btrfs: separate superblock items out of fs_info
[linux-2.6-block.git] / fs / btrfs / compression.c
CommitLineData
c8b97818
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
c8b97818
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/bit_spinlock.h>
5a0e3ad6 34#include <linux/slab.h>
4b4e25f2 35#include "compat.h"
c8b97818
CM
36#include "ctree.h"
37#include "disk-io.h"
38#include "transaction.h"
39#include "btrfs_inode.h"
40#include "volumes.h"
41#include "ordered-data.h"
c8b97818
CM
42#include "compression.h"
43#include "extent_io.h"
44#include "extent_map.h"
45
46struct compressed_bio {
47 /* number of bios pending for this compressed extent */
48 atomic_t pending_bios;
49
50 /* the pages with the compressed data on them */
51 struct page **compressed_pages;
52
53 /* inode that owns this data */
54 struct inode *inode;
55
56 /* starting offset in the inode for our pages */
57 u64 start;
58
59 /* number of bytes in the inode we're working on */
60 unsigned long len;
61
62 /* number of bytes on disk */
63 unsigned long compressed_len;
64
261507a0
LZ
65 /* the compression algorithm for this bio */
66 int compress_type;
67
c8b97818
CM
68 /* number of compressed pages in the array */
69 unsigned long nr_pages;
70
71 /* IO errors */
72 int errors;
d20f7043 73 int mirror_num;
c8b97818
CM
74
75 /* for reads, this is the bio we are copying the data into */
76 struct bio *orig_bio;
d20f7043
CM
77
78 /*
79 * the start of a variable length array of checksums only
80 * used by reads
81 */
82 u32 sums;
c8b97818
CM
83};
84
d20f7043
CM
85static inline int compressed_bio_size(struct btrfs_root *root,
86 unsigned long disk_size)
87{
6c41761f
DS
88 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
89
d20f7043
CM
90 return sizeof(struct compressed_bio) +
91 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
92 csum_size;
93}
94
c8b97818
CM
95static struct bio *compressed_bio_alloc(struct block_device *bdev,
96 u64 first_byte, gfp_t gfp_flags)
97{
c8b97818
CM
98 int nr_vecs;
99
100 nr_vecs = bio_get_nr_vecs(bdev);
88f794ed 101 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
c8b97818
CM
102}
103
d20f7043
CM
104static int check_compressed_csum(struct inode *inode,
105 struct compressed_bio *cb,
106 u64 disk_start)
107{
108 int ret;
109 struct btrfs_root *root = BTRFS_I(inode)->root;
110 struct page *page;
111 unsigned long i;
112 char *kaddr;
113 u32 csum;
114 u32 *cb_sum = &cb->sums;
115
6cbff00f 116 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
d20f7043
CM
117 return 0;
118
119 for (i = 0; i < cb->nr_pages; i++) {
120 page = cb->compressed_pages[i];
121 csum = ~(u32)0;
122
123 kaddr = kmap_atomic(page, KM_USER0);
124 csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
125 btrfs_csum_final(csum, (char *)&csum);
126 kunmap_atomic(kaddr, KM_USER0);
127
128 if (csum != *cb_sum) {
33345d01 129 printk(KERN_INFO "btrfs csum failed ino %llu "
d397712b 130 "extent %llu csum %u "
33345d01
LZ
131 "wanted %u mirror %d\n",
132 (unsigned long long)btrfs_ino(inode),
d20f7043
CM
133 (unsigned long long)disk_start,
134 csum, *cb_sum, cb->mirror_num);
135 ret = -EIO;
136 goto fail;
137 }
138 cb_sum++;
139
140 }
141 ret = 0;
142fail:
143 return ret;
144}
145
c8b97818
CM
146/* when we finish reading compressed pages from the disk, we
147 * decompress them and then run the bio end_io routines on the
148 * decompressed pages (in the inode address space).
149 *
150 * This allows the checksumming and other IO error handling routines
151 * to work normally
152 *
153 * The compressed pages are freed here, and it must be run
154 * in process context
155 */
156static void end_compressed_bio_read(struct bio *bio, int err)
157{
c8b97818
CM
158 struct compressed_bio *cb = bio->bi_private;
159 struct inode *inode;
160 struct page *page;
161 unsigned long index;
162 int ret;
163
164 if (err)
165 cb->errors = 1;
166
167 /* if there are more bios still pending for this compressed
168 * extent, just exit
169 */
170 if (!atomic_dec_and_test(&cb->pending_bios))
171 goto out;
172
d20f7043
CM
173 inode = cb->inode;
174 ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
175 if (ret)
176 goto csum_failed;
177
c8b97818
CM
178 /* ok, we're the last bio for this extent, lets start
179 * the decompression.
180 */
261507a0
LZ
181 ret = btrfs_decompress_biovec(cb->compress_type,
182 cb->compressed_pages,
183 cb->start,
184 cb->orig_bio->bi_io_vec,
185 cb->orig_bio->bi_vcnt,
186 cb->compressed_len);
d20f7043 187csum_failed:
c8b97818
CM
188 if (ret)
189 cb->errors = 1;
190
191 /* release the compressed pages */
192 index = 0;
193 for (index = 0; index < cb->nr_pages; index++) {
194 page = cb->compressed_pages[index];
195 page->mapping = NULL;
196 page_cache_release(page);
197 }
198
199 /* do io completion on the original bio */
771ed689 200 if (cb->errors) {
c8b97818 201 bio_io_error(cb->orig_bio);
d20f7043
CM
202 } else {
203 int bio_index = 0;
204 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
205
206 /*
207 * we have verified the checksum already, set page
208 * checked so the end_io handlers know about it
209 */
d397712b 210 while (bio_index < cb->orig_bio->bi_vcnt) {
d20f7043
CM
211 SetPageChecked(bvec->bv_page);
212 bvec++;
213 bio_index++;
214 }
c8b97818 215 bio_endio(cb->orig_bio, 0);
d20f7043 216 }
c8b97818
CM
217
218 /* finally free the cb struct */
219 kfree(cb->compressed_pages);
220 kfree(cb);
221out:
222 bio_put(bio);
223}
224
225/*
226 * Clear the writeback bits on all of the file
227 * pages for a compressed write
228 */
229static noinline int end_compressed_writeback(struct inode *inode, u64 start,
230 unsigned long ram_size)
231{
232 unsigned long index = start >> PAGE_CACHE_SHIFT;
233 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
234 struct page *pages[16];
235 unsigned long nr_pages = end_index - index + 1;
236 int i;
237 int ret;
238
d397712b 239 while (nr_pages > 0) {
c8b97818 240 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
241 min_t(unsigned long,
242 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
243 if (ret == 0) {
244 nr_pages -= 1;
245 index += 1;
246 continue;
247 }
248 for (i = 0; i < ret; i++) {
249 end_page_writeback(pages[i]);
250 page_cache_release(pages[i]);
251 }
252 nr_pages -= ret;
253 index += ret;
254 }
255 /* the inode may be gone now */
256 return 0;
257}
258
259/*
260 * do the cleanup once all the compressed pages hit the disk.
261 * This will clear writeback on the file pages and free the compressed
262 * pages.
263 *
264 * This also calls the writeback end hooks for the file pages so that
265 * metadata and checksums can be updated in the file.
266 */
267static void end_compressed_bio_write(struct bio *bio, int err)
268{
269 struct extent_io_tree *tree;
270 struct compressed_bio *cb = bio->bi_private;
271 struct inode *inode;
272 struct page *page;
273 unsigned long index;
274
275 if (err)
276 cb->errors = 1;
277
278 /* if there are more bios still pending for this compressed
279 * extent, just exit
280 */
281 if (!atomic_dec_and_test(&cb->pending_bios))
282 goto out;
283
284 /* ok, we're the last bio for this extent, step one is to
285 * call back into the FS and do all the end_io operations
286 */
287 inode = cb->inode;
288 tree = &BTRFS_I(inode)->io_tree;
70b99e69 289 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
c8b97818
CM
290 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
291 cb->start,
292 cb->start + cb->len - 1,
293 NULL, 1);
70b99e69 294 cb->compressed_pages[0]->mapping = NULL;
c8b97818
CM
295
296 end_compressed_writeback(inode, cb->start, cb->len);
297 /* note, our inode could be gone now */
298
299 /*
300 * release the compressed pages, these came from alloc_page and
301 * are not attached to the inode at all
302 */
303 index = 0;
304 for (index = 0; index < cb->nr_pages; index++) {
305 page = cb->compressed_pages[index];
306 page->mapping = NULL;
307 page_cache_release(page);
308 }
309
310 /* finally free the cb struct */
311 kfree(cb->compressed_pages);
312 kfree(cb);
313out:
314 bio_put(bio);
315}
316
317/*
318 * worker function to build and submit bios for previously compressed pages.
319 * The corresponding pages in the inode should be marked for writeback
320 * and the compressed pages should have a reference on them for dropping
321 * when the IO is complete.
322 *
323 * This also checksums the file bytes and gets things ready for
324 * the end io hooks.
325 */
326int btrfs_submit_compressed_write(struct inode *inode, u64 start,
327 unsigned long len, u64 disk_start,
328 unsigned long compressed_len,
329 struct page **compressed_pages,
330 unsigned long nr_pages)
331{
332 struct bio *bio = NULL;
333 struct btrfs_root *root = BTRFS_I(inode)->root;
334 struct compressed_bio *cb;
335 unsigned long bytes_left;
336 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
306e16ce 337 int pg_index = 0;
c8b97818
CM
338 struct page *page;
339 u64 first_byte = disk_start;
340 struct block_device *bdev;
341 int ret;
e55179b3 342 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
c8b97818
CM
343
344 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
d20f7043 345 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
dac97e51
YS
346 if (!cb)
347 return -ENOMEM;
c8b97818
CM
348 atomic_set(&cb->pending_bios, 0);
349 cb->errors = 0;
350 cb->inode = inode;
351 cb->start = start;
352 cb->len = len;
d20f7043 353 cb->mirror_num = 0;
c8b97818
CM
354 cb->compressed_pages = compressed_pages;
355 cb->compressed_len = compressed_len;
356 cb->orig_bio = NULL;
357 cb->nr_pages = nr_pages;
358
359 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
360
c8b97818 361 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
dac97e51
YS
362 if(!bio) {
363 kfree(cb);
364 return -ENOMEM;
365 }
c8b97818
CM
366 bio->bi_private = cb;
367 bio->bi_end_io = end_compressed_bio_write;
368 atomic_inc(&cb->pending_bios);
369
370 /* create and submit bios for the compressed pages */
371 bytes_left = compressed_len;
306e16ce
DS
372 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
373 page = compressed_pages[pg_index];
c8b97818
CM
374 page->mapping = inode->i_mapping;
375 if (bio->bi_size)
376 ret = io_tree->ops->merge_bio_hook(page, 0,
377 PAGE_CACHE_SIZE,
378 bio, 0);
379 else
380 ret = 0;
381
70b99e69 382 page->mapping = NULL;
c8b97818
CM
383 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
384 PAGE_CACHE_SIZE) {
385 bio_get(bio);
386
af09abfe
CM
387 /*
388 * inc the count before we submit the bio so
389 * we know the end IO handler won't happen before
390 * we inc the count. Otherwise, the cb might get
391 * freed before we're done setting it up
392 */
393 atomic_inc(&cb->pending_bios);
c8b97818
CM
394 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
395 BUG_ON(ret);
396
e55179b3
LZ
397 if (!skip_sum) {
398 ret = btrfs_csum_one_bio(root, inode, bio,
399 start, 1);
400 BUG_ON(ret);
401 }
d20f7043 402
c8b97818
CM
403 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
404 BUG_ON(ret);
405
406 bio_put(bio);
407
408 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
c8b97818
CM
409 bio->bi_private = cb;
410 bio->bi_end_io = end_compressed_bio_write;
411 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
412 }
cfbc246e
CM
413 if (bytes_left < PAGE_CACHE_SIZE) {
414 printk("bytes left %lu compress len %lu nr %lu\n",
415 bytes_left, cb->compressed_len, cb->nr_pages);
416 }
c8b97818
CM
417 bytes_left -= PAGE_CACHE_SIZE;
418 first_byte += PAGE_CACHE_SIZE;
771ed689 419 cond_resched();
c8b97818
CM
420 }
421 bio_get(bio);
422
423 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
424 BUG_ON(ret);
425
e55179b3
LZ
426 if (!skip_sum) {
427 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
428 BUG_ON(ret);
429 }
d20f7043 430
c8b97818
CM
431 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
432 BUG_ON(ret);
433
434 bio_put(bio);
435 return 0;
436}
437
771ed689
CM
438static noinline int add_ra_bio_pages(struct inode *inode,
439 u64 compressed_end,
440 struct compressed_bio *cb)
441{
442 unsigned long end_index;
306e16ce 443 unsigned long pg_index;
771ed689
CM
444 u64 last_offset;
445 u64 isize = i_size_read(inode);
446 int ret;
447 struct page *page;
448 unsigned long nr_pages = 0;
449 struct extent_map *em;
450 struct address_space *mapping = inode->i_mapping;
771ed689
CM
451 struct extent_map_tree *em_tree;
452 struct extent_io_tree *tree;
453 u64 end;
454 int misses = 0;
455
456 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
457 last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
458 em_tree = &BTRFS_I(inode)->extent_tree;
459 tree = &BTRFS_I(inode)->io_tree;
460
461 if (isize == 0)
462 return 0;
463
464 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
465
d397712b 466 while (last_offset < compressed_end) {
306e16ce 467 pg_index = last_offset >> PAGE_CACHE_SHIFT;
771ed689 468
306e16ce 469 if (pg_index > end_index)
771ed689
CM
470 break;
471
472 rcu_read_lock();
306e16ce 473 page = radix_tree_lookup(&mapping->page_tree, pg_index);
771ed689
CM
474 rcu_read_unlock();
475 if (page) {
476 misses++;
477 if (misses > 4)
478 break;
479 goto next;
480 }
481
28ecb609
NP
482 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
483 ~__GFP_FS);
771ed689
CM
484 if (!page)
485 break;
486
306e16ce 487 if (add_to_page_cache_lru(page, mapping, pg_index,
28ecb609 488 GFP_NOFS)) {
771ed689
CM
489 page_cache_release(page);
490 goto next;
491 }
492
771ed689
CM
493 end = last_offset + PAGE_CACHE_SIZE - 1;
494 /*
495 * at this point, we have a locked page in the page cache
496 * for these bytes in the file. But, we have to make
497 * sure they map to this compressed extent on disk.
498 */
499 set_page_extent_mapped(page);
500 lock_extent(tree, last_offset, end, GFP_NOFS);
890871be 501 read_lock(&em_tree->lock);
771ed689
CM
502 em = lookup_extent_mapping(em_tree, last_offset,
503 PAGE_CACHE_SIZE);
890871be 504 read_unlock(&em_tree->lock);
771ed689
CM
505
506 if (!em || last_offset < em->start ||
507 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
508 (em->block_start >> 9) != cb->orig_bio->bi_sector) {
509 free_extent_map(em);
510 unlock_extent(tree, last_offset, end, GFP_NOFS);
511 unlock_page(page);
512 page_cache_release(page);
513 break;
514 }
515 free_extent_map(em);
516
517 if (page->index == end_index) {
518 char *userpage;
519 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
520
521 if (zero_offset) {
522 int zeros;
523 zeros = PAGE_CACHE_SIZE - zero_offset;
524 userpage = kmap_atomic(page, KM_USER0);
525 memset(userpage + zero_offset, 0, zeros);
526 flush_dcache_page(page);
527 kunmap_atomic(userpage, KM_USER0);
528 }
529 }
530
531 ret = bio_add_page(cb->orig_bio, page,
532 PAGE_CACHE_SIZE, 0);
533
534 if (ret == PAGE_CACHE_SIZE) {
535 nr_pages++;
536 page_cache_release(page);
537 } else {
538 unlock_extent(tree, last_offset, end, GFP_NOFS);
539 unlock_page(page);
540 page_cache_release(page);
541 break;
542 }
543next:
544 last_offset += PAGE_CACHE_SIZE;
545 }
771ed689
CM
546 return 0;
547}
548
c8b97818
CM
549/*
550 * for a compressed read, the bio we get passed has all the inode pages
551 * in it. We don't actually do IO on those pages but allocate new ones
552 * to hold the compressed pages on disk.
553 *
554 * bio->bi_sector points to the compressed extent on disk
555 * bio->bi_io_vec points to all of the inode pages
556 * bio->bi_vcnt is a count of pages
557 *
558 * After the compressed pages are read, we copy the bytes into the
559 * bio we were passed and then call the bio end_io calls
560 */
561int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
562 int mirror_num, unsigned long bio_flags)
563{
564 struct extent_io_tree *tree;
565 struct extent_map_tree *em_tree;
566 struct compressed_bio *cb;
567 struct btrfs_root *root = BTRFS_I(inode)->root;
568 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
569 unsigned long compressed_len;
570 unsigned long nr_pages;
306e16ce 571 unsigned long pg_index;
c8b97818
CM
572 struct page *page;
573 struct block_device *bdev;
574 struct bio *comp_bio;
575 u64 cur_disk_byte = (u64)bio->bi_sector << 9;
e04ca626
CM
576 u64 em_len;
577 u64 em_start;
c8b97818 578 struct extent_map *em;
6b82ce8d 579 int ret = -ENOMEM;
d20f7043 580 u32 *sums;
c8b97818
CM
581
582 tree = &BTRFS_I(inode)->io_tree;
583 em_tree = &BTRFS_I(inode)->extent_tree;
584
585 /* we need the actual starting offset of this extent in the file */
890871be 586 read_lock(&em_tree->lock);
c8b97818
CM
587 em = lookup_extent_mapping(em_tree,
588 page_offset(bio->bi_io_vec->bv_page),
589 PAGE_CACHE_SIZE);
890871be 590 read_unlock(&em_tree->lock);
c8b97818 591
d20f7043
CM
592 compressed_len = em->block_len;
593 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
6b82ce8d 594 if (!cb)
595 goto out;
596
c8b97818
CM
597 atomic_set(&cb->pending_bios, 0);
598 cb->errors = 0;
599 cb->inode = inode;
d20f7043
CM
600 cb->mirror_num = mirror_num;
601 sums = &cb->sums;
c8b97818 602
ff5b7ee3 603 cb->start = em->orig_start;
e04ca626
CM
604 em_len = em->len;
605 em_start = em->start;
d20f7043 606
c8b97818 607 free_extent_map(em);
e04ca626 608 em = NULL;
c8b97818
CM
609
610 cb->len = uncompressed_len;
611 cb->compressed_len = compressed_len;
261507a0 612 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
613 cb->orig_bio = bio;
614
615 nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
616 PAGE_CACHE_SIZE;
6b82ce8d 617 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
c8b97818 618 GFP_NOFS);
6b82ce8d 619 if (!cb->compressed_pages)
620 goto fail1;
621
c8b97818
CM
622 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
623
306e16ce
DS
624 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
625 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 626 __GFP_HIGHMEM);
306e16ce 627 if (!cb->compressed_pages[pg_index])
6b82ce8d 628 goto fail2;
c8b97818
CM
629 }
630 cb->nr_pages = nr_pages;
631
e04ca626 632 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 633
771ed689
CM
634 /* include any pages we added in add_ra-bio_pages */
635 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
636 cb->len = uncompressed_len;
637
c8b97818 638 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
6b82ce8d 639 if (!comp_bio)
640 goto fail2;
c8b97818
CM
641 comp_bio->bi_private = cb;
642 comp_bio->bi_end_io = end_compressed_bio_read;
643 atomic_inc(&cb->pending_bios);
644
306e16ce
DS
645 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
646 page = cb->compressed_pages[pg_index];
c8b97818 647 page->mapping = inode->i_mapping;
d20f7043
CM
648 page->index = em_start >> PAGE_CACHE_SHIFT;
649
c8b97818
CM
650 if (comp_bio->bi_size)
651 ret = tree->ops->merge_bio_hook(page, 0,
652 PAGE_CACHE_SIZE,
653 comp_bio, 0);
654 else
655 ret = 0;
656
70b99e69 657 page->mapping = NULL;
c8b97818
CM
658 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
659 PAGE_CACHE_SIZE) {
660 bio_get(comp_bio);
661
662 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
663 BUG_ON(ret);
664
af09abfe
CM
665 /*
666 * inc the count before we submit the bio so
667 * we know the end IO handler won't happen before
668 * we inc the count. Otherwise, the cb might get
669 * freed before we're done setting it up
670 */
671 atomic_inc(&cb->pending_bios);
672
6cbff00f 673 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
c2db1073
TI
674 ret = btrfs_lookup_bio_sums(root, inode,
675 comp_bio, sums);
676 BUG_ON(ret);
d20f7043
CM
677 }
678 sums += (comp_bio->bi_size + root->sectorsize - 1) /
679 root->sectorsize;
680
681 ret = btrfs_map_bio(root, READ, comp_bio,
682 mirror_num, 0);
c8b97818
CM
683 BUG_ON(ret);
684
685 bio_put(comp_bio);
686
687 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
688 GFP_NOFS);
771ed689
CM
689 comp_bio->bi_private = cb;
690 comp_bio->bi_end_io = end_compressed_bio_read;
691
692 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
c8b97818
CM
693 }
694 cur_disk_byte += PAGE_CACHE_SIZE;
695 }
696 bio_get(comp_bio);
697
698 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
699 BUG_ON(ret);
700
c2db1073
TI
701 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
702 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
703 BUG_ON(ret);
704 }
d20f7043
CM
705
706 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
c8b97818
CM
707 BUG_ON(ret);
708
709 bio_put(comp_bio);
710 return 0;
6b82ce8d 711
712fail2:
306e16ce
DS
713 for (pg_index = 0; pg_index < nr_pages; pg_index++)
714 free_page((unsigned long)cb->compressed_pages[pg_index]);
6b82ce8d 715
716 kfree(cb->compressed_pages);
717fail1:
718 kfree(cb);
719out:
720 free_extent_map(em);
721 return ret;
c8b97818 722}
261507a0
LZ
723
724static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
725static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
726static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
727static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
728static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
729
730struct btrfs_compress_op *btrfs_compress_op[] = {
731 &btrfs_zlib_compress,
a6fa6fae 732 &btrfs_lzo_compress,
261507a0
LZ
733};
734
735int __init btrfs_init_compress(void)
736{
737 int i;
738
739 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
740 INIT_LIST_HEAD(&comp_idle_workspace[i]);
741 spin_lock_init(&comp_workspace_lock[i]);
742 atomic_set(&comp_alloc_workspace[i], 0);
743 init_waitqueue_head(&comp_workspace_wait[i]);
744 }
745 return 0;
746}
747
748/*
749 * this finds an available workspace or allocates a new one
750 * ERR_PTR is returned if things go bad.
751 */
752static struct list_head *find_workspace(int type)
753{
754 struct list_head *workspace;
755 int cpus = num_online_cpus();
756 int idx = type - 1;
757
758 struct list_head *idle_workspace = &comp_idle_workspace[idx];
759 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
760 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
761 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
762 int *num_workspace = &comp_num_workspace[idx];
763again:
764 spin_lock(workspace_lock);
765 if (!list_empty(idle_workspace)) {
766 workspace = idle_workspace->next;
767 list_del(workspace);
768 (*num_workspace)--;
769 spin_unlock(workspace_lock);
770 return workspace;
771
772 }
773 if (atomic_read(alloc_workspace) > cpus) {
774 DEFINE_WAIT(wait);
775
776 spin_unlock(workspace_lock);
777 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
778 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
779 schedule();
780 finish_wait(workspace_wait, &wait);
781 goto again;
782 }
783 atomic_inc(alloc_workspace);
784 spin_unlock(workspace_lock);
785
786 workspace = btrfs_compress_op[idx]->alloc_workspace();
787 if (IS_ERR(workspace)) {
788 atomic_dec(alloc_workspace);
789 wake_up(workspace_wait);
790 }
791 return workspace;
792}
793
794/*
795 * put a workspace struct back on the list or free it if we have enough
796 * idle ones sitting around
797 */
798static void free_workspace(int type, struct list_head *workspace)
799{
800 int idx = type - 1;
801 struct list_head *idle_workspace = &comp_idle_workspace[idx];
802 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
803 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
804 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
805 int *num_workspace = &comp_num_workspace[idx];
806
807 spin_lock(workspace_lock);
808 if (*num_workspace < num_online_cpus()) {
809 list_add_tail(workspace, idle_workspace);
810 (*num_workspace)++;
811 spin_unlock(workspace_lock);
812 goto wake;
813 }
814 spin_unlock(workspace_lock);
815
816 btrfs_compress_op[idx]->free_workspace(workspace);
817 atomic_dec(alloc_workspace);
818wake:
819 if (waitqueue_active(workspace_wait))
820 wake_up(workspace_wait);
821}
822
823/*
824 * cleanup function for module exit
825 */
826static void free_workspaces(void)
827{
828 struct list_head *workspace;
829 int i;
830
831 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
832 while (!list_empty(&comp_idle_workspace[i])) {
833 workspace = comp_idle_workspace[i].next;
834 list_del(workspace);
835 btrfs_compress_op[i]->free_workspace(workspace);
836 atomic_dec(&comp_alloc_workspace[i]);
837 }
838 }
839}
840
841/*
842 * given an address space and start/len, compress the bytes.
843 *
844 * pages are allocated to hold the compressed result and stored
845 * in 'pages'
846 *
847 * out_pages is used to return the number of pages allocated. There
848 * may be pages allocated even if we return an error
849 *
850 * total_in is used to return the number of bytes actually read. It
851 * may be smaller then len if we had to exit early because we
852 * ran out of room in the pages array or because we cross the
853 * max_out threshold.
854 *
855 * total_out is used to return the total number of compressed bytes
856 *
857 * max_out tells us the max number of bytes that we're allowed to
858 * stuff into pages
859 */
860int btrfs_compress_pages(int type, struct address_space *mapping,
861 u64 start, unsigned long len,
862 struct page **pages,
863 unsigned long nr_dest_pages,
864 unsigned long *out_pages,
865 unsigned long *total_in,
866 unsigned long *total_out,
867 unsigned long max_out)
868{
869 struct list_head *workspace;
870 int ret;
871
872 workspace = find_workspace(type);
873 if (IS_ERR(workspace))
874 return -1;
875
876 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
877 start, len, pages,
878 nr_dest_pages, out_pages,
879 total_in, total_out,
880 max_out);
881 free_workspace(type, workspace);
882 return ret;
883}
884
885/*
886 * pages_in is an array of pages with compressed data.
887 *
888 * disk_start is the starting logical offset of this array in the file
889 *
890 * bvec is a bio_vec of pages from the file that we want to decompress into
891 *
892 * vcnt is the count of pages in the biovec
893 *
894 * srclen is the number of bytes in pages_in
895 *
896 * The basic idea is that we have a bio that was created by readpages.
897 * The pages in the bio are for the uncompressed data, and they may not
898 * be contiguous. They all correspond to the range of bytes covered by
899 * the compressed extent.
900 */
901int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
902 struct bio_vec *bvec, int vcnt, size_t srclen)
903{
904 struct list_head *workspace;
905 int ret;
906
907 workspace = find_workspace(type);
908 if (IS_ERR(workspace))
909 return -ENOMEM;
910
911 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
912 disk_start,
913 bvec, vcnt, srclen);
914 free_workspace(type, workspace);
915 return ret;
916}
917
918/*
919 * a less complex decompression routine. Our compressed data fits in a
920 * single page, and we want to read a single page out of it.
921 * start_byte tells us the offset into the compressed data we're interested in
922 */
923int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
924 unsigned long start_byte, size_t srclen, size_t destlen)
925{
926 struct list_head *workspace;
927 int ret;
928
929 workspace = find_workspace(type);
930 if (IS_ERR(workspace))
931 return -ENOMEM;
932
933 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
934 dest_page, start_byte,
935 srclen, destlen);
936
937 free_workspace(type, workspace);
938 return ret;
939}
940
8e4eef7a 941void btrfs_exit_compress(void)
261507a0
LZ
942{
943 free_workspaces();
944}
3a39c18d
LZ
945
946/*
947 * Copy uncompressed data from working buffer to pages.
948 *
949 * buf_start is the byte offset we're of the start of our workspace buffer.
950 *
951 * total_out is the last byte of the buffer
952 */
953int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
954 unsigned long total_out, u64 disk_start,
955 struct bio_vec *bvec, int vcnt,
306e16ce 956 unsigned long *pg_index,
3a39c18d
LZ
957 unsigned long *pg_offset)
958{
959 unsigned long buf_offset;
960 unsigned long current_buf_start;
961 unsigned long start_byte;
962 unsigned long working_bytes = total_out - buf_start;
963 unsigned long bytes;
964 char *kaddr;
306e16ce 965 struct page *page_out = bvec[*pg_index].bv_page;
3a39c18d
LZ
966
967 /*
968 * start byte is the first byte of the page we're currently
969 * copying into relative to the start of the compressed data.
970 */
971 start_byte = page_offset(page_out) - disk_start;
972
973 /* we haven't yet hit data corresponding to this page */
974 if (total_out <= start_byte)
975 return 1;
976
977 /*
978 * the start of the data we care about is offset into
979 * the middle of our working buffer
980 */
981 if (total_out > start_byte && buf_start < start_byte) {
982 buf_offset = start_byte - buf_start;
983 working_bytes -= buf_offset;
984 } else {
985 buf_offset = 0;
986 }
987 current_buf_start = buf_start;
988
989 /* copy bytes from the working buffer into the pages */
990 while (working_bytes > 0) {
991 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
992 PAGE_CACHE_SIZE - buf_offset);
993 bytes = min(bytes, working_bytes);
994 kaddr = kmap_atomic(page_out, KM_USER0);
995 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
996 kunmap_atomic(kaddr, KM_USER0);
997 flush_dcache_page(page_out);
998
999 *pg_offset += bytes;
1000 buf_offset += bytes;
1001 working_bytes -= bytes;
1002 current_buf_start += bytes;
1003
1004 /* check if we need to pick another page */
1005 if (*pg_offset == PAGE_CACHE_SIZE) {
306e16ce
DS
1006 (*pg_index)++;
1007 if (*pg_index >= vcnt)
3a39c18d
LZ
1008 return 0;
1009
306e16ce 1010 page_out = bvec[*pg_index].bv_page;
3a39c18d
LZ
1011 *pg_offset = 0;
1012 start_byte = page_offset(page_out) - disk_start;
1013
1014 /*
1015 * make sure our new page is covered by this
1016 * working buffer
1017 */
1018 if (total_out <= start_byte)
1019 return 1;
1020
1021 /*
1022 * the next page in the biovec might not be adjacent
1023 * to the last page, but it might still be found
1024 * inside this working buffer. bump our offset pointer
1025 */
1026 if (total_out > start_byte &&
1027 current_buf_start < start_byte) {
1028 buf_offset = start_byte - buf_start;
1029 working_bytes = total_out - start_byte;
1030 current_buf_start = buf_start + buf_offset;
1031 }
1032 }
1033 }
1034
1035 return 1;
1036}