Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[linux-2.6-block.git] / fs / btrfs / compression.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
c8b97818
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
c8b97818
CM
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
c8b97818
CM
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/time.h>
13#include <linux/init.h>
14#include <linux/string.h>
c8b97818 15#include <linux/backing-dev.h>
c8b97818 16#include <linux/writeback.h>
5a0e3ad6 17#include <linux/slab.h>
fe308533 18#include <linux/sched/mm.h>
19562430 19#include <linux/log2.h>
d5178578 20#include <crypto/hash.h>
c8b97818
CM
21#include "ctree.h"
22#include "disk-io.h"
23#include "transaction.h"
24#include "btrfs_inode.h"
25#include "volumes.h"
26#include "ordered-data.h"
c8b97818
CM
27#include "compression.h"
28#include "extent_io.h"
29#include "extent_map.h"
30
e128f9c3
DS
31static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
32
33const char* btrfs_compress_type2str(enum btrfs_compression_type type)
34{
35 switch (type) {
36 case BTRFS_COMPRESS_ZLIB:
37 case BTRFS_COMPRESS_LZO:
38 case BTRFS_COMPRESS_ZSTD:
39 case BTRFS_COMPRESS_NONE:
40 return btrfs_compress_types[type];
41 }
42
43 return NULL;
44}
45
aa53e3bf
JT
46bool btrfs_compress_is_valid_type(const char *str, size_t len)
47{
48 int i;
49
50 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
51 size_t comp_len = strlen(btrfs_compress_types[i]);
52
53 if (len < comp_len)
54 continue;
55
56 if (!strncmp(btrfs_compress_types[i], str, comp_len))
57 return true;
58 }
59 return false;
60}
61
8140dc30 62static int btrfs_decompress_bio(struct compressed_bio *cb);
48a3b636 63
2ff7e61e 64static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
d20f7043
CM
65 unsigned long disk_size)
66{
0b246afa 67 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
6c41761f 68
d20f7043 69 return sizeof(struct compressed_bio) +
0b246afa 70 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
d20f7043
CM
71}
72
f898ac6a 73static int check_compressed_csum(struct btrfs_inode *inode,
d20f7043
CM
74 struct compressed_bio *cb,
75 u64 disk_start)
76{
10fe6ca8 77 struct btrfs_fs_info *fs_info = inode->root->fs_info;
d5178578 78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
10fe6ca8 79 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
d20f7043 80 int ret;
d20f7043
CM
81 struct page *page;
82 unsigned long i;
83 char *kaddr;
d5178578 84 u8 csum[BTRFS_CSUM_SIZE];
10fe6ca8 85 u8 *cb_sum = cb->sums;
d20f7043 86
f898ac6a 87 if (inode->flags & BTRFS_INODE_NODATASUM)
d20f7043
CM
88 return 0;
89
d5178578
JT
90 shash->tfm = fs_info->csum_shash;
91
d20f7043
CM
92 for (i = 0; i < cb->nr_pages; i++) {
93 page = cb->compressed_pages[i];
d20f7043 94
d5178578 95 crypto_shash_init(shash);
7ac687d9 96 kaddr = kmap_atomic(page);
d5178578 97 crypto_shash_update(shash, kaddr, PAGE_SIZE);
7ac687d9 98 kunmap_atomic(kaddr);
d5178578 99 crypto_shash_final(shash, (u8 *)&csum);
d20f7043 100
10fe6ca8 101 if (memcmp(&csum, cb_sum, csum_size)) {
d5178578 102 btrfs_print_data_csum_error(inode, disk_start,
ea41d6b2 103 csum, cb_sum, cb->mirror_num);
d20f7043
CM
104 ret = -EIO;
105 goto fail;
106 }
10fe6ca8 107 cb_sum += csum_size;
d20f7043
CM
108
109 }
110 ret = 0;
111fail:
112 return ret;
113}
114
c8b97818
CM
115/* when we finish reading compressed pages from the disk, we
116 * decompress them and then run the bio end_io routines on the
117 * decompressed pages (in the inode address space).
118 *
119 * This allows the checksumming and other IO error handling routines
120 * to work normally
121 *
122 * The compressed pages are freed here, and it must be run
123 * in process context
124 */
4246a0b6 125static void end_compressed_bio_read(struct bio *bio)
c8b97818 126{
c8b97818
CM
127 struct compressed_bio *cb = bio->bi_private;
128 struct inode *inode;
129 struct page *page;
130 unsigned long index;
cf1167d5 131 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
e6311f24 132 int ret = 0;
c8b97818 133
4e4cbee9 134 if (bio->bi_status)
c8b97818
CM
135 cb->errors = 1;
136
137 /* if there are more bios still pending for this compressed
138 * extent, just exit
139 */
a50299ae 140 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
141 goto out;
142
cf1167d5
LB
143 /*
144 * Record the correct mirror_num in cb->orig_bio so that
145 * read-repair can work properly.
146 */
147 ASSERT(btrfs_io_bio(cb->orig_bio));
148 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
149 cb->mirror_num = mirror;
150
e6311f24
LB
151 /*
152 * Some IO in this cb have failed, just skip checksum as there
153 * is no way it could be correct.
154 */
155 if (cb->errors == 1)
156 goto csum_failed;
157
d20f7043 158 inode = cb->inode;
f898ac6a 159 ret = check_compressed_csum(BTRFS_I(inode), cb,
4f024f37 160 (u64)bio->bi_iter.bi_sector << 9);
d20f7043
CM
161 if (ret)
162 goto csum_failed;
163
c8b97818
CM
164 /* ok, we're the last bio for this extent, lets start
165 * the decompression.
166 */
8140dc30
AJ
167 ret = btrfs_decompress_bio(cb);
168
d20f7043 169csum_failed:
c8b97818
CM
170 if (ret)
171 cb->errors = 1;
172
173 /* release the compressed pages */
174 index = 0;
175 for (index = 0; index < cb->nr_pages; index++) {
176 page = cb->compressed_pages[index];
177 page->mapping = NULL;
09cbfeaf 178 put_page(page);
c8b97818
CM
179 }
180
181 /* do io completion on the original bio */
771ed689 182 if (cb->errors) {
c8b97818 183 bio_io_error(cb->orig_bio);
d20f7043 184 } else {
2c30c71b 185 struct bio_vec *bvec;
6dc4f100 186 struct bvec_iter_all iter_all;
d20f7043
CM
187
188 /*
189 * we have verified the checksum already, set page
190 * checked so the end_io handlers know about it
191 */
c09abff8 192 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 193 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
d20f7043 194 SetPageChecked(bvec->bv_page);
2c30c71b 195
4246a0b6 196 bio_endio(cb->orig_bio);
d20f7043 197 }
c8b97818
CM
198
199 /* finally free the cb struct */
200 kfree(cb->compressed_pages);
201 kfree(cb);
202out:
203 bio_put(bio);
204}
205
206/*
207 * Clear the writeback bits on all of the file
208 * pages for a compressed write
209 */
7bdcefc1
FM
210static noinline void end_compressed_writeback(struct inode *inode,
211 const struct compressed_bio *cb)
c8b97818 212{
09cbfeaf
KS
213 unsigned long index = cb->start >> PAGE_SHIFT;
214 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
c8b97818
CM
215 struct page *pages[16];
216 unsigned long nr_pages = end_index - index + 1;
217 int i;
218 int ret;
219
7bdcefc1
FM
220 if (cb->errors)
221 mapping_set_error(inode->i_mapping, -EIO);
222
d397712b 223 while (nr_pages > 0) {
c8b97818 224 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
225 min_t(unsigned long,
226 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
227 if (ret == 0) {
228 nr_pages -= 1;
229 index += 1;
230 continue;
231 }
232 for (i = 0; i < ret; i++) {
7bdcefc1
FM
233 if (cb->errors)
234 SetPageError(pages[i]);
c8b97818 235 end_page_writeback(pages[i]);
09cbfeaf 236 put_page(pages[i]);
c8b97818
CM
237 }
238 nr_pages -= ret;
239 index += ret;
240 }
241 /* the inode may be gone now */
c8b97818
CM
242}
243
244/*
245 * do the cleanup once all the compressed pages hit the disk.
246 * This will clear writeback on the file pages and free the compressed
247 * pages.
248 *
249 * This also calls the writeback end hooks for the file pages so that
250 * metadata and checksums can be updated in the file.
251 */
4246a0b6 252static void end_compressed_bio_write(struct bio *bio)
c8b97818 253{
c8b97818
CM
254 struct compressed_bio *cb = bio->bi_private;
255 struct inode *inode;
256 struct page *page;
257 unsigned long index;
258
4e4cbee9 259 if (bio->bi_status)
c8b97818
CM
260 cb->errors = 1;
261
262 /* if there are more bios still pending for this compressed
263 * extent, just exit
264 */
a50299ae 265 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
266 goto out;
267
268 /* ok, we're the last bio for this extent, step one is to
269 * call back into the FS and do all the end_io operations
270 */
271 inode = cb->inode;
70b99e69 272 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
7087a9d8 273 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
c629732d 274 cb->start, cb->start + cb->len - 1,
6a8d2136 275 bio->bi_status == BLK_STS_OK);
70b99e69 276 cb->compressed_pages[0]->mapping = NULL;
c8b97818 277
7bdcefc1 278 end_compressed_writeback(inode, cb);
c8b97818
CM
279 /* note, our inode could be gone now */
280
281 /*
282 * release the compressed pages, these came from alloc_page and
283 * are not attached to the inode at all
284 */
285 index = 0;
286 for (index = 0; index < cb->nr_pages; index++) {
287 page = cb->compressed_pages[index];
288 page->mapping = NULL;
09cbfeaf 289 put_page(page);
c8b97818
CM
290 }
291
292 /* finally free the cb struct */
293 kfree(cb->compressed_pages);
294 kfree(cb);
295out:
296 bio_put(bio);
297}
298
299/*
300 * worker function to build and submit bios for previously compressed pages.
301 * The corresponding pages in the inode should be marked for writeback
302 * and the compressed pages should have a reference on them for dropping
303 * when the IO is complete.
304 *
305 * This also checksums the file bytes and gets things ready for
306 * the end io hooks.
307 */
4e4cbee9 308blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
c8b97818
CM
309 unsigned long len, u64 disk_start,
310 unsigned long compressed_len,
311 struct page **compressed_pages,
f82b7359
LB
312 unsigned long nr_pages,
313 unsigned int write_flags)
c8b97818 314{
0b246afa 315 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818 316 struct bio *bio = NULL;
c8b97818
CM
317 struct compressed_bio *cb;
318 unsigned long bytes_left;
306e16ce 319 int pg_index = 0;
c8b97818
CM
320 struct page *page;
321 u64 first_byte = disk_start;
322 struct block_device *bdev;
4e4cbee9 323 blk_status_t ret;
e55179b3 324 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
c8b97818 325
fdb1e121 326 WARN_ON(!PAGE_ALIGNED(start));
2ff7e61e 327 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
dac97e51 328 if (!cb)
4e4cbee9 329 return BLK_STS_RESOURCE;
a50299ae 330 refcount_set(&cb->pending_bios, 0);
c8b97818
CM
331 cb->errors = 0;
332 cb->inode = inode;
333 cb->start = start;
334 cb->len = len;
d20f7043 335 cb->mirror_num = 0;
c8b97818
CM
336 cb->compressed_pages = compressed_pages;
337 cb->compressed_len = compressed_len;
338 cb->orig_bio = NULL;
339 cb->nr_pages = nr_pages;
340
0b246afa 341 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 342
e749af44
DS
343 bio = btrfs_bio_alloc(first_byte);
344 bio_set_dev(bio, bdev);
f82b7359 345 bio->bi_opf = REQ_OP_WRITE | write_flags;
c8b97818
CM
346 bio->bi_private = cb;
347 bio->bi_end_io = end_compressed_bio_write;
a50299ae 348 refcount_set(&cb->pending_bios, 1);
c8b97818
CM
349
350 /* create and submit bios for the compressed pages */
351 bytes_left = compressed_len;
306e16ce 352 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
4e4cbee9
CH
353 int submit = 0;
354
306e16ce 355 page = compressed_pages[pg_index];
c8b97818 356 page->mapping = inode->i_mapping;
4f024f37 357 if (bio->bi_iter.bi_size)
da12fe54
NB
358 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
359 0);
c8b97818 360
70b99e69 361 page->mapping = NULL;
4e4cbee9 362 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
09cbfeaf 363 PAGE_SIZE) {
af09abfe
CM
364 /*
365 * inc the count before we submit the bio so
366 * we know the end IO handler won't happen before
367 * we inc the count. Otherwise, the cb might get
368 * freed before we're done setting it up
369 */
a50299ae 370 refcount_inc(&cb->pending_bios);
0b246afa
JM
371 ret = btrfs_bio_wq_end_io(fs_info, bio,
372 BTRFS_WQ_ENDIO_DATA);
79787eaa 373 BUG_ON(ret); /* -ENOMEM */
c8b97818 374
e55179b3 375 if (!skip_sum) {
2ff7e61e 376 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 377 BUG_ON(ret); /* -ENOMEM */
e55179b3 378 }
d20f7043 379
2ff7e61e 380 ret = btrfs_map_bio(fs_info, bio, 0, 1);
f5daf2c7 381 if (ret) {
4e4cbee9 382 bio->bi_status = ret;
f5daf2c7
LB
383 bio_endio(bio);
384 }
c8b97818 385
e749af44
DS
386 bio = btrfs_bio_alloc(first_byte);
387 bio_set_dev(bio, bdev);
f82b7359 388 bio->bi_opf = REQ_OP_WRITE | write_flags;
c8b97818
CM
389 bio->bi_private = cb;
390 bio->bi_end_io = end_compressed_bio_write;
09cbfeaf 391 bio_add_page(bio, page, PAGE_SIZE, 0);
c8b97818 392 }
09cbfeaf 393 if (bytes_left < PAGE_SIZE) {
0b246afa 394 btrfs_info(fs_info,
efe120a0 395 "bytes left %lu compress len %lu nr %lu",
cfbc246e
CM
396 bytes_left, cb->compressed_len, cb->nr_pages);
397 }
09cbfeaf
KS
398 bytes_left -= PAGE_SIZE;
399 first_byte += PAGE_SIZE;
771ed689 400 cond_resched();
c8b97818 401 }
c8b97818 402
0b246afa 403 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 404 BUG_ON(ret); /* -ENOMEM */
c8b97818 405
e55179b3 406 if (!skip_sum) {
2ff7e61e 407 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 408 BUG_ON(ret); /* -ENOMEM */
e55179b3 409 }
d20f7043 410
2ff7e61e 411 ret = btrfs_map_bio(fs_info, bio, 0, 1);
f5daf2c7 412 if (ret) {
4e4cbee9 413 bio->bi_status = ret;
f5daf2c7
LB
414 bio_endio(bio);
415 }
c8b97818 416
c8b97818
CM
417 return 0;
418}
419
2a4d0c90
CH
420static u64 bio_end_offset(struct bio *bio)
421{
c45a8f2d 422 struct bio_vec *last = bio_last_bvec_all(bio);
2a4d0c90
CH
423
424 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
425}
426
771ed689
CM
427static noinline int add_ra_bio_pages(struct inode *inode,
428 u64 compressed_end,
429 struct compressed_bio *cb)
430{
431 unsigned long end_index;
306e16ce 432 unsigned long pg_index;
771ed689
CM
433 u64 last_offset;
434 u64 isize = i_size_read(inode);
435 int ret;
436 struct page *page;
437 unsigned long nr_pages = 0;
438 struct extent_map *em;
439 struct address_space *mapping = inode->i_mapping;
771ed689
CM
440 struct extent_map_tree *em_tree;
441 struct extent_io_tree *tree;
442 u64 end;
443 int misses = 0;
444
2a4d0c90 445 last_offset = bio_end_offset(cb->orig_bio);
771ed689
CM
446 em_tree = &BTRFS_I(inode)->extent_tree;
447 tree = &BTRFS_I(inode)->io_tree;
448
449 if (isize == 0)
450 return 0;
451
09cbfeaf 452 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
771ed689 453
d397712b 454 while (last_offset < compressed_end) {
09cbfeaf 455 pg_index = last_offset >> PAGE_SHIFT;
771ed689 456
306e16ce 457 if (pg_index > end_index)
771ed689
CM
458 break;
459
0a943c65 460 page = xa_load(&mapping->i_pages, pg_index);
3159f943 461 if (page && !xa_is_value(page)) {
771ed689
CM
462 misses++;
463 if (misses > 4)
464 break;
465 goto next;
466 }
467
c62d2555
MH
468 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
469 ~__GFP_FS));
771ed689
CM
470 if (!page)
471 break;
472
c62d2555 473 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
09cbfeaf 474 put_page(page);
771ed689
CM
475 goto next;
476 }
477
09cbfeaf 478 end = last_offset + PAGE_SIZE - 1;
771ed689
CM
479 /*
480 * at this point, we have a locked page in the page cache
481 * for these bytes in the file. But, we have to make
482 * sure they map to this compressed extent on disk.
483 */
484 set_page_extent_mapped(page);
d0082371 485 lock_extent(tree, last_offset, end);
890871be 486 read_lock(&em_tree->lock);
771ed689 487 em = lookup_extent_mapping(em_tree, last_offset,
09cbfeaf 488 PAGE_SIZE);
890871be 489 read_unlock(&em_tree->lock);
771ed689
CM
490
491 if (!em || last_offset < em->start ||
09cbfeaf 492 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
4f024f37 493 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 494 free_extent_map(em);
d0082371 495 unlock_extent(tree, last_offset, end);
771ed689 496 unlock_page(page);
09cbfeaf 497 put_page(page);
771ed689
CM
498 break;
499 }
500 free_extent_map(em);
501
502 if (page->index == end_index) {
503 char *userpage;
7073017a 504 size_t zero_offset = offset_in_page(isize);
771ed689
CM
505
506 if (zero_offset) {
507 int zeros;
09cbfeaf 508 zeros = PAGE_SIZE - zero_offset;
7ac687d9 509 userpage = kmap_atomic(page);
771ed689
CM
510 memset(userpage + zero_offset, 0, zeros);
511 flush_dcache_page(page);
7ac687d9 512 kunmap_atomic(userpage);
771ed689
CM
513 }
514 }
515
516 ret = bio_add_page(cb->orig_bio, page,
09cbfeaf 517 PAGE_SIZE, 0);
771ed689 518
09cbfeaf 519 if (ret == PAGE_SIZE) {
771ed689 520 nr_pages++;
09cbfeaf 521 put_page(page);
771ed689 522 } else {
d0082371 523 unlock_extent(tree, last_offset, end);
771ed689 524 unlock_page(page);
09cbfeaf 525 put_page(page);
771ed689
CM
526 break;
527 }
528next:
09cbfeaf 529 last_offset += PAGE_SIZE;
771ed689 530 }
771ed689
CM
531 return 0;
532}
533
c8b97818
CM
534/*
535 * for a compressed read, the bio we get passed has all the inode pages
536 * in it. We don't actually do IO on those pages but allocate new ones
537 * to hold the compressed pages on disk.
538 *
4f024f37 539 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818 540 * bio->bi_io_vec points to all of the inode pages
c8b97818
CM
541 *
542 * After the compressed pages are read, we copy the bytes into the
543 * bio we were passed and then call the bio end_io calls
544 */
4e4cbee9 545blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
c8b97818
CM
546 int mirror_num, unsigned long bio_flags)
547{
0b246afa 548 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818
CM
549 struct extent_map_tree *em_tree;
550 struct compressed_bio *cb;
c8b97818
CM
551 unsigned long compressed_len;
552 unsigned long nr_pages;
306e16ce 553 unsigned long pg_index;
c8b97818
CM
554 struct page *page;
555 struct block_device *bdev;
556 struct bio *comp_bio;
4f024f37 557 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
e04ca626
CM
558 u64 em_len;
559 u64 em_start;
c8b97818 560 struct extent_map *em;
4e4cbee9 561 blk_status_t ret = BLK_STS_RESOURCE;
15e3004a 562 int faili = 0;
10fe6ca8
JT
563 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
564 u8 *sums;
c8b97818 565
c8b97818
CM
566 em_tree = &BTRFS_I(inode)->extent_tree;
567
568 /* we need the actual starting offset of this extent in the file */
890871be 569 read_lock(&em_tree->lock);
c8b97818 570 em = lookup_extent_mapping(em_tree,
263663cd 571 page_offset(bio_first_page_all(bio)),
09cbfeaf 572 PAGE_SIZE);
890871be 573 read_unlock(&em_tree->lock);
285190d9 574 if (!em)
4e4cbee9 575 return BLK_STS_IOERR;
c8b97818 576
d20f7043 577 compressed_len = em->block_len;
2ff7e61e 578 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
6b82ce8d 579 if (!cb)
580 goto out;
581
a50299ae 582 refcount_set(&cb->pending_bios, 0);
c8b97818
CM
583 cb->errors = 0;
584 cb->inode = inode;
d20f7043 585 cb->mirror_num = mirror_num;
10fe6ca8 586 sums = cb->sums;
c8b97818 587
ff5b7ee3 588 cb->start = em->orig_start;
e04ca626
CM
589 em_len = em->len;
590 em_start = em->start;
d20f7043 591
c8b97818 592 free_extent_map(em);
e04ca626 593 em = NULL;
c8b97818 594
81381053 595 cb->len = bio->bi_iter.bi_size;
c8b97818 596 cb->compressed_len = compressed_len;
261507a0 597 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
598 cb->orig_bio = bio;
599
09cbfeaf 600 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
31e818fe 601 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
c8b97818 602 GFP_NOFS);
6b82ce8d 603 if (!cb->compressed_pages)
604 goto fail1;
605
0b246afa 606 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 607
306e16ce
DS
608 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
609 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 610 __GFP_HIGHMEM);
15e3004a
JB
611 if (!cb->compressed_pages[pg_index]) {
612 faili = pg_index - 1;
0e9350de 613 ret = BLK_STS_RESOURCE;
6b82ce8d 614 goto fail2;
15e3004a 615 }
c8b97818 616 }
15e3004a 617 faili = nr_pages - 1;
c8b97818
CM
618 cb->nr_pages = nr_pages;
619
7f042a83 620 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 621
771ed689 622 /* include any pages we added in add_ra-bio_pages */
81381053 623 cb->len = bio->bi_iter.bi_size;
771ed689 624
e749af44
DS
625 comp_bio = btrfs_bio_alloc(cur_disk_byte);
626 bio_set_dev(comp_bio, bdev);
ebcc3263 627 comp_bio->bi_opf = REQ_OP_READ;
c8b97818
CM
628 comp_bio->bi_private = cb;
629 comp_bio->bi_end_io = end_compressed_bio_read;
a50299ae 630 refcount_set(&cb->pending_bios, 1);
c8b97818 631
306e16ce 632 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
4e4cbee9
CH
633 int submit = 0;
634
306e16ce 635 page = cb->compressed_pages[pg_index];
c8b97818 636 page->mapping = inode->i_mapping;
09cbfeaf 637 page->index = em_start >> PAGE_SHIFT;
d20f7043 638
4f024f37 639 if (comp_bio->bi_iter.bi_size)
da12fe54
NB
640 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
641 comp_bio, 0);
c8b97818 642
70b99e69 643 page->mapping = NULL;
4e4cbee9 644 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
09cbfeaf 645 PAGE_SIZE) {
10fe6ca8
JT
646 unsigned int nr_sectors;
647
0b246afa
JM
648 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
649 BTRFS_WQ_ENDIO_DATA);
79787eaa 650 BUG_ON(ret); /* -ENOMEM */
c8b97818 651
af09abfe
CM
652 /*
653 * inc the count before we submit the bio so
654 * we know the end IO handler won't happen before
655 * we inc the count. Otherwise, the cb might get
656 * freed before we're done setting it up
657 */
a50299ae 658 refcount_inc(&cb->pending_bios);
af09abfe 659
6cbff00f 660 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
2ff7e61e 661 ret = btrfs_lookup_bio_sums(inode, comp_bio,
10fe6ca8 662 sums);
79787eaa 663 BUG_ON(ret); /* -ENOMEM */
d20f7043 664 }
10fe6ca8
JT
665
666 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
667 fs_info->sectorsize);
668 sums += csum_size * nr_sectors;
d20f7043 669
2ff7e61e 670 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
4246a0b6 671 if (ret) {
4e4cbee9 672 comp_bio->bi_status = ret;
4246a0b6
CH
673 bio_endio(comp_bio);
674 }
c8b97818 675
e749af44
DS
676 comp_bio = btrfs_bio_alloc(cur_disk_byte);
677 bio_set_dev(comp_bio, bdev);
ebcc3263 678 comp_bio->bi_opf = REQ_OP_READ;
771ed689
CM
679 comp_bio->bi_private = cb;
680 comp_bio->bi_end_io = end_compressed_bio_read;
681
09cbfeaf 682 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
c8b97818 683 }
09cbfeaf 684 cur_disk_byte += PAGE_SIZE;
c8b97818 685 }
c8b97818 686
0b246afa 687 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 688 BUG_ON(ret); /* -ENOMEM */
c8b97818 689
c2db1073 690 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10fe6ca8 691 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
79787eaa 692 BUG_ON(ret); /* -ENOMEM */
c2db1073 693 }
d20f7043 694
2ff7e61e 695 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
4246a0b6 696 if (ret) {
4e4cbee9 697 comp_bio->bi_status = ret;
4246a0b6
CH
698 bio_endio(comp_bio);
699 }
c8b97818 700
c8b97818 701 return 0;
6b82ce8d 702
703fail2:
15e3004a
JB
704 while (faili >= 0) {
705 __free_page(cb->compressed_pages[faili]);
706 faili--;
707 }
6b82ce8d 708
709 kfree(cb->compressed_pages);
710fail1:
711 kfree(cb);
712out:
713 free_extent_map(em);
714 return ret;
c8b97818 715}
261507a0 716
17b5a6c1
TT
717/*
718 * Heuristic uses systematic sampling to collect data from the input data
719 * range, the logic can be tuned by the following constants:
720 *
721 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
722 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
723 */
724#define SAMPLING_READ_SIZE (16)
725#define SAMPLING_INTERVAL (256)
726
727/*
728 * For statistical analysis of the input data we consider bytes that form a
729 * Galois Field of 256 objects. Each object has an attribute count, ie. how
730 * many times the object appeared in the sample.
731 */
732#define BUCKET_SIZE (256)
733
734/*
735 * The size of the sample is based on a statistical sampling rule of thumb.
736 * The common way is to perform sampling tests as long as the number of
737 * elements in each cell is at least 5.
738 *
739 * Instead of 5, we choose 32 to obtain more accurate results.
740 * If the data contain the maximum number of symbols, which is 256, we obtain a
741 * sample size bound by 8192.
742 *
743 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
744 * from up to 512 locations.
745 */
746#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
747 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
748
749struct bucket_item {
750 u32 count;
751};
4e439a0b
TT
752
753struct heuristic_ws {
17b5a6c1
TT
754 /* Partial copy of input data */
755 u8 *sample;
a440d48c 756 u32 sample_size;
17b5a6c1
TT
757 /* Buckets store counters for each byte value */
758 struct bucket_item *bucket;
440c840c
TT
759 /* Sorting buffer */
760 struct bucket_item *bucket_b;
4e439a0b
TT
761 struct list_head list;
762};
763
92ee5530
DZ
764static struct workspace_manager heuristic_wsm;
765
766static void heuristic_init_workspace_manager(void)
767{
768 btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress);
769}
770
771static void heuristic_cleanup_workspace_manager(void)
772{
773 btrfs_cleanup_workspace_manager(&heuristic_wsm);
774}
775
7bf49943 776static struct list_head *heuristic_get_workspace(unsigned int level)
92ee5530 777{
7bf49943 778 return btrfs_get_workspace(&heuristic_wsm, level);
92ee5530
DZ
779}
780
781static void heuristic_put_workspace(struct list_head *ws)
782{
783 btrfs_put_workspace(&heuristic_wsm, ws);
784}
785
4e439a0b
TT
786static void free_heuristic_ws(struct list_head *ws)
787{
788 struct heuristic_ws *workspace;
789
790 workspace = list_entry(ws, struct heuristic_ws, list);
791
17b5a6c1
TT
792 kvfree(workspace->sample);
793 kfree(workspace->bucket);
440c840c 794 kfree(workspace->bucket_b);
4e439a0b
TT
795 kfree(workspace);
796}
797
7bf49943 798static struct list_head *alloc_heuristic_ws(unsigned int level)
4e439a0b
TT
799{
800 struct heuristic_ws *ws;
801
802 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
803 if (!ws)
804 return ERR_PTR(-ENOMEM);
805
17b5a6c1
TT
806 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
807 if (!ws->sample)
808 goto fail;
809
810 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
811 if (!ws->bucket)
812 goto fail;
4e439a0b 813
440c840c
TT
814 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
815 if (!ws->bucket_b)
816 goto fail;
817
17b5a6c1 818 INIT_LIST_HEAD(&ws->list);
4e439a0b 819 return &ws->list;
17b5a6c1
TT
820fail:
821 free_heuristic_ws(&ws->list);
822 return ERR_PTR(-ENOMEM);
4e439a0b
TT
823}
824
ca4ac360 825const struct btrfs_compress_op btrfs_heuristic_compress = {
92ee5530
DZ
826 .init_workspace_manager = heuristic_init_workspace_manager,
827 .cleanup_workspace_manager = heuristic_cleanup_workspace_manager,
828 .get_workspace = heuristic_get_workspace,
829 .put_workspace = heuristic_put_workspace,
ca4ac360
DZ
830 .alloc_workspace = alloc_heuristic_ws,
831 .free_workspace = free_heuristic_ws,
832};
833
e8c9f186 834static const struct btrfs_compress_op * const btrfs_compress_op[] = {
ca4ac360
DZ
835 /* The heuristic is represented as compression type 0 */
836 &btrfs_heuristic_compress,
261507a0 837 &btrfs_zlib_compress,
a6fa6fae 838 &btrfs_lzo_compress,
5c1aab1d 839 &btrfs_zstd_compress,
261507a0
LZ
840};
841
92ee5530
DZ
842void btrfs_init_workspace_manager(struct workspace_manager *wsm,
843 const struct btrfs_compress_op *ops)
261507a0 844{
4e439a0b 845 struct list_head *workspace;
261507a0 846
92ee5530 847 wsm->ops = ops;
10b94a51 848
92ee5530
DZ
849 INIT_LIST_HEAD(&wsm->idle_ws);
850 spin_lock_init(&wsm->ws_lock);
851 atomic_set(&wsm->total_ws, 0);
852 init_waitqueue_head(&wsm->ws_wait);
f77dd0d6 853
1666edab
DZ
854 /*
855 * Preallocate one workspace for each compression type so we can
856 * guarantee forward progress in the worst case
857 */
7bf49943 858 workspace = wsm->ops->alloc_workspace(0);
1666edab
DZ
859 if (IS_ERR(workspace)) {
860 pr_warn(
861 "BTRFS: cannot preallocate compression workspace, will try later\n");
862 } else {
92ee5530
DZ
863 atomic_set(&wsm->total_ws, 1);
864 wsm->free_ws = 1;
865 list_add(workspace, &wsm->idle_ws);
1666edab
DZ
866 }
867}
868
92ee5530 869void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
1666edab
DZ
870{
871 struct list_head *ws;
872
873 while (!list_empty(&wsman->idle_ws)) {
874 ws = wsman->idle_ws.next;
875 list_del(ws);
876 wsman->ops->free_workspace(ws);
877 atomic_dec(&wsman->total_ws);
261507a0 878 }
261507a0
LZ
879}
880
881/*
e721e49d
DS
882 * This finds an available workspace or allocates a new one.
883 * If it's not possible to allocate a new one, waits until there's one.
884 * Preallocation makes a forward progress guarantees and we do not return
885 * errors.
261507a0 886 */
7bf49943
DZ
887struct list_head *btrfs_get_workspace(struct workspace_manager *wsm,
888 unsigned int level)
261507a0
LZ
889{
890 struct list_head *workspace;
891 int cpus = num_online_cpus();
fe308533 892 unsigned nofs_flag;
4e439a0b
TT
893 struct list_head *idle_ws;
894 spinlock_t *ws_lock;
895 atomic_t *total_ws;
896 wait_queue_head_t *ws_wait;
897 int *free_ws;
898
92ee5530
DZ
899 idle_ws = &wsm->idle_ws;
900 ws_lock = &wsm->ws_lock;
901 total_ws = &wsm->total_ws;
902 ws_wait = &wsm->ws_wait;
903 free_ws = &wsm->free_ws;
261507a0 904
261507a0 905again:
d9187649
BL
906 spin_lock(ws_lock);
907 if (!list_empty(idle_ws)) {
908 workspace = idle_ws->next;
261507a0 909 list_del(workspace);
6ac10a6a 910 (*free_ws)--;
d9187649 911 spin_unlock(ws_lock);
261507a0
LZ
912 return workspace;
913
914 }
6ac10a6a 915 if (atomic_read(total_ws) > cpus) {
261507a0
LZ
916 DEFINE_WAIT(wait);
917
d9187649
BL
918 spin_unlock(ws_lock);
919 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
6ac10a6a 920 if (atomic_read(total_ws) > cpus && !*free_ws)
261507a0 921 schedule();
d9187649 922 finish_wait(ws_wait, &wait);
261507a0
LZ
923 goto again;
924 }
6ac10a6a 925 atomic_inc(total_ws);
d9187649 926 spin_unlock(ws_lock);
261507a0 927
fe308533
DS
928 /*
929 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
930 * to turn it off here because we might get called from the restricted
931 * context of btrfs_compress_bio/btrfs_compress_pages
932 */
933 nofs_flag = memalloc_nofs_save();
7bf49943 934 workspace = wsm->ops->alloc_workspace(level);
fe308533
DS
935 memalloc_nofs_restore(nofs_flag);
936
261507a0 937 if (IS_ERR(workspace)) {
6ac10a6a 938 atomic_dec(total_ws);
d9187649 939 wake_up(ws_wait);
e721e49d
DS
940
941 /*
942 * Do not return the error but go back to waiting. There's a
943 * workspace preallocated for each type and the compression
944 * time is bounded so we get to a workspace eventually. This
945 * makes our caller's life easier.
52356716
DS
946 *
947 * To prevent silent and low-probability deadlocks (when the
948 * initial preallocation fails), check if there are any
949 * workspaces at all.
e721e49d 950 */
52356716
DS
951 if (atomic_read(total_ws) == 0) {
952 static DEFINE_RATELIMIT_STATE(_rs,
953 /* once per minute */ 60 * HZ,
954 /* no burst */ 1);
955
956 if (__ratelimit(&_rs)) {
ab8d0fc4 957 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
52356716
DS
958 }
959 }
e721e49d 960 goto again;
261507a0
LZ
961 }
962 return workspace;
963}
964
7bf49943 965static struct list_head *get_workspace(int type, int level)
929f4baf 966{
7bf49943 967 return btrfs_compress_op[type]->get_workspace(level);
929f4baf
DZ
968}
969
261507a0
LZ
970/*
971 * put a workspace struct back on the list or free it if we have enough
972 * idle ones sitting around
973 */
92ee5530 974void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
261507a0 975{
4e439a0b
TT
976 struct list_head *idle_ws;
977 spinlock_t *ws_lock;
978 atomic_t *total_ws;
979 wait_queue_head_t *ws_wait;
980 int *free_ws;
981
92ee5530
DZ
982 idle_ws = &wsm->idle_ws;
983 ws_lock = &wsm->ws_lock;
984 total_ws = &wsm->total_ws;
985 ws_wait = &wsm->ws_wait;
986 free_ws = &wsm->free_ws;
d9187649
BL
987
988 spin_lock(ws_lock);
26b28dce 989 if (*free_ws <= num_online_cpus()) {
929f4baf 990 list_add(ws, idle_ws);
6ac10a6a 991 (*free_ws)++;
d9187649 992 spin_unlock(ws_lock);
261507a0
LZ
993 goto wake;
994 }
d9187649 995 spin_unlock(ws_lock);
261507a0 996
92ee5530 997 wsm->ops->free_workspace(ws);
6ac10a6a 998 atomic_dec(total_ws);
261507a0 999wake:
093258e6 1000 cond_wake_up(ws_wait);
261507a0
LZ
1001}
1002
929f4baf
DZ
1003static void put_workspace(int type, struct list_head *ws)
1004{
92ee5530 1005 return btrfs_compress_op[type]->put_workspace(ws);
929f4baf
DZ
1006}
1007
261507a0 1008/*
38c31464
DS
1009 * Given an address space and start and length, compress the bytes into @pages
1010 * that are allocated on demand.
261507a0 1011 *
f51d2b59
DS
1012 * @type_level is encoded algorithm and level, where level 0 means whatever
1013 * default the algorithm chooses and is opaque here;
1014 * - compression algo are 0-3
1015 * - the level are bits 4-7
1016 *
4d3a800e
DS
1017 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1018 * and returns number of actually allocated pages
261507a0 1019 *
38c31464
DS
1020 * @total_in is used to return the number of bytes actually read. It
1021 * may be smaller than the input length if we had to exit early because we
261507a0
LZ
1022 * ran out of room in the pages array or because we cross the
1023 * max_out threshold.
1024 *
38c31464
DS
1025 * @total_out is an in/out parameter, must be set to the input length and will
1026 * be also used to return the total number of compressed bytes
261507a0 1027 *
38c31464 1028 * @max_out tells us the max number of bytes that we're allowed to
261507a0
LZ
1029 * stuff into pages
1030 */
f51d2b59 1031int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
38c31464 1032 u64 start, struct page **pages,
261507a0
LZ
1033 unsigned long *out_pages,
1034 unsigned long *total_in,
e5d74902 1035 unsigned long *total_out)
261507a0 1036{
1972708a 1037 int type = btrfs_compress_type(type_level);
7bf49943 1038 int level = btrfs_compress_level(type_level);
261507a0
LZ
1039 struct list_head *workspace;
1040 int ret;
1041
2b90883c 1042 level = btrfs_compress_op[type]->set_level(level);
7bf49943 1043 workspace = get_workspace(type, level);
ca4ac360 1044 ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
38c31464 1045 start, pages,
4d3a800e 1046 out_pages,
e5d74902 1047 total_in, total_out);
929f4baf 1048 put_workspace(type, workspace);
261507a0
LZ
1049 return ret;
1050}
1051
1052/*
1053 * pages_in is an array of pages with compressed data.
1054 *
1055 * disk_start is the starting logical offset of this array in the file
1056 *
974b1adc 1057 * orig_bio contains the pages from the file that we want to decompress into
261507a0
LZ
1058 *
1059 * srclen is the number of bytes in pages_in
1060 *
1061 * The basic idea is that we have a bio that was created by readpages.
1062 * The pages in the bio are for the uncompressed data, and they may not
1063 * be contiguous. They all correspond to the range of bytes covered by
1064 * the compressed extent.
1065 */
8140dc30 1066static int btrfs_decompress_bio(struct compressed_bio *cb)
261507a0
LZ
1067{
1068 struct list_head *workspace;
1069 int ret;
8140dc30 1070 int type = cb->compress_type;
261507a0 1071
7bf49943 1072 workspace = get_workspace(type, 0);
ca4ac360 1073 ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
929f4baf 1074 put_workspace(type, workspace);
e1ddce71 1075
261507a0
LZ
1076 return ret;
1077}
1078
1079/*
1080 * a less complex decompression routine. Our compressed data fits in a
1081 * single page, and we want to read a single page out of it.
1082 * start_byte tells us the offset into the compressed data we're interested in
1083 */
1084int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1085 unsigned long start_byte, size_t srclen, size_t destlen)
1086{
1087 struct list_head *workspace;
1088 int ret;
1089
7bf49943 1090 workspace = get_workspace(type, 0);
ca4ac360 1091 ret = btrfs_compress_op[type]->decompress(workspace, data_in,
261507a0
LZ
1092 dest_page, start_byte,
1093 srclen, destlen);
929f4baf 1094 put_workspace(type, workspace);
7bf49943 1095
261507a0
LZ
1096 return ret;
1097}
1098
1666edab
DZ
1099void __init btrfs_init_compress(void)
1100{
1101 int i;
1102
1103 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
92ee5530 1104 btrfs_compress_op[i]->init_workspace_manager();
1666edab
DZ
1105}
1106
e67c718b 1107void __cold btrfs_exit_compress(void)
261507a0 1108{
1666edab
DZ
1109 int i;
1110
1111 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
92ee5530 1112 btrfs_compress_op[i]->cleanup_workspace_manager();
261507a0 1113}
3a39c18d
LZ
1114
1115/*
1116 * Copy uncompressed data from working buffer to pages.
1117 *
1118 * buf_start is the byte offset we're of the start of our workspace buffer.
1119 *
1120 * total_out is the last byte of the buffer
1121 */
14a3357b 1122int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
3a39c18d 1123 unsigned long total_out, u64 disk_start,
974b1adc 1124 struct bio *bio)
3a39c18d
LZ
1125{
1126 unsigned long buf_offset;
1127 unsigned long current_buf_start;
1128 unsigned long start_byte;
6e78b3f7 1129 unsigned long prev_start_byte;
3a39c18d
LZ
1130 unsigned long working_bytes = total_out - buf_start;
1131 unsigned long bytes;
1132 char *kaddr;
974b1adc 1133 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
3a39c18d
LZ
1134
1135 /*
1136 * start byte is the first byte of the page we're currently
1137 * copying into relative to the start of the compressed data.
1138 */
974b1adc 1139 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d
LZ
1140
1141 /* we haven't yet hit data corresponding to this page */
1142 if (total_out <= start_byte)
1143 return 1;
1144
1145 /*
1146 * the start of the data we care about is offset into
1147 * the middle of our working buffer
1148 */
1149 if (total_out > start_byte && buf_start < start_byte) {
1150 buf_offset = start_byte - buf_start;
1151 working_bytes -= buf_offset;
1152 } else {
1153 buf_offset = 0;
1154 }
1155 current_buf_start = buf_start;
1156
1157 /* copy bytes from the working buffer into the pages */
1158 while (working_bytes > 0) {
974b1adc
CH
1159 bytes = min_t(unsigned long, bvec.bv_len,
1160 PAGE_SIZE - buf_offset);
3a39c18d 1161 bytes = min(bytes, working_bytes);
974b1adc
CH
1162
1163 kaddr = kmap_atomic(bvec.bv_page);
1164 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
7ac687d9 1165 kunmap_atomic(kaddr);
974b1adc 1166 flush_dcache_page(bvec.bv_page);
3a39c18d 1167
3a39c18d
LZ
1168 buf_offset += bytes;
1169 working_bytes -= bytes;
1170 current_buf_start += bytes;
1171
1172 /* check if we need to pick another page */
974b1adc
CH
1173 bio_advance(bio, bytes);
1174 if (!bio->bi_iter.bi_size)
1175 return 0;
1176 bvec = bio_iter_iovec(bio, bio->bi_iter);
6e78b3f7 1177 prev_start_byte = start_byte;
974b1adc 1178 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d 1179
974b1adc 1180 /*
6e78b3f7
OS
1181 * We need to make sure we're only adjusting
1182 * our offset into compression working buffer when
1183 * we're switching pages. Otherwise we can incorrectly
1184 * keep copying when we were actually done.
974b1adc 1185 */
6e78b3f7
OS
1186 if (start_byte != prev_start_byte) {
1187 /*
1188 * make sure our new page is covered by this
1189 * working buffer
1190 */
1191 if (total_out <= start_byte)
1192 return 1;
3a39c18d 1193
6e78b3f7
OS
1194 /*
1195 * the next page in the biovec might not be adjacent
1196 * to the last page, but it might still be found
1197 * inside this working buffer. bump our offset pointer
1198 */
1199 if (total_out > start_byte &&
1200 current_buf_start < start_byte) {
1201 buf_offset = start_byte - buf_start;
1202 working_bytes = total_out - start_byte;
1203 current_buf_start = buf_start + buf_offset;
1204 }
3a39c18d
LZ
1205 }
1206 }
1207
1208 return 1;
1209}
c2fcdcdf 1210
19562430
TT
1211/*
1212 * Shannon Entropy calculation
1213 *
52042d8e 1214 * Pure byte distribution analysis fails to determine compressibility of data.
19562430
TT
1215 * Try calculating entropy to estimate the average minimum number of bits
1216 * needed to encode the sampled data.
1217 *
1218 * For convenience, return the percentage of needed bits, instead of amount of
1219 * bits directly.
1220 *
1221 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1222 * and can be compressible with high probability
1223 *
1224 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1225 *
1226 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1227 */
1228#define ENTROPY_LVL_ACEPTABLE (65)
1229#define ENTROPY_LVL_HIGH (80)
1230
1231/*
1232 * For increasead precision in shannon_entropy calculation,
1233 * let's do pow(n, M) to save more digits after comma:
1234 *
1235 * - maximum int bit length is 64
1236 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1237 * - 13 * 4 = 52 < 64 -> M = 4
1238 *
1239 * So use pow(n, 4).
1240 */
1241static inline u32 ilog2_w(u64 n)
1242{
1243 return ilog2(n * n * n * n);
1244}
1245
1246static u32 shannon_entropy(struct heuristic_ws *ws)
1247{
1248 const u32 entropy_max = 8 * ilog2_w(2);
1249 u32 entropy_sum = 0;
1250 u32 p, p_base, sz_base;
1251 u32 i;
1252
1253 sz_base = ilog2_w(ws->sample_size);
1254 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1255 p = ws->bucket[i].count;
1256 p_base = ilog2_w(p);
1257 entropy_sum += p * (sz_base - p_base);
1258 }
1259
1260 entropy_sum /= ws->sample_size;
1261 return entropy_sum * 100 / entropy_max;
1262}
1263
440c840c
TT
1264#define RADIX_BASE 4U
1265#define COUNTERS_SIZE (1U << RADIX_BASE)
1266
1267static u8 get4bits(u64 num, int shift) {
1268 u8 low4bits;
1269
1270 num >>= shift;
1271 /* Reverse order */
1272 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1273 return low4bits;
1274}
1275
440c840c
TT
1276/*
1277 * Use 4 bits as radix base
52042d8e 1278 * Use 16 u32 counters for calculating new position in buf array
440c840c
TT
1279 *
1280 * @array - array that will be sorted
1281 * @array_buf - buffer array to store sorting results
1282 * must be equal in size to @array
1283 * @num - array size
440c840c 1284 */
23ae8c63 1285static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
36243c91 1286 int num)
858177d3 1287{
440c840c
TT
1288 u64 max_num;
1289 u64 buf_num;
1290 u32 counters[COUNTERS_SIZE];
1291 u32 new_addr;
1292 u32 addr;
1293 int bitlen;
1294 int shift;
1295 int i;
858177d3 1296
440c840c
TT
1297 /*
1298 * Try avoid useless loop iterations for small numbers stored in big
1299 * counters. Example: 48 33 4 ... in 64bit array
1300 */
23ae8c63 1301 max_num = array[0].count;
440c840c 1302 for (i = 1; i < num; i++) {
23ae8c63 1303 buf_num = array[i].count;
440c840c
TT
1304 if (buf_num > max_num)
1305 max_num = buf_num;
1306 }
1307
1308 buf_num = ilog2(max_num);
1309 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1310
1311 shift = 0;
1312 while (shift < bitlen) {
1313 memset(counters, 0, sizeof(counters));
1314
1315 for (i = 0; i < num; i++) {
23ae8c63 1316 buf_num = array[i].count;
440c840c
TT
1317 addr = get4bits(buf_num, shift);
1318 counters[addr]++;
1319 }
1320
1321 for (i = 1; i < COUNTERS_SIZE; i++)
1322 counters[i] += counters[i - 1];
1323
1324 for (i = num - 1; i >= 0; i--) {
23ae8c63 1325 buf_num = array[i].count;
440c840c
TT
1326 addr = get4bits(buf_num, shift);
1327 counters[addr]--;
1328 new_addr = counters[addr];
7add17be 1329 array_buf[new_addr] = array[i];
440c840c
TT
1330 }
1331
1332 shift += RADIX_BASE;
1333
1334 /*
1335 * Normal radix expects to move data from a temporary array, to
1336 * the main one. But that requires some CPU time. Avoid that
1337 * by doing another sort iteration to original array instead of
1338 * memcpy()
1339 */
1340 memset(counters, 0, sizeof(counters));
1341
1342 for (i = 0; i < num; i ++) {
23ae8c63 1343 buf_num = array_buf[i].count;
440c840c
TT
1344 addr = get4bits(buf_num, shift);
1345 counters[addr]++;
1346 }
1347
1348 for (i = 1; i < COUNTERS_SIZE; i++)
1349 counters[i] += counters[i - 1];
1350
1351 for (i = num - 1; i >= 0; i--) {
23ae8c63 1352 buf_num = array_buf[i].count;
440c840c
TT
1353 addr = get4bits(buf_num, shift);
1354 counters[addr]--;
1355 new_addr = counters[addr];
7add17be 1356 array[new_addr] = array_buf[i];
440c840c
TT
1357 }
1358
1359 shift += RADIX_BASE;
1360 }
858177d3
TT
1361}
1362
1363/*
1364 * Size of the core byte set - how many bytes cover 90% of the sample
1365 *
1366 * There are several types of structured binary data that use nearly all byte
1367 * values. The distribution can be uniform and counts in all buckets will be
1368 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1369 *
1370 * Other possibility is normal (Gaussian) distribution, where the data could
1371 * be potentially compressible, but we have to take a few more steps to decide
1372 * how much.
1373 *
1374 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1375 * compression algo can easy fix that
1376 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1377 * probability is not compressible
1378 */
1379#define BYTE_CORE_SET_LOW (64)
1380#define BYTE_CORE_SET_HIGH (200)
1381
1382static int byte_core_set_size(struct heuristic_ws *ws)
1383{
1384 u32 i;
1385 u32 coreset_sum = 0;
1386 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1387 struct bucket_item *bucket = ws->bucket;
1388
1389 /* Sort in reverse order */
36243c91 1390 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
858177d3
TT
1391
1392 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1393 coreset_sum += bucket[i].count;
1394
1395 if (coreset_sum > core_set_threshold)
1396 return i;
1397
1398 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1399 coreset_sum += bucket[i].count;
1400 if (coreset_sum > core_set_threshold)
1401 break;
1402 }
1403
1404 return i;
1405}
1406
a288e92c
TT
1407/*
1408 * Count byte values in buckets.
1409 * This heuristic can detect textual data (configs, xml, json, html, etc).
1410 * Because in most text-like data byte set is restricted to limited number of
1411 * possible characters, and that restriction in most cases makes data easy to
1412 * compress.
1413 *
1414 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1415 * less - compressible
1416 * more - need additional analysis
1417 */
1418#define BYTE_SET_THRESHOLD (64)
1419
1420static u32 byte_set_size(const struct heuristic_ws *ws)
1421{
1422 u32 i;
1423 u32 byte_set_size = 0;
1424
1425 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1426 if (ws->bucket[i].count > 0)
1427 byte_set_size++;
1428 }
1429
1430 /*
1431 * Continue collecting count of byte values in buckets. If the byte
1432 * set size is bigger then the threshold, it's pointless to continue,
1433 * the detection technique would fail for this type of data.
1434 */
1435 for (; i < BUCKET_SIZE; i++) {
1436 if (ws->bucket[i].count > 0) {
1437 byte_set_size++;
1438 if (byte_set_size > BYTE_SET_THRESHOLD)
1439 return byte_set_size;
1440 }
1441 }
1442
1443 return byte_set_size;
1444}
1445
1fe4f6fa
TT
1446static bool sample_repeated_patterns(struct heuristic_ws *ws)
1447{
1448 const u32 half_of_sample = ws->sample_size / 2;
1449 const u8 *data = ws->sample;
1450
1451 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1452}
1453
a440d48c
TT
1454static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1455 struct heuristic_ws *ws)
1456{
1457 struct page *page;
1458 u64 index, index_end;
1459 u32 i, curr_sample_pos;
1460 u8 *in_data;
1461
1462 /*
1463 * Compression handles the input data by chunks of 128KiB
1464 * (defined by BTRFS_MAX_UNCOMPRESSED)
1465 *
1466 * We do the same for the heuristic and loop over the whole range.
1467 *
1468 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1469 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1470 */
1471 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1472 end = start + BTRFS_MAX_UNCOMPRESSED;
1473
1474 index = start >> PAGE_SHIFT;
1475 index_end = end >> PAGE_SHIFT;
1476
1477 /* Don't miss unaligned end */
1478 if (!IS_ALIGNED(end, PAGE_SIZE))
1479 index_end++;
1480
1481 curr_sample_pos = 0;
1482 while (index < index_end) {
1483 page = find_get_page(inode->i_mapping, index);
1484 in_data = kmap(page);
1485 /* Handle case where the start is not aligned to PAGE_SIZE */
1486 i = start % PAGE_SIZE;
1487 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1488 /* Don't sample any garbage from the last page */
1489 if (start > end - SAMPLING_READ_SIZE)
1490 break;
1491 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1492 SAMPLING_READ_SIZE);
1493 i += SAMPLING_INTERVAL;
1494 start += SAMPLING_INTERVAL;
1495 curr_sample_pos += SAMPLING_READ_SIZE;
1496 }
1497 kunmap(page);
1498 put_page(page);
1499
1500 index++;
1501 }
1502
1503 ws->sample_size = curr_sample_pos;
1504}
1505
c2fcdcdf
TT
1506/*
1507 * Compression heuristic.
1508 *
1509 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1510 * quickly (compared to direct compression) detect data characteristics
1511 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1512 * data.
1513 *
1514 * The following types of analysis can be performed:
1515 * - detect mostly zero data
1516 * - detect data with low "byte set" size (text, etc)
1517 * - detect data with low/high "core byte" set
1518 *
1519 * Return non-zero if the compression should be done, 0 otherwise.
1520 */
1521int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1522{
7bf49943 1523 struct list_head *ws_list = get_workspace(0, 0);
4e439a0b 1524 struct heuristic_ws *ws;
a440d48c
TT
1525 u32 i;
1526 u8 byte;
19562430 1527 int ret = 0;
c2fcdcdf 1528
4e439a0b
TT
1529 ws = list_entry(ws_list, struct heuristic_ws, list);
1530
a440d48c
TT
1531 heuristic_collect_sample(inode, start, end, ws);
1532
1fe4f6fa
TT
1533 if (sample_repeated_patterns(ws)) {
1534 ret = 1;
1535 goto out;
1536 }
1537
a440d48c
TT
1538 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1539
1540 for (i = 0; i < ws->sample_size; i++) {
1541 byte = ws->sample[i];
1542 ws->bucket[byte].count++;
c2fcdcdf
TT
1543 }
1544
a288e92c
TT
1545 i = byte_set_size(ws);
1546 if (i < BYTE_SET_THRESHOLD) {
1547 ret = 2;
1548 goto out;
1549 }
1550
858177d3
TT
1551 i = byte_core_set_size(ws);
1552 if (i <= BYTE_CORE_SET_LOW) {
1553 ret = 3;
1554 goto out;
1555 }
1556
1557 if (i >= BYTE_CORE_SET_HIGH) {
1558 ret = 0;
1559 goto out;
1560 }
1561
19562430
TT
1562 i = shannon_entropy(ws);
1563 if (i <= ENTROPY_LVL_ACEPTABLE) {
1564 ret = 4;
1565 goto out;
1566 }
1567
1568 /*
1569 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1570 * needed to give green light to compression.
1571 *
1572 * For now just assume that compression at that level is not worth the
1573 * resources because:
1574 *
1575 * 1. it is possible to defrag the data later
1576 *
1577 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1578 * values, every bucket has counter at level ~54. The heuristic would
1579 * be confused. This can happen when data have some internal repeated
1580 * patterns like "abbacbbc...". This can be detected by analyzing
1581 * pairs of bytes, which is too costly.
1582 */
1583 if (i < ENTROPY_LVL_HIGH) {
1584 ret = 5;
1585 goto out;
1586 } else {
1587 ret = 0;
1588 goto out;
1589 }
1590
1fe4f6fa 1591out:
929f4baf 1592 put_workspace(0, ws_list);
c2fcdcdf
TT
1593 return ret;
1594}
f51d2b59 1595
d0ab62ce
DZ
1596/*
1597 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1598 * level, unrecognized string will set the default level
1599 */
1600unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
f51d2b59 1601{
d0ab62ce
DZ
1602 unsigned int level = 0;
1603 int ret;
1604
1605 if (!type)
f51d2b59
DS
1606 return 0;
1607
d0ab62ce
DZ
1608 if (str[0] == ':') {
1609 ret = kstrtouint(str + 1, 10, &level);
1610 if (ret)
1611 level = 0;
1612 }
1613
1614 level = btrfs_compress_op[type]->set_level(level);
f51d2b59 1615
d0ab62ce 1616 return level;
f51d2b59 1617}