btrfs: subpage: make btrfs_submit_compressed_write() compatible
[linux-block.git] / fs / btrfs / compression.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
c8b97818
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
c8b97818
CM
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
c8b97818
CM
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/time.h>
13#include <linux/init.h>
14#include <linux/string.h>
c8b97818 15#include <linux/backing-dev.h>
c8b97818 16#include <linux/writeback.h>
5a0e3ad6 17#include <linux/slab.h>
fe308533 18#include <linux/sched/mm.h>
19562430 19#include <linux/log2.h>
d5178578 20#include <crypto/hash.h>
602cbe91 21#include "misc.h"
c8b97818
CM
22#include "ctree.h"
23#include "disk-io.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "volumes.h"
27#include "ordered-data.h"
c8b97818
CM
28#include "compression.h"
29#include "extent_io.h"
30#include "extent_map.h"
6a404910 31#include "subpage.h"
764c7c9a 32#include "zoned.h"
c8b97818 33
e128f9c3
DS
34static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
35
36const char* btrfs_compress_type2str(enum btrfs_compression_type type)
37{
38 switch (type) {
39 case BTRFS_COMPRESS_ZLIB:
40 case BTRFS_COMPRESS_LZO:
41 case BTRFS_COMPRESS_ZSTD:
42 case BTRFS_COMPRESS_NONE:
43 return btrfs_compress_types[type];
ce96b7ff
CX
44 default:
45 break;
e128f9c3
DS
46 }
47
48 return NULL;
49}
50
aa53e3bf
JT
51bool btrfs_compress_is_valid_type(const char *str, size_t len)
52{
53 int i;
54
55 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
56 size_t comp_len = strlen(btrfs_compress_types[i]);
57
58 if (len < comp_len)
59 continue;
60
61 if (!strncmp(btrfs_compress_types[i], str, comp_len))
62 return true;
63 }
64 return false;
65}
66
1e4eb746
DS
67static int compression_compress_pages(int type, struct list_head *ws,
68 struct address_space *mapping, u64 start, struct page **pages,
69 unsigned long *out_pages, unsigned long *total_in,
70 unsigned long *total_out)
71{
72 switch (type) {
73 case BTRFS_COMPRESS_ZLIB:
74 return zlib_compress_pages(ws, mapping, start, pages,
75 out_pages, total_in, total_out);
76 case BTRFS_COMPRESS_LZO:
77 return lzo_compress_pages(ws, mapping, start, pages,
78 out_pages, total_in, total_out);
79 case BTRFS_COMPRESS_ZSTD:
80 return zstd_compress_pages(ws, mapping, start, pages,
81 out_pages, total_in, total_out);
82 case BTRFS_COMPRESS_NONE:
83 default:
84 /*
1d8ba9e7
QW
85 * This can happen when compression races with remount setting
86 * it to 'no compress', while caller doesn't call
87 * inode_need_compress() to check if we really need to
88 * compress.
89 *
90 * Not a big deal, just need to inform caller that we
91 * haven't allocated any pages yet.
1e4eb746 92 */
1d8ba9e7 93 *out_pages = 0;
1e4eb746
DS
94 return -E2BIG;
95 }
96}
97
98static int compression_decompress_bio(int type, struct list_head *ws,
99 struct compressed_bio *cb)
100{
101 switch (type) {
102 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
103 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
104 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
105 case BTRFS_COMPRESS_NONE:
106 default:
107 /*
108 * This can't happen, the type is validated several times
109 * before we get here.
110 */
111 BUG();
112 }
113}
114
115static int compression_decompress(int type, struct list_head *ws,
116 unsigned char *data_in, struct page *dest_page,
117 unsigned long start_byte, size_t srclen, size_t destlen)
118{
119 switch (type) {
120 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
121 start_byte, srclen, destlen);
122 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
123 start_byte, srclen, destlen);
124 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
125 start_byte, srclen, destlen);
126 case BTRFS_COMPRESS_NONE:
127 default:
128 /*
129 * This can't happen, the type is validated several times
130 * before we get here.
131 */
132 BUG();
133 }
134}
135
8140dc30 136static int btrfs_decompress_bio(struct compressed_bio *cb);
48a3b636 137
2ff7e61e 138static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
d20f7043
CM
139 unsigned long disk_size)
140{
d20f7043 141 return sizeof(struct compressed_bio) +
713cebfb 142 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
d20f7043
CM
143}
144
5a9472fe 145static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
d20f7043
CM
146 u64 disk_start)
147{
10fe6ca8 148 struct btrfs_fs_info *fs_info = inode->root->fs_info;
d5178578 149 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
223486c2 150 const u32 csum_size = fs_info->csum_size;
04d4ba4c 151 const u32 sectorsize = fs_info->sectorsize;
d20f7043 152 struct page *page;
1d08ce58 153 unsigned int i;
d20f7043 154 char *kaddr;
d5178578 155 u8 csum[BTRFS_CSUM_SIZE];
5a9472fe 156 struct compressed_bio *cb = bio->bi_private;
10fe6ca8 157 u8 *cb_sum = cb->sums;
d20f7043 158
42437a63 159 if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
d20f7043
CM
160 return 0;
161
d5178578
JT
162 shash->tfm = fs_info->csum_shash;
163
d20f7043 164 for (i = 0; i < cb->nr_pages; i++) {
04d4ba4c
QW
165 u32 pg_offset;
166 u32 bytes_left = PAGE_SIZE;
d20f7043 167 page = cb->compressed_pages[i];
d20f7043 168
04d4ba4c
QW
169 /* Determine the remaining bytes inside the page first */
170 if (i == cb->nr_pages - 1)
171 bytes_left = cb->compressed_len - i * PAGE_SIZE;
172
173 /* Hash through the page sector by sector */
174 for (pg_offset = 0; pg_offset < bytes_left;
175 pg_offset += sectorsize) {
4c2bf276 176 kaddr = page_address(page);
04d4ba4c
QW
177 crypto_shash_digest(shash, kaddr + pg_offset,
178 sectorsize, csum);
04d4ba4c
QW
179
180 if (memcmp(&csum, cb_sum, csum_size) != 0) {
181 btrfs_print_data_csum_error(inode, disk_start,
182 csum, cb_sum, cb->mirror_num);
c3a3b19b 183 if (btrfs_bio(bio)->device)
04d4ba4c 184 btrfs_dev_stat_inc_and_print(
c3a3b19b 185 btrfs_bio(bio)->device,
04d4ba4c
QW
186 BTRFS_DEV_STAT_CORRUPTION_ERRS);
187 return -EIO;
188 }
189 cb_sum += csum_size;
190 disk_start += sectorsize;
d20f7043 191 }
d20f7043 192 }
93c4c033 193 return 0;
d20f7043
CM
194}
195
6ec9765d
QW
196/*
197 * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
198 *
199 * Return true if there is no pending bio nor io.
200 * Return false otherwise.
201 */
202static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
203{
204 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
205 unsigned int bi_size = 0;
206 bool last_io = false;
207 struct bio_vec *bvec;
208 struct bvec_iter_all iter_all;
209
210 /*
211 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
212 * Thus here we have to iterate through all segments to grab correct
213 * bio size.
214 */
215 bio_for_each_segment_all(bvec, bio, iter_all)
216 bi_size += bvec->bv_len;
217
218 if (bio->bi_status)
219 cb->errors = 1;
220
221 ASSERT(bi_size && bi_size <= cb->compressed_len);
222 last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
223 &cb->pending_sectors);
86ccbb4d
QW
224 /*
225 * Here we must wake up the possible error handler after all other
226 * operations on @cb finished, or we can race with
227 * finish_compressed_bio_*() which may free @cb.
228 */
229 wake_up_var(cb);
230
6ec9765d
QW
231 return last_io;
232}
233
86ccbb4d
QW
234static void finish_compressed_bio_read(struct compressed_bio *cb, struct bio *bio)
235{
236 unsigned int index;
237 struct page *page;
238
239 /* Release the compressed pages */
240 for (index = 0; index < cb->nr_pages; index++) {
241 page = cb->compressed_pages[index];
242 page->mapping = NULL;
243 put_page(page);
244 }
245
246 /* Do io completion on the original bio */
247 if (cb->errors) {
248 bio_io_error(cb->orig_bio);
249 } else {
250 struct bio_vec *bvec;
251 struct bvec_iter_all iter_all;
252
253 ASSERT(bio);
254 ASSERT(!bio->bi_status);
255 /*
256 * We have verified the checksum already, set page checked so
257 * the end_io handlers know about it
258 */
259 ASSERT(!bio_flagged(bio, BIO_CLONED));
260 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
261 u64 bvec_start = page_offset(bvec->bv_page) +
262 bvec->bv_offset;
263
264 btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
265 bvec->bv_page, bvec_start,
266 bvec->bv_len);
267 }
268
269 bio_endio(cb->orig_bio);
270 }
271
272 /* Finally free the cb struct */
273 kfree(cb->compressed_pages);
274 kfree(cb);
275}
276
c8b97818
CM
277/* when we finish reading compressed pages from the disk, we
278 * decompress them and then run the bio end_io routines on the
279 * decompressed pages (in the inode address space).
280 *
281 * This allows the checksumming and other IO error handling routines
282 * to work normally
283 *
284 * The compressed pages are freed here, and it must be run
285 * in process context
286 */
4246a0b6 287static void end_compressed_bio_read(struct bio *bio)
c8b97818 288{
c8b97818
CM
289 struct compressed_bio *cb = bio->bi_private;
290 struct inode *inode;
c3a3b19b 291 unsigned int mirror = btrfs_bio(bio)->mirror_num;
e6311f24 292 int ret = 0;
c8b97818 293
6ec9765d 294 if (!dec_and_test_compressed_bio(cb, bio))
c8b97818
CM
295 goto out;
296
cf1167d5
LB
297 /*
298 * Record the correct mirror_num in cb->orig_bio so that
299 * read-repair can work properly.
300 */
c3a3b19b 301 btrfs_bio(cb->orig_bio)->mirror_num = mirror;
cf1167d5
LB
302 cb->mirror_num = mirror;
303
e6311f24
LB
304 /*
305 * Some IO in this cb have failed, just skip checksum as there
306 * is no way it could be correct.
307 */
308 if (cb->errors == 1)
309 goto csum_failed;
310
d20f7043 311 inode = cb->inode;
5a9472fe 312 ret = check_compressed_csum(BTRFS_I(inode), bio,
1201b58b 313 bio->bi_iter.bi_sector << 9);
d20f7043
CM
314 if (ret)
315 goto csum_failed;
316
c8b97818
CM
317 /* ok, we're the last bio for this extent, lets start
318 * the decompression.
319 */
8140dc30
AJ
320 ret = btrfs_decompress_bio(cb);
321
d20f7043 322csum_failed:
c8b97818
CM
323 if (ret)
324 cb->errors = 1;
86ccbb4d 325 finish_compressed_bio_read(cb, bio);
c8b97818
CM
326out:
327 bio_put(bio);
328}
329
330/*
331 * Clear the writeback bits on all of the file
332 * pages for a compressed write
333 */
7bdcefc1
FM
334static noinline void end_compressed_writeback(struct inode *inode,
335 const struct compressed_bio *cb)
c8b97818 336{
09cbfeaf
KS
337 unsigned long index = cb->start >> PAGE_SHIFT;
338 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
c8b97818
CM
339 struct page *pages[16];
340 unsigned long nr_pages = end_index - index + 1;
341 int i;
342 int ret;
343
7bdcefc1
FM
344 if (cb->errors)
345 mapping_set_error(inode->i_mapping, -EIO);
346
d397712b 347 while (nr_pages > 0) {
c8b97818 348 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
349 min_t(unsigned long,
350 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
351 if (ret == 0) {
352 nr_pages -= 1;
353 index += 1;
354 continue;
355 }
356 for (i = 0; i < ret; i++) {
7bdcefc1
FM
357 if (cb->errors)
358 SetPageError(pages[i]);
c8b97818 359 end_page_writeback(pages[i]);
09cbfeaf 360 put_page(pages[i]);
c8b97818
CM
361 }
362 nr_pages -= ret;
363 index += ret;
364 }
365 /* the inode may be gone now */
c8b97818
CM
366}
367
6853c64a 368static void finish_compressed_bio_write(struct compressed_bio *cb)
c8b97818 369{
6853c64a 370 struct inode *inode = cb->inode;
1d08ce58 371 unsigned int index;
c8b97818 372
6853c64a
QW
373 /*
374 * Ok, we're the last bio for this extent, step one is to call back
375 * into the FS and do all the end_io operations.
c8b97818 376 */
38a39ac7 377 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
c629732d 378 cb->start, cb->start + cb->len - 1,
240246f6 379 !cb->errors);
c8b97818 380
7bdcefc1 381 end_compressed_writeback(inode, cb);
6853c64a 382 /* Note, our inode could be gone now */
c8b97818
CM
383
384 /*
6853c64a 385 * Release the compressed pages, these came from alloc_page and
c8b97818
CM
386 * are not attached to the inode at all
387 */
c8b97818 388 for (index = 0; index < cb->nr_pages; index++) {
6853c64a
QW
389 struct page *page = cb->compressed_pages[index];
390
c8b97818 391 page->mapping = NULL;
09cbfeaf 392 put_page(page);
c8b97818
CM
393 }
394
6853c64a 395 /* Finally free the cb struct */
c8b97818
CM
396 kfree(cb->compressed_pages);
397 kfree(cb);
6853c64a
QW
398}
399
400/*
401 * Do the cleanup once all the compressed pages hit the disk. This will clear
402 * writeback on the file pages and free the compressed pages.
403 *
404 * This also calls the writeback end hooks for the file pages so that metadata
405 * and checksums can be updated in the file.
406 */
407static void end_compressed_bio_write(struct bio *bio)
408{
409 struct compressed_bio *cb = bio->bi_private;
410
411 if (!dec_and_test_compressed_bio(cb, bio))
412 goto out;
413
414 btrfs_record_physical_zoned(cb->inode, cb->start, bio);
415
416 finish_compressed_bio_write(cb);
c8b97818
CM
417out:
418 bio_put(bio);
419}
420
2d4e0b84
QW
421static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info,
422 struct compressed_bio *cb,
423 struct bio *bio, int mirror_num)
424{
425 blk_status_t ret;
426
427 ASSERT(bio->bi_iter.bi_size);
2d4e0b84
QW
428 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
429 if (ret)
430 return ret;
431 ret = btrfs_map_bio(fs_info, bio, mirror_num);
432 return ret;
433}
434
22c306fe 435/*
f472c28f
QW
436 * Allocate a compressed_bio, which will be used to read/write on-disk
437 * (aka, compressed) * data.
438 *
439 * @cb: The compressed_bio structure, which records all the needed
440 * information to bind the compressed data to the uncompressed
441 * page cache.
442 * @disk_byten: The logical bytenr where the compressed data will be read
443 * from or written to.
444 * @endio_func: The endio function to call after the IO for compressed data
445 * is finished.
446 * @next_stripe_start: Return value of logical bytenr of where next stripe starts.
447 * Let the caller know to only fill the bio up to the stripe
448 * boundary.
22c306fe 449 */
f472c28f
QW
450
451
22c306fe 452static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
f472c28f
QW
453 unsigned int opf, bio_end_io_t endio_func,
454 u64 *next_stripe_start)
22c306fe 455{
f472c28f
QW
456 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
457 struct btrfs_io_geometry geom;
458 struct extent_map *em;
22c306fe 459 struct bio *bio;
f472c28f 460 int ret;
22c306fe
QW
461
462 bio = btrfs_bio_alloc(BIO_MAX_VECS);
463
464 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
465 bio->bi_opf = opf;
466 bio->bi_private = cb;
467 bio->bi_end_io = endio_func;
468
f472c28f
QW
469 em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
470 if (IS_ERR(em)) {
471 bio_put(bio);
472 return ERR_CAST(em);
473 }
22c306fe 474
f472c28f
QW
475 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
476 bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
477
478 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
479 free_extent_map(em);
480 if (ret < 0) {
481 bio_put(bio);
482 return ERR_PTR(ret);
22c306fe 483 }
f472c28f
QW
484 *next_stripe_start = disk_bytenr + geom.len;
485
22c306fe
QW
486 return bio;
487}
488
c8b97818
CM
489/*
490 * worker function to build and submit bios for previously compressed pages.
491 * The corresponding pages in the inode should be marked for writeback
492 * and the compressed pages should have a reference on them for dropping
493 * when the IO is complete.
494 *
495 * This also checksums the file bytes and gets things ready for
496 * the end io hooks.
497 */
c7ee1819 498blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
65b5355f
AJ
499 unsigned int len, u64 disk_start,
500 unsigned int compressed_len,
c8b97818 501 struct page **compressed_pages,
65b5355f 502 unsigned int nr_pages,
ec39f769
CM
503 unsigned int write_flags,
504 struct cgroup_subsys_state *blkcg_css)
c8b97818 505{
c7ee1819 506 struct btrfs_fs_info *fs_info = inode->root->fs_info;
c8b97818 507 struct bio *bio = NULL;
c8b97818 508 struct compressed_bio *cb;
91507240 509 u64 cur_disk_bytenr = disk_start;
f472c28f 510 u64 next_stripe_start;
4e4cbee9 511 blk_status_t ret;
c7ee1819 512 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
764c7c9a
JT
513 const bool use_append = btrfs_use_zone_append(inode, disk_start);
514 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
c8b97818 515
bbbff01a
QW
516 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
517 IS_ALIGNED(len, fs_info->sectorsize));
2ff7e61e 518 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
dac97e51 519 if (!cb)
4e4cbee9 520 return BLK_STS_RESOURCE;
6ec9765d 521 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
c8b97818 522 cb->errors = 0;
c7ee1819 523 cb->inode = &inode->vfs_inode;
c8b97818
CM
524 cb->start = start;
525 cb->len = len;
d20f7043 526 cb->mirror_num = 0;
c8b97818
CM
527 cb->compressed_pages = compressed_pages;
528 cb->compressed_len = compressed_len;
529 cb->orig_bio = NULL;
530 cb->nr_pages = nr_pages;
531
91507240
QW
532 while (cur_disk_bytenr < disk_start + compressed_len) {
533 u64 offset = cur_disk_bytenr - disk_start;
534 unsigned int index = offset >> PAGE_SHIFT;
535 unsigned int real_size;
536 unsigned int added;
537 struct page *page = compressed_pages[index];
538 bool submit = false;
539
540 /* Allocate new bio if submitted or not yet allocated */
541 if (!bio) {
542 bio = alloc_compressed_bio(cb, cur_disk_bytenr,
543 bio_op | write_flags, end_compressed_bio_write,
544 &next_stripe_start);
545 if (IS_ERR(bio)) {
546 ret = errno_to_blk_status(PTR_ERR(bio));
547 bio = NULL;
548 goto finish_cb;
549 }
550 }
4c80a97d 551 /*
91507240
QW
552 * We should never reach next_stripe_start start as we will
553 * submit comp_bio when reach the boundary immediately.
4c80a97d 554 */
91507240 555 ASSERT(cur_disk_bytenr != next_stripe_start);
764c7c9a 556
91507240
QW
557 /*
558 * We have various limits on the real read size:
559 * - stripe boundary
560 * - page boundary
561 * - compressed length boundary
562 */
563 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
564 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
565 real_size = min_t(u64, real_size, compressed_len - offset);
566 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
567
568 if (use_append)
569 added = bio_add_zone_append_page(bio, page, real_size,
570 offset_in_page(offset));
571 else
572 added = bio_add_page(bio, page, real_size,
573 offset_in_page(offset));
574 /* Reached zoned boundary */
575 if (added == 0)
576 submit = true;
577
578 cur_disk_bytenr += added;
579 /* Reached stripe boundary */
580 if (cur_disk_bytenr == next_stripe_start)
581 submit = true;
582
583 /* Finished the range */
584 if (cur_disk_bytenr == disk_start + compressed_len)
585 submit = true;
586
587 if (submit) {
e55179b3 588 if (!skip_sum) {
c7ee1819 589 ret = btrfs_csum_one_bio(inode, bio, start, 1);
6853c64a
QW
590 if (ret)
591 goto finish_cb;
e55179b3 592 }
d20f7043 593
2d4e0b84 594 ret = submit_compressed_bio(fs_info, cb, bio, 0);
6853c64a
QW
595 if (ret)
596 goto finish_cb;
91507240 597 bio = NULL;
c8b97818 598 }
771ed689 599 cond_resched();
c8b97818 600 }
46bcff2b
DZ
601 if (blkcg_css)
602 kthread_associate_blkcg(NULL);
603
c8b97818 604 return 0;
6853c64a
QW
605
606finish_cb:
607 if (bio) {
608 bio->bi_status = ret;
609 bio_endio(bio);
610 }
91507240
QW
611 /* Last byte of @cb is submitted, endio will free @cb */
612 if (cur_disk_bytenr == disk_start + compressed_len)
613 return ret;
6853c64a 614
91507240
QW
615 wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
616 (disk_start + compressed_len - cur_disk_bytenr) >>
617 fs_info->sectorsize_bits);
6853c64a
QW
618 /*
619 * Even with previous bio ended, we should still have io not yet
620 * submitted, thus need to finish manually.
621 */
622 ASSERT(refcount_read(&cb->pending_sectors));
623 /* Now we are the only one referring @cb, can finish it safely. */
624 finish_compressed_bio_write(cb);
625 return ret;
c8b97818
CM
626}
627
2a4d0c90
CH
628static u64 bio_end_offset(struct bio *bio)
629{
c45a8f2d 630 struct bio_vec *last = bio_last_bvec_all(bio);
2a4d0c90
CH
631
632 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
633}
634
6a404910
QW
635/*
636 * Add extra pages in the same compressed file extent so that we don't need to
637 * re-read the same extent again and again.
638 *
639 * NOTE: this won't work well for subpage, as for subpage read, we lock the
640 * full page then submit bio for each compressed/regular extents.
641 *
642 * This means, if we have several sectors in the same page points to the same
643 * on-disk compressed data, we will re-read the same extent many times and
644 * this function can only help for the next page.
645 */
771ed689
CM
646static noinline int add_ra_bio_pages(struct inode *inode,
647 u64 compressed_end,
648 struct compressed_bio *cb)
649{
6a404910 650 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689 651 unsigned long end_index;
6a404910 652 u64 cur = bio_end_offset(cb->orig_bio);
771ed689
CM
653 u64 isize = i_size_read(inode);
654 int ret;
655 struct page *page;
771ed689
CM
656 struct extent_map *em;
657 struct address_space *mapping = inode->i_mapping;
771ed689
CM
658 struct extent_map_tree *em_tree;
659 struct extent_io_tree *tree;
6a404910 660 int sectors_missed = 0;
771ed689 661
771ed689
CM
662 em_tree = &BTRFS_I(inode)->extent_tree;
663 tree = &BTRFS_I(inode)->io_tree;
664
665 if (isize == 0)
666 return 0;
667
ca62e85d
QW
668 /*
669 * For current subpage support, we only support 64K page size,
670 * which means maximum compressed extent size (128K) is just 2x page
671 * size.
672 * This makes readahead less effective, so here disable readahead for
673 * subpage for now, until full compressed write is supported.
674 */
675 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
676 return 0;
677
09cbfeaf 678 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
771ed689 679
6a404910
QW
680 while (cur < compressed_end) {
681 u64 page_end;
682 u64 pg_index = cur >> PAGE_SHIFT;
683 u32 add_size;
771ed689 684
306e16ce 685 if (pg_index > end_index)
771ed689
CM
686 break;
687
0a943c65 688 page = xa_load(&mapping->i_pages, pg_index);
3159f943 689 if (page && !xa_is_value(page)) {
6a404910
QW
690 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
691 fs_info->sectorsize_bits;
692
693 /* Beyond threshold, no need to continue */
694 if (sectors_missed > 4)
771ed689 695 break;
6a404910
QW
696
697 /*
698 * Jump to next page start as we already have page for
699 * current offset.
700 */
701 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
702 continue;
771ed689
CM
703 }
704
c62d2555
MH
705 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
706 ~__GFP_FS));
771ed689
CM
707 if (!page)
708 break;
709
c62d2555 710 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
09cbfeaf 711 put_page(page);
6a404910
QW
712 /* There is already a page, skip to page end */
713 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
714 continue;
771ed689
CM
715 }
716
32443de3
QW
717 ret = set_page_extent_mapped(page);
718 if (ret < 0) {
719 unlock_page(page);
720 put_page(page);
721 break;
722 }
723
6a404910
QW
724 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
725 lock_extent(tree, cur, page_end);
890871be 726 read_lock(&em_tree->lock);
6a404910 727 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
890871be 728 read_unlock(&em_tree->lock);
771ed689 729
6a404910
QW
730 /*
731 * At this point, we have a locked page in the page cache for
732 * these bytes in the file. But, we have to make sure they map
733 * to this compressed extent on disk.
734 */
735 if (!em || cur < em->start ||
736 (cur + fs_info->sectorsize > extent_map_end(em)) ||
4f024f37 737 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 738 free_extent_map(em);
6a404910 739 unlock_extent(tree, cur, page_end);
771ed689 740 unlock_page(page);
09cbfeaf 741 put_page(page);
771ed689
CM
742 break;
743 }
744 free_extent_map(em);
745
746 if (page->index == end_index) {
7073017a 747 size_t zero_offset = offset_in_page(isize);
771ed689
CM
748
749 if (zero_offset) {
750 int zeros;
09cbfeaf 751 zeros = PAGE_SIZE - zero_offset;
d048b9c2 752 memzero_page(page, zero_offset, zeros);
771ed689 753 flush_dcache_page(page);
771ed689
CM
754 }
755 }
756
6a404910
QW
757 add_size = min(em->start + em->len, page_end + 1) - cur;
758 ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
759 if (ret != add_size) {
760 unlock_extent(tree, cur, page_end);
771ed689 761 unlock_page(page);
09cbfeaf 762 put_page(page);
771ed689
CM
763 break;
764 }
6a404910
QW
765 /*
766 * If it's subpage, we also need to increase its
767 * subpage::readers number, as at endio we will decrease
768 * subpage::readers and to unlock the page.
769 */
770 if (fs_info->sectorsize < PAGE_SIZE)
771 btrfs_subpage_start_reader(fs_info, page, cur, add_size);
772 put_page(page);
773 cur += add_size;
771ed689 774 }
771ed689
CM
775 return 0;
776}
777
c8b97818
CM
778/*
779 * for a compressed read, the bio we get passed has all the inode pages
780 * in it. We don't actually do IO on those pages but allocate new ones
781 * to hold the compressed pages on disk.
782 *
4f024f37 783 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818 784 * bio->bi_io_vec points to all of the inode pages
c8b97818
CM
785 *
786 * After the compressed pages are read, we copy the bytes into the
787 * bio we were passed and then call the bio end_io calls
788 */
4e4cbee9 789blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
c8b97818
CM
790 int mirror_num, unsigned long bio_flags)
791{
0b246afa 792 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818
CM
793 struct extent_map_tree *em_tree;
794 struct compressed_bio *cb;
356b4a2d
AJ
795 unsigned int compressed_len;
796 unsigned int nr_pages;
797 unsigned int pg_index;
f472c28f
QW
798 struct bio *comp_bio = NULL;
799 const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
800 u64 cur_disk_byte = disk_bytenr;
801 u64 next_stripe_start;
557023ea 802 u64 file_offset;
e04ca626
CM
803 u64 em_len;
804 u64 em_start;
c8b97818 805 struct extent_map *em;
4e4cbee9 806 blk_status_t ret = BLK_STS_RESOURCE;
15e3004a 807 int faili = 0;
10fe6ca8 808 u8 *sums;
c8b97818 809
c8b97818
CM
810 em_tree = &BTRFS_I(inode)->extent_tree;
811
557023ea
QW
812 file_offset = bio_first_bvec_all(bio)->bv_offset +
813 page_offset(bio_first_page_all(bio));
814
c8b97818 815 /* we need the actual starting offset of this extent in the file */
890871be 816 read_lock(&em_tree->lock);
557023ea 817 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
890871be 818 read_unlock(&em_tree->lock);
285190d9 819 if (!em)
4e4cbee9 820 return BLK_STS_IOERR;
c8b97818 821
557023ea 822 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
d20f7043 823 compressed_len = em->block_len;
2ff7e61e 824 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
6b82ce8d 825 if (!cb)
826 goto out;
827
6ec9765d 828 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
c8b97818
CM
829 cb->errors = 0;
830 cb->inode = inode;
d20f7043 831 cb->mirror_num = mirror_num;
10fe6ca8 832 sums = cb->sums;
c8b97818 833
ff5b7ee3 834 cb->start = em->orig_start;
e04ca626
CM
835 em_len = em->len;
836 em_start = em->start;
d20f7043 837
c8b97818 838 free_extent_map(em);
e04ca626 839 em = NULL;
c8b97818 840
81381053 841 cb->len = bio->bi_iter.bi_size;
c8b97818 842 cb->compressed_len = compressed_len;
261507a0 843 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
844 cb->orig_bio = bio;
845
09cbfeaf 846 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
31e818fe 847 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
c8b97818 848 GFP_NOFS);
6b82ce8d 849 if (!cb->compressed_pages)
850 goto fail1;
851
306e16ce 852 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
b0ee5e1e 853 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
15e3004a
JB
854 if (!cb->compressed_pages[pg_index]) {
855 faili = pg_index - 1;
0e9350de 856 ret = BLK_STS_RESOURCE;
6b82ce8d 857 goto fail2;
15e3004a 858 }
c8b97818 859 }
15e3004a 860 faili = nr_pages - 1;
c8b97818
CM
861 cb->nr_pages = nr_pages;
862
7f042a83 863 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 864
771ed689 865 /* include any pages we added in add_ra-bio_pages */
81381053 866 cb->len = bio->bi_iter.bi_size;
771ed689 867
f472c28f
QW
868 while (cur_disk_byte < disk_bytenr + compressed_len) {
869 u64 offset = cur_disk_byte - disk_bytenr;
870 unsigned int index = offset >> PAGE_SHIFT;
871 unsigned int real_size;
872 unsigned int added;
873 struct page *page = cb->compressed_pages[index];
874 bool submit = false;
c8b97818 875
f472c28f
QW
876 /* Allocate new bio if submitted or not yet allocated */
877 if (!comp_bio) {
878 comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
879 REQ_OP_READ, end_compressed_bio_read,
880 &next_stripe_start);
881 if (IS_ERR(comp_bio)) {
882 ret = errno_to_blk_status(PTR_ERR(comp_bio));
883 comp_bio = NULL;
884 goto finish_cb;
885 }
886 }
887 /*
888 * We should never reach next_stripe_start start as we will
889 * submit comp_bio when reach the boundary immediately.
890 */
891 ASSERT(cur_disk_byte != next_stripe_start);
892 /*
893 * We have various limit on the real read size:
894 * - stripe boundary
895 * - page boundary
896 * - compressed length boundary
897 */
898 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
899 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
900 real_size = min_t(u64, real_size, compressed_len - offset);
901 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
4e4cbee9 902
f472c28f 903 added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
be6a1361 904 /*
f472c28f
QW
905 * Maximum compressed extent is smaller than bio size limit,
906 * thus bio_add_page() should always success.
be6a1361 907 */
f472c28f
QW
908 ASSERT(added == real_size);
909 cur_disk_byte += added;
be6a1361 910
f472c28f
QW
911 /* Reached stripe boundary, need to submit */
912 if (cur_disk_byte == next_stripe_start)
913 submit = true;
d20f7043 914
f472c28f
QW
915 /* Has finished the range, need to submit */
916 if (cur_disk_byte == disk_bytenr + compressed_len)
917 submit = true;
c8b97818 918
f472c28f 919 if (submit) {
10fe6ca8
JT
920 unsigned int nr_sectors;
921
6275193e 922 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
86ccbb4d
QW
923 if (ret)
924 goto finish_cb;
10fe6ca8
JT
925
926 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
927 fs_info->sectorsize);
713cebfb 928 sums += fs_info->csum_size * nr_sectors;
d20f7043 929
2d4e0b84 930 ret = submit_compressed_bio(fs_info, cb, comp_bio, mirror_num);
86ccbb4d
QW
931 if (ret)
932 goto finish_cb;
f472c28f 933 comp_bio = NULL;
c8b97818 934 }
c8b97818 935 }
c8b97818 936 return 0;
6b82ce8d 937
938fail2:
15e3004a
JB
939 while (faili >= 0) {
940 __free_page(cb->compressed_pages[faili]);
941 faili--;
942 }
6b82ce8d 943
944 kfree(cb->compressed_pages);
945fail1:
946 kfree(cb);
947out:
948 free_extent_map(em);
949 return ret;
86ccbb4d
QW
950finish_cb:
951 if (comp_bio) {
952 comp_bio->bi_status = ret;
953 bio_endio(comp_bio);
954 }
f472c28f
QW
955 /* All bytes of @cb is submitted, endio will free @cb */
956 if (cur_disk_byte == disk_bytenr + compressed_len)
957 return ret;
958
959 wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
960 (disk_bytenr + compressed_len - cur_disk_byte) >>
961 fs_info->sectorsize_bits);
86ccbb4d
QW
962 /*
963 * Even with previous bio ended, we should still have io not yet
964 * submitted, thus need to finish @cb manually.
965 */
966 ASSERT(refcount_read(&cb->pending_sectors));
967 /* Now we are the only one referring @cb, can finish it safely. */
968 finish_compressed_bio_read(cb, NULL);
969 return ret;
c8b97818 970}
261507a0 971
17b5a6c1
TT
972/*
973 * Heuristic uses systematic sampling to collect data from the input data
974 * range, the logic can be tuned by the following constants:
975 *
976 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
977 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
978 */
979#define SAMPLING_READ_SIZE (16)
980#define SAMPLING_INTERVAL (256)
981
982/*
983 * For statistical analysis of the input data we consider bytes that form a
984 * Galois Field of 256 objects. Each object has an attribute count, ie. how
985 * many times the object appeared in the sample.
986 */
987#define BUCKET_SIZE (256)
988
989/*
990 * The size of the sample is based on a statistical sampling rule of thumb.
991 * The common way is to perform sampling tests as long as the number of
992 * elements in each cell is at least 5.
993 *
994 * Instead of 5, we choose 32 to obtain more accurate results.
995 * If the data contain the maximum number of symbols, which is 256, we obtain a
996 * sample size bound by 8192.
997 *
998 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
999 * from up to 512 locations.
1000 */
1001#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
1002 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
1003
1004struct bucket_item {
1005 u32 count;
1006};
4e439a0b
TT
1007
1008struct heuristic_ws {
17b5a6c1
TT
1009 /* Partial copy of input data */
1010 u8 *sample;
a440d48c 1011 u32 sample_size;
17b5a6c1
TT
1012 /* Buckets store counters for each byte value */
1013 struct bucket_item *bucket;
440c840c
TT
1014 /* Sorting buffer */
1015 struct bucket_item *bucket_b;
4e439a0b
TT
1016 struct list_head list;
1017};
1018
92ee5530
DZ
1019static struct workspace_manager heuristic_wsm;
1020
4e439a0b
TT
1021static void free_heuristic_ws(struct list_head *ws)
1022{
1023 struct heuristic_ws *workspace;
1024
1025 workspace = list_entry(ws, struct heuristic_ws, list);
1026
17b5a6c1
TT
1027 kvfree(workspace->sample);
1028 kfree(workspace->bucket);
440c840c 1029 kfree(workspace->bucket_b);
4e439a0b
TT
1030 kfree(workspace);
1031}
1032
7bf49943 1033static struct list_head *alloc_heuristic_ws(unsigned int level)
4e439a0b
TT
1034{
1035 struct heuristic_ws *ws;
1036
1037 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
1038 if (!ws)
1039 return ERR_PTR(-ENOMEM);
1040
17b5a6c1
TT
1041 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
1042 if (!ws->sample)
1043 goto fail;
1044
1045 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
1046 if (!ws->bucket)
1047 goto fail;
4e439a0b 1048
440c840c
TT
1049 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
1050 if (!ws->bucket_b)
1051 goto fail;
1052
17b5a6c1 1053 INIT_LIST_HEAD(&ws->list);
4e439a0b 1054 return &ws->list;
17b5a6c1
TT
1055fail:
1056 free_heuristic_ws(&ws->list);
1057 return ERR_PTR(-ENOMEM);
4e439a0b
TT
1058}
1059
ca4ac360 1060const struct btrfs_compress_op btrfs_heuristic_compress = {
be951045 1061 .workspace_manager = &heuristic_wsm,
ca4ac360
DZ
1062};
1063
e8c9f186 1064static const struct btrfs_compress_op * const btrfs_compress_op[] = {
ca4ac360
DZ
1065 /* The heuristic is represented as compression type 0 */
1066 &btrfs_heuristic_compress,
261507a0 1067 &btrfs_zlib_compress,
a6fa6fae 1068 &btrfs_lzo_compress,
5c1aab1d 1069 &btrfs_zstd_compress,
261507a0
LZ
1070};
1071
c778df14
DS
1072static struct list_head *alloc_workspace(int type, unsigned int level)
1073{
1074 switch (type) {
1075 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
1076 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
1077 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
1078 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
1079 default:
1080 /*
1081 * This can't happen, the type is validated several times
1082 * before we get here.
1083 */
1084 BUG();
1085 }
1086}
1087
1e002351
DS
1088static void free_workspace(int type, struct list_head *ws)
1089{
1090 switch (type) {
1091 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
1092 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
1093 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
1094 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
1095 default:
1096 /*
1097 * This can't happen, the type is validated several times
1098 * before we get here.
1099 */
1100 BUG();
1101 }
1102}
1103
d5517033 1104static void btrfs_init_workspace_manager(int type)
261507a0 1105{
0cf25213 1106 struct workspace_manager *wsm;
4e439a0b 1107 struct list_head *workspace;
261507a0 1108
0cf25213 1109 wsm = btrfs_compress_op[type]->workspace_manager;
92ee5530
DZ
1110 INIT_LIST_HEAD(&wsm->idle_ws);
1111 spin_lock_init(&wsm->ws_lock);
1112 atomic_set(&wsm->total_ws, 0);
1113 init_waitqueue_head(&wsm->ws_wait);
f77dd0d6 1114
1666edab
DZ
1115 /*
1116 * Preallocate one workspace for each compression type so we can
1117 * guarantee forward progress in the worst case
1118 */
c778df14 1119 workspace = alloc_workspace(type, 0);
1666edab
DZ
1120 if (IS_ERR(workspace)) {
1121 pr_warn(
1122 "BTRFS: cannot preallocate compression workspace, will try later\n");
1123 } else {
92ee5530
DZ
1124 atomic_set(&wsm->total_ws, 1);
1125 wsm->free_ws = 1;
1126 list_add(workspace, &wsm->idle_ws);
1666edab
DZ
1127 }
1128}
1129
2510307e 1130static void btrfs_cleanup_workspace_manager(int type)
1666edab 1131{
2dba7143 1132 struct workspace_manager *wsman;
1666edab
DZ
1133 struct list_head *ws;
1134
2dba7143 1135 wsman = btrfs_compress_op[type]->workspace_manager;
1666edab
DZ
1136 while (!list_empty(&wsman->idle_ws)) {
1137 ws = wsman->idle_ws.next;
1138 list_del(ws);
1e002351 1139 free_workspace(type, ws);
1666edab 1140 atomic_dec(&wsman->total_ws);
261507a0 1141 }
261507a0
LZ
1142}
1143
1144/*
e721e49d
DS
1145 * This finds an available workspace or allocates a new one.
1146 * If it's not possible to allocate a new one, waits until there's one.
1147 * Preallocation makes a forward progress guarantees and we do not return
1148 * errors.
261507a0 1149 */
5907a9bb 1150struct list_head *btrfs_get_workspace(int type, unsigned int level)
261507a0 1151{
5907a9bb 1152 struct workspace_manager *wsm;
261507a0
LZ
1153 struct list_head *workspace;
1154 int cpus = num_online_cpus();
fe308533 1155 unsigned nofs_flag;
4e439a0b
TT
1156 struct list_head *idle_ws;
1157 spinlock_t *ws_lock;
1158 atomic_t *total_ws;
1159 wait_queue_head_t *ws_wait;
1160 int *free_ws;
1161
5907a9bb 1162 wsm = btrfs_compress_op[type]->workspace_manager;
92ee5530
DZ
1163 idle_ws = &wsm->idle_ws;
1164 ws_lock = &wsm->ws_lock;
1165 total_ws = &wsm->total_ws;
1166 ws_wait = &wsm->ws_wait;
1167 free_ws = &wsm->free_ws;
261507a0 1168
261507a0 1169again:
d9187649
BL
1170 spin_lock(ws_lock);
1171 if (!list_empty(idle_ws)) {
1172 workspace = idle_ws->next;
261507a0 1173 list_del(workspace);
6ac10a6a 1174 (*free_ws)--;
d9187649 1175 spin_unlock(ws_lock);
261507a0
LZ
1176 return workspace;
1177
1178 }
6ac10a6a 1179 if (atomic_read(total_ws) > cpus) {
261507a0
LZ
1180 DEFINE_WAIT(wait);
1181
d9187649
BL
1182 spin_unlock(ws_lock);
1183 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
6ac10a6a 1184 if (atomic_read(total_ws) > cpus && !*free_ws)
261507a0 1185 schedule();
d9187649 1186 finish_wait(ws_wait, &wait);
261507a0
LZ
1187 goto again;
1188 }
6ac10a6a 1189 atomic_inc(total_ws);
d9187649 1190 spin_unlock(ws_lock);
261507a0 1191
fe308533
DS
1192 /*
1193 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1194 * to turn it off here because we might get called from the restricted
1195 * context of btrfs_compress_bio/btrfs_compress_pages
1196 */
1197 nofs_flag = memalloc_nofs_save();
c778df14 1198 workspace = alloc_workspace(type, level);
fe308533
DS
1199 memalloc_nofs_restore(nofs_flag);
1200
261507a0 1201 if (IS_ERR(workspace)) {
6ac10a6a 1202 atomic_dec(total_ws);
d9187649 1203 wake_up(ws_wait);
e721e49d
DS
1204
1205 /*
1206 * Do not return the error but go back to waiting. There's a
1207 * workspace preallocated for each type and the compression
1208 * time is bounded so we get to a workspace eventually. This
1209 * makes our caller's life easier.
52356716
DS
1210 *
1211 * To prevent silent and low-probability deadlocks (when the
1212 * initial preallocation fails), check if there are any
1213 * workspaces at all.
e721e49d 1214 */
52356716
DS
1215 if (atomic_read(total_ws) == 0) {
1216 static DEFINE_RATELIMIT_STATE(_rs,
1217 /* once per minute */ 60 * HZ,
1218 /* no burst */ 1);
1219
1220 if (__ratelimit(&_rs)) {
ab8d0fc4 1221 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
52356716
DS
1222 }
1223 }
e721e49d 1224 goto again;
261507a0
LZ
1225 }
1226 return workspace;
1227}
1228
7bf49943 1229static struct list_head *get_workspace(int type, int level)
929f4baf 1230{
6a0d1272 1231 switch (type) {
5907a9bb 1232 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
6a0d1272 1233 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
5907a9bb 1234 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
6a0d1272
DS
1235 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1236 default:
1237 /*
1238 * This can't happen, the type is validated several times
1239 * before we get here.
1240 */
1241 BUG();
1242 }
929f4baf
DZ
1243}
1244
261507a0
LZ
1245/*
1246 * put a workspace struct back on the list or free it if we have enough
1247 * idle ones sitting around
1248 */
a3bbd2a9 1249void btrfs_put_workspace(int type, struct list_head *ws)
261507a0 1250{
a3bbd2a9 1251 struct workspace_manager *wsm;
4e439a0b
TT
1252 struct list_head *idle_ws;
1253 spinlock_t *ws_lock;
1254 atomic_t *total_ws;
1255 wait_queue_head_t *ws_wait;
1256 int *free_ws;
1257
a3bbd2a9 1258 wsm = btrfs_compress_op[type]->workspace_manager;
92ee5530
DZ
1259 idle_ws = &wsm->idle_ws;
1260 ws_lock = &wsm->ws_lock;
1261 total_ws = &wsm->total_ws;
1262 ws_wait = &wsm->ws_wait;
1263 free_ws = &wsm->free_ws;
d9187649
BL
1264
1265 spin_lock(ws_lock);
26b28dce 1266 if (*free_ws <= num_online_cpus()) {
929f4baf 1267 list_add(ws, idle_ws);
6ac10a6a 1268 (*free_ws)++;
d9187649 1269 spin_unlock(ws_lock);
261507a0
LZ
1270 goto wake;
1271 }
d9187649 1272 spin_unlock(ws_lock);
261507a0 1273
1e002351 1274 free_workspace(type, ws);
6ac10a6a 1275 atomic_dec(total_ws);
261507a0 1276wake:
093258e6 1277 cond_wake_up(ws_wait);
261507a0
LZ
1278}
1279
929f4baf
DZ
1280static void put_workspace(int type, struct list_head *ws)
1281{
bd3a5287 1282 switch (type) {
a3bbd2a9
DS
1283 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1284 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1285 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
bd3a5287
DS
1286 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1287 default:
1288 /*
1289 * This can't happen, the type is validated several times
1290 * before we get here.
1291 */
1292 BUG();
1293 }
929f4baf
DZ
1294}
1295
adbab642
AJ
1296/*
1297 * Adjust @level according to the limits of the compression algorithm or
1298 * fallback to default
1299 */
1300static unsigned int btrfs_compress_set_level(int type, unsigned level)
1301{
1302 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1303
1304 if (level == 0)
1305 level = ops->default_level;
1306 else
1307 level = min(level, ops->max_level);
1308
1309 return level;
1310}
1311
261507a0 1312/*
38c31464
DS
1313 * Given an address space and start and length, compress the bytes into @pages
1314 * that are allocated on demand.
261507a0 1315 *
f51d2b59
DS
1316 * @type_level is encoded algorithm and level, where level 0 means whatever
1317 * default the algorithm chooses and is opaque here;
1318 * - compression algo are 0-3
1319 * - the level are bits 4-7
1320 *
4d3a800e
DS
1321 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1322 * and returns number of actually allocated pages
261507a0 1323 *
38c31464
DS
1324 * @total_in is used to return the number of bytes actually read. It
1325 * may be smaller than the input length if we had to exit early because we
261507a0
LZ
1326 * ran out of room in the pages array or because we cross the
1327 * max_out threshold.
1328 *
38c31464
DS
1329 * @total_out is an in/out parameter, must be set to the input length and will
1330 * be also used to return the total number of compressed bytes
261507a0 1331 */
f51d2b59 1332int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
38c31464 1333 u64 start, struct page **pages,
261507a0
LZ
1334 unsigned long *out_pages,
1335 unsigned long *total_in,
e5d74902 1336 unsigned long *total_out)
261507a0 1337{
1972708a 1338 int type = btrfs_compress_type(type_level);
7bf49943 1339 int level = btrfs_compress_level(type_level);
261507a0
LZ
1340 struct list_head *workspace;
1341 int ret;
1342
b0c1fe1e 1343 level = btrfs_compress_set_level(type, level);
7bf49943 1344 workspace = get_workspace(type, level);
1e4eb746
DS
1345 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1346 out_pages, total_in, total_out);
929f4baf 1347 put_workspace(type, workspace);
261507a0
LZ
1348 return ret;
1349}
1350
8140dc30 1351static int btrfs_decompress_bio(struct compressed_bio *cb)
261507a0
LZ
1352{
1353 struct list_head *workspace;
1354 int ret;
8140dc30 1355 int type = cb->compress_type;
261507a0 1356
7bf49943 1357 workspace = get_workspace(type, 0);
1e4eb746 1358 ret = compression_decompress_bio(type, workspace, cb);
929f4baf 1359 put_workspace(type, workspace);
e1ddce71 1360
261507a0
LZ
1361 return ret;
1362}
1363
1364/*
1365 * a less complex decompression routine. Our compressed data fits in a
1366 * single page, and we want to read a single page out of it.
1367 * start_byte tells us the offset into the compressed data we're interested in
1368 */
1369int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1370 unsigned long start_byte, size_t srclen, size_t destlen)
1371{
1372 struct list_head *workspace;
1373 int ret;
1374
7bf49943 1375 workspace = get_workspace(type, 0);
1e4eb746
DS
1376 ret = compression_decompress(type, workspace, data_in, dest_page,
1377 start_byte, srclen, destlen);
929f4baf 1378 put_workspace(type, workspace);
7bf49943 1379
261507a0
LZ
1380 return ret;
1381}
1382
1666edab
DZ
1383void __init btrfs_init_compress(void)
1384{
d5517033
DS
1385 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1386 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1387 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1388 zstd_init_workspace_manager();
1666edab
DZ
1389}
1390
e67c718b 1391void __cold btrfs_exit_compress(void)
261507a0 1392{
2510307e
DS
1393 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1394 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1395 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1396 zstd_cleanup_workspace_manager();
261507a0 1397}
3a39c18d
LZ
1398
1399/*
1c3dc173 1400 * Copy decompressed data from working buffer to pages.
3a39c18d 1401 *
1c3dc173
QW
1402 * @buf: The decompressed data buffer
1403 * @buf_len: The decompressed data length
1404 * @decompressed: Number of bytes that are already decompressed inside the
1405 * compressed extent
1406 * @cb: The compressed extent descriptor
1407 * @orig_bio: The original bio that the caller wants to read for
3a39c18d 1408 *
1c3dc173
QW
1409 * An easier to understand graph is like below:
1410 *
1411 * |<- orig_bio ->| |<- orig_bio->|
1412 * |<------- full decompressed extent ----->|
1413 * |<----------- @cb range ---->|
1414 * | |<-- @buf_len -->|
1415 * |<--- @decompressed --->|
1416 *
1417 * Note that, @cb can be a subpage of the full decompressed extent, but
1418 * @cb->start always has the same as the orig_file_offset value of the full
1419 * decompressed extent.
1420 *
1421 * When reading compressed extent, we have to read the full compressed extent,
1422 * while @orig_bio may only want part of the range.
1423 * Thus this function will ensure only data covered by @orig_bio will be copied
1424 * to.
1425 *
1426 * Return 0 if we have copied all needed contents for @orig_bio.
1427 * Return >0 if we need continue decompress.
3a39c18d 1428 */
1c3dc173
QW
1429int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1430 struct compressed_bio *cb, u32 decompressed)
3a39c18d 1431{
1c3dc173
QW
1432 struct bio *orig_bio = cb->orig_bio;
1433 /* Offset inside the full decompressed extent */
1434 u32 cur_offset;
1435
1436 cur_offset = decompressed;
1437 /* The main loop to do the copy */
1438 while (cur_offset < decompressed + buf_len) {
1439 struct bio_vec bvec;
1440 size_t copy_len;
1441 u32 copy_start;
1442 /* Offset inside the full decompressed extent */
1443 u32 bvec_offset;
1444
1445 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1446 /*
1447 * cb->start may underflow, but subtracting that value can still
1448 * give us correct offset inside the full decompressed extent.
1449 */
1450 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
974b1adc 1451
1c3dc173
QW
1452 /* Haven't reached the bvec range, exit */
1453 if (decompressed + buf_len <= bvec_offset)
1454 return 1;
3a39c18d 1455
1c3dc173
QW
1456 copy_start = max(cur_offset, bvec_offset);
1457 copy_len = min(bvec_offset + bvec.bv_len,
1458 decompressed + buf_len) - copy_start;
1459 ASSERT(copy_len);
3a39c18d 1460
974b1adc 1461 /*
1c3dc173
QW
1462 * Extra range check to ensure we didn't go beyond
1463 * @buf + @buf_len.
974b1adc 1464 */
1c3dc173
QW
1465 ASSERT(copy_start - decompressed < buf_len);
1466 memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1467 buf + copy_start - decompressed, copy_len);
1468 flush_dcache_page(bvec.bv_page);
1469 cur_offset += copy_len;
3a39c18d 1470
1c3dc173
QW
1471 bio_advance(orig_bio, copy_len);
1472 /* Finished the bio */
1473 if (!orig_bio->bi_iter.bi_size)
1474 return 0;
3a39c18d 1475 }
3a39c18d
LZ
1476 return 1;
1477}
c2fcdcdf 1478
19562430
TT
1479/*
1480 * Shannon Entropy calculation
1481 *
52042d8e 1482 * Pure byte distribution analysis fails to determine compressibility of data.
19562430
TT
1483 * Try calculating entropy to estimate the average minimum number of bits
1484 * needed to encode the sampled data.
1485 *
1486 * For convenience, return the percentage of needed bits, instead of amount of
1487 * bits directly.
1488 *
1489 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1490 * and can be compressible with high probability
1491 *
1492 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1493 *
1494 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1495 */
1496#define ENTROPY_LVL_ACEPTABLE (65)
1497#define ENTROPY_LVL_HIGH (80)
1498
1499/*
1500 * For increasead precision in shannon_entropy calculation,
1501 * let's do pow(n, M) to save more digits after comma:
1502 *
1503 * - maximum int bit length is 64
1504 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1505 * - 13 * 4 = 52 < 64 -> M = 4
1506 *
1507 * So use pow(n, 4).
1508 */
1509static inline u32 ilog2_w(u64 n)
1510{
1511 return ilog2(n * n * n * n);
1512}
1513
1514static u32 shannon_entropy(struct heuristic_ws *ws)
1515{
1516 const u32 entropy_max = 8 * ilog2_w(2);
1517 u32 entropy_sum = 0;
1518 u32 p, p_base, sz_base;
1519 u32 i;
1520
1521 sz_base = ilog2_w(ws->sample_size);
1522 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1523 p = ws->bucket[i].count;
1524 p_base = ilog2_w(p);
1525 entropy_sum += p * (sz_base - p_base);
1526 }
1527
1528 entropy_sum /= ws->sample_size;
1529 return entropy_sum * 100 / entropy_max;
1530}
1531
440c840c
TT
1532#define RADIX_BASE 4U
1533#define COUNTERS_SIZE (1U << RADIX_BASE)
1534
1535static u8 get4bits(u64 num, int shift) {
1536 u8 low4bits;
1537
1538 num >>= shift;
1539 /* Reverse order */
1540 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1541 return low4bits;
1542}
1543
440c840c
TT
1544/*
1545 * Use 4 bits as radix base
52042d8e 1546 * Use 16 u32 counters for calculating new position in buf array
440c840c
TT
1547 *
1548 * @array - array that will be sorted
1549 * @array_buf - buffer array to store sorting results
1550 * must be equal in size to @array
1551 * @num - array size
440c840c 1552 */
23ae8c63 1553static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
36243c91 1554 int num)
858177d3 1555{
440c840c
TT
1556 u64 max_num;
1557 u64 buf_num;
1558 u32 counters[COUNTERS_SIZE];
1559 u32 new_addr;
1560 u32 addr;
1561 int bitlen;
1562 int shift;
1563 int i;
858177d3 1564
440c840c
TT
1565 /*
1566 * Try avoid useless loop iterations for small numbers stored in big
1567 * counters. Example: 48 33 4 ... in 64bit array
1568 */
23ae8c63 1569 max_num = array[0].count;
440c840c 1570 for (i = 1; i < num; i++) {
23ae8c63 1571 buf_num = array[i].count;
440c840c
TT
1572 if (buf_num > max_num)
1573 max_num = buf_num;
1574 }
1575
1576 buf_num = ilog2(max_num);
1577 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1578
1579 shift = 0;
1580 while (shift < bitlen) {
1581 memset(counters, 0, sizeof(counters));
1582
1583 for (i = 0; i < num; i++) {
23ae8c63 1584 buf_num = array[i].count;
440c840c
TT
1585 addr = get4bits(buf_num, shift);
1586 counters[addr]++;
1587 }
1588
1589 for (i = 1; i < COUNTERS_SIZE; i++)
1590 counters[i] += counters[i - 1];
1591
1592 for (i = num - 1; i >= 0; i--) {
23ae8c63 1593 buf_num = array[i].count;
440c840c
TT
1594 addr = get4bits(buf_num, shift);
1595 counters[addr]--;
1596 new_addr = counters[addr];
7add17be 1597 array_buf[new_addr] = array[i];
440c840c
TT
1598 }
1599
1600 shift += RADIX_BASE;
1601
1602 /*
1603 * Normal radix expects to move data from a temporary array, to
1604 * the main one. But that requires some CPU time. Avoid that
1605 * by doing another sort iteration to original array instead of
1606 * memcpy()
1607 */
1608 memset(counters, 0, sizeof(counters));
1609
1610 for (i = 0; i < num; i ++) {
23ae8c63 1611 buf_num = array_buf[i].count;
440c840c
TT
1612 addr = get4bits(buf_num, shift);
1613 counters[addr]++;
1614 }
1615
1616 for (i = 1; i < COUNTERS_SIZE; i++)
1617 counters[i] += counters[i - 1];
1618
1619 for (i = num - 1; i >= 0; i--) {
23ae8c63 1620 buf_num = array_buf[i].count;
440c840c
TT
1621 addr = get4bits(buf_num, shift);
1622 counters[addr]--;
1623 new_addr = counters[addr];
7add17be 1624 array[new_addr] = array_buf[i];
440c840c
TT
1625 }
1626
1627 shift += RADIX_BASE;
1628 }
858177d3
TT
1629}
1630
1631/*
1632 * Size of the core byte set - how many bytes cover 90% of the sample
1633 *
1634 * There are several types of structured binary data that use nearly all byte
1635 * values. The distribution can be uniform and counts in all buckets will be
1636 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1637 *
1638 * Other possibility is normal (Gaussian) distribution, where the data could
1639 * be potentially compressible, but we have to take a few more steps to decide
1640 * how much.
1641 *
1642 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1643 * compression algo can easy fix that
1644 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1645 * probability is not compressible
1646 */
1647#define BYTE_CORE_SET_LOW (64)
1648#define BYTE_CORE_SET_HIGH (200)
1649
1650static int byte_core_set_size(struct heuristic_ws *ws)
1651{
1652 u32 i;
1653 u32 coreset_sum = 0;
1654 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1655 struct bucket_item *bucket = ws->bucket;
1656
1657 /* Sort in reverse order */
36243c91 1658 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
858177d3
TT
1659
1660 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1661 coreset_sum += bucket[i].count;
1662
1663 if (coreset_sum > core_set_threshold)
1664 return i;
1665
1666 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1667 coreset_sum += bucket[i].count;
1668 if (coreset_sum > core_set_threshold)
1669 break;
1670 }
1671
1672 return i;
1673}
1674
a288e92c
TT
1675/*
1676 * Count byte values in buckets.
1677 * This heuristic can detect textual data (configs, xml, json, html, etc).
1678 * Because in most text-like data byte set is restricted to limited number of
1679 * possible characters, and that restriction in most cases makes data easy to
1680 * compress.
1681 *
1682 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1683 * less - compressible
1684 * more - need additional analysis
1685 */
1686#define BYTE_SET_THRESHOLD (64)
1687
1688static u32 byte_set_size(const struct heuristic_ws *ws)
1689{
1690 u32 i;
1691 u32 byte_set_size = 0;
1692
1693 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1694 if (ws->bucket[i].count > 0)
1695 byte_set_size++;
1696 }
1697
1698 /*
1699 * Continue collecting count of byte values in buckets. If the byte
1700 * set size is bigger then the threshold, it's pointless to continue,
1701 * the detection technique would fail for this type of data.
1702 */
1703 for (; i < BUCKET_SIZE; i++) {
1704 if (ws->bucket[i].count > 0) {
1705 byte_set_size++;
1706 if (byte_set_size > BYTE_SET_THRESHOLD)
1707 return byte_set_size;
1708 }
1709 }
1710
1711 return byte_set_size;
1712}
1713
1fe4f6fa
TT
1714static bool sample_repeated_patterns(struct heuristic_ws *ws)
1715{
1716 const u32 half_of_sample = ws->sample_size / 2;
1717 const u8 *data = ws->sample;
1718
1719 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1720}
1721
a440d48c
TT
1722static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1723 struct heuristic_ws *ws)
1724{
1725 struct page *page;
1726 u64 index, index_end;
1727 u32 i, curr_sample_pos;
1728 u8 *in_data;
1729
1730 /*
1731 * Compression handles the input data by chunks of 128KiB
1732 * (defined by BTRFS_MAX_UNCOMPRESSED)
1733 *
1734 * We do the same for the heuristic and loop over the whole range.
1735 *
1736 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1737 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1738 */
1739 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1740 end = start + BTRFS_MAX_UNCOMPRESSED;
1741
1742 index = start >> PAGE_SHIFT;
1743 index_end = end >> PAGE_SHIFT;
1744
1745 /* Don't miss unaligned end */
1746 if (!IS_ALIGNED(end, PAGE_SIZE))
1747 index_end++;
1748
1749 curr_sample_pos = 0;
1750 while (index < index_end) {
1751 page = find_get_page(inode->i_mapping, index);
58c1a35c 1752 in_data = kmap_local_page(page);
a440d48c
TT
1753 /* Handle case where the start is not aligned to PAGE_SIZE */
1754 i = start % PAGE_SIZE;
1755 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1756 /* Don't sample any garbage from the last page */
1757 if (start > end - SAMPLING_READ_SIZE)
1758 break;
1759 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1760 SAMPLING_READ_SIZE);
1761 i += SAMPLING_INTERVAL;
1762 start += SAMPLING_INTERVAL;
1763 curr_sample_pos += SAMPLING_READ_SIZE;
1764 }
58c1a35c 1765 kunmap_local(in_data);
a440d48c
TT
1766 put_page(page);
1767
1768 index++;
1769 }
1770
1771 ws->sample_size = curr_sample_pos;
1772}
1773
c2fcdcdf
TT
1774/*
1775 * Compression heuristic.
1776 *
1777 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1778 * quickly (compared to direct compression) detect data characteristics
1779 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1780 * data.
1781 *
1782 * The following types of analysis can be performed:
1783 * - detect mostly zero data
1784 * - detect data with low "byte set" size (text, etc)
1785 * - detect data with low/high "core byte" set
1786 *
1787 * Return non-zero if the compression should be done, 0 otherwise.
1788 */
1789int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1790{
7bf49943 1791 struct list_head *ws_list = get_workspace(0, 0);
4e439a0b 1792 struct heuristic_ws *ws;
a440d48c
TT
1793 u32 i;
1794 u8 byte;
19562430 1795 int ret = 0;
c2fcdcdf 1796
4e439a0b
TT
1797 ws = list_entry(ws_list, struct heuristic_ws, list);
1798
a440d48c
TT
1799 heuristic_collect_sample(inode, start, end, ws);
1800
1fe4f6fa
TT
1801 if (sample_repeated_patterns(ws)) {
1802 ret = 1;
1803 goto out;
1804 }
1805
a440d48c
TT
1806 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1807
1808 for (i = 0; i < ws->sample_size; i++) {
1809 byte = ws->sample[i];
1810 ws->bucket[byte].count++;
c2fcdcdf
TT
1811 }
1812
a288e92c
TT
1813 i = byte_set_size(ws);
1814 if (i < BYTE_SET_THRESHOLD) {
1815 ret = 2;
1816 goto out;
1817 }
1818
858177d3
TT
1819 i = byte_core_set_size(ws);
1820 if (i <= BYTE_CORE_SET_LOW) {
1821 ret = 3;
1822 goto out;
1823 }
1824
1825 if (i >= BYTE_CORE_SET_HIGH) {
1826 ret = 0;
1827 goto out;
1828 }
1829
19562430
TT
1830 i = shannon_entropy(ws);
1831 if (i <= ENTROPY_LVL_ACEPTABLE) {
1832 ret = 4;
1833 goto out;
1834 }
1835
1836 /*
1837 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1838 * needed to give green light to compression.
1839 *
1840 * For now just assume that compression at that level is not worth the
1841 * resources because:
1842 *
1843 * 1. it is possible to defrag the data later
1844 *
1845 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1846 * values, every bucket has counter at level ~54. The heuristic would
1847 * be confused. This can happen when data have some internal repeated
1848 * patterns like "abbacbbc...". This can be detected by analyzing
1849 * pairs of bytes, which is too costly.
1850 */
1851 if (i < ENTROPY_LVL_HIGH) {
1852 ret = 5;
1853 goto out;
1854 } else {
1855 ret = 0;
1856 goto out;
1857 }
1858
1fe4f6fa 1859out:
929f4baf 1860 put_workspace(0, ws_list);
c2fcdcdf
TT
1861 return ret;
1862}
f51d2b59 1863
d0ab62ce
DZ
1864/*
1865 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1866 * level, unrecognized string will set the default level
1867 */
1868unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
f51d2b59 1869{
d0ab62ce
DZ
1870 unsigned int level = 0;
1871 int ret;
1872
1873 if (!type)
f51d2b59
DS
1874 return 0;
1875
d0ab62ce
DZ
1876 if (str[0] == ':') {
1877 ret = kstrtouint(str + 1, 10, &level);
1878 if (ret)
1879 level = 0;
1880 }
1881
b0c1fe1e
DS
1882 level = btrfs_compress_set_level(type, level);
1883
1884 return level;
1885}