Merge tag 'soc-fsl-next-v5.1-4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / fs / btrfs / ctree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570 2/*
d352ac68 3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
a6b6e75e 6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
bd989ba3 8#include <linux/rbtree.h>
adf02123 9#include <linux/mm.h>
eb60ceac
CM
10#include "ctree.h"
11#include "disk-io.h"
7f5c1516 12#include "transaction.h"
5f39d397 13#include "print-tree.h"
925baedd 14#include "locking.h"
de37aa51 15#include "volumes.h"
9a8dd150 16
e089f05c
CM
17static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
18 *root, struct btrfs_path *path, int level);
310712b2
OS
19static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
20 const struct btrfs_key *ins_key, struct btrfs_path *path,
21 int data_size, int extend);
5f39d397 22static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
23 struct btrfs_fs_info *fs_info,
24 struct extent_buffer *dst,
971a1f66 25 struct extent_buffer *src, int empty);
5f39d397 26static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 27 struct btrfs_fs_info *fs_info,
5f39d397
CM
28 struct extent_buffer *dst_buf,
29 struct extent_buffer *src_buf);
afe5fea7
TI
30static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
31 int level, int slot);
d97e63b6 32
df24a2b9 33struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 34{
e2c89907 35 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
2c90e5d6
CM
36}
37
b4ce94de
CM
38/*
39 * set all locked nodes in the path to blocking locks. This should
40 * be done before scheduling
41 */
42noinline void btrfs_set_path_blocking(struct btrfs_path *p)
43{
44 int i;
45 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
46 if (!p->nodes[i] || !p->locks[i])
47 continue;
48 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
49 if (p->locks[i] == BTRFS_READ_LOCK)
50 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
51 else if (p->locks[i] == BTRFS_WRITE_LOCK)
52 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
53 }
54}
55
d352ac68 56/* this also releases the path */
df24a2b9 57void btrfs_free_path(struct btrfs_path *p)
be0e5c09 58{
ff175d57
JJ
59 if (!p)
60 return;
b3b4aa74 61 btrfs_release_path(p);
df24a2b9 62 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
63}
64
d352ac68
CM
65/*
66 * path release drops references on the extent buffers in the path
67 * and it drops any locks held by this path
68 *
69 * It is safe to call this on paths that no locks or extent buffers held.
70 */
b3b4aa74 71noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
72{
73 int i;
a2135011 74
234b63a0 75 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 76 p->slots[i] = 0;
eb60ceac 77 if (!p->nodes[i])
925baedd
CM
78 continue;
79 if (p->locks[i]) {
bd681513 80 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
81 p->locks[i] = 0;
82 }
5f39d397 83 free_extent_buffer(p->nodes[i]);
3f157a2f 84 p->nodes[i] = NULL;
eb60ceac
CM
85 }
86}
87
d352ac68
CM
88/*
89 * safely gets a reference on the root node of a tree. A lock
90 * is not taken, so a concurrent writer may put a different node
91 * at the root of the tree. See btrfs_lock_root_node for the
92 * looping required.
93 *
94 * The extent buffer returned by this has a reference taken, so
95 * it won't disappear. It may stop being the root of the tree
96 * at any time because there are no locks held.
97 */
925baedd
CM
98struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
99{
100 struct extent_buffer *eb;
240f62c8 101
3083ee2e
JB
102 while (1) {
103 rcu_read_lock();
104 eb = rcu_dereference(root->node);
105
106 /*
107 * RCU really hurts here, we could free up the root node because
01327610 108 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
109 * the inc_not_zero dance and if it doesn't work then
110 * synchronize_rcu and try again.
111 */
112 if (atomic_inc_not_zero(&eb->refs)) {
113 rcu_read_unlock();
114 break;
115 }
116 rcu_read_unlock();
117 synchronize_rcu();
118 }
925baedd
CM
119 return eb;
120}
121
d352ac68
CM
122/* loop around taking references on and locking the root node of the
123 * tree until you end up with a lock on the root. A locked buffer
124 * is returned, with a reference held.
125 */
925baedd
CM
126struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
127{
128 struct extent_buffer *eb;
129
d397712b 130 while (1) {
925baedd
CM
131 eb = btrfs_root_node(root);
132 btrfs_tree_lock(eb);
240f62c8 133 if (eb == root->node)
925baedd 134 break;
925baedd
CM
135 btrfs_tree_unlock(eb);
136 free_extent_buffer(eb);
137 }
138 return eb;
139}
140
bd681513
CM
141/* loop around taking references on and locking the root node of the
142 * tree until you end up with a lock on the root. A locked buffer
143 * is returned, with a reference held.
144 */
84f7d8e6 145struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
146{
147 struct extent_buffer *eb;
148
149 while (1) {
150 eb = btrfs_root_node(root);
151 btrfs_tree_read_lock(eb);
152 if (eb == root->node)
153 break;
154 btrfs_tree_read_unlock(eb);
155 free_extent_buffer(eb);
156 }
157 return eb;
158}
159
d352ac68
CM
160/* cowonly root (everything not a reference counted cow subvolume), just get
161 * put onto a simple dirty list. transaction.c walks this to make sure they
162 * get properly updated on disk.
163 */
0b86a832
CM
164static void add_root_to_dirty_list(struct btrfs_root *root)
165{
0b246afa
JM
166 struct btrfs_fs_info *fs_info = root->fs_info;
167
e7070be1
JB
168 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
169 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
170 return;
171
0b246afa 172 spin_lock(&fs_info->trans_lock);
e7070be1
JB
173 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
174 /* Want the extent tree to be the last on the list */
4fd786e6 175 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
e7070be1 176 list_move_tail(&root->dirty_list,
0b246afa 177 &fs_info->dirty_cowonly_roots);
e7070be1
JB
178 else
179 list_move(&root->dirty_list,
0b246afa 180 &fs_info->dirty_cowonly_roots);
0b86a832 181 }
0b246afa 182 spin_unlock(&fs_info->trans_lock);
0b86a832
CM
183}
184
d352ac68
CM
185/*
186 * used by snapshot creation to make a copy of a root for a tree with
187 * a given objectid. The buffer with the new root node is returned in
188 * cow_ret, and this func returns zero on success or a negative error code.
189 */
be20aa9d
CM
190int btrfs_copy_root(struct btrfs_trans_handle *trans,
191 struct btrfs_root *root,
192 struct extent_buffer *buf,
193 struct extent_buffer **cow_ret, u64 new_root_objectid)
194{
0b246afa 195 struct btrfs_fs_info *fs_info = root->fs_info;
be20aa9d 196 struct extent_buffer *cow;
be20aa9d
CM
197 int ret = 0;
198 int level;
5d4f98a2 199 struct btrfs_disk_key disk_key;
be20aa9d 200
27cdeb70 201 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 202 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
203 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
204 trans->transid != root->last_trans);
be20aa9d
CM
205
206 level = btrfs_header_level(buf);
5d4f98a2
YZ
207 if (level == 0)
208 btrfs_item_key(buf, &disk_key, 0);
209 else
210 btrfs_node_key(buf, &disk_key, 0);
31840ae1 211
4d75f8a9
DS
212 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
213 &disk_key, level, buf->start, 0);
5d4f98a2 214 if (IS_ERR(cow))
be20aa9d
CM
215 return PTR_ERR(cow);
216
58e8012c 217 copy_extent_buffer_full(cow, buf);
be20aa9d
CM
218 btrfs_set_header_bytenr(cow, cow->start);
219 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
220 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
221 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
222 BTRFS_HEADER_FLAG_RELOC);
223 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
224 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
225 else
226 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 227
de37aa51 228 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
2b82032c 229
be20aa9d 230 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 231 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 232 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 233 else
e339a6b0 234 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 235
be20aa9d
CM
236 if (ret)
237 return ret;
238
239 btrfs_mark_buffer_dirty(cow);
240 *cow_ret = cow;
241 return 0;
242}
243
bd989ba3
JS
244enum mod_log_op {
245 MOD_LOG_KEY_REPLACE,
246 MOD_LOG_KEY_ADD,
247 MOD_LOG_KEY_REMOVE,
248 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
249 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
250 MOD_LOG_MOVE_KEYS,
251 MOD_LOG_ROOT_REPLACE,
252};
253
bd989ba3
JS
254struct tree_mod_root {
255 u64 logical;
256 u8 level;
257};
258
259struct tree_mod_elem {
260 struct rb_node node;
298cfd36 261 u64 logical;
097b8a7c 262 u64 seq;
bd989ba3
JS
263 enum mod_log_op op;
264
265 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
266 int slot;
267
268 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
269 u64 generation;
270
271 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
272 struct btrfs_disk_key key;
273 u64 blockptr;
274
275 /* this is used for op == MOD_LOG_MOVE_KEYS */
b6dfa35b
DS
276 struct {
277 int dst_slot;
278 int nr_items;
279 } move;
bd989ba3
JS
280
281 /* this is used for op == MOD_LOG_ROOT_REPLACE */
282 struct tree_mod_root old_root;
283};
284
fc36ed7e 285/*
fcebe456 286 * Pull a new tree mod seq number for our operation.
fc36ed7e 287 */
fcebe456 288static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
289{
290 return atomic64_inc_return(&fs_info->tree_mod_seq);
291}
292
097b8a7c
JS
293/*
294 * This adds a new blocker to the tree mod log's blocker list if the @elem
295 * passed does not already have a sequence number set. So when a caller expects
296 * to record tree modifications, it should ensure to set elem->seq to zero
297 * before calling btrfs_get_tree_mod_seq.
298 * Returns a fresh, unused tree log modification sequence number, even if no new
299 * blocker was added.
300 */
301u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
302 struct seq_list *elem)
bd989ba3 303{
b1a09f1e 304 write_lock(&fs_info->tree_mod_log_lock);
bd989ba3 305 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 306 if (!elem->seq) {
fcebe456 307 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
308 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
309 }
bd989ba3 310 spin_unlock(&fs_info->tree_mod_seq_lock);
b1a09f1e 311 write_unlock(&fs_info->tree_mod_log_lock);
097b8a7c 312
fcebe456 313 return elem->seq;
bd989ba3
JS
314}
315
316void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
317 struct seq_list *elem)
318{
319 struct rb_root *tm_root;
320 struct rb_node *node;
321 struct rb_node *next;
322 struct seq_list *cur_elem;
323 struct tree_mod_elem *tm;
324 u64 min_seq = (u64)-1;
325 u64 seq_putting = elem->seq;
326
327 if (!seq_putting)
328 return;
329
bd989ba3
JS
330 spin_lock(&fs_info->tree_mod_seq_lock);
331 list_del(&elem->list);
097b8a7c 332 elem->seq = 0;
bd989ba3
JS
333
334 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 335 if (cur_elem->seq < min_seq) {
bd989ba3
JS
336 if (seq_putting > cur_elem->seq) {
337 /*
338 * blocker with lower sequence number exists, we
339 * cannot remove anything from the log
340 */
097b8a7c
JS
341 spin_unlock(&fs_info->tree_mod_seq_lock);
342 return;
bd989ba3
JS
343 }
344 min_seq = cur_elem->seq;
345 }
346 }
097b8a7c
JS
347 spin_unlock(&fs_info->tree_mod_seq_lock);
348
bd989ba3
JS
349 /*
350 * anything that's lower than the lowest existing (read: blocked)
351 * sequence number can be removed from the tree.
352 */
b1a09f1e 353 write_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
354 tm_root = &fs_info->tree_mod_log;
355 for (node = rb_first(tm_root); node; node = next) {
356 next = rb_next(node);
6b4df8b6 357 tm = rb_entry(node, struct tree_mod_elem, node);
097b8a7c 358 if (tm->seq > min_seq)
bd989ba3
JS
359 continue;
360 rb_erase(node, tm_root);
bd989ba3
JS
361 kfree(tm);
362 }
b1a09f1e 363 write_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
364}
365
366/*
367 * key order of the log:
298cfd36 368 * node/leaf start address -> sequence
bd989ba3 369 *
298cfd36
CR
370 * The 'start address' is the logical address of the *new* root node
371 * for root replace operations, or the logical address of the affected
372 * block for all other operations.
5de865ee 373 *
b1a09f1e 374 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
bd989ba3
JS
375 */
376static noinline int
377__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
378{
379 struct rb_root *tm_root;
380 struct rb_node **new;
381 struct rb_node *parent = NULL;
382 struct tree_mod_elem *cur;
c8cc6341 383
fcebe456 384 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 385
bd989ba3
JS
386 tm_root = &fs_info->tree_mod_log;
387 new = &tm_root->rb_node;
388 while (*new) {
6b4df8b6 389 cur = rb_entry(*new, struct tree_mod_elem, node);
bd989ba3 390 parent = *new;
298cfd36 391 if (cur->logical < tm->logical)
bd989ba3 392 new = &((*new)->rb_left);
298cfd36 393 else if (cur->logical > tm->logical)
bd989ba3 394 new = &((*new)->rb_right);
097b8a7c 395 else if (cur->seq < tm->seq)
bd989ba3 396 new = &((*new)->rb_left);
097b8a7c 397 else if (cur->seq > tm->seq)
bd989ba3 398 new = &((*new)->rb_right);
5de865ee
FDBM
399 else
400 return -EEXIST;
bd989ba3
JS
401 }
402
403 rb_link_node(&tm->node, parent, new);
404 rb_insert_color(&tm->node, tm_root);
5de865ee 405 return 0;
bd989ba3
JS
406}
407
097b8a7c
JS
408/*
409 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
410 * returns zero with the tree_mod_log_lock acquired. The caller must hold
411 * this until all tree mod log insertions are recorded in the rb tree and then
b1a09f1e 412 * write unlock fs_info::tree_mod_log_lock.
097b8a7c 413 */
e9b7fd4d
JS
414static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
415 struct extent_buffer *eb) {
416 smp_mb();
417 if (list_empty(&(fs_info)->tree_mod_seq_list))
418 return 1;
097b8a7c
JS
419 if (eb && btrfs_header_level(eb) == 0)
420 return 1;
5de865ee 421
b1a09f1e 422 write_lock(&fs_info->tree_mod_log_lock);
5de865ee 423 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
b1a09f1e 424 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
425 return 1;
426 }
427
e9b7fd4d
JS
428 return 0;
429}
430
5de865ee
FDBM
431/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
432static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
433 struct extent_buffer *eb)
434{
435 smp_mb();
436 if (list_empty(&(fs_info)->tree_mod_seq_list))
437 return 0;
438 if (eb && btrfs_header_level(eb) == 0)
439 return 0;
440
441 return 1;
442}
443
444static struct tree_mod_elem *
445alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
446 enum mod_log_op op, gfp_t flags)
bd989ba3 447{
097b8a7c 448 struct tree_mod_elem *tm;
bd989ba3 449
c8cc6341
JB
450 tm = kzalloc(sizeof(*tm), flags);
451 if (!tm)
5de865ee 452 return NULL;
bd989ba3 453
298cfd36 454 tm->logical = eb->start;
bd989ba3
JS
455 if (op != MOD_LOG_KEY_ADD) {
456 btrfs_node_key(eb, &tm->key, slot);
457 tm->blockptr = btrfs_node_blockptr(eb, slot);
458 }
459 tm->op = op;
460 tm->slot = slot;
461 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 462 RB_CLEAR_NODE(&tm->node);
bd989ba3 463
5de865ee 464 return tm;
097b8a7c
JS
465}
466
e09c2efe
DS
467static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
468 enum mod_log_op op, gfp_t flags)
097b8a7c 469{
5de865ee
FDBM
470 struct tree_mod_elem *tm;
471 int ret;
472
e09c2efe 473 if (!tree_mod_need_log(eb->fs_info, eb))
5de865ee
FDBM
474 return 0;
475
476 tm = alloc_tree_mod_elem(eb, slot, op, flags);
477 if (!tm)
478 return -ENOMEM;
479
e09c2efe 480 if (tree_mod_dont_log(eb->fs_info, eb)) {
5de865ee 481 kfree(tm);
097b8a7c 482 return 0;
5de865ee
FDBM
483 }
484
e09c2efe 485 ret = __tree_mod_log_insert(eb->fs_info, tm);
b1a09f1e 486 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
487 if (ret)
488 kfree(tm);
097b8a7c 489
5de865ee 490 return ret;
097b8a7c
JS
491}
492
6074d45f
DS
493static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
494 int dst_slot, int src_slot, int nr_items)
bd989ba3 495{
5de865ee
FDBM
496 struct tree_mod_elem *tm = NULL;
497 struct tree_mod_elem **tm_list = NULL;
498 int ret = 0;
bd989ba3 499 int i;
5de865ee 500 int locked = 0;
bd989ba3 501
6074d45f 502 if (!tree_mod_need_log(eb->fs_info, eb))
f395694c 503 return 0;
bd989ba3 504
176ef8f5 505 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
506 if (!tm_list)
507 return -ENOMEM;
508
176ef8f5 509 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
510 if (!tm) {
511 ret = -ENOMEM;
512 goto free_tms;
513 }
514
298cfd36 515 tm->logical = eb->start;
5de865ee
FDBM
516 tm->slot = src_slot;
517 tm->move.dst_slot = dst_slot;
518 tm->move.nr_items = nr_items;
519 tm->op = MOD_LOG_MOVE_KEYS;
520
521 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
522 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
176ef8f5 523 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
5de865ee
FDBM
524 if (!tm_list[i]) {
525 ret = -ENOMEM;
526 goto free_tms;
527 }
528 }
529
6074d45f 530 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
531 goto free_tms;
532 locked = 1;
533
01763a2e
JS
534 /*
535 * When we override something during the move, we log these removals.
536 * This can only happen when we move towards the beginning of the
537 * buffer, i.e. dst_slot < src_slot.
538 */
bd989ba3 539 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
6074d45f 540 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
5de865ee
FDBM
541 if (ret)
542 goto free_tms;
bd989ba3
JS
543 }
544
6074d45f 545 ret = __tree_mod_log_insert(eb->fs_info, tm);
5de865ee
FDBM
546 if (ret)
547 goto free_tms;
b1a09f1e 548 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee 549 kfree(tm_list);
f395694c 550
5de865ee
FDBM
551 return 0;
552free_tms:
553 for (i = 0; i < nr_items; i++) {
554 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
6074d45f 555 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
5de865ee
FDBM
556 kfree(tm_list[i]);
557 }
558 if (locked)
b1a09f1e 559 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
560 kfree(tm_list);
561 kfree(tm);
bd989ba3 562
5de865ee 563 return ret;
bd989ba3
JS
564}
565
5de865ee
FDBM
566static inline int
567__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
568 struct tree_mod_elem **tm_list,
569 int nritems)
097b8a7c 570{
5de865ee 571 int i, j;
097b8a7c
JS
572 int ret;
573
097b8a7c 574 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
575 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
576 if (ret) {
577 for (j = nritems - 1; j > i; j--)
578 rb_erase(&tm_list[j]->node,
579 &fs_info->tree_mod_log);
580 return ret;
581 }
097b8a7c 582 }
5de865ee
FDBM
583
584 return 0;
097b8a7c
JS
585}
586
95b757c1
DS
587static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
588 struct extent_buffer *new_root, int log_removal)
bd989ba3 589{
95b757c1 590 struct btrfs_fs_info *fs_info = old_root->fs_info;
5de865ee
FDBM
591 struct tree_mod_elem *tm = NULL;
592 struct tree_mod_elem **tm_list = NULL;
593 int nritems = 0;
594 int ret = 0;
595 int i;
bd989ba3 596
5de865ee 597 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
598 return 0;
599
5de865ee
FDBM
600 if (log_removal && btrfs_header_level(old_root) > 0) {
601 nritems = btrfs_header_nritems(old_root);
31e818fe 602 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
bcc8e07f 603 GFP_NOFS);
5de865ee
FDBM
604 if (!tm_list) {
605 ret = -ENOMEM;
606 goto free_tms;
607 }
608 for (i = 0; i < nritems; i++) {
609 tm_list[i] = alloc_tree_mod_elem(old_root, i,
bcc8e07f 610 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
5de865ee
FDBM
611 if (!tm_list[i]) {
612 ret = -ENOMEM;
613 goto free_tms;
614 }
615 }
616 }
d9abbf1c 617
bcc8e07f 618 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
619 if (!tm) {
620 ret = -ENOMEM;
621 goto free_tms;
622 }
bd989ba3 623
298cfd36 624 tm->logical = new_root->start;
bd989ba3
JS
625 tm->old_root.logical = old_root->start;
626 tm->old_root.level = btrfs_header_level(old_root);
627 tm->generation = btrfs_header_generation(old_root);
628 tm->op = MOD_LOG_ROOT_REPLACE;
629
5de865ee
FDBM
630 if (tree_mod_dont_log(fs_info, NULL))
631 goto free_tms;
632
633 if (tm_list)
634 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
635 if (!ret)
636 ret = __tree_mod_log_insert(fs_info, tm);
637
b1a09f1e 638 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
639 if (ret)
640 goto free_tms;
641 kfree(tm_list);
642
643 return ret;
644
645free_tms:
646 if (tm_list) {
647 for (i = 0; i < nritems; i++)
648 kfree(tm_list[i]);
649 kfree(tm_list);
650 }
651 kfree(tm);
652
653 return ret;
bd989ba3
JS
654}
655
656static struct tree_mod_elem *
657__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
658 int smallest)
659{
660 struct rb_root *tm_root;
661 struct rb_node *node;
662 struct tree_mod_elem *cur = NULL;
663 struct tree_mod_elem *found = NULL;
bd989ba3 664
b1a09f1e 665 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
666 tm_root = &fs_info->tree_mod_log;
667 node = tm_root->rb_node;
668 while (node) {
6b4df8b6 669 cur = rb_entry(node, struct tree_mod_elem, node);
298cfd36 670 if (cur->logical < start) {
bd989ba3 671 node = node->rb_left;
298cfd36 672 } else if (cur->logical > start) {
bd989ba3 673 node = node->rb_right;
097b8a7c 674 } else if (cur->seq < min_seq) {
bd989ba3
JS
675 node = node->rb_left;
676 } else if (!smallest) {
677 /* we want the node with the highest seq */
678 if (found)
097b8a7c 679 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
680 found = cur;
681 node = node->rb_left;
097b8a7c 682 } else if (cur->seq > min_seq) {
bd989ba3
JS
683 /* we want the node with the smallest seq */
684 if (found)
097b8a7c 685 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
686 found = cur;
687 node = node->rb_right;
688 } else {
689 found = cur;
690 break;
691 }
692 }
b1a09f1e 693 read_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
694
695 return found;
696}
697
698/*
699 * this returns the element from the log with the smallest time sequence
700 * value that's in the log (the oldest log item). any element with a time
701 * sequence lower than min_seq will be ignored.
702 */
703static struct tree_mod_elem *
704tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
705 u64 min_seq)
706{
707 return __tree_mod_log_search(fs_info, start, min_seq, 1);
708}
709
710/*
711 * this returns the element from the log with the largest time sequence
712 * value that's in the log (the most recent log item). any element with
713 * a time sequence lower than min_seq will be ignored.
714 */
715static struct tree_mod_elem *
716tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
717{
718 return __tree_mod_log_search(fs_info, start, min_seq, 0);
719}
720
5de865ee 721static noinline int
bd989ba3
JS
722tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
723 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 724 unsigned long src_offset, int nr_items)
bd989ba3 725{
5de865ee
FDBM
726 int ret = 0;
727 struct tree_mod_elem **tm_list = NULL;
728 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 729 int i;
5de865ee 730 int locked = 0;
bd989ba3 731
5de865ee
FDBM
732 if (!tree_mod_need_log(fs_info, NULL))
733 return 0;
bd989ba3 734
c8cc6341 735 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
736 return 0;
737
31e818fe 738 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
739 GFP_NOFS);
740 if (!tm_list)
741 return -ENOMEM;
bd989ba3 742
5de865ee
FDBM
743 tm_list_add = tm_list;
744 tm_list_rem = tm_list + nr_items;
bd989ba3 745 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
746 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
747 MOD_LOG_KEY_REMOVE, GFP_NOFS);
748 if (!tm_list_rem[i]) {
749 ret = -ENOMEM;
750 goto free_tms;
751 }
752
753 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
754 MOD_LOG_KEY_ADD, GFP_NOFS);
755 if (!tm_list_add[i]) {
756 ret = -ENOMEM;
757 goto free_tms;
758 }
759 }
760
761 if (tree_mod_dont_log(fs_info, NULL))
762 goto free_tms;
763 locked = 1;
764
765 for (i = 0; i < nr_items; i++) {
766 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
767 if (ret)
768 goto free_tms;
769 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
770 if (ret)
771 goto free_tms;
bd989ba3 772 }
5de865ee 773
b1a09f1e 774 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
775 kfree(tm_list);
776
777 return 0;
778
779free_tms:
780 for (i = 0; i < nr_items * 2; i++) {
781 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
782 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
783 kfree(tm_list[i]);
784 }
785 if (locked)
b1a09f1e 786 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
787 kfree(tm_list);
788
789 return ret;
bd989ba3
JS
790}
791
db7279a2 792static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
bd989ba3 793{
5de865ee
FDBM
794 struct tree_mod_elem **tm_list = NULL;
795 int nritems = 0;
796 int i;
797 int ret = 0;
798
799 if (btrfs_header_level(eb) == 0)
800 return 0;
801
db7279a2 802 if (!tree_mod_need_log(eb->fs_info, NULL))
5de865ee
FDBM
803 return 0;
804
805 nritems = btrfs_header_nritems(eb);
31e818fe 806 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
807 if (!tm_list)
808 return -ENOMEM;
809
810 for (i = 0; i < nritems; i++) {
811 tm_list[i] = alloc_tree_mod_elem(eb, i,
812 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
813 if (!tm_list[i]) {
814 ret = -ENOMEM;
815 goto free_tms;
816 }
817 }
818
db7279a2 819 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
820 goto free_tms;
821
db7279a2 822 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
b1a09f1e 823 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
824 if (ret)
825 goto free_tms;
826 kfree(tm_list);
827
828 return 0;
829
830free_tms:
831 for (i = 0; i < nritems; i++)
832 kfree(tm_list[i]);
833 kfree(tm_list);
834
835 return ret;
bd989ba3
JS
836}
837
5d4f98a2
YZ
838/*
839 * check if the tree block can be shared by multiple trees
840 */
841int btrfs_block_can_be_shared(struct btrfs_root *root,
842 struct extent_buffer *buf)
843{
844 /*
01327610 845 * Tree blocks not in reference counted trees and tree roots
5d4f98a2
YZ
846 * are never shared. If a block was allocated after the last
847 * snapshot and the block was not allocated by tree relocation,
848 * we know the block is not shared.
849 */
27cdeb70 850 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
851 buf != root->node && buf != root->commit_root &&
852 (btrfs_header_generation(buf) <=
853 btrfs_root_last_snapshot(&root->root_item) ||
854 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
855 return 1;
a79865c6 856
5d4f98a2
YZ
857 return 0;
858}
859
860static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
861 struct btrfs_root *root,
862 struct extent_buffer *buf,
f0486c68
YZ
863 struct extent_buffer *cow,
864 int *last_ref)
5d4f98a2 865{
0b246afa 866 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
867 u64 refs;
868 u64 owner;
869 u64 flags;
870 u64 new_flags = 0;
871 int ret;
872
873 /*
874 * Backrefs update rules:
875 *
876 * Always use full backrefs for extent pointers in tree block
877 * allocated by tree relocation.
878 *
879 * If a shared tree block is no longer referenced by its owner
880 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
881 * use full backrefs for extent pointers in tree block.
882 *
883 * If a tree block is been relocating
884 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
885 * use full backrefs for extent pointers in tree block.
886 * The reason for this is some operations (such as drop tree)
887 * are only allowed for blocks use full backrefs.
888 */
889
890 if (btrfs_block_can_be_shared(root, buf)) {
2ff7e61e 891 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
3173a18f
JB
892 btrfs_header_level(buf), 1,
893 &refs, &flags);
be1a5564
MF
894 if (ret)
895 return ret;
e5df9573
MF
896 if (refs == 0) {
897 ret = -EROFS;
0b246afa 898 btrfs_handle_fs_error(fs_info, ret, NULL);
e5df9573
MF
899 return ret;
900 }
5d4f98a2
YZ
901 } else {
902 refs = 1;
903 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
904 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
905 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
906 else
907 flags = 0;
908 }
909
910 owner = btrfs_header_owner(buf);
911 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
912 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
913
914 if (refs > 1) {
915 if ((owner == root->root_key.objectid ||
916 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
917 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 918 ret = btrfs_inc_ref(trans, root, buf, 1);
692826b2
JM
919 if (ret)
920 return ret;
5d4f98a2
YZ
921
922 if (root->root_key.objectid ==
923 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 924 ret = btrfs_dec_ref(trans, root, buf, 0);
692826b2
JM
925 if (ret)
926 return ret;
e339a6b0 927 ret = btrfs_inc_ref(trans, root, cow, 1);
692826b2
JM
928 if (ret)
929 return ret;
5d4f98a2
YZ
930 }
931 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
932 } else {
933
934 if (root->root_key.objectid ==
935 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 936 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 937 else
e339a6b0 938 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
939 if (ret)
940 return ret;
5d4f98a2
YZ
941 }
942 if (new_flags != 0) {
b1c79e09
JB
943 int level = btrfs_header_level(buf);
944
2ff7e61e 945 ret = btrfs_set_disk_extent_flags(trans, fs_info,
5d4f98a2
YZ
946 buf->start,
947 buf->len,
b1c79e09 948 new_flags, level, 0);
be1a5564
MF
949 if (ret)
950 return ret;
5d4f98a2
YZ
951 }
952 } else {
953 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
954 if (root->root_key.objectid ==
955 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 956 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 957 else
e339a6b0 958 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
959 if (ret)
960 return ret;
e339a6b0 961 ret = btrfs_dec_ref(trans, root, buf, 1);
692826b2
JM
962 if (ret)
963 return ret;
5d4f98a2 964 }
7c302b49 965 clean_tree_block(fs_info, buf);
f0486c68 966 *last_ref = 1;
5d4f98a2
YZ
967 }
968 return 0;
969}
970
d352ac68 971/*
d397712b
CM
972 * does the dirty work in cow of a single block. The parent block (if
973 * supplied) is updated to point to the new cow copy. The new buffer is marked
974 * dirty and returned locked. If you modify the block it needs to be marked
975 * dirty again.
d352ac68
CM
976 *
977 * search_start -- an allocation hint for the new block
978 *
d397712b
CM
979 * empty_size -- a hint that you plan on doing more cow. This is the size in
980 * bytes the allocator should try to find free next to the block it returns.
981 * This is just a hint and may be ignored by the allocator.
d352ac68 982 */
d397712b 983static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
984 struct btrfs_root *root,
985 struct extent_buffer *buf,
986 struct extent_buffer *parent, int parent_slot,
987 struct extent_buffer **cow_ret,
9fa8cfe7 988 u64 search_start, u64 empty_size)
02217ed2 989{
0b246afa 990 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2 991 struct btrfs_disk_key disk_key;
5f39d397 992 struct extent_buffer *cow;
be1a5564 993 int level, ret;
f0486c68 994 int last_ref = 0;
925baedd 995 int unlock_orig = 0;
0f5053eb 996 u64 parent_start = 0;
7bb86316 997
925baedd
CM
998 if (*cow_ret == buf)
999 unlock_orig = 1;
1000
b9447ef8 1001 btrfs_assert_tree_locked(buf);
925baedd 1002
27cdeb70 1003 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 1004 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
1005 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1006 trans->transid != root->last_trans);
5f39d397 1007
7bb86316 1008 level = btrfs_header_level(buf);
31840ae1 1009
5d4f98a2
YZ
1010 if (level == 0)
1011 btrfs_item_key(buf, &disk_key, 0);
1012 else
1013 btrfs_node_key(buf, &disk_key, 0);
1014
0f5053eb
GR
1015 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1016 parent_start = parent->start;
5d4f98a2 1017
5ce55557 1018 /*
a6d8654d
FM
1019 * If we are COWing a node/leaf from the extent, chunk, device or free
1020 * space trees, make sure that we do not finish block group creation of
1021 * pending block groups. We do this to avoid a deadlock.
5ce55557
FM
1022 * COWing can result in allocation of a new chunk, and flushing pending
1023 * block groups (btrfs_create_pending_block_groups()) can be triggered
1024 * when finishing allocation of a new chunk. Creation of a pending block
a6d8654d
FM
1025 * group modifies the extent, chunk, device and free space trees,
1026 * therefore we could deadlock with ourselves since we are holding a
1027 * lock on an extent buffer that btrfs_create_pending_block_groups() may
1028 * try to COW later.
5ce55557
FM
1029 */
1030 if (root == fs_info->extent_root ||
1031 root == fs_info->chunk_root ||
a6d8654d
FM
1032 root == fs_info->dev_root ||
1033 root == fs_info->free_space_root)
5ce55557
FM
1034 trans->can_flush_pending_bgs = false;
1035
4d75f8a9
DS
1036 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1037 root->root_key.objectid, &disk_key, level,
1038 search_start, empty_size);
5ce55557 1039 trans->can_flush_pending_bgs = true;
54aa1f4d
CM
1040 if (IS_ERR(cow))
1041 return PTR_ERR(cow);
6702ed49 1042
b4ce94de
CM
1043 /* cow is set to blocking by btrfs_init_new_buffer */
1044
58e8012c 1045 copy_extent_buffer_full(cow, buf);
db94535d 1046 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1047 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1048 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1049 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1050 BTRFS_HEADER_FLAG_RELOC);
1051 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1052 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1053 else
1054 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1055
de37aa51 1056 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
2b82032c 1057
be1a5564 1058 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1059 if (ret) {
66642832 1060 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1061 return ret;
1062 }
1a40e23b 1063
27cdeb70 1064 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1065 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1066 if (ret) {
66642832 1067 btrfs_abort_transaction(trans, ret);
83d4cfd4 1068 return ret;
93314e3b 1069 }
83d4cfd4 1070 }
3fd0a558 1071
02217ed2 1072 if (buf == root->node) {
925baedd 1073 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1074 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1075 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1076 parent_start = buf->start;
925baedd 1077
5f39d397 1078 extent_buffer_get(cow);
d9d19a01
DS
1079 ret = tree_mod_log_insert_root(root->node, cow, 1);
1080 BUG_ON(ret < 0);
240f62c8 1081 rcu_assign_pointer(root->node, cow);
925baedd 1082
f0486c68 1083 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1084 last_ref);
5f39d397 1085 free_extent_buffer(buf);
0b86a832 1086 add_root_to_dirty_list(root);
02217ed2 1087 } else {
5d4f98a2 1088 WARN_ON(trans->transid != btrfs_header_generation(parent));
e09c2efe 1089 tree_mod_log_insert_key(parent, parent_slot,
c8cc6341 1090 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1091 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1092 cow->start);
74493f7a
CM
1093 btrfs_set_node_ptr_generation(parent, parent_slot,
1094 trans->transid);
d6025579 1095 btrfs_mark_buffer_dirty(parent);
5de865ee 1096 if (last_ref) {
db7279a2 1097 ret = tree_mod_log_free_eb(buf);
5de865ee 1098 if (ret) {
66642832 1099 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1100 return ret;
1101 }
1102 }
f0486c68 1103 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1104 last_ref);
02217ed2 1105 }
925baedd
CM
1106 if (unlock_orig)
1107 btrfs_tree_unlock(buf);
3083ee2e 1108 free_extent_buffer_stale(buf);
ccd467d6 1109 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1110 *cow_ret = cow;
02217ed2
CM
1111 return 0;
1112}
1113
5d9e75c4
JS
1114/*
1115 * returns the logical address of the oldest predecessor of the given root.
1116 * entries older than time_seq are ignored.
1117 */
bcd24dab
DS
1118static struct tree_mod_elem *__tree_mod_log_oldest_root(
1119 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1120{
1121 struct tree_mod_elem *tm;
1122 struct tree_mod_elem *found = NULL;
30b0463a 1123 u64 root_logical = eb_root->start;
5d9e75c4
JS
1124 int looped = 0;
1125
1126 if (!time_seq)
35a3621b 1127 return NULL;
5d9e75c4
JS
1128
1129 /*
298cfd36
CR
1130 * the very last operation that's logged for a root is the
1131 * replacement operation (if it is replaced at all). this has
1132 * the logical address of the *new* root, making it the very
1133 * first operation that's logged for this root.
5d9e75c4
JS
1134 */
1135 while (1) {
bcd24dab 1136 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
5d9e75c4
JS
1137 time_seq);
1138 if (!looped && !tm)
35a3621b 1139 return NULL;
5d9e75c4 1140 /*
28da9fb4
JS
1141 * if there are no tree operation for the oldest root, we simply
1142 * return it. this should only happen if that (old) root is at
1143 * level 0.
5d9e75c4 1144 */
28da9fb4
JS
1145 if (!tm)
1146 break;
5d9e75c4 1147
28da9fb4
JS
1148 /*
1149 * if there's an operation that's not a root replacement, we
1150 * found the oldest version of our root. normally, we'll find a
1151 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1152 */
5d9e75c4
JS
1153 if (tm->op != MOD_LOG_ROOT_REPLACE)
1154 break;
1155
1156 found = tm;
1157 root_logical = tm->old_root.logical;
5d9e75c4
JS
1158 looped = 1;
1159 }
1160
a95236d9
JS
1161 /* if there's no old root to return, return what we found instead */
1162 if (!found)
1163 found = tm;
1164
5d9e75c4
JS
1165 return found;
1166}
1167
1168/*
1169 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1170 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1171 * time_seq).
1172 */
1173static void
f1ca7e98
JB
1174__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1175 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1176{
1177 u32 n;
1178 struct rb_node *next;
1179 struct tree_mod_elem *tm = first_tm;
1180 unsigned long o_dst;
1181 unsigned long o_src;
1182 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1183
1184 n = btrfs_header_nritems(eb);
b1a09f1e 1185 read_lock(&fs_info->tree_mod_log_lock);
097b8a7c 1186 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1187 /*
1188 * all the operations are recorded with the operator used for
1189 * the modification. as we're going backwards, we do the
1190 * opposite of each operation here.
1191 */
1192 switch (tm->op) {
1193 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1194 BUG_ON(tm->slot < n);
1c697d4a 1195 /* Fallthrough */
95c80bb1 1196 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1197 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1198 btrfs_set_node_key(eb, &tm->key, tm->slot);
1199 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1200 btrfs_set_node_ptr_generation(eb, tm->slot,
1201 tm->generation);
4c3e6969 1202 n++;
5d9e75c4
JS
1203 break;
1204 case MOD_LOG_KEY_REPLACE:
1205 BUG_ON(tm->slot >= n);
1206 btrfs_set_node_key(eb, &tm->key, tm->slot);
1207 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1208 btrfs_set_node_ptr_generation(eb, tm->slot,
1209 tm->generation);
1210 break;
1211 case MOD_LOG_KEY_ADD:
19956c7e 1212 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1213 n--;
1214 break;
1215 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1216 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1217 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1218 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1219 tm->move.nr_items * p_size);
1220 break;
1221 case MOD_LOG_ROOT_REPLACE:
1222 /*
1223 * this operation is special. for roots, this must be
1224 * handled explicitly before rewinding.
1225 * for non-roots, this operation may exist if the node
1226 * was a root: root A -> child B; then A gets empty and
1227 * B is promoted to the new root. in the mod log, we'll
1228 * have a root-replace operation for B, a tree block
1229 * that is no root. we simply ignore that operation.
1230 */
1231 break;
1232 }
1233 next = rb_next(&tm->node);
1234 if (!next)
1235 break;
6b4df8b6 1236 tm = rb_entry(next, struct tree_mod_elem, node);
298cfd36 1237 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1238 break;
1239 }
b1a09f1e 1240 read_unlock(&fs_info->tree_mod_log_lock);
5d9e75c4
JS
1241 btrfs_set_header_nritems(eb, n);
1242}
1243
47fb091f 1244/*
01327610 1245 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1246 * is returned. If rewind operations happen, a fresh buffer is returned. The
1247 * returned buffer is always read-locked. If the returned buffer is not the
1248 * input buffer, the lock on the input buffer is released and the input buffer
1249 * is freed (its refcount is decremented).
1250 */
5d9e75c4 1251static struct extent_buffer *
9ec72677
JB
1252tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1253 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1254{
1255 struct extent_buffer *eb_rewin;
1256 struct tree_mod_elem *tm;
1257
1258 if (!time_seq)
1259 return eb;
1260
1261 if (btrfs_header_level(eb) == 0)
1262 return eb;
1263
1264 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1265 if (!tm)
1266 return eb;
1267
9ec72677
JB
1268 btrfs_set_path_blocking(path);
1269 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1270
5d9e75c4
JS
1271 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1272 BUG_ON(tm->slot != 0);
da17066c 1273 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1274 if (!eb_rewin) {
9ec72677 1275 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1276 free_extent_buffer(eb);
1277 return NULL;
1278 }
5d9e75c4
JS
1279 btrfs_set_header_bytenr(eb_rewin, eb->start);
1280 btrfs_set_header_backref_rev(eb_rewin,
1281 btrfs_header_backref_rev(eb));
1282 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1283 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1284 } else {
1285 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1286 if (!eb_rewin) {
9ec72677 1287 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1288 free_extent_buffer(eb);
1289 return NULL;
1290 }
5d9e75c4
JS
1291 }
1292
9ec72677 1293 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1294 free_extent_buffer(eb);
1295
47fb091f 1296 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1297 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1298 WARN_ON(btrfs_header_nritems(eb_rewin) >
da17066c 1299 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1300
1301 return eb_rewin;
1302}
1303
8ba97a15
JS
1304/*
1305 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1306 * value. If there are no changes, the current root->root_node is returned. If
1307 * anything changed in between, there's a fresh buffer allocated on which the
1308 * rewind operations are done. In any case, the returned buffer is read locked.
1309 * Returns NULL on error (with no locks held).
1310 */
5d9e75c4
JS
1311static inline struct extent_buffer *
1312get_old_root(struct btrfs_root *root, u64 time_seq)
1313{
0b246afa 1314 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4 1315 struct tree_mod_elem *tm;
30b0463a
JS
1316 struct extent_buffer *eb = NULL;
1317 struct extent_buffer *eb_root;
7bfdcf7f 1318 struct extent_buffer *old;
a95236d9 1319 struct tree_mod_root *old_root = NULL;
4325edd0 1320 u64 old_generation = 0;
a95236d9 1321 u64 logical;
581c1760 1322 int level;
5d9e75c4 1323
30b0463a 1324 eb_root = btrfs_read_lock_root_node(root);
bcd24dab 1325 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5d9e75c4 1326 if (!tm)
30b0463a 1327 return eb_root;
5d9e75c4 1328
a95236d9
JS
1329 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1330 old_root = &tm->old_root;
1331 old_generation = tm->generation;
1332 logical = old_root->logical;
581c1760 1333 level = old_root->level;
a95236d9 1334 } else {
30b0463a 1335 logical = eb_root->start;
581c1760 1336 level = btrfs_header_level(eb_root);
a95236d9 1337 }
5d9e75c4 1338
0b246afa 1339 tm = tree_mod_log_search(fs_info, logical, time_seq);
834328a8 1340 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1341 btrfs_tree_read_unlock(eb_root);
1342 free_extent_buffer(eb_root);
581c1760 1343 old = read_tree_block(fs_info, logical, 0, level, NULL);
64c043de
LB
1344 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1345 if (!IS_ERR(old))
1346 free_extent_buffer(old);
0b246afa
JM
1347 btrfs_warn(fs_info,
1348 "failed to read tree block %llu from get_old_root",
1349 logical);
834328a8 1350 } else {
7bfdcf7f
LB
1351 eb = btrfs_clone_extent_buffer(old);
1352 free_extent_buffer(old);
834328a8
JS
1353 }
1354 } else if (old_root) {
30b0463a
JS
1355 btrfs_tree_read_unlock(eb_root);
1356 free_extent_buffer(eb_root);
0b246afa 1357 eb = alloc_dummy_extent_buffer(fs_info, logical);
834328a8 1358 } else {
9ec72677 1359 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1360 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1361 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1362 free_extent_buffer(eb_root);
834328a8
JS
1363 }
1364
8ba97a15
JS
1365 if (!eb)
1366 return NULL;
1367 btrfs_tree_read_lock(eb);
a95236d9 1368 if (old_root) {
5d9e75c4
JS
1369 btrfs_set_header_bytenr(eb, eb->start);
1370 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1371 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1372 btrfs_set_header_level(eb, old_root->level);
1373 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1374 }
28da9fb4 1375 if (tm)
0b246afa 1376 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
28da9fb4
JS
1377 else
1378 WARN_ON(btrfs_header_level(eb) != 0);
0b246afa 1379 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1380
1381 return eb;
1382}
1383
5b6602e7
JS
1384int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1385{
1386 struct tree_mod_elem *tm;
1387 int level;
30b0463a 1388 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1389
bcd24dab 1390 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5b6602e7
JS
1391 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1392 level = tm->old_root.level;
1393 } else {
30b0463a 1394 level = btrfs_header_level(eb_root);
5b6602e7 1395 }
30b0463a 1396 free_extent_buffer(eb_root);
5b6602e7
JS
1397
1398 return level;
1399}
1400
5d4f98a2
YZ
1401static inline int should_cow_block(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct extent_buffer *buf)
1404{
f5ee5c9a 1405 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1406 return 0;
fccb84c9 1407
d1980131
DS
1408 /* Ensure we can see the FORCE_COW bit */
1409 smp_mb__before_atomic();
f1ebcc74
LB
1410
1411 /*
1412 * We do not need to cow a block if
1413 * 1) this block is not created or changed in this transaction;
1414 * 2) this block does not belong to TREE_RELOC tree;
1415 * 3) the root is not forced COW.
1416 *
1417 * What is forced COW:
01327610 1418 * when we create snapshot during committing the transaction,
52042d8e 1419 * after we've finished copying src root, we must COW the shared
f1ebcc74
LB
1420 * block to ensure the metadata consistency.
1421 */
5d4f98a2
YZ
1422 if (btrfs_header_generation(buf) == trans->transid &&
1423 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1424 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1425 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1426 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1427 return 0;
1428 return 1;
1429}
1430
d352ac68
CM
1431/*
1432 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1433 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1434 * once per transaction, as long as it hasn't been written yet
1435 */
d397712b 1436noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1437 struct btrfs_root *root, struct extent_buffer *buf,
1438 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1439 struct extent_buffer **cow_ret)
6702ed49 1440{
0b246afa 1441 struct btrfs_fs_info *fs_info = root->fs_info;
6702ed49 1442 u64 search_start;
f510cfec 1443 int ret;
dc17ff8f 1444
83354f07
JB
1445 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1446 btrfs_err(fs_info,
1447 "COW'ing blocks on a fs root that's being dropped");
1448
0b246afa 1449 if (trans->transaction != fs_info->running_transaction)
31b1a2bd 1450 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1451 trans->transid,
0b246afa 1452 fs_info->running_transaction->transid);
31b1a2bd 1453
0b246afa 1454 if (trans->transid != fs_info->generation)
31b1a2bd 1455 WARN(1, KERN_CRIT "trans %llu running %llu\n",
0b246afa 1456 trans->transid, fs_info->generation);
dc17ff8f 1457
5d4f98a2 1458 if (!should_cow_block(trans, root, buf)) {
64c12921 1459 trans->dirty = true;
6702ed49
CM
1460 *cow_ret = buf;
1461 return 0;
1462 }
c487685d 1463
ee22184b 1464 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1465
1466 if (parent)
1467 btrfs_set_lock_blocking(parent);
1468 btrfs_set_lock_blocking(buf);
1469
f510cfec 1470 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1471 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1472
1473 trace_btrfs_cow_block(root, buf, *cow_ret);
1474
f510cfec 1475 return ret;
6702ed49
CM
1476}
1477
d352ac68
CM
1478/*
1479 * helper function for defrag to decide if two blocks pointed to by a
1480 * node are actually close by
1481 */
6b80053d 1482static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1483{
6b80053d 1484 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1485 return 1;
6b80053d 1486 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1487 return 1;
1488 return 0;
1489}
1490
081e9573
CM
1491/*
1492 * compare two keys in a memcmp fashion
1493 */
310712b2
OS
1494static int comp_keys(const struct btrfs_disk_key *disk,
1495 const struct btrfs_key *k2)
081e9573
CM
1496{
1497 struct btrfs_key k1;
1498
1499 btrfs_disk_key_to_cpu(&k1, disk);
1500
20736aba 1501 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1502}
1503
f3465ca4
JB
1504/*
1505 * same as comp_keys only with two btrfs_key's
1506 */
310712b2 1507int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
f3465ca4
JB
1508{
1509 if (k1->objectid > k2->objectid)
1510 return 1;
1511 if (k1->objectid < k2->objectid)
1512 return -1;
1513 if (k1->type > k2->type)
1514 return 1;
1515 if (k1->type < k2->type)
1516 return -1;
1517 if (k1->offset > k2->offset)
1518 return 1;
1519 if (k1->offset < k2->offset)
1520 return -1;
1521 return 0;
1522}
081e9573 1523
d352ac68
CM
1524/*
1525 * this is used by the defrag code to go through all the
1526 * leaves pointed to by a node and reallocate them so that
1527 * disk order is close to key order
1528 */
6702ed49 1529int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1530 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1531 int start_slot, u64 *last_ret,
a6b6e75e 1532 struct btrfs_key *progress)
6702ed49 1533{
0b246afa 1534 struct btrfs_fs_info *fs_info = root->fs_info;
6b80053d 1535 struct extent_buffer *cur;
6702ed49 1536 u64 blocknr;
ca7a79ad 1537 u64 gen;
e9d0b13b
CM
1538 u64 search_start = *last_ret;
1539 u64 last_block = 0;
6702ed49
CM
1540 u64 other;
1541 u32 parent_nritems;
6702ed49
CM
1542 int end_slot;
1543 int i;
1544 int err = 0;
f2183bde 1545 int parent_level;
6b80053d
CM
1546 int uptodate;
1547 u32 blocksize;
081e9573
CM
1548 int progress_passed = 0;
1549 struct btrfs_disk_key disk_key;
6702ed49 1550
5708b959 1551 parent_level = btrfs_header_level(parent);
5708b959 1552
0b246afa
JM
1553 WARN_ON(trans->transaction != fs_info->running_transaction);
1554 WARN_ON(trans->transid != fs_info->generation);
86479a04 1555
6b80053d 1556 parent_nritems = btrfs_header_nritems(parent);
0b246afa 1557 blocksize = fs_info->nodesize;
5dfe2be7 1558 end_slot = parent_nritems - 1;
6702ed49 1559
5dfe2be7 1560 if (parent_nritems <= 1)
6702ed49
CM
1561 return 0;
1562
b4ce94de
CM
1563 btrfs_set_lock_blocking(parent);
1564
5dfe2be7 1565 for (i = start_slot; i <= end_slot; i++) {
581c1760 1566 struct btrfs_key first_key;
6702ed49 1567 int close = 1;
a6b6e75e 1568
081e9573
CM
1569 btrfs_node_key(parent, &disk_key, i);
1570 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1571 continue;
1572
1573 progress_passed = 1;
6b80053d 1574 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1575 gen = btrfs_node_ptr_generation(parent, i);
581c1760 1576 btrfs_node_key_to_cpu(parent, &first_key, i);
e9d0b13b
CM
1577 if (last_block == 0)
1578 last_block = blocknr;
5708b959 1579
6702ed49 1580 if (i > 0) {
6b80053d
CM
1581 other = btrfs_node_blockptr(parent, i - 1);
1582 close = close_blocks(blocknr, other, blocksize);
6702ed49 1583 }
5dfe2be7 1584 if (!close && i < end_slot) {
6b80053d
CM
1585 other = btrfs_node_blockptr(parent, i + 1);
1586 close = close_blocks(blocknr, other, blocksize);
6702ed49 1587 }
e9d0b13b
CM
1588 if (close) {
1589 last_block = blocknr;
6702ed49 1590 continue;
e9d0b13b 1591 }
6702ed49 1592
0b246afa 1593 cur = find_extent_buffer(fs_info, blocknr);
6b80053d 1594 if (cur)
b9fab919 1595 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1596 else
1597 uptodate = 0;
5708b959 1598 if (!cur || !uptodate) {
6b80053d 1599 if (!cur) {
581c1760
QW
1600 cur = read_tree_block(fs_info, blocknr, gen,
1601 parent_level - 1,
1602 &first_key);
64c043de
LB
1603 if (IS_ERR(cur)) {
1604 return PTR_ERR(cur);
1605 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1606 free_extent_buffer(cur);
97d9a8a4 1607 return -EIO;
416bc658 1608 }
6b80053d 1609 } else if (!uptodate) {
581c1760
QW
1610 err = btrfs_read_buffer(cur, gen,
1611 parent_level - 1,&first_key);
018642a1
TI
1612 if (err) {
1613 free_extent_buffer(cur);
1614 return err;
1615 }
f2183bde 1616 }
6702ed49 1617 }
e9d0b13b 1618 if (search_start == 0)
6b80053d 1619 search_start = last_block;
e9d0b13b 1620
e7a84565 1621 btrfs_tree_lock(cur);
b4ce94de 1622 btrfs_set_lock_blocking(cur);
6b80053d 1623 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1624 &cur, search_start,
6b80053d 1625 min(16 * blocksize,
9fa8cfe7 1626 (end_slot - i) * blocksize));
252c38f0 1627 if (err) {
e7a84565 1628 btrfs_tree_unlock(cur);
6b80053d 1629 free_extent_buffer(cur);
6702ed49 1630 break;
252c38f0 1631 }
e7a84565
CM
1632 search_start = cur->start;
1633 last_block = cur->start;
f2183bde 1634 *last_ret = search_start;
e7a84565
CM
1635 btrfs_tree_unlock(cur);
1636 free_extent_buffer(cur);
6702ed49
CM
1637 }
1638 return err;
1639}
1640
74123bd7 1641/*
5f39d397
CM
1642 * search for key in the extent_buffer. The items start at offset p,
1643 * and they are item_size apart. There are 'max' items in p.
1644 *
74123bd7
CM
1645 * the slot in the array is returned via slot, and it points to
1646 * the place where you would insert key if it is not found in
1647 * the array.
1648 *
1649 * slot may point to max if the key is bigger than all of the keys
1650 */
e02119d5 1651static noinline int generic_bin_search(struct extent_buffer *eb,
310712b2
OS
1652 unsigned long p, int item_size,
1653 const struct btrfs_key *key,
e02119d5 1654 int max, int *slot)
be0e5c09
CM
1655{
1656 int low = 0;
1657 int high = max;
1658 int mid;
1659 int ret;
479965d6 1660 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1661 struct btrfs_disk_key unaligned;
1662 unsigned long offset;
5f39d397
CM
1663 char *kaddr = NULL;
1664 unsigned long map_start = 0;
1665 unsigned long map_len = 0;
479965d6 1666 int err;
be0e5c09 1667
5e24e9af
LB
1668 if (low > high) {
1669 btrfs_err(eb->fs_info,
1670 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1671 __func__, low, high, eb->start,
1672 btrfs_header_owner(eb), btrfs_header_level(eb));
1673 return -EINVAL;
1674 }
1675
d397712b 1676 while (low < high) {
be0e5c09 1677 mid = (low + high) / 2;
5f39d397
CM
1678 offset = p + mid * item_size;
1679
a6591715 1680 if (!kaddr || offset < map_start ||
5f39d397
CM
1681 (offset + sizeof(struct btrfs_disk_key)) >
1682 map_start + map_len) {
934d375b
CM
1683
1684 err = map_private_extent_buffer(eb, offset,
479965d6 1685 sizeof(struct btrfs_disk_key),
a6591715 1686 &kaddr, &map_start, &map_len);
479965d6
CM
1687
1688 if (!err) {
1689 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1690 map_start);
415b35a5 1691 } else if (err == 1) {
479965d6
CM
1692 read_extent_buffer(eb, &unaligned,
1693 offset, sizeof(unaligned));
1694 tmp = &unaligned;
415b35a5
LB
1695 } else {
1696 return err;
479965d6 1697 }
5f39d397 1698
5f39d397
CM
1699 } else {
1700 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1701 map_start);
1702 }
be0e5c09
CM
1703 ret = comp_keys(tmp, key);
1704
1705 if (ret < 0)
1706 low = mid + 1;
1707 else if (ret > 0)
1708 high = mid;
1709 else {
1710 *slot = mid;
1711 return 0;
1712 }
1713 }
1714 *slot = low;
1715 return 1;
1716}
1717
97571fd0
CM
1718/*
1719 * simple bin_search frontend that does the right thing for
1720 * leaves vs nodes
1721 */
a74b35ec
NB
1722int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1723 int level, int *slot)
be0e5c09 1724{
f775738f 1725 if (level == 0)
5f39d397
CM
1726 return generic_bin_search(eb,
1727 offsetof(struct btrfs_leaf, items),
0783fcfc 1728 sizeof(struct btrfs_item),
5f39d397 1729 key, btrfs_header_nritems(eb),
7518a238 1730 slot);
f775738f 1731 else
5f39d397
CM
1732 return generic_bin_search(eb,
1733 offsetof(struct btrfs_node, ptrs),
123abc88 1734 sizeof(struct btrfs_key_ptr),
5f39d397 1735 key, btrfs_header_nritems(eb),
7518a238 1736 slot);
be0e5c09
CM
1737}
1738
f0486c68
YZ
1739static void root_add_used(struct btrfs_root *root, u32 size)
1740{
1741 spin_lock(&root->accounting_lock);
1742 btrfs_set_root_used(&root->root_item,
1743 btrfs_root_used(&root->root_item) + size);
1744 spin_unlock(&root->accounting_lock);
1745}
1746
1747static void root_sub_used(struct btrfs_root *root, u32 size)
1748{
1749 spin_lock(&root->accounting_lock);
1750 btrfs_set_root_used(&root->root_item,
1751 btrfs_root_used(&root->root_item) - size);
1752 spin_unlock(&root->accounting_lock);
1753}
1754
d352ac68
CM
1755/* given a node and slot number, this reads the blocks it points to. The
1756 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1757 */
2ff7e61e
JM
1758static noinline struct extent_buffer *
1759read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1760 int slot)
bb803951 1761{
ca7a79ad 1762 int level = btrfs_header_level(parent);
416bc658 1763 struct extent_buffer *eb;
581c1760 1764 struct btrfs_key first_key;
416bc658 1765
fb770ae4
LB
1766 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1767 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1768
1769 BUG_ON(level == 0);
1770
581c1760 1771 btrfs_node_key_to_cpu(parent, &first_key, slot);
2ff7e61e 1772 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
581c1760
QW
1773 btrfs_node_ptr_generation(parent, slot),
1774 level - 1, &first_key);
fb770ae4
LB
1775 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1776 free_extent_buffer(eb);
1777 eb = ERR_PTR(-EIO);
416bc658
JB
1778 }
1779
1780 return eb;
bb803951
CM
1781}
1782
d352ac68
CM
1783/*
1784 * node level balancing, used to make sure nodes are in proper order for
1785 * item deletion. We balance from the top down, so we have to make sure
1786 * that a deletion won't leave an node completely empty later on.
1787 */
e02119d5 1788static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1789 struct btrfs_root *root,
1790 struct btrfs_path *path, int level)
bb803951 1791{
0b246afa 1792 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
1793 struct extent_buffer *right = NULL;
1794 struct extent_buffer *mid;
1795 struct extent_buffer *left = NULL;
1796 struct extent_buffer *parent = NULL;
bb803951
CM
1797 int ret = 0;
1798 int wret;
1799 int pslot;
bb803951 1800 int orig_slot = path->slots[level];
79f95c82 1801 u64 orig_ptr;
bb803951 1802
98e6b1eb 1803 ASSERT(level > 0);
bb803951 1804
5f39d397 1805 mid = path->nodes[level];
b4ce94de 1806
bd681513
CM
1807 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1808 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1809 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1810
1d4f8a0c 1811 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1812
a05a9bb1 1813 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1814 parent = path->nodes[level + 1];
a05a9bb1
LZ
1815 pslot = path->slots[level + 1];
1816 }
bb803951 1817
40689478
CM
1818 /*
1819 * deal with the case where there is only one pointer in the root
1820 * by promoting the node below to a root
1821 */
5f39d397
CM
1822 if (!parent) {
1823 struct extent_buffer *child;
bb803951 1824
5f39d397 1825 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1826 return 0;
1827
1828 /* promote the child to a root */
2ff7e61e 1829 child = read_node_slot(fs_info, mid, 0);
fb770ae4
LB
1830 if (IS_ERR(child)) {
1831 ret = PTR_ERR(child);
0b246afa 1832 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1833 goto enospc;
1834 }
1835
925baedd 1836 btrfs_tree_lock(child);
b4ce94de 1837 btrfs_set_lock_blocking(child);
9fa8cfe7 1838 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1839 if (ret) {
1840 btrfs_tree_unlock(child);
1841 free_extent_buffer(child);
1842 goto enospc;
1843 }
2f375ab9 1844
d9d19a01
DS
1845 ret = tree_mod_log_insert_root(root->node, child, 1);
1846 BUG_ON(ret < 0);
240f62c8 1847 rcu_assign_pointer(root->node, child);
925baedd 1848
0b86a832 1849 add_root_to_dirty_list(root);
925baedd 1850 btrfs_tree_unlock(child);
b4ce94de 1851
925baedd 1852 path->locks[level] = 0;
bb803951 1853 path->nodes[level] = NULL;
7c302b49 1854 clean_tree_block(fs_info, mid);
925baedd 1855 btrfs_tree_unlock(mid);
bb803951 1856 /* once for the path */
5f39d397 1857 free_extent_buffer(mid);
f0486c68
YZ
1858
1859 root_sub_used(root, mid->len);
5581a51a 1860 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1861 /* once for the root ptr */
3083ee2e 1862 free_extent_buffer_stale(mid);
f0486c68 1863 return 0;
bb803951 1864 }
5f39d397 1865 if (btrfs_header_nritems(mid) >
0b246afa 1866 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
bb803951
CM
1867 return 0;
1868
2ff7e61e 1869 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
1870 if (IS_ERR(left))
1871 left = NULL;
1872
5f39d397 1873 if (left) {
925baedd 1874 btrfs_tree_lock(left);
b4ce94de 1875 btrfs_set_lock_blocking(left);
5f39d397 1876 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1877 parent, pslot - 1, &left);
54aa1f4d
CM
1878 if (wret) {
1879 ret = wret;
1880 goto enospc;
1881 }
2cc58cf2 1882 }
fb770ae4 1883
2ff7e61e 1884 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
1885 if (IS_ERR(right))
1886 right = NULL;
1887
5f39d397 1888 if (right) {
925baedd 1889 btrfs_tree_lock(right);
b4ce94de 1890 btrfs_set_lock_blocking(right);
5f39d397 1891 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1892 parent, pslot + 1, &right);
2cc58cf2
CM
1893 if (wret) {
1894 ret = wret;
1895 goto enospc;
1896 }
1897 }
1898
1899 /* first, try to make some room in the middle buffer */
5f39d397
CM
1900 if (left) {
1901 orig_slot += btrfs_header_nritems(left);
2ff7e61e 1902 wret = push_node_left(trans, fs_info, left, mid, 1);
79f95c82
CM
1903 if (wret < 0)
1904 ret = wret;
bb803951 1905 }
79f95c82
CM
1906
1907 /*
1908 * then try to empty the right most buffer into the middle
1909 */
5f39d397 1910 if (right) {
2ff7e61e 1911 wret = push_node_left(trans, fs_info, mid, right, 1);
54aa1f4d 1912 if (wret < 0 && wret != -ENOSPC)
79f95c82 1913 ret = wret;
5f39d397 1914 if (btrfs_header_nritems(right) == 0) {
7c302b49 1915 clean_tree_block(fs_info, right);
925baedd 1916 btrfs_tree_unlock(right);
afe5fea7 1917 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 1918 root_sub_used(root, right->len);
5581a51a 1919 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1920 free_extent_buffer_stale(right);
f0486c68 1921 right = NULL;
bb803951 1922 } else {
5f39d397
CM
1923 struct btrfs_disk_key right_key;
1924 btrfs_node_key(right, &right_key, 0);
0e82bcfe
DS
1925 ret = tree_mod_log_insert_key(parent, pslot + 1,
1926 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1927 BUG_ON(ret < 0);
5f39d397
CM
1928 btrfs_set_node_key(parent, &right_key, pslot + 1);
1929 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1930 }
1931 }
5f39d397 1932 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1933 /*
1934 * we're not allowed to leave a node with one item in the
1935 * tree during a delete. A deletion from lower in the tree
1936 * could try to delete the only pointer in this node.
1937 * So, pull some keys from the left.
1938 * There has to be a left pointer at this point because
1939 * otherwise we would have pulled some pointers from the
1940 * right
1941 */
305a26af
MF
1942 if (!left) {
1943 ret = -EROFS;
0b246afa 1944 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1945 goto enospc;
1946 }
2ff7e61e 1947 wret = balance_node_right(trans, fs_info, mid, left);
54aa1f4d 1948 if (wret < 0) {
79f95c82 1949 ret = wret;
54aa1f4d
CM
1950 goto enospc;
1951 }
bce4eae9 1952 if (wret == 1) {
2ff7e61e 1953 wret = push_node_left(trans, fs_info, left, mid, 1);
bce4eae9
CM
1954 if (wret < 0)
1955 ret = wret;
1956 }
79f95c82
CM
1957 BUG_ON(wret == 1);
1958 }
5f39d397 1959 if (btrfs_header_nritems(mid) == 0) {
7c302b49 1960 clean_tree_block(fs_info, mid);
925baedd 1961 btrfs_tree_unlock(mid);
afe5fea7 1962 del_ptr(root, path, level + 1, pslot);
f0486c68 1963 root_sub_used(root, mid->len);
5581a51a 1964 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 1965 free_extent_buffer_stale(mid);
f0486c68 1966 mid = NULL;
79f95c82
CM
1967 } else {
1968 /* update the parent key to reflect our changes */
5f39d397
CM
1969 struct btrfs_disk_key mid_key;
1970 btrfs_node_key(mid, &mid_key, 0);
0e82bcfe
DS
1971 ret = tree_mod_log_insert_key(parent, pslot,
1972 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1973 BUG_ON(ret < 0);
5f39d397
CM
1974 btrfs_set_node_key(parent, &mid_key, pslot);
1975 btrfs_mark_buffer_dirty(parent);
79f95c82 1976 }
bb803951 1977
79f95c82 1978 /* update the path */
5f39d397
CM
1979 if (left) {
1980 if (btrfs_header_nritems(left) > orig_slot) {
1981 extent_buffer_get(left);
925baedd 1982 /* left was locked after cow */
5f39d397 1983 path->nodes[level] = left;
bb803951
CM
1984 path->slots[level + 1] -= 1;
1985 path->slots[level] = orig_slot;
925baedd
CM
1986 if (mid) {
1987 btrfs_tree_unlock(mid);
5f39d397 1988 free_extent_buffer(mid);
925baedd 1989 }
bb803951 1990 } else {
5f39d397 1991 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
1992 path->slots[level] = orig_slot;
1993 }
1994 }
79f95c82 1995 /* double check we haven't messed things up */
e20d96d6 1996 if (orig_ptr !=
5f39d397 1997 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 1998 BUG();
54aa1f4d 1999enospc:
925baedd
CM
2000 if (right) {
2001 btrfs_tree_unlock(right);
5f39d397 2002 free_extent_buffer(right);
925baedd
CM
2003 }
2004 if (left) {
2005 if (path->nodes[level] != left)
2006 btrfs_tree_unlock(left);
5f39d397 2007 free_extent_buffer(left);
925baedd 2008 }
bb803951
CM
2009 return ret;
2010}
2011
d352ac68
CM
2012/* Node balancing for insertion. Here we only split or push nodes around
2013 * when they are completely full. This is also done top down, so we
2014 * have to be pessimistic.
2015 */
d397712b 2016static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2017 struct btrfs_root *root,
2018 struct btrfs_path *path, int level)
e66f709b 2019{
0b246afa 2020 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
2021 struct extent_buffer *right = NULL;
2022 struct extent_buffer *mid;
2023 struct extent_buffer *left = NULL;
2024 struct extent_buffer *parent = NULL;
e66f709b
CM
2025 int ret = 0;
2026 int wret;
2027 int pslot;
2028 int orig_slot = path->slots[level];
e66f709b
CM
2029
2030 if (level == 0)
2031 return 1;
2032
5f39d397 2033 mid = path->nodes[level];
7bb86316 2034 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2035
a05a9bb1 2036 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2037 parent = path->nodes[level + 1];
a05a9bb1
LZ
2038 pslot = path->slots[level + 1];
2039 }
e66f709b 2040
5f39d397 2041 if (!parent)
e66f709b 2042 return 1;
e66f709b 2043
2ff7e61e 2044 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
2045 if (IS_ERR(left))
2046 left = NULL;
e66f709b
CM
2047
2048 /* first, try to make some room in the middle buffer */
5f39d397 2049 if (left) {
e66f709b 2050 u32 left_nr;
925baedd
CM
2051
2052 btrfs_tree_lock(left);
b4ce94de
CM
2053 btrfs_set_lock_blocking(left);
2054
5f39d397 2055 left_nr = btrfs_header_nritems(left);
0b246afa 2056 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2057 wret = 1;
2058 } else {
5f39d397 2059 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2060 pslot - 1, &left);
54aa1f4d
CM
2061 if (ret)
2062 wret = 1;
2063 else {
2ff7e61e 2064 wret = push_node_left(trans, fs_info,
971a1f66 2065 left, mid, 0);
54aa1f4d 2066 }
33ade1f8 2067 }
e66f709b
CM
2068 if (wret < 0)
2069 ret = wret;
2070 if (wret == 0) {
5f39d397 2071 struct btrfs_disk_key disk_key;
e66f709b 2072 orig_slot += left_nr;
5f39d397 2073 btrfs_node_key(mid, &disk_key, 0);
0e82bcfe
DS
2074 ret = tree_mod_log_insert_key(parent, pslot,
2075 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2076 BUG_ON(ret < 0);
5f39d397
CM
2077 btrfs_set_node_key(parent, &disk_key, pslot);
2078 btrfs_mark_buffer_dirty(parent);
2079 if (btrfs_header_nritems(left) > orig_slot) {
2080 path->nodes[level] = left;
e66f709b
CM
2081 path->slots[level + 1] -= 1;
2082 path->slots[level] = orig_slot;
925baedd 2083 btrfs_tree_unlock(mid);
5f39d397 2084 free_extent_buffer(mid);
e66f709b
CM
2085 } else {
2086 orig_slot -=
5f39d397 2087 btrfs_header_nritems(left);
e66f709b 2088 path->slots[level] = orig_slot;
925baedd 2089 btrfs_tree_unlock(left);
5f39d397 2090 free_extent_buffer(left);
e66f709b 2091 }
e66f709b
CM
2092 return 0;
2093 }
925baedd 2094 btrfs_tree_unlock(left);
5f39d397 2095 free_extent_buffer(left);
e66f709b 2096 }
2ff7e61e 2097 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
2098 if (IS_ERR(right))
2099 right = NULL;
e66f709b
CM
2100
2101 /*
2102 * then try to empty the right most buffer into the middle
2103 */
5f39d397 2104 if (right) {
33ade1f8 2105 u32 right_nr;
b4ce94de 2106
925baedd 2107 btrfs_tree_lock(right);
b4ce94de
CM
2108 btrfs_set_lock_blocking(right);
2109
5f39d397 2110 right_nr = btrfs_header_nritems(right);
0b246afa 2111 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2112 wret = 1;
2113 } else {
5f39d397
CM
2114 ret = btrfs_cow_block(trans, root, right,
2115 parent, pslot + 1,
9fa8cfe7 2116 &right);
54aa1f4d
CM
2117 if (ret)
2118 wret = 1;
2119 else {
2ff7e61e 2120 wret = balance_node_right(trans, fs_info,
5f39d397 2121 right, mid);
54aa1f4d 2122 }
33ade1f8 2123 }
e66f709b
CM
2124 if (wret < 0)
2125 ret = wret;
2126 if (wret == 0) {
5f39d397
CM
2127 struct btrfs_disk_key disk_key;
2128
2129 btrfs_node_key(right, &disk_key, 0);
0e82bcfe
DS
2130 ret = tree_mod_log_insert_key(parent, pslot + 1,
2131 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2132 BUG_ON(ret < 0);
5f39d397
CM
2133 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2134 btrfs_mark_buffer_dirty(parent);
2135
2136 if (btrfs_header_nritems(mid) <= orig_slot) {
2137 path->nodes[level] = right;
e66f709b
CM
2138 path->slots[level + 1] += 1;
2139 path->slots[level] = orig_slot -
5f39d397 2140 btrfs_header_nritems(mid);
925baedd 2141 btrfs_tree_unlock(mid);
5f39d397 2142 free_extent_buffer(mid);
e66f709b 2143 } else {
925baedd 2144 btrfs_tree_unlock(right);
5f39d397 2145 free_extent_buffer(right);
e66f709b 2146 }
e66f709b
CM
2147 return 0;
2148 }
925baedd 2149 btrfs_tree_unlock(right);
5f39d397 2150 free_extent_buffer(right);
e66f709b 2151 }
e66f709b
CM
2152 return 1;
2153}
2154
3c69faec 2155/*
d352ac68
CM
2156 * readahead one full node of leaves, finding things that are close
2157 * to the block in 'slot', and triggering ra on them.
3c69faec 2158 */
2ff7e61e 2159static void reada_for_search(struct btrfs_fs_info *fs_info,
c8c42864
CM
2160 struct btrfs_path *path,
2161 int level, int slot, u64 objectid)
3c69faec 2162{
5f39d397 2163 struct extent_buffer *node;
01f46658 2164 struct btrfs_disk_key disk_key;
3c69faec 2165 u32 nritems;
3c69faec 2166 u64 search;
a7175319 2167 u64 target;
6b80053d 2168 u64 nread = 0;
5f39d397 2169 struct extent_buffer *eb;
6b80053d
CM
2170 u32 nr;
2171 u32 blocksize;
2172 u32 nscan = 0;
db94535d 2173
a6b6e75e 2174 if (level != 1)
6702ed49
CM
2175 return;
2176
2177 if (!path->nodes[level])
3c69faec
CM
2178 return;
2179
5f39d397 2180 node = path->nodes[level];
925baedd 2181
3c69faec 2182 search = btrfs_node_blockptr(node, slot);
0b246afa
JM
2183 blocksize = fs_info->nodesize;
2184 eb = find_extent_buffer(fs_info, search);
5f39d397
CM
2185 if (eb) {
2186 free_extent_buffer(eb);
3c69faec
CM
2187 return;
2188 }
2189
a7175319 2190 target = search;
6b80053d 2191
5f39d397 2192 nritems = btrfs_header_nritems(node);
6b80053d 2193 nr = slot;
25b8b936 2194
d397712b 2195 while (1) {
e4058b54 2196 if (path->reada == READA_BACK) {
6b80053d
CM
2197 if (nr == 0)
2198 break;
2199 nr--;
e4058b54 2200 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2201 nr++;
2202 if (nr >= nritems)
2203 break;
3c69faec 2204 }
e4058b54 2205 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2206 btrfs_node_key(node, &disk_key, nr);
2207 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2208 break;
2209 }
6b80053d 2210 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2211 if ((search <= target && target - search <= 65536) ||
2212 (search > target && search - target <= 65536)) {
2ff7e61e 2213 readahead_tree_block(fs_info, search);
6b80053d
CM
2214 nread += blocksize;
2215 }
2216 nscan++;
a7175319 2217 if ((nread > 65536 || nscan > 32))
6b80053d 2218 break;
3c69faec
CM
2219 }
2220}
925baedd 2221
2ff7e61e 2222static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
0b08851f 2223 struct btrfs_path *path, int level)
b4ce94de
CM
2224{
2225 int slot;
2226 int nritems;
2227 struct extent_buffer *parent;
2228 struct extent_buffer *eb;
2229 u64 gen;
2230 u64 block1 = 0;
2231 u64 block2 = 0;
b4ce94de 2232
8c594ea8 2233 parent = path->nodes[level + 1];
b4ce94de 2234 if (!parent)
0b08851f 2235 return;
b4ce94de
CM
2236
2237 nritems = btrfs_header_nritems(parent);
8c594ea8 2238 slot = path->slots[level + 1];
b4ce94de
CM
2239
2240 if (slot > 0) {
2241 block1 = btrfs_node_blockptr(parent, slot - 1);
2242 gen = btrfs_node_ptr_generation(parent, slot - 1);
0b246afa 2243 eb = find_extent_buffer(fs_info, block1);
b9fab919
CM
2244 /*
2245 * if we get -eagain from btrfs_buffer_uptodate, we
2246 * don't want to return eagain here. That will loop
2247 * forever
2248 */
2249 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2250 block1 = 0;
2251 free_extent_buffer(eb);
2252 }
8c594ea8 2253 if (slot + 1 < nritems) {
b4ce94de
CM
2254 block2 = btrfs_node_blockptr(parent, slot + 1);
2255 gen = btrfs_node_ptr_generation(parent, slot + 1);
0b246afa 2256 eb = find_extent_buffer(fs_info, block2);
b9fab919 2257 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2258 block2 = 0;
2259 free_extent_buffer(eb);
2260 }
8c594ea8 2261
0b08851f 2262 if (block1)
2ff7e61e 2263 readahead_tree_block(fs_info, block1);
0b08851f 2264 if (block2)
2ff7e61e 2265 readahead_tree_block(fs_info, block2);
b4ce94de
CM
2266}
2267
2268
d352ac68 2269/*
d397712b
CM
2270 * when we walk down the tree, it is usually safe to unlock the higher layers
2271 * in the tree. The exceptions are when our path goes through slot 0, because
2272 * operations on the tree might require changing key pointers higher up in the
2273 * tree.
d352ac68 2274 *
d397712b
CM
2275 * callers might also have set path->keep_locks, which tells this code to keep
2276 * the lock if the path points to the last slot in the block. This is part of
2277 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2278 *
d397712b
CM
2279 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2280 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2281 */
e02119d5 2282static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2283 int lowest_unlock, int min_write_lock_level,
2284 int *write_lock_level)
925baedd
CM
2285{
2286 int i;
2287 int skip_level = level;
051e1b9f 2288 int no_skips = 0;
925baedd
CM
2289 struct extent_buffer *t;
2290
2291 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2292 if (!path->nodes[i])
2293 break;
2294 if (!path->locks[i])
2295 break;
051e1b9f 2296 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2297 skip_level = i + 1;
2298 continue;
2299 }
051e1b9f 2300 if (!no_skips && path->keep_locks) {
925baedd
CM
2301 u32 nritems;
2302 t = path->nodes[i];
2303 nritems = btrfs_header_nritems(t);
051e1b9f 2304 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2305 skip_level = i + 1;
2306 continue;
2307 }
2308 }
051e1b9f
CM
2309 if (skip_level < i && i >= lowest_unlock)
2310 no_skips = 1;
2311
925baedd 2312 t = path->nodes[i];
d80bb3f9 2313 if (i >= lowest_unlock && i > skip_level) {
bd681513 2314 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2315 path->locks[i] = 0;
f7c79f30
CM
2316 if (write_lock_level &&
2317 i > min_write_lock_level &&
2318 i <= *write_lock_level) {
2319 *write_lock_level = i - 1;
2320 }
925baedd
CM
2321 }
2322 }
2323}
2324
b4ce94de
CM
2325/*
2326 * This releases any locks held in the path starting at level and
2327 * going all the way up to the root.
2328 *
2329 * btrfs_search_slot will keep the lock held on higher nodes in a few
2330 * corner cases, such as COW of the block at slot zero in the node. This
2331 * ignores those rules, and it should only be called when there are no
2332 * more updates to be done higher up in the tree.
2333 */
2334noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2335{
2336 int i;
2337
09a2a8f9 2338 if (path->keep_locks)
b4ce94de
CM
2339 return;
2340
2341 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2342 if (!path->nodes[i])
12f4dacc 2343 continue;
b4ce94de 2344 if (!path->locks[i])
12f4dacc 2345 continue;
bd681513 2346 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2347 path->locks[i] = 0;
2348 }
2349}
2350
c8c42864
CM
2351/*
2352 * helper function for btrfs_search_slot. The goal is to find a block
2353 * in cache without setting the path to blocking. If we find the block
2354 * we return zero and the path is unchanged.
2355 *
2356 * If we can't find the block, we set the path blocking and do some
2357 * reada. -EAGAIN is returned and the search must be repeated.
2358 */
2359static int
d07b8528
LB
2360read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2361 struct extent_buffer **eb_ret, int level, int slot,
cda79c54 2362 const struct btrfs_key *key)
c8c42864 2363{
0b246afa 2364 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864
CM
2365 u64 blocknr;
2366 u64 gen;
c8c42864
CM
2367 struct extent_buffer *b = *eb_ret;
2368 struct extent_buffer *tmp;
581c1760 2369 struct btrfs_key first_key;
76a05b35 2370 int ret;
581c1760 2371 int parent_level;
c8c42864
CM
2372
2373 blocknr = btrfs_node_blockptr(b, slot);
2374 gen = btrfs_node_ptr_generation(b, slot);
581c1760
QW
2375 parent_level = btrfs_header_level(b);
2376 btrfs_node_key_to_cpu(b, &first_key, slot);
c8c42864 2377
0b246afa 2378 tmp = find_extent_buffer(fs_info, blocknr);
cb44921a 2379 if (tmp) {
b9fab919 2380 /* first we do an atomic uptodate check */
bdf7c00e
JB
2381 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2382 *eb_ret = tmp;
2383 return 0;
2384 }
2385
2386 /* the pages were up to date, but we failed
2387 * the generation number check. Do a full
2388 * read for the generation number that is correct.
2389 * We must do this without dropping locks so
2390 * we can trust our generation number
2391 */
2392 btrfs_set_path_blocking(p);
2393
2394 /* now we're allowed to do a blocking uptodate check */
581c1760 2395 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
bdf7c00e
JB
2396 if (!ret) {
2397 *eb_ret = tmp;
2398 return 0;
cb44921a 2399 }
bdf7c00e
JB
2400 free_extent_buffer(tmp);
2401 btrfs_release_path(p);
2402 return -EIO;
c8c42864
CM
2403 }
2404
2405 /*
2406 * reduce lock contention at high levels
2407 * of the btree by dropping locks before
76a05b35
CM
2408 * we read. Don't release the lock on the current
2409 * level because we need to walk this node to figure
2410 * out which blocks to read.
c8c42864 2411 */
8c594ea8
CM
2412 btrfs_unlock_up_safe(p, level + 1);
2413 btrfs_set_path_blocking(p);
2414
e4058b54 2415 if (p->reada != READA_NONE)
2ff7e61e 2416 reada_for_search(fs_info, p, level, slot, key->objectid);
c8c42864 2417
76a05b35 2418 ret = -EAGAIN;
02a3307a 2419 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
581c1760 2420 &first_key);
64c043de 2421 if (!IS_ERR(tmp)) {
76a05b35
CM
2422 /*
2423 * If the read above didn't mark this buffer up to date,
2424 * it will never end up being up to date. Set ret to EIO now
2425 * and give up so that our caller doesn't loop forever
2426 * on our EAGAINs.
2427 */
e6a1d6fd 2428 if (!extent_buffer_uptodate(tmp))
76a05b35 2429 ret = -EIO;
c8c42864 2430 free_extent_buffer(tmp);
c871b0f2
LB
2431 } else {
2432 ret = PTR_ERR(tmp);
76a05b35 2433 }
02a3307a
LB
2434
2435 btrfs_release_path(p);
76a05b35 2436 return ret;
c8c42864
CM
2437}
2438
2439/*
2440 * helper function for btrfs_search_slot. This does all of the checks
2441 * for node-level blocks and does any balancing required based on
2442 * the ins_len.
2443 *
2444 * If no extra work was required, zero is returned. If we had to
2445 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2446 * start over
2447 */
2448static int
2449setup_nodes_for_search(struct btrfs_trans_handle *trans,
2450 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2451 struct extent_buffer *b, int level, int ins_len,
2452 int *write_lock_level)
c8c42864 2453{
0b246afa 2454 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864 2455 int ret;
0b246afa 2456
c8c42864 2457 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
0b246afa 2458 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
c8c42864
CM
2459 int sret;
2460
bd681513
CM
2461 if (*write_lock_level < level + 1) {
2462 *write_lock_level = level + 1;
2463 btrfs_release_path(p);
2464 goto again;
2465 }
2466
c8c42864 2467 btrfs_set_path_blocking(p);
2ff7e61e 2468 reada_for_balance(fs_info, p, level);
c8c42864 2469 sret = split_node(trans, root, p, level);
c8c42864
CM
2470
2471 BUG_ON(sret > 0);
2472 if (sret) {
2473 ret = sret;
2474 goto done;
2475 }
2476 b = p->nodes[level];
2477 } else if (ins_len < 0 && btrfs_header_nritems(b) <
0b246afa 2478 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
c8c42864
CM
2479 int sret;
2480
bd681513
CM
2481 if (*write_lock_level < level + 1) {
2482 *write_lock_level = level + 1;
2483 btrfs_release_path(p);
2484 goto again;
2485 }
2486
c8c42864 2487 btrfs_set_path_blocking(p);
2ff7e61e 2488 reada_for_balance(fs_info, p, level);
c8c42864 2489 sret = balance_level(trans, root, p, level);
c8c42864
CM
2490
2491 if (sret) {
2492 ret = sret;
2493 goto done;
2494 }
2495 b = p->nodes[level];
2496 if (!b) {
b3b4aa74 2497 btrfs_release_path(p);
c8c42864
CM
2498 goto again;
2499 }
2500 BUG_ON(btrfs_header_nritems(b) == 1);
2501 }
2502 return 0;
2503
2504again:
2505 ret = -EAGAIN;
2506done:
2507 return ret;
2508}
2509
d7396f07 2510static void key_search_validate(struct extent_buffer *b,
310712b2 2511 const struct btrfs_key *key,
d7396f07
FDBM
2512 int level)
2513{
2514#ifdef CONFIG_BTRFS_ASSERT
2515 struct btrfs_disk_key disk_key;
2516
2517 btrfs_cpu_key_to_disk(&disk_key, key);
2518
2519 if (level == 0)
2520 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2521 offsetof(struct btrfs_leaf, items[0].key),
2522 sizeof(disk_key)));
2523 else
2524 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2525 offsetof(struct btrfs_node, ptrs[0].key),
2526 sizeof(disk_key)));
2527#endif
2528}
2529
310712b2 2530static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
d7396f07
FDBM
2531 int level, int *prev_cmp, int *slot)
2532{
2533 if (*prev_cmp != 0) {
a74b35ec 2534 *prev_cmp = btrfs_bin_search(b, key, level, slot);
d7396f07
FDBM
2535 return *prev_cmp;
2536 }
2537
2538 key_search_validate(b, key, level);
2539 *slot = 0;
2540
2541 return 0;
2542}
2543
381cf658 2544int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2545 u64 iobjectid, u64 ioff, u8 key_type,
2546 struct btrfs_key *found_key)
2547{
2548 int ret;
2549 struct btrfs_key key;
2550 struct extent_buffer *eb;
381cf658
DS
2551
2552 ASSERT(path);
1d4c08e0 2553 ASSERT(found_key);
e33d5c3d
KN
2554
2555 key.type = key_type;
2556 key.objectid = iobjectid;
2557 key.offset = ioff;
2558
2559 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2560 if (ret < 0)
e33d5c3d
KN
2561 return ret;
2562
2563 eb = path->nodes[0];
2564 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2565 ret = btrfs_next_leaf(fs_root, path);
2566 if (ret)
2567 return ret;
2568 eb = path->nodes[0];
2569 }
2570
2571 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2572 if (found_key->type != key.type ||
2573 found_key->objectid != key.objectid)
2574 return 1;
2575
2576 return 0;
2577}
2578
1fc28d8e
LB
2579static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2580 struct btrfs_path *p,
2581 int write_lock_level)
2582{
2583 struct btrfs_fs_info *fs_info = root->fs_info;
2584 struct extent_buffer *b;
2585 int root_lock;
2586 int level = 0;
2587
2588 /* We try very hard to do read locks on the root */
2589 root_lock = BTRFS_READ_LOCK;
2590
2591 if (p->search_commit_root) {
be6821f8
FM
2592 /*
2593 * The commit roots are read only so we always do read locks,
2594 * and we always must hold the commit_root_sem when doing
2595 * searches on them, the only exception is send where we don't
2596 * want to block transaction commits for a long time, so
2597 * we need to clone the commit root in order to avoid races
2598 * with transaction commits that create a snapshot of one of
2599 * the roots used by a send operation.
2600 */
2601 if (p->need_commit_sem) {
1fc28d8e 2602 down_read(&fs_info->commit_root_sem);
be6821f8 2603 b = btrfs_clone_extent_buffer(root->commit_root);
1fc28d8e 2604 up_read(&fs_info->commit_root_sem);
be6821f8
FM
2605 if (!b)
2606 return ERR_PTR(-ENOMEM);
2607
2608 } else {
2609 b = root->commit_root;
2610 extent_buffer_get(b);
2611 }
2612 level = btrfs_header_level(b);
f9ddfd05
LB
2613 /*
2614 * Ensure that all callers have set skip_locking when
2615 * p->search_commit_root = 1.
2616 */
2617 ASSERT(p->skip_locking == 1);
1fc28d8e
LB
2618
2619 goto out;
2620 }
2621
2622 if (p->skip_locking) {
2623 b = btrfs_root_node(root);
2624 level = btrfs_header_level(b);
2625 goto out;
2626 }
2627
2628 /*
662c653b
LB
2629 * If the level is set to maximum, we can skip trying to get the read
2630 * lock.
1fc28d8e 2631 */
662c653b
LB
2632 if (write_lock_level < BTRFS_MAX_LEVEL) {
2633 /*
2634 * We don't know the level of the root node until we actually
2635 * have it read locked
2636 */
2637 b = btrfs_read_lock_root_node(root);
2638 level = btrfs_header_level(b);
2639 if (level > write_lock_level)
2640 goto out;
2641
2642 /* Whoops, must trade for write lock */
2643 btrfs_tree_read_unlock(b);
2644 free_extent_buffer(b);
2645 }
1fc28d8e 2646
1fc28d8e
LB
2647 b = btrfs_lock_root_node(root);
2648 root_lock = BTRFS_WRITE_LOCK;
2649
2650 /* The level might have changed, check again */
2651 level = btrfs_header_level(b);
2652
2653out:
2654 p->nodes[level] = b;
2655 if (!p->skip_locking)
2656 p->locks[level] = root_lock;
2657 /*
2658 * Callers are responsible for dropping b's references.
2659 */
2660 return b;
2661}
2662
2663
74123bd7 2664/*
4271ecea
NB
2665 * btrfs_search_slot - look for a key in a tree and perform necessary
2666 * modifications to preserve tree invariants.
74123bd7 2667 *
4271ecea
NB
2668 * @trans: Handle of transaction, used when modifying the tree
2669 * @p: Holds all btree nodes along the search path
2670 * @root: The root node of the tree
2671 * @key: The key we are looking for
2672 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2673 * deletions it's -1. 0 for plain searches
2674 * @cow: boolean should CoW operations be performed. Must always be 1
2675 * when modifying the tree.
97571fd0 2676 *
4271ecea
NB
2677 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2678 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2679 *
2680 * If @key is found, 0 is returned and you can find the item in the leaf level
2681 * of the path (level 0)
2682 *
2683 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2684 * points to the slot where it should be inserted
2685 *
2686 * If an error is encountered while searching the tree a negative error number
2687 * is returned
74123bd7 2688 */
310712b2
OS
2689int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2690 const struct btrfs_key *key, struct btrfs_path *p,
2691 int ins_len, int cow)
be0e5c09 2692{
0b246afa 2693 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 2694 struct extent_buffer *b;
be0e5c09
CM
2695 int slot;
2696 int ret;
33c66f43 2697 int err;
be0e5c09 2698 int level;
925baedd 2699 int lowest_unlock = 1;
bd681513
CM
2700 /* everything at write_lock_level or lower must be write locked */
2701 int write_lock_level = 0;
9f3a7427 2702 u8 lowest_level = 0;
f7c79f30 2703 int min_write_lock_level;
d7396f07 2704 int prev_cmp;
9f3a7427 2705
6702ed49 2706 lowest_level = p->lowest_level;
323ac95b 2707 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2708 WARN_ON(p->nodes[0] != NULL);
eb653de1 2709 BUG_ON(!cow && ins_len);
25179201 2710
bd681513 2711 if (ins_len < 0) {
925baedd 2712 lowest_unlock = 2;
65b51a00 2713
bd681513
CM
2714 /* when we are removing items, we might have to go up to level
2715 * two as we update tree pointers Make sure we keep write
2716 * for those levels as well
2717 */
2718 write_lock_level = 2;
2719 } else if (ins_len > 0) {
2720 /*
2721 * for inserting items, make sure we have a write lock on
2722 * level 1 so we can update keys
2723 */
2724 write_lock_level = 1;
2725 }
2726
2727 if (!cow)
2728 write_lock_level = -1;
2729
09a2a8f9 2730 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2731 write_lock_level = BTRFS_MAX_LEVEL;
2732
f7c79f30
CM
2733 min_write_lock_level = write_lock_level;
2734
bb803951 2735again:
d7396f07 2736 prev_cmp = -1;
1fc28d8e 2737 b = btrfs_search_slot_get_root(root, p, write_lock_level);
be6821f8
FM
2738 if (IS_ERR(b)) {
2739 ret = PTR_ERR(b);
2740 goto done;
2741 }
925baedd 2742
eb60ceac 2743 while (b) {
5f39d397 2744 level = btrfs_header_level(b);
65b51a00
CM
2745
2746 /*
2747 * setup the path here so we can release it under lock
2748 * contention with the cow code
2749 */
02217ed2 2750 if (cow) {
9ea2c7c9
NB
2751 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2752
c8c42864
CM
2753 /*
2754 * if we don't really need to cow this block
2755 * then we don't want to set the path blocking,
2756 * so we test it here
2757 */
64c12921
JM
2758 if (!should_cow_block(trans, root, b)) {
2759 trans->dirty = true;
65b51a00 2760 goto cow_done;
64c12921 2761 }
5d4f98a2 2762
bd681513
CM
2763 /*
2764 * must have write locks on this node and the
2765 * parent
2766 */
5124e00e
JB
2767 if (level > write_lock_level ||
2768 (level + 1 > write_lock_level &&
2769 level + 1 < BTRFS_MAX_LEVEL &&
2770 p->nodes[level + 1])) {
bd681513
CM
2771 write_lock_level = level + 1;
2772 btrfs_release_path(p);
2773 goto again;
2774 }
2775
160f4089 2776 btrfs_set_path_blocking(p);
9ea2c7c9
NB
2777 if (last_level)
2778 err = btrfs_cow_block(trans, root, b, NULL, 0,
2779 &b);
2780 else
2781 err = btrfs_cow_block(trans, root, b,
2782 p->nodes[level + 1],
2783 p->slots[level + 1], &b);
33c66f43 2784 if (err) {
33c66f43 2785 ret = err;
65b51a00 2786 goto done;
54aa1f4d 2787 }
02217ed2 2788 }
65b51a00 2789cow_done:
eb60ceac 2790 p->nodes[level] = b;
52398340
LB
2791 /*
2792 * Leave path with blocking locks to avoid massive
2793 * lock context switch, this is made on purpose.
2794 */
b4ce94de
CM
2795
2796 /*
2797 * we have a lock on b and as long as we aren't changing
2798 * the tree, there is no way to for the items in b to change.
2799 * It is safe to drop the lock on our parent before we
2800 * go through the expensive btree search on b.
2801 *
eb653de1
FDBM
2802 * If we're inserting or deleting (ins_len != 0), then we might
2803 * be changing slot zero, which may require changing the parent.
2804 * So, we can't drop the lock until after we know which slot
2805 * we're operating on.
b4ce94de 2806 */
eb653de1
FDBM
2807 if (!ins_len && !p->keep_locks) {
2808 int u = level + 1;
2809
2810 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2811 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2812 p->locks[u] = 0;
2813 }
2814 }
b4ce94de 2815
d7396f07 2816 ret = key_search(b, key, level, &prev_cmp, &slot);
415b35a5
LB
2817 if (ret < 0)
2818 goto done;
b4ce94de 2819
5f39d397 2820 if (level != 0) {
33c66f43
YZ
2821 int dec = 0;
2822 if (ret && slot > 0) {
2823 dec = 1;
be0e5c09 2824 slot -= 1;
33c66f43 2825 }
be0e5c09 2826 p->slots[level] = slot;
33c66f43 2827 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2828 ins_len, &write_lock_level);
33c66f43 2829 if (err == -EAGAIN)
c8c42864 2830 goto again;
33c66f43
YZ
2831 if (err) {
2832 ret = err;
c8c42864 2833 goto done;
33c66f43 2834 }
c8c42864
CM
2835 b = p->nodes[level];
2836 slot = p->slots[level];
b4ce94de 2837
bd681513
CM
2838 /*
2839 * slot 0 is special, if we change the key
2840 * we have to update the parent pointer
2841 * which means we must have a write lock
2842 * on the parent
2843 */
eb653de1 2844 if (slot == 0 && ins_len &&
bd681513
CM
2845 write_lock_level < level + 1) {
2846 write_lock_level = level + 1;
2847 btrfs_release_path(p);
2848 goto again;
2849 }
2850
f7c79f30
CM
2851 unlock_up(p, level, lowest_unlock,
2852 min_write_lock_level, &write_lock_level);
f9efa9c7 2853
925baedd 2854 if (level == lowest_level) {
33c66f43
YZ
2855 if (dec)
2856 p->slots[level]++;
5b21f2ed 2857 goto done;
925baedd 2858 }
ca7a79ad 2859
d07b8528 2860 err = read_block_for_search(root, p, &b, level,
cda79c54 2861 slot, key);
33c66f43 2862 if (err == -EAGAIN)
c8c42864 2863 goto again;
33c66f43
YZ
2864 if (err) {
2865 ret = err;
76a05b35 2866 goto done;
33c66f43 2867 }
76a05b35 2868
b4ce94de 2869 if (!p->skip_locking) {
bd681513
CM
2870 level = btrfs_header_level(b);
2871 if (level <= write_lock_level) {
2872 err = btrfs_try_tree_write_lock(b);
2873 if (!err) {
2874 btrfs_set_path_blocking(p);
2875 btrfs_tree_lock(b);
bd681513
CM
2876 }
2877 p->locks[level] = BTRFS_WRITE_LOCK;
2878 } else {
f82c458a 2879 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2880 if (!err) {
2881 btrfs_set_path_blocking(p);
2882 btrfs_tree_read_lock(b);
bd681513
CM
2883 }
2884 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2885 }
bd681513 2886 p->nodes[level] = b;
b4ce94de 2887 }
be0e5c09
CM
2888 } else {
2889 p->slots[level] = slot;
87b29b20 2890 if (ins_len > 0 &&
2ff7e61e 2891 btrfs_leaf_free_space(fs_info, b) < ins_len) {
bd681513
CM
2892 if (write_lock_level < 1) {
2893 write_lock_level = 1;
2894 btrfs_release_path(p);
2895 goto again;
2896 }
2897
b4ce94de 2898 btrfs_set_path_blocking(p);
33c66f43
YZ
2899 err = split_leaf(trans, root, key,
2900 p, ins_len, ret == 0);
b4ce94de 2901
33c66f43
YZ
2902 BUG_ON(err > 0);
2903 if (err) {
2904 ret = err;
65b51a00
CM
2905 goto done;
2906 }
5c680ed6 2907 }
459931ec 2908 if (!p->search_for_split)
f7c79f30 2909 unlock_up(p, level, lowest_unlock,
4b6f8e96 2910 min_write_lock_level, NULL);
65b51a00 2911 goto done;
be0e5c09
CM
2912 }
2913 }
65b51a00
CM
2914 ret = 1;
2915done:
b4ce94de
CM
2916 /*
2917 * we don't really know what they plan on doing with the path
2918 * from here on, so for now just mark it as blocking
2919 */
b9473439
CM
2920 if (!p->leave_spinning)
2921 btrfs_set_path_blocking(p);
5f5bc6b1 2922 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2923 btrfs_release_path(p);
65b51a00 2924 return ret;
be0e5c09
CM
2925}
2926
5d9e75c4
JS
2927/*
2928 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2929 * current state of the tree together with the operations recorded in the tree
2930 * modification log to search for the key in a previous version of this tree, as
2931 * denoted by the time_seq parameter.
2932 *
2933 * Naturally, there is no support for insert, delete or cow operations.
2934 *
2935 * The resulting path and return value will be set up as if we called
2936 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2937 */
310712b2 2938int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
5d9e75c4
JS
2939 struct btrfs_path *p, u64 time_seq)
2940{
0b246afa 2941 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4
JS
2942 struct extent_buffer *b;
2943 int slot;
2944 int ret;
2945 int err;
2946 int level;
2947 int lowest_unlock = 1;
2948 u8 lowest_level = 0;
d4b4087c 2949 int prev_cmp = -1;
5d9e75c4
JS
2950
2951 lowest_level = p->lowest_level;
2952 WARN_ON(p->nodes[0] != NULL);
2953
2954 if (p->search_commit_root) {
2955 BUG_ON(time_seq);
2956 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2957 }
2958
2959again:
5d9e75c4 2960 b = get_old_root(root, time_seq);
315bed43
NB
2961 if (!b) {
2962 ret = -EIO;
2963 goto done;
2964 }
5d9e75c4 2965 level = btrfs_header_level(b);
5d9e75c4
JS
2966 p->locks[level] = BTRFS_READ_LOCK;
2967
2968 while (b) {
2969 level = btrfs_header_level(b);
2970 p->nodes[level] = b;
5d9e75c4
JS
2971
2972 /*
2973 * we have a lock on b and as long as we aren't changing
2974 * the tree, there is no way to for the items in b to change.
2975 * It is safe to drop the lock on our parent before we
2976 * go through the expensive btree search on b.
2977 */
2978 btrfs_unlock_up_safe(p, level + 1);
2979
d4b4087c 2980 /*
01327610 2981 * Since we can unwind ebs we want to do a real search every
d4b4087c
JB
2982 * time.
2983 */
2984 prev_cmp = -1;
d7396f07 2985 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
2986
2987 if (level != 0) {
2988 int dec = 0;
2989 if (ret && slot > 0) {
2990 dec = 1;
2991 slot -= 1;
2992 }
2993 p->slots[level] = slot;
2994 unlock_up(p, level, lowest_unlock, 0, NULL);
2995
2996 if (level == lowest_level) {
2997 if (dec)
2998 p->slots[level]++;
2999 goto done;
3000 }
3001
d07b8528 3002 err = read_block_for_search(root, p, &b, level,
cda79c54 3003 slot, key);
5d9e75c4
JS
3004 if (err == -EAGAIN)
3005 goto again;
3006 if (err) {
3007 ret = err;
3008 goto done;
3009 }
3010
3011 level = btrfs_header_level(b);
f82c458a 3012 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
3013 if (!err) {
3014 btrfs_set_path_blocking(p);
3015 btrfs_tree_read_lock(b);
5d9e75c4 3016 }
0b246afa 3017 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
db7f3436
JB
3018 if (!b) {
3019 ret = -ENOMEM;
3020 goto done;
3021 }
5d9e75c4
JS
3022 p->locks[level] = BTRFS_READ_LOCK;
3023 p->nodes[level] = b;
5d9e75c4
JS
3024 } else {
3025 p->slots[level] = slot;
3026 unlock_up(p, level, lowest_unlock, 0, NULL);
3027 goto done;
3028 }
3029 }
3030 ret = 1;
3031done:
3032 if (!p->leave_spinning)
3033 btrfs_set_path_blocking(p);
3034 if (ret < 0)
3035 btrfs_release_path(p);
3036
3037 return ret;
3038}
3039
2f38b3e1
AJ
3040/*
3041 * helper to use instead of search slot if no exact match is needed but
3042 * instead the next or previous item should be returned.
3043 * When find_higher is true, the next higher item is returned, the next lower
3044 * otherwise.
3045 * When return_any and find_higher are both true, and no higher item is found,
3046 * return the next lower instead.
3047 * When return_any is true and find_higher is false, and no lower item is found,
3048 * return the next higher instead.
3049 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3050 * < 0 on error
3051 */
3052int btrfs_search_slot_for_read(struct btrfs_root *root,
310712b2
OS
3053 const struct btrfs_key *key,
3054 struct btrfs_path *p, int find_higher,
3055 int return_any)
2f38b3e1
AJ
3056{
3057 int ret;
3058 struct extent_buffer *leaf;
3059
3060again:
3061 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3062 if (ret <= 0)
3063 return ret;
3064 /*
3065 * a return value of 1 means the path is at the position where the
3066 * item should be inserted. Normally this is the next bigger item,
3067 * but in case the previous item is the last in a leaf, path points
3068 * to the first free slot in the previous leaf, i.e. at an invalid
3069 * item.
3070 */
3071 leaf = p->nodes[0];
3072
3073 if (find_higher) {
3074 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3075 ret = btrfs_next_leaf(root, p);
3076 if (ret <= 0)
3077 return ret;
3078 if (!return_any)
3079 return 1;
3080 /*
3081 * no higher item found, return the next
3082 * lower instead
3083 */
3084 return_any = 0;
3085 find_higher = 0;
3086 btrfs_release_path(p);
3087 goto again;
3088 }
3089 } else {
e6793769
AJ
3090 if (p->slots[0] == 0) {
3091 ret = btrfs_prev_leaf(root, p);
3092 if (ret < 0)
3093 return ret;
3094 if (!ret) {
23c6bf6a
FDBM
3095 leaf = p->nodes[0];
3096 if (p->slots[0] == btrfs_header_nritems(leaf))
3097 p->slots[0]--;
e6793769 3098 return 0;
2f38b3e1 3099 }
e6793769
AJ
3100 if (!return_any)
3101 return 1;
3102 /*
3103 * no lower item found, return the next
3104 * higher instead
3105 */
3106 return_any = 0;
3107 find_higher = 1;
3108 btrfs_release_path(p);
3109 goto again;
3110 } else {
2f38b3e1
AJ
3111 --p->slots[0];
3112 }
3113 }
3114 return 0;
3115}
3116
74123bd7
CM
3117/*
3118 * adjust the pointers going up the tree, starting at level
3119 * making sure the right key of each node is points to 'key'.
3120 * This is used after shifting pointers to the left, so it stops
3121 * fixing up pointers when a given leaf/node is not in slot 0 of the
3122 * higher levels
aa5d6bed 3123 *
74123bd7 3124 */
b167fa91 3125static void fixup_low_keys(struct btrfs_path *path,
143bede5 3126 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3127{
3128 int i;
5f39d397 3129 struct extent_buffer *t;
0e82bcfe 3130 int ret;
5f39d397 3131
234b63a0 3132 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3133 int tslot = path->slots[i];
0e82bcfe 3134
eb60ceac 3135 if (!path->nodes[i])
be0e5c09 3136 break;
5f39d397 3137 t = path->nodes[i];
0e82bcfe
DS
3138 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3139 GFP_ATOMIC);
3140 BUG_ON(ret < 0);
5f39d397 3141 btrfs_set_node_key(t, key, tslot);
d6025579 3142 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3143 if (tslot != 0)
3144 break;
3145 }
3146}
3147
31840ae1
ZY
3148/*
3149 * update item key.
3150 *
3151 * This function isn't completely safe. It's the caller's responsibility
3152 * that the new key won't break the order
3153 */
b7a0365e
DD
3154void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3155 struct btrfs_path *path,
310712b2 3156 const struct btrfs_key *new_key)
31840ae1
ZY
3157{
3158 struct btrfs_disk_key disk_key;
3159 struct extent_buffer *eb;
3160 int slot;
3161
3162 eb = path->nodes[0];
3163 slot = path->slots[0];
3164 if (slot > 0) {
3165 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3166 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3167 }
3168 if (slot < btrfs_header_nritems(eb) - 1) {
3169 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3170 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3171 }
3172
3173 btrfs_cpu_key_to_disk(&disk_key, new_key);
3174 btrfs_set_item_key(eb, &disk_key, slot);
3175 btrfs_mark_buffer_dirty(eb);
3176 if (slot == 0)
b167fa91 3177 fixup_low_keys(path, &disk_key, 1);
31840ae1
ZY
3178}
3179
74123bd7
CM
3180/*
3181 * try to push data from one node into the next node left in the
79f95c82 3182 * tree.
aa5d6bed
CM
3183 *
3184 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3185 * error, and > 0 if there was no room in the left hand block.
74123bd7 3186 */
98ed5174 3187static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
3188 struct btrfs_fs_info *fs_info,
3189 struct extent_buffer *dst,
971a1f66 3190 struct extent_buffer *src, int empty)
be0e5c09 3191{
be0e5c09 3192 int push_items = 0;
bb803951
CM
3193 int src_nritems;
3194 int dst_nritems;
aa5d6bed 3195 int ret = 0;
be0e5c09 3196
5f39d397
CM
3197 src_nritems = btrfs_header_nritems(src);
3198 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3199 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
7bb86316
CM
3200 WARN_ON(btrfs_header_generation(src) != trans->transid);
3201 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3202
bce4eae9 3203 if (!empty && src_nritems <= 8)
971a1f66
CM
3204 return 1;
3205
d397712b 3206 if (push_items <= 0)
be0e5c09
CM
3207 return 1;
3208
bce4eae9 3209 if (empty) {
971a1f66 3210 push_items = min(src_nritems, push_items);
bce4eae9
CM
3211 if (push_items < src_nritems) {
3212 /* leave at least 8 pointers in the node if
3213 * we aren't going to empty it
3214 */
3215 if (src_nritems - push_items < 8) {
3216 if (push_items <= 8)
3217 return 1;
3218 push_items -= 8;
3219 }
3220 }
3221 } else
3222 push_items = min(src_nritems - 8, push_items);
79f95c82 3223
0b246afa 3224 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
5de865ee
FDBM
3225 push_items);
3226 if (ret) {
66642832 3227 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3228 return ret;
3229 }
5f39d397
CM
3230 copy_extent_buffer(dst, src,
3231 btrfs_node_key_ptr_offset(dst_nritems),
3232 btrfs_node_key_ptr_offset(0),
d397712b 3233 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3234
bb803951 3235 if (push_items < src_nritems) {
57911b8b 3236 /*
bf1d3425
DS
3237 * Don't call tree_mod_log_insert_move here, key removal was
3238 * already fully logged by tree_mod_log_eb_copy above.
57911b8b 3239 */
5f39d397
CM
3240 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3241 btrfs_node_key_ptr_offset(push_items),
3242 (src_nritems - push_items) *
3243 sizeof(struct btrfs_key_ptr));
3244 }
3245 btrfs_set_header_nritems(src, src_nritems - push_items);
3246 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3247 btrfs_mark_buffer_dirty(src);
3248 btrfs_mark_buffer_dirty(dst);
31840ae1 3249
79f95c82
CM
3250 return ret;
3251}
3252
3253/*
3254 * try to push data from one node into the next node right in the
3255 * tree.
3256 *
3257 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3258 * error, and > 0 if there was no room in the right hand block.
3259 *
3260 * this will only push up to 1/2 the contents of the left node over
3261 */
5f39d397 3262static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 3263 struct btrfs_fs_info *fs_info,
5f39d397
CM
3264 struct extent_buffer *dst,
3265 struct extent_buffer *src)
79f95c82 3266{
79f95c82
CM
3267 int push_items = 0;
3268 int max_push;
3269 int src_nritems;
3270 int dst_nritems;
3271 int ret = 0;
79f95c82 3272
7bb86316
CM
3273 WARN_ON(btrfs_header_generation(src) != trans->transid);
3274 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3275
5f39d397
CM
3276 src_nritems = btrfs_header_nritems(src);
3277 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3278 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
d397712b 3279 if (push_items <= 0)
79f95c82 3280 return 1;
bce4eae9 3281
d397712b 3282 if (src_nritems < 4)
bce4eae9 3283 return 1;
79f95c82
CM
3284
3285 max_push = src_nritems / 2 + 1;
3286 /* don't try to empty the node */
d397712b 3287 if (max_push >= src_nritems)
79f95c82 3288 return 1;
252c38f0 3289
79f95c82
CM
3290 if (max_push < push_items)
3291 push_items = max_push;
3292
bf1d3425
DS
3293 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3294 BUG_ON(ret < 0);
5f39d397
CM
3295 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3296 btrfs_node_key_ptr_offset(0),
3297 (dst_nritems) *
3298 sizeof(struct btrfs_key_ptr));
d6025579 3299
0b246afa 3300 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
5de865ee
FDBM
3301 src_nritems - push_items, push_items);
3302 if (ret) {
66642832 3303 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3304 return ret;
3305 }
5f39d397
CM
3306 copy_extent_buffer(dst, src,
3307 btrfs_node_key_ptr_offset(0),
3308 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3309 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3310
5f39d397
CM
3311 btrfs_set_header_nritems(src, src_nritems - push_items);
3312 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3313
5f39d397
CM
3314 btrfs_mark_buffer_dirty(src);
3315 btrfs_mark_buffer_dirty(dst);
31840ae1 3316
aa5d6bed 3317 return ret;
be0e5c09
CM
3318}
3319
97571fd0
CM
3320/*
3321 * helper function to insert a new root level in the tree.
3322 * A new node is allocated, and a single item is inserted to
3323 * point to the existing root
aa5d6bed
CM
3324 *
3325 * returns zero on success or < 0 on failure.
97571fd0 3326 */
d397712b 3327static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3328 struct btrfs_root *root,
fdd99c72 3329 struct btrfs_path *path, int level)
5c680ed6 3330{
0b246afa 3331 struct btrfs_fs_info *fs_info = root->fs_info;
7bb86316 3332 u64 lower_gen;
5f39d397
CM
3333 struct extent_buffer *lower;
3334 struct extent_buffer *c;
925baedd 3335 struct extent_buffer *old;
5f39d397 3336 struct btrfs_disk_key lower_key;
d9d19a01 3337 int ret;
5c680ed6
CM
3338
3339 BUG_ON(path->nodes[level]);
3340 BUG_ON(path->nodes[level-1] != root->node);
3341
7bb86316
CM
3342 lower = path->nodes[level-1];
3343 if (level == 1)
3344 btrfs_item_key(lower, &lower_key, 0);
3345 else
3346 btrfs_node_key(lower, &lower_key, 0);
3347
4d75f8a9
DS
3348 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3349 &lower_key, level, root->node->start, 0);
5f39d397
CM
3350 if (IS_ERR(c))
3351 return PTR_ERR(c);
925baedd 3352
0b246afa 3353 root_add_used(root, fs_info->nodesize);
f0486c68 3354
5f39d397 3355 btrfs_set_header_nritems(c, 1);
5f39d397 3356 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3357 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3358 lower_gen = btrfs_header_generation(lower);
31840ae1 3359 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3360
3361 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3362
5f39d397 3363 btrfs_mark_buffer_dirty(c);
d5719762 3364
925baedd 3365 old = root->node;
d9d19a01
DS
3366 ret = tree_mod_log_insert_root(root->node, c, 0);
3367 BUG_ON(ret < 0);
240f62c8 3368 rcu_assign_pointer(root->node, c);
925baedd
CM
3369
3370 /* the super has an extra ref to root->node */
3371 free_extent_buffer(old);
3372
0b86a832 3373 add_root_to_dirty_list(root);
5f39d397
CM
3374 extent_buffer_get(c);
3375 path->nodes[level] = c;
95449a16 3376 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3377 path->slots[level] = 0;
3378 return 0;
3379}
3380
74123bd7
CM
3381/*
3382 * worker function to insert a single pointer in a node.
3383 * the node should have enough room for the pointer already
97571fd0 3384 *
74123bd7
CM
3385 * slot and level indicate where you want the key to go, and
3386 * blocknr is the block the key points to.
3387 */
143bede5 3388static void insert_ptr(struct btrfs_trans_handle *trans,
2ff7e61e 3389 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 3390 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3391 int slot, int level)
74123bd7 3392{
5f39d397 3393 struct extent_buffer *lower;
74123bd7 3394 int nritems;
f3ea38da 3395 int ret;
5c680ed6
CM
3396
3397 BUG_ON(!path->nodes[level]);
f0486c68 3398 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3399 lower = path->nodes[level];
3400 nritems = btrfs_header_nritems(lower);
c293498b 3401 BUG_ON(slot > nritems);
0b246afa 3402 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
74123bd7 3403 if (slot != nritems) {
bf1d3425
DS
3404 if (level) {
3405 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
a446a979 3406 nritems - slot);
bf1d3425
DS
3407 BUG_ON(ret < 0);
3408 }
5f39d397
CM
3409 memmove_extent_buffer(lower,
3410 btrfs_node_key_ptr_offset(slot + 1),
3411 btrfs_node_key_ptr_offset(slot),
d6025579 3412 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3413 }
c3e06965 3414 if (level) {
e09c2efe
DS
3415 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3416 GFP_NOFS);
f3ea38da
JS
3417 BUG_ON(ret < 0);
3418 }
5f39d397 3419 btrfs_set_node_key(lower, key, slot);
db94535d 3420 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3421 WARN_ON(trans->transid == 0);
3422 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3423 btrfs_set_header_nritems(lower, nritems + 1);
3424 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3425}
3426
97571fd0
CM
3427/*
3428 * split the node at the specified level in path in two.
3429 * The path is corrected to point to the appropriate node after the split
3430 *
3431 * Before splitting this tries to make some room in the node by pushing
3432 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3433 *
3434 * returns 0 on success and < 0 on failure
97571fd0 3435 */
e02119d5
CM
3436static noinline int split_node(struct btrfs_trans_handle *trans,
3437 struct btrfs_root *root,
3438 struct btrfs_path *path, int level)
be0e5c09 3439{
0b246afa 3440 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
3441 struct extent_buffer *c;
3442 struct extent_buffer *split;
3443 struct btrfs_disk_key disk_key;
be0e5c09 3444 int mid;
5c680ed6 3445 int ret;
7518a238 3446 u32 c_nritems;
eb60ceac 3447
5f39d397 3448 c = path->nodes[level];
7bb86316 3449 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3450 if (c == root->node) {
d9abbf1c 3451 /*
90f8d62e
JS
3452 * trying to split the root, lets make a new one
3453 *
fdd99c72 3454 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3455 * insert_new_root, because that root buffer will be kept as a
3456 * normal node. We are going to log removal of half of the
3457 * elements below with tree_mod_log_eb_copy. We're holding a
3458 * tree lock on the buffer, which is why we cannot race with
3459 * other tree_mod_log users.
d9abbf1c 3460 */
fdd99c72 3461 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3462 if (ret)
3463 return ret;
b3612421 3464 } else {
e66f709b 3465 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3466 c = path->nodes[level];
3467 if (!ret && btrfs_header_nritems(c) <
0b246afa 3468 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
e66f709b 3469 return 0;
54aa1f4d
CM
3470 if (ret < 0)
3471 return ret;
be0e5c09 3472 }
e66f709b 3473
5f39d397 3474 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3475 mid = (c_nritems + 1) / 2;
3476 btrfs_node_key(c, &disk_key, mid);
7bb86316 3477
4d75f8a9
DS
3478 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3479 &disk_key, level, c->start, 0);
5f39d397
CM
3480 if (IS_ERR(split))
3481 return PTR_ERR(split);
3482
0b246afa 3483 root_add_used(root, fs_info->nodesize);
bc877d28 3484 ASSERT(btrfs_header_level(c) == level);
54aa1f4d 3485
0b246afa 3486 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
5de865ee 3487 if (ret) {
66642832 3488 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3489 return ret;
3490 }
5f39d397
CM
3491 copy_extent_buffer(split, c,
3492 btrfs_node_key_ptr_offset(0),
3493 btrfs_node_key_ptr_offset(mid),
3494 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3495 btrfs_set_header_nritems(split, c_nritems - mid);
3496 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3497 ret = 0;
3498
5f39d397
CM
3499 btrfs_mark_buffer_dirty(c);
3500 btrfs_mark_buffer_dirty(split);
3501
2ff7e61e 3502 insert_ptr(trans, fs_info, path, &disk_key, split->start,
c3e06965 3503 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3504
5de08d7d 3505 if (path->slots[level] >= mid) {
5c680ed6 3506 path->slots[level] -= mid;
925baedd 3507 btrfs_tree_unlock(c);
5f39d397
CM
3508 free_extent_buffer(c);
3509 path->nodes[level] = split;
5c680ed6
CM
3510 path->slots[level + 1] += 1;
3511 } else {
925baedd 3512 btrfs_tree_unlock(split);
5f39d397 3513 free_extent_buffer(split);
be0e5c09 3514 }
aa5d6bed 3515 return ret;
be0e5c09
CM
3516}
3517
74123bd7
CM
3518/*
3519 * how many bytes are required to store the items in a leaf. start
3520 * and nr indicate which items in the leaf to check. This totals up the
3521 * space used both by the item structs and the item data
3522 */
5f39d397 3523static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3524{
41be1f3b
JB
3525 struct btrfs_item *start_item;
3526 struct btrfs_item *end_item;
3527 struct btrfs_map_token token;
be0e5c09 3528 int data_len;
5f39d397 3529 int nritems = btrfs_header_nritems(l);
d4dbff95 3530 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3531
3532 if (!nr)
3533 return 0;
41be1f3b 3534 btrfs_init_map_token(&token);
dd3cc16b
RK
3535 start_item = btrfs_item_nr(start);
3536 end_item = btrfs_item_nr(end);
41be1f3b
JB
3537 data_len = btrfs_token_item_offset(l, start_item, &token) +
3538 btrfs_token_item_size(l, start_item, &token);
3539 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3540 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3541 WARN_ON(data_len < 0);
be0e5c09
CM
3542 return data_len;
3543}
3544
d4dbff95
CM
3545/*
3546 * The space between the end of the leaf items and
3547 * the start of the leaf data. IOW, how much room
3548 * the leaf has left for both items and data
3549 */
2ff7e61e 3550noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
e02119d5 3551 struct extent_buffer *leaf)
d4dbff95 3552{
5f39d397
CM
3553 int nritems = btrfs_header_nritems(leaf);
3554 int ret;
0b246afa
JM
3555
3556 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
5f39d397 3557 if (ret < 0) {
0b246afa
JM
3558 btrfs_crit(fs_info,
3559 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3560 ret,
3561 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3562 leaf_space_used(leaf, 0, nritems), nritems);
5f39d397
CM
3563 }
3564 return ret;
d4dbff95
CM
3565}
3566
99d8f83c
CM
3567/*
3568 * min slot controls the lowest index we're willing to push to the
3569 * right. We'll push up to and including min_slot, but no lower
3570 */
1e47eef2 3571static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
44871b1b
CM
3572 struct btrfs_path *path,
3573 int data_size, int empty,
3574 struct extent_buffer *right,
99d8f83c
CM
3575 int free_space, u32 left_nritems,
3576 u32 min_slot)
00ec4c51 3577{
5f39d397 3578 struct extent_buffer *left = path->nodes[0];
44871b1b 3579 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3580 struct btrfs_map_token token;
5f39d397 3581 struct btrfs_disk_key disk_key;
00ec4c51 3582 int slot;
34a38218 3583 u32 i;
00ec4c51
CM
3584 int push_space = 0;
3585 int push_items = 0;
0783fcfc 3586 struct btrfs_item *item;
34a38218 3587 u32 nr;
7518a238 3588 u32 right_nritems;
5f39d397 3589 u32 data_end;
db94535d 3590 u32 this_item_size;
00ec4c51 3591
cfed81a0
CM
3592 btrfs_init_map_token(&token);
3593
34a38218
CM
3594 if (empty)
3595 nr = 0;
3596 else
99d8f83c 3597 nr = max_t(u32, 1, min_slot);
34a38218 3598
31840ae1 3599 if (path->slots[0] >= left_nritems)
87b29b20 3600 push_space += data_size;
31840ae1 3601
44871b1b 3602 slot = path->slots[1];
34a38218
CM
3603 i = left_nritems - 1;
3604 while (i >= nr) {
dd3cc16b 3605 item = btrfs_item_nr(i);
db94535d 3606
31840ae1
ZY
3607 if (!empty && push_items > 0) {
3608 if (path->slots[0] > i)
3609 break;
3610 if (path->slots[0] == i) {
2ff7e61e 3611 int space = btrfs_leaf_free_space(fs_info, left);
31840ae1
ZY
3612 if (space + push_space * 2 > free_space)
3613 break;
3614 }
3615 }
3616
00ec4c51 3617 if (path->slots[0] == i)
87b29b20 3618 push_space += data_size;
db94535d 3619
db94535d
CM
3620 this_item_size = btrfs_item_size(left, item);
3621 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3622 break;
31840ae1 3623
00ec4c51 3624 push_items++;
db94535d 3625 push_space += this_item_size + sizeof(*item);
34a38218
CM
3626 if (i == 0)
3627 break;
3628 i--;
db94535d 3629 }
5f39d397 3630
925baedd
CM
3631 if (push_items == 0)
3632 goto out_unlock;
5f39d397 3633
6c1500f2 3634 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3635
00ec4c51 3636 /* push left to right */
5f39d397 3637 right_nritems = btrfs_header_nritems(right);
34a38218 3638
5f39d397 3639 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2ff7e61e 3640 push_space -= leaf_data_end(fs_info, left);
5f39d397 3641
00ec4c51 3642 /* make room in the right data area */
2ff7e61e 3643 data_end = leaf_data_end(fs_info, right);
5f39d397 3644 memmove_extent_buffer(right,
3d9ec8c4
NB
3645 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3646 BTRFS_LEAF_DATA_OFFSET + data_end,
0b246afa 3647 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
5f39d397 3648
00ec4c51 3649 /* copy from the left data area */
3d9ec8c4 3650 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3651 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3652 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
d6025579 3653 push_space);
5f39d397
CM
3654
3655 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3656 btrfs_item_nr_offset(0),
3657 right_nritems * sizeof(struct btrfs_item));
3658
00ec4c51 3659 /* copy the items from left to right */
5f39d397
CM
3660 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3661 btrfs_item_nr_offset(left_nritems - push_items),
3662 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3663
3664 /* update the item pointers */
7518a238 3665 right_nritems += push_items;
5f39d397 3666 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3667 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
7518a238 3668 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3669 item = btrfs_item_nr(i);
cfed81a0
CM
3670 push_space -= btrfs_token_item_size(right, item, &token);
3671 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3672 }
3673
7518a238 3674 left_nritems -= push_items;
5f39d397 3675 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3676
34a38218
CM
3677 if (left_nritems)
3678 btrfs_mark_buffer_dirty(left);
f0486c68 3679 else
7c302b49 3680 clean_tree_block(fs_info, left);
f0486c68 3681
5f39d397 3682 btrfs_mark_buffer_dirty(right);
a429e513 3683
5f39d397
CM
3684 btrfs_item_key(right, &disk_key, 0);
3685 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3686 btrfs_mark_buffer_dirty(upper);
02217ed2 3687
00ec4c51 3688 /* then fixup the leaf pointer in the path */
7518a238
CM
3689 if (path->slots[0] >= left_nritems) {
3690 path->slots[0] -= left_nritems;
925baedd 3691 if (btrfs_header_nritems(path->nodes[0]) == 0)
7c302b49 3692 clean_tree_block(fs_info, path->nodes[0]);
925baedd 3693 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3694 free_extent_buffer(path->nodes[0]);
3695 path->nodes[0] = right;
00ec4c51
CM
3696 path->slots[1] += 1;
3697 } else {
925baedd 3698 btrfs_tree_unlock(right);
5f39d397 3699 free_extent_buffer(right);
00ec4c51
CM
3700 }
3701 return 0;
925baedd
CM
3702
3703out_unlock:
3704 btrfs_tree_unlock(right);
3705 free_extent_buffer(right);
3706 return 1;
00ec4c51 3707}
925baedd 3708
44871b1b
CM
3709/*
3710 * push some data in the path leaf to the right, trying to free up at
3711 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3712 *
3713 * returns 1 if the push failed because the other node didn't have enough
3714 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3715 *
3716 * this will push starting from min_slot to the end of the leaf. It won't
3717 * push any slot lower than min_slot
44871b1b
CM
3718 */
3719static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3720 *root, struct btrfs_path *path,
3721 int min_data_size, int data_size,
3722 int empty, u32 min_slot)
44871b1b 3723{
2ff7e61e 3724 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3725 struct extent_buffer *left = path->nodes[0];
3726 struct extent_buffer *right;
3727 struct extent_buffer *upper;
3728 int slot;
3729 int free_space;
3730 u32 left_nritems;
3731 int ret;
3732
3733 if (!path->nodes[1])
3734 return 1;
3735
3736 slot = path->slots[1];
3737 upper = path->nodes[1];
3738 if (slot >= btrfs_header_nritems(upper) - 1)
3739 return 1;
3740
3741 btrfs_assert_tree_locked(path->nodes[1]);
3742
2ff7e61e 3743 right = read_node_slot(fs_info, upper, slot + 1);
fb770ae4
LB
3744 /*
3745 * slot + 1 is not valid or we fail to read the right node,
3746 * no big deal, just return.
3747 */
3748 if (IS_ERR(right))
91ca338d
TI
3749 return 1;
3750
44871b1b
CM
3751 btrfs_tree_lock(right);
3752 btrfs_set_lock_blocking(right);
3753
2ff7e61e 3754 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3755 if (free_space < data_size)
3756 goto out_unlock;
3757
3758 /* cow and double check */
3759 ret = btrfs_cow_block(trans, root, right, upper,
3760 slot + 1, &right);
3761 if (ret)
3762 goto out_unlock;
3763
2ff7e61e 3764 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3765 if (free_space < data_size)
3766 goto out_unlock;
3767
3768 left_nritems = btrfs_header_nritems(left);
3769 if (left_nritems == 0)
3770 goto out_unlock;
3771
2ef1fed2
FDBM
3772 if (path->slots[0] == left_nritems && !empty) {
3773 /* Key greater than all keys in the leaf, right neighbor has
3774 * enough room for it and we're not emptying our leaf to delete
3775 * it, therefore use right neighbor to insert the new item and
52042d8e 3776 * no need to touch/dirty our left leaf. */
2ef1fed2
FDBM
3777 btrfs_tree_unlock(left);
3778 free_extent_buffer(left);
3779 path->nodes[0] = right;
3780 path->slots[0] = 0;
3781 path->slots[1]++;
3782 return 0;
3783 }
3784
1e47eef2 3785 return __push_leaf_right(fs_info, path, min_data_size, empty,
99d8f83c 3786 right, free_space, left_nritems, min_slot);
44871b1b
CM
3787out_unlock:
3788 btrfs_tree_unlock(right);
3789 free_extent_buffer(right);
3790 return 1;
3791}
3792
74123bd7
CM
3793/*
3794 * push some data in the path leaf to the left, trying to free up at
3795 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3796 *
3797 * max_slot can put a limit on how far into the leaf we'll push items. The
3798 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3799 * items
74123bd7 3800 */
66cb7ddb 3801static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
44871b1b
CM
3802 struct btrfs_path *path, int data_size,
3803 int empty, struct extent_buffer *left,
99d8f83c
CM
3804 int free_space, u32 right_nritems,
3805 u32 max_slot)
be0e5c09 3806{
5f39d397
CM
3807 struct btrfs_disk_key disk_key;
3808 struct extent_buffer *right = path->nodes[0];
be0e5c09 3809 int i;
be0e5c09
CM
3810 int push_space = 0;
3811 int push_items = 0;
0783fcfc 3812 struct btrfs_item *item;
7518a238 3813 u32 old_left_nritems;
34a38218 3814 u32 nr;
aa5d6bed 3815 int ret = 0;
db94535d
CM
3816 u32 this_item_size;
3817 u32 old_left_item_size;
cfed81a0
CM
3818 struct btrfs_map_token token;
3819
3820 btrfs_init_map_token(&token);
be0e5c09 3821
34a38218 3822 if (empty)
99d8f83c 3823 nr = min(right_nritems, max_slot);
34a38218 3824 else
99d8f83c 3825 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3826
3827 for (i = 0; i < nr; i++) {
dd3cc16b 3828 item = btrfs_item_nr(i);
db94535d 3829
31840ae1
ZY
3830 if (!empty && push_items > 0) {
3831 if (path->slots[0] < i)
3832 break;
3833 if (path->slots[0] == i) {
2ff7e61e 3834 int space = btrfs_leaf_free_space(fs_info, right);
31840ae1
ZY
3835 if (space + push_space * 2 > free_space)
3836 break;
3837 }
3838 }
3839
be0e5c09 3840 if (path->slots[0] == i)
87b29b20 3841 push_space += data_size;
db94535d
CM
3842
3843 this_item_size = btrfs_item_size(right, item);
3844 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3845 break;
db94535d 3846
be0e5c09 3847 push_items++;
db94535d
CM
3848 push_space += this_item_size + sizeof(*item);
3849 }
3850
be0e5c09 3851 if (push_items == 0) {
925baedd
CM
3852 ret = 1;
3853 goto out;
be0e5c09 3854 }
fae7f21c 3855 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3856
be0e5c09 3857 /* push data from right to left */
5f39d397
CM
3858 copy_extent_buffer(left, right,
3859 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3860 btrfs_item_nr_offset(0),
3861 push_items * sizeof(struct btrfs_item));
3862
0b246afa 3863 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
d397712b 3864 btrfs_item_offset_nr(right, push_items - 1);
5f39d397 3865
3d9ec8c4 3866 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3867 leaf_data_end(fs_info, left) - push_space,
3d9ec8c4 3868 BTRFS_LEAF_DATA_OFFSET +
5f39d397 3869 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3870 push_space);
5f39d397 3871 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3872 BUG_ON(old_left_nritems <= 0);
eb60ceac 3873
db94535d 3874 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3875 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3876 u32 ioff;
db94535d 3877
dd3cc16b 3878 item = btrfs_item_nr(i);
db94535d 3879
cfed81a0
CM
3880 ioff = btrfs_token_item_offset(left, item, &token);
3881 btrfs_set_token_item_offset(left, item,
0b246afa 3882 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
cfed81a0 3883 &token);
be0e5c09 3884 }
5f39d397 3885 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3886
3887 /* fixup right node */
31b1a2bd
JL
3888 if (push_items > right_nritems)
3889 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3890 right_nritems);
34a38218
CM
3891
3892 if (push_items < right_nritems) {
3893 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2ff7e61e 3894 leaf_data_end(fs_info, right);
3d9ec8c4 3895 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3896 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3897 BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3898 leaf_data_end(fs_info, right), push_space);
34a38218
CM
3899
3900 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3901 btrfs_item_nr_offset(push_items),
3902 (btrfs_header_nritems(right) - push_items) *
3903 sizeof(struct btrfs_item));
34a38218 3904 }
eef1c494
Y
3905 right_nritems -= push_items;
3906 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3907 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
5f39d397 3908 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3909 item = btrfs_item_nr(i);
db94535d 3910
cfed81a0
CM
3911 push_space = push_space - btrfs_token_item_size(right,
3912 item, &token);
3913 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3914 }
eb60ceac 3915
5f39d397 3916 btrfs_mark_buffer_dirty(left);
34a38218
CM
3917 if (right_nritems)
3918 btrfs_mark_buffer_dirty(right);
f0486c68 3919 else
7c302b49 3920 clean_tree_block(fs_info, right);
098f59c2 3921
5f39d397 3922 btrfs_item_key(right, &disk_key, 0);
b167fa91 3923 fixup_low_keys(path, &disk_key, 1);
be0e5c09
CM
3924
3925 /* then fixup the leaf pointer in the path */
3926 if (path->slots[0] < push_items) {
3927 path->slots[0] += old_left_nritems;
925baedd 3928 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3929 free_extent_buffer(path->nodes[0]);
3930 path->nodes[0] = left;
be0e5c09
CM
3931 path->slots[1] -= 1;
3932 } else {
925baedd 3933 btrfs_tree_unlock(left);
5f39d397 3934 free_extent_buffer(left);
be0e5c09
CM
3935 path->slots[0] -= push_items;
3936 }
eb60ceac 3937 BUG_ON(path->slots[0] < 0);
aa5d6bed 3938 return ret;
925baedd
CM
3939out:
3940 btrfs_tree_unlock(left);
3941 free_extent_buffer(left);
3942 return ret;
be0e5c09
CM
3943}
3944
44871b1b
CM
3945/*
3946 * push some data in the path leaf to the left, trying to free up at
3947 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3948 *
3949 * max_slot can put a limit on how far into the leaf we'll push items. The
3950 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3951 * items
44871b1b
CM
3952 */
3953static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3954 *root, struct btrfs_path *path, int min_data_size,
3955 int data_size, int empty, u32 max_slot)
44871b1b 3956{
2ff7e61e 3957 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3958 struct extent_buffer *right = path->nodes[0];
3959 struct extent_buffer *left;
3960 int slot;
3961 int free_space;
3962 u32 right_nritems;
3963 int ret = 0;
3964
3965 slot = path->slots[1];
3966 if (slot == 0)
3967 return 1;
3968 if (!path->nodes[1])
3969 return 1;
3970
3971 right_nritems = btrfs_header_nritems(right);
3972 if (right_nritems == 0)
3973 return 1;
3974
3975 btrfs_assert_tree_locked(path->nodes[1]);
3976
2ff7e61e 3977 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
fb770ae4
LB
3978 /*
3979 * slot - 1 is not valid or we fail to read the left node,
3980 * no big deal, just return.
3981 */
3982 if (IS_ERR(left))
91ca338d
TI
3983 return 1;
3984
44871b1b
CM
3985 btrfs_tree_lock(left);
3986 btrfs_set_lock_blocking(left);
3987
2ff7e61e 3988 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
3989 if (free_space < data_size) {
3990 ret = 1;
3991 goto out;
3992 }
3993
3994 /* cow and double check */
3995 ret = btrfs_cow_block(trans, root, left,
3996 path->nodes[1], slot - 1, &left);
3997 if (ret) {
3998 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
3999 if (ret == -ENOSPC)
4000 ret = 1;
44871b1b
CM
4001 goto out;
4002 }
4003
2ff7e61e 4004 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4005 if (free_space < data_size) {
4006 ret = 1;
4007 goto out;
4008 }
4009
66cb7ddb 4010 return __push_leaf_left(fs_info, path, min_data_size,
99d8f83c
CM
4011 empty, left, free_space, right_nritems,
4012 max_slot);
44871b1b
CM
4013out:
4014 btrfs_tree_unlock(left);
4015 free_extent_buffer(left);
4016 return ret;
4017}
4018
4019/*
4020 * split the path's leaf in two, making sure there is at least data_size
4021 * available for the resulting leaf level of the path.
44871b1b 4022 */
143bede5 4023static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2ff7e61e 4024 struct btrfs_fs_info *fs_info,
143bede5
JM
4025 struct btrfs_path *path,
4026 struct extent_buffer *l,
4027 struct extent_buffer *right,
4028 int slot, int mid, int nritems)
44871b1b
CM
4029{
4030 int data_copy_size;
4031 int rt_data_off;
4032 int i;
44871b1b 4033 struct btrfs_disk_key disk_key;
cfed81a0
CM
4034 struct btrfs_map_token token;
4035
4036 btrfs_init_map_token(&token);
44871b1b
CM
4037
4038 nritems = nritems - mid;
4039 btrfs_set_header_nritems(right, nritems);
2ff7e61e 4040 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
44871b1b
CM
4041
4042 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4043 btrfs_item_nr_offset(mid),
4044 nritems * sizeof(struct btrfs_item));
4045
4046 copy_extent_buffer(right, l,
3d9ec8c4
NB
4047 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4048 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 4049 leaf_data_end(fs_info, l), data_copy_size);
44871b1b 4050
0b246afa 4051 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
44871b1b
CM
4052
4053 for (i = 0; i < nritems; i++) {
dd3cc16b 4054 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4055 u32 ioff;
4056
cfed81a0
CM
4057 ioff = btrfs_token_item_offset(right, item, &token);
4058 btrfs_set_token_item_offset(right, item,
4059 ioff + rt_data_off, &token);
44871b1b
CM
4060 }
4061
44871b1b 4062 btrfs_set_header_nritems(l, mid);
44871b1b 4063 btrfs_item_key(right, &disk_key, 0);
2ff7e61e 4064 insert_ptr(trans, fs_info, path, &disk_key, right->start,
c3e06965 4065 path->slots[1] + 1, 1);
44871b1b
CM
4066
4067 btrfs_mark_buffer_dirty(right);
4068 btrfs_mark_buffer_dirty(l);
4069 BUG_ON(path->slots[0] != slot);
4070
44871b1b
CM
4071 if (mid <= slot) {
4072 btrfs_tree_unlock(path->nodes[0]);
4073 free_extent_buffer(path->nodes[0]);
4074 path->nodes[0] = right;
4075 path->slots[0] -= mid;
4076 path->slots[1] += 1;
4077 } else {
4078 btrfs_tree_unlock(right);
4079 free_extent_buffer(right);
4080 }
4081
4082 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4083}
4084
99d8f83c
CM
4085/*
4086 * double splits happen when we need to insert a big item in the middle
4087 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4088 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4089 * A B C
4090 *
4091 * We avoid this by trying to push the items on either side of our target
4092 * into the adjacent leaves. If all goes well we can avoid the double split
4093 * completely.
4094 */
4095static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4096 struct btrfs_root *root,
4097 struct btrfs_path *path,
4098 int data_size)
4099{
2ff7e61e 4100 struct btrfs_fs_info *fs_info = root->fs_info;
99d8f83c
CM
4101 int ret;
4102 int progress = 0;
4103 int slot;
4104 u32 nritems;
5a4267ca 4105 int space_needed = data_size;
99d8f83c
CM
4106
4107 slot = path->slots[0];
5a4267ca 4108 if (slot < btrfs_header_nritems(path->nodes[0]))
2ff7e61e 4109 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
99d8f83c
CM
4110
4111 /*
4112 * try to push all the items after our slot into the
4113 * right leaf
4114 */
5a4267ca 4115 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4116 if (ret < 0)
4117 return ret;
4118
4119 if (ret == 0)
4120 progress++;
4121
4122 nritems = btrfs_header_nritems(path->nodes[0]);
4123 /*
4124 * our goal is to get our slot at the start or end of a leaf. If
4125 * we've done so we're done
4126 */
4127 if (path->slots[0] == 0 || path->slots[0] == nritems)
4128 return 0;
4129
2ff7e61e 4130 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4131 return 0;
4132
4133 /* try to push all the items before our slot into the next leaf */
4134 slot = path->slots[0];
263d3995
FM
4135 space_needed = data_size;
4136 if (slot > 0)
4137 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
5a4267ca 4138 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4139 if (ret < 0)
4140 return ret;
4141
4142 if (ret == 0)
4143 progress++;
4144
4145 if (progress)
4146 return 0;
4147 return 1;
4148}
4149
74123bd7
CM
4150/*
4151 * split the path's leaf in two, making sure there is at least data_size
4152 * available for the resulting leaf level of the path.
aa5d6bed
CM
4153 *
4154 * returns 0 if all went well and < 0 on failure.
74123bd7 4155 */
e02119d5
CM
4156static noinline int split_leaf(struct btrfs_trans_handle *trans,
4157 struct btrfs_root *root,
310712b2 4158 const struct btrfs_key *ins_key,
e02119d5
CM
4159 struct btrfs_path *path, int data_size,
4160 int extend)
be0e5c09 4161{
5d4f98a2 4162 struct btrfs_disk_key disk_key;
5f39d397 4163 struct extent_buffer *l;
7518a238 4164 u32 nritems;
eb60ceac
CM
4165 int mid;
4166 int slot;
5f39d397 4167 struct extent_buffer *right;
b7a0365e 4168 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4169 int ret = 0;
aa5d6bed 4170 int wret;
5d4f98a2 4171 int split;
cc0c5538 4172 int num_doubles = 0;
99d8f83c 4173 int tried_avoid_double = 0;
aa5d6bed 4174
a5719521
YZ
4175 l = path->nodes[0];
4176 slot = path->slots[0];
4177 if (extend && data_size + btrfs_item_size_nr(l, slot) +
0b246afa 4178 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
a5719521
YZ
4179 return -EOVERFLOW;
4180
40689478 4181 /* first try to make some room by pushing left and right */
33157e05 4182 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4183 int space_needed = data_size;
4184
4185 if (slot < btrfs_header_nritems(l))
2ff7e61e 4186 space_needed -= btrfs_leaf_free_space(fs_info, l);
5a4267ca
FDBM
4187
4188 wret = push_leaf_right(trans, root, path, space_needed,
4189 space_needed, 0, 0);
d397712b 4190 if (wret < 0)
eaee50e8 4191 return wret;
3685f791 4192 if (wret) {
263d3995
FM
4193 space_needed = data_size;
4194 if (slot > 0)
4195 space_needed -= btrfs_leaf_free_space(fs_info,
4196 l);
5a4267ca
FDBM
4197 wret = push_leaf_left(trans, root, path, space_needed,
4198 space_needed, 0, (u32)-1);
3685f791
CM
4199 if (wret < 0)
4200 return wret;
4201 }
4202 l = path->nodes[0];
aa5d6bed 4203
3685f791 4204 /* did the pushes work? */
2ff7e61e 4205 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
3685f791 4206 return 0;
3326d1b0 4207 }
aa5d6bed 4208
5c680ed6 4209 if (!path->nodes[1]) {
fdd99c72 4210 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4211 if (ret)
4212 return ret;
4213 }
cc0c5538 4214again:
5d4f98a2 4215 split = 1;
cc0c5538 4216 l = path->nodes[0];
eb60ceac 4217 slot = path->slots[0];
5f39d397 4218 nritems = btrfs_header_nritems(l);
d397712b 4219 mid = (nritems + 1) / 2;
54aa1f4d 4220
5d4f98a2
YZ
4221 if (mid <= slot) {
4222 if (nritems == 1 ||
4223 leaf_space_used(l, mid, nritems - mid) + data_size >
0b246afa 4224 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4225 if (slot >= nritems) {
4226 split = 0;
4227 } else {
4228 mid = slot;
4229 if (mid != nritems &&
4230 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4231 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4232 if (data_size && !tried_avoid_double)
4233 goto push_for_double;
5d4f98a2
YZ
4234 split = 2;
4235 }
4236 }
4237 }
4238 } else {
4239 if (leaf_space_used(l, 0, mid) + data_size >
0b246afa 4240 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4241 if (!extend && data_size && slot == 0) {
4242 split = 0;
4243 } else if ((extend || !data_size) && slot == 0) {
4244 mid = 1;
4245 } else {
4246 mid = slot;
4247 if (mid != nritems &&
4248 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4249 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4250 if (data_size && !tried_avoid_double)
4251 goto push_for_double;
67871254 4252 split = 2;
5d4f98a2
YZ
4253 }
4254 }
4255 }
4256 }
4257
4258 if (split == 0)
4259 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4260 else
4261 btrfs_item_key(l, &disk_key, mid);
4262
4d75f8a9
DS
4263 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4264 &disk_key, 0, l->start, 0);
f0486c68 4265 if (IS_ERR(right))
5f39d397 4266 return PTR_ERR(right);
f0486c68 4267
0b246afa 4268 root_add_used(root, fs_info->nodesize);
5f39d397 4269
5d4f98a2
YZ
4270 if (split == 0) {
4271 if (mid <= slot) {
4272 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4273 insert_ptr(trans, fs_info, path, &disk_key,
4274 right->start, path->slots[1] + 1, 1);
5d4f98a2
YZ
4275 btrfs_tree_unlock(path->nodes[0]);
4276 free_extent_buffer(path->nodes[0]);
4277 path->nodes[0] = right;
4278 path->slots[0] = 0;
4279 path->slots[1] += 1;
4280 } else {
4281 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4282 insert_ptr(trans, fs_info, path, &disk_key,
4283 right->start, path->slots[1], 1);
5d4f98a2
YZ
4284 btrfs_tree_unlock(path->nodes[0]);
4285 free_extent_buffer(path->nodes[0]);
4286 path->nodes[0] = right;
4287 path->slots[0] = 0;
143bede5 4288 if (path->slots[1] == 0)
b167fa91 4289 fixup_low_keys(path, &disk_key, 1);
d4dbff95 4290 }
196e0249
LB
4291 /*
4292 * We create a new leaf 'right' for the required ins_len and
4293 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4294 * the content of ins_len to 'right'.
4295 */
5d4f98a2 4296 return ret;
d4dbff95 4297 }
74123bd7 4298
2ff7e61e 4299 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
31840ae1 4300
5d4f98a2 4301 if (split == 2) {
cc0c5538
CM
4302 BUG_ON(num_doubles != 0);
4303 num_doubles++;
4304 goto again;
a429e513 4305 }
44871b1b 4306
143bede5 4307 return 0;
99d8f83c
CM
4308
4309push_for_double:
4310 push_for_double_split(trans, root, path, data_size);
4311 tried_avoid_double = 1;
2ff7e61e 4312 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4313 return 0;
4314 goto again;
be0e5c09
CM
4315}
4316
ad48fd75
YZ
4317static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4318 struct btrfs_root *root,
4319 struct btrfs_path *path, int ins_len)
459931ec 4320{
2ff7e61e 4321 struct btrfs_fs_info *fs_info = root->fs_info;
ad48fd75 4322 struct btrfs_key key;
459931ec 4323 struct extent_buffer *leaf;
ad48fd75
YZ
4324 struct btrfs_file_extent_item *fi;
4325 u64 extent_len = 0;
4326 u32 item_size;
4327 int ret;
459931ec
CM
4328
4329 leaf = path->nodes[0];
ad48fd75
YZ
4330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4331
4332 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4333 key.type != BTRFS_EXTENT_CSUM_KEY);
4334
2ff7e61e 4335 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
ad48fd75 4336 return 0;
459931ec
CM
4337
4338 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4339 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4340 fi = btrfs_item_ptr(leaf, path->slots[0],
4341 struct btrfs_file_extent_item);
4342 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4343 }
b3b4aa74 4344 btrfs_release_path(path);
459931ec 4345
459931ec 4346 path->keep_locks = 1;
ad48fd75
YZ
4347 path->search_for_split = 1;
4348 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4349 path->search_for_split = 0;
a8df6fe6
FM
4350 if (ret > 0)
4351 ret = -EAGAIN;
ad48fd75
YZ
4352 if (ret < 0)
4353 goto err;
459931ec 4354
ad48fd75
YZ
4355 ret = -EAGAIN;
4356 leaf = path->nodes[0];
a8df6fe6
FM
4357 /* if our item isn't there, return now */
4358 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4359 goto err;
4360
109f6aef 4361 /* the leaf has changed, it now has room. return now */
2ff7e61e 4362 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
109f6aef
CM
4363 goto err;
4364
ad48fd75
YZ
4365 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4366 fi = btrfs_item_ptr(leaf, path->slots[0],
4367 struct btrfs_file_extent_item);
4368 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4369 goto err;
459931ec
CM
4370 }
4371
b9473439 4372 btrfs_set_path_blocking(path);
ad48fd75 4373 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4374 if (ret)
4375 goto err;
459931ec 4376
ad48fd75 4377 path->keep_locks = 0;
b9473439 4378 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4379 return 0;
4380err:
4381 path->keep_locks = 0;
4382 return ret;
4383}
4384
4961e293 4385static noinline int split_item(struct btrfs_fs_info *fs_info,
ad48fd75 4386 struct btrfs_path *path,
310712b2 4387 const struct btrfs_key *new_key,
ad48fd75
YZ
4388 unsigned long split_offset)
4389{
4390 struct extent_buffer *leaf;
4391 struct btrfs_item *item;
4392 struct btrfs_item *new_item;
4393 int slot;
4394 char *buf;
4395 u32 nritems;
4396 u32 item_size;
4397 u32 orig_offset;
4398 struct btrfs_disk_key disk_key;
4399
b9473439 4400 leaf = path->nodes[0];
2ff7e61e 4401 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
b9473439 4402
b4ce94de
CM
4403 btrfs_set_path_blocking(path);
4404
dd3cc16b 4405 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4406 orig_offset = btrfs_item_offset(leaf, item);
4407 item_size = btrfs_item_size(leaf, item);
4408
459931ec 4409 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4410 if (!buf)
4411 return -ENOMEM;
4412
459931ec
CM
4413 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4414 path->slots[0]), item_size);
459931ec 4415
ad48fd75 4416 slot = path->slots[0] + 1;
459931ec 4417 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4418 if (slot != nritems) {
4419 /* shift the items */
4420 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4421 btrfs_item_nr_offset(slot),
4422 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4423 }
4424
4425 btrfs_cpu_key_to_disk(&disk_key, new_key);
4426 btrfs_set_item_key(leaf, &disk_key, slot);
4427
dd3cc16b 4428 new_item = btrfs_item_nr(slot);
459931ec
CM
4429
4430 btrfs_set_item_offset(leaf, new_item, orig_offset);
4431 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4432
4433 btrfs_set_item_offset(leaf, item,
4434 orig_offset + item_size - split_offset);
4435 btrfs_set_item_size(leaf, item, split_offset);
4436
4437 btrfs_set_header_nritems(leaf, nritems + 1);
4438
4439 /* write the data for the start of the original item */
4440 write_extent_buffer(leaf, buf,
4441 btrfs_item_ptr_offset(leaf, path->slots[0]),
4442 split_offset);
4443
4444 /* write the data for the new item */
4445 write_extent_buffer(leaf, buf + split_offset,
4446 btrfs_item_ptr_offset(leaf, slot),
4447 item_size - split_offset);
4448 btrfs_mark_buffer_dirty(leaf);
4449
2ff7e61e 4450 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
459931ec 4451 kfree(buf);
ad48fd75
YZ
4452 return 0;
4453}
4454
4455/*
4456 * This function splits a single item into two items,
4457 * giving 'new_key' to the new item and splitting the
4458 * old one at split_offset (from the start of the item).
4459 *
4460 * The path may be released by this operation. After
4461 * the split, the path is pointing to the old item. The
4462 * new item is going to be in the same node as the old one.
4463 *
4464 * Note, the item being split must be smaller enough to live alone on
4465 * a tree block with room for one extra struct btrfs_item
4466 *
4467 * This allows us to split the item in place, keeping a lock on the
4468 * leaf the entire time.
4469 */
4470int btrfs_split_item(struct btrfs_trans_handle *trans,
4471 struct btrfs_root *root,
4472 struct btrfs_path *path,
310712b2 4473 const struct btrfs_key *new_key,
ad48fd75
YZ
4474 unsigned long split_offset)
4475{
4476 int ret;
4477 ret = setup_leaf_for_split(trans, root, path,
4478 sizeof(struct btrfs_item));
4479 if (ret)
4480 return ret;
4481
4961e293 4482 ret = split_item(root->fs_info, path, new_key, split_offset);
459931ec
CM
4483 return ret;
4484}
4485
ad48fd75
YZ
4486/*
4487 * This function duplicate a item, giving 'new_key' to the new item.
4488 * It guarantees both items live in the same tree leaf and the new item
4489 * is contiguous with the original item.
4490 *
4491 * This allows us to split file extent in place, keeping a lock on the
4492 * leaf the entire time.
4493 */
4494int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4495 struct btrfs_root *root,
4496 struct btrfs_path *path,
310712b2 4497 const struct btrfs_key *new_key)
ad48fd75
YZ
4498{
4499 struct extent_buffer *leaf;
4500 int ret;
4501 u32 item_size;
4502
4503 leaf = path->nodes[0];
4504 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4505 ret = setup_leaf_for_split(trans, root, path,
4506 item_size + sizeof(struct btrfs_item));
4507 if (ret)
4508 return ret;
4509
4510 path->slots[0]++;
afe5fea7 4511 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4512 item_size, item_size +
4513 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4514 leaf = path->nodes[0];
4515 memcpy_extent_buffer(leaf,
4516 btrfs_item_ptr_offset(leaf, path->slots[0]),
4517 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4518 item_size);
4519 return 0;
4520}
4521
d352ac68
CM
4522/*
4523 * make the item pointed to by the path smaller. new_size indicates
4524 * how small to make it, and from_end tells us if we just chop bytes
4525 * off the end of the item or if we shift the item to chop bytes off
4526 * the front.
4527 */
2ff7e61e
JM
4528void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4529 struct btrfs_path *path, u32 new_size, int from_end)
b18c6685 4530{
b18c6685 4531 int slot;
5f39d397
CM
4532 struct extent_buffer *leaf;
4533 struct btrfs_item *item;
b18c6685
CM
4534 u32 nritems;
4535 unsigned int data_end;
4536 unsigned int old_data_start;
4537 unsigned int old_size;
4538 unsigned int size_diff;
4539 int i;
cfed81a0
CM
4540 struct btrfs_map_token token;
4541
4542 btrfs_init_map_token(&token);
b18c6685 4543
5f39d397 4544 leaf = path->nodes[0];
179e29e4
CM
4545 slot = path->slots[0];
4546
4547 old_size = btrfs_item_size_nr(leaf, slot);
4548 if (old_size == new_size)
143bede5 4549 return;
b18c6685 4550
5f39d397 4551 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4552 data_end = leaf_data_end(fs_info, leaf);
b18c6685 4553
5f39d397 4554 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4555
b18c6685
CM
4556 size_diff = old_size - new_size;
4557
4558 BUG_ON(slot < 0);
4559 BUG_ON(slot >= nritems);
4560
4561 /*
4562 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4563 */
4564 /* first correct the data pointers */
4565 for (i = slot; i < nritems; i++) {
5f39d397 4566 u32 ioff;
dd3cc16b 4567 item = btrfs_item_nr(i);
db94535d 4568
cfed81a0
CM
4569 ioff = btrfs_token_item_offset(leaf, item, &token);
4570 btrfs_set_token_item_offset(leaf, item,
4571 ioff + size_diff, &token);
b18c6685 4572 }
db94535d 4573
b18c6685 4574 /* shift the data */
179e29e4 4575 if (from_end) {
3d9ec8c4
NB
4576 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4577 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4578 data_end, old_data_start + new_size - data_end);
4579 } else {
4580 struct btrfs_disk_key disk_key;
4581 u64 offset;
4582
4583 btrfs_item_key(leaf, &disk_key, slot);
4584
4585 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4586 unsigned long ptr;
4587 struct btrfs_file_extent_item *fi;
4588
4589 fi = btrfs_item_ptr(leaf, slot,
4590 struct btrfs_file_extent_item);
4591 fi = (struct btrfs_file_extent_item *)(
4592 (unsigned long)fi - size_diff);
4593
4594 if (btrfs_file_extent_type(leaf, fi) ==
4595 BTRFS_FILE_EXTENT_INLINE) {
4596 ptr = btrfs_item_ptr_offset(leaf, slot);
4597 memmove_extent_buffer(leaf, ptr,
d397712b 4598 (unsigned long)fi,
7ec20afb 4599 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4600 }
4601 }
4602
3d9ec8c4
NB
4603 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4604 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4605 data_end, old_data_start - data_end);
4606
4607 offset = btrfs_disk_key_offset(&disk_key);
4608 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4609 btrfs_set_item_key(leaf, &disk_key, slot);
4610 if (slot == 0)
b167fa91 4611 fixup_low_keys(path, &disk_key, 1);
179e29e4 4612 }
5f39d397 4613
dd3cc16b 4614 item = btrfs_item_nr(slot);
5f39d397
CM
4615 btrfs_set_item_size(leaf, item, new_size);
4616 btrfs_mark_buffer_dirty(leaf);
b18c6685 4617
2ff7e61e 4618 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4619 btrfs_print_leaf(leaf);
b18c6685 4620 BUG();
5f39d397 4621 }
b18c6685
CM
4622}
4623
d352ac68 4624/*
8f69dbd2 4625 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4626 */
2ff7e61e 4627void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 4628 u32 data_size)
6567e837 4629{
6567e837 4630 int slot;
5f39d397
CM
4631 struct extent_buffer *leaf;
4632 struct btrfs_item *item;
6567e837
CM
4633 u32 nritems;
4634 unsigned int data_end;
4635 unsigned int old_data;
4636 unsigned int old_size;
4637 int i;
cfed81a0
CM
4638 struct btrfs_map_token token;
4639
4640 btrfs_init_map_token(&token);
6567e837 4641
5f39d397 4642 leaf = path->nodes[0];
6567e837 4643
5f39d397 4644 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4645 data_end = leaf_data_end(fs_info, leaf);
6567e837 4646
2ff7e61e 4647 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
a4f78750 4648 btrfs_print_leaf(leaf);
6567e837 4649 BUG();
5f39d397 4650 }
6567e837 4651 slot = path->slots[0];
5f39d397 4652 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4653
4654 BUG_ON(slot < 0);
3326d1b0 4655 if (slot >= nritems) {
a4f78750 4656 btrfs_print_leaf(leaf);
0b246afa
JM
4657 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4658 slot, nritems);
3326d1b0
CM
4659 BUG_ON(1);
4660 }
6567e837
CM
4661
4662 /*
4663 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4664 */
4665 /* first correct the data pointers */
4666 for (i = slot; i < nritems; i++) {
5f39d397 4667 u32 ioff;
dd3cc16b 4668 item = btrfs_item_nr(i);
db94535d 4669
cfed81a0
CM
4670 ioff = btrfs_token_item_offset(leaf, item, &token);
4671 btrfs_set_token_item_offset(leaf, item,
4672 ioff - data_size, &token);
6567e837 4673 }
5f39d397 4674
6567e837 4675 /* shift the data */
3d9ec8c4
NB
4676 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4677 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
6567e837 4678 data_end, old_data - data_end);
5f39d397 4679
6567e837 4680 data_end = old_data;
5f39d397 4681 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4682 item = btrfs_item_nr(slot);
5f39d397
CM
4683 btrfs_set_item_size(leaf, item, old_size + data_size);
4684 btrfs_mark_buffer_dirty(leaf);
6567e837 4685
2ff7e61e 4686 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4687 btrfs_print_leaf(leaf);
6567e837 4688 BUG();
5f39d397 4689 }
6567e837
CM
4690}
4691
74123bd7 4692/*
44871b1b
CM
4693 * this is a helper for btrfs_insert_empty_items, the main goal here is
4694 * to save stack depth by doing the bulk of the work in a function
4695 * that doesn't call btrfs_search_slot
74123bd7 4696 */
afe5fea7 4697void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
310712b2 4698 const struct btrfs_key *cpu_key, u32 *data_size,
143bede5 4699 u32 total_data, u32 total_size, int nr)
be0e5c09 4700{
0b246afa 4701 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4702 struct btrfs_item *item;
9c58309d 4703 int i;
7518a238 4704 u32 nritems;
be0e5c09 4705 unsigned int data_end;
e2fa7227 4706 struct btrfs_disk_key disk_key;
44871b1b
CM
4707 struct extent_buffer *leaf;
4708 int slot;
cfed81a0
CM
4709 struct btrfs_map_token token;
4710
24cdc847
FM
4711 if (path->slots[0] == 0) {
4712 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
b167fa91 4713 fixup_low_keys(path, &disk_key, 1);
24cdc847
FM
4714 }
4715 btrfs_unlock_up_safe(path, 1);
4716
cfed81a0 4717 btrfs_init_map_token(&token);
e2fa7227 4718
5f39d397 4719 leaf = path->nodes[0];
44871b1b 4720 slot = path->slots[0];
74123bd7 4721
5f39d397 4722 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4723 data_end = leaf_data_end(fs_info, leaf);
eb60ceac 4724
2ff7e61e 4725 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
a4f78750 4726 btrfs_print_leaf(leaf);
0b246afa 4727 btrfs_crit(fs_info, "not enough freespace need %u have %d",
2ff7e61e 4728 total_size, btrfs_leaf_free_space(fs_info, leaf));
be0e5c09 4729 BUG();
d4dbff95 4730 }
5f39d397 4731
be0e5c09 4732 if (slot != nritems) {
5f39d397 4733 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4734
5f39d397 4735 if (old_data < data_end) {
a4f78750 4736 btrfs_print_leaf(leaf);
0b246afa 4737 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
5d163e0e 4738 slot, old_data, data_end);
5f39d397
CM
4739 BUG_ON(1);
4740 }
be0e5c09
CM
4741 /*
4742 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4743 */
4744 /* first correct the data pointers */
0783fcfc 4745 for (i = slot; i < nritems; i++) {
5f39d397 4746 u32 ioff;
db94535d 4747
62e85577 4748 item = btrfs_item_nr(i);
cfed81a0
CM
4749 ioff = btrfs_token_item_offset(leaf, item, &token);
4750 btrfs_set_token_item_offset(leaf, item,
4751 ioff - total_data, &token);
0783fcfc 4752 }
be0e5c09 4753 /* shift the items */
9c58309d 4754 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4755 btrfs_item_nr_offset(slot),
d6025579 4756 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4757
4758 /* shift the data */
3d9ec8c4
NB
4759 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4760 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
d6025579 4761 data_end, old_data - data_end);
be0e5c09
CM
4762 data_end = old_data;
4763 }
5f39d397 4764
62e2749e 4765 /* setup the item for the new data */
9c58309d
CM
4766 for (i = 0; i < nr; i++) {
4767 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4768 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4769 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4770 btrfs_set_token_item_offset(leaf, item,
4771 data_end - data_size[i], &token);
9c58309d 4772 data_end -= data_size[i];
cfed81a0 4773 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4774 }
44871b1b 4775
9c58309d 4776 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4777 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4778
2ff7e61e 4779 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4780 btrfs_print_leaf(leaf);
be0e5c09 4781 BUG();
5f39d397 4782 }
44871b1b
CM
4783}
4784
4785/*
4786 * Given a key and some data, insert items into the tree.
4787 * This does all the path init required, making room in the tree if needed.
4788 */
4789int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4790 struct btrfs_root *root,
4791 struct btrfs_path *path,
310712b2 4792 const struct btrfs_key *cpu_key, u32 *data_size,
44871b1b
CM
4793 int nr)
4794{
44871b1b
CM
4795 int ret = 0;
4796 int slot;
4797 int i;
4798 u32 total_size = 0;
4799 u32 total_data = 0;
4800
4801 for (i = 0; i < nr; i++)
4802 total_data += data_size[i];
4803
4804 total_size = total_data + (nr * sizeof(struct btrfs_item));
4805 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4806 if (ret == 0)
4807 return -EEXIST;
4808 if (ret < 0)
143bede5 4809 return ret;
44871b1b 4810
44871b1b
CM
4811 slot = path->slots[0];
4812 BUG_ON(slot < 0);
4813
afe5fea7 4814 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4815 total_data, total_size, nr);
143bede5 4816 return 0;
62e2749e
CM
4817}
4818
4819/*
4820 * Given a key and some data, insert an item into the tree.
4821 * This does all the path init required, making room in the tree if needed.
4822 */
310712b2
OS
4823int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4824 const struct btrfs_key *cpu_key, void *data,
4825 u32 data_size)
62e2749e
CM
4826{
4827 int ret = 0;
2c90e5d6 4828 struct btrfs_path *path;
5f39d397
CM
4829 struct extent_buffer *leaf;
4830 unsigned long ptr;
62e2749e 4831
2c90e5d6 4832 path = btrfs_alloc_path();
db5b493a
TI
4833 if (!path)
4834 return -ENOMEM;
2c90e5d6 4835 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4836 if (!ret) {
5f39d397
CM
4837 leaf = path->nodes[0];
4838 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4839 write_extent_buffer(leaf, data, ptr, data_size);
4840 btrfs_mark_buffer_dirty(leaf);
62e2749e 4841 }
2c90e5d6 4842 btrfs_free_path(path);
aa5d6bed 4843 return ret;
be0e5c09
CM
4844}
4845
74123bd7 4846/*
5de08d7d 4847 * delete the pointer from a given node.
74123bd7 4848 *
d352ac68
CM
4849 * the tree should have been previously balanced so the deletion does not
4850 * empty a node.
74123bd7 4851 */
afe5fea7
TI
4852static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4853 int level, int slot)
be0e5c09 4854{
5f39d397 4855 struct extent_buffer *parent = path->nodes[level];
7518a238 4856 u32 nritems;
f3ea38da 4857 int ret;
be0e5c09 4858
5f39d397 4859 nritems = btrfs_header_nritems(parent);
d397712b 4860 if (slot != nritems - 1) {
bf1d3425
DS
4861 if (level) {
4862 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
a446a979 4863 nritems - slot - 1);
bf1d3425
DS
4864 BUG_ON(ret < 0);
4865 }
5f39d397
CM
4866 memmove_extent_buffer(parent,
4867 btrfs_node_key_ptr_offset(slot),
4868 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4869 sizeof(struct btrfs_key_ptr) *
4870 (nritems - slot - 1));
57ba86c0 4871 } else if (level) {
e09c2efe
DS
4872 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4873 GFP_NOFS);
57ba86c0 4874 BUG_ON(ret < 0);
bb803951 4875 }
f3ea38da 4876
7518a238 4877 nritems--;
5f39d397 4878 btrfs_set_header_nritems(parent, nritems);
7518a238 4879 if (nritems == 0 && parent == root->node) {
5f39d397 4880 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4881 /* just turn the root into a leaf and break */
5f39d397 4882 btrfs_set_header_level(root->node, 0);
bb803951 4883 } else if (slot == 0) {
5f39d397
CM
4884 struct btrfs_disk_key disk_key;
4885
4886 btrfs_node_key(parent, &disk_key, 0);
b167fa91 4887 fixup_low_keys(path, &disk_key, level + 1);
be0e5c09 4888 }
d6025579 4889 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4890}
4891
323ac95b
CM
4892/*
4893 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4894 * path->nodes[1].
323ac95b
CM
4895 *
4896 * This deletes the pointer in path->nodes[1] and frees the leaf
4897 * block extent. zero is returned if it all worked out, < 0 otherwise.
4898 *
4899 * The path must have already been setup for deleting the leaf, including
4900 * all the proper balancing. path->nodes[1] must be locked.
4901 */
143bede5
JM
4902static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4903 struct btrfs_root *root,
4904 struct btrfs_path *path,
4905 struct extent_buffer *leaf)
323ac95b 4906{
5d4f98a2 4907 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4908 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4909
4d081c41
CM
4910 /*
4911 * btrfs_free_extent is expensive, we want to make sure we
4912 * aren't holding any locks when we call it
4913 */
4914 btrfs_unlock_up_safe(path, 0);
4915
f0486c68
YZ
4916 root_sub_used(root, leaf->len);
4917
3083ee2e 4918 extent_buffer_get(leaf);
5581a51a 4919 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4920 free_extent_buffer_stale(leaf);
323ac95b 4921}
74123bd7
CM
4922/*
4923 * delete the item at the leaf level in path. If that empties
4924 * the leaf, remove it from the tree
4925 */
85e21bac
CM
4926int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4927 struct btrfs_path *path, int slot, int nr)
be0e5c09 4928{
0b246afa 4929 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
4930 struct extent_buffer *leaf;
4931 struct btrfs_item *item;
ce0eac2a
AM
4932 u32 last_off;
4933 u32 dsize = 0;
aa5d6bed
CM
4934 int ret = 0;
4935 int wret;
85e21bac 4936 int i;
7518a238 4937 u32 nritems;
cfed81a0
CM
4938 struct btrfs_map_token token;
4939
4940 btrfs_init_map_token(&token);
be0e5c09 4941
5f39d397 4942 leaf = path->nodes[0];
85e21bac
CM
4943 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4944
4945 for (i = 0; i < nr; i++)
4946 dsize += btrfs_item_size_nr(leaf, slot + i);
4947
5f39d397 4948 nritems = btrfs_header_nritems(leaf);
be0e5c09 4949
85e21bac 4950 if (slot + nr != nritems) {
2ff7e61e 4951 int data_end = leaf_data_end(fs_info, leaf);
5f39d397 4952
3d9ec8c4 4953 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
d6025579 4954 data_end + dsize,
3d9ec8c4 4955 BTRFS_LEAF_DATA_OFFSET + data_end,
85e21bac 4956 last_off - data_end);
5f39d397 4957
85e21bac 4958 for (i = slot + nr; i < nritems; i++) {
5f39d397 4959 u32 ioff;
db94535d 4960
dd3cc16b 4961 item = btrfs_item_nr(i);
cfed81a0
CM
4962 ioff = btrfs_token_item_offset(leaf, item, &token);
4963 btrfs_set_token_item_offset(leaf, item,
4964 ioff + dsize, &token);
0783fcfc 4965 }
db94535d 4966
5f39d397 4967 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4968 btrfs_item_nr_offset(slot + nr),
d6025579 4969 sizeof(struct btrfs_item) *
85e21bac 4970 (nritems - slot - nr));
be0e5c09 4971 }
85e21bac
CM
4972 btrfs_set_header_nritems(leaf, nritems - nr);
4973 nritems -= nr;
5f39d397 4974
74123bd7 4975 /* delete the leaf if we've emptied it */
7518a238 4976 if (nritems == 0) {
5f39d397
CM
4977 if (leaf == root->node) {
4978 btrfs_set_header_level(leaf, 0);
9a8dd150 4979 } else {
f0486c68 4980 btrfs_set_path_blocking(path);
7c302b49 4981 clean_tree_block(fs_info, leaf);
143bede5 4982 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 4983 }
be0e5c09 4984 } else {
7518a238 4985 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 4986 if (slot == 0) {
5f39d397
CM
4987 struct btrfs_disk_key disk_key;
4988
4989 btrfs_item_key(leaf, &disk_key, 0);
b167fa91 4990 fixup_low_keys(path, &disk_key, 1);
aa5d6bed 4991 }
aa5d6bed 4992
74123bd7 4993 /* delete the leaf if it is mostly empty */
0b246afa 4994 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
be0e5c09
CM
4995 /* push_leaf_left fixes the path.
4996 * make sure the path still points to our leaf
4997 * for possible call to del_ptr below
4998 */
4920c9ac 4999 slot = path->slots[1];
5f39d397
CM
5000 extent_buffer_get(leaf);
5001
b9473439 5002 btrfs_set_path_blocking(path);
99d8f83c
CM
5003 wret = push_leaf_left(trans, root, path, 1, 1,
5004 1, (u32)-1);
54aa1f4d 5005 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5006 ret = wret;
5f39d397
CM
5007
5008 if (path->nodes[0] == leaf &&
5009 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5010 wret = push_leaf_right(trans, root, path, 1,
5011 1, 1, 0);
54aa1f4d 5012 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5013 ret = wret;
5014 }
5f39d397
CM
5015
5016 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5017 path->slots[1] = slot;
143bede5 5018 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5019 free_extent_buffer(leaf);
143bede5 5020 ret = 0;
5de08d7d 5021 } else {
925baedd
CM
5022 /* if we're still in the path, make sure
5023 * we're dirty. Otherwise, one of the
5024 * push_leaf functions must have already
5025 * dirtied this buffer
5026 */
5027 if (path->nodes[0] == leaf)
5028 btrfs_mark_buffer_dirty(leaf);
5f39d397 5029 free_extent_buffer(leaf);
be0e5c09 5030 }
d5719762 5031 } else {
5f39d397 5032 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5033 }
5034 }
aa5d6bed 5035 return ret;
be0e5c09
CM
5036}
5037
7bb86316 5038/*
925baedd 5039 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5040 * returns 0 if it found something or 1 if there are no lesser leaves.
5041 * returns < 0 on io errors.
d352ac68
CM
5042 *
5043 * This may release the path, and so you may lose any locks held at the
5044 * time you call it.
7bb86316 5045 */
16e7549f 5046int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5047{
925baedd
CM
5048 struct btrfs_key key;
5049 struct btrfs_disk_key found_key;
5050 int ret;
7bb86316 5051
925baedd 5052 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5053
e8b0d724 5054 if (key.offset > 0) {
925baedd 5055 key.offset--;
e8b0d724 5056 } else if (key.type > 0) {
925baedd 5057 key.type--;
e8b0d724
FDBM
5058 key.offset = (u64)-1;
5059 } else if (key.objectid > 0) {
925baedd 5060 key.objectid--;
e8b0d724
FDBM
5061 key.type = (u8)-1;
5062 key.offset = (u64)-1;
5063 } else {
925baedd 5064 return 1;
e8b0d724 5065 }
7bb86316 5066
b3b4aa74 5067 btrfs_release_path(path);
925baedd
CM
5068 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5069 if (ret < 0)
5070 return ret;
5071 btrfs_item_key(path->nodes[0], &found_key, 0);
5072 ret = comp_keys(&found_key, &key);
337c6f68
FM
5073 /*
5074 * We might have had an item with the previous key in the tree right
5075 * before we released our path. And after we released our path, that
5076 * item might have been pushed to the first slot (0) of the leaf we
5077 * were holding due to a tree balance. Alternatively, an item with the
5078 * previous key can exist as the only element of a leaf (big fat item).
5079 * Therefore account for these 2 cases, so that our callers (like
5080 * btrfs_previous_item) don't miss an existing item with a key matching
5081 * the previous key we computed above.
5082 */
5083 if (ret <= 0)
925baedd
CM
5084 return 0;
5085 return 1;
7bb86316
CM
5086}
5087
3f157a2f
CM
5088/*
5089 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5090 * for nodes or leaves that are have a minimum transaction id.
5091 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5092 *
5093 * This does not cow, but it does stuff the starting key it finds back
5094 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5095 * key and get a writable path.
5096 *
3f157a2f
CM
5097 * This honors path->lowest_level to prevent descent past a given level
5098 * of the tree.
5099 *
d352ac68
CM
5100 * min_trans indicates the oldest transaction that you are interested
5101 * in walking through. Any nodes or leaves older than min_trans are
5102 * skipped over (without reading them).
5103 *
3f157a2f
CM
5104 * returns zero if something useful was found, < 0 on error and 1 if there
5105 * was nothing in the tree that matched the search criteria.
5106 */
5107int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5108 struct btrfs_path *path,
3f157a2f
CM
5109 u64 min_trans)
5110{
2ff7e61e 5111 struct btrfs_fs_info *fs_info = root->fs_info;
3f157a2f
CM
5112 struct extent_buffer *cur;
5113 struct btrfs_key found_key;
5114 int slot;
9652480b 5115 int sret;
3f157a2f
CM
5116 u32 nritems;
5117 int level;
5118 int ret = 1;
f98de9b9 5119 int keep_locks = path->keep_locks;
3f157a2f 5120
f98de9b9 5121 path->keep_locks = 1;
3f157a2f 5122again:
bd681513 5123 cur = btrfs_read_lock_root_node(root);
3f157a2f 5124 level = btrfs_header_level(cur);
e02119d5 5125 WARN_ON(path->nodes[level]);
3f157a2f 5126 path->nodes[level] = cur;
bd681513 5127 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5128
5129 if (btrfs_header_generation(cur) < min_trans) {
5130 ret = 1;
5131 goto out;
5132 }
d397712b 5133 while (1) {
3f157a2f
CM
5134 nritems = btrfs_header_nritems(cur);
5135 level = btrfs_header_level(cur);
a74b35ec 5136 sret = btrfs_bin_search(cur, min_key, level, &slot);
3f157a2f 5137
323ac95b
CM
5138 /* at the lowest level, we're done, setup the path and exit */
5139 if (level == path->lowest_level) {
e02119d5
CM
5140 if (slot >= nritems)
5141 goto find_next_key;
3f157a2f
CM
5142 ret = 0;
5143 path->slots[level] = slot;
5144 btrfs_item_key_to_cpu(cur, &found_key, slot);
5145 goto out;
5146 }
9652480b
Y
5147 if (sret && slot > 0)
5148 slot--;
3f157a2f 5149 /*
de78b51a
ES
5150 * check this node pointer against the min_trans parameters.
5151 * If it is too old, old, skip to the next one.
3f157a2f 5152 */
d397712b 5153 while (slot < nritems) {
3f157a2f 5154 u64 gen;
e02119d5 5155
3f157a2f
CM
5156 gen = btrfs_node_ptr_generation(cur, slot);
5157 if (gen < min_trans) {
5158 slot++;
5159 continue;
5160 }
de78b51a 5161 break;
3f157a2f 5162 }
e02119d5 5163find_next_key:
3f157a2f
CM
5164 /*
5165 * we didn't find a candidate key in this node, walk forward
5166 * and find another one
5167 */
5168 if (slot >= nritems) {
e02119d5 5169 path->slots[level] = slot;
b4ce94de 5170 btrfs_set_path_blocking(path);
e02119d5 5171 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5172 min_trans);
e02119d5 5173 if (sret == 0) {
b3b4aa74 5174 btrfs_release_path(path);
3f157a2f
CM
5175 goto again;
5176 } else {
5177 goto out;
5178 }
5179 }
5180 /* save our key for returning back */
5181 btrfs_node_key_to_cpu(cur, &found_key, slot);
5182 path->slots[level] = slot;
5183 if (level == path->lowest_level) {
5184 ret = 0;
3f157a2f
CM
5185 goto out;
5186 }
b4ce94de 5187 btrfs_set_path_blocking(path);
2ff7e61e 5188 cur = read_node_slot(fs_info, cur, slot);
fb770ae4
LB
5189 if (IS_ERR(cur)) {
5190 ret = PTR_ERR(cur);
5191 goto out;
5192 }
3f157a2f 5193
bd681513 5194 btrfs_tree_read_lock(cur);
b4ce94de 5195
bd681513 5196 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5197 path->nodes[level - 1] = cur;
f7c79f30 5198 unlock_up(path, level, 1, 0, NULL);
3f157a2f
CM
5199 }
5200out:
f98de9b9
FM
5201 path->keep_locks = keep_locks;
5202 if (ret == 0) {
5203 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5204 btrfs_set_path_blocking(path);
3f157a2f 5205 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5206 }
3f157a2f
CM
5207 return ret;
5208}
5209
2ff7e61e 5210static int tree_move_down(struct btrfs_fs_info *fs_info,
7069830a 5211 struct btrfs_path *path,
ab6a43e1 5212 int *level)
7069830a 5213{
fb770ae4
LB
5214 struct extent_buffer *eb;
5215
74dd17fb 5216 BUG_ON(*level == 0);
2ff7e61e 5217 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
fb770ae4
LB
5218 if (IS_ERR(eb))
5219 return PTR_ERR(eb);
5220
5221 path->nodes[*level - 1] = eb;
7069830a
AB
5222 path->slots[*level - 1] = 0;
5223 (*level)--;
fb770ae4 5224 return 0;
7069830a
AB
5225}
5226
f1e30261 5227static int tree_move_next_or_upnext(struct btrfs_path *path,
7069830a
AB
5228 int *level, int root_level)
5229{
5230 int ret = 0;
5231 int nritems;
5232 nritems = btrfs_header_nritems(path->nodes[*level]);
5233
5234 path->slots[*level]++;
5235
74dd17fb 5236 while (path->slots[*level] >= nritems) {
7069830a
AB
5237 if (*level == root_level)
5238 return -1;
5239
5240 /* move upnext */
5241 path->slots[*level] = 0;
5242 free_extent_buffer(path->nodes[*level]);
5243 path->nodes[*level] = NULL;
5244 (*level)++;
5245 path->slots[*level]++;
5246
5247 nritems = btrfs_header_nritems(path->nodes[*level]);
5248 ret = 1;
5249 }
5250 return ret;
5251}
5252
5253/*
5254 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5255 * or down.
5256 */
2ff7e61e 5257static int tree_advance(struct btrfs_fs_info *fs_info,
7069830a
AB
5258 struct btrfs_path *path,
5259 int *level, int root_level,
5260 int allow_down,
5261 struct btrfs_key *key)
5262{
5263 int ret;
5264
5265 if (*level == 0 || !allow_down) {
f1e30261 5266 ret = tree_move_next_or_upnext(path, level, root_level);
7069830a 5267 } else {
ab6a43e1 5268 ret = tree_move_down(fs_info, path, level);
7069830a
AB
5269 }
5270 if (ret >= 0) {
5271 if (*level == 0)
5272 btrfs_item_key_to_cpu(path->nodes[*level], key,
5273 path->slots[*level]);
5274 else
5275 btrfs_node_key_to_cpu(path->nodes[*level], key,
5276 path->slots[*level]);
5277 }
5278 return ret;
5279}
5280
2ff7e61e 5281static int tree_compare_item(struct btrfs_path *left_path,
7069830a
AB
5282 struct btrfs_path *right_path,
5283 char *tmp_buf)
5284{
5285 int cmp;
5286 int len1, len2;
5287 unsigned long off1, off2;
5288
5289 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5290 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5291 if (len1 != len2)
5292 return 1;
5293
5294 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5295 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5296 right_path->slots[0]);
5297
5298 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5299
5300 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5301 if (cmp)
5302 return 1;
5303 return 0;
5304}
5305
5306#define ADVANCE 1
5307#define ADVANCE_ONLY_NEXT -1
5308
5309/*
5310 * This function compares two trees and calls the provided callback for
5311 * every changed/new/deleted item it finds.
5312 * If shared tree blocks are encountered, whole subtrees are skipped, making
5313 * the compare pretty fast on snapshotted subvolumes.
5314 *
5315 * This currently works on commit roots only. As commit roots are read only,
5316 * we don't do any locking. The commit roots are protected with transactions.
5317 * Transactions are ended and rejoined when a commit is tried in between.
5318 *
5319 * This function checks for modifications done to the trees while comparing.
5320 * If it detects a change, it aborts immediately.
5321 */
5322int btrfs_compare_trees(struct btrfs_root *left_root,
5323 struct btrfs_root *right_root,
5324 btrfs_changed_cb_t changed_cb, void *ctx)
5325{
0b246afa 5326 struct btrfs_fs_info *fs_info = left_root->fs_info;
7069830a
AB
5327 int ret;
5328 int cmp;
7069830a
AB
5329 struct btrfs_path *left_path = NULL;
5330 struct btrfs_path *right_path = NULL;
5331 struct btrfs_key left_key;
5332 struct btrfs_key right_key;
5333 char *tmp_buf = NULL;
5334 int left_root_level;
5335 int right_root_level;
5336 int left_level;
5337 int right_level;
5338 int left_end_reached;
5339 int right_end_reached;
5340 int advance_left;
5341 int advance_right;
5342 u64 left_blockptr;
5343 u64 right_blockptr;
6baa4293
FM
5344 u64 left_gen;
5345 u64 right_gen;
7069830a
AB
5346
5347 left_path = btrfs_alloc_path();
5348 if (!left_path) {
5349 ret = -ENOMEM;
5350 goto out;
5351 }
5352 right_path = btrfs_alloc_path();
5353 if (!right_path) {
5354 ret = -ENOMEM;
5355 goto out;
5356 }
5357
752ade68 5358 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7069830a 5359 if (!tmp_buf) {
752ade68
MH
5360 ret = -ENOMEM;
5361 goto out;
7069830a
AB
5362 }
5363
5364 left_path->search_commit_root = 1;
5365 left_path->skip_locking = 1;
5366 right_path->search_commit_root = 1;
5367 right_path->skip_locking = 1;
5368
7069830a
AB
5369 /*
5370 * Strategy: Go to the first items of both trees. Then do
5371 *
5372 * If both trees are at level 0
5373 * Compare keys of current items
5374 * If left < right treat left item as new, advance left tree
5375 * and repeat
5376 * If left > right treat right item as deleted, advance right tree
5377 * and repeat
5378 * If left == right do deep compare of items, treat as changed if
5379 * needed, advance both trees and repeat
5380 * If both trees are at the same level but not at level 0
5381 * Compare keys of current nodes/leafs
5382 * If left < right advance left tree and repeat
5383 * If left > right advance right tree and repeat
5384 * If left == right compare blockptrs of the next nodes/leafs
5385 * If they match advance both trees but stay at the same level
5386 * and repeat
5387 * If they don't match advance both trees while allowing to go
5388 * deeper and repeat
5389 * If tree levels are different
5390 * Advance the tree that needs it and repeat
5391 *
5392 * Advancing a tree means:
5393 * If we are at level 0, try to go to the next slot. If that's not
5394 * possible, go one level up and repeat. Stop when we found a level
5395 * where we could go to the next slot. We may at this point be on a
5396 * node or a leaf.
5397 *
5398 * If we are not at level 0 and not on shared tree blocks, go one
5399 * level deeper.
5400 *
5401 * If we are not at level 0 and on shared tree blocks, go one slot to
5402 * the right if possible or go up and right.
5403 */
5404
0b246afa 5405 down_read(&fs_info->commit_root_sem);
7069830a
AB
5406 left_level = btrfs_header_level(left_root->commit_root);
5407 left_root_level = left_level;
6f2f0b39
RK
5408 left_path->nodes[left_level] =
5409 btrfs_clone_extent_buffer(left_root->commit_root);
5410 if (!left_path->nodes[left_level]) {
5411 up_read(&fs_info->commit_root_sem);
5412 ret = -ENOMEM;
5413 goto out;
5414 }
7069830a
AB
5415
5416 right_level = btrfs_header_level(right_root->commit_root);
5417 right_root_level = right_level;
6f2f0b39
RK
5418 right_path->nodes[right_level] =
5419 btrfs_clone_extent_buffer(right_root->commit_root);
5420 if (!right_path->nodes[right_level]) {
5421 up_read(&fs_info->commit_root_sem);
5422 ret = -ENOMEM;
5423 goto out;
5424 }
0b246afa 5425 up_read(&fs_info->commit_root_sem);
7069830a
AB
5426
5427 if (left_level == 0)
5428 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5429 &left_key, left_path->slots[left_level]);
5430 else
5431 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5432 &left_key, left_path->slots[left_level]);
5433 if (right_level == 0)
5434 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5435 &right_key, right_path->slots[right_level]);
5436 else
5437 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5438 &right_key, right_path->slots[right_level]);
5439
5440 left_end_reached = right_end_reached = 0;
5441 advance_left = advance_right = 0;
5442
5443 while (1) {
7069830a 5444 if (advance_left && !left_end_reached) {
2ff7e61e 5445 ret = tree_advance(fs_info, left_path, &left_level,
7069830a
AB
5446 left_root_level,
5447 advance_left != ADVANCE_ONLY_NEXT,
5448 &left_key);
fb770ae4 5449 if (ret == -1)
7069830a 5450 left_end_reached = ADVANCE;
fb770ae4
LB
5451 else if (ret < 0)
5452 goto out;
7069830a
AB
5453 advance_left = 0;
5454 }
5455 if (advance_right && !right_end_reached) {
2ff7e61e 5456 ret = tree_advance(fs_info, right_path, &right_level,
7069830a
AB
5457 right_root_level,
5458 advance_right != ADVANCE_ONLY_NEXT,
5459 &right_key);
fb770ae4 5460 if (ret == -1)
7069830a 5461 right_end_reached = ADVANCE;
fb770ae4
LB
5462 else if (ret < 0)
5463 goto out;
7069830a
AB
5464 advance_right = 0;
5465 }
5466
5467 if (left_end_reached && right_end_reached) {
5468 ret = 0;
5469 goto out;
5470 } else if (left_end_reached) {
5471 if (right_level == 0) {
ee8c494f 5472 ret = changed_cb(left_path, right_path,
7069830a
AB
5473 &right_key,
5474 BTRFS_COMPARE_TREE_DELETED,
5475 ctx);
5476 if (ret < 0)
5477 goto out;
5478 }
5479 advance_right = ADVANCE;
5480 continue;
5481 } else if (right_end_reached) {
5482 if (left_level == 0) {
ee8c494f 5483 ret = changed_cb(left_path, right_path,
7069830a
AB
5484 &left_key,
5485 BTRFS_COMPARE_TREE_NEW,
5486 ctx);
5487 if (ret < 0)
5488 goto out;
5489 }
5490 advance_left = ADVANCE;
5491 continue;
5492 }
5493
5494 if (left_level == 0 && right_level == 0) {
5495 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5496 if (cmp < 0) {
ee8c494f 5497 ret = changed_cb(left_path, right_path,
7069830a
AB
5498 &left_key,
5499 BTRFS_COMPARE_TREE_NEW,
5500 ctx);
5501 if (ret < 0)
5502 goto out;
5503 advance_left = ADVANCE;
5504 } else if (cmp > 0) {
ee8c494f 5505 ret = changed_cb(left_path, right_path,
7069830a
AB
5506 &right_key,
5507 BTRFS_COMPARE_TREE_DELETED,
5508 ctx);
5509 if (ret < 0)
5510 goto out;
5511 advance_right = ADVANCE;
5512 } else {
b99d9a6a 5513 enum btrfs_compare_tree_result result;
ba5e8f2e 5514
74dd17fb 5515 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
2ff7e61e
JM
5516 ret = tree_compare_item(left_path, right_path,
5517 tmp_buf);
ba5e8f2e 5518 if (ret)
b99d9a6a 5519 result = BTRFS_COMPARE_TREE_CHANGED;
ba5e8f2e 5520 else
b99d9a6a 5521 result = BTRFS_COMPARE_TREE_SAME;
ee8c494f 5522 ret = changed_cb(left_path, right_path,
b99d9a6a 5523 &left_key, result, ctx);
ba5e8f2e
JB
5524 if (ret < 0)
5525 goto out;
7069830a
AB
5526 advance_left = ADVANCE;
5527 advance_right = ADVANCE;
5528 }
5529 } else if (left_level == right_level) {
5530 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5531 if (cmp < 0) {
5532 advance_left = ADVANCE;
5533 } else if (cmp > 0) {
5534 advance_right = ADVANCE;
5535 } else {
5536 left_blockptr = btrfs_node_blockptr(
5537 left_path->nodes[left_level],
5538 left_path->slots[left_level]);
5539 right_blockptr = btrfs_node_blockptr(
5540 right_path->nodes[right_level],
5541 right_path->slots[right_level]);
6baa4293
FM
5542 left_gen = btrfs_node_ptr_generation(
5543 left_path->nodes[left_level],
5544 left_path->slots[left_level]);
5545 right_gen = btrfs_node_ptr_generation(
5546 right_path->nodes[right_level],
5547 right_path->slots[right_level]);
5548 if (left_blockptr == right_blockptr &&
5549 left_gen == right_gen) {
7069830a
AB
5550 /*
5551 * As we're on a shared block, don't
5552 * allow to go deeper.
5553 */
5554 advance_left = ADVANCE_ONLY_NEXT;
5555 advance_right = ADVANCE_ONLY_NEXT;
5556 } else {
5557 advance_left = ADVANCE;
5558 advance_right = ADVANCE;
5559 }
5560 }
5561 } else if (left_level < right_level) {
5562 advance_right = ADVANCE;
5563 } else {
5564 advance_left = ADVANCE;
5565 }
5566 }
5567
5568out:
5569 btrfs_free_path(left_path);
5570 btrfs_free_path(right_path);
8f282f71 5571 kvfree(tmp_buf);
7069830a
AB
5572 return ret;
5573}
5574
3f157a2f
CM
5575/*
5576 * this is similar to btrfs_next_leaf, but does not try to preserve
5577 * and fixup the path. It looks for and returns the next key in the
de78b51a 5578 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5579 *
5580 * 0 is returned if another key is found, < 0 if there are any errors
5581 * and 1 is returned if there are no higher keys in the tree
5582 *
5583 * path->keep_locks should be set to 1 on the search made before
5584 * calling this function.
5585 */
e7a84565 5586int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5587 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5588{
e7a84565
CM
5589 int slot;
5590 struct extent_buffer *c;
5591
934d375b 5592 WARN_ON(!path->keep_locks);
d397712b 5593 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5594 if (!path->nodes[level])
5595 return 1;
5596
5597 slot = path->slots[level] + 1;
5598 c = path->nodes[level];
3f157a2f 5599next:
e7a84565 5600 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5601 int ret;
5602 int orig_lowest;
5603 struct btrfs_key cur_key;
5604 if (level + 1 >= BTRFS_MAX_LEVEL ||
5605 !path->nodes[level + 1])
e7a84565 5606 return 1;
33c66f43
YZ
5607
5608 if (path->locks[level + 1]) {
5609 level++;
5610 continue;
5611 }
5612
5613 slot = btrfs_header_nritems(c) - 1;
5614 if (level == 0)
5615 btrfs_item_key_to_cpu(c, &cur_key, slot);
5616 else
5617 btrfs_node_key_to_cpu(c, &cur_key, slot);
5618
5619 orig_lowest = path->lowest_level;
b3b4aa74 5620 btrfs_release_path(path);
33c66f43
YZ
5621 path->lowest_level = level;
5622 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5623 0, 0);
5624 path->lowest_level = orig_lowest;
5625 if (ret < 0)
5626 return ret;
5627
5628 c = path->nodes[level];
5629 slot = path->slots[level];
5630 if (ret == 0)
5631 slot++;
5632 goto next;
e7a84565 5633 }
33c66f43 5634
e7a84565
CM
5635 if (level == 0)
5636 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5637 else {
3f157a2f
CM
5638 u64 gen = btrfs_node_ptr_generation(c, slot);
5639
3f157a2f
CM
5640 if (gen < min_trans) {
5641 slot++;
5642 goto next;
5643 }
e7a84565 5644 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5645 }
e7a84565
CM
5646 return 0;
5647 }
5648 return 1;
5649}
5650
97571fd0 5651/*
925baedd 5652 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5653 * returns 0 if it found something or 1 if there are no greater leaves.
5654 * returns < 0 on io errors.
97571fd0 5655 */
234b63a0 5656int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5657{
5658 return btrfs_next_old_leaf(root, path, 0);
5659}
5660
5661int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5662 u64 time_seq)
d97e63b6
CM
5663{
5664 int slot;
8e73f275 5665 int level;
5f39d397 5666 struct extent_buffer *c;
8e73f275 5667 struct extent_buffer *next;
925baedd
CM
5668 struct btrfs_key key;
5669 u32 nritems;
5670 int ret;
8e73f275 5671 int old_spinning = path->leave_spinning;
bd681513 5672 int next_rw_lock = 0;
925baedd
CM
5673
5674 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5675 if (nritems == 0)
925baedd 5676 return 1;
925baedd 5677
8e73f275
CM
5678 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5679again:
5680 level = 1;
5681 next = NULL;
bd681513 5682 next_rw_lock = 0;
b3b4aa74 5683 btrfs_release_path(path);
8e73f275 5684
a2135011 5685 path->keep_locks = 1;
31533fb2 5686 path->leave_spinning = 1;
8e73f275 5687
3d7806ec
JS
5688 if (time_seq)
5689 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5690 else
5691 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5692 path->keep_locks = 0;
5693
5694 if (ret < 0)
5695 return ret;
5696
a2135011 5697 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5698 /*
5699 * by releasing the path above we dropped all our locks. A balance
5700 * could have added more items next to the key that used to be
5701 * at the very end of the block. So, check again here and
5702 * advance the path if there are now more items available.
5703 */
a2135011 5704 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5705 if (ret == 0)
5706 path->slots[0]++;
8e73f275 5707 ret = 0;
925baedd
CM
5708 goto done;
5709 }
0b43e04f
LB
5710 /*
5711 * So the above check misses one case:
5712 * - after releasing the path above, someone has removed the item that
5713 * used to be at the very end of the block, and balance between leafs
5714 * gets another one with bigger key.offset to replace it.
5715 *
5716 * This one should be returned as well, or we can get leaf corruption
5717 * later(esp. in __btrfs_drop_extents()).
5718 *
5719 * And a bit more explanation about this check,
5720 * with ret > 0, the key isn't found, the path points to the slot
5721 * where it should be inserted, so the path->slots[0] item must be the
5722 * bigger one.
5723 */
5724 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5725 ret = 0;
5726 goto done;
5727 }
d97e63b6 5728
d397712b 5729 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5730 if (!path->nodes[level]) {
5731 ret = 1;
5732 goto done;
5733 }
5f39d397 5734
d97e63b6
CM
5735 slot = path->slots[level] + 1;
5736 c = path->nodes[level];
5f39d397 5737 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5738 level++;
8e73f275
CM
5739 if (level == BTRFS_MAX_LEVEL) {
5740 ret = 1;
5741 goto done;
5742 }
d97e63b6
CM
5743 continue;
5744 }
5f39d397 5745
925baedd 5746 if (next) {
bd681513 5747 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5748 free_extent_buffer(next);
925baedd 5749 }
5f39d397 5750
8e73f275 5751 next = c;
bd681513 5752 next_rw_lock = path->locks[level];
d07b8528 5753 ret = read_block_for_search(root, path, &next, level,
cda79c54 5754 slot, &key);
8e73f275
CM
5755 if (ret == -EAGAIN)
5756 goto again;
5f39d397 5757
76a05b35 5758 if (ret < 0) {
b3b4aa74 5759 btrfs_release_path(path);
76a05b35
CM
5760 goto done;
5761 }
5762
5cd57b2c 5763 if (!path->skip_locking) {
bd681513 5764 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5765 if (!ret && time_seq) {
5766 /*
5767 * If we don't get the lock, we may be racing
5768 * with push_leaf_left, holding that lock while
5769 * itself waiting for the leaf we've currently
5770 * locked. To solve this situation, we give up
5771 * on our lock and cycle.
5772 */
cf538830 5773 free_extent_buffer(next);
d42244a0
JS
5774 btrfs_release_path(path);
5775 cond_resched();
5776 goto again;
5777 }
8e73f275
CM
5778 if (!ret) {
5779 btrfs_set_path_blocking(path);
bd681513 5780 btrfs_tree_read_lock(next);
8e73f275 5781 }
31533fb2 5782 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5783 }
d97e63b6
CM
5784 break;
5785 }
5786 path->slots[level] = slot;
d397712b 5787 while (1) {
d97e63b6
CM
5788 level--;
5789 c = path->nodes[level];
925baedd 5790 if (path->locks[level])
bd681513 5791 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5792
5f39d397 5793 free_extent_buffer(c);
d97e63b6
CM
5794 path->nodes[level] = next;
5795 path->slots[level] = 0;
a74a4b97 5796 if (!path->skip_locking)
bd681513 5797 path->locks[level] = next_rw_lock;
d97e63b6
CM
5798 if (!level)
5799 break;
b4ce94de 5800
d07b8528 5801 ret = read_block_for_search(root, path, &next, level,
cda79c54 5802 0, &key);
8e73f275
CM
5803 if (ret == -EAGAIN)
5804 goto again;
5805
76a05b35 5806 if (ret < 0) {
b3b4aa74 5807 btrfs_release_path(path);
76a05b35
CM
5808 goto done;
5809 }
5810
5cd57b2c 5811 if (!path->skip_locking) {
bd681513 5812 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5813 if (!ret) {
5814 btrfs_set_path_blocking(path);
bd681513 5815 btrfs_tree_read_lock(next);
bd681513 5816 }
31533fb2 5817 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5818 }
d97e63b6 5819 }
8e73f275 5820 ret = 0;
925baedd 5821done:
f7c79f30 5822 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5823 path->leave_spinning = old_spinning;
5824 if (!old_spinning)
5825 btrfs_set_path_blocking(path);
5826
5827 return ret;
d97e63b6 5828}
0b86a832 5829
3f157a2f
CM
5830/*
5831 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5832 * searching until it gets past min_objectid or finds an item of 'type'
5833 *
5834 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5835 */
0b86a832
CM
5836int btrfs_previous_item(struct btrfs_root *root,
5837 struct btrfs_path *path, u64 min_objectid,
5838 int type)
5839{
5840 struct btrfs_key found_key;
5841 struct extent_buffer *leaf;
e02119d5 5842 u32 nritems;
0b86a832
CM
5843 int ret;
5844
d397712b 5845 while (1) {
0b86a832 5846 if (path->slots[0] == 0) {
b4ce94de 5847 btrfs_set_path_blocking(path);
0b86a832
CM
5848 ret = btrfs_prev_leaf(root, path);
5849 if (ret != 0)
5850 return ret;
5851 } else {
5852 path->slots[0]--;
5853 }
5854 leaf = path->nodes[0];
e02119d5
CM
5855 nritems = btrfs_header_nritems(leaf);
5856 if (nritems == 0)
5857 return 1;
5858 if (path->slots[0] == nritems)
5859 path->slots[0]--;
5860
0b86a832 5861 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5862 if (found_key.objectid < min_objectid)
5863 break;
0a4eefbb
YZ
5864 if (found_key.type == type)
5865 return 0;
e02119d5
CM
5866 if (found_key.objectid == min_objectid &&
5867 found_key.type < type)
5868 break;
0b86a832
CM
5869 }
5870 return 1;
5871}
ade2e0b3
WS
5872
5873/*
5874 * search in extent tree to find a previous Metadata/Data extent item with
5875 * min objecitd.
5876 *
5877 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5878 */
5879int btrfs_previous_extent_item(struct btrfs_root *root,
5880 struct btrfs_path *path, u64 min_objectid)
5881{
5882 struct btrfs_key found_key;
5883 struct extent_buffer *leaf;
5884 u32 nritems;
5885 int ret;
5886
5887 while (1) {
5888 if (path->slots[0] == 0) {
5889 btrfs_set_path_blocking(path);
5890 ret = btrfs_prev_leaf(root, path);
5891 if (ret != 0)
5892 return ret;
5893 } else {
5894 path->slots[0]--;
5895 }
5896 leaf = path->nodes[0];
5897 nritems = btrfs_header_nritems(leaf);
5898 if (nritems == 0)
5899 return 1;
5900 if (path->slots[0] == nritems)
5901 path->slots[0]--;
5902
5903 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5904 if (found_key.objectid < min_objectid)
5905 break;
5906 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5907 found_key.type == BTRFS_METADATA_ITEM_KEY)
5908 return 0;
5909 if (found_key.objectid == min_objectid &&
5910 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5911 break;
5912 }
5913 return 1;
5914}