Btrfs: fix kernel oops while reading compressed data
[linux-block.git] / fs / btrfs / compression.c
CommitLineData
c8b97818
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
c8b97818
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/bit_spinlock.h>
5a0e3ad6 34#include <linux/slab.h>
fe308533 35#include <linux/sched/mm.h>
c8b97818
CM
36#include "ctree.h"
37#include "disk-io.h"
38#include "transaction.h"
39#include "btrfs_inode.h"
40#include "volumes.h"
41#include "ordered-data.h"
c8b97818
CM
42#include "compression.h"
43#include "extent_io.h"
44#include "extent_map.h"
45
8140dc30 46static int btrfs_decompress_bio(struct compressed_bio *cb);
48a3b636 47
2ff7e61e 48static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
d20f7043
CM
49 unsigned long disk_size)
50{
0b246afa 51 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
6c41761f 52
d20f7043 53 return sizeof(struct compressed_bio) +
0b246afa 54 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
d20f7043
CM
55}
56
f898ac6a 57static int check_compressed_csum(struct btrfs_inode *inode,
d20f7043
CM
58 struct compressed_bio *cb,
59 u64 disk_start)
60{
61 int ret;
d20f7043
CM
62 struct page *page;
63 unsigned long i;
64 char *kaddr;
65 u32 csum;
66 u32 *cb_sum = &cb->sums;
67
f898ac6a 68 if (inode->flags & BTRFS_INODE_NODATASUM)
d20f7043
CM
69 return 0;
70
71 for (i = 0; i < cb->nr_pages; i++) {
72 page = cb->compressed_pages[i];
73 csum = ~(u32)0;
74
7ac687d9 75 kaddr = kmap_atomic(page);
09cbfeaf 76 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
0b5e3daf 77 btrfs_csum_final(csum, (u8 *)&csum);
7ac687d9 78 kunmap_atomic(kaddr);
d20f7043
CM
79
80 if (csum != *cb_sum) {
f898ac6a 81 btrfs_print_data_csum_error(inode, disk_start, csum,
0970a22e 82 *cb_sum, cb->mirror_num);
d20f7043
CM
83 ret = -EIO;
84 goto fail;
85 }
86 cb_sum++;
87
88 }
89 ret = 0;
90fail:
91 return ret;
92}
93
c8b97818
CM
94/* when we finish reading compressed pages from the disk, we
95 * decompress them and then run the bio end_io routines on the
96 * decompressed pages (in the inode address space).
97 *
98 * This allows the checksumming and other IO error handling routines
99 * to work normally
100 *
101 * The compressed pages are freed here, and it must be run
102 * in process context
103 */
4246a0b6 104static void end_compressed_bio_read(struct bio *bio)
c8b97818 105{
c8b97818
CM
106 struct compressed_bio *cb = bio->bi_private;
107 struct inode *inode;
108 struct page *page;
109 unsigned long index;
cf1167d5 110 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
c8b97818
CM
111 int ret;
112
4e4cbee9 113 if (bio->bi_status)
c8b97818
CM
114 cb->errors = 1;
115
116 /* if there are more bios still pending for this compressed
117 * extent, just exit
118 */
a50299ae 119 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
120 goto out;
121
cf1167d5
LB
122 /*
123 * Record the correct mirror_num in cb->orig_bio so that
124 * read-repair can work properly.
125 */
126 ASSERT(btrfs_io_bio(cb->orig_bio));
127 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
128 cb->mirror_num = mirror;
129
d20f7043 130 inode = cb->inode;
f898ac6a 131 ret = check_compressed_csum(BTRFS_I(inode), cb,
4f024f37 132 (u64)bio->bi_iter.bi_sector << 9);
d20f7043
CM
133 if (ret)
134 goto csum_failed;
135
c8b97818
CM
136 /* ok, we're the last bio for this extent, lets start
137 * the decompression.
138 */
8140dc30
AJ
139 ret = btrfs_decompress_bio(cb);
140
d20f7043 141csum_failed:
c8b97818
CM
142 if (ret)
143 cb->errors = 1;
144
145 /* release the compressed pages */
146 index = 0;
147 for (index = 0; index < cb->nr_pages; index++) {
148 page = cb->compressed_pages[index];
149 page->mapping = NULL;
09cbfeaf 150 put_page(page);
c8b97818
CM
151 }
152
153 /* do io completion on the original bio */
771ed689 154 if (cb->errors) {
c8b97818 155 bio_io_error(cb->orig_bio);
d20f7043 156 } else {
2c30c71b
KO
157 int i;
158 struct bio_vec *bvec;
d20f7043
CM
159
160 /*
161 * we have verified the checksum already, set page
162 * checked so the end_io handlers know about it
163 */
c09abff8 164 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 165 bio_for_each_segment_all(bvec, cb->orig_bio, i)
d20f7043 166 SetPageChecked(bvec->bv_page);
2c30c71b 167
4246a0b6 168 bio_endio(cb->orig_bio);
d20f7043 169 }
c8b97818
CM
170
171 /* finally free the cb struct */
172 kfree(cb->compressed_pages);
173 kfree(cb);
174out:
175 bio_put(bio);
176}
177
178/*
179 * Clear the writeback bits on all of the file
180 * pages for a compressed write
181 */
7bdcefc1
FM
182static noinline void end_compressed_writeback(struct inode *inode,
183 const struct compressed_bio *cb)
c8b97818 184{
09cbfeaf
KS
185 unsigned long index = cb->start >> PAGE_SHIFT;
186 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
c8b97818
CM
187 struct page *pages[16];
188 unsigned long nr_pages = end_index - index + 1;
189 int i;
190 int ret;
191
7bdcefc1
FM
192 if (cb->errors)
193 mapping_set_error(inode->i_mapping, -EIO);
194
d397712b 195 while (nr_pages > 0) {
c8b97818 196 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
197 min_t(unsigned long,
198 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
199 if (ret == 0) {
200 nr_pages -= 1;
201 index += 1;
202 continue;
203 }
204 for (i = 0; i < ret; i++) {
7bdcefc1
FM
205 if (cb->errors)
206 SetPageError(pages[i]);
c8b97818 207 end_page_writeback(pages[i]);
09cbfeaf 208 put_page(pages[i]);
c8b97818
CM
209 }
210 nr_pages -= ret;
211 index += ret;
212 }
213 /* the inode may be gone now */
c8b97818
CM
214}
215
216/*
217 * do the cleanup once all the compressed pages hit the disk.
218 * This will clear writeback on the file pages and free the compressed
219 * pages.
220 *
221 * This also calls the writeback end hooks for the file pages so that
222 * metadata and checksums can be updated in the file.
223 */
4246a0b6 224static void end_compressed_bio_write(struct bio *bio)
c8b97818
CM
225{
226 struct extent_io_tree *tree;
227 struct compressed_bio *cb = bio->bi_private;
228 struct inode *inode;
229 struct page *page;
230 unsigned long index;
231
4e4cbee9 232 if (bio->bi_status)
c8b97818
CM
233 cb->errors = 1;
234
235 /* if there are more bios still pending for this compressed
236 * extent, just exit
237 */
a50299ae 238 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
239 goto out;
240
241 /* ok, we're the last bio for this extent, step one is to
242 * call back into the FS and do all the end_io operations
243 */
244 inode = cb->inode;
245 tree = &BTRFS_I(inode)->io_tree;
70b99e69 246 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
c8b97818
CM
247 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
248 cb->start,
249 cb->start + cb->len - 1,
7bdcefc1 250 NULL,
4e4cbee9 251 bio->bi_status ? 0 : 1);
70b99e69 252 cb->compressed_pages[0]->mapping = NULL;
c8b97818 253
7bdcefc1 254 end_compressed_writeback(inode, cb);
c8b97818
CM
255 /* note, our inode could be gone now */
256
257 /*
258 * release the compressed pages, these came from alloc_page and
259 * are not attached to the inode at all
260 */
261 index = 0;
262 for (index = 0; index < cb->nr_pages; index++) {
263 page = cb->compressed_pages[index];
264 page->mapping = NULL;
09cbfeaf 265 put_page(page);
c8b97818
CM
266 }
267
268 /* finally free the cb struct */
269 kfree(cb->compressed_pages);
270 kfree(cb);
271out:
272 bio_put(bio);
273}
274
275/*
276 * worker function to build and submit bios for previously compressed pages.
277 * The corresponding pages in the inode should be marked for writeback
278 * and the compressed pages should have a reference on them for dropping
279 * when the IO is complete.
280 *
281 * This also checksums the file bytes and gets things ready for
282 * the end io hooks.
283 */
4e4cbee9 284blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
c8b97818
CM
285 unsigned long len, u64 disk_start,
286 unsigned long compressed_len,
287 struct page **compressed_pages,
288 unsigned long nr_pages)
289{
0b246afa 290 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818 291 struct bio *bio = NULL;
c8b97818
CM
292 struct compressed_bio *cb;
293 unsigned long bytes_left;
294 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
306e16ce 295 int pg_index = 0;
c8b97818
CM
296 struct page *page;
297 u64 first_byte = disk_start;
298 struct block_device *bdev;
4e4cbee9 299 blk_status_t ret;
e55179b3 300 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
c8b97818 301
09cbfeaf 302 WARN_ON(start & ((u64)PAGE_SIZE - 1));
2ff7e61e 303 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
dac97e51 304 if (!cb)
4e4cbee9 305 return BLK_STS_RESOURCE;
a50299ae 306 refcount_set(&cb->pending_bios, 0);
c8b97818
CM
307 cb->errors = 0;
308 cb->inode = inode;
309 cb->start = start;
310 cb->len = len;
d20f7043 311 cb->mirror_num = 0;
c8b97818
CM
312 cb->compressed_pages = compressed_pages;
313 cb->compressed_len = compressed_len;
314 cb->orig_bio = NULL;
315 cb->nr_pages = nr_pages;
316
0b246afa 317 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 318
c821e7f3 319 bio = btrfs_bio_alloc(bdev, first_byte);
37226b21 320 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
c8b97818
CM
321 bio->bi_private = cb;
322 bio->bi_end_io = end_compressed_bio_write;
a50299ae 323 refcount_set(&cb->pending_bios, 1);
c8b97818
CM
324
325 /* create and submit bios for the compressed pages */
326 bytes_left = compressed_len;
306e16ce 327 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
4e4cbee9
CH
328 int submit = 0;
329
306e16ce 330 page = compressed_pages[pg_index];
c8b97818 331 page->mapping = inode->i_mapping;
4f024f37 332 if (bio->bi_iter.bi_size)
4e4cbee9 333 submit = io_tree->ops->merge_bio_hook(page, 0,
09cbfeaf 334 PAGE_SIZE,
c8b97818 335 bio, 0);
c8b97818 336
70b99e69 337 page->mapping = NULL;
4e4cbee9 338 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
09cbfeaf 339 PAGE_SIZE) {
c8b97818
CM
340 bio_get(bio);
341
af09abfe
CM
342 /*
343 * inc the count before we submit the bio so
344 * we know the end IO handler won't happen before
345 * we inc the count. Otherwise, the cb might get
346 * freed before we're done setting it up
347 */
a50299ae 348 refcount_inc(&cb->pending_bios);
0b246afa
JM
349 ret = btrfs_bio_wq_end_io(fs_info, bio,
350 BTRFS_WQ_ENDIO_DATA);
79787eaa 351 BUG_ON(ret); /* -ENOMEM */
c8b97818 352
e55179b3 353 if (!skip_sum) {
2ff7e61e 354 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 355 BUG_ON(ret); /* -ENOMEM */
e55179b3 356 }
d20f7043 357
2ff7e61e 358 ret = btrfs_map_bio(fs_info, bio, 0, 1);
f5daf2c7 359 if (ret) {
4e4cbee9 360 bio->bi_status = ret;
f5daf2c7
LB
361 bio_endio(bio);
362 }
c8b97818
CM
363
364 bio_put(bio);
365
c821e7f3 366 bio = btrfs_bio_alloc(bdev, first_byte);
37226b21 367 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
c8b97818
CM
368 bio->bi_private = cb;
369 bio->bi_end_io = end_compressed_bio_write;
09cbfeaf 370 bio_add_page(bio, page, PAGE_SIZE, 0);
c8b97818 371 }
09cbfeaf 372 if (bytes_left < PAGE_SIZE) {
0b246afa 373 btrfs_info(fs_info,
efe120a0 374 "bytes left %lu compress len %lu nr %lu",
cfbc246e
CM
375 bytes_left, cb->compressed_len, cb->nr_pages);
376 }
09cbfeaf
KS
377 bytes_left -= PAGE_SIZE;
378 first_byte += PAGE_SIZE;
771ed689 379 cond_resched();
c8b97818
CM
380 }
381 bio_get(bio);
382
0b246afa 383 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 384 BUG_ON(ret); /* -ENOMEM */
c8b97818 385
e55179b3 386 if (!skip_sum) {
2ff7e61e 387 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 388 BUG_ON(ret); /* -ENOMEM */
e55179b3 389 }
d20f7043 390
2ff7e61e 391 ret = btrfs_map_bio(fs_info, bio, 0, 1);
f5daf2c7 392 if (ret) {
4e4cbee9 393 bio->bi_status = ret;
f5daf2c7
LB
394 bio_endio(bio);
395 }
c8b97818
CM
396
397 bio_put(bio);
398 return 0;
399}
400
2a4d0c90
CH
401static u64 bio_end_offset(struct bio *bio)
402{
403 struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
404
405 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
406}
407
771ed689
CM
408static noinline int add_ra_bio_pages(struct inode *inode,
409 u64 compressed_end,
410 struct compressed_bio *cb)
411{
412 unsigned long end_index;
306e16ce 413 unsigned long pg_index;
771ed689
CM
414 u64 last_offset;
415 u64 isize = i_size_read(inode);
416 int ret;
417 struct page *page;
418 unsigned long nr_pages = 0;
419 struct extent_map *em;
420 struct address_space *mapping = inode->i_mapping;
771ed689
CM
421 struct extent_map_tree *em_tree;
422 struct extent_io_tree *tree;
423 u64 end;
424 int misses = 0;
425
2a4d0c90 426 last_offset = bio_end_offset(cb->orig_bio);
771ed689
CM
427 em_tree = &BTRFS_I(inode)->extent_tree;
428 tree = &BTRFS_I(inode)->io_tree;
429
430 if (isize == 0)
431 return 0;
432
09cbfeaf 433 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
771ed689 434
d397712b 435 while (last_offset < compressed_end) {
09cbfeaf 436 pg_index = last_offset >> PAGE_SHIFT;
771ed689 437
306e16ce 438 if (pg_index > end_index)
771ed689
CM
439 break;
440
441 rcu_read_lock();
306e16ce 442 page = radix_tree_lookup(&mapping->page_tree, pg_index);
771ed689 443 rcu_read_unlock();
0cd6144a 444 if (page && !radix_tree_exceptional_entry(page)) {
771ed689
CM
445 misses++;
446 if (misses > 4)
447 break;
448 goto next;
449 }
450
c62d2555
MH
451 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
452 ~__GFP_FS));
771ed689
CM
453 if (!page)
454 break;
455
c62d2555 456 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
09cbfeaf 457 put_page(page);
771ed689
CM
458 goto next;
459 }
460
09cbfeaf 461 end = last_offset + PAGE_SIZE - 1;
771ed689
CM
462 /*
463 * at this point, we have a locked page in the page cache
464 * for these bytes in the file. But, we have to make
465 * sure they map to this compressed extent on disk.
466 */
467 set_page_extent_mapped(page);
d0082371 468 lock_extent(tree, last_offset, end);
890871be 469 read_lock(&em_tree->lock);
771ed689 470 em = lookup_extent_mapping(em_tree, last_offset,
09cbfeaf 471 PAGE_SIZE);
890871be 472 read_unlock(&em_tree->lock);
771ed689
CM
473
474 if (!em || last_offset < em->start ||
09cbfeaf 475 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
4f024f37 476 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 477 free_extent_map(em);
d0082371 478 unlock_extent(tree, last_offset, end);
771ed689 479 unlock_page(page);
09cbfeaf 480 put_page(page);
771ed689
CM
481 break;
482 }
483 free_extent_map(em);
484
485 if (page->index == end_index) {
486 char *userpage;
09cbfeaf 487 size_t zero_offset = isize & (PAGE_SIZE - 1);
771ed689
CM
488
489 if (zero_offset) {
490 int zeros;
09cbfeaf 491 zeros = PAGE_SIZE - zero_offset;
7ac687d9 492 userpage = kmap_atomic(page);
771ed689
CM
493 memset(userpage + zero_offset, 0, zeros);
494 flush_dcache_page(page);
7ac687d9 495 kunmap_atomic(userpage);
771ed689
CM
496 }
497 }
498
499 ret = bio_add_page(cb->orig_bio, page,
09cbfeaf 500 PAGE_SIZE, 0);
771ed689 501
09cbfeaf 502 if (ret == PAGE_SIZE) {
771ed689 503 nr_pages++;
09cbfeaf 504 put_page(page);
771ed689 505 } else {
d0082371 506 unlock_extent(tree, last_offset, end);
771ed689 507 unlock_page(page);
09cbfeaf 508 put_page(page);
771ed689
CM
509 break;
510 }
511next:
09cbfeaf 512 last_offset += PAGE_SIZE;
771ed689 513 }
771ed689
CM
514 return 0;
515}
516
c8b97818
CM
517/*
518 * for a compressed read, the bio we get passed has all the inode pages
519 * in it. We don't actually do IO on those pages but allocate new ones
520 * to hold the compressed pages on disk.
521 *
4f024f37 522 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818 523 * bio->bi_io_vec points to all of the inode pages
c8b97818
CM
524 *
525 * After the compressed pages are read, we copy the bytes into the
526 * bio we were passed and then call the bio end_io calls
527 */
4e4cbee9 528blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
c8b97818
CM
529 int mirror_num, unsigned long bio_flags)
530{
0b246afa 531 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818
CM
532 struct extent_io_tree *tree;
533 struct extent_map_tree *em_tree;
534 struct compressed_bio *cb;
c8b97818
CM
535 unsigned long compressed_len;
536 unsigned long nr_pages;
306e16ce 537 unsigned long pg_index;
c8b97818
CM
538 struct page *page;
539 struct block_device *bdev;
540 struct bio *comp_bio;
4f024f37 541 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
e04ca626
CM
542 u64 em_len;
543 u64 em_start;
c8b97818 544 struct extent_map *em;
4e4cbee9 545 blk_status_t ret = BLK_STS_RESOURCE;
15e3004a 546 int faili = 0;
d20f7043 547 u32 *sums;
c8b97818
CM
548
549 tree = &BTRFS_I(inode)->io_tree;
550 em_tree = &BTRFS_I(inode)->extent_tree;
551
552 /* we need the actual starting offset of this extent in the file */
890871be 553 read_lock(&em_tree->lock);
c8b97818
CM
554 em = lookup_extent_mapping(em_tree,
555 page_offset(bio->bi_io_vec->bv_page),
09cbfeaf 556 PAGE_SIZE);
890871be 557 read_unlock(&em_tree->lock);
285190d9 558 if (!em)
4e4cbee9 559 return BLK_STS_IOERR;
c8b97818 560
d20f7043 561 compressed_len = em->block_len;
2ff7e61e 562 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
6b82ce8d 563 if (!cb)
564 goto out;
565
a50299ae 566 refcount_set(&cb->pending_bios, 0);
c8b97818
CM
567 cb->errors = 0;
568 cb->inode = inode;
d20f7043
CM
569 cb->mirror_num = mirror_num;
570 sums = &cb->sums;
c8b97818 571
ff5b7ee3 572 cb->start = em->orig_start;
e04ca626
CM
573 em_len = em->len;
574 em_start = em->start;
d20f7043 575
c8b97818 576 free_extent_map(em);
e04ca626 577 em = NULL;
c8b97818 578
81381053 579 cb->len = bio->bi_iter.bi_size;
c8b97818 580 cb->compressed_len = compressed_len;
261507a0 581 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
582 cb->orig_bio = bio;
583
09cbfeaf 584 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
31e818fe 585 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
c8b97818 586 GFP_NOFS);
6b82ce8d 587 if (!cb->compressed_pages)
588 goto fail1;
589
0b246afa 590 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 591
306e16ce
DS
592 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
593 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 594 __GFP_HIGHMEM);
15e3004a
JB
595 if (!cb->compressed_pages[pg_index]) {
596 faili = pg_index - 1;
0e9350de 597 ret = BLK_STS_RESOURCE;
6b82ce8d 598 goto fail2;
15e3004a 599 }
c8b97818 600 }
15e3004a 601 faili = nr_pages - 1;
c8b97818
CM
602 cb->nr_pages = nr_pages;
603
7f042a83 604 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 605
771ed689 606 /* include any pages we added in add_ra-bio_pages */
81381053 607 cb->len = bio->bi_iter.bi_size;
771ed689 608
c821e7f3 609 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
37226b21 610 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
c8b97818
CM
611 comp_bio->bi_private = cb;
612 comp_bio->bi_end_io = end_compressed_bio_read;
a50299ae 613 refcount_set(&cb->pending_bios, 1);
c8b97818 614
306e16ce 615 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
4e4cbee9
CH
616 int submit = 0;
617
306e16ce 618 page = cb->compressed_pages[pg_index];
c8b97818 619 page->mapping = inode->i_mapping;
09cbfeaf 620 page->index = em_start >> PAGE_SHIFT;
d20f7043 621
4f024f37 622 if (comp_bio->bi_iter.bi_size)
4e4cbee9 623 submit = tree->ops->merge_bio_hook(page, 0,
09cbfeaf 624 PAGE_SIZE,
c8b97818 625 comp_bio, 0);
c8b97818 626
70b99e69 627 page->mapping = NULL;
4e4cbee9 628 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
09cbfeaf 629 PAGE_SIZE) {
c8b97818
CM
630 bio_get(comp_bio);
631
0b246afa
JM
632 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
633 BTRFS_WQ_ENDIO_DATA);
79787eaa 634 BUG_ON(ret); /* -ENOMEM */
c8b97818 635
af09abfe
CM
636 /*
637 * inc the count before we submit the bio so
638 * we know the end IO handler won't happen before
639 * we inc the count. Otherwise, the cb might get
640 * freed before we're done setting it up
641 */
a50299ae 642 refcount_inc(&cb->pending_bios);
af09abfe 643
6cbff00f 644 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
2ff7e61e
JM
645 ret = btrfs_lookup_bio_sums(inode, comp_bio,
646 sums);
79787eaa 647 BUG_ON(ret); /* -ENOMEM */
d20f7043 648 }
ed6078f7 649 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
0b246afa 650 fs_info->sectorsize);
d20f7043 651
2ff7e61e 652 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
4246a0b6 653 if (ret) {
4e4cbee9 654 comp_bio->bi_status = ret;
4246a0b6
CH
655 bio_endio(comp_bio);
656 }
c8b97818
CM
657
658 bio_put(comp_bio);
659
c821e7f3 660 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
37226b21 661 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
771ed689
CM
662 comp_bio->bi_private = cb;
663 comp_bio->bi_end_io = end_compressed_bio_read;
664
09cbfeaf 665 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
c8b97818 666 }
09cbfeaf 667 cur_disk_byte += PAGE_SIZE;
c8b97818
CM
668 }
669 bio_get(comp_bio);
670
0b246afa 671 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 672 BUG_ON(ret); /* -ENOMEM */
c8b97818 673
c2db1073 674 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
2ff7e61e 675 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
79787eaa 676 BUG_ON(ret); /* -ENOMEM */
c2db1073 677 }
d20f7043 678
2ff7e61e 679 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
4246a0b6 680 if (ret) {
4e4cbee9 681 comp_bio->bi_status = ret;
4246a0b6
CH
682 bio_endio(comp_bio);
683 }
c8b97818
CM
684
685 bio_put(comp_bio);
686 return 0;
6b82ce8d 687
688fail2:
15e3004a
JB
689 while (faili >= 0) {
690 __free_page(cb->compressed_pages[faili]);
691 faili--;
692 }
6b82ce8d 693
694 kfree(cb->compressed_pages);
695fail1:
696 kfree(cb);
697out:
698 free_extent_map(em);
699 return ret;
c8b97818 700}
261507a0 701
d9187649
BL
702static struct {
703 struct list_head idle_ws;
704 spinlock_t ws_lock;
6ac10a6a
DS
705 /* Number of free workspaces */
706 int free_ws;
707 /* Total number of allocated workspaces */
708 atomic_t total_ws;
709 /* Waiters for a free workspace */
d9187649
BL
710 wait_queue_head_t ws_wait;
711} btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
261507a0 712
e8c9f186 713static const struct btrfs_compress_op * const btrfs_compress_op[] = {
261507a0 714 &btrfs_zlib_compress,
a6fa6fae 715 &btrfs_lzo_compress,
261507a0
LZ
716};
717
143bede5 718void __init btrfs_init_compress(void)
261507a0
LZ
719{
720 int i;
721
722 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
f77dd0d6
DS
723 struct list_head *workspace;
724
d9187649
BL
725 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
726 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
6ac10a6a 727 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
d9187649 728 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
f77dd0d6
DS
729
730 /*
731 * Preallocate one workspace for each compression type so
732 * we can guarantee forward progress in the worst case
733 */
734 workspace = btrfs_compress_op[i]->alloc_workspace();
735 if (IS_ERR(workspace)) {
62e85577 736 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
f77dd0d6
DS
737 } else {
738 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
739 btrfs_comp_ws[i].free_ws = 1;
740 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
741 }
261507a0 742 }
261507a0
LZ
743}
744
745/*
e721e49d
DS
746 * This finds an available workspace or allocates a new one.
747 * If it's not possible to allocate a new one, waits until there's one.
748 * Preallocation makes a forward progress guarantees and we do not return
749 * errors.
261507a0
LZ
750 */
751static struct list_head *find_workspace(int type)
752{
753 struct list_head *workspace;
754 int cpus = num_online_cpus();
755 int idx = type - 1;
fe308533 756 unsigned nofs_flag;
261507a0 757
d9187649
BL
758 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
759 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
6ac10a6a 760 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
d9187649 761 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
6ac10a6a 762 int *free_ws = &btrfs_comp_ws[idx].free_ws;
261507a0 763again:
d9187649
BL
764 spin_lock(ws_lock);
765 if (!list_empty(idle_ws)) {
766 workspace = idle_ws->next;
261507a0 767 list_del(workspace);
6ac10a6a 768 (*free_ws)--;
d9187649 769 spin_unlock(ws_lock);
261507a0
LZ
770 return workspace;
771
772 }
6ac10a6a 773 if (atomic_read(total_ws) > cpus) {
261507a0
LZ
774 DEFINE_WAIT(wait);
775
d9187649
BL
776 spin_unlock(ws_lock);
777 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
6ac10a6a 778 if (atomic_read(total_ws) > cpus && !*free_ws)
261507a0 779 schedule();
d9187649 780 finish_wait(ws_wait, &wait);
261507a0
LZ
781 goto again;
782 }
6ac10a6a 783 atomic_inc(total_ws);
d9187649 784 spin_unlock(ws_lock);
261507a0 785
fe308533
DS
786 /*
787 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
788 * to turn it off here because we might get called from the restricted
789 * context of btrfs_compress_bio/btrfs_compress_pages
790 */
791 nofs_flag = memalloc_nofs_save();
261507a0 792 workspace = btrfs_compress_op[idx]->alloc_workspace();
fe308533
DS
793 memalloc_nofs_restore(nofs_flag);
794
261507a0 795 if (IS_ERR(workspace)) {
6ac10a6a 796 atomic_dec(total_ws);
d9187649 797 wake_up(ws_wait);
e721e49d
DS
798
799 /*
800 * Do not return the error but go back to waiting. There's a
801 * workspace preallocated for each type and the compression
802 * time is bounded so we get to a workspace eventually. This
803 * makes our caller's life easier.
52356716
DS
804 *
805 * To prevent silent and low-probability deadlocks (when the
806 * initial preallocation fails), check if there are any
807 * workspaces at all.
e721e49d 808 */
52356716
DS
809 if (atomic_read(total_ws) == 0) {
810 static DEFINE_RATELIMIT_STATE(_rs,
811 /* once per minute */ 60 * HZ,
812 /* no burst */ 1);
813
814 if (__ratelimit(&_rs)) {
ab8d0fc4 815 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
52356716
DS
816 }
817 }
e721e49d 818 goto again;
261507a0
LZ
819 }
820 return workspace;
821}
822
823/*
824 * put a workspace struct back on the list or free it if we have enough
825 * idle ones sitting around
826 */
827static void free_workspace(int type, struct list_head *workspace)
828{
829 int idx = type - 1;
d9187649
BL
830 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
831 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
6ac10a6a 832 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
d9187649 833 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
6ac10a6a 834 int *free_ws = &btrfs_comp_ws[idx].free_ws;
d9187649
BL
835
836 spin_lock(ws_lock);
26b28dce 837 if (*free_ws <= num_online_cpus()) {
d9187649 838 list_add(workspace, idle_ws);
6ac10a6a 839 (*free_ws)++;
d9187649 840 spin_unlock(ws_lock);
261507a0
LZ
841 goto wake;
842 }
d9187649 843 spin_unlock(ws_lock);
261507a0
LZ
844
845 btrfs_compress_op[idx]->free_workspace(workspace);
6ac10a6a 846 atomic_dec(total_ws);
261507a0 847wake:
a83342aa
DS
848 /*
849 * Make sure counter is updated before we wake up waiters.
850 */
66657b31 851 smp_mb();
d9187649
BL
852 if (waitqueue_active(ws_wait))
853 wake_up(ws_wait);
261507a0
LZ
854}
855
856/*
857 * cleanup function for module exit
858 */
859static void free_workspaces(void)
860{
861 struct list_head *workspace;
862 int i;
863
864 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
d9187649
BL
865 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
866 workspace = btrfs_comp_ws[i].idle_ws.next;
261507a0
LZ
867 list_del(workspace);
868 btrfs_compress_op[i]->free_workspace(workspace);
6ac10a6a 869 atomic_dec(&btrfs_comp_ws[i].total_ws);
261507a0
LZ
870 }
871 }
872}
873
874/*
38c31464
DS
875 * Given an address space and start and length, compress the bytes into @pages
876 * that are allocated on demand.
261507a0 877 *
4d3a800e
DS
878 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
879 * and returns number of actually allocated pages
261507a0 880 *
38c31464
DS
881 * @total_in is used to return the number of bytes actually read. It
882 * may be smaller than the input length if we had to exit early because we
261507a0
LZ
883 * ran out of room in the pages array or because we cross the
884 * max_out threshold.
885 *
38c31464
DS
886 * @total_out is an in/out parameter, must be set to the input length and will
887 * be also used to return the total number of compressed bytes
261507a0 888 *
38c31464 889 * @max_out tells us the max number of bytes that we're allowed to
261507a0
LZ
890 * stuff into pages
891 */
892int btrfs_compress_pages(int type, struct address_space *mapping,
38c31464 893 u64 start, struct page **pages,
261507a0
LZ
894 unsigned long *out_pages,
895 unsigned long *total_in,
e5d74902 896 unsigned long *total_out)
261507a0
LZ
897{
898 struct list_head *workspace;
899 int ret;
900
901 workspace = find_workspace(type);
261507a0
LZ
902
903 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
38c31464 904 start, pages,
4d3a800e 905 out_pages,
e5d74902 906 total_in, total_out);
261507a0
LZ
907 free_workspace(type, workspace);
908 return ret;
909}
910
911/*
912 * pages_in is an array of pages with compressed data.
913 *
914 * disk_start is the starting logical offset of this array in the file
915 *
974b1adc 916 * orig_bio contains the pages from the file that we want to decompress into
261507a0
LZ
917 *
918 * srclen is the number of bytes in pages_in
919 *
920 * The basic idea is that we have a bio that was created by readpages.
921 * The pages in the bio are for the uncompressed data, and they may not
922 * be contiguous. They all correspond to the range of bytes covered by
923 * the compressed extent.
924 */
8140dc30 925static int btrfs_decompress_bio(struct compressed_bio *cb)
261507a0
LZ
926{
927 struct list_head *workspace;
928 int ret;
8140dc30 929 int type = cb->compress_type;
261507a0
LZ
930
931 workspace = find_workspace(type);
e1ddce71 932 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
261507a0 933 free_workspace(type, workspace);
e1ddce71 934
261507a0
LZ
935 return ret;
936}
937
938/*
939 * a less complex decompression routine. Our compressed data fits in a
940 * single page, and we want to read a single page out of it.
941 * start_byte tells us the offset into the compressed data we're interested in
942 */
943int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
944 unsigned long start_byte, size_t srclen, size_t destlen)
945{
946 struct list_head *workspace;
947 int ret;
948
949 workspace = find_workspace(type);
261507a0
LZ
950
951 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
952 dest_page, start_byte,
953 srclen, destlen);
954
955 free_workspace(type, workspace);
956 return ret;
957}
958
8e4eef7a 959void btrfs_exit_compress(void)
261507a0
LZ
960{
961 free_workspaces();
962}
3a39c18d
LZ
963
964/*
965 * Copy uncompressed data from working buffer to pages.
966 *
967 * buf_start is the byte offset we're of the start of our workspace buffer.
968 *
969 * total_out is the last byte of the buffer
970 */
14a3357b 971int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
3a39c18d 972 unsigned long total_out, u64 disk_start,
974b1adc 973 struct bio *bio)
3a39c18d
LZ
974{
975 unsigned long buf_offset;
976 unsigned long current_buf_start;
977 unsigned long start_byte;
6e78b3f7 978 unsigned long prev_start_byte;
3a39c18d
LZ
979 unsigned long working_bytes = total_out - buf_start;
980 unsigned long bytes;
981 char *kaddr;
974b1adc 982 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
3a39c18d
LZ
983
984 /*
985 * start byte is the first byte of the page we're currently
986 * copying into relative to the start of the compressed data.
987 */
974b1adc 988 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d
LZ
989
990 /* we haven't yet hit data corresponding to this page */
991 if (total_out <= start_byte)
992 return 1;
993
994 /*
995 * the start of the data we care about is offset into
996 * the middle of our working buffer
997 */
998 if (total_out > start_byte && buf_start < start_byte) {
999 buf_offset = start_byte - buf_start;
1000 working_bytes -= buf_offset;
1001 } else {
1002 buf_offset = 0;
1003 }
1004 current_buf_start = buf_start;
1005
1006 /* copy bytes from the working buffer into the pages */
1007 while (working_bytes > 0) {
974b1adc
CH
1008 bytes = min_t(unsigned long, bvec.bv_len,
1009 PAGE_SIZE - buf_offset);
3a39c18d 1010 bytes = min(bytes, working_bytes);
974b1adc
CH
1011
1012 kaddr = kmap_atomic(bvec.bv_page);
1013 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
7ac687d9 1014 kunmap_atomic(kaddr);
974b1adc 1015 flush_dcache_page(bvec.bv_page);
3a39c18d 1016
3a39c18d
LZ
1017 buf_offset += bytes;
1018 working_bytes -= bytes;
1019 current_buf_start += bytes;
1020
1021 /* check if we need to pick another page */
974b1adc
CH
1022 bio_advance(bio, bytes);
1023 if (!bio->bi_iter.bi_size)
1024 return 0;
1025 bvec = bio_iter_iovec(bio, bio->bi_iter);
6e78b3f7 1026 prev_start_byte = start_byte;
974b1adc 1027 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d 1028
974b1adc 1029 /*
6e78b3f7
OS
1030 * We need to make sure we're only adjusting
1031 * our offset into compression working buffer when
1032 * we're switching pages. Otherwise we can incorrectly
1033 * keep copying when we were actually done.
974b1adc 1034 */
6e78b3f7
OS
1035 if (start_byte != prev_start_byte) {
1036 /*
1037 * make sure our new page is covered by this
1038 * working buffer
1039 */
1040 if (total_out <= start_byte)
1041 return 1;
3a39c18d 1042
6e78b3f7
OS
1043 /*
1044 * the next page in the biovec might not be adjacent
1045 * to the last page, but it might still be found
1046 * inside this working buffer. bump our offset pointer
1047 */
1048 if (total_out > start_byte &&
1049 current_buf_start < start_byte) {
1050 buf_offset = start_byte - buf_start;
1051 working_bytes = total_out - start_byte;
1052 current_buf_start = buf_start + buf_offset;
1053 }
3a39c18d
LZ
1054 }
1055 }
1056
1057 return 1;
1058}
c2fcdcdf
TT
1059
1060/*
1061 * Compression heuristic.
1062 *
1063 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1064 * quickly (compared to direct compression) detect data characteristics
1065 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1066 * data.
1067 *
1068 * The following types of analysis can be performed:
1069 * - detect mostly zero data
1070 * - detect data with low "byte set" size (text, etc)
1071 * - detect data with low/high "core byte" set
1072 *
1073 * Return non-zero if the compression should be done, 0 otherwise.
1074 */
1075int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1076{
1077 u64 index = start >> PAGE_SHIFT;
1078 u64 end_index = end >> PAGE_SHIFT;
1079 struct page *page;
1080 int ret = 1;
1081
1082 while (index <= end_index) {
1083 page = find_get_page(inode->i_mapping, index);
1084 kmap(page);
1085 kunmap(page);
1086 put_page(page);
1087 index++;
1088 }
1089
1090 return ret;
1091}