return 0;
3882
3883 /* try to push all the items before our slot into the next leaf */
3884 slot = path->slots[0];
3885 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3886 if (ret < 0)
3887 return ret;
3888
3889 if (ret == 0)
3890 progress++;
3891
3892 if (progress)
3893 return 0;
3894 return 1;
3895}
3896
74123bd7
CM
3897/*
3898 * split the path's leaf in two, making sure there is at least data_size
3899 * available for the resulting leaf level of the path.
aa5d6bed
CM
3900 *
3901 * returns 0 if all went well and < 0 on failure.
74123bd7 3902 */
e02119d5
CM
3903static noinline int split_leaf(struct btrfs_trans_handle *trans,
3904 struct btrfs_root *root,
3905 struct btrfs_key *ins_key,
3906 struct btrfs_path *path, int data_size,
3907 int extend)
be0e5c09 3908{
5d4f98a2 3909 struct btrfs_disk_key disk_key;
5f39d397 3910 struct extent_buffer *l;
7518a238 3911 u32 nritems;
eb60ceac
CM
3912 int mid;
3913 int slot;
5f39d397 3914 struct extent_buffer *right;
d4dbff95 3915 int ret = 0;
aa5d6bed 3916 int wret;
5d4f98a2 3917 int split;
cc0c5538 3918 int num_doubles = 0;
99d8f83c 3919 int tried_avoid_double = 0;
aa5d6bed 3920
a5719521
YZ
3921 l = path->nodes[0];
3922 slot = path->slots[0];
3923 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3924 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3925 return -EOVERFLOW;
3926
40689478 3927 /* first try to make some room by pushing left and right */
99d8f83c
CM
3928 if (data_size) {
3929 wret = push_leaf_right(trans, root, path, data_size,
3930 data_size, 0, 0);
d397712b 3931 if (wret < 0)
eaee50e8 3932 return wret;
3685f791 3933 if (wret) {
99d8f83c
CM
3934 wret = push_leaf_left(trans, root, path, data_size,
3935 data_size, 0, (u32)-1);
3685f791
CM
3936 if (wret < 0)
3937 return wret;
3938 }
3939 l = path->nodes[0];
aa5d6bed 3940
3685f791 3941 /* did the pushes work? */
87b29b20 3942 if (btrfs_leaf_free_space(root, l) >= data_size)
3685f791 3943 return 0;
3326d1b0 3944 }
aa5d6bed 3945
5c680ed6 3946 if (!path->nodes[1]) {
e089f05c 3947 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
3948 if (ret)
3949 return ret;
3950 }
cc0c5538 3951again:
5d4f98a2 3952 split = 1;
cc0c5538 3953 l = path->nodes[0];
eb60ceac 3954 slot = path->slots[0];
5f39d397 3955 nritems = btrfs_header_nritems(l);
d397712b 3956 mid = (nritems + 1) / 2;
54aa1f4d 3957
5d4f98a2
YZ
3958 if (mid <= slot) {
3959 if (nritems == 1 ||
3960 leaf_space_used(l, mid, nritems - mid) + data_size >
3961 BTRFS_LEAF_DATA_SIZE(root)) {
3962 if (slot >= nritems) {
3963 split = 0;
3964 } else {
3965 mid = slot;
3966 if (mid != nritems &&
3967 leaf_space_used(l, mid, nritems - mid) +
3968 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3969 if (data_size && !tried_avoid_double)
3970 goto push_for_double;
5d4f98a2
YZ
3971 split = 2;
3972 }
3973 }
3974 }
3975 } else {
3976 if (leaf_space_used(l, 0, mid) + data_size >
3977 BTRFS_LEAF_DATA_SIZE(root)) {
3978 if (!extend && data_size && slot == 0) {
3979 split = 0;
3980 } else if ((extend || !data_size) && slot == 0) {
3981 mid = 1;
3982 } else {
3983 mid = slot;
3984 if (mid != nritems &&
3985 leaf_space_used(l, mid, nritems - mid) +
3986 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3987 if (data_size && !tried_avoid_double)
3988 goto push_for_double;
5d4f98a2
YZ
3989 split = 2 ;
3990 }
3991 }
3992 }
3993 }
3994
3995 if (split == 0)
3996 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3997 else
3998 btrfs_item_key(l, &disk_key, mid);
3999
4000 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
31840ae1 4001 root->root_key.objectid,
5581a51a 4002 &disk_key, 0, l->start, 0);
f0486c68 4003 if (IS_ERR(right))
5f39d397 4004 return PTR_ERR(right);
f0486c68
YZ
4005
4006 root_add_used(root, root->leafsize);
5f39d397
CM
4007
4008 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
db94535d 4009 btrfs_set_header_bytenr(right, right->start);
5f39d397 4010 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4011 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4012 btrfs_set_header_owner(right, root->root_key.objectid);
4013 btrfs_set_header_level(right, 0);
4014 write_extent_buffer(right, root->fs_info->fsid,
4015 (unsigned long)btrfs_header_fsid(right),
4016 BTRFS_FSID_SIZE);
e17cade2
CM
4017
4018 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4019 (unsigned long)btrfs_header_chunk_tree_uuid(right),
4020 BTRFS_UUID_SIZE);
44871b1b 4021
5d4f98a2
YZ
4022 if (split == 0) {
4023 if (mid <= slot) {
4024 btrfs_set_header_nritems(right, 0);
143bede5 4025 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4026 path->slots[1] + 1, 1);
5d4f98a2
YZ
4027 btrfs_tree_unlock(path->nodes[0]);
4028 free_extent_buffer(path->nodes[0]);
4029 path->nodes[0] = right;
4030 path->slots[0] = 0;
4031 path->slots[1] += 1;
4032 } else {
4033 btrfs_set_header_nritems(right, 0);
143bede5 4034 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4035 path->slots[1], 1);
5d4f98a2
YZ
4036 btrfs_tree_unlock(path->nodes[0]);
4037 free_extent_buffer(path->nodes[0]);
4038 path->nodes[0] = right;
4039 path->slots[0] = 0;
143bede5
JM
4040 if (path->slots[1] == 0)
4041 fixup_low_keys(trans, root, path,
4042 &disk_key, 1);
d4dbff95 4043 }
5d4f98a2
YZ
4044 btrfs_mark_buffer_dirty(right);
4045 return ret;
d4dbff95 4046 }
74123bd7 4047
143bede5 4048 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
31840ae1 4049
5d4f98a2 4050 if (split == 2) {
cc0c5538
CM
4051 BUG_ON(num_doubles != 0);
4052 num_doubles++;
4053 goto again;
a429e513 4054 }
44871b1b 4055
143bede5 4056 return 0;
99d8f83c
CM
4057
4058push_for_double:
4059 push_for_double_split(trans, root, path, data_size);
4060 tried_avoid_double = 1;
4061 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4062 return 0;
4063 goto again;
be0e5c09
CM
4064}
4065
ad48fd75
YZ
4066static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4067 struct btrfs_root *root,
4068 struct btrfs_path *path, int ins_len)
459931ec 4069{
ad48fd75 4070 struct btrfs_key key;
459931ec 4071 struct extent_buffer *leaf;
ad48fd75
YZ
4072 struct btrfs_file_extent_item *fi;
4073 u64 extent_len = 0;
4074 u32 item_size;
4075 int ret;
459931ec
CM
4076
4077 leaf = path->nodes[0];
ad48fd75
YZ
4078 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4079
4080 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4081 key.type != BTRFS_EXTENT_CSUM_KEY);
4082
4083 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4084 return 0;
459931ec
CM
4085
4086 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4087 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4088 fi = btrfs_item_ptr(leaf, path->slots[0],
4089 struct btrfs_file_extent_item);
4090 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4091 }
b3b4aa74 4092 btrfs_release_path(path);
459931ec 4093
459931ec 4094 path->keep_locks = 1;
ad48fd75
YZ
4095 path->search_for_split = 1;
4096 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4097 path->search_for_split = 0;
ad48fd75
YZ
4098 if (ret < 0)
4099 goto err;
459931ec 4100
ad48fd75
YZ
4101 ret = -EAGAIN;
4102 leaf = path->nodes[0];
459931ec 4103 /* if our item isn't there or got smaller, return now */
ad48fd75
YZ
4104 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4105 goto err;
4106
109f6aef
CM
4107 /* the leaf has changed, it now has room. return now */
4108 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4109 goto err;
4110
ad48fd75
YZ
4111 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4112 fi = btrfs_item_ptr(leaf, path->slots[0],
4113 struct btrfs_file_extent_item);
4114 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4115 goto err;
459931ec
CM
4116 }
4117
b9473439 4118 btrfs_set_path_blocking(path);
ad48fd75 4119 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4120 if (ret)
4121 goto err;
459931ec 4122
ad48fd75 4123 path->keep_locks = 0;
b9473439 4124 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4125 return 0;
4126err:
4127 path->keep_locks = 0;
4128 return ret;
4129}
4130
4131static noinline int split_item(struct btrfs_trans_handle *trans,
4132 struct btrfs_root *root,
4133 struct btrfs_path *path,
4134 struct btrfs_key *new_key,
4135 unsigned long split_offset)
4136{
4137 struct extent_buffer *leaf;
4138 struct btrfs_item *item;
4139 struct btrfs_item *new_item;
4140 int slot;
4141 char *buf;
4142 u32 nritems;
4143 u32 item_size;
4144 u32 orig_offset;
4145 struct btrfs_disk_key disk_key;
4146
b9473439
CM
4147 leaf = path->nodes[0];
4148 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4149
b4ce94de
CM
4150 btrfs_set_path_blocking(path);
4151
459931ec
CM
4152 item = btrfs_item_nr(leaf, path->slots[0]);
4153 orig_offset = btrfs_item_offset(leaf, item);
4154 item_size = btrfs_item_size(leaf, item);
4155
459931ec 4156 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4157 if (!buf)
4158 return -ENOMEM;
4159
459931ec
CM
4160 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4161 path->slots[0]), item_size);
459931ec 4162
ad48fd75 4163 slot = path->slots[0] + 1;
459931ec 4164 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4165 if (slot != nritems) {
4166 /* shift the items */
4167 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4168 btrfs_item_nr_offset(slot),
4169 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4170 }
4171
4172 btrfs_cpu_key_to_disk(&disk_key, new_key);
4173 btrfs_set_item_key(leaf, &disk_key, slot);
4174
4175 new_item = btrfs_item_nr(leaf, slot);
4176
4177 btrfs_set_item_offset(leaf, new_item, orig_offset);
4178 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4179
4180 btrfs_set_item_offset(leaf, item,
4181 orig_offset + item_size - split_offset);
4182 btrfs_set_item_size(leaf, item, split_offset);
4183
4184 btrfs_set_header_nritems(leaf, nritems + 1);
4185
4186 /* write the data for the start of the original item */
4187 write_extent_buffer(leaf, buf,
4188 btrfs_item_ptr_offset(leaf, path->slots[0]),
4189 split_offset);
4190
4191 /* write the data for the new item */
4192 write_extent_buffer(leaf, buf + split_offset,
4193 btrfs_item_ptr_offset(leaf, slot),
4194 item_size - split_offset);
4195 btrfs_mark_buffer_dirty(leaf);
4196
ad48fd75 4197 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
459931ec 4198 kfree(buf);
ad48fd75
YZ
4199 return 0;
4200}
4201
4202/*
4203 * This function splits a single item into two items,
4204 * giving 'new_key' to the new item and splitting the
4205 * old one at split_offset (from the start of the item).
4206 *
4207 * The path may be released by this operation. After
4208 * the split, the path is pointing to the old item. The
4209 * new item is going to be in the same node as the old one.
4210 *
4211 * Note, the item being split must be smaller enough to live alone on
4212 * a tree block with room for one extra struct btrfs_item
4213 *
4214 * This allows us to split the item in place, keeping a lock on the
4215 * leaf the entire time.
4216 */
4217int btrfs_split_item(struct btrfs_trans_handle *trans,
4218 struct btrfs_root *root,
4219 struct btrfs_path *path,
4220 struct btrfs_key *new_key,
4221 unsigned long split_offset)
4222{
4223 int ret;
4224 ret = setup_leaf_for_split(trans, root, path,
4225 sizeof(struct btrfs_item));
4226 if (ret)
4227 return ret;
4228
4229 ret = split_item(trans, root, path, new_key, split_offset);
459931ec
CM
4230 return ret;
4231}
4232
ad48fd75
YZ
4233/*
4234 * This function duplicate a item, giving 'new_key' to the new item.
4235 * It guarantees both items live in the same tree leaf and the new item
4236 * is contiguous with the original item.
4237 *
4238 * This allows us to split file extent in place, keeping a lock on the
4239 * leaf the entire time.
4240 */
4241int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4242 struct btrfs_root *root,
4243 struct btrfs_path *path,
4244 struct btrfs_key *new_key)
4245{
4246 struct extent_buffer *leaf;
4247 int ret;
4248 u32 item_size;
4249
4250 leaf = path->nodes[0];
4251 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4252 ret = setup_leaf_for_split(trans, root, path,
4253 item_size + sizeof(struct btrfs_item));
4254 if (ret)
4255 return ret;
4256
4257 path->slots[0]++;
143bede5
JM
4258 setup_items_for_insert(trans, root, path, new_key, &item_size,
4259 item_size, item_size +
4260 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4261 leaf = path->nodes[0];
4262 memcpy_extent_buffer(leaf,
4263 btrfs_item_ptr_offset(leaf, path->slots[0]),
4264 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4265 item_size);
4266 return 0;
4267}
4268
d352ac68
CM
4269/*
4270 * make the item pointed to by the path smaller. new_size indicates
4271 * how small to make it, and from_end tells us if we just chop bytes
4272 * off the end of the item or if we shift the item to chop bytes off
4273 * the front.
4274 */
143bede5
JM
4275void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4276 struct btrfs_root *root,
4277 struct btrfs_path *path,
4278 u32 new_size, int from_end)
b18c6685 4279{
b18c6685 4280 int slot;
5f39d397
CM
4281 struct extent_buffer *leaf;
4282 struct btrfs_item *item;
b18c6685
CM
4283 u32 nritems;
4284 unsigned int data_end;
4285 unsigned int old_data_start;
4286 unsigned int old_size;
4287 unsigned int size_diff;
4288 int i;
cfed81a0
CM
4289 struct btrfs_map_token token;
4290
4291 btrfs_init_map_token(&token);
b18c6685 4292
5f39d397 4293 leaf = path->nodes[0];
179e29e4
CM
4294 slot = path->slots[0];
4295
4296 old_size = btrfs_item_size_nr(leaf, slot);
4297 if (old_size == new_size)
143bede5 4298 return;
b18c6685 4299
5f39d397 4300 nritems = btrfs_header_nritems(leaf);
b18c6685
CM
4301 data_end = leaf_data_end(root, leaf);
4302
5f39d397 4303 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4304
b18c6685
CM
4305 size_diff = old_size - new_size;
4306
4307 BUG_ON(slot < 0);
4308 BUG_ON(slot >= nritems);
4309
4310 /*
4311 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4312 */
4313 /* first correct the data pointers */
4314 for (i = slot; i < nritems; i++) {
5f39d397
CM
4315 u32 ioff;
4316 item = btrfs_item_nr(leaf, i);
db94535d 4317
cfed81a0
CM
4318 ioff = btrfs_token_item_offset(leaf, item, &token);
4319 btrfs_set_token_item_offset(leaf, item,
4320 ioff + size_diff, &token);
b18c6685 4321 }
db94535d 4322
b18c6685 4323 /* shift the data */
179e29e4
CM
4324 if (from_end) {
4325 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4326 data_end + size_diff, btrfs_leaf_data(leaf) +
4327 data_end, old_data_start + new_size - data_end);
4328 } else {
4329 struct btrfs_disk_key disk_key;
4330 u64 offset;
4331
4332 btrfs_item_key(leaf, &disk_key, slot);
4333
4334 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4335 unsigned long ptr;
4336 struct btrfs_file_extent_item *fi;
4337
4338 fi = btrfs_item_ptr(leaf, slot,
4339 struct btrfs_file_extent_item);
4340 fi = (struct btrfs_file_extent_item *)(
4341 (unsigned long)fi - size_diff);
4342
4343 if (btrfs_file_extent_type(leaf, fi) ==
4344 BTRFS_FILE_EXTENT_INLINE) {
4345 ptr = btrfs_item_ptr_offset(leaf, slot);
4346 memmove_extent_buffer(leaf, ptr,
d397712b
CM
4347 (unsigned long)fi,
4348 offsetof(struct btrfs_file_extent_item,
179e29e4
CM
4349 disk_bytenr));
4350 }
4351 }
4352
4353 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4354 data_end + size_diff, btrfs_leaf_data(leaf) +
4355 data_end, old_data_start - data_end);
4356
4357 offset = btrfs_disk_key_offset(&disk_key);
4358 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4359 btrfs_set_item_key(leaf, &disk_key, slot);
4360 if (slot == 0)
4361 fixup_low_keys(trans, root, path, &disk_key, 1);
4362 }
5f39d397
CM
4363
4364 item = btrfs_item_nr(leaf, slot);
4365 btrfs_set_item_size(leaf, item, new_size);
4366 btrfs_mark_buffer_dirty(leaf);
b18c6685 4367
5f39d397
CM
4368 if (btrfs_leaf_free_space(root, leaf) < 0) {
4369 btrfs_print_leaf(root, leaf);
b18c6685 4370 BUG();
5f39d397 4371 }
b18c6685
CM
4372}
4373
d352ac68
CM
4374/*
4375 * make the item pointed to by the path bigger, data_size is the new size.
4376 */
143bede5
JM
4377void btrfs_extend_item(struct btrfs_trans_handle *trans,
4378 struct btrfs_root *root, struct btrfs_path *path,
4379 u32 data_size)
6567e837 4380{
6567e837 4381 int slot;
5f39d397
CM
4382 struct extent_buffer *leaf;
4383 struct btrfs_item *item;
6567e837
CM
4384 u32 nritems;
4385 unsigned int data_end;
4386 unsigned int old_data;
4387 unsigned int old_size;
4388 int i;
cfed81a0
CM
4389 struct btrfs_map_token token;
4390
4391 btrfs_init_map_token(&token);
6567e837 4392
5f39d397 4393 leaf = path->nodes[0];
6567e837 4394
5f39d397 4395 nritems = btrfs_header_nritems(leaf);
6567e837
CM
4396 data_end = leaf_data_end(root, leaf);
4397
5f39d397
CM
4398 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4399 btrfs_print_leaf(root, leaf);
6567e837 4400 BUG();
5f39d397 4401 }
6567e837 4402 slot = path->slots[0];
5f39d397 4403 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4404
4405 BUG_ON(slot < 0);
3326d1b0
CM
4406 if (slot >= nritems) {
4407 btrfs_print_leaf(root, leaf);
d397712b
CM
4408 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4409 slot, nritems);
3326d1b0
CM
4410 BUG_ON(1);
4411 }
6567e837
CM
4412
4413 /*
4414 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4415 */
4416 /* first correct the data pointers */
4417 for (i = slot; i < nritems; i++) {
5f39d397
CM
4418 u32 ioff;
4419 item = btrfs_item_nr(leaf, i);
db94535d 4420
cfed81a0
CM
4421 ioff = btrfs_token_item_offset(leaf, item, &token);
4422 btrfs_set_token_item_offset(leaf, item,
4423 ioff - data_size, &token);
6567e837 4424 }
5f39d397 4425
6567e837 4426 /* shift the data */
5f39d397 4427 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
6567e837
CM
4428 data_end - data_size, btrfs_leaf_data(leaf) +
4429 data_end, old_data - data_end);
5f39d397 4430
6567e837 4431 data_end = old_data;
5f39d397
CM
4432 old_size = btrfs_item_size_nr(leaf, slot);
4433 item = btrfs_item_nr(leaf, slot);
4434 btrfs_set_item_size(leaf, item, old_size + data_size);
4435 btrfs_mark_buffer_dirty(leaf);
6567e837 4436
5f39d397
CM
4437 if (btrfs_leaf_free_space(root, leaf) < 0) {
4438 btrfs_print_leaf(root, leaf);
6567e837 4439 BUG();
5f39d397 4440 }
6567e837
CM
4441}
4442
74123bd7 4443/*
44871b1b
CM
4444 * this is a helper for btrfs_insert_empty_items, the main goal here is
4445 * to save stack depth by doing the bulk of the work in a function
4446 * that doesn't call btrfs_search_slot
74123bd7 4447 */
143bede5
JM
4448void setup_items_for_insert(struct btrfs_trans_handle *trans,
4449 struct btrfs_root *root, struct btrfs_path *path,
4450 struct btrfs_key *cpu_key, u32 *data_size,
4451 u32 total_data, u32 total_size, int nr)
be0e5c09 4452{
5f39d397 4453 struct btrfs_item *item;
9c58309d 4454 int i;
7518a238 4455 u32 nritems;
be0e5c09 4456 unsigned int data_end;
e2fa7227 4457 struct btrfs_disk_key disk_key;
44871b1b
CM
4458 struct extent_buffer *leaf;
4459 int slot;
cfed81a0
CM
4460 struct btrfs_map_token token;
4461
4462 btrfs_init_map_token(&token);
e2fa7227 4463
5f39d397 4464 leaf = path->nodes[0];
44871b1b 4465 slot = path->slots[0];
74123bd7 4466
5f39d397 4467 nritems = btrfs_header_nritems(leaf);
123abc88 4468 data_end = leaf_data_end(root, leaf);
eb60ceac 4469
f25956cc 4470 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3326d1b0 4471 btrfs_print_leaf(root, leaf);
d397712b 4472 printk(KERN_CRIT "not enough freespace need %u have %d\n",
9c58309d 4473 total_size, btrfs_leaf_free_space(root, leaf));
be0e5c09 4474 BUG();
d4dbff95 4475 }
5f39d397 4476
be0e5c09 4477 if (slot != nritems) {
5f39d397 4478 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4479
5f39d397
CM
4480 if (old_data < data_end) {
4481 btrfs_print_leaf(root, leaf);
d397712b 4482 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
5f39d397
CM
4483 slot, old_data, data_end);
4484 BUG_ON(1);
4485 }
be0e5c09
CM
4486 /*
4487 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4488 */
4489 /* first correct the data pointers */
0783fcfc 4490 for (i = slot; i < nritems; i++) {
5f39d397 4491 u32 ioff;
db94535d 4492
5f39d397 4493 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4494 ioff = btrfs_token_item_offset(leaf, item, &token);
4495 btrfs_set_token_item_offset(leaf, item,
4496 ioff - total_data, &token);
0783fcfc 4497 }
be0e5c09 4498 /* shift the items */
9c58309d 4499 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4500 btrfs_item_nr_offset(slot),
d6025579 4501 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4502
4503 /* shift the data */
5f39d397 4504 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
9c58309d 4505 data_end - total_data, btrfs_leaf_data(leaf) +
d6025579 4506 data_end, old_data - data_end);
be0e5c09
CM
4507 data_end = old_data;
4508 }
5f39d397 4509
62e2749e 4510 /* setup the item for the new data */
9c58309d
CM
4511 for (i = 0; i < nr; i++) {
4512 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4513 btrfs_set_item_key(leaf, &disk_key, slot + i);
4514 item = btrfs_item_nr(leaf, slot + i);
cfed81a0
CM
4515 btrfs_set_token_item_offset(leaf, item,
4516 data_end - data_size[i], &token);
9c58309d 4517 data_end -= data_size[i];
cfed81a0 4518 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4519 }
44871b1b 4520
9c58309d 4521 btrfs_set_header_nritems(leaf, nritems + nr);
aa5d6bed 4522
5a01a2e3
CM
4523 if (slot == 0) {
4524 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
143bede5 4525 fixup_low_keys(trans, root, path, &disk_key, 1);
5a01a2e3 4526 }
b9473439
CM
4527 btrfs_unlock_up_safe(path, 1);
4528 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4529
5f39d397
CM
4530 if (btrfs_leaf_free_space(root, leaf) < 0) {
4531 btrfs_print_leaf(root, leaf);
be0e5c09 4532 BUG();
5f39d397 4533 }
44871b1b
CM
4534}
4535
4536/*
4537 * Given a key and some data, insert items into the tree.
4538 * This does all the path init required, making room in the tree if needed.
4539 */
4540int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4541 struct btrfs_root *root,
4542 struct btrfs_path *path,
4543 struct btrfs_key *cpu_key, u32 *data_size,
4544 int nr)
4545{
44871b1b
CM
4546 int ret = 0;
4547 int slot;
4548 int i;
4549 u32 total_size = 0;
4550 u32 total_data = 0;
4551
4552 for (i = 0; i < nr; i++)
4553 total_data += data_size[i];
4554
4555 total_size = total_data + (nr * sizeof(struct btrfs_item));
4556 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4557 if (ret == 0)
4558 return -EEXIST;
4559 if (ret < 0)
143bede5 4560 return ret;
44871b1b 4561
44871b1b
CM
4562 slot = path->slots[0];
4563 BUG_ON(slot < 0);
4564
143bede5 4565 setup_items_for_insert(trans, root, path, cpu_key, data_size,
44871b1b 4566 total_data, total_size, nr);
143bede5 4567 return 0;
62e2749e
CM
4568}
4569
4570/*
4571 * Given a key and some data, insert an item into the tree.
4572 * This does all the path init required, making room in the tree if needed.
4573 */
e089f05c
CM
4574int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4575 *root, struct btrfs_key *cpu_key, void *data, u32
4576 data_size)
62e2749e
CM
4577{
4578 int ret = 0;
2c90e5d6 4579 struct btrfs_path *path;
5f39d397
CM
4580 struct extent_buffer *leaf;
4581 unsigned long ptr;
62e2749e 4582
2c90e5d6 4583 path = btrfs_alloc_path();
db5b493a
TI
4584 if (!path)
4585 return -ENOMEM;
2c90e5d6 4586 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4587 if (!ret) {
5f39d397
CM
4588 leaf = path->nodes[0];
4589 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4590 write_extent_buffer(leaf, data, ptr, data_size);
4591 btrfs_mark_buffer_dirty(leaf);
62e2749e 4592 }
2c90e5d6 4593 btrfs_free_path(path);
aa5d6bed 4594 return ret;
be0e5c09
CM
4595}
4596
74123bd7 4597/*
5de08d7d 4598 * delete the pointer from a given node.
74123bd7 4599 *
d352ac68
CM
4600 * the tree should have been previously balanced so the deletion does not
4601 * empty a node.
74123bd7 4602 */
143bede5 4603static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
0e411ece 4604 struct btrfs_path *path, int level, int slot)
be0e5c09 4605{
5f39d397 4606 struct extent_buffer *parent = path->nodes[level];
7518a238 4607 u32 nritems;
f3ea38da 4608 int ret;
be0e5c09 4609
0e411ece 4610 if (level) {
6a7a665d
LB
4611 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4612 MOD_LOG_KEY_REMOVE);
4613 BUG_ON(ret < 0);
4614 }
4615
5f39d397 4616 nritems = btrfs_header_nritems(parent);
d397712b 4617 if (slot != nritems - 1) {
0e411ece 4618 if (level)
f3ea38da
JS
4619 tree_mod_log_eb_move(root->fs_info, parent, slot,
4620 slot + 1, nritems - slot - 1);
5f39d397
CM
4621 memmove_extent_buffer(parent,
4622 btrfs_node_key_ptr_offset(slot),
4623 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4624 sizeof(struct btrfs_key_ptr) *
4625 (nritems - slot - 1));
bb803951 4626 }
f3ea38da 4627
7518a238 4628 nritems--;
5f39d397 4629 btrfs_set_header_nritems(parent, nritems);
7518a238 4630 if (nritems == 0 && parent == root->node) {
5f39d397 4631 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4632 /* just turn the root into a leaf and break */
5f39d397 4633 btrfs_set_header_level(root->node, 0);
bb803951 4634 } else if (slot == 0) {
5f39d397
CM
4635 struct btrfs_disk_key disk_key;
4636
4637 btrfs_node_key(parent, &disk_key, 0);
143bede5 4638 fixup_low_keys(trans, root, path, &disk_key, level + 1);
be0e5c09 4639 }
d6025579 4640 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4641}
4642
323ac95b
CM
4643/*
4644 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4645 * path->nodes[1].
323ac95b
CM
4646 *
4647 * This deletes the pointer in path->nodes[1] and frees the leaf
4648 * block extent. zero is returned if it all worked out, < 0 otherwise.
4649 *
4650 * The path must have already been setup for deleting the leaf, including
4651 * all the proper balancing. path->nodes[1] must be locked.
4652 */
143bede5
JM
4653static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4654 struct btrfs_root *root,
4655 struct btrfs_path *path,
4656 struct extent_buffer *leaf)
323ac95b 4657{
5d4f98a2 4658 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
0e411ece 4659 del_ptr(trans, root, path, 1, path->slots[1]);
323ac95b 4660
4d081c41
CM
4661 /*
4662 * btrfs_free_extent is expensive, we want to make sure we
4663 * aren't holding any locks when we call it
4664 */
4665 btrfs_unlock_up_safe(path, 0);
4666
f0486c68
YZ
4667 root_sub_used(root, leaf->len);
4668
3083ee2e 4669 extent_buffer_get(leaf);
5581a51a 4670 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4671 free_extent_buffer_stale(leaf);
323ac95b 4672}
74123bd7
CM
4673/*
4674 * delete the item at the leaf level in path. If that empties
4675 * the leaf, remove it from the tree
4676 */
85e21bac
CM
4677int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4678 struct btrfs_path *path, int slot, int nr)
be0e5c09 4679{
5f39d397
CM
4680 struct extent_buffer *leaf;
4681 struct btrfs_item *item;
85e21bac
CM
4682 int last_off;
4683 int dsize = 0;
aa5d6bed
CM
4684 int ret = 0;
4685 int wret;
85e21bac 4686 int i;
7518a238 4687 u32 nritems;
cfed81a0
CM
4688 struct btrfs_map_token token;
4689
4690 btrfs_init_map_token(&token);
be0e5c09 4691
5f39d397 4692 leaf = path->nodes[0];
85e21bac
CM
4693 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4694
4695 for (i = 0; i < nr; i++)
4696 dsize += btrfs_item_size_nr(leaf, slot + i);
4697
5f39d397 4698 nritems = btrfs_header_nritems(leaf);
be0e5c09 4699
85e21bac 4700 if (slot + nr != nritems) {
123abc88 4701 int data_end = leaf_data_end(root, leaf);
5f39d397
CM
4702
4703 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
d6025579
CM
4704 data_end + dsize,
4705 btrfs_leaf_data(leaf) + data_end,
85e21bac 4706 last_off - data_end);
5f39d397 4707
85e21bac 4708 for (i = slot + nr; i < nritems; i++) {
5f39d397 4709 u32 ioff;
db94535d 4710
5f39d397 4711 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4712 ioff = btrfs_token_item_offset(leaf, item, &token);
4713 btrfs_set_token_item_offset(leaf, item,
4714 ioff + dsize, &token);
0783fcfc 4715 }
db94535d 4716
5f39d397 4717 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4718 btrfs_item_nr_offset(slot + nr),
d6025579 4719 sizeof(struct btrfs_item) *
85e21bac 4720 (nritems - slot - nr));
be0e5c09 4721 }
85e21bac
CM
4722 btrfs_set_header_nritems(leaf, nritems - nr);
4723 nritems -= nr;
5f39d397 4724
74123bd7 4725 /* delete the leaf if we've emptied it */
7518a238 4726 if (nritems == 0) {
5f39d397
CM
4727 if (leaf == root->node) {
4728 btrfs_set_header_level(leaf, 0);
9a8dd150 4729 } else {
f0486c68
YZ
4730 btrfs_set_path_blocking(path);
4731 clean_tree_block(trans, root, leaf);
143bede5 4732 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 4733 }
be0e5c09 4734 } else {
7518a238 4735 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 4736 if (slot == 0) {
5f39d397
CM
4737 struct btrfs_disk_key disk_key;
4738
4739 btrfs_item_key(leaf, &disk_key, 0);
143bede5 4740 fixup_low_keys(trans, root, path, &disk_key, 1);
aa5d6bed 4741 }
aa5d6bed 4742
74123bd7 4743 /* delete the leaf if it is mostly empty */
d717aa1d 4744 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
be0e5c09
CM
4745 /* push_leaf_left fixes the path.
4746 * make sure the path still points to our leaf
4747 * for possible call to del_ptr below
4748 */
4920c9ac 4749 slot = path->slots[1];
5f39d397
CM
4750 extent_buffer_get(leaf);
4751
b9473439 4752 btrfs_set_path_blocking(path);
99d8f83c
CM
4753 wret = push_leaf_left(trans, root, path, 1, 1,
4754 1, (u32)-1);
54aa1f4d 4755 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 4756 ret = wret;
5f39d397
CM
4757
4758 if (path->nodes[0] == leaf &&
4759 btrfs_header_nritems(leaf)) {
99d8f83c
CM
4760 wret = push_leaf_right(trans, root, path, 1,
4761 1, 1, 0);
54aa1f4d 4762 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
4763 ret = wret;
4764 }
5f39d397
CM
4765
4766 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 4767 path->slots[1] = slot;
143bede5 4768 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 4769 free_extent_buffer(leaf);
143bede5 4770 ret = 0;
5de08d7d 4771 } else {
925baedd
CM
4772 /* if we're still in the path, make sure
4773 * we're dirty. Otherwise, one of the
4774 * push_leaf functions must have already
4775 * dirtied this buffer
4776 */
4777 if (path->nodes[0] == leaf)
4778 btrfs_mark_buffer_dirty(leaf);
5f39d397 4779 free_extent_buffer(leaf);
be0e5c09 4780 }
d5719762 4781 } else {
5f39d397 4782 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
4783 }
4784 }
aa5d6bed 4785 return ret;
be0e5c09
CM
4786}
4787
7bb86316 4788/*
925baedd 4789 * search the tree again to find a leaf with lesser keys
7bb86316
CM
4790 * returns 0 if it found something or 1 if there are no lesser leaves.
4791 * returns < 0 on io errors.
d352ac68
CM
4792 *
4793 * This may release the path, and so you may lose any locks held at the
4794 * time you call it.
7bb86316
CM
4795 */
4796int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4797{
925baedd
CM
4798 struct btrfs_key key;
4799 struct btrfs_disk_key found_key;
4800 int ret;
7bb86316 4801
925baedd 4802 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 4803
925baedd
CM
4804 if (key.offset > 0)
4805 key.offset--;
4806 else if (key.type > 0)
4807 key.type--;
4808 else if (key.objectid > 0)
4809 key.objectid--;
4810 else
4811 return 1;
7bb86316 4812
b3b4aa74 4813 btrfs_release_path(path);
925baedd
CM
4814 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4815 if (ret < 0)
4816 return ret;
4817 btrfs_item_key(path->nodes[0], &found_key, 0);
4818 ret = comp_keys(&found_key, &key);
4819 if (ret < 0)
4820 return 0;
4821 return 1;
7bb86316
CM
4822}
4823
3f157a2f
CM
4824/*
4825 * A helper function to walk down the tree starting at min_key, and looking
4826 * for nodes or leaves that are either in cache or have a minimum
d352ac68 4827 * transaction id. This is used by the btree defrag code, and tree logging
3f157a2f
CM
4828 *
4829 * This does not cow, but it does stuff the starting key it finds back
4830 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4831 * key and get a writable path.
4832 *
4833 * This does lock as it descends, and path->keep_locks should be set
4834 * to 1 by the caller.
4835 *
4836 * This honors path->lowest_level to prevent descent past a given level
4837 * of the tree.
4838 *
d352ac68
CM
4839 * min_trans indicates the oldest transaction that you are interested
4840 * in walking through. Any nodes or leaves older than min_trans are
4841 * skipped over (without reading them).
4842 *
3f157a2f
CM
4843 * returns zero if something useful was found, < 0 on error and 1 if there
4844 * was nothing in the tree that matched the search criteria.
4845 */
4846int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
e02119d5 4847 struct btrfs_key *max_key,
3f157a2f
CM
4848 struct btrfs_path *path, int cache_only,
4849 u64 min_trans)
4850{
4851 struct extent_buffer *cur;
4852 struct btrfs_key found_key;
4853 int slot;
9652480b 4854 int sret;
3f157a2f
CM
4855 u32 nritems;
4856 int level;
4857 int ret = 1;
4858
934d375b 4859 WARN_ON(!path->keep_locks);
3f157a2f 4860again:
bd681513 4861 cur = btrfs_read_lock_root_node(root);
3f157a2f 4862 level = btrfs_header_level(cur);
e02119d5 4863 WARN_ON(path->nodes[level]);
3f157a2f 4864 path->nodes[level] = cur;
bd681513 4865 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
4866
4867 if (btrfs_header_generation(cur) < min_trans) {
4868 ret = 1;
4869 goto out;
4870 }
d397712b 4871 while (1) {
3f157a2f
CM
4872 nritems = btrfs_header_nritems(cur);
4873 level = btrfs_header_level(cur);
9652480b 4874 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 4875
323ac95b
CM
4876 /* at the lowest level, we're done, setup the path and exit */
4877 if (level == path->lowest_level) {
e02119d5
CM
4878 if (slot >= nritems)
4879 goto find_next_key;
3f157a2f
CM
4880 ret = 0;
4881 path->slots[level] = slot;
4882 btrfs_item_key_to_cpu(cur, &found_key, slot);
4883 goto out;
4884 }
9652480b
Y
4885 if (sret && slot > 0)
4886 slot--;
3f157a2f
CM
4887 /*
4888 * check this node pointer against the cache_only and
4889 * min_trans parameters. If it isn't in cache or is too
4890 * old, skip to the next one.
4891 */
d397712b 4892 while (slot < nritems) {
3f157a2f
CM
4893 u64 blockptr;
4894 u64 gen;
4895 struct extent_buffer *tmp;
e02119d5
CM
4896 struct btrfs_disk_key disk_key;
4897
3f157a2f
CM
4898 blockptr = btrfs_node_blockptr(cur, slot);
4899 gen = btrfs_node_ptr_generation(cur, slot);
4900 if (gen < min_trans) {
4901 slot++;
4902 continue;
4903 }
4904 if (!cache_only)
4905 break;
4906
e02119d5
CM
4907 if (max_key) {
4908 btrfs_node_key(cur, &disk_key, slot);
4909 if (comp_keys(&disk_key, max_key) >= 0) {
4910 ret = 1;
4911 goto out;
4912 }
4913 }
4914
3f157a2f
CM
4915 tmp = btrfs_find_tree_block(root, blockptr,
4916 btrfs_level_size(root, level - 1));
4917
b9fab919 4918 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
3f157a2f
CM
4919 free_extent_buffer(tmp);
4920 break;
4921 }
4922 if (tmp)
4923 free_extent_buffer(tmp);
4924 slot++;
4925 }
e02119d5 4926find_next_key:
3f157a2f
CM
4927 /*
4928 * we didn't find a candidate key in this node, walk forward
4929 * and find another one
4930 */
4931 if (slot >= nritems) {
e02119d5 4932 path->slots[level] = slot;
b4ce94de 4933 btrfs_set_path_blocking(path);
e02119d5 4934 sret = btrfs_find_next_key(root, path, min_key, level,
3f157a2f 4935 cache_only, min_trans);
e02119d5 4936 if (sret == 0) {
b3b4aa74 4937 btrfs_release_path(path);
3f157a2f
CM
4938 goto again;
4939 } else {
4940 goto out;
4941 }
4942 }
4943 /* save our key for returning back */
4944 btrfs_node_key_to_cpu(cur, &found_key, slot);
4945 path->slots[level] = slot;
4946 if (level == path->lowest_level) {
4947 ret = 0;
f7c79f30 4948 unlock_up(path, level, 1, 0, NULL);
3f157a2f
CM
4949 goto out;
4950 }
b4ce94de 4951 btrfs_set_path_blocking(path);
3f157a2f 4952 cur = read_node_slot(root, cur, slot);
79787eaa 4953 BUG_ON(!cur); /* -ENOMEM */
3f157a2f 4954
bd681513 4955 btrfs_tree_read_lock(cur);
b4ce94de 4956
bd681513 4957 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 4958 path->nodes[level - 1] = cur;
f7c79f30 4959 unlock_up(path, level, 1, 0, NULL);
bd681513 4960 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
4961 }
4962out:
4963 if (ret == 0)
4964 memcpy(min_key, &found_key, sizeof(found_key));
b4ce94de 4965 btrfs_set_path_blocking(path);
3f157a2f
CM
4966 return ret;
4967}
4968
7069830a
AB
4969static void tree_move_down(struct btrfs_root *root,
4970 struct btrfs_path *path,
4971 int *level, int root_level)
4972{
74dd17fb 4973 BUG_ON(*level == 0);
7069830a
AB
4974 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4975 path->slots[*level]);
4976 path->slots[*level - 1] = 0;
4977 (*level)--;
4978}
4979
4980static int tree_move_next_or_upnext(struct btrfs_root *root,
4981 struct btrfs_path *path,
4982 int *level, int root_level)
4983{
4984 int ret = 0;
4985 int nritems;
4986 nritems = btrfs_header_nritems(path->nodes[*level]);
4987
4988 path->slots[*level]++;
4989
74dd17fb 4990 while (path->slots[*level] >= nritems) {
7069830a
AB
4991 if (*level == root_level)
4992 return -1;
4993
4994 /* move upnext */
4995 path->slots[*level] = 0;
4996 free_extent_buffer(path->nodes[*level]);
4997 path->nodes[*level] = NULL;
4998 (*level)++;
4999 path->slots[*level]++;
5000
5001 nritems = btrfs_header_nritems(path->nodes[*level]);
5002 ret = 1;
5003 }
5004 return ret;
5005}
5006
5007/*
5008 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5009 * or down.
5010 */
5011static int tree_advance(struct btrfs_root *root,
5012 struct btrfs_path *path,
5013 int *level, int root_level,
5014 int allow_down,
5015 struct btrfs_key *key)
5016{
5017 int ret;
5018
5019 if (*level == 0 || !allow_down) {
5020 ret = tree_move_next_or_upnext(root, path, level, root_level);
5021 } else {
5022 tree_move_down(root, path, level, root_level);
5023 ret = 0;
5024 }
5025 if (ret >= 0) {
5026 if (*level == 0)
5027 btrfs_item_key_to_cpu(path->nodes[*level], key,
5028 path->slots[*level]);
5029 else
5030 btrfs_node_key_to_cpu(path->nodes[*level], key,
5031 path->slots[*level]);
5032 }
5033 return ret;
5034}
5035
5036static int tree_compare_item(struct btrfs_root *left_root,
5037 struct btrfs_path *left_path,
5038 struct btrfs_path *right_path,
5039 char *tmp_buf)
5040{
5041 int cmp;
5042 int len1, len2;
5043 unsigned long off1, off2;
5044
5045 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5046 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5047 if (len1 != len2)
5048 return 1;
5049
5050 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5051 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5052 right_path->slots[0]);
5053
5054 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5055
5056 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5057 if (cmp)
5058 return 1;
5059 return 0;
5060}
5061
5062#define ADVANCE 1
5063#define ADVANCE_ONLY_NEXT -1
5064
5065/*
5066 * This function compares two trees and calls the provided callback for
5067 * every changed/new/deleted item it finds.
5068 * If shared tree blocks are encountered, whole subtrees are skipped, making
5069 * the compare pretty fast on snapshotted subvolumes.
5070 *
5071 * This currently works on commit roots only. As commit roots are read only,
5072 * we don't do any locking. The commit roots are protected with transactions.
5073 * Transactions are ended and rejoined when a commit is tried in between.
5074 *
5075 * This function checks for modifications done to the trees while comparing.
5076 * If it detects a change, it aborts immediately.
5077 */
5078int btrfs_compare_trees(struct btrfs_root *left_root,
5079 struct btrfs_root *right_root,
5080 btrfs_changed_cb_t changed_cb, void *ctx)
5081{
5082 int ret;
5083 int cmp;
5084 struct btrfs_trans_handle *trans = NULL;
5085 struct btrfs_path *left_path = NULL;
5086 struct btrfs_path *right_path = NULL;
5087 struct btrfs_key left_key;
5088 struct btrfs_key right_key;
5089 char *tmp_buf = NULL;
5090 int left_root_level;
5091 int right_root_level;
5092 int left_level;
5093 int right_level;
5094 int left_end_reached;
5095 int right_end_reached;
5096 int advance_left;
5097 int advance_right;
5098 u64 left_blockptr;
5099 u64 right_blockptr;
5100 u64 left_start_ctransid;
5101 u64 right_start_ctransid;
5102 u64 ctransid;
5103
5104 left_path = btrfs_alloc_path();
5105 if (!left_path) {
5106 ret = -ENOMEM;
5107 goto out;
5108 }
5109 right_path = btrfs_alloc_path();
5110 if (!right_path) {
5111 ret = -ENOMEM;
5112 goto out;
5113 }
5114
5115 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5116 if (!tmp_buf) {
5117 ret = -ENOMEM;
5118 goto out;
5119 }
5120
5121 left_path->search_commit_root = 1;
5122 left_path->skip_locking = 1;
5123 right_path->search_commit_root = 1;
5124 right_path->skip_locking = 1;
5125
5126 spin_lock(&left_root->root_times_lock);
5127 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5128 spin_unlock(&left_root->root_times_lock);
5129
5130 spin_lock(&right_root->root_times_lock);
5131 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5132 spin_unlock(&right_root->root_times_lock);
5133
5134 trans = btrfs_join_transaction(left_root);
5135 if (IS_ERR(trans)) {
5136 ret = PTR_ERR(trans);
5137 trans = NULL;
5138 goto out;
5139 }
5140
5141 /*
5142 * Strategy: Go to the first items of both trees. Then do
5143 *
5144 * If both trees are at level 0
5145 * Compare keys of current items
5146 * If left < right treat left item as new, advance left tree
5147 * and repeat
5148 * If left > right treat right item as deleted, advance right tree
5149 * and repeat
5150 * If left == right do deep compare of items, treat as changed if
5151 * needed, advance both trees and repeat
5152 * If both trees are at the same level but not at level 0
5153 * Compare keys of current nodes/leafs
5154 * If left < right advance left tree and repeat
5155 * If left > right advance right tree and repeat
5156 * If left == right compare blockptrs of the next nodes/leafs
5157 * If they match advance both trees but stay at the same level
5158 * and repeat
5159 * If they don't match advance both trees while allowing to go
5160 * deeper and repeat
5161 * If tree levels are different
5162 * Advance the tree that needs it and repeat
5163 *
5164 * Advancing a tree means:
5165 * If we are at level 0, try to go to the next slot. If that's not
5166 * possible, go one level up and repeat. Stop when we found a level
5167 * where we could go to the next slot. We may at this point be on a
5168 * node or a leaf.
5169 *
5170 * If we are not at level 0 and not on shared tree blocks, go one
5171 * level deeper.
5172 *
5173 * If we are not at level 0 and on shared tree blocks, go one slot to
5174 * the right if possible or go up and right.
5175 */
5176
5177 left_level = btrfs_header_level(left_root->commit_root);
5178 left_root_level = left_level;
5179 left_path->nodes[left_level] = left_root->commit_root;
5180 extent_buffer_get(left_path->nodes[left_level]);
5181
5182 right_level = btrfs_header_level(right_root->commit_root);
5183 right_root_level = right_level;
5184 right_path->nodes[right_level] = right_root->commit_root;
5185 extent_buffer_get(right_path->nodes[right_level]);
5186
5187 if (left_level == 0)
5188 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5189 &left_key, left_path->slots[left_level]);
5190 else
5191 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5192 &left_key, left_path->slots[left_level]);
5193 if (right_level == 0)
5194 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5195 &right_key, right_path->slots[right_level]);
5196 else
5197 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5198 &right_key, right_path->slots[right_level]);
5199
5200 left_end_reached = right_end_reached = 0;
5201 advance_left = advance_right = 0;
5202
5203 while (1) {
5204 /*
5205 * We need to make sure the transaction does not get committed
5206 * while we do anything on commit roots. This means, we need to
5207 * join and leave transactions for every item that we process.
5208 */
5209 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5210 btrfs_release_path(left_path);
5211 btrfs_release_path(right_path);
5212
5213 ret = btrfs_end_transaction(trans, left_root);
5214 trans = NULL;
5215 if (ret < 0)
5216 goto out;
5217 }
5218 /* now rejoin the transaction */
5219 if (!trans) {
5220 trans = btrfs_join_transaction(left_root);
5221 if (IS_ERR(trans)) {
5222 ret = PTR_ERR(trans);
5223 trans = NULL;
5224 goto out;
5225 }
5226
5227 spin_lock(&left_root->root_times_lock);
5228 ctransid = btrfs_root_ctransid(&left_root->root_item);
5229 spin_unlock(&left_root->root_times_lock);
5230 if (ctransid != left_start_ctransid)
5231 left_start_ctransid = 0;
5232
5233 spin_lock(&right_root->root_times_lock);
5234 ctransid = btrfs_root_ctransid(&right_root->root_item);
5235 spin_unlock(&right_root->root_times_lock);
5236 if (ctransid != right_start_ctransid)
5237 right_start_ctransid = 0;
5238
5239 if (!left_start_ctransid || !right_start_ctransid) {
5240 WARN(1, KERN_WARNING
5241 "btrfs: btrfs_compare_tree detected "
5242 "a change in one of the trees while "
5243 "iterating. This is probably a "
5244 "bug.\n");
5245 ret = -EIO;
5246 goto out;
5247 }
5248
5249 /*
5250 * the commit root may have changed, so start again
5251 * where we stopped
5252 */
5253 left_path->lowest_level = left_level;
5254 right_path->lowest_level = right_level;
5255 ret = btrfs_search_slot(NULL, left_root,
5256 &left_key, left_path, 0, 0);
5257 if (ret < 0)
5258 goto out;
5259 ret = btrfs_search_slot(NULL, right_root,
5260 &right_key, right_path, 0, 0);
5261 if (ret < 0)
5262 goto out;
5263 }
5264
5265 if (advance_left && !left_end_reached) {
5266 ret = tree_advance(left_root, left_path, &left_level,
5267 left_root_level,
5268 advance_left != ADVANCE_ONLY_NEXT,
5269 &left_key);
5270 if (ret < 0)
5271 left_end_reached = ADVANCE;
5272 advance_left = 0;
5273 }
5274 if (advance_right && !right_end_reached) {
5275 ret = tree_advance(right_root, right_path, &right_level,
5276 right_root_level,
5277 advance_right != ADVANCE_ONLY_NEXT,
5278 &right_key);
5279 if (ret < 0)
5280 right_end_reached = ADVANCE;
5281 advance_right = 0;
5282 }
5283
5284 if (left_end_reached && right_end_reached) {
5285 ret = 0;
5286 goto out;
5287 } else if (left_end_reached) {
5288 if (right_level == 0) {
5289 ret = changed_cb(left_root, right_root,
5290 left_path, right_path,
5291 &right_key,
5292 BTRFS_COMPARE_TREE_DELETED,
5293 ctx);
5294 if (ret < 0)
5295 goto out;
5296 }
5297 advance_right = ADVANCE;
5298 continue;
5299 } else if (right_end_reached) {
5300 if (left_level == 0) {
5301 ret = changed_cb(left_root, right_root,
5302 left_path, right_path,
5303 &left_key,
5304 BTRFS_COMPARE_TREE_NEW,
5305 ctx);
5306 if (ret < 0)
5307 goto out;
5308 }
5309 advance_left = ADVANCE;
5310 continue;
5311 }
5312
5313 if (left_level == 0 && right_level == 0) {
5314 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5315 if (cmp < 0) {
5316 ret = changed_cb(left_root, right_root,
5317 left_path, right_path,
5318 &left_key,
5319 BTRFS_COMPARE_TREE_NEW,
5320 ctx);
5321 if (ret < 0)
5322 goto out;
5323 advance_left = ADVANCE;
5324 } else if (cmp > 0) {
5325 ret = changed_cb(left_root, right_root,
5326 left_path, right_path,
5327 &right_key,
5328 BTRFS_COMPARE_TREE_DELETED,
5329 ctx);
5330 if (ret < 0)
5331 goto out;
5332 advance_right = ADVANCE;
5333 } else {
74dd17fb 5334 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5335 ret = tree_compare_item(left_root, left_path,
5336 right_path, tmp_buf);
5337 if (ret) {
74dd17fb 5338 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5339 ret = changed_cb(left_root, right_root,
5340 left_path, right_path,
5341 &left_key,
5342 BTRFS_COMPARE_TREE_CHANGED,
5343 ctx);
5344 if (ret < 0)
5345 goto out;
5346 }
5347 advance_left = ADVANCE;
5348 advance_right = ADVANCE;
5349 }
5350 } else if (left_level == right_level) {
5351 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5352 if (cmp < 0) {
5353 advance_left = ADVANCE;
5354 } else if (cmp > 0) {
5355 advance_right = ADVANCE;
5356 } else {
5357 left_blockptr = btrfs_node_blockptr(
5358 left_path->nodes[left_level],
5359 left_path->slots[left_level]);
5360 right_blockptr = btrfs_node_blockptr(
5361 right_path->nodes[right_level],
5362 right_path->slots[right_level]);
5363 if (left_blockptr == right_blockptr) {
5364 /*
5365 * As we're on a shared block, don't
5366 * allow to go deeper.
5367 */
5368 advance_left = ADVANCE_ONLY_NEXT;
5369 advance_right = ADVANCE_ONLY_NEXT;
5370 } else {
5371 advance_left = ADVANCE;
5372 advance_right = ADVANCE;
5373 }
5374 }
5375 } else if (left_level < right_level) {
5376 advance_right = ADVANCE;
5377 } else {
5378 advance_left = ADVANCE;
5379 }
5380 }
5381
5382out:
5383 btrfs_free_path(left_path);
5384 btrfs_free_path(right_path);
5385 kfree(tmp_buf);
5386
5387 if (trans) {
5388 if (!ret)
5389 ret = btrfs_end_transaction(trans, left_root);
5390 else
5391 btrfs_end_transaction(trans, left_root);
5392 }
5393
5394 return ret;
5395}
5396
3f157a2f
CM
5397/*
5398 * this is similar to btrfs_next_leaf, but does not try to preserve
5399 * and fixup the path. It looks for and returns the next key in the
5400 * tree based on the current path and the cache_only and min_trans
5401 * parameters.
5402 *
5403 * 0 is returned if another key is found, < 0 if there are any errors
5404 * and 1 is returned if there are no higher keys in the tree
5405 *
5406 * path->keep_locks should be set to 1 on the search made before
5407 * calling this function.
5408 */
e7a84565 5409int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
33c66f43 5410 struct btrfs_key *key, int level,
3f157a2f 5411 int cache_only, u64 min_trans)
e7a84565 5412{
e7a84565
CM
5413 int slot;
5414 struct extent_buffer *c;
5415
934d375b 5416 WARN_ON(!path->keep_locks);
d397712b 5417 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5418 if (!path->nodes[level])
5419 return 1;
5420
5421 slot = path->slots[level] + 1;
5422 c = path->nodes[level];
3f157a2f 5423next:
e7a84565 5424 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5425 int ret;
5426 int orig_lowest;
5427 struct btrfs_key cur_key;
5428 if (level + 1 >= BTRFS_MAX_LEVEL ||
5429 !path->nodes[level + 1])
e7a84565 5430 return 1;
33c66f43
YZ
5431
5432 if (path->locks[level + 1]) {
5433 level++;
5434 continue;
5435 }
5436
5437 slot = btrfs_header_nritems(c) - 1;
5438 if (level == 0)
5439 btrfs_item_key_to_cpu(c, &cur_key, slot);
5440 else
5441 btrfs_node_key_to_cpu(c, &cur_key, slot);
5442
5443 orig_lowest = path->lowest_level;
b3b4aa74 5444 btrfs_release_path(path);
33c66f43
YZ
5445 path->lowest_level = level;
5446 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5447 0, 0);
5448 path->lowest_level = orig_lowest;
5449 if (ret < 0)
5450 return ret;
5451
5452 c = path->nodes[level];
5453 slot = path->slots[level];
5454 if (ret == 0)
5455 slot++;
5456 goto next;
e7a84565 5457 }
33c66f43 5458
e7a84565
CM
5459 if (level == 0)
5460 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f
CM
5461 else {
5462 u64 blockptr = btrfs_node_blockptr(c, slot);
5463 u64 gen = btrfs_node_ptr_generation(c, slot);
5464
5465 if (cache_only) {
5466 struct extent_buffer *cur;
5467 cur = btrfs_find_tree_block(root, blockptr,
5468 btrfs_level_size(root, level - 1));
b9fab919
CM
5469 if (!cur ||
5470 btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
3f157a2f
CM
5471 slot++;
5472 if (cur)
5473 free_extent_buffer(cur);
5474 goto next;
5475 }
5476 free_extent_buffer(cur);
5477 }
5478 if (gen < min_trans) {
5479 slot++;
5480 goto next;
5481 }
e7a84565 5482 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5483 }
e7a84565
CM
5484 return 0;
5485 }
5486 return 1;
5487}
5488
97571fd0 5489/*
925baedd 5490 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5491 * returns 0 if it found something or 1 if there are no greater leaves.
5492 * returns < 0 on io errors.
97571fd0 5493 */
234b63a0 5494int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5495{
5496 return btrfs_next_old_leaf(root, path, 0);
5497}
5498
5499int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5500 u64 time_seq)
d97e63b6
CM
5501{
5502 int slot;
8e73f275 5503 int level;
5f39d397 5504 struct extent_buffer *c;
8e73f275 5505 struct extent_buffer *next;
925baedd
CM
5506 struct btrfs_key key;
5507 u32 nritems;
5508 int ret;
8e73f275 5509 int old_spinning = path->leave_spinning;
bd681513 5510 int next_rw_lock = 0;
925baedd
CM
5511
5512 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5513 if (nritems == 0)
925baedd 5514 return 1;
925baedd 5515
8e73f275
CM
5516 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5517again:
5518 level = 1;
5519 next = NULL;
bd681513 5520 next_rw_lock = 0;
b3b4aa74 5521 btrfs_release_path(path);
8e73f275 5522
a2135011 5523 path->keep_locks = 1;
31533fb2 5524 path->leave_spinning = 1;
8e73f275 5525
3d7806ec
JS
5526 if (time_seq)
5527 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5528 else
5529 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5530 path->keep_locks = 0;
5531
5532 if (ret < 0)
5533 return ret;
5534
a2135011 5535 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5536 /*
5537 * by releasing the path above we dropped all our locks. A balance
5538 * could have added more items next to the key that used to be
5539 * at the very end of the block. So, check again here and
5540 * advance the path if there are now more items available.
5541 */
a2135011 5542 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5543 if (ret == 0)
5544 path->slots[0]++;
8e73f275 5545 ret = 0;
925baedd
CM
5546 goto done;
5547 }
d97e63b6 5548
d397712b 5549 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5550 if (!path->nodes[level]) {
5551 ret = 1;
5552 goto done;
5553 }
5f39d397 5554
d97e63b6
CM
5555 slot = path->slots[level] + 1;
5556 c = path->nodes[level];
5f39d397 5557 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5558 level++;
8e73f275
CM
5559 if (level == BTRFS_MAX_LEVEL) {
5560 ret = 1;
5561 goto done;
5562 }
d97e63b6
CM
5563 continue;
5564 }
5f39d397 5565
925baedd 5566 if (next) {
bd681513 5567 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5568 free_extent_buffer(next);
925baedd 5569 }
5f39d397 5570
8e73f275 5571 next = c;
bd681513 5572 next_rw_lock = path->locks[level];
8e73f275 5573 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5574 slot, &key, 0);
8e73f275
CM
5575 if (ret == -EAGAIN)
5576 goto again;
5f39d397 5577
76a05b35 5578 if (ret < 0) {
b3b4aa74 5579 btrfs_release_path(path);
76a05b35
CM
5580 goto done;
5581 }
5582
5cd57b2c 5583 if (!path->skip_locking) {
bd681513 5584 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5585 if (!ret && time_seq) {
5586 /*
5587 * If we don't get the lock, we may be racing
5588 * with push_leaf_left, holding that lock while
5589 * itself waiting for the leaf we've currently
5590 * locked. To solve this situation, we give up
5591 * on our lock and cycle.
5592 */
cf538830 5593 free_extent_buffer(next);
d42244a0
JS
5594 btrfs_release_path(path);
5595 cond_resched();
5596 goto again;
5597 }
8e73f275
CM
5598 if (!ret) {
5599 btrfs_set_path_blocking(path);
bd681513 5600 btrfs_tree_read_lock(next);
31533fb2 5601 btrfs_clear_path_blocking(path, next,
bd681513 5602 BTRFS_READ_LOCK);
8e73f275 5603 }
31533fb2 5604 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5605 }
d97e63b6
CM
5606 break;
5607 }
5608 path->slots[level] = slot;
d397712b 5609 while (1) {
d97e63b6
CM
5610 level--;
5611 c = path->nodes[level];
925baedd 5612 if (path->locks[level])
bd681513 5613 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5614
5f39d397 5615 free_extent_buffer(c);
d97e63b6
CM
5616 path->nodes[level] = next;
5617 path->slots[level] = 0;
a74a4b97 5618 if (!path->skip_locking)
bd681513 5619 path->locks[level] = next_rw_lock;
d97e63b6
CM
5620 if (!level)
5621 break;
b4ce94de 5622
8e73f275 5623 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5624 0, &key, 0);
8e73f275
CM
5625 if (ret == -EAGAIN)
5626 goto again;
5627
76a05b35 5628 if (ret < 0) {
b3b4aa74 5629 btrfs_release_path(path);
76a05b35
CM
5630 goto done;
5631 }
5632
5cd57b2c 5633 if (!path->skip_locking) {
bd681513 5634 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5635 if (!ret) {
5636 btrfs_set_path_blocking(path);
bd681513 5637 btrfs_tree_read_lock(next);
31533fb2 5638 btrfs_clear_path_blocking(path, next,
bd681513
CM
5639 BTRFS_READ_LOCK);
5640 }
31533fb2 5641 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5642 }
d97e63b6 5643 }
8e73f275 5644 ret = 0;
925baedd 5645done:
f7c79f30 5646 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5647 path->leave_spinning = old_spinning;
5648 if (!old_spinning)
5649 btrfs_set_path_blocking(path);
5650
5651 return ret;
d97e63b6 5652}
0b86a832 5653
3f157a2f
CM
5654/*
5655 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5656 * searching until it gets past min_objectid or finds an item of 'type'
5657 *
5658 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5659 */
0b86a832
CM
5660int btrfs_previous_item(struct btrfs_root *root,
5661 struct btrfs_path *path, u64 min_objectid,
5662 int type)
5663{
5664 struct btrfs_key found_key;
5665 struct extent_buffer *leaf;
e02119d5 5666 u32 nritems;
0b86a832
CM
5667 int ret;
5668
d397712b 5669 while (1) {
0b86a832 5670 if (path->slots[0] == 0) {
b4ce94de 5671 btrfs_set_path_blocking(path);
0b86a832
CM
5672 ret = btrfs_prev_leaf(root, path);
5673 if (ret != 0)
5674 return ret;
5675 } else {
5676 path->slots[0]--;
5677 }
5678 leaf = path->nodes[0];
e02119d5
CM
5679 nritems = btrfs_header_nritems(leaf);
5680 if (nritems == 0)
5681 return 1;
5682 if (path->slots[0] == nritems)
5683 path->slots[0]--;
5684
0b86a832 5685 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5686 if (found_key.objectid < min_objectid)
5687 break;
0a4eefbb
YZ
5688 if (found_key.type == type)
5689 return 0;
e02119d5
CM
5690 if (found_key.objectid == min_objectid &&
5691 found_key.type < type)
5692 break;
0b86a832
CM
5693 }
5694 return 1;
5695}