btrfs: use nodesize everywhere, kill leafsize
[linux-2.6-block.git] / fs / btrfs / check-integrity.c
CommitLineData
5db02760
SB
1/*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19/*
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
25 *
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
62856a9b
SB
40 * was called and no write error was indicated and a
41 * FLUSH request to the device where these blocks are
42 * located was received and completed.
5db02760
SB
43 * 2b. All referenced blocks need to have a generation
44 * number which is equal to the parent's number.
45 *
46 * One issue that was found using this module was that the log
47 * tree on disk became temporarily corrupted because disk blocks
48 * that had been in use for the log tree had been freed and
49 * reused too early, while being referenced by the written super
50 * block.
51 *
52 * The search term in the kernel log that can be used to filter
53 * on the existence of detected integrity issues is
54 * "btrfs: attempt".
55 *
56 * The integrity check is enabled via mount options. These
57 * mount options are only supported if the integrity check
58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59 *
60 * Example #1, apply integrity checks to all metadata:
61 * mount /dev/sdb1 /mnt -o check_int
62 *
63 * Example #2, apply integrity checks to all metadata and
64 * to data extents:
65 * mount /dev/sdb1 /mnt -o check_int_data
66 *
67 * Example #3, apply integrity checks to all metadata and dump
68 * the tree that the super block references to kernel messages
69 * each time after a super block was written:
70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71 *
72 * If the integrity check tool is included and activated in
73 * the mount options, plenty of kernel memory is used, and
74 * plenty of additional CPU cycles are spent. Enabling this
75 * functionality is not intended for normal use. In most
76 * cases, unless you are a btrfs developer who needs to verify
77 * the integrity of (super)-block write requests, do not
78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79 * include and compile the integrity check tool.
56d140f5
SB
80 *
81 * Expect millions of lines of information in the kernel log with an
82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83 * kernel config to at least 26 (which is 64MB). Usually the value is
84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85 * changed like this before LOG_BUF_SHIFT can be set to a high value:
86 * config LOG_BUF_SHIFT
87 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88 * range 12 30
5db02760
SB
89 */
90
91#include <linux/sched.h>
92#include <linux/slab.h>
93#include <linux/buffer_head.h>
94#include <linux/mutex.h>
5db02760
SB
95#include <linux/genhd.h>
96#include <linux/blkdev.h>
97#include "ctree.h"
98#include "disk-io.h"
0b947aff 99#include "hash.h"
5db02760
SB
100#include "transaction.h"
101#include "extent_io.h"
5db02760
SB
102#include "volumes.h"
103#include "print-tree.h"
104#include "locking.h"
105#include "check-integrity.h"
606686ee 106#include "rcu-string.h"
5db02760
SB
107
108#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
109#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
110#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
111#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
112#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
113#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
114#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
115#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
116 * excluding " [...]" */
5db02760
SB
117#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
118
119/*
120 * The definition of the bitmask fields for the print_mask.
121 * They are specified with the mount option check_integrity_print_mask.
122 */
123#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
124#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
125#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
126#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
127#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
128#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
129#define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
130#define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
131#define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
132#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
133#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
134#define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
135#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
56d140f5 136#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
5db02760
SB
137
138struct btrfsic_dev_state;
139struct btrfsic_state;
140
141struct btrfsic_block {
142 u32 magic_num; /* only used for debug purposes */
143 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
144 unsigned int is_superblock:1; /* if it is one of the superblocks */
145 unsigned int is_iodone:1; /* if is done by lower subsystem */
146 unsigned int iodone_w_error:1; /* error was indicated to endio */
147 unsigned int never_written:1; /* block was added because it was
148 * referenced, not because it was
149 * written */
cb3806ec 150 unsigned int mirror_num; /* large enough to hold
5db02760
SB
151 * BTRFS_SUPER_MIRROR_MAX */
152 struct btrfsic_dev_state *dev_state;
153 u64 dev_bytenr; /* key, physical byte num on disk */
154 u64 logical_bytenr; /* logical byte num on disk */
155 u64 generation;
156 struct btrfs_disk_key disk_key; /* extra info to print in case of
157 * issues, will not always be correct */
158 struct list_head collision_resolving_node; /* list node */
159 struct list_head all_blocks_node; /* list node */
160
161 /* the following two lists contain block_link items */
162 struct list_head ref_to_list; /* list */
163 struct list_head ref_from_list; /* list */
164 struct btrfsic_block *next_in_same_bio;
165 void *orig_bio_bh_private;
166 union {
167 bio_end_io_t *bio;
168 bh_end_io_t *bh;
169 } orig_bio_bh_end_io;
170 int submit_bio_bh_rw;
171 u64 flush_gen; /* only valid if !never_written */
172};
173
174/*
175 * Elements of this type are allocated dynamically and required because
176 * each block object can refer to and can be ref from multiple blocks.
177 * The key to lookup them in the hashtable is the dev_bytenr of
178 * the block ref to plus the one from the block refered from.
179 * The fact that they are searchable via a hashtable and that a
180 * ref_cnt is maintained is not required for the btrfs integrity
181 * check algorithm itself, it is only used to make the output more
182 * beautiful in case that an error is detected (an error is defined
183 * as a write operation to a block while that block is still referenced).
184 */
185struct btrfsic_block_link {
186 u32 magic_num; /* only used for debug purposes */
187 u32 ref_cnt;
188 struct list_head node_ref_to; /* list node */
189 struct list_head node_ref_from; /* list node */
190 struct list_head collision_resolving_node; /* list node */
191 struct btrfsic_block *block_ref_to;
192 struct btrfsic_block *block_ref_from;
193 u64 parent_generation;
194};
195
196struct btrfsic_dev_state {
197 u32 magic_num; /* only used for debug purposes */
198 struct block_device *bdev;
199 struct btrfsic_state *state;
200 struct list_head collision_resolving_node; /* list node */
201 struct btrfsic_block dummy_block_for_bio_bh_flush;
202 u64 last_flush_gen;
203 char name[BDEVNAME_SIZE];
204};
205
206struct btrfsic_block_hashtable {
207 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
208};
209
210struct btrfsic_block_link_hashtable {
211 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
212};
213
214struct btrfsic_dev_state_hashtable {
215 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
216};
217
218struct btrfsic_block_data_ctx {
219 u64 start; /* virtual bytenr */
220 u64 dev_bytenr; /* physical bytenr on device */
221 u32 len;
222 struct btrfsic_dev_state *dev;
e06baab4
SB
223 char **datav;
224 struct page **pagev;
225 void *mem_to_free;
5db02760
SB
226};
227
228/* This structure is used to implement recursion without occupying
229 * any stack space, refer to btrfsic_process_metablock() */
230struct btrfsic_stack_frame {
231 u32 magic;
232 u32 nr;
233 int error;
234 int i;
235 int limit_nesting;
236 int num_copies;
237 int mirror_num;
238 struct btrfsic_block *block;
239 struct btrfsic_block_data_ctx *block_ctx;
240 struct btrfsic_block *next_block;
241 struct btrfsic_block_data_ctx next_block_ctx;
242 struct btrfs_header *hdr;
243 struct btrfsic_stack_frame *prev;
244};
245
246/* Some state per mounted filesystem */
247struct btrfsic_state {
248 u32 print_mask;
249 int include_extent_data;
250 int csum_size;
251 struct list_head all_blocks_list;
252 struct btrfsic_block_hashtable block_hashtable;
253 struct btrfsic_block_link_hashtable block_link_hashtable;
254 struct btrfs_root *root;
255 u64 max_superblock_generation;
256 struct btrfsic_block *latest_superblock;
e06baab4
SB
257 u32 metablock_size;
258 u32 datablock_size;
5db02760
SB
259};
260
261static void btrfsic_block_init(struct btrfsic_block *b);
262static struct btrfsic_block *btrfsic_block_alloc(void);
263static void btrfsic_block_free(struct btrfsic_block *b);
264static void btrfsic_block_link_init(struct btrfsic_block_link *n);
265static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
266static void btrfsic_block_link_free(struct btrfsic_block_link *n);
267static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
268static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
269static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
270static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
271static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
272 struct btrfsic_block_hashtable *h);
273static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
274static struct btrfsic_block *btrfsic_block_hashtable_lookup(
275 struct block_device *bdev,
276 u64 dev_bytenr,
277 struct btrfsic_block_hashtable *h);
278static void btrfsic_block_link_hashtable_init(
279 struct btrfsic_block_link_hashtable *h);
280static void btrfsic_block_link_hashtable_add(
281 struct btrfsic_block_link *l,
282 struct btrfsic_block_link_hashtable *h);
283static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
284static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
285 struct block_device *bdev_ref_to,
286 u64 dev_bytenr_ref_to,
287 struct block_device *bdev_ref_from,
288 u64 dev_bytenr_ref_from,
289 struct btrfsic_block_link_hashtable *h);
290static void btrfsic_dev_state_hashtable_init(
291 struct btrfsic_dev_state_hashtable *h);
292static void btrfsic_dev_state_hashtable_add(
293 struct btrfsic_dev_state *ds,
294 struct btrfsic_dev_state_hashtable *h);
295static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
296static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
297 struct block_device *bdev,
298 struct btrfsic_dev_state_hashtable *h);
299static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
300static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
301static int btrfsic_process_superblock(struct btrfsic_state *state,
302 struct btrfs_fs_devices *fs_devices);
303static int btrfsic_process_metablock(struct btrfsic_state *state,
304 struct btrfsic_block *block,
305 struct btrfsic_block_data_ctx *block_ctx,
5db02760 306 int limit_nesting, int force_iodone_flag);
e06baab4
SB
307static void btrfsic_read_from_block_data(
308 struct btrfsic_block_data_ctx *block_ctx,
309 void *dst, u32 offset, size_t len);
5db02760
SB
310static int btrfsic_create_link_to_next_block(
311 struct btrfsic_state *state,
312 struct btrfsic_block *block,
313 struct btrfsic_block_data_ctx
314 *block_ctx, u64 next_bytenr,
315 int limit_nesting,
316 struct btrfsic_block_data_ctx *next_block_ctx,
317 struct btrfsic_block **next_blockp,
318 int force_iodone_flag,
319 int *num_copiesp, int *mirror_nump,
320 struct btrfs_disk_key *disk_key,
321 u64 parent_generation);
322static int btrfsic_handle_extent_data(struct btrfsic_state *state,
323 struct btrfsic_block *block,
324 struct btrfsic_block_data_ctx *block_ctx,
325 u32 item_offset, int force_iodone_flag);
326static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
327 struct btrfsic_block_data_ctx *block_ctx_out,
328 int mirror_num);
329static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
330 u32 len, struct block_device *bdev,
331 struct btrfsic_block_data_ctx *block_ctx_out);
332static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
333static int btrfsic_read_block(struct btrfsic_state *state,
334 struct btrfsic_block_data_ctx *block_ctx);
335static void btrfsic_dump_database(struct btrfsic_state *state);
336static int btrfsic_test_for_metadata(struct btrfsic_state *state,
e06baab4 337 char **datav, unsigned int num_pages);
5db02760 338static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
e06baab4
SB
339 u64 dev_bytenr, char **mapped_datav,
340 unsigned int num_pages,
341 struct bio *bio, int *bio_is_patched,
5db02760
SB
342 struct buffer_head *bh,
343 int submit_bio_bh_rw);
344static int btrfsic_process_written_superblock(
345 struct btrfsic_state *state,
346 struct btrfsic_block *const block,
347 struct btrfs_super_block *const super_hdr);
348static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
349static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
350static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
351 const struct btrfsic_block *block,
352 int recursion_level);
353static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
354 struct btrfsic_block *const block,
355 int recursion_level);
356static void btrfsic_print_add_link(const struct btrfsic_state *state,
357 const struct btrfsic_block_link *l);
358static void btrfsic_print_rem_link(const struct btrfsic_state *state,
359 const struct btrfsic_block_link *l);
360static char btrfsic_get_block_type(const struct btrfsic_state *state,
361 const struct btrfsic_block *block);
362static void btrfsic_dump_tree(const struct btrfsic_state *state);
363static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
364 const struct btrfsic_block *block,
365 int indent_level);
366static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
367 struct btrfsic_state *state,
368 struct btrfsic_block_data_ctx *next_block_ctx,
369 struct btrfsic_block *next_block,
370 struct btrfsic_block *from_block,
371 u64 parent_generation);
372static struct btrfsic_block *btrfsic_block_lookup_or_add(
373 struct btrfsic_state *state,
374 struct btrfsic_block_data_ctx *block_ctx,
375 const char *additional_string,
376 int is_metadata,
377 int is_iodone,
378 int never_written,
379 int mirror_num,
380 int *was_created);
381static int btrfsic_process_superblock_dev_mirror(
382 struct btrfsic_state *state,
383 struct btrfsic_dev_state *dev_state,
384 struct btrfs_device *device,
385 int superblock_mirror_num,
386 struct btrfsic_dev_state **selected_dev_state,
387 struct btrfs_super_block *selected_super);
388static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
389 struct block_device *bdev);
390static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
391 u64 bytenr,
392 struct btrfsic_dev_state *dev_state,
e06baab4 393 u64 dev_bytenr);
5db02760
SB
394
395static struct mutex btrfsic_mutex;
396static int btrfsic_is_initialized;
397static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
398
399
400static void btrfsic_block_init(struct btrfsic_block *b)
401{
402 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
403 b->dev_state = NULL;
404 b->dev_bytenr = 0;
405 b->logical_bytenr = 0;
406 b->generation = BTRFSIC_GENERATION_UNKNOWN;
407 b->disk_key.objectid = 0;
408 b->disk_key.type = 0;
409 b->disk_key.offset = 0;
410 b->is_metadata = 0;
411 b->is_superblock = 0;
412 b->is_iodone = 0;
413 b->iodone_w_error = 0;
414 b->never_written = 0;
415 b->mirror_num = 0;
416 b->next_in_same_bio = NULL;
417 b->orig_bio_bh_private = NULL;
418 b->orig_bio_bh_end_io.bio = NULL;
419 INIT_LIST_HEAD(&b->collision_resolving_node);
420 INIT_LIST_HEAD(&b->all_blocks_node);
421 INIT_LIST_HEAD(&b->ref_to_list);
422 INIT_LIST_HEAD(&b->ref_from_list);
423 b->submit_bio_bh_rw = 0;
424 b->flush_gen = 0;
425}
426
427static struct btrfsic_block *btrfsic_block_alloc(void)
428{
429 struct btrfsic_block *b;
430
431 b = kzalloc(sizeof(*b), GFP_NOFS);
432 if (NULL != b)
433 btrfsic_block_init(b);
434
435 return b;
436}
437
438static void btrfsic_block_free(struct btrfsic_block *b)
439{
440 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
441 kfree(b);
442}
443
444static void btrfsic_block_link_init(struct btrfsic_block_link *l)
445{
446 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
447 l->ref_cnt = 1;
448 INIT_LIST_HEAD(&l->node_ref_to);
449 INIT_LIST_HEAD(&l->node_ref_from);
450 INIT_LIST_HEAD(&l->collision_resolving_node);
451 l->block_ref_to = NULL;
452 l->block_ref_from = NULL;
453}
454
455static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
456{
457 struct btrfsic_block_link *l;
458
459 l = kzalloc(sizeof(*l), GFP_NOFS);
460 if (NULL != l)
461 btrfsic_block_link_init(l);
462
463 return l;
464}
465
466static void btrfsic_block_link_free(struct btrfsic_block_link *l)
467{
468 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
469 kfree(l);
470}
471
472static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
473{
474 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
475 ds->bdev = NULL;
476 ds->state = NULL;
477 ds->name[0] = '\0';
478 INIT_LIST_HEAD(&ds->collision_resolving_node);
479 ds->last_flush_gen = 0;
480 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
481 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
482 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
483}
484
485static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
486{
487 struct btrfsic_dev_state *ds;
488
489 ds = kzalloc(sizeof(*ds), GFP_NOFS);
490 if (NULL != ds)
491 btrfsic_dev_state_init(ds);
492
493 return ds;
494}
495
496static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
497{
498 BUG_ON(!(NULL == ds ||
499 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
500 kfree(ds);
501}
502
503static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
504{
505 int i;
506
507 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
508 INIT_LIST_HEAD(h->table + i);
509}
510
511static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
512 struct btrfsic_block_hashtable *h)
513{
514 const unsigned int hashval =
515 (((unsigned int)(b->dev_bytenr >> 16)) ^
516 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
517 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
518
519 list_add(&b->collision_resolving_node, h->table + hashval);
520}
521
522static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
523{
524 list_del(&b->collision_resolving_node);
525}
526
527static struct btrfsic_block *btrfsic_block_hashtable_lookup(
528 struct block_device *bdev,
529 u64 dev_bytenr,
530 struct btrfsic_block_hashtable *h)
531{
532 const unsigned int hashval =
533 (((unsigned int)(dev_bytenr >> 16)) ^
534 ((unsigned int)((uintptr_t)bdev))) &
535 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536 struct list_head *elem;
537
538 list_for_each(elem, h->table + hashval) {
539 struct btrfsic_block *const b =
540 list_entry(elem, struct btrfsic_block,
541 collision_resolving_node);
542
543 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
544 return b;
545 }
546
547 return NULL;
548}
549
550static void btrfsic_block_link_hashtable_init(
551 struct btrfsic_block_link_hashtable *h)
552{
553 int i;
554
555 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
556 INIT_LIST_HEAD(h->table + i);
557}
558
559static void btrfsic_block_link_hashtable_add(
560 struct btrfsic_block_link *l,
561 struct btrfsic_block_link_hashtable *h)
562{
563 const unsigned int hashval =
564 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
565 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
566 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
567 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
568 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
569
570 BUG_ON(NULL == l->block_ref_to);
571 BUG_ON(NULL == l->block_ref_from);
572 list_add(&l->collision_resolving_node, h->table + hashval);
573}
574
575static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
576{
577 list_del(&l->collision_resolving_node);
578}
579
580static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
581 struct block_device *bdev_ref_to,
582 u64 dev_bytenr_ref_to,
583 struct block_device *bdev_ref_from,
584 u64 dev_bytenr_ref_from,
585 struct btrfsic_block_link_hashtable *h)
586{
587 const unsigned int hashval =
588 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
589 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
590 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
591 ((unsigned int)((uintptr_t)bdev_ref_from))) &
592 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
593 struct list_head *elem;
594
595 list_for_each(elem, h->table + hashval) {
596 struct btrfsic_block_link *const l =
597 list_entry(elem, struct btrfsic_block_link,
598 collision_resolving_node);
599
600 BUG_ON(NULL == l->block_ref_to);
601 BUG_ON(NULL == l->block_ref_from);
602 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
603 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
604 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
605 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
606 return l;
607 }
608
609 return NULL;
610}
611
612static void btrfsic_dev_state_hashtable_init(
613 struct btrfsic_dev_state_hashtable *h)
614{
615 int i;
616
617 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
618 INIT_LIST_HEAD(h->table + i);
619}
620
621static void btrfsic_dev_state_hashtable_add(
622 struct btrfsic_dev_state *ds,
623 struct btrfsic_dev_state_hashtable *h)
624{
625 const unsigned int hashval =
626 (((unsigned int)((uintptr_t)ds->bdev)) &
627 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
628
629 list_add(&ds->collision_resolving_node, h->table + hashval);
630}
631
632static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
633{
634 list_del(&ds->collision_resolving_node);
635}
636
637static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
638 struct block_device *bdev,
639 struct btrfsic_dev_state_hashtable *h)
640{
641 const unsigned int hashval =
642 (((unsigned int)((uintptr_t)bdev)) &
643 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
644 struct list_head *elem;
645
646 list_for_each(elem, h->table + hashval) {
647 struct btrfsic_dev_state *const ds =
648 list_entry(elem, struct btrfsic_dev_state,
649 collision_resolving_node);
650
651 if (ds->bdev == bdev)
652 return ds;
653 }
654
655 return NULL;
656}
657
658static int btrfsic_process_superblock(struct btrfsic_state *state,
659 struct btrfs_fs_devices *fs_devices)
660{
e77266e4 661 int ret = 0;
5db02760
SB
662 struct btrfs_super_block *selected_super;
663 struct list_head *dev_head = &fs_devices->devices;
664 struct btrfs_device *device;
665 struct btrfsic_dev_state *selected_dev_state = NULL;
666 int pass;
667
668 BUG_ON(NULL == state);
e06baab4 669 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
5db02760
SB
670 if (NULL == selected_super) {
671 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
672 return -1;
673 }
674
675 list_for_each_entry(device, dev_head, dev_list) {
676 int i;
677 struct btrfsic_dev_state *dev_state;
678
679 if (!device->bdev || !device->name)
680 continue;
681
682 dev_state = btrfsic_dev_state_lookup(device->bdev);
683 BUG_ON(NULL == dev_state);
684 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
685 ret = btrfsic_process_superblock_dev_mirror(
686 state, dev_state, device, i,
687 &selected_dev_state, selected_super);
688 if (0 != ret && 0 == i) {
689 kfree(selected_super);
690 return ret;
691 }
692 }
693 }
694
695 if (NULL == state->latest_superblock) {
696 printk(KERN_INFO "btrfsic: no superblock found!\n");
697 kfree(selected_super);
698 return -1;
699 }
700
701 state->csum_size = btrfs_super_csum_size(selected_super);
702
703 for (pass = 0; pass < 3; pass++) {
704 int num_copies;
705 int mirror_num;
706 u64 next_bytenr;
707
708 switch (pass) {
709 case 0:
710 next_bytenr = btrfs_super_root(selected_super);
711 if (state->print_mask &
712 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 713 printk(KERN_INFO "root@%llu\n", next_bytenr);
5db02760
SB
714 break;
715 case 1:
716 next_bytenr = btrfs_super_chunk_root(selected_super);
717 if (state->print_mask &
718 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 719 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
5db02760
SB
720 break;
721 case 2:
722 next_bytenr = btrfs_super_log_root(selected_super);
723 if (0 == next_bytenr)
724 continue;
725 if (state->print_mask &
726 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 727 printk(KERN_INFO "log@%llu\n", next_bytenr);
5db02760
SB
728 break;
729 }
730
731 num_copies =
5d964051 732 btrfs_num_copies(state->root->fs_info,
e06baab4 733 next_bytenr, state->metablock_size);
5db02760
SB
734 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
735 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
c1c9ff7c 736 next_bytenr, num_copies);
5db02760
SB
737
738 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
739 struct btrfsic_block *next_block;
740 struct btrfsic_block_data_ctx tmp_next_block_ctx;
741 struct btrfsic_block_link *l;
5db02760 742
e06baab4
SB
743 ret = btrfsic_map_block(state, next_bytenr,
744 state->metablock_size,
5db02760
SB
745 &tmp_next_block_ctx,
746 mirror_num);
747 if (ret) {
748 printk(KERN_INFO "btrfsic:"
749 " btrfsic_map_block(root @%llu,"
750 " mirror %d) failed!\n",
c1c9ff7c 751 next_bytenr, mirror_num);
5db02760
SB
752 kfree(selected_super);
753 return -1;
754 }
755
756 next_block = btrfsic_block_hashtable_lookup(
757 tmp_next_block_ctx.dev->bdev,
758 tmp_next_block_ctx.dev_bytenr,
759 &state->block_hashtable);
760 BUG_ON(NULL == next_block);
761
762 l = btrfsic_block_link_hashtable_lookup(
763 tmp_next_block_ctx.dev->bdev,
764 tmp_next_block_ctx.dev_bytenr,
765 state->latest_superblock->dev_state->
766 bdev,
767 state->latest_superblock->dev_bytenr,
768 &state->block_link_hashtable);
769 BUG_ON(NULL == l);
770
771 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
e06baab4 772 if (ret < (int)PAGE_CACHE_SIZE) {
5db02760
SB
773 printk(KERN_INFO
774 "btrfsic: read @logical %llu failed!\n",
5db02760
SB
775 tmp_next_block_ctx.start);
776 btrfsic_release_block_ctx(&tmp_next_block_ctx);
777 kfree(selected_super);
778 return -1;
779 }
780
5db02760
SB
781 ret = btrfsic_process_metablock(state,
782 next_block,
783 &tmp_next_block_ctx,
5db02760
SB
784 BTRFS_MAX_LEVEL + 3, 1);
785 btrfsic_release_block_ctx(&tmp_next_block_ctx);
786 }
787 }
788
789 kfree(selected_super);
790 return ret;
791}
792
793static int btrfsic_process_superblock_dev_mirror(
794 struct btrfsic_state *state,
795 struct btrfsic_dev_state *dev_state,
796 struct btrfs_device *device,
797 int superblock_mirror_num,
798 struct btrfsic_dev_state **selected_dev_state,
799 struct btrfs_super_block *selected_super)
800{
801 struct btrfs_super_block *super_tmp;
802 u64 dev_bytenr;
803 struct buffer_head *bh;
804 struct btrfsic_block *superblock_tmp;
805 int pass;
806 struct block_device *const superblock_bdev = device->bdev;
807
808 /* super block bytenr is always the unmapped device bytenr */
809 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
e06baab4
SB
810 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
811 return -1;
812 bh = __bread(superblock_bdev, dev_bytenr / 4096,
813 BTRFS_SUPER_INFO_SIZE);
5db02760
SB
814 if (NULL == bh)
815 return -1;
816 super_tmp = (struct btrfs_super_block *)
817 (bh->b_data + (dev_bytenr & 4095));
818
819 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
3cae210f 820 btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
e06baab4
SB
821 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
822 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
e06baab4 823 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
5db02760
SB
824 brelse(bh);
825 return 0;
826 }
827
828 superblock_tmp =
829 btrfsic_block_hashtable_lookup(superblock_bdev,
830 dev_bytenr,
831 &state->block_hashtable);
832 if (NULL == superblock_tmp) {
833 superblock_tmp = btrfsic_block_alloc();
834 if (NULL == superblock_tmp) {
835 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
836 brelse(bh);
837 return -1;
838 }
839 /* for superblock, only the dev_bytenr makes sense */
840 superblock_tmp->dev_bytenr = dev_bytenr;
841 superblock_tmp->dev_state = dev_state;
842 superblock_tmp->logical_bytenr = dev_bytenr;
843 superblock_tmp->generation = btrfs_super_generation(super_tmp);
844 superblock_tmp->is_metadata = 1;
845 superblock_tmp->is_superblock = 1;
846 superblock_tmp->is_iodone = 1;
847 superblock_tmp->never_written = 0;
848 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
849 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
606686ee
JB
850 printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
851 " @%llu (%s/%llu/%d)\n",
852 superblock_bdev,
c1c9ff7c
GU
853 rcu_str_deref(device->name), dev_bytenr,
854 dev_state->name, dev_bytenr,
606686ee 855 superblock_mirror_num);
5db02760
SB
856 list_add(&superblock_tmp->all_blocks_node,
857 &state->all_blocks_list);
858 btrfsic_block_hashtable_add(superblock_tmp,
859 &state->block_hashtable);
860 }
861
862 /* select the one with the highest generation field */
863 if (btrfs_super_generation(super_tmp) >
864 state->max_superblock_generation ||
865 0 == state->max_superblock_generation) {
866 memcpy(selected_super, super_tmp, sizeof(*selected_super));
867 *selected_dev_state = dev_state;
868 state->max_superblock_generation =
869 btrfs_super_generation(super_tmp);
870 state->latest_superblock = superblock_tmp;
871 }
872
873 for (pass = 0; pass < 3; pass++) {
874 u64 next_bytenr;
875 int num_copies;
876 int mirror_num;
877 const char *additional_string = NULL;
878 struct btrfs_disk_key tmp_disk_key;
879
880 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
881 tmp_disk_key.offset = 0;
882 switch (pass) {
883 case 0:
3cae210f
QW
884 btrfs_set_disk_key_objectid(&tmp_disk_key,
885 BTRFS_ROOT_TREE_OBJECTID);
5db02760
SB
886 additional_string = "initial root ";
887 next_bytenr = btrfs_super_root(super_tmp);
888 break;
889 case 1:
3cae210f
QW
890 btrfs_set_disk_key_objectid(&tmp_disk_key,
891 BTRFS_CHUNK_TREE_OBJECTID);
5db02760
SB
892 additional_string = "initial chunk ";
893 next_bytenr = btrfs_super_chunk_root(super_tmp);
894 break;
895 case 2:
3cae210f
QW
896 btrfs_set_disk_key_objectid(&tmp_disk_key,
897 BTRFS_TREE_LOG_OBJECTID);
5db02760
SB
898 additional_string = "initial log ";
899 next_bytenr = btrfs_super_log_root(super_tmp);
900 if (0 == next_bytenr)
901 continue;
902 break;
903 }
904
905 num_copies =
5d964051 906 btrfs_num_copies(state->root->fs_info,
e06baab4 907 next_bytenr, state->metablock_size);
5db02760
SB
908 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
909 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
c1c9ff7c 910 next_bytenr, num_copies);
5db02760
SB
911 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
912 struct btrfsic_block *next_block;
913 struct btrfsic_block_data_ctx tmp_next_block_ctx;
914 struct btrfsic_block_link *l;
915
e06baab4
SB
916 if (btrfsic_map_block(state, next_bytenr,
917 state->metablock_size,
5db02760
SB
918 &tmp_next_block_ctx,
919 mirror_num)) {
920 printk(KERN_INFO "btrfsic: btrfsic_map_block("
921 "bytenr @%llu, mirror %d) failed!\n",
c1c9ff7c 922 next_bytenr, mirror_num);
5db02760
SB
923 brelse(bh);
924 return -1;
925 }
926
927 next_block = btrfsic_block_lookup_or_add(
928 state, &tmp_next_block_ctx,
929 additional_string, 1, 1, 0,
930 mirror_num, NULL);
931 if (NULL == next_block) {
932 btrfsic_release_block_ctx(&tmp_next_block_ctx);
933 brelse(bh);
934 return -1;
935 }
936
937 next_block->disk_key = tmp_disk_key;
938 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
939 l = btrfsic_block_link_lookup_or_add(
940 state, &tmp_next_block_ctx,
941 next_block, superblock_tmp,
942 BTRFSIC_GENERATION_UNKNOWN);
943 btrfsic_release_block_ctx(&tmp_next_block_ctx);
944 if (NULL == l) {
945 brelse(bh);
946 return -1;
947 }
948 }
949 }
950 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
951 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
952
953 brelse(bh);
954 return 0;
955}
956
957static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
958{
959 struct btrfsic_stack_frame *sf;
960
961 sf = kzalloc(sizeof(*sf), GFP_NOFS);
962 if (NULL == sf)
963 printk(KERN_INFO "btrfsic: alloc memory failed!\n");
964 else
965 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
966 return sf;
967}
968
969static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
970{
971 BUG_ON(!(NULL == sf ||
972 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
973 kfree(sf);
974}
975
976static int btrfsic_process_metablock(
977 struct btrfsic_state *state,
978 struct btrfsic_block *const first_block,
979 struct btrfsic_block_data_ctx *const first_block_ctx,
5db02760
SB
980 int first_limit_nesting, int force_iodone_flag)
981{
982 struct btrfsic_stack_frame initial_stack_frame = { 0 };
983 struct btrfsic_stack_frame *sf;
984 struct btrfsic_stack_frame *next_stack;
e06baab4
SB
985 struct btrfs_header *const first_hdr =
986 (struct btrfs_header *)first_block_ctx->datav[0];
5db02760 987
e06baab4 988 BUG_ON(!first_hdr);
5db02760
SB
989 sf = &initial_stack_frame;
990 sf->error = 0;
991 sf->i = -1;
992 sf->limit_nesting = first_limit_nesting;
993 sf->block = first_block;
994 sf->block_ctx = first_block_ctx;
995 sf->next_block = NULL;
996 sf->hdr = first_hdr;
997 sf->prev = NULL;
998
999continue_with_new_stack_frame:
1000 sf->block->generation = le64_to_cpu(sf->hdr->generation);
1001 if (0 == sf->hdr->level) {
1002 struct btrfs_leaf *const leafhdr =
1003 (struct btrfs_leaf *)sf->hdr;
1004
1005 if (-1 == sf->i) {
3cae210f 1006 sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
5db02760
SB
1007
1008 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1009 printk(KERN_INFO
1010 "leaf %llu items %d generation %llu"
1011 " owner %llu\n",
c1c9ff7c 1012 sf->block_ctx->start, sf->nr,
3cae210f
QW
1013 btrfs_stack_header_generation(
1014 &leafhdr->header),
3cae210f
QW
1015 btrfs_stack_header_owner(
1016 &leafhdr->header));
5db02760
SB
1017 }
1018
1019continue_with_current_leaf_stack_frame:
1020 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1021 sf->i++;
1022 sf->num_copies = 0;
1023 }
1024
1025 if (sf->i < sf->nr) {
e06baab4
SB
1026 struct btrfs_item disk_item;
1027 u32 disk_item_offset =
1028 (uintptr_t)(leafhdr->items + sf->i) -
1029 (uintptr_t)leafhdr;
1030 struct btrfs_disk_key *disk_key;
5db02760 1031 u8 type;
e06baab4 1032 u32 item_offset;
8ea05e3a 1033 u32 item_size;
5db02760 1034
e06baab4
SB
1035 if (disk_item_offset + sizeof(struct btrfs_item) >
1036 sf->block_ctx->len) {
1037leaf_item_out_of_bounce_error:
1038 printk(KERN_INFO
1039 "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1040 sf->block_ctx->start,
1041 sf->block_ctx->dev->name);
1042 goto one_stack_frame_backwards;
1043 }
1044 btrfsic_read_from_block_data(sf->block_ctx,
1045 &disk_item,
1046 disk_item_offset,
1047 sizeof(struct btrfs_item));
3cae210f 1048 item_offset = btrfs_stack_item_offset(&disk_item);
a5f519c9 1049 item_size = btrfs_stack_item_size(&disk_item);
e06baab4 1050 disk_key = &disk_item.key;
3cae210f 1051 type = btrfs_disk_key_type(disk_key);
5db02760
SB
1052
1053 if (BTRFS_ROOT_ITEM_KEY == type) {
e06baab4
SB
1054 struct btrfs_root_item root_item;
1055 u32 root_item_offset;
1056 u64 next_bytenr;
1057
1058 root_item_offset = item_offset +
1059 offsetof(struct btrfs_leaf, items);
8ea05e3a 1060 if (root_item_offset + item_size >
e06baab4
SB
1061 sf->block_ctx->len)
1062 goto leaf_item_out_of_bounce_error;
1063 btrfsic_read_from_block_data(
1064 sf->block_ctx, &root_item,
1065 root_item_offset,
8ea05e3a 1066 item_size);
3cae210f 1067 next_bytenr = btrfs_root_bytenr(&root_item);
5db02760
SB
1068
1069 sf->error =
1070 btrfsic_create_link_to_next_block(
1071 state,
1072 sf->block,
1073 sf->block_ctx,
1074 next_bytenr,
1075 sf->limit_nesting,
1076 &sf->next_block_ctx,
1077 &sf->next_block,
1078 force_iodone_flag,
1079 &sf->num_copies,
1080 &sf->mirror_num,
1081 disk_key,
3cae210f
QW
1082 btrfs_root_generation(
1083 &root_item));
5db02760
SB
1084 if (sf->error)
1085 goto one_stack_frame_backwards;
1086
1087 if (NULL != sf->next_block) {
1088 struct btrfs_header *const next_hdr =
1089 (struct btrfs_header *)
e06baab4 1090 sf->next_block_ctx.datav[0];
5db02760
SB
1091
1092 next_stack =
1093 btrfsic_stack_frame_alloc();
1094 if (NULL == next_stack) {
98806b44 1095 sf->error = -1;
5db02760
SB
1096 btrfsic_release_block_ctx(
1097 &sf->
1098 next_block_ctx);
1099 goto one_stack_frame_backwards;
1100 }
1101
1102 next_stack->i = -1;
1103 next_stack->block = sf->next_block;
1104 next_stack->block_ctx =
1105 &sf->next_block_ctx;
1106 next_stack->next_block = NULL;
1107 next_stack->hdr = next_hdr;
1108 next_stack->limit_nesting =
1109 sf->limit_nesting - 1;
1110 next_stack->prev = sf;
1111 sf = next_stack;
1112 goto continue_with_new_stack_frame;
1113 }
1114 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1115 state->include_extent_data) {
1116 sf->error = btrfsic_handle_extent_data(
1117 state,
1118 sf->block,
1119 sf->block_ctx,
1120 item_offset,
1121 force_iodone_flag);
1122 if (sf->error)
1123 goto one_stack_frame_backwards;
1124 }
1125
1126 goto continue_with_current_leaf_stack_frame;
1127 }
1128 } else {
1129 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1130
1131 if (-1 == sf->i) {
3cae210f 1132 sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
5db02760
SB
1133
1134 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1135 printk(KERN_INFO "node %llu level %d items %d"
1136 " generation %llu owner %llu\n",
5db02760
SB
1137 sf->block_ctx->start,
1138 nodehdr->header.level, sf->nr,
3cae210f
QW
1139 btrfs_stack_header_generation(
1140 &nodehdr->header),
3cae210f
QW
1141 btrfs_stack_header_owner(
1142 &nodehdr->header));
5db02760
SB
1143 }
1144
1145continue_with_current_node_stack_frame:
1146 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1147 sf->i++;
1148 sf->num_copies = 0;
1149 }
1150
1151 if (sf->i < sf->nr) {
e06baab4
SB
1152 struct btrfs_key_ptr key_ptr;
1153 u32 key_ptr_offset;
1154 u64 next_bytenr;
1155
1156 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1157 (uintptr_t)nodehdr;
1158 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1159 sf->block_ctx->len) {
1160 printk(KERN_INFO
1161 "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1162 sf->block_ctx->start,
1163 sf->block_ctx->dev->name);
1164 goto one_stack_frame_backwards;
1165 }
1166 btrfsic_read_from_block_data(
1167 sf->block_ctx, &key_ptr, key_ptr_offset,
1168 sizeof(struct btrfs_key_ptr));
3cae210f 1169 next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
5db02760
SB
1170
1171 sf->error = btrfsic_create_link_to_next_block(
1172 state,
1173 sf->block,
1174 sf->block_ctx,
1175 next_bytenr,
1176 sf->limit_nesting,
1177 &sf->next_block_ctx,
1178 &sf->next_block,
1179 force_iodone_flag,
1180 &sf->num_copies,
1181 &sf->mirror_num,
e06baab4 1182 &key_ptr.key,
3cae210f 1183 btrfs_stack_key_generation(&key_ptr));
5db02760
SB
1184 if (sf->error)
1185 goto one_stack_frame_backwards;
1186
1187 if (NULL != sf->next_block) {
1188 struct btrfs_header *const next_hdr =
1189 (struct btrfs_header *)
e06baab4 1190 sf->next_block_ctx.datav[0];
5db02760
SB
1191
1192 next_stack = btrfsic_stack_frame_alloc();
98806b44
SB
1193 if (NULL == next_stack) {
1194 sf->error = -1;
5db02760 1195 goto one_stack_frame_backwards;
98806b44 1196 }
5db02760
SB
1197
1198 next_stack->i = -1;
1199 next_stack->block = sf->next_block;
1200 next_stack->block_ctx = &sf->next_block_ctx;
1201 next_stack->next_block = NULL;
1202 next_stack->hdr = next_hdr;
1203 next_stack->limit_nesting =
1204 sf->limit_nesting - 1;
1205 next_stack->prev = sf;
1206 sf = next_stack;
1207 goto continue_with_new_stack_frame;
1208 }
1209
1210 goto continue_with_current_node_stack_frame;
1211 }
1212 }
1213
1214one_stack_frame_backwards:
1215 if (NULL != sf->prev) {
1216 struct btrfsic_stack_frame *const prev = sf->prev;
1217
1218 /* the one for the initial block is freed in the caller */
1219 btrfsic_release_block_ctx(sf->block_ctx);
1220
1221 if (sf->error) {
1222 prev->error = sf->error;
1223 btrfsic_stack_frame_free(sf);
1224 sf = prev;
1225 goto one_stack_frame_backwards;
1226 }
1227
1228 btrfsic_stack_frame_free(sf);
1229 sf = prev;
1230 goto continue_with_new_stack_frame;
1231 } else {
1232 BUG_ON(&initial_stack_frame != sf);
1233 }
1234
1235 return sf->error;
1236}
1237
e06baab4
SB
1238static void btrfsic_read_from_block_data(
1239 struct btrfsic_block_data_ctx *block_ctx,
1240 void *dstv, u32 offset, size_t len)
1241{
1242 size_t cur;
1243 size_t offset_in_page;
1244 char *kaddr;
1245 char *dst = (char *)dstv;
1246 size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1247 unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1248
1249 WARN_ON(offset + len > block_ctx->len);
778746b5 1250 offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1);
e06baab4
SB
1251
1252 while (len > 0) {
1253 cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1254 BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >>
1255 PAGE_CACHE_SHIFT);
1256 kaddr = block_ctx->datav[i];
1257 memcpy(dst, kaddr + offset_in_page, cur);
1258
1259 dst += cur;
1260 len -= cur;
1261 offset_in_page = 0;
1262 i++;
1263 }
1264}
1265
5db02760
SB
1266static int btrfsic_create_link_to_next_block(
1267 struct btrfsic_state *state,
1268 struct btrfsic_block *block,
1269 struct btrfsic_block_data_ctx *block_ctx,
1270 u64 next_bytenr,
1271 int limit_nesting,
1272 struct btrfsic_block_data_ctx *next_block_ctx,
1273 struct btrfsic_block **next_blockp,
1274 int force_iodone_flag,
1275 int *num_copiesp, int *mirror_nump,
1276 struct btrfs_disk_key *disk_key,
1277 u64 parent_generation)
1278{
1279 struct btrfsic_block *next_block = NULL;
1280 int ret;
1281 struct btrfsic_block_link *l;
1282 int did_alloc_block_link;
1283 int block_was_created;
1284
1285 *next_blockp = NULL;
1286 if (0 == *num_copiesp) {
1287 *num_copiesp =
5d964051 1288 btrfs_num_copies(state->root->fs_info,
e06baab4 1289 next_bytenr, state->metablock_size);
5db02760
SB
1290 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1291 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
c1c9ff7c 1292 next_bytenr, *num_copiesp);
5db02760
SB
1293 *mirror_nump = 1;
1294 }
1295
1296 if (*mirror_nump > *num_copiesp)
1297 return 0;
1298
1299 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1300 printk(KERN_INFO
1301 "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1302 *mirror_nump);
1303 ret = btrfsic_map_block(state, next_bytenr,
e06baab4 1304 state->metablock_size,
5db02760
SB
1305 next_block_ctx, *mirror_nump);
1306 if (ret) {
1307 printk(KERN_INFO
1308 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
c1c9ff7c 1309 next_bytenr, *mirror_nump);
5db02760
SB
1310 btrfsic_release_block_ctx(next_block_ctx);
1311 *next_blockp = NULL;
1312 return -1;
1313 }
1314
1315 next_block = btrfsic_block_lookup_or_add(state,
1316 next_block_ctx, "referenced ",
1317 1, force_iodone_flag,
1318 !force_iodone_flag,
1319 *mirror_nump,
1320 &block_was_created);
1321 if (NULL == next_block) {
1322 btrfsic_release_block_ctx(next_block_ctx);
1323 *next_blockp = NULL;
1324 return -1;
1325 }
1326 if (block_was_created) {
1327 l = NULL;
1328 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1329 } else {
1330 if (next_block->logical_bytenr != next_bytenr &&
1331 !(!next_block->is_metadata &&
1332 0 == next_block->logical_bytenr)) {
1333 printk(KERN_INFO
1334 "Referenced block @%llu (%s/%llu/%d)"
1335 " found in hash table, %c,"
1336 " bytenr mismatch (!= stored %llu).\n",
c1c9ff7c
GU
1337 next_bytenr, next_block_ctx->dev->name,
1338 next_block_ctx->dev_bytenr, *mirror_nump,
5db02760 1339 btrfsic_get_block_type(state, next_block),
c1c9ff7c 1340 next_block->logical_bytenr);
5db02760
SB
1341 } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1342 printk(KERN_INFO
1343 "Referenced block @%llu (%s/%llu/%d)"
1344 " found in hash table, %c.\n",
c1c9ff7c
GU
1345 next_bytenr, next_block_ctx->dev->name,
1346 next_block_ctx->dev_bytenr, *mirror_nump,
5db02760
SB
1347 btrfsic_get_block_type(state, next_block));
1348 next_block->logical_bytenr = next_bytenr;
1349
1350 next_block->mirror_num = *mirror_nump;
1351 l = btrfsic_block_link_hashtable_lookup(
1352 next_block_ctx->dev->bdev,
1353 next_block_ctx->dev_bytenr,
1354 block_ctx->dev->bdev,
1355 block_ctx->dev_bytenr,
1356 &state->block_link_hashtable);
1357 }
1358
1359 next_block->disk_key = *disk_key;
1360 if (NULL == l) {
1361 l = btrfsic_block_link_alloc();
1362 if (NULL == l) {
1363 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1364 btrfsic_release_block_ctx(next_block_ctx);
1365 *next_blockp = NULL;
1366 return -1;
1367 }
1368
1369 did_alloc_block_link = 1;
1370 l->block_ref_to = next_block;
1371 l->block_ref_from = block;
1372 l->ref_cnt = 1;
1373 l->parent_generation = parent_generation;
1374
1375 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1376 btrfsic_print_add_link(state, l);
1377
1378 list_add(&l->node_ref_to, &block->ref_to_list);
1379 list_add(&l->node_ref_from, &next_block->ref_from_list);
1380
1381 btrfsic_block_link_hashtable_add(l,
1382 &state->block_link_hashtable);
1383 } else {
1384 did_alloc_block_link = 0;
1385 if (0 == limit_nesting) {
1386 l->ref_cnt++;
1387 l->parent_generation = parent_generation;
1388 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1389 btrfsic_print_add_link(state, l);
1390 }
1391 }
1392
1393 if (limit_nesting > 0 && did_alloc_block_link) {
1394 ret = btrfsic_read_block(state, next_block_ctx);
e06baab4 1395 if (ret < (int)next_block_ctx->len) {
5db02760
SB
1396 printk(KERN_INFO
1397 "btrfsic: read block @logical %llu failed!\n",
c1c9ff7c 1398 next_bytenr);
5db02760
SB
1399 btrfsic_release_block_ctx(next_block_ctx);
1400 *next_blockp = NULL;
1401 return -1;
1402 }
1403
1404 *next_blockp = next_block;
1405 } else {
1406 *next_blockp = NULL;
1407 }
1408 (*mirror_nump)++;
1409
1410 return 0;
1411}
1412
1413static int btrfsic_handle_extent_data(
1414 struct btrfsic_state *state,
1415 struct btrfsic_block *block,
1416 struct btrfsic_block_data_ctx *block_ctx,
1417 u32 item_offset, int force_iodone_flag)
1418{
1419 int ret;
e06baab4
SB
1420 struct btrfs_file_extent_item file_extent_item;
1421 u64 file_extent_item_offset;
1422 u64 next_bytenr;
1423 u64 num_bytes;
1424 u64 generation;
5db02760
SB
1425 struct btrfsic_block_link *l;
1426
e06baab4
SB
1427 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1428 item_offset;
86ff7ffc
SB
1429 if (file_extent_item_offset +
1430 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1431 block_ctx->len) {
1432 printk(KERN_INFO
1433 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1434 block_ctx->start, block_ctx->dev->name);
1435 return -1;
1436 }
1437
1438 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1439 file_extent_item_offset,
1440 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1441 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
3cae210f 1442 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
86ff7ffc
SB
1443 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1444 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1445 file_extent_item.type,
3cae210f
QW
1446 btrfs_stack_file_extent_disk_bytenr(
1447 &file_extent_item));
86ff7ffc
SB
1448 return 0;
1449 }
1450
e06baab4
SB
1451 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1452 block_ctx->len) {
1453 printk(KERN_INFO
1454 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1455 block_ctx->start, block_ctx->dev->name);
1456 return -1;
1457 }
1458 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1459 file_extent_item_offset,
1460 sizeof(struct btrfs_file_extent_item));
e20d6c5b
JB
1461 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1462 if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1463 BTRFS_COMPRESS_NONE) {
1464 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1465 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1466 } else {
1467 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1468 }
3cae210f 1469 generation = btrfs_stack_file_extent_generation(&file_extent_item);
e06baab4 1470
5db02760
SB
1471 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1472 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1473 " offset = %llu, num_bytes = %llu\n",
e06baab4 1474 file_extent_item.type,
3cae210f 1475 btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
3cae210f 1476 btrfs_stack_file_extent_offset(&file_extent_item),
c1c9ff7c 1477 num_bytes);
5db02760
SB
1478 while (num_bytes > 0) {
1479 u32 chunk_len;
1480 int num_copies;
1481 int mirror_num;
1482
e06baab4
SB
1483 if (num_bytes > state->datablock_size)
1484 chunk_len = state->datablock_size;
5db02760
SB
1485 else
1486 chunk_len = num_bytes;
1487
1488 num_copies =
5d964051 1489 btrfs_num_copies(state->root->fs_info,
e06baab4 1490 next_bytenr, state->datablock_size);
5db02760
SB
1491 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1492 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
c1c9ff7c 1493 next_bytenr, num_copies);
5db02760
SB
1494 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1495 struct btrfsic_block_data_ctx next_block_ctx;
1496 struct btrfsic_block *next_block;
1497 int block_was_created;
1498
1499 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1500 printk(KERN_INFO "btrfsic_handle_extent_data("
1501 "mirror_num=%d)\n", mirror_num);
1502 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1503 printk(KERN_INFO
1504 "\tdisk_bytenr = %llu, num_bytes %u\n",
c1c9ff7c 1505 next_bytenr, chunk_len);
5db02760
SB
1506 ret = btrfsic_map_block(state, next_bytenr,
1507 chunk_len, &next_block_ctx,
1508 mirror_num);
1509 if (ret) {
1510 printk(KERN_INFO
1511 "btrfsic: btrfsic_map_block(@%llu,"
1512 " mirror=%d) failed!\n",
c1c9ff7c 1513 next_bytenr, mirror_num);
5db02760
SB
1514 return -1;
1515 }
1516
1517 next_block = btrfsic_block_lookup_or_add(
1518 state,
1519 &next_block_ctx,
1520 "referenced ",
1521 0,
1522 force_iodone_flag,
1523 !force_iodone_flag,
1524 mirror_num,
1525 &block_was_created);
1526 if (NULL == next_block) {
1527 printk(KERN_INFO
1528 "btrfsic: error, kmalloc failed!\n");
1529 btrfsic_release_block_ctx(&next_block_ctx);
1530 return -1;
1531 }
1532 if (!block_was_created) {
1533 if (next_block->logical_bytenr != next_bytenr &&
1534 !(!next_block->is_metadata &&
1535 0 == next_block->logical_bytenr)) {
1536 printk(KERN_INFO
1537 "Referenced block"
1538 " @%llu (%s/%llu/%d)"
1539 " found in hash table, D,"
1540 " bytenr mismatch"
1541 " (!= stored %llu).\n",
c1c9ff7c 1542 next_bytenr,
5db02760 1543 next_block_ctx.dev->name,
5db02760
SB
1544 next_block_ctx.dev_bytenr,
1545 mirror_num,
5db02760
SB
1546 next_block->logical_bytenr);
1547 }
1548 next_block->logical_bytenr = next_bytenr;
1549 next_block->mirror_num = mirror_num;
1550 }
1551
1552 l = btrfsic_block_link_lookup_or_add(state,
1553 &next_block_ctx,
1554 next_block, block,
1555 generation);
1556 btrfsic_release_block_ctx(&next_block_ctx);
1557 if (NULL == l)
1558 return -1;
1559 }
1560
1561 next_bytenr += chunk_len;
1562 num_bytes -= chunk_len;
1563 }
1564
1565 return 0;
1566}
1567
1568static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1569 struct btrfsic_block_data_ctx *block_ctx_out,
1570 int mirror_num)
1571{
1572 int ret;
1573 u64 length;
1574 struct btrfs_bio *multi = NULL;
1575 struct btrfs_device *device;
1576
1577 length = len;
3ec706c8 1578 ret = btrfs_map_block(state->root->fs_info, READ,
5db02760
SB
1579 bytenr, &length, &multi, mirror_num);
1580
61891923
SB
1581 if (ret) {
1582 block_ctx_out->start = 0;
1583 block_ctx_out->dev_bytenr = 0;
1584 block_ctx_out->len = 0;
1585 block_ctx_out->dev = NULL;
1586 block_ctx_out->datav = NULL;
1587 block_ctx_out->pagev = NULL;
1588 block_ctx_out->mem_to_free = NULL;
1589
1590 return ret;
1591 }
1592
5db02760
SB
1593 device = multi->stripes[0].dev;
1594 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1595 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1596 block_ctx_out->start = bytenr;
1597 block_ctx_out->len = len;
e06baab4
SB
1598 block_ctx_out->datav = NULL;
1599 block_ctx_out->pagev = NULL;
1600 block_ctx_out->mem_to_free = NULL;
5db02760 1601
61891923 1602 kfree(multi);
5db02760
SB
1603 if (NULL == block_ctx_out->dev) {
1604 ret = -ENXIO;
1605 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1606 }
1607
1608 return ret;
1609}
1610
1611static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1612 u32 len, struct block_device *bdev,
1613 struct btrfsic_block_data_ctx *block_ctx_out)
1614{
1615 block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1616 block_ctx_out->dev_bytenr = bytenr;
1617 block_ctx_out->start = bytenr;
1618 block_ctx_out->len = len;
e06baab4
SB
1619 block_ctx_out->datav = NULL;
1620 block_ctx_out->pagev = NULL;
1621 block_ctx_out->mem_to_free = NULL;
5db02760
SB
1622 if (NULL != block_ctx_out->dev) {
1623 return 0;
1624 } else {
1625 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1626 return -ENXIO;
1627 }
1628}
1629
1630static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1631{
e06baab4
SB
1632 if (block_ctx->mem_to_free) {
1633 unsigned int num_pages;
1634
1635 BUG_ON(!block_ctx->datav);
1636 BUG_ON(!block_ctx->pagev);
1637 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1638 PAGE_CACHE_SHIFT;
1639 while (num_pages > 0) {
1640 num_pages--;
1641 if (block_ctx->datav[num_pages]) {
1642 kunmap(block_ctx->pagev[num_pages]);
1643 block_ctx->datav[num_pages] = NULL;
1644 }
1645 if (block_ctx->pagev[num_pages]) {
1646 __free_page(block_ctx->pagev[num_pages]);
1647 block_ctx->pagev[num_pages] = NULL;
1648 }
1649 }
1650
1651 kfree(block_ctx->mem_to_free);
1652 block_ctx->mem_to_free = NULL;
1653 block_ctx->pagev = NULL;
1654 block_ctx->datav = NULL;
5db02760
SB
1655 }
1656}
1657
1658static int btrfsic_read_block(struct btrfsic_state *state,
1659 struct btrfsic_block_data_ctx *block_ctx)
1660{
e06baab4
SB
1661 unsigned int num_pages;
1662 unsigned int i;
1663 u64 dev_bytenr;
1664 int ret;
1665
1666 BUG_ON(block_ctx->datav);
1667 BUG_ON(block_ctx->pagev);
1668 BUG_ON(block_ctx->mem_to_free);
1669 if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
5db02760
SB
1670 printk(KERN_INFO
1671 "btrfsic: read_block() with unaligned bytenr %llu\n",
c1c9ff7c 1672 block_ctx->dev_bytenr);
5db02760
SB
1673 return -1;
1674 }
e06baab4
SB
1675
1676 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1677 PAGE_CACHE_SHIFT;
1678 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1679 sizeof(*block_ctx->pagev)) *
1680 num_pages, GFP_NOFS);
1681 if (!block_ctx->mem_to_free)
5db02760 1682 return -1;
e06baab4
SB
1683 block_ctx->datav = block_ctx->mem_to_free;
1684 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1685 for (i = 0; i < num_pages; i++) {
1686 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1687 if (!block_ctx->pagev[i])
1688 return -1;
5db02760
SB
1689 }
1690
e06baab4
SB
1691 dev_bytenr = block_ctx->dev_bytenr;
1692 for (i = 0; i < num_pages;) {
1693 struct bio *bio;
1694 unsigned int j;
e06baab4 1695
9be3395b 1696 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
e06baab4
SB
1697 if (!bio) {
1698 printk(KERN_INFO
1699 "btrfsic: bio_alloc() for %u pages failed!\n",
1700 num_pages - i);
1701 return -1;
1702 }
1703 bio->bi_bdev = block_ctx->dev->bdev;
4f024f37 1704 bio->bi_iter.bi_sector = dev_bytenr >> 9;
e06baab4
SB
1705
1706 for (j = i; j < num_pages; j++) {
1707 ret = bio_add_page(bio, block_ctx->pagev[j],
1708 PAGE_CACHE_SIZE, 0);
1709 if (PAGE_CACHE_SIZE != ret)
1710 break;
1711 }
1712 if (j == i) {
1713 printk(KERN_INFO
1714 "btrfsic: error, failed to add a single page!\n");
1715 return -1;
1716 }
33879d45 1717 if (submit_bio_wait(READ, bio)) {
e06baab4
SB
1718 printk(KERN_INFO
1719 "btrfsic: read error at logical %llu dev %s!\n",
1720 block_ctx->start, block_ctx->dev->name);
1721 bio_put(bio);
1722 return -1;
1723 }
1724 bio_put(bio);
1725 dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1726 i = j;
1727 }
1728 for (i = 0; i < num_pages; i++) {
1729 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1730 if (!block_ctx->datav[i]) {
1731 printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1732 block_ctx->dev->name);
1733 return -1;
1734 }
1735 }
5db02760
SB
1736
1737 return block_ctx->len;
1738}
1739
1740static void btrfsic_dump_database(struct btrfsic_state *state)
1741{
1742 struct list_head *elem_all;
1743
1744 BUG_ON(NULL == state);
1745
1746 printk(KERN_INFO "all_blocks_list:\n");
1747 list_for_each(elem_all, &state->all_blocks_list) {
1748 const struct btrfsic_block *const b_all =
1749 list_entry(elem_all, struct btrfsic_block,
1750 all_blocks_node);
1751 struct list_head *elem_ref_to;
1752 struct list_head *elem_ref_from;
1753
1754 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1755 btrfsic_get_block_type(state, b_all),
c1c9ff7c
GU
1756 b_all->logical_bytenr, b_all->dev_state->name,
1757 b_all->dev_bytenr, b_all->mirror_num);
5db02760
SB
1758
1759 list_for_each(elem_ref_to, &b_all->ref_to_list) {
1760 const struct btrfsic_block_link *const l =
1761 list_entry(elem_ref_to,
1762 struct btrfsic_block_link,
1763 node_ref_to);
1764
1765 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1766 " refers %u* to"
1767 " %c @%llu (%s/%llu/%d)\n",
1768 btrfsic_get_block_type(state, b_all),
c1c9ff7c
GU
1769 b_all->logical_bytenr, b_all->dev_state->name,
1770 b_all->dev_bytenr, b_all->mirror_num,
5db02760
SB
1771 l->ref_cnt,
1772 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
1773 l->block_ref_to->logical_bytenr,
1774 l->block_ref_to->dev_state->name,
c1c9ff7c 1775 l->block_ref_to->dev_bytenr,
5db02760
SB
1776 l->block_ref_to->mirror_num);
1777 }
1778
1779 list_for_each(elem_ref_from, &b_all->ref_from_list) {
1780 const struct btrfsic_block_link *const l =
1781 list_entry(elem_ref_from,
1782 struct btrfsic_block_link,
1783 node_ref_from);
1784
1785 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1786 " is ref %u* from"
1787 " %c @%llu (%s/%llu/%d)\n",
1788 btrfsic_get_block_type(state, b_all),
c1c9ff7c
GU
1789 b_all->logical_bytenr, b_all->dev_state->name,
1790 b_all->dev_bytenr, b_all->mirror_num,
5db02760
SB
1791 l->ref_cnt,
1792 btrfsic_get_block_type(state, l->block_ref_from),
5db02760
SB
1793 l->block_ref_from->logical_bytenr,
1794 l->block_ref_from->dev_state->name,
5db02760
SB
1795 l->block_ref_from->dev_bytenr,
1796 l->block_ref_from->mirror_num);
1797 }
1798
1799 printk(KERN_INFO "\n");
1800 }
1801}
1802
1803/*
1804 * Test whether the disk block contains a tree block (leaf or node)
1805 * (note that this test fails for the super block)
1806 */
1807static int btrfsic_test_for_metadata(struct btrfsic_state *state,
e06baab4 1808 char **datav, unsigned int num_pages)
5db02760
SB
1809{
1810 struct btrfs_header *h;
1811 u8 csum[BTRFS_CSUM_SIZE];
1812 u32 crc = ~(u32)0;
e06baab4 1813 unsigned int i;
5db02760 1814
e06baab4
SB
1815 if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1816 return 1; /* not metadata */
1817 num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1818 h = (struct btrfs_header *)datav[0];
5db02760
SB
1819
1820 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
e06baab4 1821 return 1;
5db02760 1822
e06baab4
SB
1823 for (i = 0; i < num_pages; i++) {
1824 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1825 size_t sublen = i ? PAGE_CACHE_SIZE :
1826 (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1827
0b947aff 1828 crc = btrfs_crc32c(crc, data, sublen);
e06baab4 1829 }
5db02760
SB
1830 btrfs_csum_final(crc, csum);
1831 if (memcmp(csum, h->csum, state->csum_size))
e06baab4 1832 return 1;
5db02760 1833
e06baab4 1834 return 0; /* is metadata */
5db02760
SB
1835}
1836
1837static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
e06baab4
SB
1838 u64 dev_bytenr, char **mapped_datav,
1839 unsigned int num_pages,
1840 struct bio *bio, int *bio_is_patched,
5db02760
SB
1841 struct buffer_head *bh,
1842 int submit_bio_bh_rw)
1843{
1844 int is_metadata;
1845 struct btrfsic_block *block;
1846 struct btrfsic_block_data_ctx block_ctx;
1847 int ret;
1848 struct btrfsic_state *state = dev_state->state;
1849 struct block_device *bdev = dev_state->bdev;
e06baab4 1850 unsigned int processed_len;
5db02760 1851
5db02760
SB
1852 if (NULL != bio_is_patched)
1853 *bio_is_patched = 0;
1854
e06baab4
SB
1855again:
1856 if (num_pages == 0)
1857 return;
1858
1859 processed_len = 0;
1860 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1861 num_pages));
1862
5db02760
SB
1863 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1864 &state->block_hashtable);
1865 if (NULL != block) {
0b485143 1866 u64 bytenr = 0;
5db02760
SB
1867 struct list_head *elem_ref_to;
1868 struct list_head *tmp_ref_to;
1869
1870 if (block->is_superblock) {
3cae210f
QW
1871 bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1872 mapped_datav[0]);
e06baab4
SB
1873 if (num_pages * PAGE_CACHE_SIZE <
1874 BTRFS_SUPER_INFO_SIZE) {
1875 printk(KERN_INFO
1876 "btrfsic: cannot work with too short bios!\n");
1877 return;
1878 }
5db02760 1879 is_metadata = 1;
e06baab4
SB
1880 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1881 processed_len = BTRFS_SUPER_INFO_SIZE;
5db02760
SB
1882 if (state->print_mask &
1883 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1884 printk(KERN_INFO
1885 "[before new superblock is written]:\n");
1886 btrfsic_dump_tree_sub(state, block, 0);
1887 }
1888 }
1889 if (is_metadata) {
1890 if (!block->is_superblock) {
e06baab4
SB
1891 if (num_pages * PAGE_CACHE_SIZE <
1892 state->metablock_size) {
1893 printk(KERN_INFO
1894 "btrfsic: cannot work with too short bios!\n");
1895 return;
1896 }
1897 processed_len = state->metablock_size;
3cae210f
QW
1898 bytenr = btrfs_stack_header_bytenr(
1899 (struct btrfs_header *)
1900 mapped_datav[0]);
5db02760
SB
1901 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1902 dev_state,
e06baab4 1903 dev_bytenr);
5db02760 1904 }
301993a4
SB
1905 if (block->logical_bytenr != bytenr &&
1906 !(!block->is_metadata &&
1907 block->logical_bytenr == 0))
5db02760
SB
1908 printk(KERN_INFO
1909 "Written block @%llu (%s/%llu/%d)"
1910 " found in hash table, %c,"
1911 " bytenr mismatch"
1912 " (!= stored %llu).\n",
c1c9ff7c 1913 bytenr, dev_state->name, dev_bytenr,
5db02760
SB
1914 block->mirror_num,
1915 btrfsic_get_block_type(state, block),
5db02760 1916 block->logical_bytenr);
301993a4 1917 else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
5db02760
SB
1918 printk(KERN_INFO
1919 "Written block @%llu (%s/%llu/%d)"
1920 " found in hash table, %c.\n",
c1c9ff7c 1921 bytenr, dev_state->name, dev_bytenr,
5db02760
SB
1922 block->mirror_num,
1923 btrfsic_get_block_type(state, block));
301993a4 1924 block->logical_bytenr = bytenr;
5db02760 1925 } else {
e06baab4
SB
1926 if (num_pages * PAGE_CACHE_SIZE <
1927 state->datablock_size) {
1928 printk(KERN_INFO
1929 "btrfsic: cannot work with too short bios!\n");
1930 return;
1931 }
1932 processed_len = state->datablock_size;
5db02760
SB
1933 bytenr = block->logical_bytenr;
1934 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1935 printk(KERN_INFO
1936 "Written block @%llu (%s/%llu/%d)"
1937 " found in hash table, %c.\n",
c1c9ff7c 1938 bytenr, dev_state->name, dev_bytenr,
5db02760
SB
1939 block->mirror_num,
1940 btrfsic_get_block_type(state, block));
1941 }
1942
1943 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1944 printk(KERN_INFO
1945 "ref_to_list: %cE, ref_from_list: %cE\n",
1946 list_empty(&block->ref_to_list) ? ' ' : '!',
1947 list_empty(&block->ref_from_list) ? ' ' : '!');
1948 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1949 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1950 " @%llu (%s/%llu/%d), old(gen=%llu,"
1951 " objectid=%llu, type=%d, offset=%llu),"
1952 " new(gen=%llu),"
1953 " which is referenced by most recent superblock"
1954 " (superblockgen=%llu)!\n",
c1c9ff7c
GU
1955 btrfsic_get_block_type(state, block), bytenr,
1956 dev_state->name, dev_bytenr, block->mirror_num,
1957 block->generation,
3cae210f 1958 btrfs_disk_key_objectid(&block->disk_key),
5db02760 1959 block->disk_key.type,
3cae210f 1960 btrfs_disk_key_offset(&block->disk_key),
3cae210f
QW
1961 btrfs_stack_header_generation(
1962 (struct btrfs_header *) mapped_datav[0]),
5db02760
SB
1963 state->max_superblock_generation);
1964 btrfsic_dump_tree(state);
1965 }
1966
1967 if (!block->is_iodone && !block->never_written) {
1968 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1969 " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1970 " which is not yet iodone!\n",
c1c9ff7c
GU
1971 btrfsic_get_block_type(state, block), bytenr,
1972 dev_state->name, dev_bytenr, block->mirror_num,
1973 block->generation,
3cae210f
QW
1974 btrfs_stack_header_generation(
1975 (struct btrfs_header *)
1976 mapped_datav[0]));
5db02760
SB
1977 /* it would not be safe to go on */
1978 btrfsic_dump_tree(state);
e06baab4 1979 goto continue_loop;
5db02760
SB
1980 }
1981
1982 /*
1983 * Clear all references of this block. Do not free
1984 * the block itself even if is not referenced anymore
1985 * because it still carries valueable information
1986 * like whether it was ever written and IO completed.
1987 */
1988 list_for_each_safe(elem_ref_to, tmp_ref_to,
1989 &block->ref_to_list) {
1990 struct btrfsic_block_link *const l =
1991 list_entry(elem_ref_to,
1992 struct btrfsic_block_link,
1993 node_ref_to);
1994
1995 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1996 btrfsic_print_rem_link(state, l);
1997 l->ref_cnt--;
1998 if (0 == l->ref_cnt) {
1999 list_del(&l->node_ref_to);
2000 list_del(&l->node_ref_from);
2001 btrfsic_block_link_hashtable_remove(l);
2002 btrfsic_block_link_free(l);
2003 }
2004 }
2005
2006 if (block->is_superblock)
e06baab4
SB
2007 ret = btrfsic_map_superblock(state, bytenr,
2008 processed_len,
5db02760
SB
2009 bdev, &block_ctx);
2010 else
e06baab4 2011 ret = btrfsic_map_block(state, bytenr, processed_len,
5db02760
SB
2012 &block_ctx, 0);
2013 if (ret) {
2014 printk(KERN_INFO
2015 "btrfsic: btrfsic_map_block(root @%llu)"
c1c9ff7c 2016 " failed!\n", bytenr);
e06baab4 2017 goto continue_loop;
5db02760 2018 }
e06baab4 2019 block_ctx.datav = mapped_datav;
5db02760
SB
2020 /* the following is required in case of writes to mirrors,
2021 * use the same that was used for the lookup */
2022 block_ctx.dev = dev_state;
2023 block_ctx.dev_bytenr = dev_bytenr;
2024
2025 if (is_metadata || state->include_extent_data) {
2026 block->never_written = 0;
2027 block->iodone_w_error = 0;
2028 if (NULL != bio) {
2029 block->is_iodone = 0;
2030 BUG_ON(NULL == bio_is_patched);
2031 if (!*bio_is_patched) {
2032 block->orig_bio_bh_private =
2033 bio->bi_private;
2034 block->orig_bio_bh_end_io.bio =
2035 bio->bi_end_io;
2036 block->next_in_same_bio = NULL;
2037 bio->bi_private = block;
2038 bio->bi_end_io = btrfsic_bio_end_io;
2039 *bio_is_patched = 1;
2040 } else {
2041 struct btrfsic_block *chained_block =
2042 (struct btrfsic_block *)
2043 bio->bi_private;
2044
2045 BUG_ON(NULL == chained_block);
2046 block->orig_bio_bh_private =
2047 chained_block->orig_bio_bh_private;
2048 block->orig_bio_bh_end_io.bio =
2049 chained_block->orig_bio_bh_end_io.
2050 bio;
2051 block->next_in_same_bio = chained_block;
2052 bio->bi_private = block;
2053 }
2054 } else if (NULL != bh) {
2055 block->is_iodone = 0;
2056 block->orig_bio_bh_private = bh->b_private;
2057 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2058 block->next_in_same_bio = NULL;
2059 bh->b_private = block;
2060 bh->b_end_io = btrfsic_bh_end_io;
2061 } else {
2062 block->is_iodone = 1;
2063 block->orig_bio_bh_private = NULL;
2064 block->orig_bio_bh_end_io.bio = NULL;
2065 block->next_in_same_bio = NULL;
2066 }
2067 }
2068
2069 block->flush_gen = dev_state->last_flush_gen + 1;
2070 block->submit_bio_bh_rw = submit_bio_bh_rw;
2071 if (is_metadata) {
2072 block->logical_bytenr = bytenr;
2073 block->is_metadata = 1;
2074 if (block->is_superblock) {
e06baab4
SB
2075 BUG_ON(PAGE_CACHE_SIZE !=
2076 BTRFS_SUPER_INFO_SIZE);
5db02760
SB
2077 ret = btrfsic_process_written_superblock(
2078 state,
2079 block,
2080 (struct btrfs_super_block *)
e06baab4 2081 mapped_datav[0]);
5db02760
SB
2082 if (state->print_mask &
2083 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2084 printk(KERN_INFO
2085 "[after new superblock is written]:\n");
2086 btrfsic_dump_tree_sub(state, block, 0);
2087 }
2088 } else {
2089 block->mirror_num = 0; /* unknown */
2090 ret = btrfsic_process_metablock(
2091 state,
2092 block,
2093 &block_ctx,
5db02760
SB
2094 0, 0);
2095 }
2096 if (ret)
2097 printk(KERN_INFO
2098 "btrfsic: btrfsic_process_metablock"
2099 "(root @%llu) failed!\n",
c1c9ff7c 2100 dev_bytenr);
5db02760
SB
2101 } else {
2102 block->is_metadata = 0;
2103 block->mirror_num = 0; /* unknown */
2104 block->generation = BTRFSIC_GENERATION_UNKNOWN;
2105 if (!state->include_extent_data
2106 && list_empty(&block->ref_from_list)) {
2107 /*
2108 * disk block is overwritten with extent
2109 * data (not meta data) and we are configured
2110 * to not include extent data: take the
2111 * chance and free the block's memory
2112 */
2113 btrfsic_block_hashtable_remove(block);
2114 list_del(&block->all_blocks_node);
2115 btrfsic_block_free(block);
2116 }
2117 }
2118 btrfsic_release_block_ctx(&block_ctx);
2119 } else {
2120 /* block has not been found in hash table */
2121 u64 bytenr;
2122
2123 if (!is_metadata) {
e06baab4 2124 processed_len = state->datablock_size;
5db02760
SB
2125 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2126 printk(KERN_INFO "Written block (%s/%llu/?)"
2127 " !found in hash table, D.\n",
c1c9ff7c 2128 dev_state->name, dev_bytenr);
e06baab4
SB
2129 if (!state->include_extent_data) {
2130 /* ignore that written D block */
2131 goto continue_loop;
2132 }
5db02760
SB
2133
2134 /* this is getting ugly for the
2135 * include_extent_data case... */
2136 bytenr = 0; /* unknown */
2137 block_ctx.start = bytenr;
e06baab4
SB
2138 block_ctx.len = processed_len;
2139 block_ctx.mem_to_free = NULL;
2140 block_ctx.pagev = NULL;
5db02760 2141 } else {
e06baab4 2142 processed_len = state->metablock_size;
3cae210f
QW
2143 bytenr = btrfs_stack_header_bytenr(
2144 (struct btrfs_header *)
2145 mapped_datav[0]);
5db02760 2146 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
e06baab4 2147 dev_bytenr);
5db02760
SB
2148 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2149 printk(KERN_INFO
2150 "Written block @%llu (%s/%llu/?)"
2151 " !found in hash table, M.\n",
c1c9ff7c 2152 bytenr, dev_state->name, dev_bytenr);
5db02760 2153
e06baab4
SB
2154 ret = btrfsic_map_block(state, bytenr, processed_len,
2155 &block_ctx, 0);
5db02760
SB
2156 if (ret) {
2157 printk(KERN_INFO
2158 "btrfsic: btrfsic_map_block(root @%llu)"
2159 " failed!\n",
c1c9ff7c 2160 dev_bytenr);
e06baab4 2161 goto continue_loop;
5db02760
SB
2162 }
2163 }
e06baab4 2164 block_ctx.datav = mapped_datav;
5db02760
SB
2165 /* the following is required in case of writes to mirrors,
2166 * use the same that was used for the lookup */
2167 block_ctx.dev = dev_state;
2168 block_ctx.dev_bytenr = dev_bytenr;
2169
2170 block = btrfsic_block_alloc();
2171 if (NULL == block) {
2172 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2173 btrfsic_release_block_ctx(&block_ctx);
e06baab4 2174 goto continue_loop;
5db02760
SB
2175 }
2176 block->dev_state = dev_state;
2177 block->dev_bytenr = dev_bytenr;
2178 block->logical_bytenr = bytenr;
2179 block->is_metadata = is_metadata;
2180 block->never_written = 0;
2181 block->iodone_w_error = 0;
2182 block->mirror_num = 0; /* unknown */
2183 block->flush_gen = dev_state->last_flush_gen + 1;
2184 block->submit_bio_bh_rw = submit_bio_bh_rw;
2185 if (NULL != bio) {
2186 block->is_iodone = 0;
2187 BUG_ON(NULL == bio_is_patched);
2188 if (!*bio_is_patched) {
2189 block->orig_bio_bh_private = bio->bi_private;
2190 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2191 block->next_in_same_bio = NULL;
2192 bio->bi_private = block;
2193 bio->bi_end_io = btrfsic_bio_end_io;
2194 *bio_is_patched = 1;
2195 } else {
2196 struct btrfsic_block *chained_block =
2197 (struct btrfsic_block *)
2198 bio->bi_private;
2199
2200 BUG_ON(NULL == chained_block);
2201 block->orig_bio_bh_private =
2202 chained_block->orig_bio_bh_private;
2203 block->orig_bio_bh_end_io.bio =
2204 chained_block->orig_bio_bh_end_io.bio;
2205 block->next_in_same_bio = chained_block;
2206 bio->bi_private = block;
2207 }
2208 } else if (NULL != bh) {
2209 block->is_iodone = 0;
2210 block->orig_bio_bh_private = bh->b_private;
2211 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2212 block->next_in_same_bio = NULL;
2213 bh->b_private = block;
2214 bh->b_end_io = btrfsic_bh_end_io;
2215 } else {
2216 block->is_iodone = 1;
2217 block->orig_bio_bh_private = NULL;
2218 block->orig_bio_bh_end_io.bio = NULL;
2219 block->next_in_same_bio = NULL;
2220 }
2221 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2222 printk(KERN_INFO
2223 "New written %c-block @%llu (%s/%llu/%d)\n",
2224 is_metadata ? 'M' : 'D',
c1c9ff7c
GU
2225 block->logical_bytenr, block->dev_state->name,
2226 block->dev_bytenr, block->mirror_num);
5db02760
SB
2227 list_add(&block->all_blocks_node, &state->all_blocks_list);
2228 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2229
2230 if (is_metadata) {
2231 ret = btrfsic_process_metablock(state, block,
e06baab4 2232 &block_ctx, 0, 0);
5db02760
SB
2233 if (ret)
2234 printk(KERN_INFO
2235 "btrfsic: process_metablock(root @%llu)"
2236 " failed!\n",
c1c9ff7c 2237 dev_bytenr);
5db02760
SB
2238 }
2239 btrfsic_release_block_ctx(&block_ctx);
2240 }
e06baab4
SB
2241
2242continue_loop:
2243 BUG_ON(!processed_len);
2244 dev_bytenr += processed_len;
2245 mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2246 num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2247 goto again;
5db02760
SB
2248}
2249
2250static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2251{
2252 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2253 int iodone_w_error;
2254
2255 /* mutex is not held! This is not save if IO is not yet completed
2256 * on umount */
2257 iodone_w_error = 0;
2258 if (bio_error_status)
2259 iodone_w_error = 1;
2260
2261 BUG_ON(NULL == block);
2262 bp->bi_private = block->orig_bio_bh_private;
2263 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2264
2265 do {
2266 struct btrfsic_block *next_block;
2267 struct btrfsic_dev_state *const dev_state = block->dev_state;
2268
2269 if ((dev_state->state->print_mask &
2270 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2271 printk(KERN_INFO
2272 "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2273 bio_error_status,
2274 btrfsic_get_block_type(dev_state->state, block),
c1c9ff7c
GU
2275 block->logical_bytenr, dev_state->name,
2276 block->dev_bytenr, block->mirror_num);
5db02760
SB
2277 next_block = block->next_in_same_bio;
2278 block->iodone_w_error = iodone_w_error;
2279 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2280 dev_state->last_flush_gen++;
2281 if ((dev_state->state->print_mask &
2282 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2283 printk(KERN_INFO
2284 "bio_end_io() new %s flush_gen=%llu\n",
2285 dev_state->name,
5db02760
SB
2286 dev_state->last_flush_gen);
2287 }
2288 if (block->submit_bio_bh_rw & REQ_FUA)
2289 block->flush_gen = 0; /* FUA completed means block is
2290 * on disk */
2291 block->is_iodone = 1; /* for FLUSH, this releases the block */
2292 block = next_block;
2293 } while (NULL != block);
2294
2295 bp->bi_end_io(bp, bio_error_status);
2296}
2297
2298static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2299{
2300 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2301 int iodone_w_error = !uptodate;
2302 struct btrfsic_dev_state *dev_state;
2303
2304 BUG_ON(NULL == block);
2305 dev_state = block->dev_state;
2306 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2307 printk(KERN_INFO
2308 "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2309 iodone_w_error,
2310 btrfsic_get_block_type(dev_state->state, block),
c1c9ff7c
GU
2311 block->logical_bytenr, block->dev_state->name,
2312 block->dev_bytenr, block->mirror_num);
5db02760
SB
2313
2314 block->iodone_w_error = iodone_w_error;
2315 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2316 dev_state->last_flush_gen++;
2317 if ((dev_state->state->print_mask &
2318 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2319 printk(KERN_INFO
2320 "bh_end_io() new %s flush_gen=%llu\n",
c1c9ff7c 2321 dev_state->name, dev_state->last_flush_gen);
5db02760
SB
2322 }
2323 if (block->submit_bio_bh_rw & REQ_FUA)
2324 block->flush_gen = 0; /* FUA completed means block is on disk */
2325
2326 bh->b_private = block->orig_bio_bh_private;
2327 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2328 block->is_iodone = 1; /* for FLUSH, this releases the block */
2329 bh->b_end_io(bh, uptodate);
2330}
2331
2332static int btrfsic_process_written_superblock(
2333 struct btrfsic_state *state,
2334 struct btrfsic_block *const superblock,
2335 struct btrfs_super_block *const super_hdr)
2336{
2337 int pass;
2338
2339 superblock->generation = btrfs_super_generation(super_hdr);
2340 if (!(superblock->generation > state->max_superblock_generation ||
2341 0 == state->max_superblock_generation)) {
2342 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2343 printk(KERN_INFO
2344 "btrfsic: superblock @%llu (%s/%llu/%d)"
2345 " with old gen %llu <= %llu\n",
c1c9ff7c 2346 superblock->logical_bytenr,
5db02760 2347 superblock->dev_state->name,
c1c9ff7c 2348 superblock->dev_bytenr, superblock->mirror_num,
5db02760 2349 btrfs_super_generation(super_hdr),
5db02760
SB
2350 state->max_superblock_generation);
2351 } else {
2352 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2353 printk(KERN_INFO
2354 "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2355 " with new gen %llu > %llu\n",
c1c9ff7c 2356 superblock->logical_bytenr,
5db02760 2357 superblock->dev_state->name,
c1c9ff7c 2358 superblock->dev_bytenr, superblock->mirror_num,
5db02760 2359 btrfs_super_generation(super_hdr),
5db02760
SB
2360 state->max_superblock_generation);
2361
2362 state->max_superblock_generation =
2363 btrfs_super_generation(super_hdr);
2364 state->latest_superblock = superblock;
2365 }
2366
2367 for (pass = 0; pass < 3; pass++) {
2368 int ret;
2369 u64 next_bytenr;
2370 struct btrfsic_block *next_block;
2371 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2372 struct btrfsic_block_link *l;
2373 int num_copies;
2374 int mirror_num;
2375 const char *additional_string = NULL;
35a3621b 2376 struct btrfs_disk_key tmp_disk_key = {0};
5db02760 2377
3cae210f
QW
2378 btrfs_set_disk_key_objectid(&tmp_disk_key,
2379 BTRFS_ROOT_ITEM_KEY);
2380 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
5db02760
SB
2381
2382 switch (pass) {
2383 case 0:
3cae210f
QW
2384 btrfs_set_disk_key_objectid(&tmp_disk_key,
2385 BTRFS_ROOT_TREE_OBJECTID);
5db02760
SB
2386 additional_string = "root ";
2387 next_bytenr = btrfs_super_root(super_hdr);
2388 if (state->print_mask &
2389 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 2390 printk(KERN_INFO "root@%llu\n", next_bytenr);
5db02760
SB
2391 break;
2392 case 1:
3cae210f
QW
2393 btrfs_set_disk_key_objectid(&tmp_disk_key,
2394 BTRFS_CHUNK_TREE_OBJECTID);
5db02760
SB
2395 additional_string = "chunk ";
2396 next_bytenr = btrfs_super_chunk_root(super_hdr);
2397 if (state->print_mask &
2398 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 2399 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
5db02760
SB
2400 break;
2401 case 2:
3cae210f
QW
2402 btrfs_set_disk_key_objectid(&tmp_disk_key,
2403 BTRFS_TREE_LOG_OBJECTID);
5db02760
SB
2404 additional_string = "log ";
2405 next_bytenr = btrfs_super_log_root(super_hdr);
2406 if (0 == next_bytenr)
2407 continue;
2408 if (state->print_mask &
2409 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 2410 printk(KERN_INFO "log@%llu\n", next_bytenr);
5db02760
SB
2411 break;
2412 }
2413
2414 num_copies =
5d964051 2415 btrfs_num_copies(state->root->fs_info,
e06baab4 2416 next_bytenr, BTRFS_SUPER_INFO_SIZE);
5db02760
SB
2417 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2418 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
c1c9ff7c 2419 next_bytenr, num_copies);
5db02760
SB
2420 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2421 int was_created;
2422
2423 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2424 printk(KERN_INFO
2425 "btrfsic_process_written_superblock("
2426 "mirror_num=%d)\n", mirror_num);
e06baab4
SB
2427 ret = btrfsic_map_block(state, next_bytenr,
2428 BTRFS_SUPER_INFO_SIZE,
5db02760
SB
2429 &tmp_next_block_ctx,
2430 mirror_num);
2431 if (ret) {
2432 printk(KERN_INFO
2433 "btrfsic: btrfsic_map_block(@%llu,"
2434 " mirror=%d) failed!\n",
c1c9ff7c 2435 next_bytenr, mirror_num);
5db02760
SB
2436 return -1;
2437 }
2438
2439 next_block = btrfsic_block_lookup_or_add(
2440 state,
2441 &tmp_next_block_ctx,
2442 additional_string,
2443 1, 0, 1,
2444 mirror_num,
2445 &was_created);
2446 if (NULL == next_block) {
2447 printk(KERN_INFO
2448 "btrfsic: error, kmalloc failed!\n");
2449 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2450 return -1;
2451 }
2452
2453 next_block->disk_key = tmp_disk_key;
2454 if (was_created)
2455 next_block->generation =
2456 BTRFSIC_GENERATION_UNKNOWN;
2457 l = btrfsic_block_link_lookup_or_add(
2458 state,
2459 &tmp_next_block_ctx,
2460 next_block,
2461 superblock,
2462 BTRFSIC_GENERATION_UNKNOWN);
2463 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2464 if (NULL == l)
2465 return -1;
2466 }
2467 }
2468
fae7f21c 2469 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
5db02760 2470 btrfsic_dump_tree(state);
5db02760
SB
2471
2472 return 0;
2473}
2474
2475static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2476 struct btrfsic_block *const block,
2477 int recursion_level)
2478{
2479 struct list_head *elem_ref_to;
2480 int ret = 0;
2481
2482 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2483 /*
2484 * Note that this situation can happen and does not
2485 * indicate an error in regular cases. It happens
2486 * when disk blocks are freed and later reused.
2487 * The check-integrity module is not aware of any
2488 * block free operations, it just recognizes block
2489 * write operations. Therefore it keeps the linkage
2490 * information for a block until a block is
2491 * rewritten. This can temporarily cause incorrect
2492 * and even circular linkage informations. This
2493 * causes no harm unless such blocks are referenced
2494 * by the most recent super block.
2495 */
2496 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2497 printk(KERN_INFO
2498 "btrfsic: abort cyclic linkage (case 1).\n");
2499
2500 return ret;
2501 }
2502
2503 /*
2504 * This algorithm is recursive because the amount of used stack
2505 * space is very small and the max recursion depth is limited.
2506 */
2507 list_for_each(elem_ref_to, &block->ref_to_list) {
2508 const struct btrfsic_block_link *const l =
2509 list_entry(elem_ref_to, struct btrfsic_block_link,
2510 node_ref_to);
2511
2512 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2513 printk(KERN_INFO
2514 "rl=%d, %c @%llu (%s/%llu/%d)"
2515 " %u* refers to %c @%llu (%s/%llu/%d)\n",
2516 recursion_level,
2517 btrfsic_get_block_type(state, block),
c1c9ff7c
GU
2518 block->logical_bytenr, block->dev_state->name,
2519 block->dev_bytenr, block->mirror_num,
5db02760
SB
2520 l->ref_cnt,
2521 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
2522 l->block_ref_to->logical_bytenr,
2523 l->block_ref_to->dev_state->name,
c1c9ff7c 2524 l->block_ref_to->dev_bytenr,
5db02760
SB
2525 l->block_ref_to->mirror_num);
2526 if (l->block_ref_to->never_written) {
2527 printk(KERN_INFO "btrfs: attempt to write superblock"
2528 " which references block %c @%llu (%s/%llu/%d)"
2529 " which is never written!\n",
2530 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
2531 l->block_ref_to->logical_bytenr,
2532 l->block_ref_to->dev_state->name,
c1c9ff7c 2533 l->block_ref_to->dev_bytenr,
5db02760
SB
2534 l->block_ref_to->mirror_num);
2535 ret = -1;
2536 } else if (!l->block_ref_to->is_iodone) {
2537 printk(KERN_INFO "btrfs: attempt to write superblock"
2538 " which references block %c @%llu (%s/%llu/%d)"
2539 " which is not yet iodone!\n",
2540 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
2541 l->block_ref_to->logical_bytenr,
2542 l->block_ref_to->dev_state->name,
c1c9ff7c 2543 l->block_ref_to->dev_bytenr,
5db02760
SB
2544 l->block_ref_to->mirror_num);
2545 ret = -1;
62856a9b
SB
2546 } else if (l->block_ref_to->iodone_w_error) {
2547 printk(KERN_INFO "btrfs: attempt to write superblock"
2548 " which references block %c @%llu (%s/%llu/%d)"
2549 " which has write error!\n",
2550 btrfsic_get_block_type(state, l->block_ref_to),
62856a9b
SB
2551 l->block_ref_to->logical_bytenr,
2552 l->block_ref_to->dev_state->name,
c1c9ff7c 2553 l->block_ref_to->dev_bytenr,
62856a9b
SB
2554 l->block_ref_to->mirror_num);
2555 ret = -1;
5db02760
SB
2556 } else if (l->parent_generation !=
2557 l->block_ref_to->generation &&
2558 BTRFSIC_GENERATION_UNKNOWN !=
2559 l->parent_generation &&
2560 BTRFSIC_GENERATION_UNKNOWN !=
2561 l->block_ref_to->generation) {
2562 printk(KERN_INFO "btrfs: attempt to write superblock"
2563 " which references block %c @%llu (%s/%llu/%d)"
2564 " with generation %llu !="
2565 " parent generation %llu!\n",
2566 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
2567 l->block_ref_to->logical_bytenr,
2568 l->block_ref_to->dev_state->name,
c1c9ff7c 2569 l->block_ref_to->dev_bytenr,
5db02760 2570 l->block_ref_to->mirror_num,
c1c9ff7c
GU
2571 l->block_ref_to->generation,
2572 l->parent_generation);
5db02760
SB
2573 ret = -1;
2574 } else if (l->block_ref_to->flush_gen >
2575 l->block_ref_to->dev_state->last_flush_gen) {
2576 printk(KERN_INFO "btrfs: attempt to write superblock"
2577 " which references block %c @%llu (%s/%llu/%d)"
2578 " which is not flushed out of disk's write cache"
2579 " (block flush_gen=%llu,"
2580 " dev->flush_gen=%llu)!\n",
2581 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
2582 l->block_ref_to->logical_bytenr,
2583 l->block_ref_to->dev_state->name,
c1c9ff7c
GU
2584 l->block_ref_to->dev_bytenr,
2585 l->block_ref_to->mirror_num, block->flush_gen,
5db02760
SB
2586 l->block_ref_to->dev_state->last_flush_gen);
2587 ret = -1;
2588 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2589 l->block_ref_to,
2590 recursion_level +
2591 1)) {
2592 ret = -1;
2593 }
2594 }
2595
2596 return ret;
2597}
2598
2599static int btrfsic_is_block_ref_by_superblock(
2600 const struct btrfsic_state *state,
2601 const struct btrfsic_block *block,
2602 int recursion_level)
2603{
2604 struct list_head *elem_ref_from;
2605
2606 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2607 /* refer to comment at "abort cyclic linkage (case 1)" */
2608 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2609 printk(KERN_INFO
2610 "btrfsic: abort cyclic linkage (case 2).\n");
2611
2612 return 0;
2613 }
2614
2615 /*
2616 * This algorithm is recursive because the amount of used stack space
2617 * is very small and the max recursion depth is limited.
2618 */
2619 list_for_each(elem_ref_from, &block->ref_from_list) {
2620 const struct btrfsic_block_link *const l =
2621 list_entry(elem_ref_from, struct btrfsic_block_link,
2622 node_ref_from);
2623
2624 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2625 printk(KERN_INFO
2626 "rl=%d, %c @%llu (%s/%llu/%d)"
2627 " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2628 recursion_level,
2629 btrfsic_get_block_type(state, block),
c1c9ff7c
GU
2630 block->logical_bytenr, block->dev_state->name,
2631 block->dev_bytenr, block->mirror_num,
5db02760
SB
2632 l->ref_cnt,
2633 btrfsic_get_block_type(state, l->block_ref_from),
5db02760
SB
2634 l->block_ref_from->logical_bytenr,
2635 l->block_ref_from->dev_state->name,
5db02760
SB
2636 l->block_ref_from->dev_bytenr,
2637 l->block_ref_from->mirror_num);
2638 if (l->block_ref_from->is_superblock &&
2639 state->latest_superblock->dev_bytenr ==
2640 l->block_ref_from->dev_bytenr &&
2641 state->latest_superblock->dev_state->bdev ==
2642 l->block_ref_from->dev_state->bdev)
2643 return 1;
2644 else if (btrfsic_is_block_ref_by_superblock(state,
2645 l->block_ref_from,
2646 recursion_level +
2647 1))
2648 return 1;
2649 }
2650
2651 return 0;
2652}
2653
2654static void btrfsic_print_add_link(const struct btrfsic_state *state,
2655 const struct btrfsic_block_link *l)
2656{
2657 printk(KERN_INFO
2658 "Add %u* link from %c @%llu (%s/%llu/%d)"
2659 " to %c @%llu (%s/%llu/%d).\n",
2660 l->ref_cnt,
2661 btrfsic_get_block_type(state, l->block_ref_from),
c1c9ff7c 2662 l->block_ref_from->logical_bytenr,
5db02760 2663 l->block_ref_from->dev_state->name,
c1c9ff7c 2664 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
5db02760 2665 btrfsic_get_block_type(state, l->block_ref_to),
c1c9ff7c
GU
2666 l->block_ref_to->logical_bytenr,
2667 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
5db02760
SB
2668 l->block_ref_to->mirror_num);
2669}
2670
2671static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2672 const struct btrfsic_block_link *l)
2673{
2674 printk(KERN_INFO
2675 "Rem %u* link from %c @%llu (%s/%llu/%d)"
2676 " to %c @%llu (%s/%llu/%d).\n",
2677 l->ref_cnt,
2678 btrfsic_get_block_type(state, l->block_ref_from),
c1c9ff7c 2679 l->block_ref_from->logical_bytenr,
5db02760 2680 l->block_ref_from->dev_state->name,
c1c9ff7c 2681 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
5db02760 2682 btrfsic_get_block_type(state, l->block_ref_to),
c1c9ff7c
GU
2683 l->block_ref_to->logical_bytenr,
2684 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
5db02760
SB
2685 l->block_ref_to->mirror_num);
2686}
2687
2688static char btrfsic_get_block_type(const struct btrfsic_state *state,
2689 const struct btrfsic_block *block)
2690{
2691 if (block->is_superblock &&
2692 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2693 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2694 return 'S';
2695 else if (block->is_superblock)
2696 return 's';
2697 else if (block->is_metadata)
2698 return 'M';
2699 else
2700 return 'D';
2701}
2702
2703static void btrfsic_dump_tree(const struct btrfsic_state *state)
2704{
2705 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2706}
2707
2708static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2709 const struct btrfsic_block *block,
2710 int indent_level)
2711{
2712 struct list_head *elem_ref_to;
2713 int indent_add;
2714 static char buf[80];
2715 int cursor_position;
2716
2717 /*
2718 * Should better fill an on-stack buffer with a complete line and
2719 * dump it at once when it is time to print a newline character.
2720 */
2721
2722 /*
2723 * This algorithm is recursive because the amount of used stack space
2724 * is very small and the max recursion depth is limited.
2725 */
2726 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2727 btrfsic_get_block_type(state, block),
c1c9ff7c
GU
2728 block->logical_bytenr, block->dev_state->name,
2729 block->dev_bytenr, block->mirror_num);
5db02760
SB
2730 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2731 printk("[...]\n");
2732 return;
2733 }
2734 printk(buf);
2735 indent_level += indent_add;
2736 if (list_empty(&block->ref_to_list)) {
2737 printk("\n");
2738 return;
2739 }
2740 if (block->mirror_num > 1 &&
2741 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2742 printk(" [...]\n");
2743 return;
2744 }
2745
2746 cursor_position = indent_level;
2747 list_for_each(elem_ref_to, &block->ref_to_list) {
2748 const struct btrfsic_block_link *const l =
2749 list_entry(elem_ref_to, struct btrfsic_block_link,
2750 node_ref_to);
2751
2752 while (cursor_position < indent_level) {
2753 printk(" ");
2754 cursor_position++;
2755 }
2756 if (l->ref_cnt > 1)
2757 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2758 else
2759 indent_add = sprintf(buf, " --> ");
2760 if (indent_level + indent_add >
2761 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2762 printk("[...]\n");
2763 cursor_position = 0;
2764 continue;
2765 }
2766
2767 printk(buf);
2768
2769 btrfsic_dump_tree_sub(state, l->block_ref_to,
2770 indent_level + indent_add);
2771 cursor_position = 0;
2772 }
2773}
2774
2775static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2776 struct btrfsic_state *state,
2777 struct btrfsic_block_data_ctx *next_block_ctx,
2778 struct btrfsic_block *next_block,
2779 struct btrfsic_block *from_block,
2780 u64 parent_generation)
2781{
2782 struct btrfsic_block_link *l;
2783
2784 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2785 next_block_ctx->dev_bytenr,
2786 from_block->dev_state->bdev,
2787 from_block->dev_bytenr,
2788 &state->block_link_hashtable);
2789 if (NULL == l) {
2790 l = btrfsic_block_link_alloc();
2791 if (NULL == l) {
2792 printk(KERN_INFO
2793 "btrfsic: error, kmalloc" " failed!\n");
2794 return NULL;
2795 }
2796
2797 l->block_ref_to = next_block;
2798 l->block_ref_from = from_block;
2799 l->ref_cnt = 1;
2800 l->parent_generation = parent_generation;
2801
2802 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2803 btrfsic_print_add_link(state, l);
2804
2805 list_add(&l->node_ref_to, &from_block->ref_to_list);
2806 list_add(&l->node_ref_from, &next_block->ref_from_list);
2807
2808 btrfsic_block_link_hashtable_add(l,
2809 &state->block_link_hashtable);
2810 } else {
2811 l->ref_cnt++;
2812 l->parent_generation = parent_generation;
2813 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2814 btrfsic_print_add_link(state, l);
2815 }
2816
2817 return l;
2818}
2819
2820static struct btrfsic_block *btrfsic_block_lookup_or_add(
2821 struct btrfsic_state *state,
2822 struct btrfsic_block_data_ctx *block_ctx,
2823 const char *additional_string,
2824 int is_metadata,
2825 int is_iodone,
2826 int never_written,
2827 int mirror_num,
2828 int *was_created)
2829{
2830 struct btrfsic_block *block;
2831
2832 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2833 block_ctx->dev_bytenr,
2834 &state->block_hashtable);
2835 if (NULL == block) {
2836 struct btrfsic_dev_state *dev_state;
2837
2838 block = btrfsic_block_alloc();
2839 if (NULL == block) {
2840 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2841 return NULL;
2842 }
2843 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2844 if (NULL == dev_state) {
2845 printk(KERN_INFO
2846 "btrfsic: error, lookup dev_state failed!\n");
2847 btrfsic_block_free(block);
2848 return NULL;
2849 }
2850 block->dev_state = dev_state;
2851 block->dev_bytenr = block_ctx->dev_bytenr;
2852 block->logical_bytenr = block_ctx->start;
2853 block->is_metadata = is_metadata;
2854 block->is_iodone = is_iodone;
2855 block->never_written = never_written;
2856 block->mirror_num = mirror_num;
2857 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2858 printk(KERN_INFO
2859 "New %s%c-block @%llu (%s/%llu/%d)\n",
2860 additional_string,
2861 btrfsic_get_block_type(state, block),
c1c9ff7c
GU
2862 block->logical_bytenr, dev_state->name,
2863 block->dev_bytenr, mirror_num);
5db02760
SB
2864 list_add(&block->all_blocks_node, &state->all_blocks_list);
2865 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2866 if (NULL != was_created)
2867 *was_created = 1;
2868 } else {
2869 if (NULL != was_created)
2870 *was_created = 0;
2871 }
2872
2873 return block;
2874}
2875
2876static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2877 u64 bytenr,
2878 struct btrfsic_dev_state *dev_state,
e06baab4 2879 u64 dev_bytenr)
5db02760
SB
2880{
2881 int num_copies;
2882 int mirror_num;
2883 int ret;
2884 struct btrfsic_block_data_ctx block_ctx;
2885 int match = 0;
2886
5d964051 2887 num_copies = btrfs_num_copies(state->root->fs_info,
e06baab4 2888 bytenr, state->metablock_size);
5db02760
SB
2889
2890 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
e06baab4 2891 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
5db02760
SB
2892 &block_ctx, mirror_num);
2893 if (ret) {
2894 printk(KERN_INFO "btrfsic:"
2895 " btrfsic_map_block(logical @%llu,"
2896 " mirror %d) failed!\n",
c1c9ff7c 2897 bytenr, mirror_num);
5db02760
SB
2898 continue;
2899 }
2900
2901 if (dev_state->bdev == block_ctx.dev->bdev &&
2902 dev_bytenr == block_ctx.dev_bytenr) {
2903 match++;
2904 btrfsic_release_block_ctx(&block_ctx);
2905 break;
2906 }
2907 btrfsic_release_block_ctx(&block_ctx);
2908 }
2909
fae7f21c 2910 if (WARN_ON(!match)) {
5db02760
SB
2911 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2912 " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2913 " phys_bytenr=%llu)!\n",
c1c9ff7c 2914 bytenr, dev_state->name, dev_bytenr);
5db02760 2915 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
e06baab4
SB
2916 ret = btrfsic_map_block(state, bytenr,
2917 state->metablock_size,
5db02760
SB
2918 &block_ctx, mirror_num);
2919 if (ret)
2920 continue;
2921
2922 printk(KERN_INFO "Read logical bytenr @%llu maps to"
2923 " (%s/%llu/%d)\n",
c1c9ff7c
GU
2924 bytenr, block_ctx.dev->name,
2925 block_ctx.dev_bytenr, mirror_num);
5db02760 2926 }
5db02760
SB
2927 }
2928}
2929
2930static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2931 struct block_device *bdev)
2932{
2933 struct btrfsic_dev_state *ds;
2934
2935 ds = btrfsic_dev_state_hashtable_lookup(bdev,
2936 &btrfsic_dev_state_hashtable);
2937 return ds;
2938}
2939
2940int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2941{
2942 struct btrfsic_dev_state *dev_state;
2943
2944 if (!btrfsic_is_initialized)
2945 return submit_bh(rw, bh);
2946
2947 mutex_lock(&btrfsic_mutex);
2948 /* since btrfsic_submit_bh() might also be called before
2949 * btrfsic_mount(), this might return NULL */
2950 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2951
2952 /* Only called to write the superblock (incl. FLUSH/FUA) */
2953 if (NULL != dev_state &&
2954 (rw & WRITE) && bh->b_size > 0) {
2955 u64 dev_bytenr;
2956
2957 dev_bytenr = 4096 * bh->b_blocknr;
2958 if (dev_state->state->print_mask &
2959 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2960 printk(KERN_INFO
fce29364 2961 "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
8d78eb16 2962 " size=%zu, data=%p, bdev=%p)\n",
fce29364 2963 rw, (unsigned long long)bh->b_blocknr,
8d78eb16 2964 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
5db02760 2965 btrfsic_process_written_block(dev_state, dev_bytenr,
e06baab4 2966 &bh->b_data, 1, NULL,
5db02760
SB
2967 NULL, bh, rw);
2968 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2969 if (dev_state->state->print_mask &
2970 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2971 printk(KERN_INFO
e06baab4 2972 "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
5db02760
SB
2973 rw, bh->b_bdev);
2974 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2975 if ((dev_state->state->print_mask &
2976 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2977 BTRFSIC_PRINT_MASK_VERBOSE)))
2978 printk(KERN_INFO
2979 "btrfsic_submit_bh(%s) with FLUSH"
2980 " but dummy block already in use"
2981 " (ignored)!\n",
2982 dev_state->name);
2983 } else {
2984 struct btrfsic_block *const block =
2985 &dev_state->dummy_block_for_bio_bh_flush;
2986
2987 block->is_iodone = 0;
2988 block->never_written = 0;
2989 block->iodone_w_error = 0;
2990 block->flush_gen = dev_state->last_flush_gen + 1;
2991 block->submit_bio_bh_rw = rw;
2992 block->orig_bio_bh_private = bh->b_private;
2993 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2994 block->next_in_same_bio = NULL;
2995 bh->b_private = block;
2996 bh->b_end_io = btrfsic_bh_end_io;
2997 }
2998 }
2999 mutex_unlock(&btrfsic_mutex);
3000 return submit_bh(rw, bh);
3001}
3002
33879d45 3003static void __btrfsic_submit_bio(int rw, struct bio *bio)
5db02760
SB
3004{
3005 struct btrfsic_dev_state *dev_state;
3006
33879d45 3007 if (!btrfsic_is_initialized)
5db02760 3008 return;
5db02760
SB
3009
3010 mutex_lock(&btrfsic_mutex);
3011 /* since btrfsic_submit_bio() is also called before
3012 * btrfsic_mount(), this might return NULL */
3013 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3014 if (NULL != dev_state &&
3015 (rw & WRITE) && NULL != bio->bi_io_vec) {
3016 unsigned int i;
3017 u64 dev_bytenr;
56d140f5 3018 u64 cur_bytenr;
5db02760 3019 int bio_is_patched;
e06baab4 3020 char **mapped_datav;
5db02760 3021
4f024f37 3022 dev_bytenr = 512 * bio->bi_iter.bi_sector;
5db02760
SB
3023 bio_is_patched = 0;
3024 if (dev_state->state->print_mask &
3025 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3026 printk(KERN_INFO
3027 "submit_bio(rw=0x%x, bi_vcnt=%u,"
fce29364
GU
3028 " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
3029 rw, bio->bi_vcnt,
4f024f37
KO
3030 (unsigned long long)bio->bi_iter.bi_sector,
3031 dev_bytenr, bio->bi_bdev);
5db02760 3032
e06baab4
SB
3033 mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3034 GFP_NOFS);
3035 if (!mapped_datav)
3036 goto leave;
56d140f5 3037 cur_bytenr = dev_bytenr;
5db02760 3038 for (i = 0; i < bio->bi_vcnt; i++) {
e06baab4
SB
3039 BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3040 mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3041 if (!mapped_datav[i]) {
3042 while (i > 0) {
3043 i--;
3044 kunmap(bio->bi_io_vec[i].bv_page);
3045 }
3046 kfree(mapped_datav);
3047 goto leave;
3048 }
56d140f5
SB
3049 if (dev_state->state->print_mask &
3050 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
5db02760 3051 printk(KERN_INFO
56d140f5
SB
3052 "#%u: bytenr=%llu, len=%u, offset=%u\n",
3053 i, cur_bytenr, bio->bi_io_vec[i].bv_len,
5db02760 3054 bio->bi_io_vec[i].bv_offset);
56d140f5 3055 cur_bytenr += bio->bi_io_vec[i].bv_len;
e06baab4
SB
3056 }
3057 btrfsic_process_written_block(dev_state, dev_bytenr,
3058 mapped_datav, bio->bi_vcnt,
3059 bio, &bio_is_patched,
3060 NULL, rw);
3061 while (i > 0) {
3062 i--;
5db02760 3063 kunmap(bio->bi_io_vec[i].bv_page);
5db02760 3064 }
e06baab4 3065 kfree(mapped_datav);
5db02760
SB
3066 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3067 if (dev_state->state->print_mask &
3068 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3069 printk(KERN_INFO
e06baab4 3070 "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
5db02760
SB
3071 rw, bio->bi_bdev);
3072 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3073 if ((dev_state->state->print_mask &
3074 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3075 BTRFSIC_PRINT_MASK_VERBOSE)))
3076 printk(KERN_INFO
3077 "btrfsic_submit_bio(%s) with FLUSH"
3078 " but dummy block already in use"
3079 " (ignored)!\n",
3080 dev_state->name);
3081 } else {
3082 struct btrfsic_block *const block =
3083 &dev_state->dummy_block_for_bio_bh_flush;
3084
3085 block->is_iodone = 0;
3086 block->never_written = 0;
3087 block->iodone_w_error = 0;
3088 block->flush_gen = dev_state->last_flush_gen + 1;
3089 block->submit_bio_bh_rw = rw;
3090 block->orig_bio_bh_private = bio->bi_private;
3091 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3092 block->next_in_same_bio = NULL;
3093 bio->bi_private = block;
3094 bio->bi_end_io = btrfsic_bio_end_io;
3095 }
3096 }
e06baab4 3097leave:
5db02760 3098 mutex_unlock(&btrfsic_mutex);
33879d45 3099}
5db02760 3100
33879d45
KO
3101void btrfsic_submit_bio(int rw, struct bio *bio)
3102{
3103 __btrfsic_submit_bio(rw, bio);
5db02760
SB
3104 submit_bio(rw, bio);
3105}
3106
33879d45
KO
3107int btrfsic_submit_bio_wait(int rw, struct bio *bio)
3108{
3109 __btrfsic_submit_bio(rw, bio);
3110 return submit_bio_wait(rw, bio);
3111}
3112
5db02760
SB
3113int btrfsic_mount(struct btrfs_root *root,
3114 struct btrfs_fs_devices *fs_devices,
3115 int including_extent_data, u32 print_mask)
3116{
3117 int ret;
3118 struct btrfsic_state *state;
3119 struct list_head *dev_head = &fs_devices->devices;
3120 struct btrfs_device *device;
3121
e06baab4
SB
3122 if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3123 printk(KERN_INFO
3124 "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
778746b5 3125 root->nodesize, PAGE_CACHE_SIZE);
e06baab4
SB
3126 return -1;
3127 }
e06baab4
SB
3128 if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3129 printk(KERN_INFO
3130 "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
778746b5 3131 root->sectorsize, PAGE_CACHE_SIZE);
e06baab4
SB
3132 return -1;
3133 }
5db02760
SB
3134 state = kzalloc(sizeof(*state), GFP_NOFS);
3135 if (NULL == state) {
3136 printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3137 return -1;
3138 }
3139
3140 if (!btrfsic_is_initialized) {
3141 mutex_init(&btrfsic_mutex);
3142 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3143 btrfsic_is_initialized = 1;
3144 }
3145 mutex_lock(&btrfsic_mutex);
3146 state->root = root;
3147 state->print_mask = print_mask;
3148 state->include_extent_data = including_extent_data;
3149 state->csum_size = 0;
e06baab4
SB
3150 state->metablock_size = root->nodesize;
3151 state->datablock_size = root->sectorsize;
5db02760
SB
3152 INIT_LIST_HEAD(&state->all_blocks_list);
3153 btrfsic_block_hashtable_init(&state->block_hashtable);
3154 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3155 state->max_superblock_generation = 0;
3156 state->latest_superblock = NULL;
3157
3158 list_for_each_entry(device, dev_head, dev_list) {
3159 struct btrfsic_dev_state *ds;
3160 char *p;
3161
3162 if (!device->bdev || !device->name)
3163 continue;
3164
3165 ds = btrfsic_dev_state_alloc();
3166 if (NULL == ds) {
3167 printk(KERN_INFO
3168 "btrfs check-integrity: kmalloc() failed!\n");
3169 mutex_unlock(&btrfsic_mutex);
3170 return -1;
3171 }
3172 ds->bdev = device->bdev;
3173 ds->state = state;
3174 bdevname(ds->bdev, ds->name);
3175 ds->name[BDEVNAME_SIZE - 1] = '\0';
3176 for (p = ds->name; *p != '\0'; p++);
3177 while (p > ds->name && *p != '/')
3178 p--;
3179 if (*p == '/')
3180 p++;
3181 strlcpy(ds->name, p, sizeof(ds->name));
3182 btrfsic_dev_state_hashtable_add(ds,
3183 &btrfsic_dev_state_hashtable);
3184 }
3185
3186 ret = btrfsic_process_superblock(state, fs_devices);
3187 if (0 != ret) {
3188 mutex_unlock(&btrfsic_mutex);
3189 btrfsic_unmount(root, fs_devices);
3190 return ret;
3191 }
3192
3193 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3194 btrfsic_dump_database(state);
3195 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3196 btrfsic_dump_tree(state);
3197
3198 mutex_unlock(&btrfsic_mutex);
3199 return 0;
3200}
3201
3202void btrfsic_unmount(struct btrfs_root *root,
3203 struct btrfs_fs_devices *fs_devices)
3204{
3205 struct list_head *elem_all;
3206 struct list_head *tmp_all;
3207 struct btrfsic_state *state;
3208 struct list_head *dev_head = &fs_devices->devices;
3209 struct btrfs_device *device;
3210
3211 if (!btrfsic_is_initialized)
3212 return;
3213
3214 mutex_lock(&btrfsic_mutex);
3215
3216 state = NULL;
3217 list_for_each_entry(device, dev_head, dev_list) {
3218 struct btrfsic_dev_state *ds;
3219
3220 if (!device->bdev || !device->name)
3221 continue;
3222
3223 ds = btrfsic_dev_state_hashtable_lookup(
3224 device->bdev,
3225 &btrfsic_dev_state_hashtable);
3226 if (NULL != ds) {
3227 state = ds->state;
3228 btrfsic_dev_state_hashtable_remove(ds);
3229 btrfsic_dev_state_free(ds);
3230 }
3231 }
3232
3233 if (NULL == state) {
3234 printk(KERN_INFO
3235 "btrfsic: error, cannot find state information"
3236 " on umount!\n");
3237 mutex_unlock(&btrfsic_mutex);
3238 return;
3239 }
3240
3241 /*
3242 * Don't care about keeping the lists' state up to date,
3243 * just free all memory that was allocated dynamically.
3244 * Free the blocks and the block_links.
3245 */
3246 list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3247 struct btrfsic_block *const b_all =
3248 list_entry(elem_all, struct btrfsic_block,
3249 all_blocks_node);
3250 struct list_head *elem_ref_to;
3251 struct list_head *tmp_ref_to;
3252
3253 list_for_each_safe(elem_ref_to, tmp_ref_to,
3254 &b_all->ref_to_list) {
3255 struct btrfsic_block_link *const l =
3256 list_entry(elem_ref_to,
3257 struct btrfsic_block_link,
3258 node_ref_to);
3259
3260 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3261 btrfsic_print_rem_link(state, l);
3262
3263 l->ref_cnt--;
3264 if (0 == l->ref_cnt)
3265 btrfsic_block_link_free(l);
3266 }
3267
48235a68 3268 if (b_all->is_iodone || b_all->never_written)
5db02760
SB
3269 btrfsic_block_free(b_all);
3270 else
3271 printk(KERN_INFO "btrfs: attempt to free %c-block"
3272 " @%llu (%s/%llu/%d) on umount which is"
3273 " not yet iodone!\n",
3274 btrfsic_get_block_type(state, b_all),
c1c9ff7c
GU
3275 b_all->logical_bytenr, b_all->dev_state->name,
3276 b_all->dev_bytenr, b_all->mirror_num);
5db02760
SB
3277 }
3278
3279 mutex_unlock(&btrfsic_mutex);
3280
3281 kfree(state);
3282}