nilfs2: fix use-after-free bug of ns_writer on remount
[linux-block.git] / fs / btrfs / compression.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
c8b97818
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
c8b97818
CM
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
c8b97818
CM
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
a75b81c3 11#include <linux/pagevec.h>
c8b97818 12#include <linux/highmem.h>
e41d12f5 13#include <linux/kthread.h>
c8b97818
CM
14#include <linux/time.h>
15#include <linux/init.h>
16#include <linux/string.h>
c8b97818 17#include <linux/backing-dev.h>
c8b97818 18#include <linux/writeback.h>
4088a47e 19#include <linux/psi.h>
5a0e3ad6 20#include <linux/slab.h>
fe308533 21#include <linux/sched/mm.h>
19562430 22#include <linux/log2.h>
d5178578 23#include <crypto/hash.h>
602cbe91 24#include "misc.h"
c8b97818
CM
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "btrfs_inode.h"
29#include "volumes.h"
30#include "ordered-data.h"
c8b97818
CM
31#include "compression.h"
32#include "extent_io.h"
33#include "extent_map.h"
6a404910 34#include "subpage.h"
764c7c9a 35#include "zoned.h"
c8b97818 36
e128f9c3
DS
37static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
38
39const char* btrfs_compress_type2str(enum btrfs_compression_type type)
40{
41 switch (type) {
42 case BTRFS_COMPRESS_ZLIB:
43 case BTRFS_COMPRESS_LZO:
44 case BTRFS_COMPRESS_ZSTD:
45 case BTRFS_COMPRESS_NONE:
46 return btrfs_compress_types[type];
ce96b7ff
CX
47 default:
48 break;
e128f9c3
DS
49 }
50
51 return NULL;
52}
53
aa53e3bf
JT
54bool btrfs_compress_is_valid_type(const char *str, size_t len)
55{
56 int i;
57
58 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
59 size_t comp_len = strlen(btrfs_compress_types[i]);
60
61 if (len < comp_len)
62 continue;
63
64 if (!strncmp(btrfs_compress_types[i], str, comp_len))
65 return true;
66 }
67 return false;
68}
69
1e4eb746
DS
70static int compression_compress_pages(int type, struct list_head *ws,
71 struct address_space *mapping, u64 start, struct page **pages,
72 unsigned long *out_pages, unsigned long *total_in,
73 unsigned long *total_out)
74{
75 switch (type) {
76 case BTRFS_COMPRESS_ZLIB:
77 return zlib_compress_pages(ws, mapping, start, pages,
78 out_pages, total_in, total_out);
79 case BTRFS_COMPRESS_LZO:
80 return lzo_compress_pages(ws, mapping, start, pages,
81 out_pages, total_in, total_out);
82 case BTRFS_COMPRESS_ZSTD:
83 return zstd_compress_pages(ws, mapping, start, pages,
84 out_pages, total_in, total_out);
85 case BTRFS_COMPRESS_NONE:
86 default:
87 /*
1d8ba9e7
QW
88 * This can happen when compression races with remount setting
89 * it to 'no compress', while caller doesn't call
90 * inode_need_compress() to check if we really need to
91 * compress.
92 *
93 * Not a big deal, just need to inform caller that we
94 * haven't allocated any pages yet.
1e4eb746 95 */
1d8ba9e7 96 *out_pages = 0;
1e4eb746
DS
97 return -E2BIG;
98 }
99}
100
4a9e803e
SY
101static int compression_decompress_bio(struct list_head *ws,
102 struct compressed_bio *cb)
1e4eb746 103{
4a9e803e 104 switch (cb->compress_type) {
1e4eb746
DS
105 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
106 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
107 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
108 case BTRFS_COMPRESS_NONE:
109 default:
110 /*
111 * This can't happen, the type is validated several times
112 * before we get here.
113 */
114 BUG();
115 }
116}
117
118static int compression_decompress(int type, struct list_head *ws,
119 unsigned char *data_in, struct page *dest_page,
120 unsigned long start_byte, size_t srclen, size_t destlen)
121{
122 switch (type) {
123 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
124 start_byte, srclen, destlen);
125 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
126 start_byte, srclen, destlen);
127 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
128 start_byte, srclen, destlen);
129 case BTRFS_COMPRESS_NONE:
130 default:
131 /*
132 * This can't happen, the type is validated several times
133 * before we get here.
134 */
135 BUG();
136 }
137}
138
8140dc30 139static int btrfs_decompress_bio(struct compressed_bio *cb);
48a3b636 140
e14bfdb5 141static void finish_compressed_bio_read(struct compressed_bio *cb)
86ccbb4d
QW
142{
143 unsigned int index;
144 struct page *page;
145
81bd9328
CH
146 if (cb->status == BLK_STS_OK)
147 cb->status = errno_to_blk_status(btrfs_decompress_bio(cb));
148
86ccbb4d
QW
149 /* Release the compressed pages */
150 for (index = 0; index < cb->nr_pages; index++) {
151 page = cb->compressed_pages[index];
152 page->mapping = NULL;
153 put_page(page);
154 }
155
156 /* Do io completion on the original bio */
917f32a2 157 btrfs_bio_end_io(btrfs_bio(cb->orig_bio), cb->status);
86ccbb4d
QW
158
159 /* Finally free the cb struct */
160 kfree(cb->compressed_pages);
161 kfree(cb);
162}
163
81bd9328
CH
164/*
165 * Verify the checksums and kick off repair if needed on the uncompressed data
166 * before decompressing it into the original bio and freeing the uncompressed
167 * pages.
c8b97818 168 */
917f32a2 169static void end_compressed_bio_read(struct btrfs_bio *bbio)
c8b97818 170{
917f32a2 171 struct compressed_bio *cb = bbio->private;
81bd9328
CH
172 struct inode *inode = cb->inode;
173 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
174 struct btrfs_inode *bi = BTRFS_I(inode);
175 bool csum = !(bi->flags & BTRFS_INODE_NODATASUM) &&
176 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
917f32a2 177 blk_status_t status = bbio->bio.bi_status;
81bd9328
CH
178 struct bvec_iter iter;
179 struct bio_vec bv;
180 u32 offset;
181
182 btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) {
183 u64 start = bbio->file_offset + offset;
184
185 if (!status &&
186 (!csum || !btrfs_check_data_csum(inode, bbio, offset,
187 bv.bv_page, bv.bv_offset))) {
0d0a762c
JB
188 btrfs_clean_io_failure(bi, start, bv.bv_page,
189 bv.bv_offset);
81bd9328
CH
190 } else {
191 int ret;
e6311f24 192
81bd9328
CH
193 refcount_inc(&cb->pending_ios);
194 ret = btrfs_repair_one_sector(inode, bbio, offset,
195 bv.bv_page, bv.bv_offset,
196 btrfs_submit_data_read_bio);
197 if (ret) {
198 refcount_dec(&cb->pending_ios);
199 status = errno_to_blk_status(ret);
200 }
201 }
202 }
d20f7043 203
81bd9328
CH
204 if (status)
205 cb->status = status;
8140dc30 206
81bd9328
CH
207 if (refcount_dec_and_test(&cb->pending_ios))
208 finish_compressed_bio_read(cb);
209 btrfs_bio_free_csum(bbio);
917f32a2 210 bio_put(&bbio->bio);
c8b97818
CM
211}
212
213/*
214 * Clear the writeback bits on all of the file
215 * pages for a compressed write
216 */
7bdcefc1
FM
217static noinline void end_compressed_writeback(struct inode *inode,
218 const struct compressed_bio *cb)
c8b97818 219{
741ec653 220 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
09cbfeaf
KS
221 unsigned long index = cb->start >> PAGE_SHIFT;
222 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
a75b81c3 223 struct folio_batch fbatch;
606f82e7 224 const int errno = blk_status_to_errno(cb->status);
c8b97818
CM
225 int i;
226 int ret;
227
606f82e7
JB
228 if (errno)
229 mapping_set_error(inode->i_mapping, errno);
7bdcefc1 230
a75b81c3
VMO
231 folio_batch_init(&fbatch);
232 while (index <= end_index) {
233 ret = filemap_get_folios(inode->i_mapping, &index, end_index,
234 &fbatch);
235
236 if (ret == 0)
237 return;
238
c8b97818 239 for (i = 0; i < ret; i++) {
a75b81c3
VMO
240 struct folio *folio = fbatch.folios[i];
241
606f82e7 242 if (errno)
a75b81c3
VMO
243 folio_set_error(folio);
244 btrfs_page_clamp_clear_writeback(fs_info, &folio->page,
741ec653 245 cb->start, cb->len);
c8b97818 246 }
a75b81c3 247 folio_batch_release(&fbatch);
c8b97818
CM
248 }
249 /* the inode may be gone now */
c8b97818
CM
250}
251
6853c64a 252static void finish_compressed_bio_write(struct compressed_bio *cb)
c8b97818 253{
6853c64a 254 struct inode *inode = cb->inode;
1d08ce58 255 unsigned int index;
c8b97818 256
6853c64a
QW
257 /*
258 * Ok, we're the last bio for this extent, step one is to call back
259 * into the FS and do all the end_io operations.
c8b97818 260 */
38a39ac7 261 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
c629732d 262 cb->start, cb->start + cb->len - 1,
606f82e7 263 cb->status == BLK_STS_OK);
c8b97818 264
7c0c7269
OS
265 if (cb->writeback)
266 end_compressed_writeback(inode, cb);
6853c64a 267 /* Note, our inode could be gone now */
c8b97818
CM
268
269 /*
6853c64a 270 * Release the compressed pages, these came from alloc_page and
c8b97818
CM
271 * are not attached to the inode at all
272 */
c8b97818 273 for (index = 0; index < cb->nr_pages; index++) {
6853c64a
QW
274 struct page *page = cb->compressed_pages[index];
275
c8b97818 276 page->mapping = NULL;
09cbfeaf 277 put_page(page);
c8b97818
CM
278 }
279
6853c64a 280 /* Finally free the cb struct */
c8b97818
CM
281 kfree(cb->compressed_pages);
282 kfree(cb);
6853c64a
QW
283}
284
fed8a72d
CH
285static void btrfs_finish_compressed_write_work(struct work_struct *work)
286{
287 struct compressed_bio *cb =
288 container_of(work, struct compressed_bio, write_end_work);
289
290 finish_compressed_bio_write(cb);
291}
292
6853c64a
QW
293/*
294 * Do the cleanup once all the compressed pages hit the disk. This will clear
295 * writeback on the file pages and free the compressed pages.
296 *
297 * This also calls the writeback end hooks for the file pages so that metadata
298 * and checksums can be updated in the file.
299 */
917f32a2 300static void end_compressed_bio_write(struct btrfs_bio *bbio)
6853c64a 301{
917f32a2 302 struct compressed_bio *cb = bbio->private;
6853c64a 303
917f32a2
CH
304 if (bbio->bio.bi_status)
305 cb->status = bbio->bio.bi_status;
6853c64a 306
524bcd1e 307 if (refcount_dec_and_test(&cb->pending_ios)) {
fed8a72d 308 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
6853c64a 309
917f32a2 310 btrfs_record_physical_zoned(cb->inode, cb->start, &bbio->bio);
fed8a72d
CH
311 queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
312 }
917f32a2 313 bio_put(&bbio->bio);
c8b97818
CM
314}
315
22c306fe 316/*
f472c28f
QW
317 * Allocate a compressed_bio, which will be used to read/write on-disk
318 * (aka, compressed) * data.
319 *
320 * @cb: The compressed_bio structure, which records all the needed
321 * information to bind the compressed data to the uncompressed
322 * page cache.
323 * @disk_byten: The logical bytenr where the compressed data will be read
324 * from or written to.
325 * @endio_func: The endio function to call after the IO for compressed data
326 * is finished.
327 * @next_stripe_start: Return value of logical bytenr of where next stripe starts.
328 * Let the caller know to only fill the bio up to the stripe
329 * boundary.
22c306fe 330 */
f472c28f
QW
331
332
22c306fe 333static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
917f32a2
CH
334 blk_opf_t opf,
335 btrfs_bio_end_io_t endio_func,
f472c28f 336 u64 *next_stripe_start)
22c306fe 337{
f472c28f
QW
338 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
339 struct btrfs_io_geometry geom;
340 struct extent_map *em;
22c306fe 341 struct bio *bio;
f472c28f 342 int ret;
22c306fe 343
917f32a2 344 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, endio_func, cb);
22c306fe 345 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
22c306fe 346
f472c28f
QW
347 em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
348 if (IS_ERR(em)) {
349 bio_put(bio);
350 return ERR_CAST(em);
351 }
22c306fe 352
f472c28f
QW
353 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
354 bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
355
356 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
357 free_extent_map(em);
358 if (ret < 0) {
359 bio_put(bio);
360 return ERR_PTR(ret);
22c306fe 361 }
f472c28f 362 *next_stripe_start = disk_bytenr + geom.len;
524bcd1e 363 refcount_inc(&cb->pending_ios);
22c306fe
QW
364 return bio;
365}
366
c8b97818
CM
367/*
368 * worker function to build and submit bios for previously compressed pages.
369 * The corresponding pages in the inode should be marked for writeback
370 * and the compressed pages should have a reference on them for dropping
371 * when the IO is complete.
372 *
373 * This also checksums the file bytes and gets things ready for
374 * the end io hooks.
375 */
c7ee1819 376blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
65b5355f
AJ
377 unsigned int len, u64 disk_start,
378 unsigned int compressed_len,
c8b97818 379 struct page **compressed_pages,
65b5355f 380 unsigned int nr_pages,
bf9486d6 381 blk_opf_t write_flags,
7c0c7269
OS
382 struct cgroup_subsys_state *blkcg_css,
383 bool writeback)
c8b97818 384{
c7ee1819 385 struct btrfs_fs_info *fs_info = inode->root->fs_info;
c8b97818 386 struct bio *bio = NULL;
c8b97818 387 struct compressed_bio *cb;
91507240 388 u64 cur_disk_bytenr = disk_start;
f472c28f 389 u64 next_stripe_start;
524bcd1e 390 blk_status_t ret = BLK_STS_OK;
c7ee1819 391 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
764c7c9a 392 const bool use_append = btrfs_use_zone_append(inode, disk_start);
bf9486d6 393 const enum req_op bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
c8b97818 394
bbbff01a
QW
395 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
396 IS_ALIGNED(len, fs_info->sectorsize));
81bd9328 397 cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
dac97e51 398 if (!cb)
4e4cbee9 399 return BLK_STS_RESOURCE;
524bcd1e 400 refcount_set(&cb->pending_ios, 1);
606f82e7 401 cb->status = BLK_STS_OK;
c7ee1819 402 cb->inode = &inode->vfs_inode;
c8b97818
CM
403 cb->start = start;
404 cb->len = len;
405 cb->compressed_pages = compressed_pages;
406 cb->compressed_len = compressed_len;
7c0c7269 407 cb->writeback = writeback;
fed8a72d 408 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
c8b97818
CM
409 cb->nr_pages = nr_pages;
410
acee08aa
DZ
411 if (blkcg_css)
412 kthread_associate_blkcg(blkcg_css);
413
91507240
QW
414 while (cur_disk_bytenr < disk_start + compressed_len) {
415 u64 offset = cur_disk_bytenr - disk_start;
416 unsigned int index = offset >> PAGE_SHIFT;
417 unsigned int real_size;
418 unsigned int added;
419 struct page *page = compressed_pages[index];
420 bool submit = false;
421
422 /* Allocate new bio if submitted or not yet allocated */
423 if (!bio) {
424 bio = alloc_compressed_bio(cb, cur_disk_bytenr,
425 bio_op | write_flags, end_compressed_bio_write,
426 &next_stripe_start);
427 if (IS_ERR(bio)) {
428 ret = errno_to_blk_status(PTR_ERR(bio));
524bcd1e 429 break;
91507240 430 }
acee08aa
DZ
431 if (blkcg_css)
432 bio->bi_opf |= REQ_CGROUP_PUNT;
764c7c9a 433 }
4c80a97d 434 /*
91507240
QW
435 * We should never reach next_stripe_start start as we will
436 * submit comp_bio when reach the boundary immediately.
4c80a97d 437 */
91507240 438 ASSERT(cur_disk_bytenr != next_stripe_start);
c8b97818 439
91507240
QW
440 /*
441 * We have various limits on the real read size:
442 * - stripe boundary
443 * - page boundary
444 * - compressed length boundary
445 */
446 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
447 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
448 real_size = min_t(u64, real_size, compressed_len - offset);
449 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
450
451 if (use_append)
452 added = bio_add_zone_append_page(bio, page, real_size,
453 offset_in_page(offset));
454 else
455 added = bio_add_page(bio, page, real_size,
456 offset_in_page(offset));
457 /* Reached zoned boundary */
458 if (added == 0)
459 submit = true;
460
461 cur_disk_bytenr += added;
462 /* Reached stripe boundary */
463 if (cur_disk_bytenr == next_stripe_start)
464 submit = true;
465
466 /* Finished the range */
467 if (cur_disk_bytenr == disk_start + compressed_len)
468 submit = true;
469
470 if (submit) {
e55179b3 471 if (!skip_sum) {
e331f6b1 472 ret = btrfs_csum_one_bio(inode, bio, start, true);
524bcd1e 473 if (ret) {
917f32a2 474 btrfs_bio_end_io(btrfs_bio(bio), ret);
524bcd1e
CH
475 break;
476 }
f5daf2c7 477 }
c8b97818 478
fed8a72d 479 ASSERT(bio->bi_iter.bi_size);
1a722d8f 480 btrfs_submit_bio(fs_info, bio, 0);
91507240 481 bio = NULL;
c8b97818 482 }
771ed689 483 cond_resched();
c8b97818 484 }
d20f7043 485
acee08aa
DZ
486 if (blkcg_css)
487 kthread_associate_blkcg(NULL);
488
524bcd1e
CH
489 if (refcount_dec_and_test(&cb->pending_ios))
490 finish_compressed_bio_write(cb);
6853c64a 491 return ret;
c8b97818
CM
492}
493
2a4d0c90
CH
494static u64 bio_end_offset(struct bio *bio)
495{
c45a8f2d 496 struct bio_vec *last = bio_last_bvec_all(bio);
2a4d0c90
CH
497
498 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
499}
500
6a404910
QW
501/*
502 * Add extra pages in the same compressed file extent so that we don't need to
503 * re-read the same extent again and again.
504 *
505 * NOTE: this won't work well for subpage, as for subpage read, we lock the
506 * full page then submit bio for each compressed/regular extents.
507 *
508 * This means, if we have several sectors in the same page points to the same
509 * on-disk compressed data, we will re-read the same extent many times and
510 * this function can only help for the next page.
511 */
771ed689
CM
512static noinline int add_ra_bio_pages(struct inode *inode,
513 u64 compressed_end,
4088a47e
CH
514 struct compressed_bio *cb,
515 unsigned long *pflags)
771ed689 516{
6a404910 517 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689 518 unsigned long end_index;
6a404910 519 u64 cur = bio_end_offset(cb->orig_bio);
771ed689
CM
520 u64 isize = i_size_read(inode);
521 int ret;
522 struct page *page;
771ed689
CM
523 struct extent_map *em;
524 struct address_space *mapping = inode->i_mapping;
771ed689
CM
525 struct extent_map_tree *em_tree;
526 struct extent_io_tree *tree;
6a404910 527 int sectors_missed = 0;
771ed689 528
771ed689
CM
529 em_tree = &BTRFS_I(inode)->extent_tree;
530 tree = &BTRFS_I(inode)->io_tree;
531
532 if (isize == 0)
533 return 0;
534
ca62e85d
QW
535 /*
536 * For current subpage support, we only support 64K page size,
537 * which means maximum compressed extent size (128K) is just 2x page
538 * size.
539 * This makes readahead less effective, so here disable readahead for
540 * subpage for now, until full compressed write is supported.
541 */
542 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
543 return 0;
544
09cbfeaf 545 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
771ed689 546
6a404910
QW
547 while (cur < compressed_end) {
548 u64 page_end;
549 u64 pg_index = cur >> PAGE_SHIFT;
550 u32 add_size;
771ed689 551
306e16ce 552 if (pg_index > end_index)
771ed689
CM
553 break;
554
0a943c65 555 page = xa_load(&mapping->i_pages, pg_index);
3159f943 556 if (page && !xa_is_value(page)) {
6a404910
QW
557 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
558 fs_info->sectorsize_bits;
559
560 /* Beyond threshold, no need to continue */
561 if (sectors_missed > 4)
771ed689 562 break;
6a404910
QW
563
564 /*
565 * Jump to next page start as we already have page for
566 * current offset.
567 */
568 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
569 continue;
771ed689
CM
570 }
571
c62d2555
MH
572 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
573 ~__GFP_FS));
771ed689
CM
574 if (!page)
575 break;
576
c62d2555 577 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
09cbfeaf 578 put_page(page);
6a404910
QW
579 /* There is already a page, skip to page end */
580 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
581 continue;
771ed689
CM
582 }
583
4088a47e
CH
584 if (PageWorkingset(page))
585 psi_memstall_enter(pflags);
586
32443de3
QW
587 ret = set_page_extent_mapped(page);
588 if (ret < 0) {
589 unlock_page(page);
590 put_page(page);
591 break;
592 }
593
6a404910 594 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
570eb97b 595 lock_extent(tree, cur, page_end, NULL);
890871be 596 read_lock(&em_tree->lock);
6a404910 597 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
890871be 598 read_unlock(&em_tree->lock);
771ed689 599
6a404910
QW
600 /*
601 * At this point, we have a locked page in the page cache for
602 * these bytes in the file. But, we have to make sure they map
603 * to this compressed extent on disk.
604 */
605 if (!em || cur < em->start ||
606 (cur + fs_info->sectorsize > extent_map_end(em)) ||
4f024f37 607 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 608 free_extent_map(em);
570eb97b 609 unlock_extent(tree, cur, page_end, NULL);
771ed689 610 unlock_page(page);
09cbfeaf 611 put_page(page);
771ed689
CM
612 break;
613 }
614 free_extent_map(em);
615
616 if (page->index == end_index) {
7073017a 617 size_t zero_offset = offset_in_page(isize);
771ed689
CM
618
619 if (zero_offset) {
620 int zeros;
09cbfeaf 621 zeros = PAGE_SIZE - zero_offset;
d048b9c2 622 memzero_page(page, zero_offset, zeros);
771ed689
CM
623 }
624 }
625
6a404910
QW
626 add_size = min(em->start + em->len, page_end + 1) - cur;
627 ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
628 if (ret != add_size) {
570eb97b 629 unlock_extent(tree, cur, page_end, NULL);
771ed689 630 unlock_page(page);
09cbfeaf 631 put_page(page);
771ed689
CM
632 break;
633 }
6a404910
QW
634 /*
635 * If it's subpage, we also need to increase its
636 * subpage::readers number, as at endio we will decrease
637 * subpage::readers and to unlock the page.
638 */
639 if (fs_info->sectorsize < PAGE_SIZE)
640 btrfs_subpage_start_reader(fs_info, page, cur, add_size);
641 put_page(page);
642 cur += add_size;
771ed689 643 }
771ed689
CM
644 return 0;
645}
646
c8b97818
CM
647/*
648 * for a compressed read, the bio we get passed has all the inode pages
649 * in it. We don't actually do IO on those pages but allocate new ones
650 * to hold the compressed pages on disk.
651 *
4f024f37 652 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818 653 * bio->bi_io_vec points to all of the inode pages
c8b97818
CM
654 *
655 * After the compressed pages are read, we copy the bytes into the
656 * bio we were passed and then call the bio end_io calls
657 */
cb4411dd 658void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
1d8fa2e2 659 int mirror_num)
c8b97818 660{
0b246afa 661 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818
CM
662 struct extent_map_tree *em_tree;
663 struct compressed_bio *cb;
356b4a2d 664 unsigned int compressed_len;
f472c28f
QW
665 struct bio *comp_bio = NULL;
666 const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
667 u64 cur_disk_byte = disk_bytenr;
668 u64 next_stripe_start;
557023ea 669 u64 file_offset;
e04ca626
CM
670 u64 em_len;
671 u64 em_start;
c8b97818 672 struct extent_map *em;
4088a47e
CH
673 /* Initialize to 1 to make skip psi_memstall_leave unless needed */
674 unsigned long pflags = 1;
f9f15de8 675 blk_status_t ret;
dd137dd1
STD
676 int ret2;
677 int i;
c8b97818 678
c8b97818
CM
679 em_tree = &BTRFS_I(inode)->extent_tree;
680
557023ea
QW
681 file_offset = bio_first_bvec_all(bio)->bv_offset +
682 page_offset(bio_first_page_all(bio));
683
c8b97818 684 /* we need the actual starting offset of this extent in the file */
890871be 685 read_lock(&em_tree->lock);
557023ea 686 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
890871be 687 read_unlock(&em_tree->lock);
f9f15de8
JB
688 if (!em) {
689 ret = BLK_STS_IOERR;
690 goto out;
691 }
c8b97818 692
557023ea 693 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
d20f7043 694 compressed_len = em->block_len;
81bd9328 695 cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
f9f15de8
JB
696 if (!cb) {
697 ret = BLK_STS_RESOURCE;
6b82ce8d 698 goto out;
f9f15de8 699 }
6b82ce8d 700
524bcd1e 701 refcount_set(&cb->pending_ios, 1);
606f82e7 702 cb->status = BLK_STS_OK;
c8b97818
CM
703 cb->inode = inode;
704
ff5b7ee3 705 cb->start = em->orig_start;
e04ca626
CM
706 em_len = em->len;
707 em_start = em->start;
d20f7043 708
81381053 709 cb->len = bio->bi_iter.bi_size;
c8b97818 710 cb->compressed_len = compressed_len;
1d8fa2e2 711 cb->compress_type = em->compress_type;
c8b97818
CM
712 cb->orig_bio = bio;
713
1d8fa2e2
GR
714 free_extent_map(em);
715 em = NULL;
716
dd137dd1
STD
717 cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
718 cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
f9f15de8
JB
719 if (!cb->compressed_pages) {
720 ret = BLK_STS_RESOURCE;
dd137dd1 721 goto fail;
f9f15de8 722 }
6b82ce8d 723
dd137dd1
STD
724 ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
725 if (ret2) {
726 ret = BLK_STS_RESOURCE;
727 goto fail;
c8b97818 728 }
c8b97818 729
4088a47e 730 add_ra_bio_pages(inode, em_start + em_len, cb, &pflags);
771ed689 731
771ed689 732 /* include any pages we added in add_ra-bio_pages */
81381053 733 cb->len = bio->bi_iter.bi_size;
771ed689 734
f472c28f
QW
735 while (cur_disk_byte < disk_bytenr + compressed_len) {
736 u64 offset = cur_disk_byte - disk_bytenr;
737 unsigned int index = offset >> PAGE_SHIFT;
738 unsigned int real_size;
739 unsigned int added;
740 struct page *page = cb->compressed_pages[index];
741 bool submit = false;
c8b97818 742
f472c28f
QW
743 /* Allocate new bio if submitted or not yet allocated */
744 if (!comp_bio) {
745 comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
746 REQ_OP_READ, end_compressed_bio_read,
747 &next_stripe_start);
748 if (IS_ERR(comp_bio)) {
524bcd1e
CH
749 cb->status = errno_to_blk_status(PTR_ERR(comp_bio));
750 break;
f472c28f
QW
751 }
752 }
753 /*
754 * We should never reach next_stripe_start start as we will
755 * submit comp_bio when reach the boundary immediately.
756 */
757 ASSERT(cur_disk_byte != next_stripe_start);
758 /*
759 * We have various limit on the real read size:
760 * - stripe boundary
761 * - page boundary
762 * - compressed length boundary
763 */
764 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
765 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
766 real_size = min_t(u64, real_size, compressed_len - offset);
767 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
4e4cbee9 768
f472c28f 769 added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
be6a1361 770 /*
f472c28f
QW
771 * Maximum compressed extent is smaller than bio size limit,
772 * thus bio_add_page() should always success.
be6a1361 773 */
f472c28f
QW
774 ASSERT(added == real_size);
775 cur_disk_byte += added;
be6a1361 776
f472c28f
QW
777 /* Reached stripe boundary, need to submit */
778 if (cur_disk_byte == next_stripe_start)
779 submit = true;
d20f7043 780
f472c28f
QW
781 /* Has finished the range, need to submit */
782 if (cur_disk_byte == disk_bytenr + compressed_len)
783 submit = true;
c8b97818 784
f472c28f 785 if (submit) {
81bd9328
CH
786 /* Save the original iter for read repair */
787 if (bio_op(comp_bio) == REQ_OP_READ)
788 btrfs_bio(comp_bio)->iter = comp_bio->bi_iter;
10fe6ca8 789
81bd9328
CH
790 /*
791 * Save the initial offset of this chunk, as there
792 * is no direct correlation between compressed pages and
793 * the original file offset. The field is only used for
794 * priting error messages.
795 */
796 btrfs_bio(comp_bio)->file_offset = file_offset;
10fe6ca8 797
81bd9328 798 ret = btrfs_lookup_bio_sums(inode, comp_bio, NULL);
524bcd1e 799 if (ret) {
917f32a2 800 btrfs_bio_end_io(btrfs_bio(comp_bio), ret);
524bcd1e
CH
801 break;
802 }
d20f7043 803
fed8a72d 804 ASSERT(comp_bio->bi_iter.bi_size);
1a722d8f 805 btrfs_submit_bio(fs_info, comp_bio, mirror_num);
f472c28f 806 comp_bio = NULL;
c8b97818 807 }
c8b97818 808 }
524bcd1e 809
4088a47e
CH
810 if (!pflags)
811 psi_memstall_leave(&pflags);
812
524bcd1e
CH
813 if (refcount_dec_and_test(&cb->pending_ios))
814 finish_compressed_bio_read(cb);
cb4411dd 815 return;
6b82ce8d 816
dd137dd1
STD
817fail:
818 if (cb->compressed_pages) {
819 for (i = 0; i < cb->nr_pages; i++) {
820 if (cb->compressed_pages[i])
821 __free_page(cb->compressed_pages[i]);
822 }
15e3004a 823 }
6b82ce8d 824
825 kfree(cb->compressed_pages);
6b82ce8d 826 kfree(cb);
827out:
828 free_extent_map(em);
917f32a2 829 btrfs_bio_end_io(btrfs_bio(bio), ret);
cb4411dd 830 return;
c8b97818 831}
261507a0 832
17b5a6c1
TT
833/*
834 * Heuristic uses systematic sampling to collect data from the input data
835 * range, the logic can be tuned by the following constants:
836 *
837 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
838 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
839 */
840#define SAMPLING_READ_SIZE (16)
841#define SAMPLING_INTERVAL (256)
842
843/*
844 * For statistical analysis of the input data we consider bytes that form a
845 * Galois Field of 256 objects. Each object has an attribute count, ie. how
846 * many times the object appeared in the sample.
847 */
848#define BUCKET_SIZE (256)
849
850/*
851 * The size of the sample is based on a statistical sampling rule of thumb.
852 * The common way is to perform sampling tests as long as the number of
853 * elements in each cell is at least 5.
854 *
855 * Instead of 5, we choose 32 to obtain more accurate results.
856 * If the data contain the maximum number of symbols, which is 256, we obtain a
857 * sample size bound by 8192.
858 *
859 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
860 * from up to 512 locations.
861 */
862#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
863 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
864
865struct bucket_item {
866 u32 count;
867};
4e439a0b
TT
868
869struct heuristic_ws {
17b5a6c1
TT
870 /* Partial copy of input data */
871 u8 *sample;
a440d48c 872 u32 sample_size;
17b5a6c1
TT
873 /* Buckets store counters for each byte value */
874 struct bucket_item *bucket;
440c840c
TT
875 /* Sorting buffer */
876 struct bucket_item *bucket_b;
4e439a0b
TT
877 struct list_head list;
878};
879
92ee5530
DZ
880static struct workspace_manager heuristic_wsm;
881
4e439a0b
TT
882static void free_heuristic_ws(struct list_head *ws)
883{
884 struct heuristic_ws *workspace;
885
886 workspace = list_entry(ws, struct heuristic_ws, list);
887
17b5a6c1
TT
888 kvfree(workspace->sample);
889 kfree(workspace->bucket);
440c840c 890 kfree(workspace->bucket_b);
4e439a0b
TT
891 kfree(workspace);
892}
893
7bf49943 894static struct list_head *alloc_heuristic_ws(unsigned int level)
4e439a0b
TT
895{
896 struct heuristic_ws *ws;
897
898 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
899 if (!ws)
900 return ERR_PTR(-ENOMEM);
901
17b5a6c1
TT
902 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
903 if (!ws->sample)
904 goto fail;
905
906 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
907 if (!ws->bucket)
908 goto fail;
4e439a0b 909
440c840c
TT
910 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
911 if (!ws->bucket_b)
912 goto fail;
913
17b5a6c1 914 INIT_LIST_HEAD(&ws->list);
4e439a0b 915 return &ws->list;
17b5a6c1
TT
916fail:
917 free_heuristic_ws(&ws->list);
918 return ERR_PTR(-ENOMEM);
4e439a0b
TT
919}
920
ca4ac360 921const struct btrfs_compress_op btrfs_heuristic_compress = {
be951045 922 .workspace_manager = &heuristic_wsm,
ca4ac360
DZ
923};
924
e8c9f186 925static const struct btrfs_compress_op * const btrfs_compress_op[] = {
ca4ac360
DZ
926 /* The heuristic is represented as compression type 0 */
927 &btrfs_heuristic_compress,
261507a0 928 &btrfs_zlib_compress,
a6fa6fae 929 &btrfs_lzo_compress,
5c1aab1d 930 &btrfs_zstd_compress,
261507a0
LZ
931};
932
c778df14
DS
933static struct list_head *alloc_workspace(int type, unsigned int level)
934{
935 switch (type) {
936 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
937 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
938 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
939 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
940 default:
941 /*
942 * This can't happen, the type is validated several times
943 * before we get here.
944 */
945 BUG();
946 }
947}
948
1e002351
DS
949static void free_workspace(int type, struct list_head *ws)
950{
951 switch (type) {
952 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
953 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
954 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
955 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
956 default:
957 /*
958 * This can't happen, the type is validated several times
959 * before we get here.
960 */
961 BUG();
962 }
963}
964
d5517033 965static void btrfs_init_workspace_manager(int type)
261507a0 966{
0cf25213 967 struct workspace_manager *wsm;
4e439a0b 968 struct list_head *workspace;
261507a0 969
0cf25213 970 wsm = btrfs_compress_op[type]->workspace_manager;
92ee5530
DZ
971 INIT_LIST_HEAD(&wsm->idle_ws);
972 spin_lock_init(&wsm->ws_lock);
973 atomic_set(&wsm->total_ws, 0);
974 init_waitqueue_head(&wsm->ws_wait);
f77dd0d6 975
1666edab
DZ
976 /*
977 * Preallocate one workspace for each compression type so we can
978 * guarantee forward progress in the worst case
979 */
c778df14 980 workspace = alloc_workspace(type, 0);
1666edab
DZ
981 if (IS_ERR(workspace)) {
982 pr_warn(
983 "BTRFS: cannot preallocate compression workspace, will try later\n");
984 } else {
92ee5530
DZ
985 atomic_set(&wsm->total_ws, 1);
986 wsm->free_ws = 1;
987 list_add(workspace, &wsm->idle_ws);
1666edab
DZ
988 }
989}
990
2510307e 991static void btrfs_cleanup_workspace_manager(int type)
1666edab 992{
2dba7143 993 struct workspace_manager *wsman;
1666edab
DZ
994 struct list_head *ws;
995
2dba7143 996 wsman = btrfs_compress_op[type]->workspace_manager;
1666edab
DZ
997 while (!list_empty(&wsman->idle_ws)) {
998 ws = wsman->idle_ws.next;
999 list_del(ws);
1e002351 1000 free_workspace(type, ws);
1666edab 1001 atomic_dec(&wsman->total_ws);
261507a0 1002 }
261507a0
LZ
1003}
1004
1005/*
e721e49d
DS
1006 * This finds an available workspace or allocates a new one.
1007 * If it's not possible to allocate a new one, waits until there's one.
1008 * Preallocation makes a forward progress guarantees and we do not return
1009 * errors.
261507a0 1010 */
5907a9bb 1011struct list_head *btrfs_get_workspace(int type, unsigned int level)
261507a0 1012{
5907a9bb 1013 struct workspace_manager *wsm;
261507a0
LZ
1014 struct list_head *workspace;
1015 int cpus = num_online_cpus();
fe308533 1016 unsigned nofs_flag;
4e439a0b
TT
1017 struct list_head *idle_ws;
1018 spinlock_t *ws_lock;
1019 atomic_t *total_ws;
1020 wait_queue_head_t *ws_wait;
1021 int *free_ws;
1022
5907a9bb 1023 wsm = btrfs_compress_op[type]->workspace_manager;
92ee5530
DZ
1024 idle_ws = &wsm->idle_ws;
1025 ws_lock = &wsm->ws_lock;
1026 total_ws = &wsm->total_ws;
1027 ws_wait = &wsm->ws_wait;
1028 free_ws = &wsm->free_ws;
261507a0 1029
261507a0 1030again:
d9187649
BL
1031 spin_lock(ws_lock);
1032 if (!list_empty(idle_ws)) {
1033 workspace = idle_ws->next;
261507a0 1034 list_del(workspace);
6ac10a6a 1035 (*free_ws)--;
d9187649 1036 spin_unlock(ws_lock);
261507a0
LZ
1037 return workspace;
1038
1039 }
6ac10a6a 1040 if (atomic_read(total_ws) > cpus) {
261507a0
LZ
1041 DEFINE_WAIT(wait);
1042
d9187649
BL
1043 spin_unlock(ws_lock);
1044 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
6ac10a6a 1045 if (atomic_read(total_ws) > cpus && !*free_ws)
261507a0 1046 schedule();
d9187649 1047 finish_wait(ws_wait, &wait);
261507a0
LZ
1048 goto again;
1049 }
6ac10a6a 1050 atomic_inc(total_ws);
d9187649 1051 spin_unlock(ws_lock);
261507a0 1052
fe308533
DS
1053 /*
1054 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1055 * to turn it off here because we might get called from the restricted
1056 * context of btrfs_compress_bio/btrfs_compress_pages
1057 */
1058 nofs_flag = memalloc_nofs_save();
c778df14 1059 workspace = alloc_workspace(type, level);
fe308533
DS
1060 memalloc_nofs_restore(nofs_flag);
1061
261507a0 1062 if (IS_ERR(workspace)) {
6ac10a6a 1063 atomic_dec(total_ws);
d9187649 1064 wake_up(ws_wait);
e721e49d
DS
1065
1066 /*
1067 * Do not return the error but go back to waiting. There's a
1068 * workspace preallocated for each type and the compression
1069 * time is bounded so we get to a workspace eventually. This
1070 * makes our caller's life easier.
52356716
DS
1071 *
1072 * To prevent silent and low-probability deadlocks (when the
1073 * initial preallocation fails), check if there are any
1074 * workspaces at all.
e721e49d 1075 */
52356716
DS
1076 if (atomic_read(total_ws) == 0) {
1077 static DEFINE_RATELIMIT_STATE(_rs,
1078 /* once per minute */ 60 * HZ,
1079 /* no burst */ 1);
1080
1081 if (__ratelimit(&_rs)) {
ab8d0fc4 1082 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
52356716
DS
1083 }
1084 }
e721e49d 1085 goto again;
261507a0
LZ
1086 }
1087 return workspace;
1088}
1089
7bf49943 1090static struct list_head *get_workspace(int type, int level)
929f4baf 1091{
6a0d1272 1092 switch (type) {
5907a9bb 1093 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
6a0d1272 1094 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
5907a9bb 1095 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
6a0d1272
DS
1096 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1097 default:
1098 /*
1099 * This can't happen, the type is validated several times
1100 * before we get here.
1101 */
1102 BUG();
1103 }
929f4baf
DZ
1104}
1105
261507a0
LZ
1106/*
1107 * put a workspace struct back on the list or free it if we have enough
1108 * idle ones sitting around
1109 */
a3bbd2a9 1110void btrfs_put_workspace(int type, struct list_head *ws)
261507a0 1111{
a3bbd2a9 1112 struct workspace_manager *wsm;
4e439a0b
TT
1113 struct list_head *idle_ws;
1114 spinlock_t *ws_lock;
1115 atomic_t *total_ws;
1116 wait_queue_head_t *ws_wait;
1117 int *free_ws;
1118
a3bbd2a9 1119 wsm = btrfs_compress_op[type]->workspace_manager;
92ee5530
DZ
1120 idle_ws = &wsm->idle_ws;
1121 ws_lock = &wsm->ws_lock;
1122 total_ws = &wsm->total_ws;
1123 ws_wait = &wsm->ws_wait;
1124 free_ws = &wsm->free_ws;
d9187649
BL
1125
1126 spin_lock(ws_lock);
26b28dce 1127 if (*free_ws <= num_online_cpus()) {
929f4baf 1128 list_add(ws, idle_ws);
6ac10a6a 1129 (*free_ws)++;
d9187649 1130 spin_unlock(ws_lock);
261507a0
LZ
1131 goto wake;
1132 }
d9187649 1133 spin_unlock(ws_lock);
261507a0 1134
1e002351 1135 free_workspace(type, ws);
6ac10a6a 1136 atomic_dec(total_ws);
261507a0 1137wake:
093258e6 1138 cond_wake_up(ws_wait);
261507a0
LZ
1139}
1140
929f4baf
DZ
1141static void put_workspace(int type, struct list_head *ws)
1142{
bd3a5287 1143 switch (type) {
a3bbd2a9
DS
1144 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1145 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1146 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
bd3a5287
DS
1147 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1148 default:
1149 /*
1150 * This can't happen, the type is validated several times
1151 * before we get here.
1152 */
1153 BUG();
1154 }
929f4baf
DZ
1155}
1156
adbab642
AJ
1157/*
1158 * Adjust @level according to the limits of the compression algorithm or
1159 * fallback to default
1160 */
1161static unsigned int btrfs_compress_set_level(int type, unsigned level)
1162{
1163 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1164
1165 if (level == 0)
1166 level = ops->default_level;
1167 else
1168 level = min(level, ops->max_level);
1169
1170 return level;
1171}
1172
261507a0 1173/*
38c31464
DS
1174 * Given an address space and start and length, compress the bytes into @pages
1175 * that are allocated on demand.
261507a0 1176 *
f51d2b59
DS
1177 * @type_level is encoded algorithm and level, where level 0 means whatever
1178 * default the algorithm chooses and is opaque here;
1179 * - compression algo are 0-3
1180 * - the level are bits 4-7
1181 *
4d3a800e
DS
1182 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1183 * and returns number of actually allocated pages
261507a0 1184 *
38c31464
DS
1185 * @total_in is used to return the number of bytes actually read. It
1186 * may be smaller than the input length if we had to exit early because we
261507a0
LZ
1187 * ran out of room in the pages array or because we cross the
1188 * max_out threshold.
1189 *
38c31464
DS
1190 * @total_out is an in/out parameter, must be set to the input length and will
1191 * be also used to return the total number of compressed bytes
261507a0 1192 */
f51d2b59 1193int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
38c31464 1194 u64 start, struct page **pages,
261507a0
LZ
1195 unsigned long *out_pages,
1196 unsigned long *total_in,
e5d74902 1197 unsigned long *total_out)
261507a0 1198{
1972708a 1199 int type = btrfs_compress_type(type_level);
7bf49943 1200 int level = btrfs_compress_level(type_level);
261507a0
LZ
1201 struct list_head *workspace;
1202 int ret;
1203
b0c1fe1e 1204 level = btrfs_compress_set_level(type, level);
7bf49943 1205 workspace = get_workspace(type, level);
1e4eb746
DS
1206 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1207 out_pages, total_in, total_out);
929f4baf 1208 put_workspace(type, workspace);
261507a0
LZ
1209 return ret;
1210}
1211
8140dc30 1212static int btrfs_decompress_bio(struct compressed_bio *cb)
261507a0
LZ
1213{
1214 struct list_head *workspace;
1215 int ret;
8140dc30 1216 int type = cb->compress_type;
261507a0 1217
7bf49943 1218 workspace = get_workspace(type, 0);
4a9e803e 1219 ret = compression_decompress_bio(workspace, cb);
929f4baf 1220 put_workspace(type, workspace);
e1ddce71 1221
261507a0
LZ
1222 return ret;
1223}
1224
1225/*
1226 * a less complex decompression routine. Our compressed data fits in a
1227 * single page, and we want to read a single page out of it.
1228 * start_byte tells us the offset into the compressed data we're interested in
1229 */
1230int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1231 unsigned long start_byte, size_t srclen, size_t destlen)
1232{
1233 struct list_head *workspace;
1234 int ret;
1235
7bf49943 1236 workspace = get_workspace(type, 0);
1e4eb746
DS
1237 ret = compression_decompress(type, workspace, data_in, dest_page,
1238 start_byte, srclen, destlen);
929f4baf 1239 put_workspace(type, workspace);
7bf49943 1240
261507a0
LZ
1241 return ret;
1242}
1243
1666edab
DZ
1244void __init btrfs_init_compress(void)
1245{
d5517033
DS
1246 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1247 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1248 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1249 zstd_init_workspace_manager();
1666edab
DZ
1250}
1251
e67c718b 1252void __cold btrfs_exit_compress(void)
261507a0 1253{
2510307e
DS
1254 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1255 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1256 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1257 zstd_cleanup_workspace_manager();
261507a0 1258}
3a39c18d
LZ
1259
1260/*
1c3dc173 1261 * Copy decompressed data from working buffer to pages.
3a39c18d 1262 *
1c3dc173
QW
1263 * @buf: The decompressed data buffer
1264 * @buf_len: The decompressed data length
1265 * @decompressed: Number of bytes that are already decompressed inside the
1266 * compressed extent
1267 * @cb: The compressed extent descriptor
1268 * @orig_bio: The original bio that the caller wants to read for
3a39c18d 1269 *
1c3dc173
QW
1270 * An easier to understand graph is like below:
1271 *
1272 * |<- orig_bio ->| |<- orig_bio->|
1273 * |<------- full decompressed extent ----->|
1274 * |<----------- @cb range ---->|
1275 * | |<-- @buf_len -->|
1276 * |<--- @decompressed --->|
1277 *
1278 * Note that, @cb can be a subpage of the full decompressed extent, but
1279 * @cb->start always has the same as the orig_file_offset value of the full
1280 * decompressed extent.
1281 *
1282 * When reading compressed extent, we have to read the full compressed extent,
1283 * while @orig_bio may only want part of the range.
1284 * Thus this function will ensure only data covered by @orig_bio will be copied
1285 * to.
1286 *
1287 * Return 0 if we have copied all needed contents for @orig_bio.
1288 * Return >0 if we need continue decompress.
3a39c18d 1289 */
1c3dc173
QW
1290int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1291 struct compressed_bio *cb, u32 decompressed)
3a39c18d 1292{
1c3dc173
QW
1293 struct bio *orig_bio = cb->orig_bio;
1294 /* Offset inside the full decompressed extent */
1295 u32 cur_offset;
1296
1297 cur_offset = decompressed;
1298 /* The main loop to do the copy */
1299 while (cur_offset < decompressed + buf_len) {
1300 struct bio_vec bvec;
1301 size_t copy_len;
1302 u32 copy_start;
1303 /* Offset inside the full decompressed extent */
1304 u32 bvec_offset;
1305
1306 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1307 /*
1308 * cb->start may underflow, but subtracting that value can still
1309 * give us correct offset inside the full decompressed extent.
1310 */
1311 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
974b1adc 1312
1c3dc173
QW
1313 /* Haven't reached the bvec range, exit */
1314 if (decompressed + buf_len <= bvec_offset)
1315 return 1;
3a39c18d 1316
1c3dc173
QW
1317 copy_start = max(cur_offset, bvec_offset);
1318 copy_len = min(bvec_offset + bvec.bv_len,
1319 decompressed + buf_len) - copy_start;
1320 ASSERT(copy_len);
3a39c18d 1321
974b1adc 1322 /*
1c3dc173
QW
1323 * Extra range check to ensure we didn't go beyond
1324 * @buf + @buf_len.
974b1adc 1325 */
1c3dc173
QW
1326 ASSERT(copy_start - decompressed < buf_len);
1327 memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1328 buf + copy_start - decompressed, copy_len);
1c3dc173 1329 cur_offset += copy_len;
3a39c18d 1330
1c3dc173
QW
1331 bio_advance(orig_bio, copy_len);
1332 /* Finished the bio */
1333 if (!orig_bio->bi_iter.bi_size)
1334 return 0;
3a39c18d 1335 }
3a39c18d
LZ
1336 return 1;
1337}
c2fcdcdf 1338
19562430
TT
1339/*
1340 * Shannon Entropy calculation
1341 *
52042d8e 1342 * Pure byte distribution analysis fails to determine compressibility of data.
19562430
TT
1343 * Try calculating entropy to estimate the average minimum number of bits
1344 * needed to encode the sampled data.
1345 *
1346 * For convenience, return the percentage of needed bits, instead of amount of
1347 * bits directly.
1348 *
1349 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1350 * and can be compressible with high probability
1351 *
1352 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1353 *
1354 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1355 */
1356#define ENTROPY_LVL_ACEPTABLE (65)
1357#define ENTROPY_LVL_HIGH (80)
1358
1359/*
1360 * For increasead precision in shannon_entropy calculation,
1361 * let's do pow(n, M) to save more digits after comma:
1362 *
1363 * - maximum int bit length is 64
1364 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1365 * - 13 * 4 = 52 < 64 -> M = 4
1366 *
1367 * So use pow(n, 4).
1368 */
1369static inline u32 ilog2_w(u64 n)
1370{
1371 return ilog2(n * n * n * n);
1372}
1373
1374static u32 shannon_entropy(struct heuristic_ws *ws)
1375{
1376 const u32 entropy_max = 8 * ilog2_w(2);
1377 u32 entropy_sum = 0;
1378 u32 p, p_base, sz_base;
1379 u32 i;
1380
1381 sz_base = ilog2_w(ws->sample_size);
1382 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1383 p = ws->bucket[i].count;
1384 p_base = ilog2_w(p);
1385 entropy_sum += p * (sz_base - p_base);
1386 }
1387
1388 entropy_sum /= ws->sample_size;
1389 return entropy_sum * 100 / entropy_max;
1390}
1391
440c840c
TT
1392#define RADIX_BASE 4U
1393#define COUNTERS_SIZE (1U << RADIX_BASE)
1394
1395static u8 get4bits(u64 num, int shift) {
1396 u8 low4bits;
1397
1398 num >>= shift;
1399 /* Reverse order */
1400 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1401 return low4bits;
1402}
1403
440c840c
TT
1404/*
1405 * Use 4 bits as radix base
52042d8e 1406 * Use 16 u32 counters for calculating new position in buf array
440c840c
TT
1407 *
1408 * @array - array that will be sorted
1409 * @array_buf - buffer array to store sorting results
1410 * must be equal in size to @array
1411 * @num - array size
440c840c 1412 */
23ae8c63 1413static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
36243c91 1414 int num)
858177d3 1415{
440c840c
TT
1416 u64 max_num;
1417 u64 buf_num;
1418 u32 counters[COUNTERS_SIZE];
1419 u32 new_addr;
1420 u32 addr;
1421 int bitlen;
1422 int shift;
1423 int i;
858177d3 1424
440c840c
TT
1425 /*
1426 * Try avoid useless loop iterations for small numbers stored in big
1427 * counters. Example: 48 33 4 ... in 64bit array
1428 */
23ae8c63 1429 max_num = array[0].count;
440c840c 1430 for (i = 1; i < num; i++) {
23ae8c63 1431 buf_num = array[i].count;
440c840c
TT
1432 if (buf_num > max_num)
1433 max_num = buf_num;
1434 }
1435
1436 buf_num = ilog2(max_num);
1437 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1438
1439 shift = 0;
1440 while (shift < bitlen) {
1441 memset(counters, 0, sizeof(counters));
1442
1443 for (i = 0; i < num; i++) {
23ae8c63 1444 buf_num = array[i].count;
440c840c
TT
1445 addr = get4bits(buf_num, shift);
1446 counters[addr]++;
1447 }
1448
1449 for (i = 1; i < COUNTERS_SIZE; i++)
1450 counters[i] += counters[i - 1];
1451
1452 for (i = num - 1; i >= 0; i--) {
23ae8c63 1453 buf_num = array[i].count;
440c840c
TT
1454 addr = get4bits(buf_num, shift);
1455 counters[addr]--;
1456 new_addr = counters[addr];
7add17be 1457 array_buf[new_addr] = array[i];
440c840c
TT
1458 }
1459
1460 shift += RADIX_BASE;
1461
1462 /*
1463 * Normal radix expects to move data from a temporary array, to
1464 * the main one. But that requires some CPU time. Avoid that
1465 * by doing another sort iteration to original array instead of
1466 * memcpy()
1467 */
1468 memset(counters, 0, sizeof(counters));
1469
1470 for (i = 0; i < num; i ++) {
23ae8c63 1471 buf_num = array_buf[i].count;
440c840c
TT
1472 addr = get4bits(buf_num, shift);
1473 counters[addr]++;
1474 }
1475
1476 for (i = 1; i < COUNTERS_SIZE; i++)
1477 counters[i] += counters[i - 1];
1478
1479 for (i = num - 1; i >= 0; i--) {
23ae8c63 1480 buf_num = array_buf[i].count;
440c840c
TT
1481 addr = get4bits(buf_num, shift);
1482 counters[addr]--;
1483 new_addr = counters[addr];
7add17be 1484 array[new_addr] = array_buf[i];
440c840c
TT
1485 }
1486
1487 shift += RADIX_BASE;
1488 }
858177d3
TT
1489}
1490
1491/*
1492 * Size of the core byte set - how many bytes cover 90% of the sample
1493 *
1494 * There are several types of structured binary data that use nearly all byte
1495 * values. The distribution can be uniform and counts in all buckets will be
1496 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1497 *
1498 * Other possibility is normal (Gaussian) distribution, where the data could
1499 * be potentially compressible, but we have to take a few more steps to decide
1500 * how much.
1501 *
1502 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1503 * compression algo can easy fix that
1504 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1505 * probability is not compressible
1506 */
1507#define BYTE_CORE_SET_LOW (64)
1508#define BYTE_CORE_SET_HIGH (200)
1509
1510static int byte_core_set_size(struct heuristic_ws *ws)
1511{
1512 u32 i;
1513 u32 coreset_sum = 0;
1514 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1515 struct bucket_item *bucket = ws->bucket;
1516
1517 /* Sort in reverse order */
36243c91 1518 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
858177d3
TT
1519
1520 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1521 coreset_sum += bucket[i].count;
1522
1523 if (coreset_sum > core_set_threshold)
1524 return i;
1525
1526 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1527 coreset_sum += bucket[i].count;
1528 if (coreset_sum > core_set_threshold)
1529 break;
1530 }
1531
1532 return i;
1533}
1534
a288e92c
TT
1535/*
1536 * Count byte values in buckets.
1537 * This heuristic can detect textual data (configs, xml, json, html, etc).
1538 * Because in most text-like data byte set is restricted to limited number of
1539 * possible characters, and that restriction in most cases makes data easy to
1540 * compress.
1541 *
1542 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1543 * less - compressible
1544 * more - need additional analysis
1545 */
1546#define BYTE_SET_THRESHOLD (64)
1547
1548static u32 byte_set_size(const struct heuristic_ws *ws)
1549{
1550 u32 i;
1551 u32 byte_set_size = 0;
1552
1553 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1554 if (ws->bucket[i].count > 0)
1555 byte_set_size++;
1556 }
1557
1558 /*
1559 * Continue collecting count of byte values in buckets. If the byte
1560 * set size is bigger then the threshold, it's pointless to continue,
1561 * the detection technique would fail for this type of data.
1562 */
1563 for (; i < BUCKET_SIZE; i++) {
1564 if (ws->bucket[i].count > 0) {
1565 byte_set_size++;
1566 if (byte_set_size > BYTE_SET_THRESHOLD)
1567 return byte_set_size;
1568 }
1569 }
1570
1571 return byte_set_size;
1572}
1573
1fe4f6fa
TT
1574static bool sample_repeated_patterns(struct heuristic_ws *ws)
1575{
1576 const u32 half_of_sample = ws->sample_size / 2;
1577 const u8 *data = ws->sample;
1578
1579 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1580}
1581
a440d48c
TT
1582static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1583 struct heuristic_ws *ws)
1584{
1585 struct page *page;
1586 u64 index, index_end;
1587 u32 i, curr_sample_pos;
1588 u8 *in_data;
1589
1590 /*
1591 * Compression handles the input data by chunks of 128KiB
1592 * (defined by BTRFS_MAX_UNCOMPRESSED)
1593 *
1594 * We do the same for the heuristic and loop over the whole range.
1595 *
1596 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1597 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1598 */
1599 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1600 end = start + BTRFS_MAX_UNCOMPRESSED;
1601
1602 index = start >> PAGE_SHIFT;
1603 index_end = end >> PAGE_SHIFT;
1604
1605 /* Don't miss unaligned end */
1606 if (!IS_ALIGNED(end, PAGE_SIZE))
1607 index_end++;
1608
1609 curr_sample_pos = 0;
1610 while (index < index_end) {
1611 page = find_get_page(inode->i_mapping, index);
58c1a35c 1612 in_data = kmap_local_page(page);
a440d48c
TT
1613 /* Handle case where the start is not aligned to PAGE_SIZE */
1614 i = start % PAGE_SIZE;
1615 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1616 /* Don't sample any garbage from the last page */
1617 if (start > end - SAMPLING_READ_SIZE)
1618 break;
1619 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1620 SAMPLING_READ_SIZE);
1621 i += SAMPLING_INTERVAL;
1622 start += SAMPLING_INTERVAL;
1623 curr_sample_pos += SAMPLING_READ_SIZE;
1624 }
58c1a35c 1625 kunmap_local(in_data);
a440d48c
TT
1626 put_page(page);
1627
1628 index++;
1629 }
1630
1631 ws->sample_size = curr_sample_pos;
1632}
1633
c2fcdcdf
TT
1634/*
1635 * Compression heuristic.
1636 *
1637 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1638 * quickly (compared to direct compression) detect data characteristics
1639 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1640 * data.
1641 *
1642 * The following types of analysis can be performed:
1643 * - detect mostly zero data
1644 * - detect data with low "byte set" size (text, etc)
1645 * - detect data with low/high "core byte" set
1646 *
1647 * Return non-zero if the compression should be done, 0 otherwise.
1648 */
1649int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1650{
7bf49943 1651 struct list_head *ws_list = get_workspace(0, 0);
4e439a0b 1652 struct heuristic_ws *ws;
a440d48c
TT
1653 u32 i;
1654 u8 byte;
19562430 1655 int ret = 0;
c2fcdcdf 1656
4e439a0b
TT
1657 ws = list_entry(ws_list, struct heuristic_ws, list);
1658
a440d48c
TT
1659 heuristic_collect_sample(inode, start, end, ws);
1660
1fe4f6fa
TT
1661 if (sample_repeated_patterns(ws)) {
1662 ret = 1;
1663 goto out;
1664 }
1665
a440d48c
TT
1666 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1667
1668 for (i = 0; i < ws->sample_size; i++) {
1669 byte = ws->sample[i];
1670 ws->bucket[byte].count++;
c2fcdcdf
TT
1671 }
1672
a288e92c
TT
1673 i = byte_set_size(ws);
1674 if (i < BYTE_SET_THRESHOLD) {
1675 ret = 2;
1676 goto out;
1677 }
1678
858177d3
TT
1679 i = byte_core_set_size(ws);
1680 if (i <= BYTE_CORE_SET_LOW) {
1681 ret = 3;
1682 goto out;
1683 }
1684
1685 if (i >= BYTE_CORE_SET_HIGH) {
1686 ret = 0;
1687 goto out;
1688 }
1689
19562430
TT
1690 i = shannon_entropy(ws);
1691 if (i <= ENTROPY_LVL_ACEPTABLE) {
1692 ret = 4;
1693 goto out;
1694 }
1695
1696 /*
1697 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1698 * needed to give green light to compression.
1699 *
1700 * For now just assume that compression at that level is not worth the
1701 * resources because:
1702 *
1703 * 1. it is possible to defrag the data later
1704 *
1705 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1706 * values, every bucket has counter at level ~54. The heuristic would
1707 * be confused. This can happen when data have some internal repeated
1708 * patterns like "abbacbbc...". This can be detected by analyzing
1709 * pairs of bytes, which is too costly.
1710 */
1711 if (i < ENTROPY_LVL_HIGH) {
1712 ret = 5;
1713 goto out;
1714 } else {
1715 ret = 0;
1716 goto out;
1717 }
1718
1fe4f6fa 1719out:
929f4baf 1720 put_workspace(0, ws_list);
c2fcdcdf
TT
1721 return ret;
1722}
f51d2b59 1723
d0ab62ce
DZ
1724/*
1725 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1726 * level, unrecognized string will set the default level
1727 */
1728unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
f51d2b59 1729{
d0ab62ce
DZ
1730 unsigned int level = 0;
1731 int ret;
1732
1733 if (!type)
f51d2b59
DS
1734 return 0;
1735
d0ab62ce
DZ
1736 if (str[0] == ':') {
1737 ret = kstrtouint(str + 1, 10, &level);
1738 if (ret)
1739 level = 0;
1740 }
1741
b0c1fe1e
DS
1742 level = btrfs_compress_set_level(type, level);
1743
1744 return level;
1745}