btrfs: return EAGAIN if defrag is canceled
[linux-block.git] / fs / btrfs / compression.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
c8b97818
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
c8b97818
CM
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
c8b97818
CM
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/time.h>
13#include <linux/init.h>
14#include <linux/string.h>
c8b97818 15#include <linux/backing-dev.h>
c8b97818 16#include <linux/writeback.h>
5a0e3ad6 17#include <linux/slab.h>
fe308533 18#include <linux/sched/mm.h>
19562430 19#include <linux/log2.h>
d5178578 20#include <crypto/hash.h>
602cbe91 21#include "misc.h"
c8b97818
CM
22#include "ctree.h"
23#include "disk-io.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "volumes.h"
27#include "ordered-data.h"
c8b97818
CM
28#include "compression.h"
29#include "extent_io.h"
30#include "extent_map.h"
764c7c9a 31#include "zoned.h"
c8b97818 32
e128f9c3
DS
33static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
34
35const char* btrfs_compress_type2str(enum btrfs_compression_type type)
36{
37 switch (type) {
38 case BTRFS_COMPRESS_ZLIB:
39 case BTRFS_COMPRESS_LZO:
40 case BTRFS_COMPRESS_ZSTD:
41 case BTRFS_COMPRESS_NONE:
42 return btrfs_compress_types[type];
ce96b7ff
CX
43 default:
44 break;
e128f9c3
DS
45 }
46
47 return NULL;
48}
49
aa53e3bf
JT
50bool btrfs_compress_is_valid_type(const char *str, size_t len)
51{
52 int i;
53
54 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
55 size_t comp_len = strlen(btrfs_compress_types[i]);
56
57 if (len < comp_len)
58 continue;
59
60 if (!strncmp(btrfs_compress_types[i], str, comp_len))
61 return true;
62 }
63 return false;
64}
65
1e4eb746
DS
66static int compression_compress_pages(int type, struct list_head *ws,
67 struct address_space *mapping, u64 start, struct page **pages,
68 unsigned long *out_pages, unsigned long *total_in,
69 unsigned long *total_out)
70{
71 switch (type) {
72 case BTRFS_COMPRESS_ZLIB:
73 return zlib_compress_pages(ws, mapping, start, pages,
74 out_pages, total_in, total_out);
75 case BTRFS_COMPRESS_LZO:
76 return lzo_compress_pages(ws, mapping, start, pages,
77 out_pages, total_in, total_out);
78 case BTRFS_COMPRESS_ZSTD:
79 return zstd_compress_pages(ws, mapping, start, pages,
80 out_pages, total_in, total_out);
81 case BTRFS_COMPRESS_NONE:
82 default:
83 /*
1d8ba9e7
QW
84 * This can happen when compression races with remount setting
85 * it to 'no compress', while caller doesn't call
86 * inode_need_compress() to check if we really need to
87 * compress.
88 *
89 * Not a big deal, just need to inform caller that we
90 * haven't allocated any pages yet.
1e4eb746 91 */
1d8ba9e7 92 *out_pages = 0;
1e4eb746
DS
93 return -E2BIG;
94 }
95}
96
97static int compression_decompress_bio(int type, struct list_head *ws,
98 struct compressed_bio *cb)
99{
100 switch (type) {
101 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
102 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
103 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
104 case BTRFS_COMPRESS_NONE:
105 default:
106 /*
107 * This can't happen, the type is validated several times
108 * before we get here.
109 */
110 BUG();
111 }
112}
113
114static int compression_decompress(int type, struct list_head *ws,
115 unsigned char *data_in, struct page *dest_page,
116 unsigned long start_byte, size_t srclen, size_t destlen)
117{
118 switch (type) {
119 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
120 start_byte, srclen, destlen);
121 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
122 start_byte, srclen, destlen);
123 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
124 start_byte, srclen, destlen);
125 case BTRFS_COMPRESS_NONE:
126 default:
127 /*
128 * This can't happen, the type is validated several times
129 * before we get here.
130 */
131 BUG();
132 }
133}
134
8140dc30 135static int btrfs_decompress_bio(struct compressed_bio *cb);
48a3b636 136
2ff7e61e 137static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
d20f7043
CM
138 unsigned long disk_size)
139{
d20f7043 140 return sizeof(struct compressed_bio) +
713cebfb 141 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
d20f7043
CM
142}
143
5a9472fe 144static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
d20f7043
CM
145 u64 disk_start)
146{
10fe6ca8 147 struct btrfs_fs_info *fs_info = inode->root->fs_info;
d5178578 148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
223486c2 149 const u32 csum_size = fs_info->csum_size;
04d4ba4c 150 const u32 sectorsize = fs_info->sectorsize;
d20f7043
CM
151 struct page *page;
152 unsigned long i;
153 char *kaddr;
d5178578 154 u8 csum[BTRFS_CSUM_SIZE];
5a9472fe 155 struct compressed_bio *cb = bio->bi_private;
10fe6ca8 156 u8 *cb_sum = cb->sums;
d20f7043 157
42437a63 158 if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
d20f7043
CM
159 return 0;
160
d5178578
JT
161 shash->tfm = fs_info->csum_shash;
162
d20f7043 163 for (i = 0; i < cb->nr_pages; i++) {
04d4ba4c
QW
164 u32 pg_offset;
165 u32 bytes_left = PAGE_SIZE;
d20f7043 166 page = cb->compressed_pages[i];
d20f7043 167
04d4ba4c
QW
168 /* Determine the remaining bytes inside the page first */
169 if (i == cb->nr_pages - 1)
170 bytes_left = cb->compressed_len - i * PAGE_SIZE;
171
172 /* Hash through the page sector by sector */
173 for (pg_offset = 0; pg_offset < bytes_left;
174 pg_offset += sectorsize) {
175 kaddr = kmap_atomic(page);
176 crypto_shash_digest(shash, kaddr + pg_offset,
177 sectorsize, csum);
178 kunmap_atomic(kaddr);
179
180 if (memcmp(&csum, cb_sum, csum_size) != 0) {
181 btrfs_print_data_csum_error(inode, disk_start,
182 csum, cb_sum, cb->mirror_num);
183 if (btrfs_io_bio(bio)->device)
184 btrfs_dev_stat_inc_and_print(
185 btrfs_io_bio(bio)->device,
186 BTRFS_DEV_STAT_CORRUPTION_ERRS);
187 return -EIO;
188 }
189 cb_sum += csum_size;
190 disk_start += sectorsize;
d20f7043 191 }
d20f7043 192 }
93c4c033 193 return 0;
d20f7043
CM
194}
195
c8b97818
CM
196/* when we finish reading compressed pages from the disk, we
197 * decompress them and then run the bio end_io routines on the
198 * decompressed pages (in the inode address space).
199 *
200 * This allows the checksumming and other IO error handling routines
201 * to work normally
202 *
203 * The compressed pages are freed here, and it must be run
204 * in process context
205 */
4246a0b6 206static void end_compressed_bio_read(struct bio *bio)
c8b97818 207{
c8b97818
CM
208 struct compressed_bio *cb = bio->bi_private;
209 struct inode *inode;
210 struct page *page;
211 unsigned long index;
cf1167d5 212 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
e6311f24 213 int ret = 0;
c8b97818 214
4e4cbee9 215 if (bio->bi_status)
c8b97818
CM
216 cb->errors = 1;
217
218 /* if there are more bios still pending for this compressed
219 * extent, just exit
220 */
a50299ae 221 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
222 goto out;
223
cf1167d5
LB
224 /*
225 * Record the correct mirror_num in cb->orig_bio so that
226 * read-repair can work properly.
227 */
cf1167d5
LB
228 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
229 cb->mirror_num = mirror;
230
e6311f24
LB
231 /*
232 * Some IO in this cb have failed, just skip checksum as there
233 * is no way it could be correct.
234 */
235 if (cb->errors == 1)
236 goto csum_failed;
237
d20f7043 238 inode = cb->inode;
5a9472fe 239 ret = check_compressed_csum(BTRFS_I(inode), bio,
1201b58b 240 bio->bi_iter.bi_sector << 9);
d20f7043
CM
241 if (ret)
242 goto csum_failed;
243
c8b97818
CM
244 /* ok, we're the last bio for this extent, lets start
245 * the decompression.
246 */
8140dc30
AJ
247 ret = btrfs_decompress_bio(cb);
248
d20f7043 249csum_failed:
c8b97818
CM
250 if (ret)
251 cb->errors = 1;
252
253 /* release the compressed pages */
254 index = 0;
255 for (index = 0; index < cb->nr_pages; index++) {
256 page = cb->compressed_pages[index];
257 page->mapping = NULL;
09cbfeaf 258 put_page(page);
c8b97818
CM
259 }
260
261 /* do io completion on the original bio */
771ed689 262 if (cb->errors) {
c8b97818 263 bio_io_error(cb->orig_bio);
d20f7043 264 } else {
2c30c71b 265 struct bio_vec *bvec;
6dc4f100 266 struct bvec_iter_all iter_all;
d20f7043
CM
267
268 /*
269 * we have verified the checksum already, set page
270 * checked so the end_io handlers know about it
271 */
c09abff8 272 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 273 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
d20f7043 274 SetPageChecked(bvec->bv_page);
2c30c71b 275
4246a0b6 276 bio_endio(cb->orig_bio);
d20f7043 277 }
c8b97818
CM
278
279 /* finally free the cb struct */
280 kfree(cb->compressed_pages);
281 kfree(cb);
282out:
283 bio_put(bio);
284}
285
286/*
287 * Clear the writeback bits on all of the file
288 * pages for a compressed write
289 */
7bdcefc1
FM
290static noinline void end_compressed_writeback(struct inode *inode,
291 const struct compressed_bio *cb)
c8b97818 292{
09cbfeaf
KS
293 unsigned long index = cb->start >> PAGE_SHIFT;
294 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
c8b97818
CM
295 struct page *pages[16];
296 unsigned long nr_pages = end_index - index + 1;
297 int i;
298 int ret;
299
7bdcefc1
FM
300 if (cb->errors)
301 mapping_set_error(inode->i_mapping, -EIO);
302
d397712b 303 while (nr_pages > 0) {
c8b97818 304 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
305 min_t(unsigned long,
306 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
307 if (ret == 0) {
308 nr_pages -= 1;
309 index += 1;
310 continue;
311 }
312 for (i = 0; i < ret; i++) {
7bdcefc1
FM
313 if (cb->errors)
314 SetPageError(pages[i]);
c8b97818 315 end_page_writeback(pages[i]);
09cbfeaf 316 put_page(pages[i]);
c8b97818
CM
317 }
318 nr_pages -= ret;
319 index += ret;
320 }
321 /* the inode may be gone now */
c8b97818
CM
322}
323
324/*
325 * do the cleanup once all the compressed pages hit the disk.
326 * This will clear writeback on the file pages and free the compressed
327 * pages.
328 *
329 * This also calls the writeback end hooks for the file pages so that
330 * metadata and checksums can be updated in the file.
331 */
4246a0b6 332static void end_compressed_bio_write(struct bio *bio)
c8b97818 333{
c8b97818
CM
334 struct compressed_bio *cb = bio->bi_private;
335 struct inode *inode;
336 struct page *page;
337 unsigned long index;
338
4e4cbee9 339 if (bio->bi_status)
c8b97818
CM
340 cb->errors = 1;
341
342 /* if there are more bios still pending for this compressed
343 * extent, just exit
344 */
a50299ae 345 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
346 goto out;
347
348 /* ok, we're the last bio for this extent, step one is to
349 * call back into the FS and do all the end_io operations
350 */
351 inode = cb->inode;
70b99e69 352 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
764c7c9a 353 btrfs_record_physical_zoned(inode, cb->start, bio);
7087a9d8 354 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
c629732d 355 cb->start, cb->start + cb->len - 1,
6a8d2136 356 bio->bi_status == BLK_STS_OK);
70b99e69 357 cb->compressed_pages[0]->mapping = NULL;
c8b97818 358
7bdcefc1 359 end_compressed_writeback(inode, cb);
c8b97818
CM
360 /* note, our inode could be gone now */
361
362 /*
363 * release the compressed pages, these came from alloc_page and
364 * are not attached to the inode at all
365 */
366 index = 0;
367 for (index = 0; index < cb->nr_pages; index++) {
368 page = cb->compressed_pages[index];
369 page->mapping = NULL;
09cbfeaf 370 put_page(page);
c8b97818
CM
371 }
372
373 /* finally free the cb struct */
374 kfree(cb->compressed_pages);
375 kfree(cb);
376out:
377 bio_put(bio);
378}
379
380/*
381 * worker function to build and submit bios for previously compressed pages.
382 * The corresponding pages in the inode should be marked for writeback
383 * and the compressed pages should have a reference on them for dropping
384 * when the IO is complete.
385 *
386 * This also checksums the file bytes and gets things ready for
387 * the end io hooks.
388 */
c7ee1819 389blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
c8b97818
CM
390 unsigned long len, u64 disk_start,
391 unsigned long compressed_len,
392 struct page **compressed_pages,
f82b7359 393 unsigned long nr_pages,
ec39f769
CM
394 unsigned int write_flags,
395 struct cgroup_subsys_state *blkcg_css)
c8b97818 396{
c7ee1819 397 struct btrfs_fs_info *fs_info = inode->root->fs_info;
c8b97818 398 struct bio *bio = NULL;
c8b97818
CM
399 struct compressed_bio *cb;
400 unsigned long bytes_left;
306e16ce 401 int pg_index = 0;
c8b97818
CM
402 struct page *page;
403 u64 first_byte = disk_start;
4e4cbee9 404 blk_status_t ret;
c7ee1819 405 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
764c7c9a
JT
406 const bool use_append = btrfs_use_zone_append(inode, disk_start);
407 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
c8b97818 408
fdb1e121 409 WARN_ON(!PAGE_ALIGNED(start));
2ff7e61e 410 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
dac97e51 411 if (!cb)
4e4cbee9 412 return BLK_STS_RESOURCE;
a50299ae 413 refcount_set(&cb->pending_bios, 0);
c8b97818 414 cb->errors = 0;
c7ee1819 415 cb->inode = &inode->vfs_inode;
c8b97818
CM
416 cb->start = start;
417 cb->len = len;
d20f7043 418 cb->mirror_num = 0;
c8b97818
CM
419 cb->compressed_pages = compressed_pages;
420 cb->compressed_len = compressed_len;
421 cb->orig_bio = NULL;
422 cb->nr_pages = nr_pages;
423
e749af44 424 bio = btrfs_bio_alloc(first_byte);
764c7c9a 425 bio->bi_opf = bio_op | write_flags;
c8b97818
CM
426 bio->bi_private = cb;
427 bio->bi_end_io = end_compressed_bio_write;
ec39f769 428
764c7c9a
JT
429 if (use_append) {
430 struct extent_map *em;
431 struct map_lookup *map;
432 struct block_device *bdev;
433
434 em = btrfs_get_chunk_map(fs_info, disk_start, PAGE_SIZE);
435 if (IS_ERR(em)) {
436 kfree(cb);
437 bio_put(bio);
438 return BLK_STS_NOTSUPP;
439 }
440
441 map = em->map_lookup;
442 /* We only support single profile for now */
443 ASSERT(map->num_stripes == 1);
444 bdev = map->stripes[0].dev->bdev;
445
446 bio_set_dev(bio, bdev);
447 free_extent_map(em);
448 }
449
ec39f769
CM
450 if (blkcg_css) {
451 bio->bi_opf |= REQ_CGROUP_PUNT;
46bcff2b 452 kthread_associate_blkcg(blkcg_css);
ec39f769 453 }
a50299ae 454 refcount_set(&cb->pending_bios, 1);
c8b97818
CM
455
456 /* create and submit bios for the compressed pages */
457 bytes_left = compressed_len;
306e16ce 458 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
4e4cbee9 459 int submit = 0;
4c80a97d 460 int len = 0;
4e4cbee9 461
306e16ce 462 page = compressed_pages[pg_index];
c7ee1819 463 page->mapping = inode->vfs_inode.i_mapping;
4f024f37 464 if (bio->bi_iter.bi_size)
da12fe54
NB
465 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
466 0);
c8b97818 467
4c80a97d
QW
468 /*
469 * Page can only be added to bio if the current bio fits in
470 * stripe.
471 */
472 if (!submit) {
473 if (pg_index == 0 && use_append)
474 len = bio_add_zone_append_page(bio, page,
475 PAGE_SIZE, 0);
476 else
477 len = bio_add_page(bio, page, PAGE_SIZE, 0);
478 }
764c7c9a 479
70b99e69 480 page->mapping = NULL;
764c7c9a 481 if (submit || len < PAGE_SIZE) {
af09abfe
CM
482 /*
483 * inc the count before we submit the bio so
484 * we know the end IO handler won't happen before
485 * we inc the count. Otherwise, the cb might get
486 * freed before we're done setting it up
487 */
a50299ae 488 refcount_inc(&cb->pending_bios);
0b246afa
JM
489 ret = btrfs_bio_wq_end_io(fs_info, bio,
490 BTRFS_WQ_ENDIO_DATA);
79787eaa 491 BUG_ON(ret); /* -ENOMEM */
c8b97818 492
e55179b3 493 if (!skip_sum) {
c7ee1819 494 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 495 BUG_ON(ret); /* -ENOMEM */
e55179b3 496 }
d20f7043 497
08635bae 498 ret = btrfs_map_bio(fs_info, bio, 0);
f5daf2c7 499 if (ret) {
4e4cbee9 500 bio->bi_status = ret;
f5daf2c7
LB
501 bio_endio(bio);
502 }
c8b97818 503
e749af44 504 bio = btrfs_bio_alloc(first_byte);
764c7c9a 505 bio->bi_opf = bio_op | write_flags;
c8b97818
CM
506 bio->bi_private = cb;
507 bio->bi_end_io = end_compressed_bio_write;
46bcff2b 508 if (blkcg_css)
7b62e66c 509 bio->bi_opf |= REQ_CGROUP_PUNT;
764c7c9a
JT
510 /*
511 * Use bio_add_page() to ensure the bio has at least one
512 * page.
513 */
09cbfeaf 514 bio_add_page(bio, page, PAGE_SIZE, 0);
c8b97818 515 }
09cbfeaf 516 if (bytes_left < PAGE_SIZE) {
0b246afa 517 btrfs_info(fs_info,
efe120a0 518 "bytes left %lu compress len %lu nr %lu",
cfbc246e
CM
519 bytes_left, cb->compressed_len, cb->nr_pages);
520 }
09cbfeaf
KS
521 bytes_left -= PAGE_SIZE;
522 first_byte += PAGE_SIZE;
771ed689 523 cond_resched();
c8b97818 524 }
c8b97818 525
0b246afa 526 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 527 BUG_ON(ret); /* -ENOMEM */
c8b97818 528
e55179b3 529 if (!skip_sum) {
c7ee1819 530 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 531 BUG_ON(ret); /* -ENOMEM */
e55179b3 532 }
d20f7043 533
08635bae 534 ret = btrfs_map_bio(fs_info, bio, 0);
f5daf2c7 535 if (ret) {
4e4cbee9 536 bio->bi_status = ret;
f5daf2c7
LB
537 bio_endio(bio);
538 }
c8b97818 539
46bcff2b
DZ
540 if (blkcg_css)
541 kthread_associate_blkcg(NULL);
542
c8b97818
CM
543 return 0;
544}
545
2a4d0c90
CH
546static u64 bio_end_offset(struct bio *bio)
547{
c45a8f2d 548 struct bio_vec *last = bio_last_bvec_all(bio);
2a4d0c90
CH
549
550 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
551}
552
771ed689
CM
553static noinline int add_ra_bio_pages(struct inode *inode,
554 u64 compressed_end,
555 struct compressed_bio *cb)
556{
557 unsigned long end_index;
306e16ce 558 unsigned long pg_index;
771ed689
CM
559 u64 last_offset;
560 u64 isize = i_size_read(inode);
561 int ret;
562 struct page *page;
563 unsigned long nr_pages = 0;
564 struct extent_map *em;
565 struct address_space *mapping = inode->i_mapping;
771ed689
CM
566 struct extent_map_tree *em_tree;
567 struct extent_io_tree *tree;
568 u64 end;
569 int misses = 0;
570
2a4d0c90 571 last_offset = bio_end_offset(cb->orig_bio);
771ed689
CM
572 em_tree = &BTRFS_I(inode)->extent_tree;
573 tree = &BTRFS_I(inode)->io_tree;
574
575 if (isize == 0)
576 return 0;
577
09cbfeaf 578 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
771ed689 579
d397712b 580 while (last_offset < compressed_end) {
09cbfeaf 581 pg_index = last_offset >> PAGE_SHIFT;
771ed689 582
306e16ce 583 if (pg_index > end_index)
771ed689
CM
584 break;
585
0a943c65 586 page = xa_load(&mapping->i_pages, pg_index);
3159f943 587 if (page && !xa_is_value(page)) {
771ed689
CM
588 misses++;
589 if (misses > 4)
590 break;
591 goto next;
592 }
593
c62d2555
MH
594 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
595 ~__GFP_FS));
771ed689
CM
596 if (!page)
597 break;
598
c62d2555 599 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
09cbfeaf 600 put_page(page);
771ed689
CM
601 goto next;
602 }
603
771ed689
CM
604 /*
605 * at this point, we have a locked page in the page cache
606 * for these bytes in the file. But, we have to make
607 * sure they map to this compressed extent on disk.
608 */
32443de3
QW
609 ret = set_page_extent_mapped(page);
610 if (ret < 0) {
611 unlock_page(page);
612 put_page(page);
613 break;
614 }
615
616 end = last_offset + PAGE_SIZE - 1;
d0082371 617 lock_extent(tree, last_offset, end);
890871be 618 read_lock(&em_tree->lock);
771ed689 619 em = lookup_extent_mapping(em_tree, last_offset,
09cbfeaf 620 PAGE_SIZE);
890871be 621 read_unlock(&em_tree->lock);
771ed689
CM
622
623 if (!em || last_offset < em->start ||
09cbfeaf 624 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
4f024f37 625 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 626 free_extent_map(em);
d0082371 627 unlock_extent(tree, last_offset, end);
771ed689 628 unlock_page(page);
09cbfeaf 629 put_page(page);
771ed689
CM
630 break;
631 }
632 free_extent_map(em);
633
634 if (page->index == end_index) {
7073017a 635 size_t zero_offset = offset_in_page(isize);
771ed689
CM
636
637 if (zero_offset) {
638 int zeros;
09cbfeaf 639 zeros = PAGE_SIZE - zero_offset;
d048b9c2 640 memzero_page(page, zero_offset, zeros);
771ed689 641 flush_dcache_page(page);
771ed689
CM
642 }
643 }
644
645 ret = bio_add_page(cb->orig_bio, page,
09cbfeaf 646 PAGE_SIZE, 0);
771ed689 647
09cbfeaf 648 if (ret == PAGE_SIZE) {
771ed689 649 nr_pages++;
09cbfeaf 650 put_page(page);
771ed689 651 } else {
d0082371 652 unlock_extent(tree, last_offset, end);
771ed689 653 unlock_page(page);
09cbfeaf 654 put_page(page);
771ed689
CM
655 break;
656 }
657next:
09cbfeaf 658 last_offset += PAGE_SIZE;
771ed689 659 }
771ed689
CM
660 return 0;
661}
662
c8b97818
CM
663/*
664 * for a compressed read, the bio we get passed has all the inode pages
665 * in it. We don't actually do IO on those pages but allocate new ones
666 * to hold the compressed pages on disk.
667 *
4f024f37 668 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818 669 * bio->bi_io_vec points to all of the inode pages
c8b97818
CM
670 *
671 * After the compressed pages are read, we copy the bytes into the
672 * bio we were passed and then call the bio end_io calls
673 */
4e4cbee9 674blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
c8b97818
CM
675 int mirror_num, unsigned long bio_flags)
676{
0b246afa 677 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818
CM
678 struct extent_map_tree *em_tree;
679 struct compressed_bio *cb;
c8b97818
CM
680 unsigned long compressed_len;
681 unsigned long nr_pages;
306e16ce 682 unsigned long pg_index;
c8b97818 683 struct page *page;
c8b97818 684 struct bio *comp_bio;
1201b58b 685 u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
e04ca626
CM
686 u64 em_len;
687 u64 em_start;
c8b97818 688 struct extent_map *em;
4e4cbee9 689 blk_status_t ret = BLK_STS_RESOURCE;
15e3004a 690 int faili = 0;
10fe6ca8 691 u8 *sums;
c8b97818 692
c8b97818
CM
693 em_tree = &BTRFS_I(inode)->extent_tree;
694
695 /* we need the actual starting offset of this extent in the file */
890871be 696 read_lock(&em_tree->lock);
c8b97818 697 em = lookup_extent_mapping(em_tree,
263663cd 698 page_offset(bio_first_page_all(bio)),
be6a1361 699 fs_info->sectorsize);
890871be 700 read_unlock(&em_tree->lock);
285190d9 701 if (!em)
4e4cbee9 702 return BLK_STS_IOERR;
c8b97818 703
d20f7043 704 compressed_len = em->block_len;
2ff7e61e 705 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
6b82ce8d 706 if (!cb)
707 goto out;
708
a50299ae 709 refcount_set(&cb->pending_bios, 0);
c8b97818
CM
710 cb->errors = 0;
711 cb->inode = inode;
d20f7043 712 cb->mirror_num = mirror_num;
10fe6ca8 713 sums = cb->sums;
c8b97818 714
ff5b7ee3 715 cb->start = em->orig_start;
e04ca626
CM
716 em_len = em->len;
717 em_start = em->start;
d20f7043 718
c8b97818 719 free_extent_map(em);
e04ca626 720 em = NULL;
c8b97818 721
81381053 722 cb->len = bio->bi_iter.bi_size;
c8b97818 723 cb->compressed_len = compressed_len;
261507a0 724 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
725 cb->orig_bio = bio;
726
09cbfeaf 727 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
31e818fe 728 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
c8b97818 729 GFP_NOFS);
6b82ce8d 730 if (!cb->compressed_pages)
731 goto fail1;
732
306e16ce
DS
733 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
734 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 735 __GFP_HIGHMEM);
15e3004a
JB
736 if (!cb->compressed_pages[pg_index]) {
737 faili = pg_index - 1;
0e9350de 738 ret = BLK_STS_RESOURCE;
6b82ce8d 739 goto fail2;
15e3004a 740 }
c8b97818 741 }
15e3004a 742 faili = nr_pages - 1;
c8b97818
CM
743 cb->nr_pages = nr_pages;
744
7f042a83 745 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 746
771ed689 747 /* include any pages we added in add_ra-bio_pages */
81381053 748 cb->len = bio->bi_iter.bi_size;
771ed689 749
e749af44 750 comp_bio = btrfs_bio_alloc(cur_disk_byte);
ebcc3263 751 comp_bio->bi_opf = REQ_OP_READ;
c8b97818
CM
752 comp_bio->bi_private = cb;
753 comp_bio->bi_end_io = end_compressed_bio_read;
a50299ae 754 refcount_set(&cb->pending_bios, 1);
c8b97818 755
306e16ce 756 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
be6a1361 757 u32 pg_len = PAGE_SIZE;
4e4cbee9
CH
758 int submit = 0;
759
be6a1361
QW
760 /*
761 * To handle subpage case, we need to make sure the bio only
762 * covers the range we need.
763 *
764 * If we're at the last page, truncate the length to only cover
765 * the remaining part.
766 */
767 if (pg_index == nr_pages - 1)
768 pg_len = min_t(u32, PAGE_SIZE,
769 compressed_len - pg_index * PAGE_SIZE);
770
306e16ce 771 page = cb->compressed_pages[pg_index];
c8b97818 772 page->mapping = inode->i_mapping;
09cbfeaf 773 page->index = em_start >> PAGE_SHIFT;
d20f7043 774
4f024f37 775 if (comp_bio->bi_iter.bi_size)
be6a1361 776 submit = btrfs_bio_fits_in_stripe(page, pg_len,
da12fe54 777 comp_bio, 0);
c8b97818 778
70b99e69 779 page->mapping = NULL;
be6a1361 780 if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
10fe6ca8
JT
781 unsigned int nr_sectors;
782
0b246afa
JM
783 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
784 BTRFS_WQ_ENDIO_DATA);
79787eaa 785 BUG_ON(ret); /* -ENOMEM */
c8b97818 786
af09abfe
CM
787 /*
788 * inc the count before we submit the bio so
789 * we know the end IO handler won't happen before
790 * we inc the count. Otherwise, the cb might get
791 * freed before we're done setting it up
792 */
a50299ae 793 refcount_inc(&cb->pending_bios);
af09abfe 794
6275193e 795 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
334c16d8 796 BUG_ON(ret); /* -ENOMEM */
10fe6ca8
JT
797
798 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
799 fs_info->sectorsize);
713cebfb 800 sums += fs_info->csum_size * nr_sectors;
d20f7043 801
08635bae 802 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
4246a0b6 803 if (ret) {
4e4cbee9 804 comp_bio->bi_status = ret;
4246a0b6
CH
805 bio_endio(comp_bio);
806 }
c8b97818 807
e749af44 808 comp_bio = btrfs_bio_alloc(cur_disk_byte);
ebcc3263 809 comp_bio->bi_opf = REQ_OP_READ;
771ed689
CM
810 comp_bio->bi_private = cb;
811 comp_bio->bi_end_io = end_compressed_bio_read;
812
be6a1361 813 bio_add_page(comp_bio, page, pg_len, 0);
c8b97818 814 }
be6a1361 815 cur_disk_byte += pg_len;
c8b97818 816 }
c8b97818 817
0b246afa 818 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 819 BUG_ON(ret); /* -ENOMEM */
c8b97818 820
6275193e 821 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
334c16d8 822 BUG_ON(ret); /* -ENOMEM */
d20f7043 823
08635bae 824 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
4246a0b6 825 if (ret) {
4e4cbee9 826 comp_bio->bi_status = ret;
4246a0b6
CH
827 bio_endio(comp_bio);
828 }
c8b97818 829
c8b97818 830 return 0;
6b82ce8d 831
832fail2:
15e3004a
JB
833 while (faili >= 0) {
834 __free_page(cb->compressed_pages[faili]);
835 faili--;
836 }
6b82ce8d 837
838 kfree(cb->compressed_pages);
839fail1:
840 kfree(cb);
841out:
842 free_extent_map(em);
843 return ret;
c8b97818 844}
261507a0 845
17b5a6c1
TT
846/*
847 * Heuristic uses systematic sampling to collect data from the input data
848 * range, the logic can be tuned by the following constants:
849 *
850 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
851 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
852 */
853#define SAMPLING_READ_SIZE (16)
854#define SAMPLING_INTERVAL (256)
855
856/*
857 * For statistical analysis of the input data we consider bytes that form a
858 * Galois Field of 256 objects. Each object has an attribute count, ie. how
859 * many times the object appeared in the sample.
860 */
861#define BUCKET_SIZE (256)
862
863/*
864 * The size of the sample is based on a statistical sampling rule of thumb.
865 * The common way is to perform sampling tests as long as the number of
866 * elements in each cell is at least 5.
867 *
868 * Instead of 5, we choose 32 to obtain more accurate results.
869 * If the data contain the maximum number of symbols, which is 256, we obtain a
870 * sample size bound by 8192.
871 *
872 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
873 * from up to 512 locations.
874 */
875#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
876 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
877
878struct bucket_item {
879 u32 count;
880};
4e439a0b
TT
881
882struct heuristic_ws {
17b5a6c1
TT
883 /* Partial copy of input data */
884 u8 *sample;
a440d48c 885 u32 sample_size;
17b5a6c1
TT
886 /* Buckets store counters for each byte value */
887 struct bucket_item *bucket;
440c840c
TT
888 /* Sorting buffer */
889 struct bucket_item *bucket_b;
4e439a0b
TT
890 struct list_head list;
891};
892
92ee5530
DZ
893static struct workspace_manager heuristic_wsm;
894
4e439a0b
TT
895static void free_heuristic_ws(struct list_head *ws)
896{
897 struct heuristic_ws *workspace;
898
899 workspace = list_entry(ws, struct heuristic_ws, list);
900
17b5a6c1
TT
901 kvfree(workspace->sample);
902 kfree(workspace->bucket);
440c840c 903 kfree(workspace->bucket_b);
4e439a0b
TT
904 kfree(workspace);
905}
906
7bf49943 907static struct list_head *alloc_heuristic_ws(unsigned int level)
4e439a0b
TT
908{
909 struct heuristic_ws *ws;
910
911 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
912 if (!ws)
913 return ERR_PTR(-ENOMEM);
914
17b5a6c1
TT
915 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
916 if (!ws->sample)
917 goto fail;
918
919 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
920 if (!ws->bucket)
921 goto fail;
4e439a0b 922
440c840c
TT
923 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
924 if (!ws->bucket_b)
925 goto fail;
926
17b5a6c1 927 INIT_LIST_HEAD(&ws->list);
4e439a0b 928 return &ws->list;
17b5a6c1
TT
929fail:
930 free_heuristic_ws(&ws->list);
931 return ERR_PTR(-ENOMEM);
4e439a0b
TT
932}
933
ca4ac360 934const struct btrfs_compress_op btrfs_heuristic_compress = {
be951045 935 .workspace_manager = &heuristic_wsm,
ca4ac360
DZ
936};
937
e8c9f186 938static const struct btrfs_compress_op * const btrfs_compress_op[] = {
ca4ac360
DZ
939 /* The heuristic is represented as compression type 0 */
940 &btrfs_heuristic_compress,
261507a0 941 &btrfs_zlib_compress,
a6fa6fae 942 &btrfs_lzo_compress,
5c1aab1d 943 &btrfs_zstd_compress,
261507a0
LZ
944};
945
c778df14
DS
946static struct list_head *alloc_workspace(int type, unsigned int level)
947{
948 switch (type) {
949 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
950 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
951 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
952 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
953 default:
954 /*
955 * This can't happen, the type is validated several times
956 * before we get here.
957 */
958 BUG();
959 }
960}
961
1e002351
DS
962static void free_workspace(int type, struct list_head *ws)
963{
964 switch (type) {
965 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
966 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
967 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
968 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
969 default:
970 /*
971 * This can't happen, the type is validated several times
972 * before we get here.
973 */
974 BUG();
975 }
976}
977
d5517033 978static void btrfs_init_workspace_manager(int type)
261507a0 979{
0cf25213 980 struct workspace_manager *wsm;
4e439a0b 981 struct list_head *workspace;
261507a0 982
0cf25213 983 wsm = btrfs_compress_op[type]->workspace_manager;
92ee5530
DZ
984 INIT_LIST_HEAD(&wsm->idle_ws);
985 spin_lock_init(&wsm->ws_lock);
986 atomic_set(&wsm->total_ws, 0);
987 init_waitqueue_head(&wsm->ws_wait);
f77dd0d6 988
1666edab
DZ
989 /*
990 * Preallocate one workspace for each compression type so we can
991 * guarantee forward progress in the worst case
992 */
c778df14 993 workspace = alloc_workspace(type, 0);
1666edab
DZ
994 if (IS_ERR(workspace)) {
995 pr_warn(
996 "BTRFS: cannot preallocate compression workspace, will try later\n");
997 } else {
92ee5530
DZ
998 atomic_set(&wsm->total_ws, 1);
999 wsm->free_ws = 1;
1000 list_add(workspace, &wsm->idle_ws);
1666edab
DZ
1001 }
1002}
1003
2510307e 1004static void btrfs_cleanup_workspace_manager(int type)
1666edab 1005{
2dba7143 1006 struct workspace_manager *wsman;
1666edab
DZ
1007 struct list_head *ws;
1008
2dba7143 1009 wsman = btrfs_compress_op[type]->workspace_manager;
1666edab
DZ
1010 while (!list_empty(&wsman->idle_ws)) {
1011 ws = wsman->idle_ws.next;
1012 list_del(ws);
1e002351 1013 free_workspace(type, ws);
1666edab 1014 atomic_dec(&wsman->total_ws);
261507a0 1015 }
261507a0
LZ
1016}
1017
1018/*
e721e49d
DS
1019 * This finds an available workspace or allocates a new one.
1020 * If it's not possible to allocate a new one, waits until there's one.
1021 * Preallocation makes a forward progress guarantees and we do not return
1022 * errors.
261507a0 1023 */
5907a9bb 1024struct list_head *btrfs_get_workspace(int type, unsigned int level)
261507a0 1025{
5907a9bb 1026 struct workspace_manager *wsm;
261507a0
LZ
1027 struct list_head *workspace;
1028 int cpus = num_online_cpus();
fe308533 1029 unsigned nofs_flag;
4e439a0b
TT
1030 struct list_head *idle_ws;
1031 spinlock_t *ws_lock;
1032 atomic_t *total_ws;
1033 wait_queue_head_t *ws_wait;
1034 int *free_ws;
1035
5907a9bb 1036 wsm = btrfs_compress_op[type]->workspace_manager;
92ee5530
DZ
1037 idle_ws = &wsm->idle_ws;
1038 ws_lock = &wsm->ws_lock;
1039 total_ws = &wsm->total_ws;
1040 ws_wait = &wsm->ws_wait;
1041 free_ws = &wsm->free_ws;
261507a0 1042
261507a0 1043again:
d9187649
BL
1044 spin_lock(ws_lock);
1045 if (!list_empty(idle_ws)) {
1046 workspace = idle_ws->next;
261507a0 1047 list_del(workspace);
6ac10a6a 1048 (*free_ws)--;
d9187649 1049 spin_unlock(ws_lock);
261507a0
LZ
1050 return workspace;
1051
1052 }
6ac10a6a 1053 if (atomic_read(total_ws) > cpus) {
261507a0
LZ
1054 DEFINE_WAIT(wait);
1055
d9187649
BL
1056 spin_unlock(ws_lock);
1057 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
6ac10a6a 1058 if (atomic_read(total_ws) > cpus && !*free_ws)
261507a0 1059 schedule();
d9187649 1060 finish_wait(ws_wait, &wait);
261507a0
LZ
1061 goto again;
1062 }
6ac10a6a 1063 atomic_inc(total_ws);
d9187649 1064 spin_unlock(ws_lock);
261507a0 1065
fe308533
DS
1066 /*
1067 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1068 * to turn it off here because we might get called from the restricted
1069 * context of btrfs_compress_bio/btrfs_compress_pages
1070 */
1071 nofs_flag = memalloc_nofs_save();
c778df14 1072 workspace = alloc_workspace(type, level);
fe308533
DS
1073 memalloc_nofs_restore(nofs_flag);
1074
261507a0 1075 if (IS_ERR(workspace)) {
6ac10a6a 1076 atomic_dec(total_ws);
d9187649 1077 wake_up(ws_wait);
e721e49d
DS
1078
1079 /*
1080 * Do not return the error but go back to waiting. There's a
1081 * workspace preallocated for each type and the compression
1082 * time is bounded so we get to a workspace eventually. This
1083 * makes our caller's life easier.
52356716
DS
1084 *
1085 * To prevent silent and low-probability deadlocks (when the
1086 * initial preallocation fails), check if there are any
1087 * workspaces at all.
e721e49d 1088 */
52356716
DS
1089 if (atomic_read(total_ws) == 0) {
1090 static DEFINE_RATELIMIT_STATE(_rs,
1091 /* once per minute */ 60 * HZ,
1092 /* no burst */ 1);
1093
1094 if (__ratelimit(&_rs)) {
ab8d0fc4 1095 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
52356716
DS
1096 }
1097 }
e721e49d 1098 goto again;
261507a0
LZ
1099 }
1100 return workspace;
1101}
1102
7bf49943 1103static struct list_head *get_workspace(int type, int level)
929f4baf 1104{
6a0d1272 1105 switch (type) {
5907a9bb 1106 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
6a0d1272 1107 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
5907a9bb 1108 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
6a0d1272
DS
1109 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1110 default:
1111 /*
1112 * This can't happen, the type is validated several times
1113 * before we get here.
1114 */
1115 BUG();
1116 }
929f4baf
DZ
1117}
1118
261507a0
LZ
1119/*
1120 * put a workspace struct back on the list or free it if we have enough
1121 * idle ones sitting around
1122 */
a3bbd2a9 1123void btrfs_put_workspace(int type, struct list_head *ws)
261507a0 1124{
a3bbd2a9 1125 struct workspace_manager *wsm;
4e439a0b
TT
1126 struct list_head *idle_ws;
1127 spinlock_t *ws_lock;
1128 atomic_t *total_ws;
1129 wait_queue_head_t *ws_wait;
1130 int *free_ws;
1131
a3bbd2a9 1132 wsm = btrfs_compress_op[type]->workspace_manager;
92ee5530
DZ
1133 idle_ws = &wsm->idle_ws;
1134 ws_lock = &wsm->ws_lock;
1135 total_ws = &wsm->total_ws;
1136 ws_wait = &wsm->ws_wait;
1137 free_ws = &wsm->free_ws;
d9187649
BL
1138
1139 spin_lock(ws_lock);
26b28dce 1140 if (*free_ws <= num_online_cpus()) {
929f4baf 1141 list_add(ws, idle_ws);
6ac10a6a 1142 (*free_ws)++;
d9187649 1143 spin_unlock(ws_lock);
261507a0
LZ
1144 goto wake;
1145 }
d9187649 1146 spin_unlock(ws_lock);
261507a0 1147
1e002351 1148 free_workspace(type, ws);
6ac10a6a 1149 atomic_dec(total_ws);
261507a0 1150wake:
093258e6 1151 cond_wake_up(ws_wait);
261507a0
LZ
1152}
1153
929f4baf
DZ
1154static void put_workspace(int type, struct list_head *ws)
1155{
bd3a5287 1156 switch (type) {
a3bbd2a9
DS
1157 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1158 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1159 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
bd3a5287
DS
1160 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1161 default:
1162 /*
1163 * This can't happen, the type is validated several times
1164 * before we get here.
1165 */
1166 BUG();
1167 }
929f4baf
DZ
1168}
1169
adbab642
AJ
1170/*
1171 * Adjust @level according to the limits of the compression algorithm or
1172 * fallback to default
1173 */
1174static unsigned int btrfs_compress_set_level(int type, unsigned level)
1175{
1176 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1177
1178 if (level == 0)
1179 level = ops->default_level;
1180 else
1181 level = min(level, ops->max_level);
1182
1183 return level;
1184}
1185
261507a0 1186/*
38c31464
DS
1187 * Given an address space and start and length, compress the bytes into @pages
1188 * that are allocated on demand.
261507a0 1189 *
f51d2b59
DS
1190 * @type_level is encoded algorithm and level, where level 0 means whatever
1191 * default the algorithm chooses and is opaque here;
1192 * - compression algo are 0-3
1193 * - the level are bits 4-7
1194 *
4d3a800e
DS
1195 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1196 * and returns number of actually allocated pages
261507a0 1197 *
38c31464
DS
1198 * @total_in is used to return the number of bytes actually read. It
1199 * may be smaller than the input length if we had to exit early because we
261507a0
LZ
1200 * ran out of room in the pages array or because we cross the
1201 * max_out threshold.
1202 *
38c31464
DS
1203 * @total_out is an in/out parameter, must be set to the input length and will
1204 * be also used to return the total number of compressed bytes
261507a0 1205 *
38c31464 1206 * @max_out tells us the max number of bytes that we're allowed to
261507a0
LZ
1207 * stuff into pages
1208 */
f51d2b59 1209int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
38c31464 1210 u64 start, struct page **pages,
261507a0
LZ
1211 unsigned long *out_pages,
1212 unsigned long *total_in,
e5d74902 1213 unsigned long *total_out)
261507a0 1214{
1972708a 1215 int type = btrfs_compress_type(type_level);
7bf49943 1216 int level = btrfs_compress_level(type_level);
261507a0
LZ
1217 struct list_head *workspace;
1218 int ret;
1219
b0c1fe1e 1220 level = btrfs_compress_set_level(type, level);
7bf49943 1221 workspace = get_workspace(type, level);
1e4eb746
DS
1222 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1223 out_pages, total_in, total_out);
929f4baf 1224 put_workspace(type, workspace);
261507a0
LZ
1225 return ret;
1226}
1227
1228/*
1229 * pages_in is an array of pages with compressed data.
1230 *
1231 * disk_start is the starting logical offset of this array in the file
1232 *
974b1adc 1233 * orig_bio contains the pages from the file that we want to decompress into
261507a0
LZ
1234 *
1235 * srclen is the number of bytes in pages_in
1236 *
1237 * The basic idea is that we have a bio that was created by readpages.
1238 * The pages in the bio are for the uncompressed data, and they may not
1239 * be contiguous. They all correspond to the range of bytes covered by
1240 * the compressed extent.
1241 */
8140dc30 1242static int btrfs_decompress_bio(struct compressed_bio *cb)
261507a0
LZ
1243{
1244 struct list_head *workspace;
1245 int ret;
8140dc30 1246 int type = cb->compress_type;
261507a0 1247
7bf49943 1248 workspace = get_workspace(type, 0);
1e4eb746 1249 ret = compression_decompress_bio(type, workspace, cb);
929f4baf 1250 put_workspace(type, workspace);
e1ddce71 1251
261507a0
LZ
1252 return ret;
1253}
1254
1255/*
1256 * a less complex decompression routine. Our compressed data fits in a
1257 * single page, and we want to read a single page out of it.
1258 * start_byte tells us the offset into the compressed data we're interested in
1259 */
1260int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1261 unsigned long start_byte, size_t srclen, size_t destlen)
1262{
1263 struct list_head *workspace;
1264 int ret;
1265
7bf49943 1266 workspace = get_workspace(type, 0);
1e4eb746
DS
1267 ret = compression_decompress(type, workspace, data_in, dest_page,
1268 start_byte, srclen, destlen);
929f4baf 1269 put_workspace(type, workspace);
7bf49943 1270
261507a0
LZ
1271 return ret;
1272}
1273
1666edab
DZ
1274void __init btrfs_init_compress(void)
1275{
d5517033
DS
1276 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1277 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1278 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1279 zstd_init_workspace_manager();
1666edab
DZ
1280}
1281
e67c718b 1282void __cold btrfs_exit_compress(void)
261507a0 1283{
2510307e
DS
1284 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1285 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1286 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1287 zstd_cleanup_workspace_manager();
261507a0 1288}
3a39c18d
LZ
1289
1290/*
1291 * Copy uncompressed data from working buffer to pages.
1292 *
1293 * buf_start is the byte offset we're of the start of our workspace buffer.
1294 *
1295 * total_out is the last byte of the buffer
1296 */
14a3357b 1297int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
3a39c18d 1298 unsigned long total_out, u64 disk_start,
974b1adc 1299 struct bio *bio)
3a39c18d
LZ
1300{
1301 unsigned long buf_offset;
1302 unsigned long current_buf_start;
1303 unsigned long start_byte;
6e78b3f7 1304 unsigned long prev_start_byte;
3a39c18d
LZ
1305 unsigned long working_bytes = total_out - buf_start;
1306 unsigned long bytes;
974b1adc 1307 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
3a39c18d
LZ
1308
1309 /*
1310 * start byte is the first byte of the page we're currently
1311 * copying into relative to the start of the compressed data.
1312 */
974b1adc 1313 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d
LZ
1314
1315 /* we haven't yet hit data corresponding to this page */
1316 if (total_out <= start_byte)
1317 return 1;
1318
1319 /*
1320 * the start of the data we care about is offset into
1321 * the middle of our working buffer
1322 */
1323 if (total_out > start_byte && buf_start < start_byte) {
1324 buf_offset = start_byte - buf_start;
1325 working_bytes -= buf_offset;
1326 } else {
1327 buf_offset = 0;
1328 }
1329 current_buf_start = buf_start;
1330
1331 /* copy bytes from the working buffer into the pages */
1332 while (working_bytes > 0) {
974b1adc 1333 bytes = min_t(unsigned long, bvec.bv_len,
3fd396af 1334 PAGE_SIZE - (buf_offset % PAGE_SIZE));
3a39c18d 1335 bytes = min(bytes, working_bytes);
974b1adc 1336
3590ec58
IW
1337 memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset,
1338 bytes);
974b1adc 1339 flush_dcache_page(bvec.bv_page);
3a39c18d 1340
3a39c18d
LZ
1341 buf_offset += bytes;
1342 working_bytes -= bytes;
1343 current_buf_start += bytes;
1344
1345 /* check if we need to pick another page */
974b1adc
CH
1346 bio_advance(bio, bytes);
1347 if (!bio->bi_iter.bi_size)
1348 return 0;
1349 bvec = bio_iter_iovec(bio, bio->bi_iter);
6e78b3f7 1350 prev_start_byte = start_byte;
974b1adc 1351 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d 1352
974b1adc 1353 /*
6e78b3f7
OS
1354 * We need to make sure we're only adjusting
1355 * our offset into compression working buffer when
1356 * we're switching pages. Otherwise we can incorrectly
1357 * keep copying when we were actually done.
974b1adc 1358 */
6e78b3f7
OS
1359 if (start_byte != prev_start_byte) {
1360 /*
1361 * make sure our new page is covered by this
1362 * working buffer
1363 */
1364 if (total_out <= start_byte)
1365 return 1;
3a39c18d 1366
6e78b3f7
OS
1367 /*
1368 * the next page in the biovec might not be adjacent
1369 * to the last page, but it might still be found
1370 * inside this working buffer. bump our offset pointer
1371 */
1372 if (total_out > start_byte &&
1373 current_buf_start < start_byte) {
1374 buf_offset = start_byte - buf_start;
1375 working_bytes = total_out - start_byte;
1376 current_buf_start = buf_start + buf_offset;
1377 }
3a39c18d
LZ
1378 }
1379 }
1380
1381 return 1;
1382}
c2fcdcdf 1383
19562430
TT
1384/*
1385 * Shannon Entropy calculation
1386 *
52042d8e 1387 * Pure byte distribution analysis fails to determine compressibility of data.
19562430
TT
1388 * Try calculating entropy to estimate the average minimum number of bits
1389 * needed to encode the sampled data.
1390 *
1391 * For convenience, return the percentage of needed bits, instead of amount of
1392 * bits directly.
1393 *
1394 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1395 * and can be compressible with high probability
1396 *
1397 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1398 *
1399 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1400 */
1401#define ENTROPY_LVL_ACEPTABLE (65)
1402#define ENTROPY_LVL_HIGH (80)
1403
1404/*
1405 * For increasead precision in shannon_entropy calculation,
1406 * let's do pow(n, M) to save more digits after comma:
1407 *
1408 * - maximum int bit length is 64
1409 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1410 * - 13 * 4 = 52 < 64 -> M = 4
1411 *
1412 * So use pow(n, 4).
1413 */
1414static inline u32 ilog2_w(u64 n)
1415{
1416 return ilog2(n * n * n * n);
1417}
1418
1419static u32 shannon_entropy(struct heuristic_ws *ws)
1420{
1421 const u32 entropy_max = 8 * ilog2_w(2);
1422 u32 entropy_sum = 0;
1423 u32 p, p_base, sz_base;
1424 u32 i;
1425
1426 sz_base = ilog2_w(ws->sample_size);
1427 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1428 p = ws->bucket[i].count;
1429 p_base = ilog2_w(p);
1430 entropy_sum += p * (sz_base - p_base);
1431 }
1432
1433 entropy_sum /= ws->sample_size;
1434 return entropy_sum * 100 / entropy_max;
1435}
1436
440c840c
TT
1437#define RADIX_BASE 4U
1438#define COUNTERS_SIZE (1U << RADIX_BASE)
1439
1440static u8 get4bits(u64 num, int shift) {
1441 u8 low4bits;
1442
1443 num >>= shift;
1444 /* Reverse order */
1445 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1446 return low4bits;
1447}
1448
440c840c
TT
1449/*
1450 * Use 4 bits as radix base
52042d8e 1451 * Use 16 u32 counters for calculating new position in buf array
440c840c
TT
1452 *
1453 * @array - array that will be sorted
1454 * @array_buf - buffer array to store sorting results
1455 * must be equal in size to @array
1456 * @num - array size
440c840c 1457 */
23ae8c63 1458static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
36243c91 1459 int num)
858177d3 1460{
440c840c
TT
1461 u64 max_num;
1462 u64 buf_num;
1463 u32 counters[COUNTERS_SIZE];
1464 u32 new_addr;
1465 u32 addr;
1466 int bitlen;
1467 int shift;
1468 int i;
858177d3 1469
440c840c
TT
1470 /*
1471 * Try avoid useless loop iterations for small numbers stored in big
1472 * counters. Example: 48 33 4 ... in 64bit array
1473 */
23ae8c63 1474 max_num = array[0].count;
440c840c 1475 for (i = 1; i < num; i++) {
23ae8c63 1476 buf_num = array[i].count;
440c840c
TT
1477 if (buf_num > max_num)
1478 max_num = buf_num;
1479 }
1480
1481 buf_num = ilog2(max_num);
1482 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1483
1484 shift = 0;
1485 while (shift < bitlen) {
1486 memset(counters, 0, sizeof(counters));
1487
1488 for (i = 0; i < num; i++) {
23ae8c63 1489 buf_num = array[i].count;
440c840c
TT
1490 addr = get4bits(buf_num, shift);
1491 counters[addr]++;
1492 }
1493
1494 for (i = 1; i < COUNTERS_SIZE; i++)
1495 counters[i] += counters[i - 1];
1496
1497 for (i = num - 1; i >= 0; i--) {
23ae8c63 1498 buf_num = array[i].count;
440c840c
TT
1499 addr = get4bits(buf_num, shift);
1500 counters[addr]--;
1501 new_addr = counters[addr];
7add17be 1502 array_buf[new_addr] = array[i];
440c840c
TT
1503 }
1504
1505 shift += RADIX_BASE;
1506
1507 /*
1508 * Normal radix expects to move data from a temporary array, to
1509 * the main one. But that requires some CPU time. Avoid that
1510 * by doing another sort iteration to original array instead of
1511 * memcpy()
1512 */
1513 memset(counters, 0, sizeof(counters));
1514
1515 for (i = 0; i < num; i ++) {
23ae8c63 1516 buf_num = array_buf[i].count;
440c840c
TT
1517 addr = get4bits(buf_num, shift);
1518 counters[addr]++;
1519 }
1520
1521 for (i = 1; i < COUNTERS_SIZE; i++)
1522 counters[i] += counters[i - 1];
1523
1524 for (i = num - 1; i >= 0; i--) {
23ae8c63 1525 buf_num = array_buf[i].count;
440c840c
TT
1526 addr = get4bits(buf_num, shift);
1527 counters[addr]--;
1528 new_addr = counters[addr];
7add17be 1529 array[new_addr] = array_buf[i];
440c840c
TT
1530 }
1531
1532 shift += RADIX_BASE;
1533 }
858177d3
TT
1534}
1535
1536/*
1537 * Size of the core byte set - how many bytes cover 90% of the sample
1538 *
1539 * There are several types of structured binary data that use nearly all byte
1540 * values. The distribution can be uniform and counts in all buckets will be
1541 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1542 *
1543 * Other possibility is normal (Gaussian) distribution, where the data could
1544 * be potentially compressible, but we have to take a few more steps to decide
1545 * how much.
1546 *
1547 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1548 * compression algo can easy fix that
1549 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1550 * probability is not compressible
1551 */
1552#define BYTE_CORE_SET_LOW (64)
1553#define BYTE_CORE_SET_HIGH (200)
1554
1555static int byte_core_set_size(struct heuristic_ws *ws)
1556{
1557 u32 i;
1558 u32 coreset_sum = 0;
1559 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1560 struct bucket_item *bucket = ws->bucket;
1561
1562 /* Sort in reverse order */
36243c91 1563 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
858177d3
TT
1564
1565 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1566 coreset_sum += bucket[i].count;
1567
1568 if (coreset_sum > core_set_threshold)
1569 return i;
1570
1571 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1572 coreset_sum += bucket[i].count;
1573 if (coreset_sum > core_set_threshold)
1574 break;
1575 }
1576
1577 return i;
1578}
1579
a288e92c
TT
1580/*
1581 * Count byte values in buckets.
1582 * This heuristic can detect textual data (configs, xml, json, html, etc).
1583 * Because in most text-like data byte set is restricted to limited number of
1584 * possible characters, and that restriction in most cases makes data easy to
1585 * compress.
1586 *
1587 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1588 * less - compressible
1589 * more - need additional analysis
1590 */
1591#define BYTE_SET_THRESHOLD (64)
1592
1593static u32 byte_set_size(const struct heuristic_ws *ws)
1594{
1595 u32 i;
1596 u32 byte_set_size = 0;
1597
1598 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1599 if (ws->bucket[i].count > 0)
1600 byte_set_size++;
1601 }
1602
1603 /*
1604 * Continue collecting count of byte values in buckets. If the byte
1605 * set size is bigger then the threshold, it's pointless to continue,
1606 * the detection technique would fail for this type of data.
1607 */
1608 for (; i < BUCKET_SIZE; i++) {
1609 if (ws->bucket[i].count > 0) {
1610 byte_set_size++;
1611 if (byte_set_size > BYTE_SET_THRESHOLD)
1612 return byte_set_size;
1613 }
1614 }
1615
1616 return byte_set_size;
1617}
1618
1fe4f6fa
TT
1619static bool sample_repeated_patterns(struct heuristic_ws *ws)
1620{
1621 const u32 half_of_sample = ws->sample_size / 2;
1622 const u8 *data = ws->sample;
1623
1624 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1625}
1626
a440d48c
TT
1627static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1628 struct heuristic_ws *ws)
1629{
1630 struct page *page;
1631 u64 index, index_end;
1632 u32 i, curr_sample_pos;
1633 u8 *in_data;
1634
1635 /*
1636 * Compression handles the input data by chunks of 128KiB
1637 * (defined by BTRFS_MAX_UNCOMPRESSED)
1638 *
1639 * We do the same for the heuristic and loop over the whole range.
1640 *
1641 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1642 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1643 */
1644 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1645 end = start + BTRFS_MAX_UNCOMPRESSED;
1646
1647 index = start >> PAGE_SHIFT;
1648 index_end = end >> PAGE_SHIFT;
1649
1650 /* Don't miss unaligned end */
1651 if (!IS_ALIGNED(end, PAGE_SIZE))
1652 index_end++;
1653
1654 curr_sample_pos = 0;
1655 while (index < index_end) {
1656 page = find_get_page(inode->i_mapping, index);
58c1a35c 1657 in_data = kmap_local_page(page);
a440d48c
TT
1658 /* Handle case where the start is not aligned to PAGE_SIZE */
1659 i = start % PAGE_SIZE;
1660 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1661 /* Don't sample any garbage from the last page */
1662 if (start > end - SAMPLING_READ_SIZE)
1663 break;
1664 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1665 SAMPLING_READ_SIZE);
1666 i += SAMPLING_INTERVAL;
1667 start += SAMPLING_INTERVAL;
1668 curr_sample_pos += SAMPLING_READ_SIZE;
1669 }
58c1a35c 1670 kunmap_local(in_data);
a440d48c
TT
1671 put_page(page);
1672
1673 index++;
1674 }
1675
1676 ws->sample_size = curr_sample_pos;
1677}
1678
c2fcdcdf
TT
1679/*
1680 * Compression heuristic.
1681 *
1682 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1683 * quickly (compared to direct compression) detect data characteristics
1684 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1685 * data.
1686 *
1687 * The following types of analysis can be performed:
1688 * - detect mostly zero data
1689 * - detect data with low "byte set" size (text, etc)
1690 * - detect data with low/high "core byte" set
1691 *
1692 * Return non-zero if the compression should be done, 0 otherwise.
1693 */
1694int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1695{
7bf49943 1696 struct list_head *ws_list = get_workspace(0, 0);
4e439a0b 1697 struct heuristic_ws *ws;
a440d48c
TT
1698 u32 i;
1699 u8 byte;
19562430 1700 int ret = 0;
c2fcdcdf 1701
4e439a0b
TT
1702 ws = list_entry(ws_list, struct heuristic_ws, list);
1703
a440d48c
TT
1704 heuristic_collect_sample(inode, start, end, ws);
1705
1fe4f6fa
TT
1706 if (sample_repeated_patterns(ws)) {
1707 ret = 1;
1708 goto out;
1709 }
1710
a440d48c
TT
1711 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1712
1713 for (i = 0; i < ws->sample_size; i++) {
1714 byte = ws->sample[i];
1715 ws->bucket[byte].count++;
c2fcdcdf
TT
1716 }
1717
a288e92c
TT
1718 i = byte_set_size(ws);
1719 if (i < BYTE_SET_THRESHOLD) {
1720 ret = 2;
1721 goto out;
1722 }
1723
858177d3
TT
1724 i = byte_core_set_size(ws);
1725 if (i <= BYTE_CORE_SET_LOW) {
1726 ret = 3;
1727 goto out;
1728 }
1729
1730 if (i >= BYTE_CORE_SET_HIGH) {
1731 ret = 0;
1732 goto out;
1733 }
1734
19562430
TT
1735 i = shannon_entropy(ws);
1736 if (i <= ENTROPY_LVL_ACEPTABLE) {
1737 ret = 4;
1738 goto out;
1739 }
1740
1741 /*
1742 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1743 * needed to give green light to compression.
1744 *
1745 * For now just assume that compression at that level is not worth the
1746 * resources because:
1747 *
1748 * 1. it is possible to defrag the data later
1749 *
1750 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1751 * values, every bucket has counter at level ~54. The heuristic would
1752 * be confused. This can happen when data have some internal repeated
1753 * patterns like "abbacbbc...". This can be detected by analyzing
1754 * pairs of bytes, which is too costly.
1755 */
1756 if (i < ENTROPY_LVL_HIGH) {
1757 ret = 5;
1758 goto out;
1759 } else {
1760 ret = 0;
1761 goto out;
1762 }
1763
1fe4f6fa 1764out:
929f4baf 1765 put_workspace(0, ws_list);
c2fcdcdf
TT
1766 return ret;
1767}
f51d2b59 1768
d0ab62ce
DZ
1769/*
1770 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1771 * level, unrecognized string will set the default level
1772 */
1773unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
f51d2b59 1774{
d0ab62ce
DZ
1775 unsigned int level = 0;
1776 int ret;
1777
1778 if (!type)
f51d2b59
DS
1779 return 0;
1780
d0ab62ce
DZ
1781 if (str[0] == ':') {
1782 ret = kstrtouint(str + 1, 10, &level);
1783 if (ret)
1784 level = 0;
1785 }
1786
b0c1fe1e
DS
1787 level = btrfs_compress_set_level(type, level);
1788
1789 return level;
1790}