btrfs: optimize variables size in btrfs_submit_compressed_read
[linux-block.git] / fs / btrfs / compression.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
c8b97818
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
c8b97818
CM
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
c8b97818
CM
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/time.h>
13#include <linux/init.h>
14#include <linux/string.h>
c8b97818 15#include <linux/backing-dev.h>
c8b97818 16#include <linux/writeback.h>
5a0e3ad6 17#include <linux/slab.h>
fe308533 18#include <linux/sched/mm.h>
19562430 19#include <linux/log2.h>
d5178578 20#include <crypto/hash.h>
602cbe91 21#include "misc.h"
c8b97818
CM
22#include "ctree.h"
23#include "disk-io.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "volumes.h"
27#include "ordered-data.h"
c8b97818
CM
28#include "compression.h"
29#include "extent_io.h"
30#include "extent_map.h"
764c7c9a 31#include "zoned.h"
c8b97818 32
e128f9c3
DS
33static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
34
35const char* btrfs_compress_type2str(enum btrfs_compression_type type)
36{
37 switch (type) {
38 case BTRFS_COMPRESS_ZLIB:
39 case BTRFS_COMPRESS_LZO:
40 case BTRFS_COMPRESS_ZSTD:
41 case BTRFS_COMPRESS_NONE:
42 return btrfs_compress_types[type];
ce96b7ff
CX
43 default:
44 break;
e128f9c3
DS
45 }
46
47 return NULL;
48}
49
aa53e3bf
JT
50bool btrfs_compress_is_valid_type(const char *str, size_t len)
51{
52 int i;
53
54 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
55 size_t comp_len = strlen(btrfs_compress_types[i]);
56
57 if (len < comp_len)
58 continue;
59
60 if (!strncmp(btrfs_compress_types[i], str, comp_len))
61 return true;
62 }
63 return false;
64}
65
1e4eb746
DS
66static int compression_compress_pages(int type, struct list_head *ws,
67 struct address_space *mapping, u64 start, struct page **pages,
68 unsigned long *out_pages, unsigned long *total_in,
69 unsigned long *total_out)
70{
71 switch (type) {
72 case BTRFS_COMPRESS_ZLIB:
73 return zlib_compress_pages(ws, mapping, start, pages,
74 out_pages, total_in, total_out);
75 case BTRFS_COMPRESS_LZO:
76 return lzo_compress_pages(ws, mapping, start, pages,
77 out_pages, total_in, total_out);
78 case BTRFS_COMPRESS_ZSTD:
79 return zstd_compress_pages(ws, mapping, start, pages,
80 out_pages, total_in, total_out);
81 case BTRFS_COMPRESS_NONE:
82 default:
83 /*
1d8ba9e7
QW
84 * This can happen when compression races with remount setting
85 * it to 'no compress', while caller doesn't call
86 * inode_need_compress() to check if we really need to
87 * compress.
88 *
89 * Not a big deal, just need to inform caller that we
90 * haven't allocated any pages yet.
1e4eb746 91 */
1d8ba9e7 92 *out_pages = 0;
1e4eb746
DS
93 return -E2BIG;
94 }
95}
96
97static int compression_decompress_bio(int type, struct list_head *ws,
98 struct compressed_bio *cb)
99{
100 switch (type) {
101 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
102 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
103 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
104 case BTRFS_COMPRESS_NONE:
105 default:
106 /*
107 * This can't happen, the type is validated several times
108 * before we get here.
109 */
110 BUG();
111 }
112}
113
114static int compression_decompress(int type, struct list_head *ws,
115 unsigned char *data_in, struct page *dest_page,
116 unsigned long start_byte, size_t srclen, size_t destlen)
117{
118 switch (type) {
119 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
120 start_byte, srclen, destlen);
121 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
122 start_byte, srclen, destlen);
123 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
124 start_byte, srclen, destlen);
125 case BTRFS_COMPRESS_NONE:
126 default:
127 /*
128 * This can't happen, the type is validated several times
129 * before we get here.
130 */
131 BUG();
132 }
133}
134
8140dc30 135static int btrfs_decompress_bio(struct compressed_bio *cb);
48a3b636 136
2ff7e61e 137static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
d20f7043
CM
138 unsigned long disk_size)
139{
d20f7043 140 return sizeof(struct compressed_bio) +
713cebfb 141 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
d20f7043
CM
142}
143
5a9472fe 144static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
d20f7043
CM
145 u64 disk_start)
146{
10fe6ca8 147 struct btrfs_fs_info *fs_info = inode->root->fs_info;
d5178578 148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
223486c2 149 const u32 csum_size = fs_info->csum_size;
04d4ba4c 150 const u32 sectorsize = fs_info->sectorsize;
d20f7043 151 struct page *page;
1d08ce58 152 unsigned int i;
d20f7043 153 char *kaddr;
d5178578 154 u8 csum[BTRFS_CSUM_SIZE];
5a9472fe 155 struct compressed_bio *cb = bio->bi_private;
10fe6ca8 156 u8 *cb_sum = cb->sums;
d20f7043 157
42437a63 158 if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
d20f7043
CM
159 return 0;
160
d5178578
JT
161 shash->tfm = fs_info->csum_shash;
162
d20f7043 163 for (i = 0; i < cb->nr_pages; i++) {
04d4ba4c
QW
164 u32 pg_offset;
165 u32 bytes_left = PAGE_SIZE;
d20f7043 166 page = cb->compressed_pages[i];
d20f7043 167
04d4ba4c
QW
168 /* Determine the remaining bytes inside the page first */
169 if (i == cb->nr_pages - 1)
170 bytes_left = cb->compressed_len - i * PAGE_SIZE;
171
172 /* Hash through the page sector by sector */
173 for (pg_offset = 0; pg_offset < bytes_left;
174 pg_offset += sectorsize) {
175 kaddr = kmap_atomic(page);
176 crypto_shash_digest(shash, kaddr + pg_offset,
177 sectorsize, csum);
178 kunmap_atomic(kaddr);
179
180 if (memcmp(&csum, cb_sum, csum_size) != 0) {
181 btrfs_print_data_csum_error(inode, disk_start,
182 csum, cb_sum, cb->mirror_num);
183 if (btrfs_io_bio(bio)->device)
184 btrfs_dev_stat_inc_and_print(
185 btrfs_io_bio(bio)->device,
186 BTRFS_DEV_STAT_CORRUPTION_ERRS);
187 return -EIO;
188 }
189 cb_sum += csum_size;
190 disk_start += sectorsize;
d20f7043 191 }
d20f7043 192 }
93c4c033 193 return 0;
d20f7043
CM
194}
195
c8b97818
CM
196/* when we finish reading compressed pages from the disk, we
197 * decompress them and then run the bio end_io routines on the
198 * decompressed pages (in the inode address space).
199 *
200 * This allows the checksumming and other IO error handling routines
201 * to work normally
202 *
203 * The compressed pages are freed here, and it must be run
204 * in process context
205 */
4246a0b6 206static void end_compressed_bio_read(struct bio *bio)
c8b97818 207{
c8b97818
CM
208 struct compressed_bio *cb = bio->bi_private;
209 struct inode *inode;
210 struct page *page;
1d08ce58 211 unsigned int index;
cf1167d5 212 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
e6311f24 213 int ret = 0;
c8b97818 214
4e4cbee9 215 if (bio->bi_status)
c8b97818
CM
216 cb->errors = 1;
217
218 /* if there are more bios still pending for this compressed
219 * extent, just exit
220 */
a50299ae 221 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
222 goto out;
223
cf1167d5
LB
224 /*
225 * Record the correct mirror_num in cb->orig_bio so that
226 * read-repair can work properly.
227 */
cf1167d5
LB
228 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
229 cb->mirror_num = mirror;
230
e6311f24
LB
231 /*
232 * Some IO in this cb have failed, just skip checksum as there
233 * is no way it could be correct.
234 */
235 if (cb->errors == 1)
236 goto csum_failed;
237
d20f7043 238 inode = cb->inode;
5a9472fe 239 ret = check_compressed_csum(BTRFS_I(inode), bio,
1201b58b 240 bio->bi_iter.bi_sector << 9);
d20f7043
CM
241 if (ret)
242 goto csum_failed;
243
c8b97818
CM
244 /* ok, we're the last bio for this extent, lets start
245 * the decompression.
246 */
8140dc30
AJ
247 ret = btrfs_decompress_bio(cb);
248
d20f7043 249csum_failed:
c8b97818
CM
250 if (ret)
251 cb->errors = 1;
252
253 /* release the compressed pages */
254 index = 0;
255 for (index = 0; index < cb->nr_pages; index++) {
256 page = cb->compressed_pages[index];
257 page->mapping = NULL;
09cbfeaf 258 put_page(page);
c8b97818
CM
259 }
260
261 /* do io completion on the original bio */
771ed689 262 if (cb->errors) {
c8b97818 263 bio_io_error(cb->orig_bio);
d20f7043 264 } else {
2c30c71b 265 struct bio_vec *bvec;
6dc4f100 266 struct bvec_iter_all iter_all;
d20f7043
CM
267
268 /*
269 * we have verified the checksum already, set page
270 * checked so the end_io handlers know about it
271 */
c09abff8 272 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 273 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
d20f7043 274 SetPageChecked(bvec->bv_page);
2c30c71b 275
4246a0b6 276 bio_endio(cb->orig_bio);
d20f7043 277 }
c8b97818
CM
278
279 /* finally free the cb struct */
280 kfree(cb->compressed_pages);
281 kfree(cb);
282out:
283 bio_put(bio);
284}
285
286/*
287 * Clear the writeback bits on all of the file
288 * pages for a compressed write
289 */
7bdcefc1
FM
290static noinline void end_compressed_writeback(struct inode *inode,
291 const struct compressed_bio *cb)
c8b97818 292{
09cbfeaf
KS
293 unsigned long index = cb->start >> PAGE_SHIFT;
294 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
c8b97818
CM
295 struct page *pages[16];
296 unsigned long nr_pages = end_index - index + 1;
297 int i;
298 int ret;
299
7bdcefc1
FM
300 if (cb->errors)
301 mapping_set_error(inode->i_mapping, -EIO);
302
d397712b 303 while (nr_pages > 0) {
c8b97818 304 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
305 min_t(unsigned long,
306 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
307 if (ret == 0) {
308 nr_pages -= 1;
309 index += 1;
310 continue;
311 }
312 for (i = 0; i < ret; i++) {
7bdcefc1
FM
313 if (cb->errors)
314 SetPageError(pages[i]);
c8b97818 315 end_page_writeback(pages[i]);
09cbfeaf 316 put_page(pages[i]);
c8b97818
CM
317 }
318 nr_pages -= ret;
319 index += ret;
320 }
321 /* the inode may be gone now */
c8b97818
CM
322}
323
324/*
325 * do the cleanup once all the compressed pages hit the disk.
326 * This will clear writeback on the file pages and free the compressed
327 * pages.
328 *
329 * This also calls the writeback end hooks for the file pages so that
330 * metadata and checksums can be updated in the file.
331 */
4246a0b6 332static void end_compressed_bio_write(struct bio *bio)
c8b97818 333{
c8b97818
CM
334 struct compressed_bio *cb = bio->bi_private;
335 struct inode *inode;
336 struct page *page;
1d08ce58 337 unsigned int index;
c8b97818 338
4e4cbee9 339 if (bio->bi_status)
c8b97818
CM
340 cb->errors = 1;
341
342 /* if there are more bios still pending for this compressed
343 * extent, just exit
344 */
a50299ae 345 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
346 goto out;
347
348 /* ok, we're the last bio for this extent, step one is to
349 * call back into the FS and do all the end_io operations
350 */
351 inode = cb->inode;
70b99e69 352 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
764c7c9a 353 btrfs_record_physical_zoned(inode, cb->start, bio);
7087a9d8 354 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
c629732d 355 cb->start, cb->start + cb->len - 1,
6a8d2136 356 bio->bi_status == BLK_STS_OK);
70b99e69 357 cb->compressed_pages[0]->mapping = NULL;
c8b97818 358
7bdcefc1 359 end_compressed_writeback(inode, cb);
c8b97818
CM
360 /* note, our inode could be gone now */
361
362 /*
363 * release the compressed pages, these came from alloc_page and
364 * are not attached to the inode at all
365 */
366 index = 0;
367 for (index = 0; index < cb->nr_pages; index++) {
368 page = cb->compressed_pages[index];
369 page->mapping = NULL;
09cbfeaf 370 put_page(page);
c8b97818
CM
371 }
372
373 /* finally free the cb struct */
374 kfree(cb->compressed_pages);
375 kfree(cb);
376out:
377 bio_put(bio);
378}
379
380/*
381 * worker function to build and submit bios for previously compressed pages.
382 * The corresponding pages in the inode should be marked for writeback
383 * and the compressed pages should have a reference on them for dropping
384 * when the IO is complete.
385 *
386 * This also checksums the file bytes and gets things ready for
387 * the end io hooks.
388 */
c7ee1819 389blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
c8b97818
CM
390 unsigned long len, u64 disk_start,
391 unsigned long compressed_len,
392 struct page **compressed_pages,
f82b7359 393 unsigned long nr_pages,
ec39f769
CM
394 unsigned int write_flags,
395 struct cgroup_subsys_state *blkcg_css)
c8b97818 396{
c7ee1819 397 struct btrfs_fs_info *fs_info = inode->root->fs_info;
c8b97818 398 struct bio *bio = NULL;
c8b97818
CM
399 struct compressed_bio *cb;
400 unsigned long bytes_left;
306e16ce 401 int pg_index = 0;
c8b97818
CM
402 struct page *page;
403 u64 first_byte = disk_start;
4e4cbee9 404 blk_status_t ret;
c7ee1819 405 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
764c7c9a
JT
406 const bool use_append = btrfs_use_zone_append(inode, disk_start);
407 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
c8b97818 408
fdb1e121 409 WARN_ON(!PAGE_ALIGNED(start));
2ff7e61e 410 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
dac97e51 411 if (!cb)
4e4cbee9 412 return BLK_STS_RESOURCE;
a50299ae 413 refcount_set(&cb->pending_bios, 0);
c8b97818 414 cb->errors = 0;
c7ee1819 415 cb->inode = &inode->vfs_inode;
c8b97818
CM
416 cb->start = start;
417 cb->len = len;
d20f7043 418 cb->mirror_num = 0;
c8b97818
CM
419 cb->compressed_pages = compressed_pages;
420 cb->compressed_len = compressed_len;
421 cb->orig_bio = NULL;
422 cb->nr_pages = nr_pages;
423
e749af44 424 bio = btrfs_bio_alloc(first_byte);
764c7c9a 425 bio->bi_opf = bio_op | write_flags;
c8b97818
CM
426 bio->bi_private = cb;
427 bio->bi_end_io = end_compressed_bio_write;
ec39f769 428
764c7c9a 429 if (use_append) {
e7ff9e6b 430 struct btrfs_device *device;
764c7c9a 431
e7ff9e6b
JT
432 device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE);
433 if (IS_ERR(device)) {
764c7c9a
JT
434 kfree(cb);
435 bio_put(bio);
436 return BLK_STS_NOTSUPP;
437 }
438
e7ff9e6b 439 bio_set_dev(bio, device->bdev);
764c7c9a
JT
440 }
441
ec39f769
CM
442 if (blkcg_css) {
443 bio->bi_opf |= REQ_CGROUP_PUNT;
46bcff2b 444 kthread_associate_blkcg(blkcg_css);
ec39f769 445 }
a50299ae 446 refcount_set(&cb->pending_bios, 1);
c8b97818
CM
447
448 /* create and submit bios for the compressed pages */
449 bytes_left = compressed_len;
306e16ce 450 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
4e4cbee9 451 int submit = 0;
4c80a97d 452 int len = 0;
4e4cbee9 453
306e16ce 454 page = compressed_pages[pg_index];
c7ee1819 455 page->mapping = inode->vfs_inode.i_mapping;
4f024f37 456 if (bio->bi_iter.bi_size)
da12fe54
NB
457 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
458 0);
c8b97818 459
4c80a97d
QW
460 /*
461 * Page can only be added to bio if the current bio fits in
462 * stripe.
463 */
464 if (!submit) {
465 if (pg_index == 0 && use_append)
466 len = bio_add_zone_append_page(bio, page,
467 PAGE_SIZE, 0);
468 else
469 len = bio_add_page(bio, page, PAGE_SIZE, 0);
470 }
764c7c9a 471
70b99e69 472 page->mapping = NULL;
764c7c9a 473 if (submit || len < PAGE_SIZE) {
af09abfe
CM
474 /*
475 * inc the count before we submit the bio so
476 * we know the end IO handler won't happen before
477 * we inc the count. Otherwise, the cb might get
478 * freed before we're done setting it up
479 */
a50299ae 480 refcount_inc(&cb->pending_bios);
0b246afa
JM
481 ret = btrfs_bio_wq_end_io(fs_info, bio,
482 BTRFS_WQ_ENDIO_DATA);
79787eaa 483 BUG_ON(ret); /* -ENOMEM */
c8b97818 484
e55179b3 485 if (!skip_sum) {
c7ee1819 486 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 487 BUG_ON(ret); /* -ENOMEM */
e55179b3 488 }
d20f7043 489
08635bae 490 ret = btrfs_map_bio(fs_info, bio, 0);
f5daf2c7 491 if (ret) {
4e4cbee9 492 bio->bi_status = ret;
f5daf2c7
LB
493 bio_endio(bio);
494 }
c8b97818 495
e749af44 496 bio = btrfs_bio_alloc(first_byte);
764c7c9a 497 bio->bi_opf = bio_op | write_flags;
c8b97818
CM
498 bio->bi_private = cb;
499 bio->bi_end_io = end_compressed_bio_write;
46bcff2b 500 if (blkcg_css)
7b62e66c 501 bio->bi_opf |= REQ_CGROUP_PUNT;
764c7c9a
JT
502 /*
503 * Use bio_add_page() to ensure the bio has at least one
504 * page.
505 */
09cbfeaf 506 bio_add_page(bio, page, PAGE_SIZE, 0);
c8b97818 507 }
09cbfeaf 508 if (bytes_left < PAGE_SIZE) {
0b246afa 509 btrfs_info(fs_info,
282ab3ff 510 "bytes left %lu compress len %u nr %u",
cfbc246e
CM
511 bytes_left, cb->compressed_len, cb->nr_pages);
512 }
09cbfeaf
KS
513 bytes_left -= PAGE_SIZE;
514 first_byte += PAGE_SIZE;
771ed689 515 cond_resched();
c8b97818 516 }
c8b97818 517
0b246afa 518 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 519 BUG_ON(ret); /* -ENOMEM */
c8b97818 520
e55179b3 521 if (!skip_sum) {
c7ee1819 522 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 523 BUG_ON(ret); /* -ENOMEM */
e55179b3 524 }
d20f7043 525
08635bae 526 ret = btrfs_map_bio(fs_info, bio, 0);
f5daf2c7 527 if (ret) {
4e4cbee9 528 bio->bi_status = ret;
f5daf2c7
LB
529 bio_endio(bio);
530 }
c8b97818 531
46bcff2b
DZ
532 if (blkcg_css)
533 kthread_associate_blkcg(NULL);
534
c8b97818
CM
535 return 0;
536}
537
2a4d0c90
CH
538static u64 bio_end_offset(struct bio *bio)
539{
c45a8f2d 540 struct bio_vec *last = bio_last_bvec_all(bio);
2a4d0c90
CH
541
542 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
543}
544
771ed689
CM
545static noinline int add_ra_bio_pages(struct inode *inode,
546 u64 compressed_end,
547 struct compressed_bio *cb)
548{
549 unsigned long end_index;
306e16ce 550 unsigned long pg_index;
771ed689
CM
551 u64 last_offset;
552 u64 isize = i_size_read(inode);
553 int ret;
554 struct page *page;
555 unsigned long nr_pages = 0;
556 struct extent_map *em;
557 struct address_space *mapping = inode->i_mapping;
771ed689
CM
558 struct extent_map_tree *em_tree;
559 struct extent_io_tree *tree;
560 u64 end;
561 int misses = 0;
562
2a4d0c90 563 last_offset = bio_end_offset(cb->orig_bio);
771ed689
CM
564 em_tree = &BTRFS_I(inode)->extent_tree;
565 tree = &BTRFS_I(inode)->io_tree;
566
567 if (isize == 0)
568 return 0;
569
09cbfeaf 570 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
771ed689 571
d397712b 572 while (last_offset < compressed_end) {
09cbfeaf 573 pg_index = last_offset >> PAGE_SHIFT;
771ed689 574
306e16ce 575 if (pg_index > end_index)
771ed689
CM
576 break;
577
0a943c65 578 page = xa_load(&mapping->i_pages, pg_index);
3159f943 579 if (page && !xa_is_value(page)) {
771ed689
CM
580 misses++;
581 if (misses > 4)
582 break;
583 goto next;
584 }
585
c62d2555
MH
586 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
587 ~__GFP_FS));
771ed689
CM
588 if (!page)
589 break;
590
c62d2555 591 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
09cbfeaf 592 put_page(page);
771ed689
CM
593 goto next;
594 }
595
771ed689
CM
596 /*
597 * at this point, we have a locked page in the page cache
598 * for these bytes in the file. But, we have to make
599 * sure they map to this compressed extent on disk.
600 */
32443de3
QW
601 ret = set_page_extent_mapped(page);
602 if (ret < 0) {
603 unlock_page(page);
604 put_page(page);
605 break;
606 }
607
608 end = last_offset + PAGE_SIZE - 1;
d0082371 609 lock_extent(tree, last_offset, end);
890871be 610 read_lock(&em_tree->lock);
771ed689 611 em = lookup_extent_mapping(em_tree, last_offset,
09cbfeaf 612 PAGE_SIZE);
890871be 613 read_unlock(&em_tree->lock);
771ed689
CM
614
615 if (!em || last_offset < em->start ||
09cbfeaf 616 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
4f024f37 617 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 618 free_extent_map(em);
d0082371 619 unlock_extent(tree, last_offset, end);
771ed689 620 unlock_page(page);
09cbfeaf 621 put_page(page);
771ed689
CM
622 break;
623 }
624 free_extent_map(em);
625
626 if (page->index == end_index) {
7073017a 627 size_t zero_offset = offset_in_page(isize);
771ed689
CM
628
629 if (zero_offset) {
630 int zeros;
09cbfeaf 631 zeros = PAGE_SIZE - zero_offset;
d048b9c2 632 memzero_page(page, zero_offset, zeros);
771ed689 633 flush_dcache_page(page);
771ed689
CM
634 }
635 }
636
637 ret = bio_add_page(cb->orig_bio, page,
09cbfeaf 638 PAGE_SIZE, 0);
771ed689 639
09cbfeaf 640 if (ret == PAGE_SIZE) {
771ed689 641 nr_pages++;
09cbfeaf 642 put_page(page);
771ed689 643 } else {
d0082371 644 unlock_extent(tree, last_offset, end);
771ed689 645 unlock_page(page);
09cbfeaf 646 put_page(page);
771ed689
CM
647 break;
648 }
649next:
09cbfeaf 650 last_offset += PAGE_SIZE;
771ed689 651 }
771ed689
CM
652 return 0;
653}
654
c8b97818
CM
655/*
656 * for a compressed read, the bio we get passed has all the inode pages
657 * in it. We don't actually do IO on those pages but allocate new ones
658 * to hold the compressed pages on disk.
659 *
4f024f37 660 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818 661 * bio->bi_io_vec points to all of the inode pages
c8b97818
CM
662 *
663 * After the compressed pages are read, we copy the bytes into the
664 * bio we were passed and then call the bio end_io calls
665 */
4e4cbee9 666blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
c8b97818
CM
667 int mirror_num, unsigned long bio_flags)
668{
0b246afa 669 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818
CM
670 struct extent_map_tree *em_tree;
671 struct compressed_bio *cb;
356b4a2d
AJ
672 unsigned int compressed_len;
673 unsigned int nr_pages;
674 unsigned int pg_index;
c8b97818 675 struct page *page;
c8b97818 676 struct bio *comp_bio;
1201b58b 677 u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
e04ca626
CM
678 u64 em_len;
679 u64 em_start;
c8b97818 680 struct extent_map *em;
4e4cbee9 681 blk_status_t ret = BLK_STS_RESOURCE;
15e3004a 682 int faili = 0;
10fe6ca8 683 u8 *sums;
c8b97818 684
c8b97818
CM
685 em_tree = &BTRFS_I(inode)->extent_tree;
686
687 /* we need the actual starting offset of this extent in the file */
890871be 688 read_lock(&em_tree->lock);
c8b97818 689 em = lookup_extent_mapping(em_tree,
263663cd 690 page_offset(bio_first_page_all(bio)),
be6a1361 691 fs_info->sectorsize);
890871be 692 read_unlock(&em_tree->lock);
285190d9 693 if (!em)
4e4cbee9 694 return BLK_STS_IOERR;
c8b97818 695
d20f7043 696 compressed_len = em->block_len;
2ff7e61e 697 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
6b82ce8d 698 if (!cb)
699 goto out;
700
a50299ae 701 refcount_set(&cb->pending_bios, 0);
c8b97818
CM
702 cb->errors = 0;
703 cb->inode = inode;
d20f7043 704 cb->mirror_num = mirror_num;
10fe6ca8 705 sums = cb->sums;
c8b97818 706
ff5b7ee3 707 cb->start = em->orig_start;
e04ca626
CM
708 em_len = em->len;
709 em_start = em->start;
d20f7043 710
c8b97818 711 free_extent_map(em);
e04ca626 712 em = NULL;
c8b97818 713
81381053 714 cb->len = bio->bi_iter.bi_size;
c8b97818 715 cb->compressed_len = compressed_len;
261507a0 716 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
717 cb->orig_bio = bio;
718
09cbfeaf 719 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
31e818fe 720 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
c8b97818 721 GFP_NOFS);
6b82ce8d 722 if (!cb->compressed_pages)
723 goto fail1;
724
306e16ce
DS
725 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
726 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 727 __GFP_HIGHMEM);
15e3004a
JB
728 if (!cb->compressed_pages[pg_index]) {
729 faili = pg_index - 1;
0e9350de 730 ret = BLK_STS_RESOURCE;
6b82ce8d 731 goto fail2;
15e3004a 732 }
c8b97818 733 }
15e3004a 734 faili = nr_pages - 1;
c8b97818
CM
735 cb->nr_pages = nr_pages;
736
7f042a83 737 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 738
771ed689 739 /* include any pages we added in add_ra-bio_pages */
81381053 740 cb->len = bio->bi_iter.bi_size;
771ed689 741
e749af44 742 comp_bio = btrfs_bio_alloc(cur_disk_byte);
ebcc3263 743 comp_bio->bi_opf = REQ_OP_READ;
c8b97818
CM
744 comp_bio->bi_private = cb;
745 comp_bio->bi_end_io = end_compressed_bio_read;
a50299ae 746 refcount_set(&cb->pending_bios, 1);
c8b97818 747
306e16ce 748 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
be6a1361 749 u32 pg_len = PAGE_SIZE;
4e4cbee9
CH
750 int submit = 0;
751
be6a1361
QW
752 /*
753 * To handle subpage case, we need to make sure the bio only
754 * covers the range we need.
755 *
756 * If we're at the last page, truncate the length to only cover
757 * the remaining part.
758 */
759 if (pg_index == nr_pages - 1)
760 pg_len = min_t(u32, PAGE_SIZE,
761 compressed_len - pg_index * PAGE_SIZE);
762
306e16ce 763 page = cb->compressed_pages[pg_index];
c8b97818 764 page->mapping = inode->i_mapping;
09cbfeaf 765 page->index = em_start >> PAGE_SHIFT;
d20f7043 766
4f024f37 767 if (comp_bio->bi_iter.bi_size)
be6a1361 768 submit = btrfs_bio_fits_in_stripe(page, pg_len,
da12fe54 769 comp_bio, 0);
c8b97818 770
70b99e69 771 page->mapping = NULL;
be6a1361 772 if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
10fe6ca8
JT
773 unsigned int nr_sectors;
774
0b246afa
JM
775 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
776 BTRFS_WQ_ENDIO_DATA);
79787eaa 777 BUG_ON(ret); /* -ENOMEM */
c8b97818 778
af09abfe
CM
779 /*
780 * inc the count before we submit the bio so
781 * we know the end IO handler won't happen before
782 * we inc the count. Otherwise, the cb might get
783 * freed before we're done setting it up
784 */
a50299ae 785 refcount_inc(&cb->pending_bios);
af09abfe 786
6275193e 787 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
334c16d8 788 BUG_ON(ret); /* -ENOMEM */
10fe6ca8
JT
789
790 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
791 fs_info->sectorsize);
713cebfb 792 sums += fs_info->csum_size * nr_sectors;
d20f7043 793
08635bae 794 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
4246a0b6 795 if (ret) {
4e4cbee9 796 comp_bio->bi_status = ret;
4246a0b6
CH
797 bio_endio(comp_bio);
798 }
c8b97818 799
e749af44 800 comp_bio = btrfs_bio_alloc(cur_disk_byte);
ebcc3263 801 comp_bio->bi_opf = REQ_OP_READ;
771ed689
CM
802 comp_bio->bi_private = cb;
803 comp_bio->bi_end_io = end_compressed_bio_read;
804
be6a1361 805 bio_add_page(comp_bio, page, pg_len, 0);
c8b97818 806 }
be6a1361 807 cur_disk_byte += pg_len;
c8b97818 808 }
c8b97818 809
0b246afa 810 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 811 BUG_ON(ret); /* -ENOMEM */
c8b97818 812
6275193e 813 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
334c16d8 814 BUG_ON(ret); /* -ENOMEM */
d20f7043 815
08635bae 816 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
4246a0b6 817 if (ret) {
4e4cbee9 818 comp_bio->bi_status = ret;
4246a0b6
CH
819 bio_endio(comp_bio);
820 }
c8b97818 821
c8b97818 822 return 0;
6b82ce8d 823
824fail2:
15e3004a
JB
825 while (faili >= 0) {
826 __free_page(cb->compressed_pages[faili]);
827 faili--;
828 }
6b82ce8d 829
830 kfree(cb->compressed_pages);
831fail1:
832 kfree(cb);
833out:
834 free_extent_map(em);
835 return ret;
c8b97818 836}
261507a0 837
17b5a6c1
TT
838/*
839 * Heuristic uses systematic sampling to collect data from the input data
840 * range, the logic can be tuned by the following constants:
841 *
842 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
843 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
844 */
845#define SAMPLING_READ_SIZE (16)
846#define SAMPLING_INTERVAL (256)
847
848/*
849 * For statistical analysis of the input data we consider bytes that form a
850 * Galois Field of 256 objects. Each object has an attribute count, ie. how
851 * many times the object appeared in the sample.
852 */
853#define BUCKET_SIZE (256)
854
855/*
856 * The size of the sample is based on a statistical sampling rule of thumb.
857 * The common way is to perform sampling tests as long as the number of
858 * elements in each cell is at least 5.
859 *
860 * Instead of 5, we choose 32 to obtain more accurate results.
861 * If the data contain the maximum number of symbols, which is 256, we obtain a
862 * sample size bound by 8192.
863 *
864 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
865 * from up to 512 locations.
866 */
867#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
868 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
869
870struct bucket_item {
871 u32 count;
872};
4e439a0b
TT
873
874struct heuristic_ws {
17b5a6c1
TT
875 /* Partial copy of input data */
876 u8 *sample;
a440d48c 877 u32 sample_size;
17b5a6c1
TT
878 /* Buckets store counters for each byte value */
879 struct bucket_item *bucket;
440c840c
TT
880 /* Sorting buffer */
881 struct bucket_item *bucket_b;
4e439a0b
TT
882 struct list_head list;
883};
884
92ee5530
DZ
885static struct workspace_manager heuristic_wsm;
886
4e439a0b
TT
887static void free_heuristic_ws(struct list_head *ws)
888{
889 struct heuristic_ws *workspace;
890
891 workspace = list_entry(ws, struct heuristic_ws, list);
892
17b5a6c1
TT
893 kvfree(workspace->sample);
894 kfree(workspace->bucket);
440c840c 895 kfree(workspace->bucket_b);
4e439a0b
TT
896 kfree(workspace);
897}
898
7bf49943 899static struct list_head *alloc_heuristic_ws(unsigned int level)
4e439a0b
TT
900{
901 struct heuristic_ws *ws;
902
903 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
904 if (!ws)
905 return ERR_PTR(-ENOMEM);
906
17b5a6c1
TT
907 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
908 if (!ws->sample)
909 goto fail;
910
911 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
912 if (!ws->bucket)
913 goto fail;
4e439a0b 914
440c840c
TT
915 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
916 if (!ws->bucket_b)
917 goto fail;
918
17b5a6c1 919 INIT_LIST_HEAD(&ws->list);
4e439a0b 920 return &ws->list;
17b5a6c1
TT
921fail:
922 free_heuristic_ws(&ws->list);
923 return ERR_PTR(-ENOMEM);
4e439a0b
TT
924}
925
ca4ac360 926const struct btrfs_compress_op btrfs_heuristic_compress = {
be951045 927 .workspace_manager = &heuristic_wsm,
ca4ac360
DZ
928};
929
e8c9f186 930static const struct btrfs_compress_op * const btrfs_compress_op[] = {
ca4ac360
DZ
931 /* The heuristic is represented as compression type 0 */
932 &btrfs_heuristic_compress,
261507a0 933 &btrfs_zlib_compress,
a6fa6fae 934 &btrfs_lzo_compress,
5c1aab1d 935 &btrfs_zstd_compress,
261507a0
LZ
936};
937
c778df14
DS
938static struct list_head *alloc_workspace(int type, unsigned int level)
939{
940 switch (type) {
941 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
942 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
943 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
944 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
945 default:
946 /*
947 * This can't happen, the type is validated several times
948 * before we get here.
949 */
950 BUG();
951 }
952}
953
1e002351
DS
954static void free_workspace(int type, struct list_head *ws)
955{
956 switch (type) {
957 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
958 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
959 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
960 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
961 default:
962 /*
963 * This can't happen, the type is validated several times
964 * before we get here.
965 */
966 BUG();
967 }
968}
969
d5517033 970static void btrfs_init_workspace_manager(int type)
261507a0 971{
0cf25213 972 struct workspace_manager *wsm;
4e439a0b 973 struct list_head *workspace;
261507a0 974
0cf25213 975 wsm = btrfs_compress_op[type]->workspace_manager;
92ee5530
DZ
976 INIT_LIST_HEAD(&wsm->idle_ws);
977 spin_lock_init(&wsm->ws_lock);
978 atomic_set(&wsm->total_ws, 0);
979 init_waitqueue_head(&wsm->ws_wait);
f77dd0d6 980
1666edab
DZ
981 /*
982 * Preallocate one workspace for each compression type so we can
983 * guarantee forward progress in the worst case
984 */
c778df14 985 workspace = alloc_workspace(type, 0);
1666edab
DZ
986 if (IS_ERR(workspace)) {
987 pr_warn(
988 "BTRFS: cannot preallocate compression workspace, will try later\n");
989 } else {
92ee5530
DZ
990 atomic_set(&wsm->total_ws, 1);
991 wsm->free_ws = 1;
992 list_add(workspace, &wsm->idle_ws);
1666edab
DZ
993 }
994}
995
2510307e 996static void btrfs_cleanup_workspace_manager(int type)
1666edab 997{
2dba7143 998 struct workspace_manager *wsman;
1666edab
DZ
999 struct list_head *ws;
1000
2dba7143 1001 wsman = btrfs_compress_op[type]->workspace_manager;
1666edab
DZ
1002 while (!list_empty(&wsman->idle_ws)) {
1003 ws = wsman->idle_ws.next;
1004 list_del(ws);
1e002351 1005 free_workspace(type, ws);
1666edab 1006 atomic_dec(&wsman->total_ws);
261507a0 1007 }
261507a0
LZ
1008}
1009
1010/*
e721e49d
DS
1011 * This finds an available workspace or allocates a new one.
1012 * If it's not possible to allocate a new one, waits until there's one.
1013 * Preallocation makes a forward progress guarantees and we do not return
1014 * errors.
261507a0 1015 */
5907a9bb 1016struct list_head *btrfs_get_workspace(int type, unsigned int level)
261507a0 1017{
5907a9bb 1018 struct workspace_manager *wsm;
261507a0
LZ
1019 struct list_head *workspace;
1020 int cpus = num_online_cpus();
fe308533 1021 unsigned nofs_flag;
4e439a0b
TT
1022 struct list_head *idle_ws;
1023 spinlock_t *ws_lock;
1024 atomic_t *total_ws;
1025 wait_queue_head_t *ws_wait;
1026 int *free_ws;
1027
5907a9bb 1028 wsm = btrfs_compress_op[type]->workspace_manager;
92ee5530
DZ
1029 idle_ws = &wsm->idle_ws;
1030 ws_lock = &wsm->ws_lock;
1031 total_ws = &wsm->total_ws;
1032 ws_wait = &wsm->ws_wait;
1033 free_ws = &wsm->free_ws;
261507a0 1034
261507a0 1035again:
d9187649
BL
1036 spin_lock(ws_lock);
1037 if (!list_empty(idle_ws)) {
1038 workspace = idle_ws->next;
261507a0 1039 list_del(workspace);
6ac10a6a 1040 (*free_ws)--;
d9187649 1041 spin_unlock(ws_lock);
261507a0
LZ
1042 return workspace;
1043
1044 }
6ac10a6a 1045 if (atomic_read(total_ws) > cpus) {
261507a0
LZ
1046 DEFINE_WAIT(wait);
1047
d9187649
BL
1048 spin_unlock(ws_lock);
1049 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
6ac10a6a 1050 if (atomic_read(total_ws) > cpus && !*free_ws)
261507a0 1051 schedule();
d9187649 1052 finish_wait(ws_wait, &wait);
261507a0
LZ
1053 goto again;
1054 }
6ac10a6a 1055 atomic_inc(total_ws);
d9187649 1056 spin_unlock(ws_lock);
261507a0 1057
fe308533
DS
1058 /*
1059 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1060 * to turn it off here because we might get called from the restricted
1061 * context of btrfs_compress_bio/btrfs_compress_pages
1062 */
1063 nofs_flag = memalloc_nofs_save();
c778df14 1064 workspace = alloc_workspace(type, level);
fe308533
DS
1065 memalloc_nofs_restore(nofs_flag);
1066
261507a0 1067 if (IS_ERR(workspace)) {
6ac10a6a 1068 atomic_dec(total_ws);
d9187649 1069 wake_up(ws_wait);
e721e49d
DS
1070
1071 /*
1072 * Do not return the error but go back to waiting. There's a
1073 * workspace preallocated for each type and the compression
1074 * time is bounded so we get to a workspace eventually. This
1075 * makes our caller's life easier.
52356716
DS
1076 *
1077 * To prevent silent and low-probability deadlocks (when the
1078 * initial preallocation fails), check if there are any
1079 * workspaces at all.
e721e49d 1080 */
52356716
DS
1081 if (atomic_read(total_ws) == 0) {
1082 static DEFINE_RATELIMIT_STATE(_rs,
1083 /* once per minute */ 60 * HZ,
1084 /* no burst */ 1);
1085
1086 if (__ratelimit(&_rs)) {
ab8d0fc4 1087 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
52356716
DS
1088 }
1089 }
e721e49d 1090 goto again;
261507a0
LZ
1091 }
1092 return workspace;
1093}
1094
7bf49943 1095static struct list_head *get_workspace(int type, int level)
929f4baf 1096{
6a0d1272 1097 switch (type) {
5907a9bb 1098 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
6a0d1272 1099 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
5907a9bb 1100 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
6a0d1272
DS
1101 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1102 default:
1103 /*
1104 * This can't happen, the type is validated several times
1105 * before we get here.
1106 */
1107 BUG();
1108 }
929f4baf
DZ
1109}
1110
261507a0
LZ
1111/*
1112 * put a workspace struct back on the list or free it if we have enough
1113 * idle ones sitting around
1114 */
a3bbd2a9 1115void btrfs_put_workspace(int type, struct list_head *ws)
261507a0 1116{
a3bbd2a9 1117 struct workspace_manager *wsm;
4e439a0b
TT
1118 struct list_head *idle_ws;
1119 spinlock_t *ws_lock;
1120 atomic_t *total_ws;
1121 wait_queue_head_t *ws_wait;
1122 int *free_ws;
1123
a3bbd2a9 1124 wsm = btrfs_compress_op[type]->workspace_manager;
92ee5530
DZ
1125 idle_ws = &wsm->idle_ws;
1126 ws_lock = &wsm->ws_lock;
1127 total_ws = &wsm->total_ws;
1128 ws_wait = &wsm->ws_wait;
1129 free_ws = &wsm->free_ws;
d9187649
BL
1130
1131 spin_lock(ws_lock);
26b28dce 1132 if (*free_ws <= num_online_cpus()) {
929f4baf 1133 list_add(ws, idle_ws);
6ac10a6a 1134 (*free_ws)++;
d9187649 1135 spin_unlock(ws_lock);
261507a0
LZ
1136 goto wake;
1137 }
d9187649 1138 spin_unlock(ws_lock);
261507a0 1139
1e002351 1140 free_workspace(type, ws);
6ac10a6a 1141 atomic_dec(total_ws);
261507a0 1142wake:
093258e6 1143 cond_wake_up(ws_wait);
261507a0
LZ
1144}
1145
929f4baf
DZ
1146static void put_workspace(int type, struct list_head *ws)
1147{
bd3a5287 1148 switch (type) {
a3bbd2a9
DS
1149 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1150 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1151 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
bd3a5287
DS
1152 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1153 default:
1154 /*
1155 * This can't happen, the type is validated several times
1156 * before we get here.
1157 */
1158 BUG();
1159 }
929f4baf
DZ
1160}
1161
adbab642
AJ
1162/*
1163 * Adjust @level according to the limits of the compression algorithm or
1164 * fallback to default
1165 */
1166static unsigned int btrfs_compress_set_level(int type, unsigned level)
1167{
1168 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1169
1170 if (level == 0)
1171 level = ops->default_level;
1172 else
1173 level = min(level, ops->max_level);
1174
1175 return level;
1176}
1177
261507a0 1178/*
38c31464
DS
1179 * Given an address space and start and length, compress the bytes into @pages
1180 * that are allocated on demand.
261507a0 1181 *
f51d2b59
DS
1182 * @type_level is encoded algorithm and level, where level 0 means whatever
1183 * default the algorithm chooses and is opaque here;
1184 * - compression algo are 0-3
1185 * - the level are bits 4-7
1186 *
4d3a800e
DS
1187 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1188 * and returns number of actually allocated pages
261507a0 1189 *
38c31464
DS
1190 * @total_in is used to return the number of bytes actually read. It
1191 * may be smaller than the input length if we had to exit early because we
261507a0
LZ
1192 * ran out of room in the pages array or because we cross the
1193 * max_out threshold.
1194 *
38c31464
DS
1195 * @total_out is an in/out parameter, must be set to the input length and will
1196 * be also used to return the total number of compressed bytes
261507a0 1197 *
38c31464 1198 * @max_out tells us the max number of bytes that we're allowed to
261507a0
LZ
1199 * stuff into pages
1200 */
f51d2b59 1201int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
38c31464 1202 u64 start, struct page **pages,
261507a0
LZ
1203 unsigned long *out_pages,
1204 unsigned long *total_in,
e5d74902 1205 unsigned long *total_out)
261507a0 1206{
1972708a 1207 int type = btrfs_compress_type(type_level);
7bf49943 1208 int level = btrfs_compress_level(type_level);
261507a0
LZ
1209 struct list_head *workspace;
1210 int ret;
1211
b0c1fe1e 1212 level = btrfs_compress_set_level(type, level);
7bf49943 1213 workspace = get_workspace(type, level);
1e4eb746
DS
1214 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1215 out_pages, total_in, total_out);
929f4baf 1216 put_workspace(type, workspace);
261507a0
LZ
1217 return ret;
1218}
1219
1220/*
1221 * pages_in is an array of pages with compressed data.
1222 *
1223 * disk_start is the starting logical offset of this array in the file
1224 *
974b1adc 1225 * orig_bio contains the pages from the file that we want to decompress into
261507a0
LZ
1226 *
1227 * srclen is the number of bytes in pages_in
1228 *
1229 * The basic idea is that we have a bio that was created by readpages.
1230 * The pages in the bio are for the uncompressed data, and they may not
1231 * be contiguous. They all correspond to the range of bytes covered by
1232 * the compressed extent.
1233 */
8140dc30 1234static int btrfs_decompress_bio(struct compressed_bio *cb)
261507a0
LZ
1235{
1236 struct list_head *workspace;
1237 int ret;
8140dc30 1238 int type = cb->compress_type;
261507a0 1239
7bf49943 1240 workspace = get_workspace(type, 0);
1e4eb746 1241 ret = compression_decompress_bio(type, workspace, cb);
929f4baf 1242 put_workspace(type, workspace);
e1ddce71 1243
261507a0
LZ
1244 return ret;
1245}
1246
1247/*
1248 * a less complex decompression routine. Our compressed data fits in a
1249 * single page, and we want to read a single page out of it.
1250 * start_byte tells us the offset into the compressed data we're interested in
1251 */
1252int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1253 unsigned long start_byte, size_t srclen, size_t destlen)
1254{
1255 struct list_head *workspace;
1256 int ret;
1257
7bf49943 1258 workspace = get_workspace(type, 0);
1e4eb746
DS
1259 ret = compression_decompress(type, workspace, data_in, dest_page,
1260 start_byte, srclen, destlen);
929f4baf 1261 put_workspace(type, workspace);
7bf49943 1262
261507a0
LZ
1263 return ret;
1264}
1265
1666edab
DZ
1266void __init btrfs_init_compress(void)
1267{
d5517033
DS
1268 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1269 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1270 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1271 zstd_init_workspace_manager();
1666edab
DZ
1272}
1273
e67c718b 1274void __cold btrfs_exit_compress(void)
261507a0 1275{
2510307e
DS
1276 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1277 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1278 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1279 zstd_cleanup_workspace_manager();
261507a0 1280}
3a39c18d
LZ
1281
1282/*
1283 * Copy uncompressed data from working buffer to pages.
1284 *
1285 * buf_start is the byte offset we're of the start of our workspace buffer.
1286 *
1287 * total_out is the last byte of the buffer
1288 */
14a3357b 1289int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
3a39c18d 1290 unsigned long total_out, u64 disk_start,
974b1adc 1291 struct bio *bio)
3a39c18d
LZ
1292{
1293 unsigned long buf_offset;
1294 unsigned long current_buf_start;
1295 unsigned long start_byte;
6e78b3f7 1296 unsigned long prev_start_byte;
3a39c18d
LZ
1297 unsigned long working_bytes = total_out - buf_start;
1298 unsigned long bytes;
974b1adc 1299 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
3a39c18d
LZ
1300
1301 /*
1302 * start byte is the first byte of the page we're currently
1303 * copying into relative to the start of the compressed data.
1304 */
974b1adc 1305 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d
LZ
1306
1307 /* we haven't yet hit data corresponding to this page */
1308 if (total_out <= start_byte)
1309 return 1;
1310
1311 /*
1312 * the start of the data we care about is offset into
1313 * the middle of our working buffer
1314 */
1315 if (total_out > start_byte && buf_start < start_byte) {
1316 buf_offset = start_byte - buf_start;
1317 working_bytes -= buf_offset;
1318 } else {
1319 buf_offset = 0;
1320 }
1321 current_buf_start = buf_start;
1322
1323 /* copy bytes from the working buffer into the pages */
1324 while (working_bytes > 0) {
974b1adc 1325 bytes = min_t(unsigned long, bvec.bv_len,
3fd396af 1326 PAGE_SIZE - (buf_offset % PAGE_SIZE));
3a39c18d 1327 bytes = min(bytes, working_bytes);
974b1adc 1328
3590ec58
IW
1329 memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset,
1330 bytes);
974b1adc 1331 flush_dcache_page(bvec.bv_page);
3a39c18d 1332
3a39c18d
LZ
1333 buf_offset += bytes;
1334 working_bytes -= bytes;
1335 current_buf_start += bytes;
1336
1337 /* check if we need to pick another page */
974b1adc
CH
1338 bio_advance(bio, bytes);
1339 if (!bio->bi_iter.bi_size)
1340 return 0;
1341 bvec = bio_iter_iovec(bio, bio->bi_iter);
6e78b3f7 1342 prev_start_byte = start_byte;
974b1adc 1343 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d 1344
974b1adc 1345 /*
6e78b3f7
OS
1346 * We need to make sure we're only adjusting
1347 * our offset into compression working buffer when
1348 * we're switching pages. Otherwise we can incorrectly
1349 * keep copying when we were actually done.
974b1adc 1350 */
6e78b3f7
OS
1351 if (start_byte != prev_start_byte) {
1352 /*
1353 * make sure our new page is covered by this
1354 * working buffer
1355 */
1356 if (total_out <= start_byte)
1357 return 1;
3a39c18d 1358
6e78b3f7
OS
1359 /*
1360 * the next page in the biovec might not be adjacent
1361 * to the last page, but it might still be found
1362 * inside this working buffer. bump our offset pointer
1363 */
1364 if (total_out > start_byte &&
1365 current_buf_start < start_byte) {
1366 buf_offset = start_byte - buf_start;
1367 working_bytes = total_out - start_byte;
1368 current_buf_start = buf_start + buf_offset;
1369 }
3a39c18d
LZ
1370 }
1371 }
1372
1373 return 1;
1374}
c2fcdcdf 1375
19562430
TT
1376/*
1377 * Shannon Entropy calculation
1378 *
52042d8e 1379 * Pure byte distribution analysis fails to determine compressibility of data.
19562430
TT
1380 * Try calculating entropy to estimate the average minimum number of bits
1381 * needed to encode the sampled data.
1382 *
1383 * For convenience, return the percentage of needed bits, instead of amount of
1384 * bits directly.
1385 *
1386 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1387 * and can be compressible with high probability
1388 *
1389 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1390 *
1391 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1392 */
1393#define ENTROPY_LVL_ACEPTABLE (65)
1394#define ENTROPY_LVL_HIGH (80)
1395
1396/*
1397 * For increasead precision in shannon_entropy calculation,
1398 * let's do pow(n, M) to save more digits after comma:
1399 *
1400 * - maximum int bit length is 64
1401 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1402 * - 13 * 4 = 52 < 64 -> M = 4
1403 *
1404 * So use pow(n, 4).
1405 */
1406static inline u32 ilog2_w(u64 n)
1407{
1408 return ilog2(n * n * n * n);
1409}
1410
1411static u32 shannon_entropy(struct heuristic_ws *ws)
1412{
1413 const u32 entropy_max = 8 * ilog2_w(2);
1414 u32 entropy_sum = 0;
1415 u32 p, p_base, sz_base;
1416 u32 i;
1417
1418 sz_base = ilog2_w(ws->sample_size);
1419 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1420 p = ws->bucket[i].count;
1421 p_base = ilog2_w(p);
1422 entropy_sum += p * (sz_base - p_base);
1423 }
1424
1425 entropy_sum /= ws->sample_size;
1426 return entropy_sum * 100 / entropy_max;
1427}
1428
440c840c
TT
1429#define RADIX_BASE 4U
1430#define COUNTERS_SIZE (1U << RADIX_BASE)
1431
1432static u8 get4bits(u64 num, int shift) {
1433 u8 low4bits;
1434
1435 num >>= shift;
1436 /* Reverse order */
1437 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1438 return low4bits;
1439}
1440
440c840c
TT
1441/*
1442 * Use 4 bits as radix base
52042d8e 1443 * Use 16 u32 counters for calculating new position in buf array
440c840c
TT
1444 *
1445 * @array - array that will be sorted
1446 * @array_buf - buffer array to store sorting results
1447 * must be equal in size to @array
1448 * @num - array size
440c840c 1449 */
23ae8c63 1450static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
36243c91 1451 int num)
858177d3 1452{
440c840c
TT
1453 u64 max_num;
1454 u64 buf_num;
1455 u32 counters[COUNTERS_SIZE];
1456 u32 new_addr;
1457 u32 addr;
1458 int bitlen;
1459 int shift;
1460 int i;
858177d3 1461
440c840c
TT
1462 /*
1463 * Try avoid useless loop iterations for small numbers stored in big
1464 * counters. Example: 48 33 4 ... in 64bit array
1465 */
23ae8c63 1466 max_num = array[0].count;
440c840c 1467 for (i = 1; i < num; i++) {
23ae8c63 1468 buf_num = array[i].count;
440c840c
TT
1469 if (buf_num > max_num)
1470 max_num = buf_num;
1471 }
1472
1473 buf_num = ilog2(max_num);
1474 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1475
1476 shift = 0;
1477 while (shift < bitlen) {
1478 memset(counters, 0, sizeof(counters));
1479
1480 for (i = 0; i < num; i++) {
23ae8c63 1481 buf_num = array[i].count;
440c840c
TT
1482 addr = get4bits(buf_num, shift);
1483 counters[addr]++;
1484 }
1485
1486 for (i = 1; i < COUNTERS_SIZE; i++)
1487 counters[i] += counters[i - 1];
1488
1489 for (i = num - 1; i >= 0; i--) {
23ae8c63 1490 buf_num = array[i].count;
440c840c
TT
1491 addr = get4bits(buf_num, shift);
1492 counters[addr]--;
1493 new_addr = counters[addr];
7add17be 1494 array_buf[new_addr] = array[i];
440c840c
TT
1495 }
1496
1497 shift += RADIX_BASE;
1498
1499 /*
1500 * Normal radix expects to move data from a temporary array, to
1501 * the main one. But that requires some CPU time. Avoid that
1502 * by doing another sort iteration to original array instead of
1503 * memcpy()
1504 */
1505 memset(counters, 0, sizeof(counters));
1506
1507 for (i = 0; i < num; i ++) {
23ae8c63 1508 buf_num = array_buf[i].count;
440c840c
TT
1509 addr = get4bits(buf_num, shift);
1510 counters[addr]++;
1511 }
1512
1513 for (i = 1; i < COUNTERS_SIZE; i++)
1514 counters[i] += counters[i - 1];
1515
1516 for (i = num - 1; i >= 0; i--) {
23ae8c63 1517 buf_num = array_buf[i].count;
440c840c
TT
1518 addr = get4bits(buf_num, shift);
1519 counters[addr]--;
1520 new_addr = counters[addr];
7add17be 1521 array[new_addr] = array_buf[i];
440c840c
TT
1522 }
1523
1524 shift += RADIX_BASE;
1525 }
858177d3
TT
1526}
1527
1528/*
1529 * Size of the core byte set - how many bytes cover 90% of the sample
1530 *
1531 * There are several types of structured binary data that use nearly all byte
1532 * values. The distribution can be uniform and counts in all buckets will be
1533 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1534 *
1535 * Other possibility is normal (Gaussian) distribution, where the data could
1536 * be potentially compressible, but we have to take a few more steps to decide
1537 * how much.
1538 *
1539 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1540 * compression algo can easy fix that
1541 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1542 * probability is not compressible
1543 */
1544#define BYTE_CORE_SET_LOW (64)
1545#define BYTE_CORE_SET_HIGH (200)
1546
1547static int byte_core_set_size(struct heuristic_ws *ws)
1548{
1549 u32 i;
1550 u32 coreset_sum = 0;
1551 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1552 struct bucket_item *bucket = ws->bucket;
1553
1554 /* Sort in reverse order */
36243c91 1555 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
858177d3
TT
1556
1557 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1558 coreset_sum += bucket[i].count;
1559
1560 if (coreset_sum > core_set_threshold)
1561 return i;
1562
1563 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1564 coreset_sum += bucket[i].count;
1565 if (coreset_sum > core_set_threshold)
1566 break;
1567 }
1568
1569 return i;
1570}
1571
a288e92c
TT
1572/*
1573 * Count byte values in buckets.
1574 * This heuristic can detect textual data (configs, xml, json, html, etc).
1575 * Because in most text-like data byte set is restricted to limited number of
1576 * possible characters, and that restriction in most cases makes data easy to
1577 * compress.
1578 *
1579 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1580 * less - compressible
1581 * more - need additional analysis
1582 */
1583#define BYTE_SET_THRESHOLD (64)
1584
1585static u32 byte_set_size(const struct heuristic_ws *ws)
1586{
1587 u32 i;
1588 u32 byte_set_size = 0;
1589
1590 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1591 if (ws->bucket[i].count > 0)
1592 byte_set_size++;
1593 }
1594
1595 /*
1596 * Continue collecting count of byte values in buckets. If the byte
1597 * set size is bigger then the threshold, it's pointless to continue,
1598 * the detection technique would fail for this type of data.
1599 */
1600 for (; i < BUCKET_SIZE; i++) {
1601 if (ws->bucket[i].count > 0) {
1602 byte_set_size++;
1603 if (byte_set_size > BYTE_SET_THRESHOLD)
1604 return byte_set_size;
1605 }
1606 }
1607
1608 return byte_set_size;
1609}
1610
1fe4f6fa
TT
1611static bool sample_repeated_patterns(struct heuristic_ws *ws)
1612{
1613 const u32 half_of_sample = ws->sample_size / 2;
1614 const u8 *data = ws->sample;
1615
1616 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1617}
1618
a440d48c
TT
1619static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1620 struct heuristic_ws *ws)
1621{
1622 struct page *page;
1623 u64 index, index_end;
1624 u32 i, curr_sample_pos;
1625 u8 *in_data;
1626
1627 /*
1628 * Compression handles the input data by chunks of 128KiB
1629 * (defined by BTRFS_MAX_UNCOMPRESSED)
1630 *
1631 * We do the same for the heuristic and loop over the whole range.
1632 *
1633 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1634 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1635 */
1636 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1637 end = start + BTRFS_MAX_UNCOMPRESSED;
1638
1639 index = start >> PAGE_SHIFT;
1640 index_end = end >> PAGE_SHIFT;
1641
1642 /* Don't miss unaligned end */
1643 if (!IS_ALIGNED(end, PAGE_SIZE))
1644 index_end++;
1645
1646 curr_sample_pos = 0;
1647 while (index < index_end) {
1648 page = find_get_page(inode->i_mapping, index);
58c1a35c 1649 in_data = kmap_local_page(page);
a440d48c
TT
1650 /* Handle case where the start is not aligned to PAGE_SIZE */
1651 i = start % PAGE_SIZE;
1652 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1653 /* Don't sample any garbage from the last page */
1654 if (start > end - SAMPLING_READ_SIZE)
1655 break;
1656 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1657 SAMPLING_READ_SIZE);
1658 i += SAMPLING_INTERVAL;
1659 start += SAMPLING_INTERVAL;
1660 curr_sample_pos += SAMPLING_READ_SIZE;
1661 }
58c1a35c 1662 kunmap_local(in_data);
a440d48c
TT
1663 put_page(page);
1664
1665 index++;
1666 }
1667
1668 ws->sample_size = curr_sample_pos;
1669}
1670
c2fcdcdf
TT
1671/*
1672 * Compression heuristic.
1673 *
1674 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1675 * quickly (compared to direct compression) detect data characteristics
1676 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1677 * data.
1678 *
1679 * The following types of analysis can be performed:
1680 * - detect mostly zero data
1681 * - detect data with low "byte set" size (text, etc)
1682 * - detect data with low/high "core byte" set
1683 *
1684 * Return non-zero if the compression should be done, 0 otherwise.
1685 */
1686int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1687{
7bf49943 1688 struct list_head *ws_list = get_workspace(0, 0);
4e439a0b 1689 struct heuristic_ws *ws;
a440d48c
TT
1690 u32 i;
1691 u8 byte;
19562430 1692 int ret = 0;
c2fcdcdf 1693
4e439a0b
TT
1694 ws = list_entry(ws_list, struct heuristic_ws, list);
1695
a440d48c
TT
1696 heuristic_collect_sample(inode, start, end, ws);
1697
1fe4f6fa
TT
1698 if (sample_repeated_patterns(ws)) {
1699 ret = 1;
1700 goto out;
1701 }
1702
a440d48c
TT
1703 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1704
1705 for (i = 0; i < ws->sample_size; i++) {
1706 byte = ws->sample[i];
1707 ws->bucket[byte].count++;
c2fcdcdf
TT
1708 }
1709
a288e92c
TT
1710 i = byte_set_size(ws);
1711 if (i < BYTE_SET_THRESHOLD) {
1712 ret = 2;
1713 goto out;
1714 }
1715
858177d3
TT
1716 i = byte_core_set_size(ws);
1717 if (i <= BYTE_CORE_SET_LOW) {
1718 ret = 3;
1719 goto out;
1720 }
1721
1722 if (i >= BYTE_CORE_SET_HIGH) {
1723 ret = 0;
1724 goto out;
1725 }
1726
19562430
TT
1727 i = shannon_entropy(ws);
1728 if (i <= ENTROPY_LVL_ACEPTABLE) {
1729 ret = 4;
1730 goto out;
1731 }
1732
1733 /*
1734 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1735 * needed to give green light to compression.
1736 *
1737 * For now just assume that compression at that level is not worth the
1738 * resources because:
1739 *
1740 * 1. it is possible to defrag the data later
1741 *
1742 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1743 * values, every bucket has counter at level ~54. The heuristic would
1744 * be confused. This can happen when data have some internal repeated
1745 * patterns like "abbacbbc...". This can be detected by analyzing
1746 * pairs of bytes, which is too costly.
1747 */
1748 if (i < ENTROPY_LVL_HIGH) {
1749 ret = 5;
1750 goto out;
1751 } else {
1752 ret = 0;
1753 goto out;
1754 }
1755
1fe4f6fa 1756out:
929f4baf 1757 put_workspace(0, ws_list);
c2fcdcdf
TT
1758 return ret;
1759}
f51d2b59 1760
d0ab62ce
DZ
1761/*
1762 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1763 * level, unrecognized string will set the default level
1764 */
1765unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
f51d2b59 1766{
d0ab62ce
DZ
1767 unsigned int level = 0;
1768 int ret;
1769
1770 if (!type)
f51d2b59
DS
1771 return 0;
1772
d0ab62ce
DZ
1773 if (str[0] == ':') {
1774 ret = kstrtouint(str + 1, 10, &level);
1775 if (ret)
1776 level = 0;
1777 }
1778
b0c1fe1e
DS
1779 level = btrfs_compress_set_level(type, level);
1780
1781 return level;
1782}