block: Abstract out bvec iterator
[linux-2.6-block.git] / fs / btrfs / check-integrity.c
CommitLineData
5db02760
SB
1/*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19/*
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
25 *
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
62856a9b
SB
40 * was called and no write error was indicated and a
41 * FLUSH request to the device where these blocks are
42 * located was received and completed.
5db02760
SB
43 * 2b. All referenced blocks need to have a generation
44 * number which is equal to the parent's number.
45 *
46 * One issue that was found using this module was that the log
47 * tree on disk became temporarily corrupted because disk blocks
48 * that had been in use for the log tree had been freed and
49 * reused too early, while being referenced by the written super
50 * block.
51 *
52 * The search term in the kernel log that can be used to filter
53 * on the existence of detected integrity issues is
54 * "btrfs: attempt".
55 *
56 * The integrity check is enabled via mount options. These
57 * mount options are only supported if the integrity check
58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59 *
60 * Example #1, apply integrity checks to all metadata:
61 * mount /dev/sdb1 /mnt -o check_int
62 *
63 * Example #2, apply integrity checks to all metadata and
64 * to data extents:
65 * mount /dev/sdb1 /mnt -o check_int_data
66 *
67 * Example #3, apply integrity checks to all metadata and dump
68 * the tree that the super block references to kernel messages
69 * each time after a super block was written:
70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71 *
72 * If the integrity check tool is included and activated in
73 * the mount options, plenty of kernel memory is used, and
74 * plenty of additional CPU cycles are spent. Enabling this
75 * functionality is not intended for normal use. In most
76 * cases, unless you are a btrfs developer who needs to verify
77 * the integrity of (super)-block write requests, do not
78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79 * include and compile the integrity check tool.
56d140f5
SB
80 *
81 * Expect millions of lines of information in the kernel log with an
82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83 * kernel config to at least 26 (which is 64MB). Usually the value is
84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85 * changed like this before LOG_BUF_SHIFT can be set to a high value:
86 * config LOG_BUF_SHIFT
87 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88 * range 12 30
5db02760
SB
89 */
90
91#include <linux/sched.h>
92#include <linux/slab.h>
93#include <linux/buffer_head.h>
94#include <linux/mutex.h>
95#include <linux/crc32c.h>
96#include <linux/genhd.h>
97#include <linux/blkdev.h>
98#include "ctree.h"
99#include "disk-io.h"
100#include "transaction.h"
101#include "extent_io.h"
5db02760
SB
102#include "volumes.h"
103#include "print-tree.h"
104#include "locking.h"
105#include "check-integrity.h"
606686ee 106#include "rcu-string.h"
5db02760
SB
107
108#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
109#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
110#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
111#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
112#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
113#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
114#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
115#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
116 * excluding " [...]" */
5db02760
SB
117#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
118
119/*
120 * The definition of the bitmask fields for the print_mask.
121 * They are specified with the mount option check_integrity_print_mask.
122 */
123#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
124#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
125#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
126#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
127#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
128#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
129#define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
130#define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
131#define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
132#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
133#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
134#define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
135#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
56d140f5 136#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
5db02760
SB
137
138struct btrfsic_dev_state;
139struct btrfsic_state;
140
141struct btrfsic_block {
142 u32 magic_num; /* only used for debug purposes */
143 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
144 unsigned int is_superblock:1; /* if it is one of the superblocks */
145 unsigned int is_iodone:1; /* if is done by lower subsystem */
146 unsigned int iodone_w_error:1; /* error was indicated to endio */
147 unsigned int never_written:1; /* block was added because it was
148 * referenced, not because it was
149 * written */
cb3806ec 150 unsigned int mirror_num; /* large enough to hold
5db02760
SB
151 * BTRFS_SUPER_MIRROR_MAX */
152 struct btrfsic_dev_state *dev_state;
153 u64 dev_bytenr; /* key, physical byte num on disk */
154 u64 logical_bytenr; /* logical byte num on disk */
155 u64 generation;
156 struct btrfs_disk_key disk_key; /* extra info to print in case of
157 * issues, will not always be correct */
158 struct list_head collision_resolving_node; /* list node */
159 struct list_head all_blocks_node; /* list node */
160
161 /* the following two lists contain block_link items */
162 struct list_head ref_to_list; /* list */
163 struct list_head ref_from_list; /* list */
164 struct btrfsic_block *next_in_same_bio;
165 void *orig_bio_bh_private;
166 union {
167 bio_end_io_t *bio;
168 bh_end_io_t *bh;
169 } orig_bio_bh_end_io;
170 int submit_bio_bh_rw;
171 u64 flush_gen; /* only valid if !never_written */
172};
173
174/*
175 * Elements of this type are allocated dynamically and required because
176 * each block object can refer to and can be ref from multiple blocks.
177 * The key to lookup them in the hashtable is the dev_bytenr of
178 * the block ref to plus the one from the block refered from.
179 * The fact that they are searchable via a hashtable and that a
180 * ref_cnt is maintained is not required for the btrfs integrity
181 * check algorithm itself, it is only used to make the output more
182 * beautiful in case that an error is detected (an error is defined
183 * as a write operation to a block while that block is still referenced).
184 */
185struct btrfsic_block_link {
186 u32 magic_num; /* only used for debug purposes */
187 u32 ref_cnt;
188 struct list_head node_ref_to; /* list node */
189 struct list_head node_ref_from; /* list node */
190 struct list_head collision_resolving_node; /* list node */
191 struct btrfsic_block *block_ref_to;
192 struct btrfsic_block *block_ref_from;
193 u64 parent_generation;
194};
195
196struct btrfsic_dev_state {
197 u32 magic_num; /* only used for debug purposes */
198 struct block_device *bdev;
199 struct btrfsic_state *state;
200 struct list_head collision_resolving_node; /* list node */
201 struct btrfsic_block dummy_block_for_bio_bh_flush;
202 u64 last_flush_gen;
203 char name[BDEVNAME_SIZE];
204};
205
206struct btrfsic_block_hashtable {
207 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
208};
209
210struct btrfsic_block_link_hashtable {
211 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
212};
213
214struct btrfsic_dev_state_hashtable {
215 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
216};
217
218struct btrfsic_block_data_ctx {
219 u64 start; /* virtual bytenr */
220 u64 dev_bytenr; /* physical bytenr on device */
221 u32 len;
222 struct btrfsic_dev_state *dev;
e06baab4
SB
223 char **datav;
224 struct page **pagev;
225 void *mem_to_free;
5db02760
SB
226};
227
228/* This structure is used to implement recursion without occupying
229 * any stack space, refer to btrfsic_process_metablock() */
230struct btrfsic_stack_frame {
231 u32 magic;
232 u32 nr;
233 int error;
234 int i;
235 int limit_nesting;
236 int num_copies;
237 int mirror_num;
238 struct btrfsic_block *block;
239 struct btrfsic_block_data_ctx *block_ctx;
240 struct btrfsic_block *next_block;
241 struct btrfsic_block_data_ctx next_block_ctx;
242 struct btrfs_header *hdr;
243 struct btrfsic_stack_frame *prev;
244};
245
246/* Some state per mounted filesystem */
247struct btrfsic_state {
248 u32 print_mask;
249 int include_extent_data;
250 int csum_size;
251 struct list_head all_blocks_list;
252 struct btrfsic_block_hashtable block_hashtable;
253 struct btrfsic_block_link_hashtable block_link_hashtable;
254 struct btrfs_root *root;
255 u64 max_superblock_generation;
256 struct btrfsic_block *latest_superblock;
e06baab4
SB
257 u32 metablock_size;
258 u32 datablock_size;
5db02760
SB
259};
260
261static void btrfsic_block_init(struct btrfsic_block *b);
262static struct btrfsic_block *btrfsic_block_alloc(void);
263static void btrfsic_block_free(struct btrfsic_block *b);
264static void btrfsic_block_link_init(struct btrfsic_block_link *n);
265static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
266static void btrfsic_block_link_free(struct btrfsic_block_link *n);
267static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
268static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
269static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
270static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
271static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
272 struct btrfsic_block_hashtable *h);
273static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
274static struct btrfsic_block *btrfsic_block_hashtable_lookup(
275 struct block_device *bdev,
276 u64 dev_bytenr,
277 struct btrfsic_block_hashtable *h);
278static void btrfsic_block_link_hashtable_init(
279 struct btrfsic_block_link_hashtable *h);
280static void btrfsic_block_link_hashtable_add(
281 struct btrfsic_block_link *l,
282 struct btrfsic_block_link_hashtable *h);
283static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
284static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
285 struct block_device *bdev_ref_to,
286 u64 dev_bytenr_ref_to,
287 struct block_device *bdev_ref_from,
288 u64 dev_bytenr_ref_from,
289 struct btrfsic_block_link_hashtable *h);
290static void btrfsic_dev_state_hashtable_init(
291 struct btrfsic_dev_state_hashtable *h);
292static void btrfsic_dev_state_hashtable_add(
293 struct btrfsic_dev_state *ds,
294 struct btrfsic_dev_state_hashtable *h);
295static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
296static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
297 struct block_device *bdev,
298 struct btrfsic_dev_state_hashtable *h);
299static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
300static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
301static int btrfsic_process_superblock(struct btrfsic_state *state,
302 struct btrfs_fs_devices *fs_devices);
303static int btrfsic_process_metablock(struct btrfsic_state *state,
304 struct btrfsic_block *block,
305 struct btrfsic_block_data_ctx *block_ctx,
5db02760 306 int limit_nesting, int force_iodone_flag);
e06baab4
SB
307static void btrfsic_read_from_block_data(
308 struct btrfsic_block_data_ctx *block_ctx,
309 void *dst, u32 offset, size_t len);
5db02760
SB
310static int btrfsic_create_link_to_next_block(
311 struct btrfsic_state *state,
312 struct btrfsic_block *block,
313 struct btrfsic_block_data_ctx
314 *block_ctx, u64 next_bytenr,
315 int limit_nesting,
316 struct btrfsic_block_data_ctx *next_block_ctx,
317 struct btrfsic_block **next_blockp,
318 int force_iodone_flag,
319 int *num_copiesp, int *mirror_nump,
320 struct btrfs_disk_key *disk_key,
321 u64 parent_generation);
322static int btrfsic_handle_extent_data(struct btrfsic_state *state,
323 struct btrfsic_block *block,
324 struct btrfsic_block_data_ctx *block_ctx,
325 u32 item_offset, int force_iodone_flag);
326static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
327 struct btrfsic_block_data_ctx *block_ctx_out,
328 int mirror_num);
329static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
330 u32 len, struct block_device *bdev,
331 struct btrfsic_block_data_ctx *block_ctx_out);
332static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
333static int btrfsic_read_block(struct btrfsic_state *state,
334 struct btrfsic_block_data_ctx *block_ctx);
335static void btrfsic_dump_database(struct btrfsic_state *state);
336static int btrfsic_test_for_metadata(struct btrfsic_state *state,
e06baab4 337 char **datav, unsigned int num_pages);
5db02760 338static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
e06baab4
SB
339 u64 dev_bytenr, char **mapped_datav,
340 unsigned int num_pages,
341 struct bio *bio, int *bio_is_patched,
5db02760
SB
342 struct buffer_head *bh,
343 int submit_bio_bh_rw);
344static int btrfsic_process_written_superblock(
345 struct btrfsic_state *state,
346 struct btrfsic_block *const block,
347 struct btrfs_super_block *const super_hdr);
348static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
349static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
350static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
351 const struct btrfsic_block *block,
352 int recursion_level);
353static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
354 struct btrfsic_block *const block,
355 int recursion_level);
356static void btrfsic_print_add_link(const struct btrfsic_state *state,
357 const struct btrfsic_block_link *l);
358static void btrfsic_print_rem_link(const struct btrfsic_state *state,
359 const struct btrfsic_block_link *l);
360static char btrfsic_get_block_type(const struct btrfsic_state *state,
361 const struct btrfsic_block *block);
362static void btrfsic_dump_tree(const struct btrfsic_state *state);
363static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
364 const struct btrfsic_block *block,
365 int indent_level);
366static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
367 struct btrfsic_state *state,
368 struct btrfsic_block_data_ctx *next_block_ctx,
369 struct btrfsic_block *next_block,
370 struct btrfsic_block *from_block,
371 u64 parent_generation);
372static struct btrfsic_block *btrfsic_block_lookup_or_add(
373 struct btrfsic_state *state,
374 struct btrfsic_block_data_ctx *block_ctx,
375 const char *additional_string,
376 int is_metadata,
377 int is_iodone,
378 int never_written,
379 int mirror_num,
380 int *was_created);
381static int btrfsic_process_superblock_dev_mirror(
382 struct btrfsic_state *state,
383 struct btrfsic_dev_state *dev_state,
384 struct btrfs_device *device,
385 int superblock_mirror_num,
386 struct btrfsic_dev_state **selected_dev_state,
387 struct btrfs_super_block *selected_super);
388static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
389 struct block_device *bdev);
390static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
391 u64 bytenr,
392 struct btrfsic_dev_state *dev_state,
e06baab4 393 u64 dev_bytenr);
5db02760
SB
394
395static struct mutex btrfsic_mutex;
396static int btrfsic_is_initialized;
397static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
398
399
400static void btrfsic_block_init(struct btrfsic_block *b)
401{
402 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
403 b->dev_state = NULL;
404 b->dev_bytenr = 0;
405 b->logical_bytenr = 0;
406 b->generation = BTRFSIC_GENERATION_UNKNOWN;
407 b->disk_key.objectid = 0;
408 b->disk_key.type = 0;
409 b->disk_key.offset = 0;
410 b->is_metadata = 0;
411 b->is_superblock = 0;
412 b->is_iodone = 0;
413 b->iodone_w_error = 0;
414 b->never_written = 0;
415 b->mirror_num = 0;
416 b->next_in_same_bio = NULL;
417 b->orig_bio_bh_private = NULL;
418 b->orig_bio_bh_end_io.bio = NULL;
419 INIT_LIST_HEAD(&b->collision_resolving_node);
420 INIT_LIST_HEAD(&b->all_blocks_node);
421 INIT_LIST_HEAD(&b->ref_to_list);
422 INIT_LIST_HEAD(&b->ref_from_list);
423 b->submit_bio_bh_rw = 0;
424 b->flush_gen = 0;
425}
426
427static struct btrfsic_block *btrfsic_block_alloc(void)
428{
429 struct btrfsic_block *b;
430
431 b = kzalloc(sizeof(*b), GFP_NOFS);
432 if (NULL != b)
433 btrfsic_block_init(b);
434
435 return b;
436}
437
438static void btrfsic_block_free(struct btrfsic_block *b)
439{
440 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
441 kfree(b);
442}
443
444static void btrfsic_block_link_init(struct btrfsic_block_link *l)
445{
446 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
447 l->ref_cnt = 1;
448 INIT_LIST_HEAD(&l->node_ref_to);
449 INIT_LIST_HEAD(&l->node_ref_from);
450 INIT_LIST_HEAD(&l->collision_resolving_node);
451 l->block_ref_to = NULL;
452 l->block_ref_from = NULL;
453}
454
455static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
456{
457 struct btrfsic_block_link *l;
458
459 l = kzalloc(sizeof(*l), GFP_NOFS);
460 if (NULL != l)
461 btrfsic_block_link_init(l);
462
463 return l;
464}
465
466static void btrfsic_block_link_free(struct btrfsic_block_link *l)
467{
468 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
469 kfree(l);
470}
471
472static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
473{
474 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
475 ds->bdev = NULL;
476 ds->state = NULL;
477 ds->name[0] = '\0';
478 INIT_LIST_HEAD(&ds->collision_resolving_node);
479 ds->last_flush_gen = 0;
480 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
481 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
482 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
483}
484
485static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
486{
487 struct btrfsic_dev_state *ds;
488
489 ds = kzalloc(sizeof(*ds), GFP_NOFS);
490 if (NULL != ds)
491 btrfsic_dev_state_init(ds);
492
493 return ds;
494}
495
496static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
497{
498 BUG_ON(!(NULL == ds ||
499 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
500 kfree(ds);
501}
502
503static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
504{
505 int i;
506
507 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
508 INIT_LIST_HEAD(h->table + i);
509}
510
511static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
512 struct btrfsic_block_hashtable *h)
513{
514 const unsigned int hashval =
515 (((unsigned int)(b->dev_bytenr >> 16)) ^
516 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
517 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
518
519 list_add(&b->collision_resolving_node, h->table + hashval);
520}
521
522static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
523{
524 list_del(&b->collision_resolving_node);
525}
526
527static struct btrfsic_block *btrfsic_block_hashtable_lookup(
528 struct block_device *bdev,
529 u64 dev_bytenr,
530 struct btrfsic_block_hashtable *h)
531{
532 const unsigned int hashval =
533 (((unsigned int)(dev_bytenr >> 16)) ^
534 ((unsigned int)((uintptr_t)bdev))) &
535 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536 struct list_head *elem;
537
538 list_for_each(elem, h->table + hashval) {
539 struct btrfsic_block *const b =
540 list_entry(elem, struct btrfsic_block,
541 collision_resolving_node);
542
543 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
544 return b;
545 }
546
547 return NULL;
548}
549
550static void btrfsic_block_link_hashtable_init(
551 struct btrfsic_block_link_hashtable *h)
552{
553 int i;
554
555 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
556 INIT_LIST_HEAD(h->table + i);
557}
558
559static void btrfsic_block_link_hashtable_add(
560 struct btrfsic_block_link *l,
561 struct btrfsic_block_link_hashtable *h)
562{
563 const unsigned int hashval =
564 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
565 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
566 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
567 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
568 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
569
570 BUG_ON(NULL == l->block_ref_to);
571 BUG_ON(NULL == l->block_ref_from);
572 list_add(&l->collision_resolving_node, h->table + hashval);
573}
574
575static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
576{
577 list_del(&l->collision_resolving_node);
578}
579
580static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
581 struct block_device *bdev_ref_to,
582 u64 dev_bytenr_ref_to,
583 struct block_device *bdev_ref_from,
584 u64 dev_bytenr_ref_from,
585 struct btrfsic_block_link_hashtable *h)
586{
587 const unsigned int hashval =
588 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
589 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
590 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
591 ((unsigned int)((uintptr_t)bdev_ref_from))) &
592 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
593 struct list_head *elem;
594
595 list_for_each(elem, h->table + hashval) {
596 struct btrfsic_block_link *const l =
597 list_entry(elem, struct btrfsic_block_link,
598 collision_resolving_node);
599
600 BUG_ON(NULL == l->block_ref_to);
601 BUG_ON(NULL == l->block_ref_from);
602 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
603 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
604 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
605 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
606 return l;
607 }
608
609 return NULL;
610}
611
612static void btrfsic_dev_state_hashtable_init(
613 struct btrfsic_dev_state_hashtable *h)
614{
615 int i;
616
617 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
618 INIT_LIST_HEAD(h->table + i);
619}
620
621static void btrfsic_dev_state_hashtable_add(
622 struct btrfsic_dev_state *ds,
623 struct btrfsic_dev_state_hashtable *h)
624{
625 const unsigned int hashval =
626 (((unsigned int)((uintptr_t)ds->bdev)) &
627 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
628
629 list_add(&ds->collision_resolving_node, h->table + hashval);
630}
631
632static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
633{
634 list_del(&ds->collision_resolving_node);
635}
636
637static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
638 struct block_device *bdev,
639 struct btrfsic_dev_state_hashtable *h)
640{
641 const unsigned int hashval =
642 (((unsigned int)((uintptr_t)bdev)) &
643 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
644 struct list_head *elem;
645
646 list_for_each(elem, h->table + hashval) {
647 struct btrfsic_dev_state *const ds =
648 list_entry(elem, struct btrfsic_dev_state,
649 collision_resolving_node);
650
651 if (ds->bdev == bdev)
652 return ds;
653 }
654
655 return NULL;
656}
657
658static int btrfsic_process_superblock(struct btrfsic_state *state,
659 struct btrfs_fs_devices *fs_devices)
660{
e77266e4 661 int ret = 0;
5db02760
SB
662 struct btrfs_super_block *selected_super;
663 struct list_head *dev_head = &fs_devices->devices;
664 struct btrfs_device *device;
665 struct btrfsic_dev_state *selected_dev_state = NULL;
666 int pass;
667
668 BUG_ON(NULL == state);
e06baab4 669 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
5db02760
SB
670 if (NULL == selected_super) {
671 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
672 return -1;
673 }
674
675 list_for_each_entry(device, dev_head, dev_list) {
676 int i;
677 struct btrfsic_dev_state *dev_state;
678
679 if (!device->bdev || !device->name)
680 continue;
681
682 dev_state = btrfsic_dev_state_lookup(device->bdev);
683 BUG_ON(NULL == dev_state);
684 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
685 ret = btrfsic_process_superblock_dev_mirror(
686 state, dev_state, device, i,
687 &selected_dev_state, selected_super);
688 if (0 != ret && 0 == i) {
689 kfree(selected_super);
690 return ret;
691 }
692 }
693 }
694
695 if (NULL == state->latest_superblock) {
696 printk(KERN_INFO "btrfsic: no superblock found!\n");
697 kfree(selected_super);
698 return -1;
699 }
700
701 state->csum_size = btrfs_super_csum_size(selected_super);
702
703 for (pass = 0; pass < 3; pass++) {
704 int num_copies;
705 int mirror_num;
706 u64 next_bytenr;
707
708 switch (pass) {
709 case 0:
710 next_bytenr = btrfs_super_root(selected_super);
711 if (state->print_mask &
712 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 713 printk(KERN_INFO "root@%llu\n", next_bytenr);
5db02760
SB
714 break;
715 case 1:
716 next_bytenr = btrfs_super_chunk_root(selected_super);
717 if (state->print_mask &
718 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 719 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
5db02760
SB
720 break;
721 case 2:
722 next_bytenr = btrfs_super_log_root(selected_super);
723 if (0 == next_bytenr)
724 continue;
725 if (state->print_mask &
726 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 727 printk(KERN_INFO "log@%llu\n", next_bytenr);
5db02760
SB
728 break;
729 }
730
731 num_copies =
5d964051 732 btrfs_num_copies(state->root->fs_info,
e06baab4 733 next_bytenr, state->metablock_size);
5db02760
SB
734 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
735 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
c1c9ff7c 736 next_bytenr, num_copies);
5db02760
SB
737
738 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
739 struct btrfsic_block *next_block;
740 struct btrfsic_block_data_ctx tmp_next_block_ctx;
741 struct btrfsic_block_link *l;
5db02760 742
e06baab4
SB
743 ret = btrfsic_map_block(state, next_bytenr,
744 state->metablock_size,
5db02760
SB
745 &tmp_next_block_ctx,
746 mirror_num);
747 if (ret) {
748 printk(KERN_INFO "btrfsic:"
749 " btrfsic_map_block(root @%llu,"
750 " mirror %d) failed!\n",
c1c9ff7c 751 next_bytenr, mirror_num);
5db02760
SB
752 kfree(selected_super);
753 return -1;
754 }
755
756 next_block = btrfsic_block_hashtable_lookup(
757 tmp_next_block_ctx.dev->bdev,
758 tmp_next_block_ctx.dev_bytenr,
759 &state->block_hashtable);
760 BUG_ON(NULL == next_block);
761
762 l = btrfsic_block_link_hashtable_lookup(
763 tmp_next_block_ctx.dev->bdev,
764 tmp_next_block_ctx.dev_bytenr,
765 state->latest_superblock->dev_state->
766 bdev,
767 state->latest_superblock->dev_bytenr,
768 &state->block_link_hashtable);
769 BUG_ON(NULL == l);
770
771 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
e06baab4 772 if (ret < (int)PAGE_CACHE_SIZE) {
5db02760
SB
773 printk(KERN_INFO
774 "btrfsic: read @logical %llu failed!\n",
5db02760
SB
775 tmp_next_block_ctx.start);
776 btrfsic_release_block_ctx(&tmp_next_block_ctx);
777 kfree(selected_super);
778 return -1;
779 }
780
5db02760
SB
781 ret = btrfsic_process_metablock(state,
782 next_block,
783 &tmp_next_block_ctx,
5db02760
SB
784 BTRFS_MAX_LEVEL + 3, 1);
785 btrfsic_release_block_ctx(&tmp_next_block_ctx);
786 }
787 }
788
789 kfree(selected_super);
790 return ret;
791}
792
793static int btrfsic_process_superblock_dev_mirror(
794 struct btrfsic_state *state,
795 struct btrfsic_dev_state *dev_state,
796 struct btrfs_device *device,
797 int superblock_mirror_num,
798 struct btrfsic_dev_state **selected_dev_state,
799 struct btrfs_super_block *selected_super)
800{
801 struct btrfs_super_block *super_tmp;
802 u64 dev_bytenr;
803 struct buffer_head *bh;
804 struct btrfsic_block *superblock_tmp;
805 int pass;
806 struct block_device *const superblock_bdev = device->bdev;
807
808 /* super block bytenr is always the unmapped device bytenr */
809 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
e06baab4
SB
810 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
811 return -1;
812 bh = __bread(superblock_bdev, dev_bytenr / 4096,
813 BTRFS_SUPER_INFO_SIZE);
5db02760
SB
814 if (NULL == bh)
815 return -1;
816 super_tmp = (struct btrfs_super_block *)
817 (bh->b_data + (dev_bytenr & 4095));
818
819 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
3cae210f 820 btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
e06baab4
SB
821 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
822 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
823 btrfs_super_leafsize(super_tmp) != state->metablock_size ||
824 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
5db02760
SB
825 brelse(bh);
826 return 0;
827 }
828
829 superblock_tmp =
830 btrfsic_block_hashtable_lookup(superblock_bdev,
831 dev_bytenr,
832 &state->block_hashtable);
833 if (NULL == superblock_tmp) {
834 superblock_tmp = btrfsic_block_alloc();
835 if (NULL == superblock_tmp) {
836 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
837 brelse(bh);
838 return -1;
839 }
840 /* for superblock, only the dev_bytenr makes sense */
841 superblock_tmp->dev_bytenr = dev_bytenr;
842 superblock_tmp->dev_state = dev_state;
843 superblock_tmp->logical_bytenr = dev_bytenr;
844 superblock_tmp->generation = btrfs_super_generation(super_tmp);
845 superblock_tmp->is_metadata = 1;
846 superblock_tmp->is_superblock = 1;
847 superblock_tmp->is_iodone = 1;
848 superblock_tmp->never_written = 0;
849 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
850 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
606686ee
JB
851 printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
852 " @%llu (%s/%llu/%d)\n",
853 superblock_bdev,
c1c9ff7c
GU
854 rcu_str_deref(device->name), dev_bytenr,
855 dev_state->name, dev_bytenr,
606686ee 856 superblock_mirror_num);
5db02760
SB
857 list_add(&superblock_tmp->all_blocks_node,
858 &state->all_blocks_list);
859 btrfsic_block_hashtable_add(superblock_tmp,
860 &state->block_hashtable);
861 }
862
863 /* select the one with the highest generation field */
864 if (btrfs_super_generation(super_tmp) >
865 state->max_superblock_generation ||
866 0 == state->max_superblock_generation) {
867 memcpy(selected_super, super_tmp, sizeof(*selected_super));
868 *selected_dev_state = dev_state;
869 state->max_superblock_generation =
870 btrfs_super_generation(super_tmp);
871 state->latest_superblock = superblock_tmp;
872 }
873
874 for (pass = 0; pass < 3; pass++) {
875 u64 next_bytenr;
876 int num_copies;
877 int mirror_num;
878 const char *additional_string = NULL;
879 struct btrfs_disk_key tmp_disk_key;
880
881 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
882 tmp_disk_key.offset = 0;
883 switch (pass) {
884 case 0:
3cae210f
QW
885 btrfs_set_disk_key_objectid(&tmp_disk_key,
886 BTRFS_ROOT_TREE_OBJECTID);
5db02760
SB
887 additional_string = "initial root ";
888 next_bytenr = btrfs_super_root(super_tmp);
889 break;
890 case 1:
3cae210f
QW
891 btrfs_set_disk_key_objectid(&tmp_disk_key,
892 BTRFS_CHUNK_TREE_OBJECTID);
5db02760
SB
893 additional_string = "initial chunk ";
894 next_bytenr = btrfs_super_chunk_root(super_tmp);
895 break;
896 case 2:
3cae210f
QW
897 btrfs_set_disk_key_objectid(&tmp_disk_key,
898 BTRFS_TREE_LOG_OBJECTID);
5db02760
SB
899 additional_string = "initial log ";
900 next_bytenr = btrfs_super_log_root(super_tmp);
901 if (0 == next_bytenr)
902 continue;
903 break;
904 }
905
906 num_copies =
5d964051 907 btrfs_num_copies(state->root->fs_info,
e06baab4 908 next_bytenr, state->metablock_size);
5db02760
SB
909 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
910 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
c1c9ff7c 911 next_bytenr, num_copies);
5db02760
SB
912 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
913 struct btrfsic_block *next_block;
914 struct btrfsic_block_data_ctx tmp_next_block_ctx;
915 struct btrfsic_block_link *l;
916
e06baab4
SB
917 if (btrfsic_map_block(state, next_bytenr,
918 state->metablock_size,
5db02760
SB
919 &tmp_next_block_ctx,
920 mirror_num)) {
921 printk(KERN_INFO "btrfsic: btrfsic_map_block("
922 "bytenr @%llu, mirror %d) failed!\n",
c1c9ff7c 923 next_bytenr, mirror_num);
5db02760
SB
924 brelse(bh);
925 return -1;
926 }
927
928 next_block = btrfsic_block_lookup_or_add(
929 state, &tmp_next_block_ctx,
930 additional_string, 1, 1, 0,
931 mirror_num, NULL);
932 if (NULL == next_block) {
933 btrfsic_release_block_ctx(&tmp_next_block_ctx);
934 brelse(bh);
935 return -1;
936 }
937
938 next_block->disk_key = tmp_disk_key;
939 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
940 l = btrfsic_block_link_lookup_or_add(
941 state, &tmp_next_block_ctx,
942 next_block, superblock_tmp,
943 BTRFSIC_GENERATION_UNKNOWN);
944 btrfsic_release_block_ctx(&tmp_next_block_ctx);
945 if (NULL == l) {
946 brelse(bh);
947 return -1;
948 }
949 }
950 }
951 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
952 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
953
954 brelse(bh);
955 return 0;
956}
957
958static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
959{
960 struct btrfsic_stack_frame *sf;
961
962 sf = kzalloc(sizeof(*sf), GFP_NOFS);
963 if (NULL == sf)
964 printk(KERN_INFO "btrfsic: alloc memory failed!\n");
965 else
966 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
967 return sf;
968}
969
970static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
971{
972 BUG_ON(!(NULL == sf ||
973 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
974 kfree(sf);
975}
976
977static int btrfsic_process_metablock(
978 struct btrfsic_state *state,
979 struct btrfsic_block *const first_block,
980 struct btrfsic_block_data_ctx *const first_block_ctx,
5db02760
SB
981 int first_limit_nesting, int force_iodone_flag)
982{
983 struct btrfsic_stack_frame initial_stack_frame = { 0 };
984 struct btrfsic_stack_frame *sf;
985 struct btrfsic_stack_frame *next_stack;
e06baab4
SB
986 struct btrfs_header *const first_hdr =
987 (struct btrfs_header *)first_block_ctx->datav[0];
5db02760 988
e06baab4 989 BUG_ON(!first_hdr);
5db02760
SB
990 sf = &initial_stack_frame;
991 sf->error = 0;
992 sf->i = -1;
993 sf->limit_nesting = first_limit_nesting;
994 sf->block = first_block;
995 sf->block_ctx = first_block_ctx;
996 sf->next_block = NULL;
997 sf->hdr = first_hdr;
998 sf->prev = NULL;
999
1000continue_with_new_stack_frame:
1001 sf->block->generation = le64_to_cpu(sf->hdr->generation);
1002 if (0 == sf->hdr->level) {
1003 struct btrfs_leaf *const leafhdr =
1004 (struct btrfs_leaf *)sf->hdr;
1005
1006 if (-1 == sf->i) {
3cae210f 1007 sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
5db02760
SB
1008
1009 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1010 printk(KERN_INFO
1011 "leaf %llu items %d generation %llu"
1012 " owner %llu\n",
c1c9ff7c 1013 sf->block_ctx->start, sf->nr,
3cae210f
QW
1014 btrfs_stack_header_generation(
1015 &leafhdr->header),
3cae210f
QW
1016 btrfs_stack_header_owner(
1017 &leafhdr->header));
5db02760
SB
1018 }
1019
1020continue_with_current_leaf_stack_frame:
1021 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1022 sf->i++;
1023 sf->num_copies = 0;
1024 }
1025
1026 if (sf->i < sf->nr) {
e06baab4
SB
1027 struct btrfs_item disk_item;
1028 u32 disk_item_offset =
1029 (uintptr_t)(leafhdr->items + sf->i) -
1030 (uintptr_t)leafhdr;
1031 struct btrfs_disk_key *disk_key;
5db02760 1032 u8 type;
e06baab4 1033 u32 item_offset;
8ea05e3a 1034 u32 item_size;
5db02760 1035
e06baab4
SB
1036 if (disk_item_offset + sizeof(struct btrfs_item) >
1037 sf->block_ctx->len) {
1038leaf_item_out_of_bounce_error:
1039 printk(KERN_INFO
1040 "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1041 sf->block_ctx->start,
1042 sf->block_ctx->dev->name);
1043 goto one_stack_frame_backwards;
1044 }
1045 btrfsic_read_from_block_data(sf->block_ctx,
1046 &disk_item,
1047 disk_item_offset,
1048 sizeof(struct btrfs_item));
3cae210f 1049 item_offset = btrfs_stack_item_offset(&disk_item);
a5f519c9 1050 item_size = btrfs_stack_item_size(&disk_item);
e06baab4 1051 disk_key = &disk_item.key;
3cae210f 1052 type = btrfs_disk_key_type(disk_key);
5db02760
SB
1053
1054 if (BTRFS_ROOT_ITEM_KEY == type) {
e06baab4
SB
1055 struct btrfs_root_item root_item;
1056 u32 root_item_offset;
1057 u64 next_bytenr;
1058
1059 root_item_offset = item_offset +
1060 offsetof(struct btrfs_leaf, items);
8ea05e3a 1061 if (root_item_offset + item_size >
e06baab4
SB
1062 sf->block_ctx->len)
1063 goto leaf_item_out_of_bounce_error;
1064 btrfsic_read_from_block_data(
1065 sf->block_ctx, &root_item,
1066 root_item_offset,
8ea05e3a 1067 item_size);
3cae210f 1068 next_bytenr = btrfs_root_bytenr(&root_item);
5db02760
SB
1069
1070 sf->error =
1071 btrfsic_create_link_to_next_block(
1072 state,
1073 sf->block,
1074 sf->block_ctx,
1075 next_bytenr,
1076 sf->limit_nesting,
1077 &sf->next_block_ctx,
1078 &sf->next_block,
1079 force_iodone_flag,
1080 &sf->num_copies,
1081 &sf->mirror_num,
1082 disk_key,
3cae210f
QW
1083 btrfs_root_generation(
1084 &root_item));
5db02760
SB
1085 if (sf->error)
1086 goto one_stack_frame_backwards;
1087
1088 if (NULL != sf->next_block) {
1089 struct btrfs_header *const next_hdr =
1090 (struct btrfs_header *)
e06baab4 1091 sf->next_block_ctx.datav[0];
5db02760
SB
1092
1093 next_stack =
1094 btrfsic_stack_frame_alloc();
1095 if (NULL == next_stack) {
1096 btrfsic_release_block_ctx(
1097 &sf->
1098 next_block_ctx);
1099 goto one_stack_frame_backwards;
1100 }
1101
1102 next_stack->i = -1;
1103 next_stack->block = sf->next_block;
1104 next_stack->block_ctx =
1105 &sf->next_block_ctx;
1106 next_stack->next_block = NULL;
1107 next_stack->hdr = next_hdr;
1108 next_stack->limit_nesting =
1109 sf->limit_nesting - 1;
1110 next_stack->prev = sf;
1111 sf = next_stack;
1112 goto continue_with_new_stack_frame;
1113 }
1114 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1115 state->include_extent_data) {
1116 sf->error = btrfsic_handle_extent_data(
1117 state,
1118 sf->block,
1119 sf->block_ctx,
1120 item_offset,
1121 force_iodone_flag);
1122 if (sf->error)
1123 goto one_stack_frame_backwards;
1124 }
1125
1126 goto continue_with_current_leaf_stack_frame;
1127 }
1128 } else {
1129 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1130
1131 if (-1 == sf->i) {
3cae210f 1132 sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
5db02760
SB
1133
1134 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1135 printk(KERN_INFO "node %llu level %d items %d"
1136 " generation %llu owner %llu\n",
5db02760
SB
1137 sf->block_ctx->start,
1138 nodehdr->header.level, sf->nr,
3cae210f
QW
1139 btrfs_stack_header_generation(
1140 &nodehdr->header),
3cae210f
QW
1141 btrfs_stack_header_owner(
1142 &nodehdr->header));
5db02760
SB
1143 }
1144
1145continue_with_current_node_stack_frame:
1146 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1147 sf->i++;
1148 sf->num_copies = 0;
1149 }
1150
1151 if (sf->i < sf->nr) {
e06baab4
SB
1152 struct btrfs_key_ptr key_ptr;
1153 u32 key_ptr_offset;
1154 u64 next_bytenr;
1155
1156 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1157 (uintptr_t)nodehdr;
1158 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1159 sf->block_ctx->len) {
1160 printk(KERN_INFO
1161 "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1162 sf->block_ctx->start,
1163 sf->block_ctx->dev->name);
1164 goto one_stack_frame_backwards;
1165 }
1166 btrfsic_read_from_block_data(
1167 sf->block_ctx, &key_ptr, key_ptr_offset,
1168 sizeof(struct btrfs_key_ptr));
3cae210f 1169 next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
5db02760
SB
1170
1171 sf->error = btrfsic_create_link_to_next_block(
1172 state,
1173 sf->block,
1174 sf->block_ctx,
1175 next_bytenr,
1176 sf->limit_nesting,
1177 &sf->next_block_ctx,
1178 &sf->next_block,
1179 force_iodone_flag,
1180 &sf->num_copies,
1181 &sf->mirror_num,
e06baab4 1182 &key_ptr.key,
3cae210f 1183 btrfs_stack_key_generation(&key_ptr));
5db02760
SB
1184 if (sf->error)
1185 goto one_stack_frame_backwards;
1186
1187 if (NULL != sf->next_block) {
1188 struct btrfs_header *const next_hdr =
1189 (struct btrfs_header *)
e06baab4 1190 sf->next_block_ctx.datav[0];
5db02760
SB
1191
1192 next_stack = btrfsic_stack_frame_alloc();
1193 if (NULL == next_stack)
1194 goto one_stack_frame_backwards;
1195
1196 next_stack->i = -1;
1197 next_stack->block = sf->next_block;
1198 next_stack->block_ctx = &sf->next_block_ctx;
1199 next_stack->next_block = NULL;
1200 next_stack->hdr = next_hdr;
1201 next_stack->limit_nesting =
1202 sf->limit_nesting - 1;
1203 next_stack->prev = sf;
1204 sf = next_stack;
1205 goto continue_with_new_stack_frame;
1206 }
1207
1208 goto continue_with_current_node_stack_frame;
1209 }
1210 }
1211
1212one_stack_frame_backwards:
1213 if (NULL != sf->prev) {
1214 struct btrfsic_stack_frame *const prev = sf->prev;
1215
1216 /* the one for the initial block is freed in the caller */
1217 btrfsic_release_block_ctx(sf->block_ctx);
1218
1219 if (sf->error) {
1220 prev->error = sf->error;
1221 btrfsic_stack_frame_free(sf);
1222 sf = prev;
1223 goto one_stack_frame_backwards;
1224 }
1225
1226 btrfsic_stack_frame_free(sf);
1227 sf = prev;
1228 goto continue_with_new_stack_frame;
1229 } else {
1230 BUG_ON(&initial_stack_frame != sf);
1231 }
1232
1233 return sf->error;
1234}
1235
e06baab4
SB
1236static void btrfsic_read_from_block_data(
1237 struct btrfsic_block_data_ctx *block_ctx,
1238 void *dstv, u32 offset, size_t len)
1239{
1240 size_t cur;
1241 size_t offset_in_page;
1242 char *kaddr;
1243 char *dst = (char *)dstv;
1244 size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1245 unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1246
1247 WARN_ON(offset + len > block_ctx->len);
778746b5 1248 offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1);
e06baab4
SB
1249
1250 while (len > 0) {
1251 cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1252 BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >>
1253 PAGE_CACHE_SHIFT);
1254 kaddr = block_ctx->datav[i];
1255 memcpy(dst, kaddr + offset_in_page, cur);
1256
1257 dst += cur;
1258 len -= cur;
1259 offset_in_page = 0;
1260 i++;
1261 }
1262}
1263
5db02760
SB
1264static int btrfsic_create_link_to_next_block(
1265 struct btrfsic_state *state,
1266 struct btrfsic_block *block,
1267 struct btrfsic_block_data_ctx *block_ctx,
1268 u64 next_bytenr,
1269 int limit_nesting,
1270 struct btrfsic_block_data_ctx *next_block_ctx,
1271 struct btrfsic_block **next_blockp,
1272 int force_iodone_flag,
1273 int *num_copiesp, int *mirror_nump,
1274 struct btrfs_disk_key *disk_key,
1275 u64 parent_generation)
1276{
1277 struct btrfsic_block *next_block = NULL;
1278 int ret;
1279 struct btrfsic_block_link *l;
1280 int did_alloc_block_link;
1281 int block_was_created;
1282
1283 *next_blockp = NULL;
1284 if (0 == *num_copiesp) {
1285 *num_copiesp =
5d964051 1286 btrfs_num_copies(state->root->fs_info,
e06baab4 1287 next_bytenr, state->metablock_size);
5db02760
SB
1288 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1289 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
c1c9ff7c 1290 next_bytenr, *num_copiesp);
5db02760
SB
1291 *mirror_nump = 1;
1292 }
1293
1294 if (*mirror_nump > *num_copiesp)
1295 return 0;
1296
1297 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1298 printk(KERN_INFO
1299 "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1300 *mirror_nump);
1301 ret = btrfsic_map_block(state, next_bytenr,
e06baab4 1302 state->metablock_size,
5db02760
SB
1303 next_block_ctx, *mirror_nump);
1304 if (ret) {
1305 printk(KERN_INFO
1306 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
c1c9ff7c 1307 next_bytenr, *mirror_nump);
5db02760
SB
1308 btrfsic_release_block_ctx(next_block_ctx);
1309 *next_blockp = NULL;
1310 return -1;
1311 }
1312
1313 next_block = btrfsic_block_lookup_or_add(state,
1314 next_block_ctx, "referenced ",
1315 1, force_iodone_flag,
1316 !force_iodone_flag,
1317 *mirror_nump,
1318 &block_was_created);
1319 if (NULL == next_block) {
1320 btrfsic_release_block_ctx(next_block_ctx);
1321 *next_blockp = NULL;
1322 return -1;
1323 }
1324 if (block_was_created) {
1325 l = NULL;
1326 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1327 } else {
1328 if (next_block->logical_bytenr != next_bytenr &&
1329 !(!next_block->is_metadata &&
1330 0 == next_block->logical_bytenr)) {
1331 printk(KERN_INFO
1332 "Referenced block @%llu (%s/%llu/%d)"
1333 " found in hash table, %c,"
1334 " bytenr mismatch (!= stored %llu).\n",
c1c9ff7c
GU
1335 next_bytenr, next_block_ctx->dev->name,
1336 next_block_ctx->dev_bytenr, *mirror_nump,
5db02760 1337 btrfsic_get_block_type(state, next_block),
c1c9ff7c 1338 next_block->logical_bytenr);
5db02760
SB
1339 } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1340 printk(KERN_INFO
1341 "Referenced block @%llu (%s/%llu/%d)"
1342 " found in hash table, %c.\n",
c1c9ff7c
GU
1343 next_bytenr, next_block_ctx->dev->name,
1344 next_block_ctx->dev_bytenr, *mirror_nump,
5db02760
SB
1345 btrfsic_get_block_type(state, next_block));
1346 next_block->logical_bytenr = next_bytenr;
1347
1348 next_block->mirror_num = *mirror_nump;
1349 l = btrfsic_block_link_hashtable_lookup(
1350 next_block_ctx->dev->bdev,
1351 next_block_ctx->dev_bytenr,
1352 block_ctx->dev->bdev,
1353 block_ctx->dev_bytenr,
1354 &state->block_link_hashtable);
1355 }
1356
1357 next_block->disk_key = *disk_key;
1358 if (NULL == l) {
1359 l = btrfsic_block_link_alloc();
1360 if (NULL == l) {
1361 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1362 btrfsic_release_block_ctx(next_block_ctx);
1363 *next_blockp = NULL;
1364 return -1;
1365 }
1366
1367 did_alloc_block_link = 1;
1368 l->block_ref_to = next_block;
1369 l->block_ref_from = block;
1370 l->ref_cnt = 1;
1371 l->parent_generation = parent_generation;
1372
1373 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1374 btrfsic_print_add_link(state, l);
1375
1376 list_add(&l->node_ref_to, &block->ref_to_list);
1377 list_add(&l->node_ref_from, &next_block->ref_from_list);
1378
1379 btrfsic_block_link_hashtable_add(l,
1380 &state->block_link_hashtable);
1381 } else {
1382 did_alloc_block_link = 0;
1383 if (0 == limit_nesting) {
1384 l->ref_cnt++;
1385 l->parent_generation = parent_generation;
1386 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1387 btrfsic_print_add_link(state, l);
1388 }
1389 }
1390
1391 if (limit_nesting > 0 && did_alloc_block_link) {
1392 ret = btrfsic_read_block(state, next_block_ctx);
e06baab4 1393 if (ret < (int)next_block_ctx->len) {
5db02760
SB
1394 printk(KERN_INFO
1395 "btrfsic: read block @logical %llu failed!\n",
c1c9ff7c 1396 next_bytenr);
5db02760
SB
1397 btrfsic_release_block_ctx(next_block_ctx);
1398 *next_blockp = NULL;
1399 return -1;
1400 }
1401
1402 *next_blockp = next_block;
1403 } else {
1404 *next_blockp = NULL;
1405 }
1406 (*mirror_nump)++;
1407
1408 return 0;
1409}
1410
1411static int btrfsic_handle_extent_data(
1412 struct btrfsic_state *state,
1413 struct btrfsic_block *block,
1414 struct btrfsic_block_data_ctx *block_ctx,
1415 u32 item_offset, int force_iodone_flag)
1416{
1417 int ret;
e06baab4
SB
1418 struct btrfs_file_extent_item file_extent_item;
1419 u64 file_extent_item_offset;
1420 u64 next_bytenr;
1421 u64 num_bytes;
1422 u64 generation;
5db02760
SB
1423 struct btrfsic_block_link *l;
1424
e06baab4
SB
1425 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1426 item_offset;
86ff7ffc
SB
1427 if (file_extent_item_offset +
1428 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1429 block_ctx->len) {
1430 printk(KERN_INFO
1431 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1432 block_ctx->start, block_ctx->dev->name);
1433 return -1;
1434 }
1435
1436 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1437 file_extent_item_offset,
1438 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1439 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
3cae210f 1440 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
86ff7ffc
SB
1441 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1442 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1443 file_extent_item.type,
3cae210f
QW
1444 btrfs_stack_file_extent_disk_bytenr(
1445 &file_extent_item));
86ff7ffc
SB
1446 return 0;
1447 }
1448
e06baab4
SB
1449 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1450 block_ctx->len) {
1451 printk(KERN_INFO
1452 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1453 block_ctx->start, block_ctx->dev->name);
1454 return -1;
1455 }
1456 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1457 file_extent_item_offset,
1458 sizeof(struct btrfs_file_extent_item));
3cae210f
QW
1459 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item) +
1460 btrfs_stack_file_extent_offset(&file_extent_item);
1461 generation = btrfs_stack_file_extent_generation(&file_extent_item);
1462 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1463 generation = btrfs_stack_file_extent_generation(&file_extent_item);
e06baab4 1464
5db02760
SB
1465 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1466 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1467 " offset = %llu, num_bytes = %llu\n",
e06baab4 1468 file_extent_item.type,
3cae210f 1469 btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
3cae210f 1470 btrfs_stack_file_extent_offset(&file_extent_item),
c1c9ff7c 1471 num_bytes);
5db02760
SB
1472 while (num_bytes > 0) {
1473 u32 chunk_len;
1474 int num_copies;
1475 int mirror_num;
1476
e06baab4
SB
1477 if (num_bytes > state->datablock_size)
1478 chunk_len = state->datablock_size;
5db02760
SB
1479 else
1480 chunk_len = num_bytes;
1481
1482 num_copies =
5d964051 1483 btrfs_num_copies(state->root->fs_info,
e06baab4 1484 next_bytenr, state->datablock_size);
5db02760
SB
1485 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1486 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
c1c9ff7c 1487 next_bytenr, num_copies);
5db02760
SB
1488 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1489 struct btrfsic_block_data_ctx next_block_ctx;
1490 struct btrfsic_block *next_block;
1491 int block_was_created;
1492
1493 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1494 printk(KERN_INFO "btrfsic_handle_extent_data("
1495 "mirror_num=%d)\n", mirror_num);
1496 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1497 printk(KERN_INFO
1498 "\tdisk_bytenr = %llu, num_bytes %u\n",
c1c9ff7c 1499 next_bytenr, chunk_len);
5db02760
SB
1500 ret = btrfsic_map_block(state, next_bytenr,
1501 chunk_len, &next_block_ctx,
1502 mirror_num);
1503 if (ret) {
1504 printk(KERN_INFO
1505 "btrfsic: btrfsic_map_block(@%llu,"
1506 " mirror=%d) failed!\n",
c1c9ff7c 1507 next_bytenr, mirror_num);
5db02760
SB
1508 return -1;
1509 }
1510
1511 next_block = btrfsic_block_lookup_or_add(
1512 state,
1513 &next_block_ctx,
1514 "referenced ",
1515 0,
1516 force_iodone_flag,
1517 !force_iodone_flag,
1518 mirror_num,
1519 &block_was_created);
1520 if (NULL == next_block) {
1521 printk(KERN_INFO
1522 "btrfsic: error, kmalloc failed!\n");
1523 btrfsic_release_block_ctx(&next_block_ctx);
1524 return -1;
1525 }
1526 if (!block_was_created) {
1527 if (next_block->logical_bytenr != next_bytenr &&
1528 !(!next_block->is_metadata &&
1529 0 == next_block->logical_bytenr)) {
1530 printk(KERN_INFO
1531 "Referenced block"
1532 " @%llu (%s/%llu/%d)"
1533 " found in hash table, D,"
1534 " bytenr mismatch"
1535 " (!= stored %llu).\n",
c1c9ff7c 1536 next_bytenr,
5db02760 1537 next_block_ctx.dev->name,
5db02760
SB
1538 next_block_ctx.dev_bytenr,
1539 mirror_num,
5db02760
SB
1540 next_block->logical_bytenr);
1541 }
1542 next_block->logical_bytenr = next_bytenr;
1543 next_block->mirror_num = mirror_num;
1544 }
1545
1546 l = btrfsic_block_link_lookup_or_add(state,
1547 &next_block_ctx,
1548 next_block, block,
1549 generation);
1550 btrfsic_release_block_ctx(&next_block_ctx);
1551 if (NULL == l)
1552 return -1;
1553 }
1554
1555 next_bytenr += chunk_len;
1556 num_bytes -= chunk_len;
1557 }
1558
1559 return 0;
1560}
1561
1562static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1563 struct btrfsic_block_data_ctx *block_ctx_out,
1564 int mirror_num)
1565{
1566 int ret;
1567 u64 length;
1568 struct btrfs_bio *multi = NULL;
1569 struct btrfs_device *device;
1570
1571 length = len;
3ec706c8 1572 ret = btrfs_map_block(state->root->fs_info, READ,
5db02760
SB
1573 bytenr, &length, &multi, mirror_num);
1574
61891923
SB
1575 if (ret) {
1576 block_ctx_out->start = 0;
1577 block_ctx_out->dev_bytenr = 0;
1578 block_ctx_out->len = 0;
1579 block_ctx_out->dev = NULL;
1580 block_ctx_out->datav = NULL;
1581 block_ctx_out->pagev = NULL;
1582 block_ctx_out->mem_to_free = NULL;
1583
1584 return ret;
1585 }
1586
5db02760
SB
1587 device = multi->stripes[0].dev;
1588 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1589 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1590 block_ctx_out->start = bytenr;
1591 block_ctx_out->len = len;
e06baab4
SB
1592 block_ctx_out->datav = NULL;
1593 block_ctx_out->pagev = NULL;
1594 block_ctx_out->mem_to_free = NULL;
5db02760 1595
61891923 1596 kfree(multi);
5db02760
SB
1597 if (NULL == block_ctx_out->dev) {
1598 ret = -ENXIO;
1599 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1600 }
1601
1602 return ret;
1603}
1604
1605static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1606 u32 len, struct block_device *bdev,
1607 struct btrfsic_block_data_ctx *block_ctx_out)
1608{
1609 block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1610 block_ctx_out->dev_bytenr = bytenr;
1611 block_ctx_out->start = bytenr;
1612 block_ctx_out->len = len;
e06baab4
SB
1613 block_ctx_out->datav = NULL;
1614 block_ctx_out->pagev = NULL;
1615 block_ctx_out->mem_to_free = NULL;
5db02760
SB
1616 if (NULL != block_ctx_out->dev) {
1617 return 0;
1618 } else {
1619 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1620 return -ENXIO;
1621 }
1622}
1623
1624static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1625{
e06baab4
SB
1626 if (block_ctx->mem_to_free) {
1627 unsigned int num_pages;
1628
1629 BUG_ON(!block_ctx->datav);
1630 BUG_ON(!block_ctx->pagev);
1631 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1632 PAGE_CACHE_SHIFT;
1633 while (num_pages > 0) {
1634 num_pages--;
1635 if (block_ctx->datav[num_pages]) {
1636 kunmap(block_ctx->pagev[num_pages]);
1637 block_ctx->datav[num_pages] = NULL;
1638 }
1639 if (block_ctx->pagev[num_pages]) {
1640 __free_page(block_ctx->pagev[num_pages]);
1641 block_ctx->pagev[num_pages] = NULL;
1642 }
1643 }
1644
1645 kfree(block_ctx->mem_to_free);
1646 block_ctx->mem_to_free = NULL;
1647 block_ctx->pagev = NULL;
1648 block_ctx->datav = NULL;
5db02760
SB
1649 }
1650}
1651
1652static int btrfsic_read_block(struct btrfsic_state *state,
1653 struct btrfsic_block_data_ctx *block_ctx)
1654{
e06baab4
SB
1655 unsigned int num_pages;
1656 unsigned int i;
1657 u64 dev_bytenr;
1658 int ret;
1659
1660 BUG_ON(block_ctx->datav);
1661 BUG_ON(block_ctx->pagev);
1662 BUG_ON(block_ctx->mem_to_free);
1663 if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
5db02760
SB
1664 printk(KERN_INFO
1665 "btrfsic: read_block() with unaligned bytenr %llu\n",
c1c9ff7c 1666 block_ctx->dev_bytenr);
5db02760
SB
1667 return -1;
1668 }
e06baab4
SB
1669
1670 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1671 PAGE_CACHE_SHIFT;
1672 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1673 sizeof(*block_ctx->pagev)) *
1674 num_pages, GFP_NOFS);
1675 if (!block_ctx->mem_to_free)
5db02760 1676 return -1;
e06baab4
SB
1677 block_ctx->datav = block_ctx->mem_to_free;
1678 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1679 for (i = 0; i < num_pages; i++) {
1680 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1681 if (!block_ctx->pagev[i])
1682 return -1;
5db02760
SB
1683 }
1684
e06baab4
SB
1685 dev_bytenr = block_ctx->dev_bytenr;
1686 for (i = 0; i < num_pages;) {
1687 struct bio *bio;
1688 unsigned int j;
e06baab4 1689
9be3395b 1690 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
e06baab4
SB
1691 if (!bio) {
1692 printk(KERN_INFO
1693 "btrfsic: bio_alloc() for %u pages failed!\n",
1694 num_pages - i);
1695 return -1;
1696 }
1697 bio->bi_bdev = block_ctx->dev->bdev;
4f024f37 1698 bio->bi_iter.bi_sector = dev_bytenr >> 9;
e06baab4
SB
1699
1700 for (j = i; j < num_pages; j++) {
1701 ret = bio_add_page(bio, block_ctx->pagev[j],
1702 PAGE_CACHE_SIZE, 0);
1703 if (PAGE_CACHE_SIZE != ret)
1704 break;
1705 }
1706 if (j == i) {
1707 printk(KERN_INFO
1708 "btrfsic: error, failed to add a single page!\n");
1709 return -1;
1710 }
33879d45 1711 if (submit_bio_wait(READ, bio)) {
e06baab4
SB
1712 printk(KERN_INFO
1713 "btrfsic: read error at logical %llu dev %s!\n",
1714 block_ctx->start, block_ctx->dev->name);
1715 bio_put(bio);
1716 return -1;
1717 }
1718 bio_put(bio);
1719 dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1720 i = j;
1721 }
1722 for (i = 0; i < num_pages; i++) {
1723 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1724 if (!block_ctx->datav[i]) {
1725 printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1726 block_ctx->dev->name);
1727 return -1;
1728 }
1729 }
5db02760
SB
1730
1731 return block_ctx->len;
1732}
1733
1734static void btrfsic_dump_database(struct btrfsic_state *state)
1735{
1736 struct list_head *elem_all;
1737
1738 BUG_ON(NULL == state);
1739
1740 printk(KERN_INFO "all_blocks_list:\n");
1741 list_for_each(elem_all, &state->all_blocks_list) {
1742 const struct btrfsic_block *const b_all =
1743 list_entry(elem_all, struct btrfsic_block,
1744 all_blocks_node);
1745 struct list_head *elem_ref_to;
1746 struct list_head *elem_ref_from;
1747
1748 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1749 btrfsic_get_block_type(state, b_all),
c1c9ff7c
GU
1750 b_all->logical_bytenr, b_all->dev_state->name,
1751 b_all->dev_bytenr, b_all->mirror_num);
5db02760
SB
1752
1753 list_for_each(elem_ref_to, &b_all->ref_to_list) {
1754 const struct btrfsic_block_link *const l =
1755 list_entry(elem_ref_to,
1756 struct btrfsic_block_link,
1757 node_ref_to);
1758
1759 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1760 " refers %u* to"
1761 " %c @%llu (%s/%llu/%d)\n",
1762 btrfsic_get_block_type(state, b_all),
c1c9ff7c
GU
1763 b_all->logical_bytenr, b_all->dev_state->name,
1764 b_all->dev_bytenr, b_all->mirror_num,
5db02760
SB
1765 l->ref_cnt,
1766 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
1767 l->block_ref_to->logical_bytenr,
1768 l->block_ref_to->dev_state->name,
c1c9ff7c 1769 l->block_ref_to->dev_bytenr,
5db02760
SB
1770 l->block_ref_to->mirror_num);
1771 }
1772
1773 list_for_each(elem_ref_from, &b_all->ref_from_list) {
1774 const struct btrfsic_block_link *const l =
1775 list_entry(elem_ref_from,
1776 struct btrfsic_block_link,
1777 node_ref_from);
1778
1779 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1780 " is ref %u* from"
1781 " %c @%llu (%s/%llu/%d)\n",
1782 btrfsic_get_block_type(state, b_all),
c1c9ff7c
GU
1783 b_all->logical_bytenr, b_all->dev_state->name,
1784 b_all->dev_bytenr, b_all->mirror_num,
5db02760
SB
1785 l->ref_cnt,
1786 btrfsic_get_block_type(state, l->block_ref_from),
5db02760
SB
1787 l->block_ref_from->logical_bytenr,
1788 l->block_ref_from->dev_state->name,
5db02760
SB
1789 l->block_ref_from->dev_bytenr,
1790 l->block_ref_from->mirror_num);
1791 }
1792
1793 printk(KERN_INFO "\n");
1794 }
1795}
1796
1797/*
1798 * Test whether the disk block contains a tree block (leaf or node)
1799 * (note that this test fails for the super block)
1800 */
1801static int btrfsic_test_for_metadata(struct btrfsic_state *state,
e06baab4 1802 char **datav, unsigned int num_pages)
5db02760
SB
1803{
1804 struct btrfs_header *h;
1805 u8 csum[BTRFS_CSUM_SIZE];
1806 u32 crc = ~(u32)0;
e06baab4 1807 unsigned int i;
5db02760 1808
e06baab4
SB
1809 if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1810 return 1; /* not metadata */
1811 num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1812 h = (struct btrfs_header *)datav[0];
5db02760
SB
1813
1814 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
e06baab4 1815 return 1;
5db02760 1816
e06baab4
SB
1817 for (i = 0; i < num_pages; i++) {
1818 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1819 size_t sublen = i ? PAGE_CACHE_SIZE :
1820 (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1821
1822 crc = crc32c(crc, data, sublen);
1823 }
5db02760
SB
1824 btrfs_csum_final(crc, csum);
1825 if (memcmp(csum, h->csum, state->csum_size))
e06baab4 1826 return 1;
5db02760 1827
e06baab4 1828 return 0; /* is metadata */
5db02760
SB
1829}
1830
1831static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
e06baab4
SB
1832 u64 dev_bytenr, char **mapped_datav,
1833 unsigned int num_pages,
1834 struct bio *bio, int *bio_is_patched,
5db02760
SB
1835 struct buffer_head *bh,
1836 int submit_bio_bh_rw)
1837{
1838 int is_metadata;
1839 struct btrfsic_block *block;
1840 struct btrfsic_block_data_ctx block_ctx;
1841 int ret;
1842 struct btrfsic_state *state = dev_state->state;
1843 struct block_device *bdev = dev_state->bdev;
e06baab4 1844 unsigned int processed_len;
5db02760 1845
5db02760
SB
1846 if (NULL != bio_is_patched)
1847 *bio_is_patched = 0;
1848
e06baab4
SB
1849again:
1850 if (num_pages == 0)
1851 return;
1852
1853 processed_len = 0;
1854 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1855 num_pages));
1856
5db02760
SB
1857 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1858 &state->block_hashtable);
1859 if (NULL != block) {
0b485143 1860 u64 bytenr = 0;
5db02760
SB
1861 struct list_head *elem_ref_to;
1862 struct list_head *tmp_ref_to;
1863
1864 if (block->is_superblock) {
3cae210f
QW
1865 bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1866 mapped_datav[0]);
e06baab4
SB
1867 if (num_pages * PAGE_CACHE_SIZE <
1868 BTRFS_SUPER_INFO_SIZE) {
1869 printk(KERN_INFO
1870 "btrfsic: cannot work with too short bios!\n");
1871 return;
1872 }
5db02760 1873 is_metadata = 1;
e06baab4
SB
1874 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1875 processed_len = BTRFS_SUPER_INFO_SIZE;
5db02760
SB
1876 if (state->print_mask &
1877 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1878 printk(KERN_INFO
1879 "[before new superblock is written]:\n");
1880 btrfsic_dump_tree_sub(state, block, 0);
1881 }
1882 }
1883 if (is_metadata) {
1884 if (!block->is_superblock) {
e06baab4
SB
1885 if (num_pages * PAGE_CACHE_SIZE <
1886 state->metablock_size) {
1887 printk(KERN_INFO
1888 "btrfsic: cannot work with too short bios!\n");
1889 return;
1890 }
1891 processed_len = state->metablock_size;
3cae210f
QW
1892 bytenr = btrfs_stack_header_bytenr(
1893 (struct btrfs_header *)
1894 mapped_datav[0]);
5db02760
SB
1895 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1896 dev_state,
e06baab4 1897 dev_bytenr);
5db02760 1898 }
301993a4
SB
1899 if (block->logical_bytenr != bytenr &&
1900 !(!block->is_metadata &&
1901 block->logical_bytenr == 0))
5db02760
SB
1902 printk(KERN_INFO
1903 "Written block @%llu (%s/%llu/%d)"
1904 " found in hash table, %c,"
1905 " bytenr mismatch"
1906 " (!= stored %llu).\n",
c1c9ff7c 1907 bytenr, dev_state->name, dev_bytenr,
5db02760
SB
1908 block->mirror_num,
1909 btrfsic_get_block_type(state, block),
5db02760 1910 block->logical_bytenr);
301993a4 1911 else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
5db02760
SB
1912 printk(KERN_INFO
1913 "Written block @%llu (%s/%llu/%d)"
1914 " found in hash table, %c.\n",
c1c9ff7c 1915 bytenr, dev_state->name, dev_bytenr,
5db02760
SB
1916 block->mirror_num,
1917 btrfsic_get_block_type(state, block));
301993a4 1918 block->logical_bytenr = bytenr;
5db02760 1919 } else {
e06baab4
SB
1920 if (num_pages * PAGE_CACHE_SIZE <
1921 state->datablock_size) {
1922 printk(KERN_INFO
1923 "btrfsic: cannot work with too short bios!\n");
1924 return;
1925 }
1926 processed_len = state->datablock_size;
5db02760
SB
1927 bytenr = block->logical_bytenr;
1928 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1929 printk(KERN_INFO
1930 "Written block @%llu (%s/%llu/%d)"
1931 " found in hash table, %c.\n",
c1c9ff7c 1932 bytenr, dev_state->name, dev_bytenr,
5db02760
SB
1933 block->mirror_num,
1934 btrfsic_get_block_type(state, block));
1935 }
1936
1937 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1938 printk(KERN_INFO
1939 "ref_to_list: %cE, ref_from_list: %cE\n",
1940 list_empty(&block->ref_to_list) ? ' ' : '!',
1941 list_empty(&block->ref_from_list) ? ' ' : '!');
1942 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1943 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1944 " @%llu (%s/%llu/%d), old(gen=%llu,"
1945 " objectid=%llu, type=%d, offset=%llu),"
1946 " new(gen=%llu),"
1947 " which is referenced by most recent superblock"
1948 " (superblockgen=%llu)!\n",
c1c9ff7c
GU
1949 btrfsic_get_block_type(state, block), bytenr,
1950 dev_state->name, dev_bytenr, block->mirror_num,
1951 block->generation,
3cae210f 1952 btrfs_disk_key_objectid(&block->disk_key),
5db02760 1953 block->disk_key.type,
3cae210f 1954 btrfs_disk_key_offset(&block->disk_key),
3cae210f
QW
1955 btrfs_stack_header_generation(
1956 (struct btrfs_header *) mapped_datav[0]),
5db02760
SB
1957 state->max_superblock_generation);
1958 btrfsic_dump_tree(state);
1959 }
1960
1961 if (!block->is_iodone && !block->never_written) {
1962 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1963 " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1964 " which is not yet iodone!\n",
c1c9ff7c
GU
1965 btrfsic_get_block_type(state, block), bytenr,
1966 dev_state->name, dev_bytenr, block->mirror_num,
1967 block->generation,
3cae210f
QW
1968 btrfs_stack_header_generation(
1969 (struct btrfs_header *)
1970 mapped_datav[0]));
5db02760
SB
1971 /* it would not be safe to go on */
1972 btrfsic_dump_tree(state);
e06baab4 1973 goto continue_loop;
5db02760
SB
1974 }
1975
1976 /*
1977 * Clear all references of this block. Do not free
1978 * the block itself even if is not referenced anymore
1979 * because it still carries valueable information
1980 * like whether it was ever written and IO completed.
1981 */
1982 list_for_each_safe(elem_ref_to, tmp_ref_to,
1983 &block->ref_to_list) {
1984 struct btrfsic_block_link *const l =
1985 list_entry(elem_ref_to,
1986 struct btrfsic_block_link,
1987 node_ref_to);
1988
1989 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1990 btrfsic_print_rem_link(state, l);
1991 l->ref_cnt--;
1992 if (0 == l->ref_cnt) {
1993 list_del(&l->node_ref_to);
1994 list_del(&l->node_ref_from);
1995 btrfsic_block_link_hashtable_remove(l);
1996 btrfsic_block_link_free(l);
1997 }
1998 }
1999
2000 if (block->is_superblock)
e06baab4
SB
2001 ret = btrfsic_map_superblock(state, bytenr,
2002 processed_len,
5db02760
SB
2003 bdev, &block_ctx);
2004 else
e06baab4 2005 ret = btrfsic_map_block(state, bytenr, processed_len,
5db02760
SB
2006 &block_ctx, 0);
2007 if (ret) {
2008 printk(KERN_INFO
2009 "btrfsic: btrfsic_map_block(root @%llu)"
c1c9ff7c 2010 " failed!\n", bytenr);
e06baab4 2011 goto continue_loop;
5db02760 2012 }
e06baab4 2013 block_ctx.datav = mapped_datav;
5db02760
SB
2014 /* the following is required in case of writes to mirrors,
2015 * use the same that was used for the lookup */
2016 block_ctx.dev = dev_state;
2017 block_ctx.dev_bytenr = dev_bytenr;
2018
2019 if (is_metadata || state->include_extent_data) {
2020 block->never_written = 0;
2021 block->iodone_w_error = 0;
2022 if (NULL != bio) {
2023 block->is_iodone = 0;
2024 BUG_ON(NULL == bio_is_patched);
2025 if (!*bio_is_patched) {
2026 block->orig_bio_bh_private =
2027 bio->bi_private;
2028 block->orig_bio_bh_end_io.bio =
2029 bio->bi_end_io;
2030 block->next_in_same_bio = NULL;
2031 bio->bi_private = block;
2032 bio->bi_end_io = btrfsic_bio_end_io;
2033 *bio_is_patched = 1;
2034 } else {
2035 struct btrfsic_block *chained_block =
2036 (struct btrfsic_block *)
2037 bio->bi_private;
2038
2039 BUG_ON(NULL == chained_block);
2040 block->orig_bio_bh_private =
2041 chained_block->orig_bio_bh_private;
2042 block->orig_bio_bh_end_io.bio =
2043 chained_block->orig_bio_bh_end_io.
2044 bio;
2045 block->next_in_same_bio = chained_block;
2046 bio->bi_private = block;
2047 }
2048 } else if (NULL != bh) {
2049 block->is_iodone = 0;
2050 block->orig_bio_bh_private = bh->b_private;
2051 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2052 block->next_in_same_bio = NULL;
2053 bh->b_private = block;
2054 bh->b_end_io = btrfsic_bh_end_io;
2055 } else {
2056 block->is_iodone = 1;
2057 block->orig_bio_bh_private = NULL;
2058 block->orig_bio_bh_end_io.bio = NULL;
2059 block->next_in_same_bio = NULL;
2060 }
2061 }
2062
2063 block->flush_gen = dev_state->last_flush_gen + 1;
2064 block->submit_bio_bh_rw = submit_bio_bh_rw;
2065 if (is_metadata) {
2066 block->logical_bytenr = bytenr;
2067 block->is_metadata = 1;
2068 if (block->is_superblock) {
e06baab4
SB
2069 BUG_ON(PAGE_CACHE_SIZE !=
2070 BTRFS_SUPER_INFO_SIZE);
5db02760
SB
2071 ret = btrfsic_process_written_superblock(
2072 state,
2073 block,
2074 (struct btrfs_super_block *)
e06baab4 2075 mapped_datav[0]);
5db02760
SB
2076 if (state->print_mask &
2077 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2078 printk(KERN_INFO
2079 "[after new superblock is written]:\n");
2080 btrfsic_dump_tree_sub(state, block, 0);
2081 }
2082 } else {
2083 block->mirror_num = 0; /* unknown */
2084 ret = btrfsic_process_metablock(
2085 state,
2086 block,
2087 &block_ctx,
5db02760
SB
2088 0, 0);
2089 }
2090 if (ret)
2091 printk(KERN_INFO
2092 "btrfsic: btrfsic_process_metablock"
2093 "(root @%llu) failed!\n",
c1c9ff7c 2094 dev_bytenr);
5db02760
SB
2095 } else {
2096 block->is_metadata = 0;
2097 block->mirror_num = 0; /* unknown */
2098 block->generation = BTRFSIC_GENERATION_UNKNOWN;
2099 if (!state->include_extent_data
2100 && list_empty(&block->ref_from_list)) {
2101 /*
2102 * disk block is overwritten with extent
2103 * data (not meta data) and we are configured
2104 * to not include extent data: take the
2105 * chance and free the block's memory
2106 */
2107 btrfsic_block_hashtable_remove(block);
2108 list_del(&block->all_blocks_node);
2109 btrfsic_block_free(block);
2110 }
2111 }
2112 btrfsic_release_block_ctx(&block_ctx);
2113 } else {
2114 /* block has not been found in hash table */
2115 u64 bytenr;
2116
2117 if (!is_metadata) {
e06baab4 2118 processed_len = state->datablock_size;
5db02760
SB
2119 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2120 printk(KERN_INFO "Written block (%s/%llu/?)"
2121 " !found in hash table, D.\n",
c1c9ff7c 2122 dev_state->name, dev_bytenr);
e06baab4
SB
2123 if (!state->include_extent_data) {
2124 /* ignore that written D block */
2125 goto continue_loop;
2126 }
5db02760
SB
2127
2128 /* this is getting ugly for the
2129 * include_extent_data case... */
2130 bytenr = 0; /* unknown */
2131 block_ctx.start = bytenr;
e06baab4
SB
2132 block_ctx.len = processed_len;
2133 block_ctx.mem_to_free = NULL;
2134 block_ctx.pagev = NULL;
5db02760 2135 } else {
e06baab4 2136 processed_len = state->metablock_size;
3cae210f
QW
2137 bytenr = btrfs_stack_header_bytenr(
2138 (struct btrfs_header *)
2139 mapped_datav[0]);
5db02760 2140 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
e06baab4 2141 dev_bytenr);
5db02760
SB
2142 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2143 printk(KERN_INFO
2144 "Written block @%llu (%s/%llu/?)"
2145 " !found in hash table, M.\n",
c1c9ff7c 2146 bytenr, dev_state->name, dev_bytenr);
5db02760 2147
e06baab4
SB
2148 ret = btrfsic_map_block(state, bytenr, processed_len,
2149 &block_ctx, 0);
5db02760
SB
2150 if (ret) {
2151 printk(KERN_INFO
2152 "btrfsic: btrfsic_map_block(root @%llu)"
2153 " failed!\n",
c1c9ff7c 2154 dev_bytenr);
e06baab4 2155 goto continue_loop;
5db02760
SB
2156 }
2157 }
e06baab4 2158 block_ctx.datav = mapped_datav;
5db02760
SB
2159 /* the following is required in case of writes to mirrors,
2160 * use the same that was used for the lookup */
2161 block_ctx.dev = dev_state;
2162 block_ctx.dev_bytenr = dev_bytenr;
2163
2164 block = btrfsic_block_alloc();
2165 if (NULL == block) {
2166 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2167 btrfsic_release_block_ctx(&block_ctx);
e06baab4 2168 goto continue_loop;
5db02760
SB
2169 }
2170 block->dev_state = dev_state;
2171 block->dev_bytenr = dev_bytenr;
2172 block->logical_bytenr = bytenr;
2173 block->is_metadata = is_metadata;
2174 block->never_written = 0;
2175 block->iodone_w_error = 0;
2176 block->mirror_num = 0; /* unknown */
2177 block->flush_gen = dev_state->last_flush_gen + 1;
2178 block->submit_bio_bh_rw = submit_bio_bh_rw;
2179 if (NULL != bio) {
2180 block->is_iodone = 0;
2181 BUG_ON(NULL == bio_is_patched);
2182 if (!*bio_is_patched) {
2183 block->orig_bio_bh_private = bio->bi_private;
2184 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2185 block->next_in_same_bio = NULL;
2186 bio->bi_private = block;
2187 bio->bi_end_io = btrfsic_bio_end_io;
2188 *bio_is_patched = 1;
2189 } else {
2190 struct btrfsic_block *chained_block =
2191 (struct btrfsic_block *)
2192 bio->bi_private;
2193
2194 BUG_ON(NULL == chained_block);
2195 block->orig_bio_bh_private =
2196 chained_block->orig_bio_bh_private;
2197 block->orig_bio_bh_end_io.bio =
2198 chained_block->orig_bio_bh_end_io.bio;
2199 block->next_in_same_bio = chained_block;
2200 bio->bi_private = block;
2201 }
2202 } else if (NULL != bh) {
2203 block->is_iodone = 0;
2204 block->orig_bio_bh_private = bh->b_private;
2205 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2206 block->next_in_same_bio = NULL;
2207 bh->b_private = block;
2208 bh->b_end_io = btrfsic_bh_end_io;
2209 } else {
2210 block->is_iodone = 1;
2211 block->orig_bio_bh_private = NULL;
2212 block->orig_bio_bh_end_io.bio = NULL;
2213 block->next_in_same_bio = NULL;
2214 }
2215 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2216 printk(KERN_INFO
2217 "New written %c-block @%llu (%s/%llu/%d)\n",
2218 is_metadata ? 'M' : 'D',
c1c9ff7c
GU
2219 block->logical_bytenr, block->dev_state->name,
2220 block->dev_bytenr, block->mirror_num);
5db02760
SB
2221 list_add(&block->all_blocks_node, &state->all_blocks_list);
2222 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2223
2224 if (is_metadata) {
2225 ret = btrfsic_process_metablock(state, block,
e06baab4 2226 &block_ctx, 0, 0);
5db02760
SB
2227 if (ret)
2228 printk(KERN_INFO
2229 "btrfsic: process_metablock(root @%llu)"
2230 " failed!\n",
c1c9ff7c 2231 dev_bytenr);
5db02760
SB
2232 }
2233 btrfsic_release_block_ctx(&block_ctx);
2234 }
e06baab4
SB
2235
2236continue_loop:
2237 BUG_ON(!processed_len);
2238 dev_bytenr += processed_len;
2239 mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2240 num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2241 goto again;
5db02760
SB
2242}
2243
2244static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2245{
2246 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2247 int iodone_w_error;
2248
2249 /* mutex is not held! This is not save if IO is not yet completed
2250 * on umount */
2251 iodone_w_error = 0;
2252 if (bio_error_status)
2253 iodone_w_error = 1;
2254
2255 BUG_ON(NULL == block);
2256 bp->bi_private = block->orig_bio_bh_private;
2257 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2258
2259 do {
2260 struct btrfsic_block *next_block;
2261 struct btrfsic_dev_state *const dev_state = block->dev_state;
2262
2263 if ((dev_state->state->print_mask &
2264 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2265 printk(KERN_INFO
2266 "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2267 bio_error_status,
2268 btrfsic_get_block_type(dev_state->state, block),
c1c9ff7c
GU
2269 block->logical_bytenr, dev_state->name,
2270 block->dev_bytenr, block->mirror_num);
5db02760
SB
2271 next_block = block->next_in_same_bio;
2272 block->iodone_w_error = iodone_w_error;
2273 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2274 dev_state->last_flush_gen++;
2275 if ((dev_state->state->print_mask &
2276 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2277 printk(KERN_INFO
2278 "bio_end_io() new %s flush_gen=%llu\n",
2279 dev_state->name,
5db02760
SB
2280 dev_state->last_flush_gen);
2281 }
2282 if (block->submit_bio_bh_rw & REQ_FUA)
2283 block->flush_gen = 0; /* FUA completed means block is
2284 * on disk */
2285 block->is_iodone = 1; /* for FLUSH, this releases the block */
2286 block = next_block;
2287 } while (NULL != block);
2288
2289 bp->bi_end_io(bp, bio_error_status);
2290}
2291
2292static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2293{
2294 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2295 int iodone_w_error = !uptodate;
2296 struct btrfsic_dev_state *dev_state;
2297
2298 BUG_ON(NULL == block);
2299 dev_state = block->dev_state;
2300 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2301 printk(KERN_INFO
2302 "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2303 iodone_w_error,
2304 btrfsic_get_block_type(dev_state->state, block),
c1c9ff7c
GU
2305 block->logical_bytenr, block->dev_state->name,
2306 block->dev_bytenr, block->mirror_num);
5db02760
SB
2307
2308 block->iodone_w_error = iodone_w_error;
2309 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2310 dev_state->last_flush_gen++;
2311 if ((dev_state->state->print_mask &
2312 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2313 printk(KERN_INFO
2314 "bh_end_io() new %s flush_gen=%llu\n",
c1c9ff7c 2315 dev_state->name, dev_state->last_flush_gen);
5db02760
SB
2316 }
2317 if (block->submit_bio_bh_rw & REQ_FUA)
2318 block->flush_gen = 0; /* FUA completed means block is on disk */
2319
2320 bh->b_private = block->orig_bio_bh_private;
2321 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2322 block->is_iodone = 1; /* for FLUSH, this releases the block */
2323 bh->b_end_io(bh, uptodate);
2324}
2325
2326static int btrfsic_process_written_superblock(
2327 struct btrfsic_state *state,
2328 struct btrfsic_block *const superblock,
2329 struct btrfs_super_block *const super_hdr)
2330{
2331 int pass;
2332
2333 superblock->generation = btrfs_super_generation(super_hdr);
2334 if (!(superblock->generation > state->max_superblock_generation ||
2335 0 == state->max_superblock_generation)) {
2336 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2337 printk(KERN_INFO
2338 "btrfsic: superblock @%llu (%s/%llu/%d)"
2339 " with old gen %llu <= %llu\n",
c1c9ff7c 2340 superblock->logical_bytenr,
5db02760 2341 superblock->dev_state->name,
c1c9ff7c 2342 superblock->dev_bytenr, superblock->mirror_num,
5db02760 2343 btrfs_super_generation(super_hdr),
5db02760
SB
2344 state->max_superblock_generation);
2345 } else {
2346 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2347 printk(KERN_INFO
2348 "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2349 " with new gen %llu > %llu\n",
c1c9ff7c 2350 superblock->logical_bytenr,
5db02760 2351 superblock->dev_state->name,
c1c9ff7c 2352 superblock->dev_bytenr, superblock->mirror_num,
5db02760 2353 btrfs_super_generation(super_hdr),
5db02760
SB
2354 state->max_superblock_generation);
2355
2356 state->max_superblock_generation =
2357 btrfs_super_generation(super_hdr);
2358 state->latest_superblock = superblock;
2359 }
2360
2361 for (pass = 0; pass < 3; pass++) {
2362 int ret;
2363 u64 next_bytenr;
2364 struct btrfsic_block *next_block;
2365 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2366 struct btrfsic_block_link *l;
2367 int num_copies;
2368 int mirror_num;
2369 const char *additional_string = NULL;
35a3621b 2370 struct btrfs_disk_key tmp_disk_key = {0};
5db02760 2371
3cae210f
QW
2372 btrfs_set_disk_key_objectid(&tmp_disk_key,
2373 BTRFS_ROOT_ITEM_KEY);
2374 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
5db02760
SB
2375
2376 switch (pass) {
2377 case 0:
3cae210f
QW
2378 btrfs_set_disk_key_objectid(&tmp_disk_key,
2379 BTRFS_ROOT_TREE_OBJECTID);
5db02760
SB
2380 additional_string = "root ";
2381 next_bytenr = btrfs_super_root(super_hdr);
2382 if (state->print_mask &
2383 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 2384 printk(KERN_INFO "root@%llu\n", next_bytenr);
5db02760
SB
2385 break;
2386 case 1:
3cae210f
QW
2387 btrfs_set_disk_key_objectid(&tmp_disk_key,
2388 BTRFS_CHUNK_TREE_OBJECTID);
5db02760
SB
2389 additional_string = "chunk ";
2390 next_bytenr = btrfs_super_chunk_root(super_hdr);
2391 if (state->print_mask &
2392 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 2393 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
5db02760
SB
2394 break;
2395 case 2:
3cae210f
QW
2396 btrfs_set_disk_key_objectid(&tmp_disk_key,
2397 BTRFS_TREE_LOG_OBJECTID);
5db02760
SB
2398 additional_string = "log ";
2399 next_bytenr = btrfs_super_log_root(super_hdr);
2400 if (0 == next_bytenr)
2401 continue;
2402 if (state->print_mask &
2403 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
c1c9ff7c 2404 printk(KERN_INFO "log@%llu\n", next_bytenr);
5db02760
SB
2405 break;
2406 }
2407
2408 num_copies =
5d964051 2409 btrfs_num_copies(state->root->fs_info,
e06baab4 2410 next_bytenr, BTRFS_SUPER_INFO_SIZE);
5db02760
SB
2411 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2412 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
c1c9ff7c 2413 next_bytenr, num_copies);
5db02760
SB
2414 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2415 int was_created;
2416
2417 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2418 printk(KERN_INFO
2419 "btrfsic_process_written_superblock("
2420 "mirror_num=%d)\n", mirror_num);
e06baab4
SB
2421 ret = btrfsic_map_block(state, next_bytenr,
2422 BTRFS_SUPER_INFO_SIZE,
5db02760
SB
2423 &tmp_next_block_ctx,
2424 mirror_num);
2425 if (ret) {
2426 printk(KERN_INFO
2427 "btrfsic: btrfsic_map_block(@%llu,"
2428 " mirror=%d) failed!\n",
c1c9ff7c 2429 next_bytenr, mirror_num);
5db02760
SB
2430 return -1;
2431 }
2432
2433 next_block = btrfsic_block_lookup_or_add(
2434 state,
2435 &tmp_next_block_ctx,
2436 additional_string,
2437 1, 0, 1,
2438 mirror_num,
2439 &was_created);
2440 if (NULL == next_block) {
2441 printk(KERN_INFO
2442 "btrfsic: error, kmalloc failed!\n");
2443 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2444 return -1;
2445 }
2446
2447 next_block->disk_key = tmp_disk_key;
2448 if (was_created)
2449 next_block->generation =
2450 BTRFSIC_GENERATION_UNKNOWN;
2451 l = btrfsic_block_link_lookup_or_add(
2452 state,
2453 &tmp_next_block_ctx,
2454 next_block,
2455 superblock,
2456 BTRFSIC_GENERATION_UNKNOWN);
2457 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2458 if (NULL == l)
2459 return -1;
2460 }
2461 }
2462
fae7f21c 2463 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
5db02760 2464 btrfsic_dump_tree(state);
5db02760
SB
2465
2466 return 0;
2467}
2468
2469static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2470 struct btrfsic_block *const block,
2471 int recursion_level)
2472{
2473 struct list_head *elem_ref_to;
2474 int ret = 0;
2475
2476 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2477 /*
2478 * Note that this situation can happen and does not
2479 * indicate an error in regular cases. It happens
2480 * when disk blocks are freed and later reused.
2481 * The check-integrity module is not aware of any
2482 * block free operations, it just recognizes block
2483 * write operations. Therefore it keeps the linkage
2484 * information for a block until a block is
2485 * rewritten. This can temporarily cause incorrect
2486 * and even circular linkage informations. This
2487 * causes no harm unless such blocks are referenced
2488 * by the most recent super block.
2489 */
2490 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2491 printk(KERN_INFO
2492 "btrfsic: abort cyclic linkage (case 1).\n");
2493
2494 return ret;
2495 }
2496
2497 /*
2498 * This algorithm is recursive because the amount of used stack
2499 * space is very small and the max recursion depth is limited.
2500 */
2501 list_for_each(elem_ref_to, &block->ref_to_list) {
2502 const struct btrfsic_block_link *const l =
2503 list_entry(elem_ref_to, struct btrfsic_block_link,
2504 node_ref_to);
2505
2506 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2507 printk(KERN_INFO
2508 "rl=%d, %c @%llu (%s/%llu/%d)"
2509 " %u* refers to %c @%llu (%s/%llu/%d)\n",
2510 recursion_level,
2511 btrfsic_get_block_type(state, block),
c1c9ff7c
GU
2512 block->logical_bytenr, block->dev_state->name,
2513 block->dev_bytenr, block->mirror_num,
5db02760
SB
2514 l->ref_cnt,
2515 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
2516 l->block_ref_to->logical_bytenr,
2517 l->block_ref_to->dev_state->name,
c1c9ff7c 2518 l->block_ref_to->dev_bytenr,
5db02760
SB
2519 l->block_ref_to->mirror_num);
2520 if (l->block_ref_to->never_written) {
2521 printk(KERN_INFO "btrfs: attempt to write superblock"
2522 " which references block %c @%llu (%s/%llu/%d)"
2523 " which is never written!\n",
2524 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
2525 l->block_ref_to->logical_bytenr,
2526 l->block_ref_to->dev_state->name,
c1c9ff7c 2527 l->block_ref_to->dev_bytenr,
5db02760
SB
2528 l->block_ref_to->mirror_num);
2529 ret = -1;
2530 } else if (!l->block_ref_to->is_iodone) {
2531 printk(KERN_INFO "btrfs: attempt to write superblock"
2532 " which references block %c @%llu (%s/%llu/%d)"
2533 " which is not yet iodone!\n",
2534 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
2535 l->block_ref_to->logical_bytenr,
2536 l->block_ref_to->dev_state->name,
c1c9ff7c 2537 l->block_ref_to->dev_bytenr,
5db02760
SB
2538 l->block_ref_to->mirror_num);
2539 ret = -1;
62856a9b
SB
2540 } else if (l->block_ref_to->iodone_w_error) {
2541 printk(KERN_INFO "btrfs: attempt to write superblock"
2542 " which references block %c @%llu (%s/%llu/%d)"
2543 " which has write error!\n",
2544 btrfsic_get_block_type(state, l->block_ref_to),
62856a9b
SB
2545 l->block_ref_to->logical_bytenr,
2546 l->block_ref_to->dev_state->name,
c1c9ff7c 2547 l->block_ref_to->dev_bytenr,
62856a9b
SB
2548 l->block_ref_to->mirror_num);
2549 ret = -1;
5db02760
SB
2550 } else if (l->parent_generation !=
2551 l->block_ref_to->generation &&
2552 BTRFSIC_GENERATION_UNKNOWN !=
2553 l->parent_generation &&
2554 BTRFSIC_GENERATION_UNKNOWN !=
2555 l->block_ref_to->generation) {
2556 printk(KERN_INFO "btrfs: attempt to write superblock"
2557 " which references block %c @%llu (%s/%llu/%d)"
2558 " with generation %llu !="
2559 " parent generation %llu!\n",
2560 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
2561 l->block_ref_to->logical_bytenr,
2562 l->block_ref_to->dev_state->name,
c1c9ff7c 2563 l->block_ref_to->dev_bytenr,
5db02760 2564 l->block_ref_to->mirror_num,
c1c9ff7c
GU
2565 l->block_ref_to->generation,
2566 l->parent_generation);
5db02760
SB
2567 ret = -1;
2568 } else if (l->block_ref_to->flush_gen >
2569 l->block_ref_to->dev_state->last_flush_gen) {
2570 printk(KERN_INFO "btrfs: attempt to write superblock"
2571 " which references block %c @%llu (%s/%llu/%d)"
2572 " which is not flushed out of disk's write cache"
2573 " (block flush_gen=%llu,"
2574 " dev->flush_gen=%llu)!\n",
2575 btrfsic_get_block_type(state, l->block_ref_to),
5db02760
SB
2576 l->block_ref_to->logical_bytenr,
2577 l->block_ref_to->dev_state->name,
c1c9ff7c
GU
2578 l->block_ref_to->dev_bytenr,
2579 l->block_ref_to->mirror_num, block->flush_gen,
5db02760
SB
2580 l->block_ref_to->dev_state->last_flush_gen);
2581 ret = -1;
2582 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2583 l->block_ref_to,
2584 recursion_level +
2585 1)) {
2586 ret = -1;
2587 }
2588 }
2589
2590 return ret;
2591}
2592
2593static int btrfsic_is_block_ref_by_superblock(
2594 const struct btrfsic_state *state,
2595 const struct btrfsic_block *block,
2596 int recursion_level)
2597{
2598 struct list_head *elem_ref_from;
2599
2600 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2601 /* refer to comment at "abort cyclic linkage (case 1)" */
2602 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2603 printk(KERN_INFO
2604 "btrfsic: abort cyclic linkage (case 2).\n");
2605
2606 return 0;
2607 }
2608
2609 /*
2610 * This algorithm is recursive because the amount of used stack space
2611 * is very small and the max recursion depth is limited.
2612 */
2613 list_for_each(elem_ref_from, &block->ref_from_list) {
2614 const struct btrfsic_block_link *const l =
2615 list_entry(elem_ref_from, struct btrfsic_block_link,
2616 node_ref_from);
2617
2618 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2619 printk(KERN_INFO
2620 "rl=%d, %c @%llu (%s/%llu/%d)"
2621 " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2622 recursion_level,
2623 btrfsic_get_block_type(state, block),
c1c9ff7c
GU
2624 block->logical_bytenr, block->dev_state->name,
2625 block->dev_bytenr, block->mirror_num,
5db02760
SB
2626 l->ref_cnt,
2627 btrfsic_get_block_type(state, l->block_ref_from),
5db02760
SB
2628 l->block_ref_from->logical_bytenr,
2629 l->block_ref_from->dev_state->name,
5db02760
SB
2630 l->block_ref_from->dev_bytenr,
2631 l->block_ref_from->mirror_num);
2632 if (l->block_ref_from->is_superblock &&
2633 state->latest_superblock->dev_bytenr ==
2634 l->block_ref_from->dev_bytenr &&
2635 state->latest_superblock->dev_state->bdev ==
2636 l->block_ref_from->dev_state->bdev)
2637 return 1;
2638 else if (btrfsic_is_block_ref_by_superblock(state,
2639 l->block_ref_from,
2640 recursion_level +
2641 1))
2642 return 1;
2643 }
2644
2645 return 0;
2646}
2647
2648static void btrfsic_print_add_link(const struct btrfsic_state *state,
2649 const struct btrfsic_block_link *l)
2650{
2651 printk(KERN_INFO
2652 "Add %u* link from %c @%llu (%s/%llu/%d)"
2653 " to %c @%llu (%s/%llu/%d).\n",
2654 l->ref_cnt,
2655 btrfsic_get_block_type(state, l->block_ref_from),
c1c9ff7c 2656 l->block_ref_from->logical_bytenr,
5db02760 2657 l->block_ref_from->dev_state->name,
c1c9ff7c 2658 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
5db02760 2659 btrfsic_get_block_type(state, l->block_ref_to),
c1c9ff7c
GU
2660 l->block_ref_to->logical_bytenr,
2661 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
5db02760
SB
2662 l->block_ref_to->mirror_num);
2663}
2664
2665static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2666 const struct btrfsic_block_link *l)
2667{
2668 printk(KERN_INFO
2669 "Rem %u* link from %c @%llu (%s/%llu/%d)"
2670 " to %c @%llu (%s/%llu/%d).\n",
2671 l->ref_cnt,
2672 btrfsic_get_block_type(state, l->block_ref_from),
c1c9ff7c 2673 l->block_ref_from->logical_bytenr,
5db02760 2674 l->block_ref_from->dev_state->name,
c1c9ff7c 2675 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
5db02760 2676 btrfsic_get_block_type(state, l->block_ref_to),
c1c9ff7c
GU
2677 l->block_ref_to->logical_bytenr,
2678 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
5db02760
SB
2679 l->block_ref_to->mirror_num);
2680}
2681
2682static char btrfsic_get_block_type(const struct btrfsic_state *state,
2683 const struct btrfsic_block *block)
2684{
2685 if (block->is_superblock &&
2686 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2687 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2688 return 'S';
2689 else if (block->is_superblock)
2690 return 's';
2691 else if (block->is_metadata)
2692 return 'M';
2693 else
2694 return 'D';
2695}
2696
2697static void btrfsic_dump_tree(const struct btrfsic_state *state)
2698{
2699 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2700}
2701
2702static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2703 const struct btrfsic_block *block,
2704 int indent_level)
2705{
2706 struct list_head *elem_ref_to;
2707 int indent_add;
2708 static char buf[80];
2709 int cursor_position;
2710
2711 /*
2712 * Should better fill an on-stack buffer with a complete line and
2713 * dump it at once when it is time to print a newline character.
2714 */
2715
2716 /*
2717 * This algorithm is recursive because the amount of used stack space
2718 * is very small and the max recursion depth is limited.
2719 */
2720 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2721 btrfsic_get_block_type(state, block),
c1c9ff7c
GU
2722 block->logical_bytenr, block->dev_state->name,
2723 block->dev_bytenr, block->mirror_num);
5db02760
SB
2724 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2725 printk("[...]\n");
2726 return;
2727 }
2728 printk(buf);
2729 indent_level += indent_add;
2730 if (list_empty(&block->ref_to_list)) {
2731 printk("\n");
2732 return;
2733 }
2734 if (block->mirror_num > 1 &&
2735 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2736 printk(" [...]\n");
2737 return;
2738 }
2739
2740 cursor_position = indent_level;
2741 list_for_each(elem_ref_to, &block->ref_to_list) {
2742 const struct btrfsic_block_link *const l =
2743 list_entry(elem_ref_to, struct btrfsic_block_link,
2744 node_ref_to);
2745
2746 while (cursor_position < indent_level) {
2747 printk(" ");
2748 cursor_position++;
2749 }
2750 if (l->ref_cnt > 1)
2751 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2752 else
2753 indent_add = sprintf(buf, " --> ");
2754 if (indent_level + indent_add >
2755 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2756 printk("[...]\n");
2757 cursor_position = 0;
2758 continue;
2759 }
2760
2761 printk(buf);
2762
2763 btrfsic_dump_tree_sub(state, l->block_ref_to,
2764 indent_level + indent_add);
2765 cursor_position = 0;
2766 }
2767}
2768
2769static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2770 struct btrfsic_state *state,
2771 struct btrfsic_block_data_ctx *next_block_ctx,
2772 struct btrfsic_block *next_block,
2773 struct btrfsic_block *from_block,
2774 u64 parent_generation)
2775{
2776 struct btrfsic_block_link *l;
2777
2778 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2779 next_block_ctx->dev_bytenr,
2780 from_block->dev_state->bdev,
2781 from_block->dev_bytenr,
2782 &state->block_link_hashtable);
2783 if (NULL == l) {
2784 l = btrfsic_block_link_alloc();
2785 if (NULL == l) {
2786 printk(KERN_INFO
2787 "btrfsic: error, kmalloc" " failed!\n");
2788 return NULL;
2789 }
2790
2791 l->block_ref_to = next_block;
2792 l->block_ref_from = from_block;
2793 l->ref_cnt = 1;
2794 l->parent_generation = parent_generation;
2795
2796 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2797 btrfsic_print_add_link(state, l);
2798
2799 list_add(&l->node_ref_to, &from_block->ref_to_list);
2800 list_add(&l->node_ref_from, &next_block->ref_from_list);
2801
2802 btrfsic_block_link_hashtable_add(l,
2803 &state->block_link_hashtable);
2804 } else {
2805 l->ref_cnt++;
2806 l->parent_generation = parent_generation;
2807 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2808 btrfsic_print_add_link(state, l);
2809 }
2810
2811 return l;
2812}
2813
2814static struct btrfsic_block *btrfsic_block_lookup_or_add(
2815 struct btrfsic_state *state,
2816 struct btrfsic_block_data_ctx *block_ctx,
2817 const char *additional_string,
2818 int is_metadata,
2819 int is_iodone,
2820 int never_written,
2821 int mirror_num,
2822 int *was_created)
2823{
2824 struct btrfsic_block *block;
2825
2826 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2827 block_ctx->dev_bytenr,
2828 &state->block_hashtable);
2829 if (NULL == block) {
2830 struct btrfsic_dev_state *dev_state;
2831
2832 block = btrfsic_block_alloc();
2833 if (NULL == block) {
2834 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2835 return NULL;
2836 }
2837 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2838 if (NULL == dev_state) {
2839 printk(KERN_INFO
2840 "btrfsic: error, lookup dev_state failed!\n");
2841 btrfsic_block_free(block);
2842 return NULL;
2843 }
2844 block->dev_state = dev_state;
2845 block->dev_bytenr = block_ctx->dev_bytenr;
2846 block->logical_bytenr = block_ctx->start;
2847 block->is_metadata = is_metadata;
2848 block->is_iodone = is_iodone;
2849 block->never_written = never_written;
2850 block->mirror_num = mirror_num;
2851 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2852 printk(KERN_INFO
2853 "New %s%c-block @%llu (%s/%llu/%d)\n",
2854 additional_string,
2855 btrfsic_get_block_type(state, block),
c1c9ff7c
GU
2856 block->logical_bytenr, dev_state->name,
2857 block->dev_bytenr, mirror_num);
5db02760
SB
2858 list_add(&block->all_blocks_node, &state->all_blocks_list);
2859 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2860 if (NULL != was_created)
2861 *was_created = 1;
2862 } else {
2863 if (NULL != was_created)
2864 *was_created = 0;
2865 }
2866
2867 return block;
2868}
2869
2870static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2871 u64 bytenr,
2872 struct btrfsic_dev_state *dev_state,
e06baab4 2873 u64 dev_bytenr)
5db02760
SB
2874{
2875 int num_copies;
2876 int mirror_num;
2877 int ret;
2878 struct btrfsic_block_data_ctx block_ctx;
2879 int match = 0;
2880
5d964051 2881 num_copies = btrfs_num_copies(state->root->fs_info,
e06baab4 2882 bytenr, state->metablock_size);
5db02760
SB
2883
2884 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
e06baab4 2885 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
5db02760
SB
2886 &block_ctx, mirror_num);
2887 if (ret) {
2888 printk(KERN_INFO "btrfsic:"
2889 " btrfsic_map_block(logical @%llu,"
2890 " mirror %d) failed!\n",
c1c9ff7c 2891 bytenr, mirror_num);
5db02760
SB
2892 continue;
2893 }
2894
2895 if (dev_state->bdev == block_ctx.dev->bdev &&
2896 dev_bytenr == block_ctx.dev_bytenr) {
2897 match++;
2898 btrfsic_release_block_ctx(&block_ctx);
2899 break;
2900 }
2901 btrfsic_release_block_ctx(&block_ctx);
2902 }
2903
fae7f21c 2904 if (WARN_ON(!match)) {
5db02760
SB
2905 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2906 " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2907 " phys_bytenr=%llu)!\n",
c1c9ff7c 2908 bytenr, dev_state->name, dev_bytenr);
5db02760 2909 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
e06baab4
SB
2910 ret = btrfsic_map_block(state, bytenr,
2911 state->metablock_size,
5db02760
SB
2912 &block_ctx, mirror_num);
2913 if (ret)
2914 continue;
2915
2916 printk(KERN_INFO "Read logical bytenr @%llu maps to"
2917 " (%s/%llu/%d)\n",
c1c9ff7c
GU
2918 bytenr, block_ctx.dev->name,
2919 block_ctx.dev_bytenr, mirror_num);
5db02760 2920 }
5db02760
SB
2921 }
2922}
2923
2924static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2925 struct block_device *bdev)
2926{
2927 struct btrfsic_dev_state *ds;
2928
2929 ds = btrfsic_dev_state_hashtable_lookup(bdev,
2930 &btrfsic_dev_state_hashtable);
2931 return ds;
2932}
2933
2934int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2935{
2936 struct btrfsic_dev_state *dev_state;
2937
2938 if (!btrfsic_is_initialized)
2939 return submit_bh(rw, bh);
2940
2941 mutex_lock(&btrfsic_mutex);
2942 /* since btrfsic_submit_bh() might also be called before
2943 * btrfsic_mount(), this might return NULL */
2944 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2945
2946 /* Only called to write the superblock (incl. FLUSH/FUA) */
2947 if (NULL != dev_state &&
2948 (rw & WRITE) && bh->b_size > 0) {
2949 u64 dev_bytenr;
2950
2951 dev_bytenr = 4096 * bh->b_blocknr;
2952 if (dev_state->state->print_mask &
2953 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2954 printk(KERN_INFO
fce29364 2955 "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
8d78eb16 2956 " size=%zu, data=%p, bdev=%p)\n",
fce29364 2957 rw, (unsigned long long)bh->b_blocknr,
8d78eb16 2958 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
5db02760 2959 btrfsic_process_written_block(dev_state, dev_bytenr,
e06baab4 2960 &bh->b_data, 1, NULL,
5db02760
SB
2961 NULL, bh, rw);
2962 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2963 if (dev_state->state->print_mask &
2964 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2965 printk(KERN_INFO
e06baab4 2966 "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
5db02760
SB
2967 rw, bh->b_bdev);
2968 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2969 if ((dev_state->state->print_mask &
2970 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2971 BTRFSIC_PRINT_MASK_VERBOSE)))
2972 printk(KERN_INFO
2973 "btrfsic_submit_bh(%s) with FLUSH"
2974 " but dummy block already in use"
2975 " (ignored)!\n",
2976 dev_state->name);
2977 } else {
2978 struct btrfsic_block *const block =
2979 &dev_state->dummy_block_for_bio_bh_flush;
2980
2981 block->is_iodone = 0;
2982 block->never_written = 0;
2983 block->iodone_w_error = 0;
2984 block->flush_gen = dev_state->last_flush_gen + 1;
2985 block->submit_bio_bh_rw = rw;
2986 block->orig_bio_bh_private = bh->b_private;
2987 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2988 block->next_in_same_bio = NULL;
2989 bh->b_private = block;
2990 bh->b_end_io = btrfsic_bh_end_io;
2991 }
2992 }
2993 mutex_unlock(&btrfsic_mutex);
2994 return submit_bh(rw, bh);
2995}
2996
33879d45 2997static void __btrfsic_submit_bio(int rw, struct bio *bio)
5db02760
SB
2998{
2999 struct btrfsic_dev_state *dev_state;
3000
33879d45 3001 if (!btrfsic_is_initialized)
5db02760 3002 return;
5db02760
SB
3003
3004 mutex_lock(&btrfsic_mutex);
3005 /* since btrfsic_submit_bio() is also called before
3006 * btrfsic_mount(), this might return NULL */
3007 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3008 if (NULL != dev_state &&
3009 (rw & WRITE) && NULL != bio->bi_io_vec) {
3010 unsigned int i;
3011 u64 dev_bytenr;
56d140f5 3012 u64 cur_bytenr;
5db02760 3013 int bio_is_patched;
e06baab4 3014 char **mapped_datav;
5db02760 3015
4f024f37 3016 dev_bytenr = 512 * bio->bi_iter.bi_sector;
5db02760
SB
3017 bio_is_patched = 0;
3018 if (dev_state->state->print_mask &
3019 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3020 printk(KERN_INFO
3021 "submit_bio(rw=0x%x, bi_vcnt=%u,"
fce29364
GU
3022 " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
3023 rw, bio->bi_vcnt,
4f024f37
KO
3024 (unsigned long long)bio->bi_iter.bi_sector,
3025 dev_bytenr, bio->bi_bdev);
5db02760 3026
e06baab4
SB
3027 mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3028 GFP_NOFS);
3029 if (!mapped_datav)
3030 goto leave;
56d140f5 3031 cur_bytenr = dev_bytenr;
5db02760 3032 for (i = 0; i < bio->bi_vcnt; i++) {
e06baab4
SB
3033 BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3034 mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3035 if (!mapped_datav[i]) {
3036 while (i > 0) {
3037 i--;
3038 kunmap(bio->bi_io_vec[i].bv_page);
3039 }
3040 kfree(mapped_datav);
3041 goto leave;
3042 }
56d140f5
SB
3043 if (dev_state->state->print_mask &
3044 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
5db02760 3045 printk(KERN_INFO
56d140f5
SB
3046 "#%u: bytenr=%llu, len=%u, offset=%u\n",
3047 i, cur_bytenr, bio->bi_io_vec[i].bv_len,
5db02760 3048 bio->bi_io_vec[i].bv_offset);
56d140f5 3049 cur_bytenr += bio->bi_io_vec[i].bv_len;
e06baab4
SB
3050 }
3051 btrfsic_process_written_block(dev_state, dev_bytenr,
3052 mapped_datav, bio->bi_vcnt,
3053 bio, &bio_is_patched,
3054 NULL, rw);
3055 while (i > 0) {
3056 i--;
5db02760 3057 kunmap(bio->bi_io_vec[i].bv_page);
5db02760 3058 }
e06baab4 3059 kfree(mapped_datav);
5db02760
SB
3060 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3061 if (dev_state->state->print_mask &
3062 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3063 printk(KERN_INFO
e06baab4 3064 "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
5db02760
SB
3065 rw, bio->bi_bdev);
3066 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3067 if ((dev_state->state->print_mask &
3068 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3069 BTRFSIC_PRINT_MASK_VERBOSE)))
3070 printk(KERN_INFO
3071 "btrfsic_submit_bio(%s) with FLUSH"
3072 " but dummy block already in use"
3073 " (ignored)!\n",
3074 dev_state->name);
3075 } else {
3076 struct btrfsic_block *const block =
3077 &dev_state->dummy_block_for_bio_bh_flush;
3078
3079 block->is_iodone = 0;
3080 block->never_written = 0;
3081 block->iodone_w_error = 0;
3082 block->flush_gen = dev_state->last_flush_gen + 1;
3083 block->submit_bio_bh_rw = rw;
3084 block->orig_bio_bh_private = bio->bi_private;
3085 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3086 block->next_in_same_bio = NULL;
3087 bio->bi_private = block;
3088 bio->bi_end_io = btrfsic_bio_end_io;
3089 }
3090 }
e06baab4 3091leave:
5db02760 3092 mutex_unlock(&btrfsic_mutex);
33879d45 3093}
5db02760 3094
33879d45
KO
3095void btrfsic_submit_bio(int rw, struct bio *bio)
3096{
3097 __btrfsic_submit_bio(rw, bio);
5db02760
SB
3098 submit_bio(rw, bio);
3099}
3100
33879d45
KO
3101int btrfsic_submit_bio_wait(int rw, struct bio *bio)
3102{
3103 __btrfsic_submit_bio(rw, bio);
3104 return submit_bio_wait(rw, bio);
3105}
3106
5db02760
SB
3107int btrfsic_mount(struct btrfs_root *root,
3108 struct btrfs_fs_devices *fs_devices,
3109 int including_extent_data, u32 print_mask)
3110{
3111 int ret;
3112 struct btrfsic_state *state;
3113 struct list_head *dev_head = &fs_devices->devices;
3114 struct btrfs_device *device;
3115
e06baab4
SB
3116 if (root->nodesize != root->leafsize) {
3117 printk(KERN_INFO
3118 "btrfsic: cannot handle nodesize %d != leafsize %d!\n",
3119 root->nodesize, root->leafsize);
3120 return -1;
3121 }
3122 if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3123 printk(KERN_INFO
3124 "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
778746b5 3125 root->nodesize, PAGE_CACHE_SIZE);
e06baab4
SB
3126 return -1;
3127 }
3128 if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3129 printk(KERN_INFO
3130 "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
778746b5 3131 root->leafsize, PAGE_CACHE_SIZE);
e06baab4
SB
3132 return -1;
3133 }
3134 if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3135 printk(KERN_INFO
3136 "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
778746b5 3137 root->sectorsize, PAGE_CACHE_SIZE);
e06baab4
SB
3138 return -1;
3139 }
5db02760
SB
3140 state = kzalloc(sizeof(*state), GFP_NOFS);
3141 if (NULL == state) {
3142 printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3143 return -1;
3144 }
3145
3146 if (!btrfsic_is_initialized) {
3147 mutex_init(&btrfsic_mutex);
3148 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3149 btrfsic_is_initialized = 1;
3150 }
3151 mutex_lock(&btrfsic_mutex);
3152 state->root = root;
3153 state->print_mask = print_mask;
3154 state->include_extent_data = including_extent_data;
3155 state->csum_size = 0;
e06baab4
SB
3156 state->metablock_size = root->nodesize;
3157 state->datablock_size = root->sectorsize;
5db02760
SB
3158 INIT_LIST_HEAD(&state->all_blocks_list);
3159 btrfsic_block_hashtable_init(&state->block_hashtable);
3160 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3161 state->max_superblock_generation = 0;
3162 state->latest_superblock = NULL;
3163
3164 list_for_each_entry(device, dev_head, dev_list) {
3165 struct btrfsic_dev_state *ds;
3166 char *p;
3167
3168 if (!device->bdev || !device->name)
3169 continue;
3170
3171 ds = btrfsic_dev_state_alloc();
3172 if (NULL == ds) {
3173 printk(KERN_INFO
3174 "btrfs check-integrity: kmalloc() failed!\n");
3175 mutex_unlock(&btrfsic_mutex);
3176 return -1;
3177 }
3178 ds->bdev = device->bdev;
3179 ds->state = state;
3180 bdevname(ds->bdev, ds->name);
3181 ds->name[BDEVNAME_SIZE - 1] = '\0';
3182 for (p = ds->name; *p != '\0'; p++);
3183 while (p > ds->name && *p != '/')
3184 p--;
3185 if (*p == '/')
3186 p++;
3187 strlcpy(ds->name, p, sizeof(ds->name));
3188 btrfsic_dev_state_hashtable_add(ds,
3189 &btrfsic_dev_state_hashtable);
3190 }
3191
3192 ret = btrfsic_process_superblock(state, fs_devices);
3193 if (0 != ret) {
3194 mutex_unlock(&btrfsic_mutex);
3195 btrfsic_unmount(root, fs_devices);
3196 return ret;
3197 }
3198
3199 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3200 btrfsic_dump_database(state);
3201 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3202 btrfsic_dump_tree(state);
3203
3204 mutex_unlock(&btrfsic_mutex);
3205 return 0;
3206}
3207
3208void btrfsic_unmount(struct btrfs_root *root,
3209 struct btrfs_fs_devices *fs_devices)
3210{
3211 struct list_head *elem_all;
3212 struct list_head *tmp_all;
3213 struct btrfsic_state *state;
3214 struct list_head *dev_head = &fs_devices->devices;
3215 struct btrfs_device *device;
3216
3217 if (!btrfsic_is_initialized)
3218 return;
3219
3220 mutex_lock(&btrfsic_mutex);
3221
3222 state = NULL;
3223 list_for_each_entry(device, dev_head, dev_list) {
3224 struct btrfsic_dev_state *ds;
3225
3226 if (!device->bdev || !device->name)
3227 continue;
3228
3229 ds = btrfsic_dev_state_hashtable_lookup(
3230 device->bdev,
3231 &btrfsic_dev_state_hashtable);
3232 if (NULL != ds) {
3233 state = ds->state;
3234 btrfsic_dev_state_hashtable_remove(ds);
3235 btrfsic_dev_state_free(ds);
3236 }
3237 }
3238
3239 if (NULL == state) {
3240 printk(KERN_INFO
3241 "btrfsic: error, cannot find state information"
3242 " on umount!\n");
3243 mutex_unlock(&btrfsic_mutex);
3244 return;
3245 }
3246
3247 /*
3248 * Don't care about keeping the lists' state up to date,
3249 * just free all memory that was allocated dynamically.
3250 * Free the blocks and the block_links.
3251 */
3252 list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3253 struct btrfsic_block *const b_all =
3254 list_entry(elem_all, struct btrfsic_block,
3255 all_blocks_node);
3256 struct list_head *elem_ref_to;
3257 struct list_head *tmp_ref_to;
3258
3259 list_for_each_safe(elem_ref_to, tmp_ref_to,
3260 &b_all->ref_to_list) {
3261 struct btrfsic_block_link *const l =
3262 list_entry(elem_ref_to,
3263 struct btrfsic_block_link,
3264 node_ref_to);
3265
3266 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3267 btrfsic_print_rem_link(state, l);
3268
3269 l->ref_cnt--;
3270 if (0 == l->ref_cnt)
3271 btrfsic_block_link_free(l);
3272 }
3273
48235a68 3274 if (b_all->is_iodone || b_all->never_written)
5db02760
SB
3275 btrfsic_block_free(b_all);
3276 else
3277 printk(KERN_INFO "btrfs: attempt to free %c-block"
3278 " @%llu (%s/%llu/%d) on umount which is"
3279 " not yet iodone!\n",
3280 btrfsic_get_block_type(state, b_all),
c1c9ff7c
GU
3281 b_all->logical_bytenr, b_all->dev_state->name,
3282 b_all->dev_bytenr, b_all->mirror_num);
5db02760
SB
3283 }
3284
3285 mutex_unlock(&btrfsic_mutex);
3286
3287 kfree(state);
3288}