btrfs: update __btrfs_map_block for REQ_OP transition
[linux-2.6-block.git] / fs / btrfs / compression.c
CommitLineData
c8b97818
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
c8b97818
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/bit_spinlock.h>
5a0e3ad6 34#include <linux/slab.h>
c8b97818
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39#include "volumes.h"
40#include "ordered-data.h"
c8b97818
CM
41#include "compression.h"
42#include "extent_io.h"
43#include "extent_map.h"
44
45struct compressed_bio {
46 /* number of bios pending for this compressed extent */
47 atomic_t pending_bios;
48
49 /* the pages with the compressed data on them */
50 struct page **compressed_pages;
51
52 /* inode that owns this data */
53 struct inode *inode;
54
55 /* starting offset in the inode for our pages */
56 u64 start;
57
58 /* number of bytes in the inode we're working on */
59 unsigned long len;
60
61 /* number of bytes on disk */
62 unsigned long compressed_len;
63
261507a0
LZ
64 /* the compression algorithm for this bio */
65 int compress_type;
66
c8b97818
CM
67 /* number of compressed pages in the array */
68 unsigned long nr_pages;
69
70 /* IO errors */
71 int errors;
d20f7043 72 int mirror_num;
c8b97818
CM
73
74 /* for reads, this is the bio we are copying the data into */
75 struct bio *orig_bio;
d20f7043
CM
76
77 /*
78 * the start of a variable length array of checksums only
79 * used by reads
80 */
81 u32 sums;
c8b97818
CM
82};
83
48a3b636
ES
84static int btrfs_decompress_biovec(int type, struct page **pages_in,
85 u64 disk_start, struct bio_vec *bvec,
86 int vcnt, size_t srclen);
87
d20f7043
CM
88static inline int compressed_bio_size(struct btrfs_root *root,
89 unsigned long disk_size)
90{
6c41761f
DS
91 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92
d20f7043 93 return sizeof(struct compressed_bio) +
ed6078f7 94 (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
d20f7043
CM
95}
96
c8b97818
CM
97static struct bio *compressed_bio_alloc(struct block_device *bdev,
98 u64 first_byte, gfp_t gfp_flags)
99{
b54ffb73 100 return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
c8b97818
CM
101}
102
d20f7043
CM
103static int check_compressed_csum(struct inode *inode,
104 struct compressed_bio *cb,
105 u64 disk_start)
106{
107 int ret;
d20f7043
CM
108 struct page *page;
109 unsigned long i;
110 char *kaddr;
111 u32 csum;
112 u32 *cb_sum = &cb->sums;
113
6cbff00f 114 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
d20f7043
CM
115 return 0;
116
117 for (i = 0; i < cb->nr_pages; i++) {
118 page = cb->compressed_pages[i];
119 csum = ~(u32)0;
120
7ac687d9 121 kaddr = kmap_atomic(page);
09cbfeaf 122 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
d20f7043 123 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 124 kunmap_atomic(kaddr);
d20f7043
CM
125
126 if (csum != *cb_sum) {
efe120a0
FH
127 btrfs_info(BTRFS_I(inode)->root->fs_info,
128 "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
129 btrfs_ino(inode), disk_start, csum, *cb_sum,
130 cb->mirror_num);
d20f7043
CM
131 ret = -EIO;
132 goto fail;
133 }
134 cb_sum++;
135
136 }
137 ret = 0;
138fail:
139 return ret;
140}
141
c8b97818
CM
142/* when we finish reading compressed pages from the disk, we
143 * decompress them and then run the bio end_io routines on the
144 * decompressed pages (in the inode address space).
145 *
146 * This allows the checksumming and other IO error handling routines
147 * to work normally
148 *
149 * The compressed pages are freed here, and it must be run
150 * in process context
151 */
4246a0b6 152static void end_compressed_bio_read(struct bio *bio)
c8b97818 153{
c8b97818
CM
154 struct compressed_bio *cb = bio->bi_private;
155 struct inode *inode;
156 struct page *page;
157 unsigned long index;
158 int ret;
159
4246a0b6 160 if (bio->bi_error)
c8b97818
CM
161 cb->errors = 1;
162
163 /* if there are more bios still pending for this compressed
164 * extent, just exit
165 */
166 if (!atomic_dec_and_test(&cb->pending_bios))
167 goto out;
168
d20f7043 169 inode = cb->inode;
4f024f37
KO
170 ret = check_compressed_csum(inode, cb,
171 (u64)bio->bi_iter.bi_sector << 9);
d20f7043
CM
172 if (ret)
173 goto csum_failed;
174
c8b97818
CM
175 /* ok, we're the last bio for this extent, lets start
176 * the decompression.
177 */
261507a0
LZ
178 ret = btrfs_decompress_biovec(cb->compress_type,
179 cb->compressed_pages,
180 cb->start,
181 cb->orig_bio->bi_io_vec,
182 cb->orig_bio->bi_vcnt,
183 cb->compressed_len);
d20f7043 184csum_failed:
c8b97818
CM
185 if (ret)
186 cb->errors = 1;
187
188 /* release the compressed pages */
189 index = 0;
190 for (index = 0; index < cb->nr_pages; index++) {
191 page = cb->compressed_pages[index];
192 page->mapping = NULL;
09cbfeaf 193 put_page(page);
c8b97818
CM
194 }
195
196 /* do io completion on the original bio */
771ed689 197 if (cb->errors) {
c8b97818 198 bio_io_error(cb->orig_bio);
d20f7043 199 } else {
2c30c71b
KO
200 int i;
201 struct bio_vec *bvec;
d20f7043
CM
202
203 /*
204 * we have verified the checksum already, set page
205 * checked so the end_io handlers know about it
206 */
2c30c71b 207 bio_for_each_segment_all(bvec, cb->orig_bio, i)
d20f7043 208 SetPageChecked(bvec->bv_page);
2c30c71b 209
4246a0b6 210 bio_endio(cb->orig_bio);
d20f7043 211 }
c8b97818
CM
212
213 /* finally free the cb struct */
214 kfree(cb->compressed_pages);
215 kfree(cb);
216out:
217 bio_put(bio);
218}
219
220/*
221 * Clear the writeback bits on all of the file
222 * pages for a compressed write
223 */
7bdcefc1
FM
224static noinline void end_compressed_writeback(struct inode *inode,
225 const struct compressed_bio *cb)
c8b97818 226{
09cbfeaf
KS
227 unsigned long index = cb->start >> PAGE_SHIFT;
228 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
c8b97818
CM
229 struct page *pages[16];
230 unsigned long nr_pages = end_index - index + 1;
231 int i;
232 int ret;
233
7bdcefc1
FM
234 if (cb->errors)
235 mapping_set_error(inode->i_mapping, -EIO);
236
d397712b 237 while (nr_pages > 0) {
c8b97818 238 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
239 min_t(unsigned long,
240 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
241 if (ret == 0) {
242 nr_pages -= 1;
243 index += 1;
244 continue;
245 }
246 for (i = 0; i < ret; i++) {
7bdcefc1
FM
247 if (cb->errors)
248 SetPageError(pages[i]);
c8b97818 249 end_page_writeback(pages[i]);
09cbfeaf 250 put_page(pages[i]);
c8b97818
CM
251 }
252 nr_pages -= ret;
253 index += ret;
254 }
255 /* the inode may be gone now */
c8b97818
CM
256}
257
258/*
259 * do the cleanup once all the compressed pages hit the disk.
260 * This will clear writeback on the file pages and free the compressed
261 * pages.
262 *
263 * This also calls the writeback end hooks for the file pages so that
264 * metadata and checksums can be updated in the file.
265 */
4246a0b6 266static void end_compressed_bio_write(struct bio *bio)
c8b97818
CM
267{
268 struct extent_io_tree *tree;
269 struct compressed_bio *cb = bio->bi_private;
270 struct inode *inode;
271 struct page *page;
272 unsigned long index;
273
4246a0b6 274 if (bio->bi_error)
c8b97818
CM
275 cb->errors = 1;
276
277 /* if there are more bios still pending for this compressed
278 * extent, just exit
279 */
280 if (!atomic_dec_and_test(&cb->pending_bios))
281 goto out;
282
283 /* ok, we're the last bio for this extent, step one is to
284 * call back into the FS and do all the end_io operations
285 */
286 inode = cb->inode;
287 tree = &BTRFS_I(inode)->io_tree;
70b99e69 288 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
c8b97818
CM
289 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290 cb->start,
291 cb->start + cb->len - 1,
7bdcefc1 292 NULL,
4246a0b6 293 bio->bi_error ? 0 : 1);
70b99e69 294 cb->compressed_pages[0]->mapping = NULL;
c8b97818 295
7bdcefc1 296 end_compressed_writeback(inode, cb);
c8b97818
CM
297 /* note, our inode could be gone now */
298
299 /*
300 * release the compressed pages, these came from alloc_page and
301 * are not attached to the inode at all
302 */
303 index = 0;
304 for (index = 0; index < cb->nr_pages; index++) {
305 page = cb->compressed_pages[index];
306 page->mapping = NULL;
09cbfeaf 307 put_page(page);
c8b97818
CM
308 }
309
310 /* finally free the cb struct */
311 kfree(cb->compressed_pages);
312 kfree(cb);
313out:
314 bio_put(bio);
315}
316
317/*
318 * worker function to build and submit bios for previously compressed pages.
319 * The corresponding pages in the inode should be marked for writeback
320 * and the compressed pages should have a reference on them for dropping
321 * when the IO is complete.
322 *
323 * This also checksums the file bytes and gets things ready for
324 * the end io hooks.
325 */
326int btrfs_submit_compressed_write(struct inode *inode, u64 start,
327 unsigned long len, u64 disk_start,
328 unsigned long compressed_len,
329 struct page **compressed_pages,
330 unsigned long nr_pages)
331{
332 struct bio *bio = NULL;
333 struct btrfs_root *root = BTRFS_I(inode)->root;
334 struct compressed_bio *cb;
335 unsigned long bytes_left;
336 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
306e16ce 337 int pg_index = 0;
c8b97818
CM
338 struct page *page;
339 u64 first_byte = disk_start;
340 struct block_device *bdev;
341 int ret;
e55179b3 342 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
c8b97818 343
09cbfeaf 344 WARN_ON(start & ((u64)PAGE_SIZE - 1));
d20f7043 345 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
dac97e51
YS
346 if (!cb)
347 return -ENOMEM;
c8b97818
CM
348 atomic_set(&cb->pending_bios, 0);
349 cb->errors = 0;
350 cb->inode = inode;
351 cb->start = start;
352 cb->len = len;
d20f7043 353 cb->mirror_num = 0;
c8b97818
CM
354 cb->compressed_pages = compressed_pages;
355 cb->compressed_len = compressed_len;
356 cb->orig_bio = NULL;
357 cb->nr_pages = nr_pages;
358
359 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
360
c8b97818 361 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
67871254 362 if (!bio) {
dac97e51
YS
363 kfree(cb);
364 return -ENOMEM;
365 }
37226b21 366 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
c8b97818
CM
367 bio->bi_private = cb;
368 bio->bi_end_io = end_compressed_bio_write;
369 atomic_inc(&cb->pending_bios);
370
371 /* create and submit bios for the compressed pages */
372 bytes_left = compressed_len;
306e16ce
DS
373 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
374 page = compressed_pages[pg_index];
c8b97818 375 page->mapping = inode->i_mapping;
4f024f37 376 if (bio->bi_iter.bi_size)
64a16701 377 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
09cbfeaf 378 PAGE_SIZE,
c8b97818
CM
379 bio, 0);
380 else
381 ret = 0;
382
70b99e69 383 page->mapping = NULL;
09cbfeaf
KS
384 if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) <
385 PAGE_SIZE) {
c8b97818
CM
386 bio_get(bio);
387
af09abfe
CM
388 /*
389 * inc the count before we submit the bio so
390 * we know the end IO handler won't happen before
391 * we inc the count. Otherwise, the cb might get
392 * freed before we're done setting it up
393 */
394 atomic_inc(&cb->pending_bios);
bfebd8b5
DS
395 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
396 BTRFS_WQ_ENDIO_DATA);
79787eaa 397 BUG_ON(ret); /* -ENOMEM */
c8b97818 398
e55179b3
LZ
399 if (!skip_sum) {
400 ret = btrfs_csum_one_bio(root, inode, bio,
401 start, 1);
79787eaa 402 BUG_ON(ret); /* -ENOMEM */
e55179b3 403 }
d20f7043 404
c8b97818 405 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
79787eaa 406 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
407
408 bio_put(bio);
409
410 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
e627ee7b 411 BUG_ON(!bio);
37226b21 412 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
c8b97818
CM
413 bio->bi_private = cb;
414 bio->bi_end_io = end_compressed_bio_write;
09cbfeaf 415 bio_add_page(bio, page, PAGE_SIZE, 0);
c8b97818 416 }
09cbfeaf 417 if (bytes_left < PAGE_SIZE) {
efe120a0
FH
418 btrfs_info(BTRFS_I(inode)->root->fs_info,
419 "bytes left %lu compress len %lu nr %lu",
cfbc246e
CM
420 bytes_left, cb->compressed_len, cb->nr_pages);
421 }
09cbfeaf
KS
422 bytes_left -= PAGE_SIZE;
423 first_byte += PAGE_SIZE;
771ed689 424 cond_resched();
c8b97818
CM
425 }
426 bio_get(bio);
427
bfebd8b5 428 ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 429 BUG_ON(ret); /* -ENOMEM */
c8b97818 430
e55179b3
LZ
431 if (!skip_sum) {
432 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
79787eaa 433 BUG_ON(ret); /* -ENOMEM */
e55179b3 434 }
d20f7043 435
c8b97818 436 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
79787eaa 437 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
438
439 bio_put(bio);
440 return 0;
441}
442
771ed689
CM
443static noinline int add_ra_bio_pages(struct inode *inode,
444 u64 compressed_end,
445 struct compressed_bio *cb)
446{
447 unsigned long end_index;
306e16ce 448 unsigned long pg_index;
771ed689
CM
449 u64 last_offset;
450 u64 isize = i_size_read(inode);
451 int ret;
452 struct page *page;
453 unsigned long nr_pages = 0;
454 struct extent_map *em;
455 struct address_space *mapping = inode->i_mapping;
771ed689
CM
456 struct extent_map_tree *em_tree;
457 struct extent_io_tree *tree;
458 u64 end;
459 int misses = 0;
460
461 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
09cbfeaf 462 last_offset = (page_offset(page) + PAGE_SIZE);
771ed689
CM
463 em_tree = &BTRFS_I(inode)->extent_tree;
464 tree = &BTRFS_I(inode)->io_tree;
465
466 if (isize == 0)
467 return 0;
468
09cbfeaf 469 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
771ed689 470
d397712b 471 while (last_offset < compressed_end) {
09cbfeaf 472 pg_index = last_offset >> PAGE_SHIFT;
771ed689 473
306e16ce 474 if (pg_index > end_index)
771ed689
CM
475 break;
476
477 rcu_read_lock();
306e16ce 478 page = radix_tree_lookup(&mapping->page_tree, pg_index);
771ed689 479 rcu_read_unlock();
0cd6144a 480 if (page && !radix_tree_exceptional_entry(page)) {
771ed689
CM
481 misses++;
482 if (misses > 4)
483 break;
484 goto next;
485 }
486
c62d2555
MH
487 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
488 ~__GFP_FS));
771ed689
CM
489 if (!page)
490 break;
491
c62d2555 492 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
09cbfeaf 493 put_page(page);
771ed689
CM
494 goto next;
495 }
496
09cbfeaf 497 end = last_offset + PAGE_SIZE - 1;
771ed689
CM
498 /*
499 * at this point, we have a locked page in the page cache
500 * for these bytes in the file. But, we have to make
501 * sure they map to this compressed extent on disk.
502 */
503 set_page_extent_mapped(page);
d0082371 504 lock_extent(tree, last_offset, end);
890871be 505 read_lock(&em_tree->lock);
771ed689 506 em = lookup_extent_mapping(em_tree, last_offset,
09cbfeaf 507 PAGE_SIZE);
890871be 508 read_unlock(&em_tree->lock);
771ed689
CM
509
510 if (!em || last_offset < em->start ||
09cbfeaf 511 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
4f024f37 512 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 513 free_extent_map(em);
d0082371 514 unlock_extent(tree, last_offset, end);
771ed689 515 unlock_page(page);
09cbfeaf 516 put_page(page);
771ed689
CM
517 break;
518 }
519 free_extent_map(em);
520
521 if (page->index == end_index) {
522 char *userpage;
09cbfeaf 523 size_t zero_offset = isize & (PAGE_SIZE - 1);
771ed689
CM
524
525 if (zero_offset) {
526 int zeros;
09cbfeaf 527 zeros = PAGE_SIZE - zero_offset;
7ac687d9 528 userpage = kmap_atomic(page);
771ed689
CM
529 memset(userpage + zero_offset, 0, zeros);
530 flush_dcache_page(page);
7ac687d9 531 kunmap_atomic(userpage);
771ed689
CM
532 }
533 }
534
535 ret = bio_add_page(cb->orig_bio, page,
09cbfeaf 536 PAGE_SIZE, 0);
771ed689 537
09cbfeaf 538 if (ret == PAGE_SIZE) {
771ed689 539 nr_pages++;
09cbfeaf 540 put_page(page);
771ed689 541 } else {
d0082371 542 unlock_extent(tree, last_offset, end);
771ed689 543 unlock_page(page);
09cbfeaf 544 put_page(page);
771ed689
CM
545 break;
546 }
547next:
09cbfeaf 548 last_offset += PAGE_SIZE;
771ed689 549 }
771ed689
CM
550 return 0;
551}
552
c8b97818
CM
553/*
554 * for a compressed read, the bio we get passed has all the inode pages
555 * in it. We don't actually do IO on those pages but allocate new ones
556 * to hold the compressed pages on disk.
557 *
4f024f37 558 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818
CM
559 * bio->bi_io_vec points to all of the inode pages
560 * bio->bi_vcnt is a count of pages
561 *
562 * After the compressed pages are read, we copy the bytes into the
563 * bio we were passed and then call the bio end_io calls
564 */
565int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
566 int mirror_num, unsigned long bio_flags)
567{
568 struct extent_io_tree *tree;
569 struct extent_map_tree *em_tree;
570 struct compressed_bio *cb;
571 struct btrfs_root *root = BTRFS_I(inode)->root;
09cbfeaf 572 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_SIZE;
c8b97818
CM
573 unsigned long compressed_len;
574 unsigned long nr_pages;
306e16ce 575 unsigned long pg_index;
c8b97818
CM
576 struct page *page;
577 struct block_device *bdev;
578 struct bio *comp_bio;
4f024f37 579 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
e04ca626
CM
580 u64 em_len;
581 u64 em_start;
c8b97818 582 struct extent_map *em;
6b82ce8d 583 int ret = -ENOMEM;
15e3004a 584 int faili = 0;
d20f7043 585 u32 *sums;
c8b97818
CM
586
587 tree = &BTRFS_I(inode)->io_tree;
588 em_tree = &BTRFS_I(inode)->extent_tree;
589
590 /* we need the actual starting offset of this extent in the file */
890871be 591 read_lock(&em_tree->lock);
c8b97818
CM
592 em = lookup_extent_mapping(em_tree,
593 page_offset(bio->bi_io_vec->bv_page),
09cbfeaf 594 PAGE_SIZE);
890871be 595 read_unlock(&em_tree->lock);
285190d9
TI
596 if (!em)
597 return -EIO;
c8b97818 598
d20f7043
CM
599 compressed_len = em->block_len;
600 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
6b82ce8d 601 if (!cb)
602 goto out;
603
c8b97818
CM
604 atomic_set(&cb->pending_bios, 0);
605 cb->errors = 0;
606 cb->inode = inode;
d20f7043
CM
607 cb->mirror_num = mirror_num;
608 sums = &cb->sums;
c8b97818 609
ff5b7ee3 610 cb->start = em->orig_start;
e04ca626
CM
611 em_len = em->len;
612 em_start = em->start;
d20f7043 613
c8b97818 614 free_extent_map(em);
e04ca626 615 em = NULL;
c8b97818
CM
616
617 cb->len = uncompressed_len;
618 cb->compressed_len = compressed_len;
261507a0 619 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
620 cb->orig_bio = bio;
621
09cbfeaf 622 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
31e818fe 623 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
c8b97818 624 GFP_NOFS);
6b82ce8d 625 if (!cb->compressed_pages)
626 goto fail1;
627
c8b97818
CM
628 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
629
306e16ce
DS
630 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
631 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 632 __GFP_HIGHMEM);
15e3004a
JB
633 if (!cb->compressed_pages[pg_index]) {
634 faili = pg_index - 1;
635 ret = -ENOMEM;
6b82ce8d 636 goto fail2;
15e3004a 637 }
c8b97818 638 }
15e3004a 639 faili = nr_pages - 1;
c8b97818
CM
640 cb->nr_pages = nr_pages;
641
7f042a83 642 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 643
771ed689 644 /* include any pages we added in add_ra-bio_pages */
09cbfeaf 645 uncompressed_len = bio->bi_vcnt * PAGE_SIZE;
771ed689
CM
646 cb->len = uncompressed_len;
647
c8b97818 648 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
6b82ce8d 649 if (!comp_bio)
650 goto fail2;
37226b21 651 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
c8b97818
CM
652 comp_bio->bi_private = cb;
653 comp_bio->bi_end_io = end_compressed_bio_read;
654 atomic_inc(&cb->pending_bios);
655
306e16ce
DS
656 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
657 page = cb->compressed_pages[pg_index];
c8b97818 658 page->mapping = inode->i_mapping;
09cbfeaf 659 page->index = em_start >> PAGE_SHIFT;
d20f7043 660
4f024f37 661 if (comp_bio->bi_iter.bi_size)
64a16701 662 ret = tree->ops->merge_bio_hook(READ, page, 0,
09cbfeaf 663 PAGE_SIZE,
c8b97818
CM
664 comp_bio, 0);
665 else
666 ret = 0;
667
70b99e69 668 page->mapping = NULL;
09cbfeaf
KS
669 if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
670 PAGE_SIZE) {
c8b97818
CM
671 bio_get(comp_bio);
672
bfebd8b5
DS
673 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
674 BTRFS_WQ_ENDIO_DATA);
79787eaa 675 BUG_ON(ret); /* -ENOMEM */
c8b97818 676
af09abfe
CM
677 /*
678 * inc the count before we submit the bio so
679 * we know the end IO handler won't happen before
680 * we inc the count. Otherwise, the cb might get
681 * freed before we're done setting it up
682 */
683 atomic_inc(&cb->pending_bios);
684
6cbff00f 685 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
c2db1073
TI
686 ret = btrfs_lookup_bio_sums(root, inode,
687 comp_bio, sums);
79787eaa 688 BUG_ON(ret); /* -ENOMEM */
d20f7043 689 }
ed6078f7
DS
690 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
691 root->sectorsize);
d20f7043
CM
692
693 ret = btrfs_map_bio(root, READ, comp_bio,
694 mirror_num, 0);
4246a0b6
CH
695 if (ret) {
696 bio->bi_error = ret;
697 bio_endio(comp_bio);
698 }
c8b97818
CM
699
700 bio_put(comp_bio);
701
702 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
703 GFP_NOFS);
e627ee7b 704 BUG_ON(!comp_bio);
37226b21 705 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
771ed689
CM
706 comp_bio->bi_private = cb;
707 comp_bio->bi_end_io = end_compressed_bio_read;
708
09cbfeaf 709 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
c8b97818 710 }
09cbfeaf 711 cur_disk_byte += PAGE_SIZE;
c8b97818
CM
712 }
713 bio_get(comp_bio);
714
bfebd8b5
DS
715 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
716 BTRFS_WQ_ENDIO_DATA);
79787eaa 717 BUG_ON(ret); /* -ENOMEM */
c8b97818 718
c2db1073
TI
719 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
720 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
79787eaa 721 BUG_ON(ret); /* -ENOMEM */
c2db1073 722 }
d20f7043
CM
723
724 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
4246a0b6
CH
725 if (ret) {
726 bio->bi_error = ret;
727 bio_endio(comp_bio);
728 }
c8b97818
CM
729
730 bio_put(comp_bio);
731 return 0;
6b82ce8d 732
733fail2:
15e3004a
JB
734 while (faili >= 0) {
735 __free_page(cb->compressed_pages[faili]);
736 faili--;
737 }
6b82ce8d 738
739 kfree(cb->compressed_pages);
740fail1:
741 kfree(cb);
742out:
743 free_extent_map(em);
744 return ret;
c8b97818 745}
261507a0 746
d9187649
BL
747static struct {
748 struct list_head idle_ws;
749 spinlock_t ws_lock;
6ac10a6a
DS
750 /* Number of free workspaces */
751 int free_ws;
752 /* Total number of allocated workspaces */
753 atomic_t total_ws;
754 /* Waiters for a free workspace */
d9187649
BL
755 wait_queue_head_t ws_wait;
756} btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
261507a0 757
e8c9f186 758static const struct btrfs_compress_op * const btrfs_compress_op[] = {
261507a0 759 &btrfs_zlib_compress,
a6fa6fae 760 &btrfs_lzo_compress,
261507a0
LZ
761};
762
143bede5 763void __init btrfs_init_compress(void)
261507a0
LZ
764{
765 int i;
766
767 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
f77dd0d6
DS
768 struct list_head *workspace;
769
d9187649
BL
770 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
771 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
6ac10a6a 772 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
d9187649 773 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
f77dd0d6
DS
774
775 /*
776 * Preallocate one workspace for each compression type so
777 * we can guarantee forward progress in the worst case
778 */
779 workspace = btrfs_compress_op[i]->alloc_workspace();
780 if (IS_ERR(workspace)) {
781 printk(KERN_WARNING
782 "BTRFS: cannot preallocate compression workspace, will try later");
783 } else {
784 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
785 btrfs_comp_ws[i].free_ws = 1;
786 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
787 }
261507a0 788 }
261507a0
LZ
789}
790
791/*
e721e49d
DS
792 * This finds an available workspace or allocates a new one.
793 * If it's not possible to allocate a new one, waits until there's one.
794 * Preallocation makes a forward progress guarantees and we do not return
795 * errors.
261507a0
LZ
796 */
797static struct list_head *find_workspace(int type)
798{
799 struct list_head *workspace;
800 int cpus = num_online_cpus();
801 int idx = type - 1;
802
d9187649
BL
803 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
804 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
6ac10a6a 805 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
d9187649 806 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
6ac10a6a 807 int *free_ws = &btrfs_comp_ws[idx].free_ws;
261507a0 808again:
d9187649
BL
809 spin_lock(ws_lock);
810 if (!list_empty(idle_ws)) {
811 workspace = idle_ws->next;
261507a0 812 list_del(workspace);
6ac10a6a 813 (*free_ws)--;
d9187649 814 spin_unlock(ws_lock);
261507a0
LZ
815 return workspace;
816
817 }
6ac10a6a 818 if (atomic_read(total_ws) > cpus) {
261507a0
LZ
819 DEFINE_WAIT(wait);
820
d9187649
BL
821 spin_unlock(ws_lock);
822 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
6ac10a6a 823 if (atomic_read(total_ws) > cpus && !*free_ws)
261507a0 824 schedule();
d9187649 825 finish_wait(ws_wait, &wait);
261507a0
LZ
826 goto again;
827 }
6ac10a6a 828 atomic_inc(total_ws);
d9187649 829 spin_unlock(ws_lock);
261507a0
LZ
830
831 workspace = btrfs_compress_op[idx]->alloc_workspace();
832 if (IS_ERR(workspace)) {
6ac10a6a 833 atomic_dec(total_ws);
d9187649 834 wake_up(ws_wait);
e721e49d
DS
835
836 /*
837 * Do not return the error but go back to waiting. There's a
838 * workspace preallocated for each type and the compression
839 * time is bounded so we get to a workspace eventually. This
840 * makes our caller's life easier.
52356716
DS
841 *
842 * To prevent silent and low-probability deadlocks (when the
843 * initial preallocation fails), check if there are any
844 * workspaces at all.
e721e49d 845 */
52356716
DS
846 if (atomic_read(total_ws) == 0) {
847 static DEFINE_RATELIMIT_STATE(_rs,
848 /* once per minute */ 60 * HZ,
849 /* no burst */ 1);
850
851 if (__ratelimit(&_rs)) {
852 printk(KERN_WARNING
853 "no compression workspaces, low memory, retrying");
854 }
855 }
e721e49d 856 goto again;
261507a0
LZ
857 }
858 return workspace;
859}
860
861/*
862 * put a workspace struct back on the list or free it if we have enough
863 * idle ones sitting around
864 */
865static void free_workspace(int type, struct list_head *workspace)
866{
867 int idx = type - 1;
d9187649
BL
868 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
869 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
6ac10a6a 870 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
d9187649 871 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
6ac10a6a 872 int *free_ws = &btrfs_comp_ws[idx].free_ws;
d9187649
BL
873
874 spin_lock(ws_lock);
6ac10a6a 875 if (*free_ws < num_online_cpus()) {
d9187649 876 list_add(workspace, idle_ws);
6ac10a6a 877 (*free_ws)++;
d9187649 878 spin_unlock(ws_lock);
261507a0
LZ
879 goto wake;
880 }
d9187649 881 spin_unlock(ws_lock);
261507a0
LZ
882
883 btrfs_compress_op[idx]->free_workspace(workspace);
6ac10a6a 884 atomic_dec(total_ws);
261507a0 885wake:
a83342aa
DS
886 /*
887 * Make sure counter is updated before we wake up waiters.
888 */
66657b31 889 smp_mb();
d9187649
BL
890 if (waitqueue_active(ws_wait))
891 wake_up(ws_wait);
261507a0
LZ
892}
893
894/*
895 * cleanup function for module exit
896 */
897static void free_workspaces(void)
898{
899 struct list_head *workspace;
900 int i;
901
902 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
d9187649
BL
903 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
904 workspace = btrfs_comp_ws[i].idle_ws.next;
261507a0
LZ
905 list_del(workspace);
906 btrfs_compress_op[i]->free_workspace(workspace);
6ac10a6a 907 atomic_dec(&btrfs_comp_ws[i].total_ws);
261507a0
LZ
908 }
909 }
910}
911
912/*
913 * given an address space and start/len, compress the bytes.
914 *
915 * pages are allocated to hold the compressed result and stored
916 * in 'pages'
917 *
918 * out_pages is used to return the number of pages allocated. There
919 * may be pages allocated even if we return an error
920 *
921 * total_in is used to return the number of bytes actually read. It
922 * may be smaller then len if we had to exit early because we
923 * ran out of room in the pages array or because we cross the
924 * max_out threshold.
925 *
926 * total_out is used to return the total number of compressed bytes
927 *
928 * max_out tells us the max number of bytes that we're allowed to
929 * stuff into pages
930 */
931int btrfs_compress_pages(int type, struct address_space *mapping,
932 u64 start, unsigned long len,
933 struct page **pages,
934 unsigned long nr_dest_pages,
935 unsigned long *out_pages,
936 unsigned long *total_in,
937 unsigned long *total_out,
938 unsigned long max_out)
939{
940 struct list_head *workspace;
941 int ret;
942
943 workspace = find_workspace(type);
261507a0
LZ
944
945 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
946 start, len, pages,
947 nr_dest_pages, out_pages,
948 total_in, total_out,
949 max_out);
950 free_workspace(type, workspace);
951 return ret;
952}
953
954/*
955 * pages_in is an array of pages with compressed data.
956 *
957 * disk_start is the starting logical offset of this array in the file
958 *
959 * bvec is a bio_vec of pages from the file that we want to decompress into
960 *
961 * vcnt is the count of pages in the biovec
962 *
963 * srclen is the number of bytes in pages_in
964 *
965 * The basic idea is that we have a bio that was created by readpages.
966 * The pages in the bio are for the uncompressed data, and they may not
967 * be contiguous. They all correspond to the range of bytes covered by
968 * the compressed extent.
969 */
48a3b636
ES
970static int btrfs_decompress_biovec(int type, struct page **pages_in,
971 u64 disk_start, struct bio_vec *bvec,
972 int vcnt, size_t srclen)
261507a0
LZ
973{
974 struct list_head *workspace;
975 int ret;
976
977 workspace = find_workspace(type);
261507a0
LZ
978
979 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
980 disk_start,
981 bvec, vcnt, srclen);
982 free_workspace(type, workspace);
983 return ret;
984}
985
986/*
987 * a less complex decompression routine. Our compressed data fits in a
988 * single page, and we want to read a single page out of it.
989 * start_byte tells us the offset into the compressed data we're interested in
990 */
991int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
992 unsigned long start_byte, size_t srclen, size_t destlen)
993{
994 struct list_head *workspace;
995 int ret;
996
997 workspace = find_workspace(type);
261507a0
LZ
998
999 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1000 dest_page, start_byte,
1001 srclen, destlen);
1002
1003 free_workspace(type, workspace);
1004 return ret;
1005}
1006
8e4eef7a 1007void btrfs_exit_compress(void)
261507a0
LZ
1008{
1009 free_workspaces();
1010}
3a39c18d
LZ
1011
1012/*
1013 * Copy uncompressed data from working buffer to pages.
1014 *
1015 * buf_start is the byte offset we're of the start of our workspace buffer.
1016 *
1017 * total_out is the last byte of the buffer
1018 */
1019int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
1020 unsigned long total_out, u64 disk_start,
1021 struct bio_vec *bvec, int vcnt,
306e16ce 1022 unsigned long *pg_index,
3a39c18d
LZ
1023 unsigned long *pg_offset)
1024{
1025 unsigned long buf_offset;
1026 unsigned long current_buf_start;
1027 unsigned long start_byte;
1028 unsigned long working_bytes = total_out - buf_start;
1029 unsigned long bytes;
1030 char *kaddr;
306e16ce 1031 struct page *page_out = bvec[*pg_index].bv_page;
3a39c18d
LZ
1032
1033 /*
1034 * start byte is the first byte of the page we're currently
1035 * copying into relative to the start of the compressed data.
1036 */
1037 start_byte = page_offset(page_out) - disk_start;
1038
1039 /* we haven't yet hit data corresponding to this page */
1040 if (total_out <= start_byte)
1041 return 1;
1042
1043 /*
1044 * the start of the data we care about is offset into
1045 * the middle of our working buffer
1046 */
1047 if (total_out > start_byte && buf_start < start_byte) {
1048 buf_offset = start_byte - buf_start;
1049 working_bytes -= buf_offset;
1050 } else {
1051 buf_offset = 0;
1052 }
1053 current_buf_start = buf_start;
1054
1055 /* copy bytes from the working buffer into the pages */
1056 while (working_bytes > 0) {
09cbfeaf
KS
1057 bytes = min(PAGE_SIZE - *pg_offset,
1058 PAGE_SIZE - buf_offset);
3a39c18d 1059 bytes = min(bytes, working_bytes);
7ac687d9 1060 kaddr = kmap_atomic(page_out);
3a39c18d 1061 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
7ac687d9 1062 kunmap_atomic(kaddr);
3a39c18d
LZ
1063 flush_dcache_page(page_out);
1064
1065 *pg_offset += bytes;
1066 buf_offset += bytes;
1067 working_bytes -= bytes;
1068 current_buf_start += bytes;
1069
1070 /* check if we need to pick another page */
09cbfeaf 1071 if (*pg_offset == PAGE_SIZE) {
306e16ce
DS
1072 (*pg_index)++;
1073 if (*pg_index >= vcnt)
3a39c18d
LZ
1074 return 0;
1075
306e16ce 1076 page_out = bvec[*pg_index].bv_page;
3a39c18d
LZ
1077 *pg_offset = 0;
1078 start_byte = page_offset(page_out) - disk_start;
1079
1080 /*
1081 * make sure our new page is covered by this
1082 * working buffer
1083 */
1084 if (total_out <= start_byte)
1085 return 1;
1086
1087 /*
1088 * the next page in the biovec might not be adjacent
1089 * to the last page, but it might still be found
1090 * inside this working buffer. bump our offset pointer
1091 */
1092 if (total_out > start_byte &&
1093 current_buf_start < start_byte) {
1094 buf_offset = start_byte - buf_start;
1095 working_bytes = total_out - start_byte;
1096 current_buf_start = buf_start + buf_offset;
1097 }
1098 }
1099 }
1100
1101 return 1;
1102}
2f19cad9
CM
1103
1104/*
1105 * When uncompressing data, we need to make sure and zero any parts of
1106 * the biovec that were not filled in by the decompression code. pg_index
1107 * and pg_offset indicate the last page and the last offset of that page
1108 * that have been filled in. This will zero everything remaining in the
1109 * biovec.
1110 */
1111void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
1112 unsigned long pg_index,
1113 unsigned long pg_offset)
1114{
1115 while (pg_index < vcnt) {
1116 struct page *page = bvec[pg_index].bv_page;
1117 unsigned long off = bvec[pg_index].bv_offset;
1118 unsigned long len = bvec[pg_index].bv_len;
1119
1120 if (pg_offset < off)
1121 pg_offset = off;
1122 if (pg_offset < off + len) {
1123 unsigned long bytes = off + len - pg_offset;
1124 char *kaddr;
1125
1126 kaddr = kmap_atomic(page);
1127 memset(kaddr + pg_offset, 0, bytes);
1128 kunmap_atomic(kaddr);
1129 }
1130 pg_index++;
1131 pg_offset = 0;
1132 }
1133}