Merge tag 'bcachefs-2024-07-18.2' of https://evilpiepirate.org/git/bcachefs
[linux-block.git] / fs / btrfs / block-group.c
CommitLineData
2e405ad8
JB
1// SPDX-License-Identifier: GPL-2.0
2
52bb7a21 3#include <linux/sizes.h>
2ca0ec77 4#include <linux/list_sort.h>
784352fe 5#include "misc.h"
2e405ad8
JB
6#include "ctree.h"
7#include "block-group.h"
3eeb3226 8#include "space-info.h"
9f21246d
JB
9#include "disk-io.h"
10#include "free-space-cache.h"
11#include "free-space-tree.h"
e3e0520b
JB
12#include "volumes.h"
13#include "transaction.h"
14#include "ref-verify.h"
4358d963
JB
15#include "sysfs.h"
16#include "tree-log.h"
77745c05 17#include "delalloc-space.h"
b0643e59 18#include "discard.h"
96a14336 19#include "raid56.h"
08e11a3d 20#include "zoned.h"
c7f13d42 21#include "fs.h"
07e81dc9 22#include "accessors.h"
a0231804 23#include "extent-tree.h"
2e405ad8 24
06d61cb1
JB
25#ifdef CONFIG_BTRFS_DEBUG
26int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27{
28 struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
34}
35#endif
36
878d7b67
JB
37/*
38 * Return target flags in extended format or 0 if restripe for this chunk_type
39 * is not in progress
40 *
41 * Should be called with balance_lock held
42 */
e11c0406 43static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
878d7b67
JB
44{
45 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 u64 target = 0;
47
48 if (!bctl)
49 return 0;
50
51 if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 }
61
62 return target;
63}
64
65/*
66 * @flags: available profiles in extended format (see ctree.h)
67 *
68 * Return reduced profile in chunk format. If profile changing is in progress
69 * (either running or paused) picks the target profile (if it's already
70 * available), otherwise falls back to plain reducing.
71 */
72static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73{
74 u64 num_devices = fs_info->fs_devices->rw_devices;
75 u64 target;
76 u64 raid_type;
77 u64 allowed = 0;
78
79 /*
80 * See if restripe for this chunk_type is in progress, if so try to
81 * reduce to the target profile
82 */
83 spin_lock(&fs_info->balance_lock);
e11c0406 84 target = get_restripe_target(fs_info, flags);
878d7b67 85 if (target) {
162e0a16
JB
86 spin_unlock(&fs_info->balance_lock);
87 return extended_to_chunk(target);
878d7b67
JB
88 }
89 spin_unlock(&fs_info->balance_lock);
90
91 /* First, mask out the RAID levels which aren't possible */
92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 allowed |= btrfs_raid_array[raid_type].bg_flag;
95 }
96 allowed &= flags;
97
160fe8f6
MC
98 /* Select the highest-redundancy RAID level. */
99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100 allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
878d7b67 102 allowed = BTRFS_BLOCK_GROUP_RAID6;
160fe8f6
MC
103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104 allowed = BTRFS_BLOCK_GROUP_RAID1C3;
878d7b67
JB
105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106 allowed = BTRFS_BLOCK_GROUP_RAID5;
107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108 allowed = BTRFS_BLOCK_GROUP_RAID10;
109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110 allowed = BTRFS_BLOCK_GROUP_RAID1;
160fe8f6
MC
111 else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112 allowed = BTRFS_BLOCK_GROUP_DUP;
878d7b67
JB
113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114 allowed = BTRFS_BLOCK_GROUP_RAID0;
115
116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117
118 return extended_to_chunk(flags | allowed);
119}
120
ef0a82da 121u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
878d7b67
JB
122{
123 unsigned seq;
124 u64 flags;
125
126 do {
127 flags = orig_flags;
128 seq = read_seqbegin(&fs_info->profiles_lock);
129
130 if (flags & BTRFS_BLOCK_GROUP_DATA)
131 flags |= fs_info->avail_data_alloc_bits;
132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133 flags |= fs_info->avail_system_alloc_bits;
134 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135 flags |= fs_info->avail_metadata_alloc_bits;
136 } while (read_seqretry(&fs_info->profiles_lock, seq));
137
138 return btrfs_reduce_alloc_profile(fs_info, flags);
139}
140
32da5386 141void btrfs_get_block_group(struct btrfs_block_group *cache)
3cad1284 142{
48aaeebe 143 refcount_inc(&cache->refs);
3cad1284
JB
144}
145
32da5386 146void btrfs_put_block_group(struct btrfs_block_group *cache)
3cad1284 147{
48aaeebe 148 if (refcount_dec_and_test(&cache->refs)) {
3cad1284 149 WARN_ON(cache->pinned > 0);
40cdc509
FM
150 /*
151 * If there was a failure to cleanup a log tree, very likely due
152 * to an IO failure on a writeback attempt of one or more of its
153 * extent buffers, we could not do proper (and cheap) unaccounting
154 * of their reserved space, so don't warn on reserved > 0 in that
155 * case.
156 */
157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159 WARN_ON(cache->reserved > 0);
3cad1284 160
b0643e59
DZ
161 /*
162 * A block_group shouldn't be on the discard_list anymore.
163 * Remove the block_group from the discard_list to prevent us
164 * from causing a panic due to NULL pointer dereference.
165 */
166 if (WARN_ON(!list_empty(&cache->discard_list)))
167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168 cache);
169
3cad1284 170 kfree(cache->free_space_ctl);
7dc66abb 171 btrfs_free_chunk_map(cache->physical_map);
3cad1284
JB
172 kfree(cache);
173 }
174}
175
4358d963
JB
176/*
177 * This adds the block group to the fs_info rb tree for the block group cache
178 */
179static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
32da5386 180 struct btrfs_block_group *block_group)
4358d963
JB
181{
182 struct rb_node **p;
183 struct rb_node *parent = NULL;
32da5386 184 struct btrfs_block_group *cache;
08dddb29 185 bool leftmost = true;
4358d963 186
9afc6649
QW
187 ASSERT(block_group->length != 0);
188
16b0c258 189 write_lock(&info->block_group_cache_lock);
08dddb29 190 p = &info->block_group_cache_tree.rb_root.rb_node;
4358d963
JB
191
192 while (*p) {
193 parent = *p;
32da5386 194 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
b3470b5d 195 if (block_group->start < cache->start) {
4358d963 196 p = &(*p)->rb_left;
b3470b5d 197 } else if (block_group->start > cache->start) {
4358d963 198 p = &(*p)->rb_right;
08dddb29 199 leftmost = false;
4358d963 200 } else {
16b0c258 201 write_unlock(&info->block_group_cache_lock);
4358d963
JB
202 return -EEXIST;
203 }
204 }
205
206 rb_link_node(&block_group->cache_node, parent, p);
08dddb29
FM
207 rb_insert_color_cached(&block_group->cache_node,
208 &info->block_group_cache_tree, leftmost);
4358d963 209
16b0c258 210 write_unlock(&info->block_group_cache_lock);
4358d963
JB
211
212 return 0;
213}
214
2e405ad8
JB
215/*
216 * This will return the block group at or after bytenr if contains is 0, else
217 * it will return the block group that contains the bytenr
218 */
32da5386 219static struct btrfs_block_group *block_group_cache_tree_search(
2e405ad8
JB
220 struct btrfs_fs_info *info, u64 bytenr, int contains)
221{
32da5386 222 struct btrfs_block_group *cache, *ret = NULL;
2e405ad8
JB
223 struct rb_node *n;
224 u64 end, start;
225
16b0c258 226 read_lock(&info->block_group_cache_lock);
08dddb29 227 n = info->block_group_cache_tree.rb_root.rb_node;
2e405ad8
JB
228
229 while (n) {
32da5386 230 cache = rb_entry(n, struct btrfs_block_group, cache_node);
b3470b5d
DS
231 end = cache->start + cache->length - 1;
232 start = cache->start;
2e405ad8
JB
233
234 if (bytenr < start) {
b3470b5d 235 if (!contains && (!ret || start < ret->start))
2e405ad8
JB
236 ret = cache;
237 n = n->rb_left;
238 } else if (bytenr > start) {
239 if (contains && bytenr <= end) {
240 ret = cache;
241 break;
242 }
243 n = n->rb_right;
244 } else {
245 ret = cache;
246 break;
247 }
248 }
08dddb29 249 if (ret)
2e405ad8 250 btrfs_get_block_group(ret);
16b0c258 251 read_unlock(&info->block_group_cache_lock);
2e405ad8
JB
252
253 return ret;
254}
255
256/*
257 * Return the block group that starts at or after bytenr
258 */
32da5386 259struct btrfs_block_group *btrfs_lookup_first_block_group(
2e405ad8
JB
260 struct btrfs_fs_info *info, u64 bytenr)
261{
262 return block_group_cache_tree_search(info, bytenr, 0);
263}
264
265/*
266 * Return the block group that contains the given bytenr
267 */
32da5386 268struct btrfs_block_group *btrfs_lookup_block_group(
2e405ad8
JB
269 struct btrfs_fs_info *info, u64 bytenr)
270{
271 return block_group_cache_tree_search(info, bytenr, 1);
272}
273
32da5386
DS
274struct btrfs_block_group *btrfs_next_block_group(
275 struct btrfs_block_group *cache)
2e405ad8
JB
276{
277 struct btrfs_fs_info *fs_info = cache->fs_info;
278 struct rb_node *node;
279
16b0c258 280 read_lock(&fs_info->block_group_cache_lock);
2e405ad8
JB
281
282 /* If our block group was removed, we need a full search. */
283 if (RB_EMPTY_NODE(&cache->cache_node)) {
b3470b5d 284 const u64 next_bytenr = cache->start + cache->length;
2e405ad8 285
16b0c258 286 read_unlock(&fs_info->block_group_cache_lock);
2e405ad8 287 btrfs_put_block_group(cache);
8b01f931 288 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
2e405ad8
JB
289 }
290 node = rb_next(&cache->cache_node);
291 btrfs_put_block_group(cache);
292 if (node) {
32da5386 293 cache = rb_entry(node, struct btrfs_block_group, cache_node);
2e405ad8
JB
294 btrfs_get_block_group(cache);
295 } else
296 cache = NULL;
16b0c258 297 read_unlock(&fs_info->block_group_cache_lock);
2e405ad8
JB
298 return cache;
299}
3eeb3226 300
43dd529a 301/*
2306e83e
FM
302 * Check if we can do a NOCOW write for a given extent.
303 *
304 * @fs_info: The filesystem information object.
305 * @bytenr: Logical start address of the extent.
306 *
307 * Check if we can do a NOCOW write for the given extent, and increments the
308 * number of NOCOW writers in the block group that contains the extent, as long
309 * as the block group exists and it's currently not in read-only mode.
310 *
311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312 * is responsible for calling btrfs_dec_nocow_writers() later.
313 *
314 * Or NULL if we can not do a NOCOW write
315 */
316struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
317 u64 bytenr)
3eeb3226 318{
32da5386 319 struct btrfs_block_group *bg;
2306e83e 320 bool can_nocow = true;
3eeb3226
JB
321
322 bg = btrfs_lookup_block_group(fs_info, bytenr);
323 if (!bg)
2306e83e 324 return NULL;
3eeb3226
JB
325
326 spin_lock(&bg->lock);
327 if (bg->ro)
2306e83e 328 can_nocow = false;
3eeb3226
JB
329 else
330 atomic_inc(&bg->nocow_writers);
331 spin_unlock(&bg->lock);
332
2306e83e 333 if (!can_nocow) {
3eeb3226 334 btrfs_put_block_group(bg);
2306e83e
FM
335 return NULL;
336 }
3eeb3226 337
2306e83e
FM
338 /* No put on block group, done by btrfs_dec_nocow_writers(). */
339 return bg;
3eeb3226
JB
340}
341
43dd529a 342/*
2306e83e
FM
343 * Decrement the number of NOCOW writers in a block group.
344 *
2306e83e
FM
345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346 * and on the block group returned by that call. Typically this is called after
347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348 * relocation.
349 *
350 * After this call, the caller should not use the block group anymore. It it wants
351 * to use it, then it should get a reference on it before calling this function.
352 */
353void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
3eeb3226 354{
3eeb3226
JB
355 if (atomic_dec_and_test(&bg->nocow_writers))
356 wake_up_var(&bg->nocow_writers);
2306e83e
FM
357
358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
3eeb3226
JB
359 btrfs_put_block_group(bg);
360}
361
32da5386 362void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
3eeb3226
JB
363{
364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365}
366
367void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368 const u64 start)
369{
32da5386 370 struct btrfs_block_group *bg;
3eeb3226
JB
371
372 bg = btrfs_lookup_block_group(fs_info, start);
373 ASSERT(bg);
374 if (atomic_dec_and_test(&bg->reservations))
375 wake_up_var(&bg->reservations);
376 btrfs_put_block_group(bg);
377}
378
32da5386 379void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
3eeb3226
JB
380{
381 struct btrfs_space_info *space_info = bg->space_info;
382
383 ASSERT(bg->ro);
384
385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386 return;
387
388 /*
389 * Our block group is read only but before we set it to read only,
390 * some task might have had allocated an extent from it already, but it
391 * has not yet created a respective ordered extent (and added it to a
392 * root's list of ordered extents).
393 * Therefore wait for any task currently allocating extents, since the
394 * block group's reservations counter is incremented while a read lock
395 * on the groups' semaphore is held and decremented after releasing
396 * the read access on that semaphore and creating the ordered extent.
397 */
398 down_write(&space_info->groups_sem);
399 up_write(&space_info->groups_sem);
400
401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402}
9f21246d
JB
403
404struct btrfs_caching_control *btrfs_get_caching_control(
32da5386 405 struct btrfs_block_group *cache)
9f21246d
JB
406{
407 struct btrfs_caching_control *ctl;
408
409 spin_lock(&cache->lock);
410 if (!cache->caching_ctl) {
411 spin_unlock(&cache->lock);
412 return NULL;
413 }
414
415 ctl = cache->caching_ctl;
416 refcount_inc(&ctl->count);
417 spin_unlock(&cache->lock);
418 return ctl;
419}
420
7ec28f83 421static void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
9f21246d
JB
422{
423 if (refcount_dec_and_test(&ctl->count))
424 kfree(ctl);
425}
426
427/*
428 * When we wait for progress in the block group caching, its because our
429 * allocation attempt failed at least once. So, we must sleep and let some
430 * progress happen before we try again.
431 *
432 * This function will sleep at least once waiting for new free space to show
433 * up, and then it will check the block group free space numbers for our min
434 * num_bytes. Another option is to have it go ahead and look in the rbtree for
435 * a free extent of a given size, but this is a good start.
436 *
437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438 * any of the information in this block group.
439 */
32da5386 440void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
9f21246d
JB
441 u64 num_bytes)
442{
443 struct btrfs_caching_control *caching_ctl;
fc1f91b9 444 int progress;
9f21246d
JB
445
446 caching_ctl = btrfs_get_caching_control(cache);
447 if (!caching_ctl)
448 return;
449
fc1f91b9
JB
450 /*
451 * We've already failed to allocate from this block group, so even if
452 * there's enough space in the block group it isn't contiguous enough to
453 * allow for an allocation, so wait for at least the next wakeup tick,
454 * or for the thing to be done.
455 */
456 progress = atomic_read(&caching_ctl->progress);
457
32da5386 458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
fc1f91b9
JB
459 (progress != atomic_read(&caching_ctl->progress) &&
460 (cache->free_space_ctl->free_space >= num_bytes)));
9f21246d
JB
461
462 btrfs_put_caching_control(caching_ctl);
463}
464
ced8ecf0
OS
465static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
466 struct btrfs_caching_control *caching_ctl)
467{
468 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
469 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
470}
471
472static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
9f21246d
JB
473{
474 struct btrfs_caching_control *caching_ctl;
ced8ecf0 475 int ret;
9f21246d
JB
476
477 caching_ctl = btrfs_get_caching_control(cache);
478 if (!caching_ctl)
479 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
ced8ecf0 480 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
9f21246d
JB
481 btrfs_put_caching_control(caching_ctl);
482 return ret;
483}
484
485#ifdef CONFIG_BTRFS_DEBUG
32da5386 486static void fragment_free_space(struct btrfs_block_group *block_group)
9f21246d
JB
487{
488 struct btrfs_fs_info *fs_info = block_group->fs_info;
b3470b5d
DS
489 u64 start = block_group->start;
490 u64 len = block_group->length;
9f21246d
JB
491 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
492 fs_info->nodesize : fs_info->sectorsize;
493 u64 step = chunk << 1;
494
495 while (len > chunk) {
496 btrfs_remove_free_space(block_group, start, chunk);
497 start += step;
498 if (len < step)
499 len = 0;
500 else
501 len -= step;
502 }
503}
504#endif
505
506/*
28f60894
FM
507 * Add a free space range to the in memory free space cache of a block group.
508 * This checks if the range contains super block locations and any such
509 * locations are not added to the free space cache.
510 *
511 * @block_group: The target block group.
512 * @start: Start offset of the range.
513 * @end: End offset of the range (exclusive).
514 * @total_added_ret: Optional pointer to return the total amount of space
515 * added to the block group's free space cache.
516 *
517 * Returns 0 on success or < 0 on error.
9f21246d 518 */
3b9f0995
FM
519int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
520 u64 end, u64 *total_added_ret)
9f21246d
JB
521{
522 struct btrfs_fs_info *info = block_group->fs_info;
d8ccbd21 523 u64 extent_start, extent_end, size;
9f21246d
JB
524 int ret;
525
d8ccbd21
FM
526 if (total_added_ret)
527 *total_added_ret = 0;
528
9f21246d 529 while (start < end) {
e5860f82
FM
530 if (!find_first_extent_bit(&info->excluded_extents, start,
531 &extent_start, &extent_end,
532 EXTENT_DIRTY | EXTENT_UPTODATE,
533 NULL))
9f21246d
JB
534 break;
535
536 if (extent_start <= start) {
537 start = extent_end + 1;
538 } else if (extent_start > start && extent_start < end) {
539 size = extent_start - start;
b0643e59
DZ
540 ret = btrfs_add_free_space_async_trimmed(block_group,
541 start, size);
d8ccbd21
FM
542 if (ret)
543 return ret;
544 if (total_added_ret)
545 *total_added_ret += size;
9f21246d
JB
546 start = extent_end + 1;
547 } else {
548 break;
549 }
550 }
551
552 if (start < end) {
553 size = end - start;
b0643e59
DZ
554 ret = btrfs_add_free_space_async_trimmed(block_group, start,
555 size);
d8ccbd21
FM
556 if (ret)
557 return ret;
558 if (total_added_ret)
559 *total_added_ret += size;
9f21246d
JB
560 }
561
d8ccbd21 562 return 0;
9f21246d
JB
563}
564
c7eec3d9
BB
565/*
566 * Get an arbitrary extent item index / max_index through the block group
567 *
568 * @block_group the block group to sample from
569 * @index: the integral step through the block group to grab from
570 * @max_index: the granularity of the sampling
571 * @key: return value parameter for the item we find
572 *
573 * Pre-conditions on indices:
574 * 0 <= index <= max_index
575 * 0 < max_index
576 *
577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
578 * error code on error.
579 */
580static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
581 struct btrfs_block_group *block_group,
582 int index, int max_index,
12148367 583 struct btrfs_key *found_key)
c7eec3d9
BB
584{
585 struct btrfs_fs_info *fs_info = block_group->fs_info;
586 struct btrfs_root *extent_root;
c7eec3d9
BB
587 u64 search_offset;
588 u64 search_end = block_group->start + block_group->length;
589 struct btrfs_path *path;
12148367
BB
590 struct btrfs_key search_key;
591 int ret = 0;
c7eec3d9
BB
592
593 ASSERT(index >= 0);
594 ASSERT(index <= max_index);
595 ASSERT(max_index > 0);
596 lockdep_assert_held(&caching_ctl->mutex);
597 lockdep_assert_held_read(&fs_info->commit_root_sem);
598
599 path = btrfs_alloc_path();
600 if (!path)
601 return -ENOMEM;
602
603 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
604 BTRFS_SUPER_INFO_OFFSET));
605
606 path->skip_locking = 1;
607 path->search_commit_root = 1;
608 path->reada = READA_FORWARD;
609
610 search_offset = index * div_u64(block_group->length, max_index);
12148367
BB
611 search_key.objectid = block_group->start + search_offset;
612 search_key.type = BTRFS_EXTENT_ITEM_KEY;
613 search_key.offset = 0;
c7eec3d9 614
12148367 615 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
c7eec3d9 616 /* Success; sampled an extent item in the block group */
12148367
BB
617 if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
618 found_key->objectid >= block_group->start &&
619 found_key->objectid + found_key->offset <= search_end)
620 break;
c7eec3d9
BB
621
622 /* We can't possibly find a valid extent item anymore */
12148367 623 if (found_key->objectid >= search_end) {
c7eec3d9
BB
624 ret = 1;
625 break;
626 }
c7eec3d9 627 }
12148367 628
c7eec3d9
BB
629 lockdep_assert_held(&caching_ctl->mutex);
630 lockdep_assert_held_read(&fs_info->commit_root_sem);
631 btrfs_free_path(path);
632 return ret;
633}
634
635/*
636 * Best effort attempt to compute a block group's size class while caching it.
637 *
638 * @block_group: the block group we are caching
639 *
640 * We cannot infer the size class while adding free space extents, because that
641 * logic doesn't care about contiguous file extents (it doesn't differentiate
642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
643 * file extent items. Reading all of them is quite wasteful, because usually
644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
645 * them at even steps through the block group and pick the smallest size class
646 * we see. Since size class is best effort, and not guaranteed in general,
647 * inaccuracy is acceptable.
648 *
649 * To be more explicit about why this algorithm makes sense:
650 *
651 * If we are caching in a block group from disk, then there are three major cases
652 * to consider:
653 * 1. the block group is well behaved and all extents in it are the same size
654 * class.
655 * 2. the block group is mostly one size class with rare exceptions for last
656 * ditch allocations
657 * 3. the block group was populated before size classes and can have a totally
658 * arbitrary mix of size classes.
659 *
660 * In case 1, looking at any extent in the block group will yield the correct
661 * result. For the mixed cases, taking the minimum size class seems like a good
662 * approximation, since gaps from frees will be usable to the size class. For
663 * 2., a small handful of file extents is likely to yield the right answer. For
664 * 3, we can either read every file extent, or admit that this is best effort
665 * anyway and try to stay fast.
666 *
667 * Returns: 0 on success, negative error code on error.
668 */
669static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
670 struct btrfs_block_group *block_group)
671{
12148367 672 struct btrfs_fs_info *fs_info = block_group->fs_info;
c7eec3d9
BB
673 struct btrfs_key key;
674 int i;
675 u64 min_size = block_group->length;
676 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
677 int ret;
678
cb0922f2 679 if (!btrfs_block_group_should_use_size_class(block_group))
c7eec3d9
BB
680 return 0;
681
12148367
BB
682 lockdep_assert_held(&caching_ctl->mutex);
683 lockdep_assert_held_read(&fs_info->commit_root_sem);
c7eec3d9
BB
684 for (i = 0; i < 5; ++i) {
685 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
686 if (ret < 0)
687 goto out;
688 if (ret > 0)
689 continue;
690 min_size = min_t(u64, min_size, key.offset);
691 size_class = btrfs_calc_block_group_size_class(min_size);
692 }
693 if (size_class != BTRFS_BG_SZ_NONE) {
694 spin_lock(&block_group->lock);
695 block_group->size_class = size_class;
696 spin_unlock(&block_group->lock);
697 }
c7eec3d9
BB
698out:
699 return ret;
700}
701
9f21246d
JB
702static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
703{
32da5386 704 struct btrfs_block_group *block_group = caching_ctl->block_group;
9f21246d 705 struct btrfs_fs_info *fs_info = block_group->fs_info;
29cbcf40 706 struct btrfs_root *extent_root;
9f21246d
JB
707 struct btrfs_path *path;
708 struct extent_buffer *leaf;
709 struct btrfs_key key;
710 u64 total_found = 0;
711 u64 last = 0;
712 u32 nritems;
713 int ret;
714 bool wakeup = true;
715
716 path = btrfs_alloc_path();
717 if (!path)
718 return -ENOMEM;
719
b3470b5d 720 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
29cbcf40 721 extent_root = btrfs_extent_root(fs_info, last);
9f21246d
JB
722
723#ifdef CONFIG_BTRFS_DEBUG
724 /*
725 * If we're fragmenting we don't want to make anybody think we can
726 * allocate from this block group until we've had a chance to fragment
727 * the free space.
728 */
729 if (btrfs_should_fragment_free_space(block_group))
730 wakeup = false;
731#endif
732 /*
733 * We don't want to deadlock with somebody trying to allocate a new
734 * extent for the extent root while also trying to search the extent
735 * root to add free space. So we skip locking and search the commit
736 * root, since its read-only
737 */
738 path->skip_locking = 1;
739 path->search_commit_root = 1;
740 path->reada = READA_FORWARD;
741
742 key.objectid = last;
743 key.offset = 0;
744 key.type = BTRFS_EXTENT_ITEM_KEY;
745
746next:
747 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
748 if (ret < 0)
749 goto out;
750
751 leaf = path->nodes[0];
752 nritems = btrfs_header_nritems(leaf);
753
754 while (1) {
755 if (btrfs_fs_closing(fs_info) > 1) {
756 last = (u64)-1;
757 break;
758 }
759
760 if (path->slots[0] < nritems) {
761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
762 } else {
763 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
764 if (ret)
765 break;
766
767 if (need_resched() ||
768 rwsem_is_contended(&fs_info->commit_root_sem)) {
9f21246d
JB
769 btrfs_release_path(path);
770 up_read(&fs_info->commit_root_sem);
771 mutex_unlock(&caching_ctl->mutex);
772 cond_resched();
773 mutex_lock(&caching_ctl->mutex);
774 down_read(&fs_info->commit_root_sem);
775 goto next;
776 }
777
778 ret = btrfs_next_leaf(extent_root, path);
779 if (ret < 0)
780 goto out;
781 if (ret)
782 break;
783 leaf = path->nodes[0];
784 nritems = btrfs_header_nritems(leaf);
785 continue;
786 }
787
788 if (key.objectid < last) {
789 key.objectid = last;
790 key.offset = 0;
791 key.type = BTRFS_EXTENT_ITEM_KEY;
9f21246d
JB
792 btrfs_release_path(path);
793 goto next;
794 }
795
b3470b5d 796 if (key.objectid < block_group->start) {
9f21246d
JB
797 path->slots[0]++;
798 continue;
799 }
800
b3470b5d 801 if (key.objectid >= block_group->start + block_group->length)
9f21246d
JB
802 break;
803
804 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
805 key.type == BTRFS_METADATA_ITEM_KEY) {
d8ccbd21
FM
806 u64 space_added;
807
3b9f0995
FM
808 ret = btrfs_add_new_free_space(block_group, last,
809 key.objectid, &space_added);
d8ccbd21
FM
810 if (ret)
811 goto out;
812 total_found += space_added;
9f21246d
JB
813 if (key.type == BTRFS_METADATA_ITEM_KEY)
814 last = key.objectid +
815 fs_info->nodesize;
816 else
817 last = key.objectid + key.offset;
818
819 if (total_found > CACHING_CTL_WAKE_UP) {
820 total_found = 0;
fc1f91b9
JB
821 if (wakeup) {
822 atomic_inc(&caching_ctl->progress);
9f21246d 823 wake_up(&caching_ctl->wait);
fc1f91b9 824 }
9f21246d
JB
825 }
826 }
827 path->slots[0]++;
828 }
9f21246d 829
3b9f0995
FM
830 ret = btrfs_add_new_free_space(block_group, last,
831 block_group->start + block_group->length,
832 NULL);
9f21246d
JB
833out:
834 btrfs_free_path(path);
835 return ret;
836}
837
98b5a8fd
FM
838static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
839{
840 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start,
841 bg->start + bg->length - 1, EXTENT_UPTODATE);
842}
843
9f21246d
JB
844static noinline void caching_thread(struct btrfs_work *work)
845{
32da5386 846 struct btrfs_block_group *block_group;
9f21246d
JB
847 struct btrfs_fs_info *fs_info;
848 struct btrfs_caching_control *caching_ctl;
849 int ret;
850
851 caching_ctl = container_of(work, struct btrfs_caching_control, work);
852 block_group = caching_ctl->block_group;
853 fs_info = block_group->fs_info;
854
855 mutex_lock(&caching_ctl->mutex);
856 down_read(&fs_info->commit_root_sem);
857
c7eec3d9 858 load_block_group_size_class(caching_ctl, block_group);
e747853c
JB
859 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
860 ret = load_free_space_cache(block_group);
861 if (ret == 1) {
862 ret = 0;
863 goto done;
864 }
865
866 /*
867 * We failed to load the space cache, set ourselves to
868 * CACHE_STARTED and carry on.
869 */
870 spin_lock(&block_group->lock);
871 block_group->cached = BTRFS_CACHE_STARTED;
872 spin_unlock(&block_group->lock);
873 wake_up(&caching_ctl->wait);
874 }
875
2f96e402
JB
876 /*
877 * If we are in the transaction that populated the free space tree we
878 * can't actually cache from the free space tree as our commit root and
879 * real root are the same, so we could change the contents of the blocks
880 * while caching. Instead do the slow caching in this case, and after
881 * the transaction has committed we will be safe.
882 */
883 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
884 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
9f21246d
JB
885 ret = load_free_space_tree(caching_ctl);
886 else
887 ret = load_extent_tree_free(caching_ctl);
e747853c 888done:
9f21246d
JB
889 spin_lock(&block_group->lock);
890 block_group->caching_ctl = NULL;
891 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
892 spin_unlock(&block_group->lock);
893
894#ifdef CONFIG_BTRFS_DEBUG
895 if (btrfs_should_fragment_free_space(block_group)) {
896 u64 bytes_used;
897
898 spin_lock(&block_group->space_info->lock);
899 spin_lock(&block_group->lock);
b3470b5d 900 bytes_used = block_group->length - block_group->used;
9f21246d
JB
901 block_group->space_info->bytes_used += bytes_used >> 1;
902 spin_unlock(&block_group->lock);
903 spin_unlock(&block_group->space_info->lock);
e11c0406 904 fragment_free_space(block_group);
9f21246d
JB
905 }
906#endif
907
9f21246d
JB
908 up_read(&fs_info->commit_root_sem);
909 btrfs_free_excluded_extents(block_group);
910 mutex_unlock(&caching_ctl->mutex);
911
912 wake_up(&caching_ctl->wait);
913
914 btrfs_put_caching_control(caching_ctl);
915 btrfs_put_block_group(block_group);
916}
917
ced8ecf0 918int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
9f21246d 919{
9f21246d 920 struct btrfs_fs_info *fs_info = cache->fs_info;
e747853c 921 struct btrfs_caching_control *caching_ctl = NULL;
9f21246d
JB
922 int ret = 0;
923
2eda5708
NA
924 /* Allocator for zoned filesystems does not use the cache at all */
925 if (btrfs_is_zoned(fs_info))
926 return 0;
927
9f21246d
JB
928 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
929 if (!caching_ctl)
930 return -ENOMEM;
931
932 INIT_LIST_HEAD(&caching_ctl->list);
933 mutex_init(&caching_ctl->mutex);
934 init_waitqueue_head(&caching_ctl->wait);
935 caching_ctl->block_group = cache;
e747853c 936 refcount_set(&caching_ctl->count, 2);
fc1f91b9 937 atomic_set(&caching_ctl->progress, 0);
078b8b90 938 btrfs_init_work(&caching_ctl->work, caching_thread, NULL);
9f21246d
JB
939
940 spin_lock(&cache->lock);
9f21246d 941 if (cache->cached != BTRFS_CACHE_NO) {
9f21246d 942 kfree(caching_ctl);
e747853c
JB
943
944 caching_ctl = cache->caching_ctl;
945 if (caching_ctl)
946 refcount_inc(&caching_ctl->count);
947 spin_unlock(&cache->lock);
948 goto out;
9f21246d
JB
949 }
950 WARN_ON(cache->caching_ctl);
951 cache->caching_ctl = caching_ctl;
ced8ecf0 952 cache->cached = BTRFS_CACHE_STARTED;
9f21246d
JB
953 spin_unlock(&cache->lock);
954
16b0c258 955 write_lock(&fs_info->block_group_cache_lock);
9f21246d
JB
956 refcount_inc(&caching_ctl->count);
957 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
16b0c258 958 write_unlock(&fs_info->block_group_cache_lock);
9f21246d
JB
959
960 btrfs_get_block_group(cache);
961
962 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
e747853c 963out:
ced8ecf0
OS
964 if (wait && caching_ctl)
965 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
e747853c
JB
966 if (caching_ctl)
967 btrfs_put_caching_control(caching_ctl);
9f21246d
JB
968
969 return ret;
970}
e3e0520b
JB
971
972static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
973{
974 u64 extra_flags = chunk_to_extended(flags) &
975 BTRFS_EXTENDED_PROFILE_MASK;
976
977 write_seqlock(&fs_info->profiles_lock);
978 if (flags & BTRFS_BLOCK_GROUP_DATA)
979 fs_info->avail_data_alloc_bits &= ~extra_flags;
980 if (flags & BTRFS_BLOCK_GROUP_METADATA)
981 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
982 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
983 fs_info->avail_system_alloc_bits &= ~extra_flags;
984 write_sequnlock(&fs_info->profiles_lock);
985}
986
987/*
988 * Clear incompat bits for the following feature(s):
989 *
990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
991 * in the whole filesystem
9c907446
DS
992 *
993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
e3e0520b
JB
994 */
995static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
996{
9c907446
DS
997 bool found_raid56 = false;
998 bool found_raid1c34 = false;
999
1000 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1001 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1002 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
e3e0520b
JB
1003 struct list_head *head = &fs_info->space_info;
1004 struct btrfs_space_info *sinfo;
1005
1006 list_for_each_entry_rcu(sinfo, head, list) {
e3e0520b
JB
1007 down_read(&sinfo->groups_sem);
1008 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
9c907446 1009 found_raid56 = true;
e3e0520b 1010 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
9c907446
DS
1011 found_raid56 = true;
1012 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1013 found_raid1c34 = true;
1014 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1015 found_raid1c34 = true;
e3e0520b 1016 up_read(&sinfo->groups_sem);
e3e0520b 1017 }
d8e6fd5c 1018 if (!found_raid56)
9c907446 1019 btrfs_clear_fs_incompat(fs_info, RAID56);
d8e6fd5c 1020 if (!found_raid1c34)
9c907446 1021 btrfs_clear_fs_incompat(fs_info, RAID1C34);
e3e0520b
JB
1022 }
1023}
1024
83937fb6
AJ
1025static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1026{
1027 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1028 return fs_info->block_group_root;
1029 return btrfs_extent_root(fs_info, 0);
1030}
1031
7357623a
QW
1032static int remove_block_group_item(struct btrfs_trans_handle *trans,
1033 struct btrfs_path *path,
1034 struct btrfs_block_group *block_group)
1035{
1036 struct btrfs_fs_info *fs_info = trans->fs_info;
1037 struct btrfs_root *root;
1038 struct btrfs_key key;
1039 int ret;
1040
dfe8aec4 1041 root = btrfs_block_group_root(fs_info);
7357623a
QW
1042 key.objectid = block_group->start;
1043 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1044 key.offset = block_group->length;
1045
1046 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1047 if (ret > 0)
1048 ret = -ENOENT;
1049 if (ret < 0)
1050 return ret;
1051
1052 ret = btrfs_del_item(trans, root, path);
1053 return ret;
1054}
1055
e3e0520b 1056int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7dc66abb 1057 struct btrfs_chunk_map *map)
e3e0520b
JB
1058{
1059 struct btrfs_fs_info *fs_info = trans->fs_info;
e3e0520b 1060 struct btrfs_path *path;
32da5386 1061 struct btrfs_block_group *block_group;
e3e0520b 1062 struct btrfs_free_cluster *cluster;
e3e0520b
JB
1063 struct inode *inode;
1064 struct kobject *kobj = NULL;
1065 int ret;
1066 int index;
1067 int factor;
1068 struct btrfs_caching_control *caching_ctl = NULL;
7dc66abb 1069 bool remove_map;
e3e0520b
JB
1070 bool remove_rsv = false;
1071
7dc66abb 1072 block_group = btrfs_lookup_block_group(fs_info, map->start);
97ec3320
DS
1073 if (!block_group)
1074 return -ENOENT;
1075
e3e0520b
JB
1076 BUG_ON(!block_group->ro);
1077
1078 trace_btrfs_remove_block_group(block_group);
1079 /*
1080 * Free the reserved super bytes from this block group before
1081 * remove it.
1082 */
1083 btrfs_free_excluded_extents(block_group);
b3470b5d
DS
1084 btrfs_free_ref_tree_range(fs_info, block_group->start,
1085 block_group->length);
e3e0520b 1086
e3e0520b
JB
1087 index = btrfs_bg_flags_to_raid_index(block_group->flags);
1088 factor = btrfs_bg_type_to_factor(block_group->flags);
1089
1090 /* make sure this block group isn't part of an allocation cluster */
1091 cluster = &fs_info->data_alloc_cluster;
1092 spin_lock(&cluster->refill_lock);
1093 btrfs_return_cluster_to_free_space(block_group, cluster);
1094 spin_unlock(&cluster->refill_lock);
1095
1096 /*
1097 * make sure this block group isn't part of a metadata
1098 * allocation cluster
1099 */
1100 cluster = &fs_info->meta_alloc_cluster;
1101 spin_lock(&cluster->refill_lock);
1102 btrfs_return_cluster_to_free_space(block_group, cluster);
1103 spin_unlock(&cluster->refill_lock);
1104
40ab3be1 1105 btrfs_clear_treelog_bg(block_group);
c2707a25 1106 btrfs_clear_data_reloc_bg(block_group);
40ab3be1 1107
e3e0520b
JB
1108 path = btrfs_alloc_path();
1109 if (!path) {
1110 ret = -ENOMEM;
9fecd132 1111 goto out;
e3e0520b
JB
1112 }
1113
1114 /*
1115 * get the inode first so any iput calls done for the io_list
1116 * aren't the final iput (no unlinks allowed now)
1117 */
1118 inode = lookup_free_space_inode(block_group, path);
1119
1120 mutex_lock(&trans->transaction->cache_write_mutex);
1121 /*
1122 * Make sure our free space cache IO is done before removing the
1123 * free space inode
1124 */
1125 spin_lock(&trans->transaction->dirty_bgs_lock);
1126 if (!list_empty(&block_group->io_list)) {
1127 list_del_init(&block_group->io_list);
1128
1129 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1130
1131 spin_unlock(&trans->transaction->dirty_bgs_lock);
1132 btrfs_wait_cache_io(trans, block_group, path);
1133 btrfs_put_block_group(block_group);
1134 spin_lock(&trans->transaction->dirty_bgs_lock);
1135 }
1136
1137 if (!list_empty(&block_group->dirty_list)) {
1138 list_del_init(&block_group->dirty_list);
1139 remove_rsv = true;
1140 btrfs_put_block_group(block_group);
1141 }
1142 spin_unlock(&trans->transaction->dirty_bgs_lock);
1143 mutex_unlock(&trans->transaction->cache_write_mutex);
1144
36b216c8
BB
1145 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1146 if (ret)
9fecd132 1147 goto out;
e3e0520b 1148
16b0c258 1149 write_lock(&fs_info->block_group_cache_lock);
08dddb29
FM
1150 rb_erase_cached(&block_group->cache_node,
1151 &fs_info->block_group_cache_tree);
e3e0520b
JB
1152 RB_CLEAR_NODE(&block_group->cache_node);
1153
9fecd132
FM
1154 /* Once for the block groups rbtree */
1155 btrfs_put_block_group(block_group);
1156
16b0c258 1157 write_unlock(&fs_info->block_group_cache_lock);
e3e0520b
JB
1158
1159 down_write(&block_group->space_info->groups_sem);
1160 /*
1161 * we must use list_del_init so people can check to see if they
1162 * are still on the list after taking the semaphore
1163 */
1164 list_del_init(&block_group->list);
1165 if (list_empty(&block_group->space_info->block_groups[index])) {
1166 kobj = block_group->space_info->block_group_kobjs[index];
1167 block_group->space_info->block_group_kobjs[index] = NULL;
1168 clear_avail_alloc_bits(fs_info, block_group->flags);
1169 }
1170 up_write(&block_group->space_info->groups_sem);
1171 clear_incompat_bg_bits(fs_info, block_group->flags);
1172 if (kobj) {
1173 kobject_del(kobj);
1174 kobject_put(kobj);
1175 }
1176
e3e0520b
JB
1177 if (block_group->cached == BTRFS_CACHE_STARTED)
1178 btrfs_wait_block_group_cache_done(block_group);
7b9c293b
JB
1179
1180 write_lock(&fs_info->block_group_cache_lock);
1181 caching_ctl = btrfs_get_caching_control(block_group);
1182 if (!caching_ctl) {
1183 struct btrfs_caching_control *ctl;
1184
1185 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1186 if (ctl->block_group == block_group) {
1187 caching_ctl = ctl;
1188 refcount_inc(&caching_ctl->count);
1189 break;
1190 }
e3e0520b
JB
1191 }
1192 }
7b9c293b
JB
1193 if (caching_ctl)
1194 list_del_init(&caching_ctl->list);
1195 write_unlock(&fs_info->block_group_cache_lock);
1196
1197 if (caching_ctl) {
1198 /* Once for the caching bgs list and once for us. */
1199 btrfs_put_caching_control(caching_ctl);
1200 btrfs_put_caching_control(caching_ctl);
1201 }
e3e0520b
JB
1202
1203 spin_lock(&trans->transaction->dirty_bgs_lock);
1204 WARN_ON(!list_empty(&block_group->dirty_list));
1205 WARN_ON(!list_empty(&block_group->io_list));
1206 spin_unlock(&trans->transaction->dirty_bgs_lock);
1207
1208 btrfs_remove_free_space_cache(block_group);
1209
1210 spin_lock(&block_group->space_info->lock);
1211 list_del_init(&block_group->ro_list);
1212
1213 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1214 WARN_ON(block_group->space_info->total_bytes
b3470b5d 1215 < block_group->length);
e3e0520b 1216 WARN_ON(block_group->space_info->bytes_readonly
169e0da9
NA
1217 < block_group->length - block_group->zone_unusable);
1218 WARN_ON(block_group->space_info->bytes_zone_unusable
1219 < block_group->zone_unusable);
e3e0520b 1220 WARN_ON(block_group->space_info->disk_total
b3470b5d 1221 < block_group->length * factor);
e3e0520b 1222 }
b3470b5d 1223 block_group->space_info->total_bytes -= block_group->length;
169e0da9
NA
1224 block_group->space_info->bytes_readonly -=
1225 (block_group->length - block_group->zone_unusable);
1226 block_group->space_info->bytes_zone_unusable -=
1227 block_group->zone_unusable;
b3470b5d 1228 block_group->space_info->disk_total -= block_group->length * factor;
e3e0520b
JB
1229
1230 spin_unlock(&block_group->space_info->lock);
1231
ffcb9d44
FM
1232 /*
1233 * Remove the free space for the block group from the free space tree
1234 * and the block group's item from the extent tree before marking the
1235 * block group as removed. This is to prevent races with tasks that
1236 * freeze and unfreeze a block group, this task and another task
1237 * allocating a new block group - the unfreeze task ends up removing
1238 * the block group's extent map before the task calling this function
1239 * deletes the block group item from the extent tree, allowing for
1240 * another task to attempt to create another block group with the same
1241 * item key (and failing with -EEXIST and a transaction abort).
1242 */
1243 ret = remove_block_group_free_space(trans, block_group);
1244 if (ret)
1245 goto out;
1246
1247 ret = remove_block_group_item(trans, path, block_group);
1248 if (ret < 0)
1249 goto out;
1250
e3e0520b 1251 spin_lock(&block_group->lock);
3349b57f
JB
1252 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1253
e3e0520b 1254 /*
6b7304af
FM
1255 * At this point trimming or scrub can't start on this block group,
1256 * because we removed the block group from the rbtree
1257 * fs_info->block_group_cache_tree so no one can't find it anymore and
1258 * even if someone already got this block group before we removed it
1259 * from the rbtree, they have already incremented block_group->frozen -
1260 * if they didn't, for the trimming case they won't find any free space
1261 * entries because we already removed them all when we called
1262 * btrfs_remove_free_space_cache().
e3e0520b 1263 *
7dc66abb 1264 * And we must not remove the chunk map from the fs_info->mapping_tree
e3e0520b 1265 * to prevent the same logical address range and physical device space
6b7304af
FM
1266 * ranges from being reused for a new block group. This is needed to
1267 * avoid races with trimming and scrub.
1268 *
1269 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
e3e0520b
JB
1270 * completely transactionless, so while it is trimming a range the
1271 * currently running transaction might finish and a new one start,
1272 * allowing for new block groups to be created that can reuse the same
1273 * physical device locations unless we take this special care.
1274 *
1275 * There may also be an implicit trim operation if the file system
1276 * is mounted with -odiscard. The same protections must remain
1277 * in place until the extents have been discarded completely when
1278 * the transaction commit has completed.
1279 */
7dc66abb 1280 remove_map = (atomic_read(&block_group->frozen) == 0);
e3e0520b
JB
1281 spin_unlock(&block_group->lock);
1282
7dc66abb
FM
1283 if (remove_map)
1284 btrfs_remove_chunk_map(fs_info, map);
f6033c5e 1285
9fecd132 1286out:
f6033c5e
XY
1287 /* Once for the lookup reference */
1288 btrfs_put_block_group(block_group);
e3e0520b 1289 if (remove_rsv)
f66e0209 1290 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
e3e0520b
JB
1291 btrfs_free_path(path);
1292 return ret;
1293}
1294
1295struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1296 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1297{
dfe8aec4 1298 struct btrfs_root *root = btrfs_block_group_root(fs_info);
7dc66abb 1299 struct btrfs_chunk_map *map;
e3e0520b
JB
1300 unsigned int num_items;
1301
7dc66abb
FM
1302 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
1303 ASSERT(map != NULL);
1304 ASSERT(map->start == chunk_offset);
e3e0520b
JB
1305
1306 /*
1307 * We need to reserve 3 + N units from the metadata space info in order
1308 * to remove a block group (done at btrfs_remove_chunk() and at
1309 * btrfs_remove_block_group()), which are used for:
1310 *
1311 * 1 unit for adding the free space inode's orphan (located in the tree
1312 * of tree roots).
1313 * 1 unit for deleting the block group item (located in the extent
1314 * tree).
1315 * 1 unit for deleting the free space item (located in tree of tree
1316 * roots).
1317 * N units for deleting N device extent items corresponding to each
1318 * stripe (located in the device tree).
1319 *
1320 * In order to remove a block group we also need to reserve units in the
1321 * system space info in order to update the chunk tree (update one or
1322 * more device items and remove one chunk item), but this is done at
1323 * btrfs_remove_chunk() through a call to check_system_chunk().
1324 */
e3e0520b 1325 num_items = 3 + map->num_stripes;
7dc66abb 1326 btrfs_free_chunk_map(map);
e3e0520b 1327
dfe8aec4 1328 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
e3e0520b
JB
1329}
1330
26ce2095
JB
1331/*
1332 * Mark block group @cache read-only, so later write won't happen to block
1333 * group @cache.
1334 *
1335 * If @force is not set, this function will only mark the block group readonly
1336 * if we have enough free space (1M) in other metadata/system block groups.
1337 * If @force is not set, this function will mark the block group readonly
1338 * without checking free space.
1339 *
1340 * NOTE: This function doesn't care if other block groups can contain all the
1341 * data in this block group. That check should be done by relocation routine,
1342 * not this function.
1343 */
32da5386 1344static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
26ce2095
JB
1345{
1346 struct btrfs_space_info *sinfo = cache->space_info;
1347 u64 num_bytes;
26ce2095
JB
1348 int ret = -ENOSPC;
1349
26ce2095
JB
1350 spin_lock(&sinfo->lock);
1351 spin_lock(&cache->lock);
1352
195a49ea
FM
1353 if (cache->swap_extents) {
1354 ret = -ETXTBSY;
1355 goto out;
1356 }
1357
26ce2095
JB
1358 if (cache->ro) {
1359 cache->ro++;
1360 ret = 0;
1361 goto out;
1362 }
1363
b3470b5d 1364 num_bytes = cache->length - cache->reserved - cache->pinned -
169e0da9 1365 cache->bytes_super - cache->zone_unusable - cache->used;
26ce2095
JB
1366
1367 /*
a30a3d20
JB
1368 * Data never overcommits, even in mixed mode, so do just the straight
1369 * check of left over space in how much we have allocated.
26ce2095 1370 */
a30a3d20
JB
1371 if (force) {
1372 ret = 0;
1373 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1374 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1375
1376 /*
1377 * Here we make sure if we mark this bg RO, we still have enough
1378 * free space as buffer.
1379 */
1380 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1381 ret = 0;
1382 } else {
1383 /*
1384 * We overcommit metadata, so we need to do the
1385 * btrfs_can_overcommit check here, and we need to pass in
1386 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1387 * leeway to allow us to mark this block group as read only.
1388 */
1389 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1390 BTRFS_RESERVE_NO_FLUSH))
1391 ret = 0;
1392 }
1393
1394 if (!ret) {
26ce2095 1395 sinfo->bytes_readonly += num_bytes;
169e0da9
NA
1396 if (btrfs_is_zoned(cache->fs_info)) {
1397 /* Migrate zone_unusable bytes to readonly */
1398 sinfo->bytes_readonly += cache->zone_unusable;
1399 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1400 cache->zone_unusable = 0;
1401 }
26ce2095
JB
1402 cache->ro++;
1403 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
26ce2095
JB
1404 }
1405out:
1406 spin_unlock(&cache->lock);
1407 spin_unlock(&sinfo->lock);
1408 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1409 btrfs_info(cache->fs_info,
b3470b5d 1410 "unable to make block group %llu ro", cache->start);
26ce2095
JB
1411 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1412 }
1413 return ret;
1414}
1415
fe119a6e
NB
1416static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1417 struct btrfs_block_group *bg)
45bb5d6a
NB
1418{
1419 struct btrfs_fs_info *fs_info = bg->fs_info;
fe119a6e 1420 struct btrfs_transaction *prev_trans = NULL;
45bb5d6a
NB
1421 const u64 start = bg->start;
1422 const u64 end = start + bg->length - 1;
1423 int ret;
1424
fe119a6e
NB
1425 spin_lock(&fs_info->trans_lock);
1426 if (trans->transaction->list.prev != &fs_info->trans_list) {
1427 prev_trans = list_last_entry(&trans->transaction->list,
1428 struct btrfs_transaction, list);
1429 refcount_inc(&prev_trans->use_count);
1430 }
1431 spin_unlock(&fs_info->trans_lock);
1432
45bb5d6a
NB
1433 /*
1434 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1435 * btrfs_finish_extent_commit(). If we are at transaction N, another
1436 * task might be running finish_extent_commit() for the previous
1437 * transaction N - 1, and have seen a range belonging to the block
fe119a6e
NB
1438 * group in pinned_extents before we were able to clear the whole block
1439 * group range from pinned_extents. This means that task can lookup for
1440 * the block group after we unpinned it from pinned_extents and removed
44a6c343 1441 * it, leading to an error at unpin_extent_range().
45bb5d6a
NB
1442 */
1443 mutex_lock(&fs_info->unused_bg_unpin_mutex);
fe119a6e
NB
1444 if (prev_trans) {
1445 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1446 EXTENT_DIRTY);
1447 if (ret)
534cf531 1448 goto out;
fe119a6e 1449 }
45bb5d6a 1450
fe119a6e 1451 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
45bb5d6a 1452 EXTENT_DIRTY);
534cf531 1453out:
45bb5d6a 1454 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5150bf19
FM
1455 if (prev_trans)
1456 btrfs_put_transaction(prev_trans);
45bb5d6a 1457
534cf531 1458 return ret == 0;
45bb5d6a
NB
1459}
1460
e3e0520b
JB
1461/*
1462 * Process the unused_bgs list and remove any that don't have any allocated
1463 * space inside of them.
1464 */
1465void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1466{
f4a9f219 1467 LIST_HEAD(retry_list);
32da5386 1468 struct btrfs_block_group *block_group;
e3e0520b
JB
1469 struct btrfs_space_info *space_info;
1470 struct btrfs_trans_handle *trans;
6e80d4f8 1471 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
e3e0520b
JB
1472 int ret = 0;
1473
1474 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1475 return;
1476
2f12741f
JB
1477 if (btrfs_fs_closing(fs_info))
1478 return;
1479
ddfd08cb
JB
1480 /*
1481 * Long running balances can keep us blocked here for eternity, so
1482 * simply skip deletion if we're unable to get the mutex.
1483 */
f3372065 1484 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
ddfd08cb
JB
1485 return;
1486
e3e0520b
JB
1487 spin_lock(&fs_info->unused_bgs_lock);
1488 while (!list_empty(&fs_info->unused_bgs)) {
f4a9f219 1489 u64 used;
e3e0520b
JB
1490 int trimming;
1491
1492 block_group = list_first_entry(&fs_info->unused_bgs,
32da5386 1493 struct btrfs_block_group,
e3e0520b
JB
1494 bg_list);
1495 list_del_init(&block_group->bg_list);
1496
1497 space_info = block_group->space_info;
1498
1499 if (ret || btrfs_mixed_space_info(space_info)) {
1500 btrfs_put_block_group(block_group);
1501 continue;
1502 }
1503 spin_unlock(&fs_info->unused_bgs_lock);
1504
b0643e59
DZ
1505 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1506
e3e0520b
JB
1507 /* Don't want to race with allocators so take the groups_sem */
1508 down_write(&space_info->groups_sem);
6e80d4f8
DZ
1509
1510 /*
1511 * Async discard moves the final block group discard to be prior
1512 * to the unused_bgs code path. Therefore, if it's not fully
1513 * trimmed, punt it back to the async discard lists.
1514 */
1515 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1516 !btrfs_is_free_space_trimmed(block_group)) {
1517 trace_btrfs_skip_unused_block_group(block_group);
1518 up_write(&space_info->groups_sem);
1519 /* Requeue if we failed because of async discard */
1520 btrfs_discard_queue_work(&fs_info->discard_ctl,
1521 block_group);
1522 goto next;
1523 }
1524
f4a9f219 1525 spin_lock(&space_info->lock);
e3e0520b 1526 spin_lock(&block_group->lock);
1693d544 1527 if (btrfs_is_block_group_used(block_group) || block_group->ro ||
e3e0520b
JB
1528 list_is_singular(&block_group->list)) {
1529 /*
1530 * We want to bail if we made new allocations or have
1531 * outstanding allocations in this block group. We do
1532 * the ro check in case balance is currently acting on
1533 * this block group.
edebd19a
FM
1534 *
1535 * Also bail out if this is the only block group for its
1536 * type, because otherwise we would lose profile
1537 * information from fs_info->avail_*_alloc_bits and the
1538 * next block group of this type would be created with a
1539 * "single" profile (even if we're in a raid fs) because
1540 * fs_info->avail_*_alloc_bits would be 0.
e3e0520b
JB
1541 */
1542 trace_btrfs_skip_unused_block_group(block_group);
1543 spin_unlock(&block_group->lock);
f4a9f219 1544 spin_unlock(&space_info->lock);
e3e0520b
JB
1545 up_write(&space_info->groups_sem);
1546 goto next;
1547 }
f4a9f219
FM
1548
1549 /*
1550 * The block group may be unused but there may be space reserved
1551 * accounting with the existence of that block group, that is,
1552 * space_info->bytes_may_use was incremented by a task but no
1553 * space was yet allocated from the block group by the task.
1554 * That space may or may not be allocated, as we are generally
1555 * pessimistic about space reservation for metadata as well as
1556 * for data when using compression (as we reserve space based on
1557 * the worst case, when data can't be compressed, and before
1558 * actually attempting compression, before starting writeback).
1559 *
1560 * So check if the total space of the space_info minus the size
1561 * of this block group is less than the used space of the
1562 * space_info - if that's the case, then it means we have tasks
1563 * that might be relying on the block group in order to allocate
1564 * extents, and add back the block group to the unused list when
1565 * we finish, so that we retry later in case no tasks ended up
1566 * needing to allocate extents from the block group.
1567 */
1568 used = btrfs_space_info_used(space_info, true);
a8b70c7f
JT
1569 if (space_info->total_bytes - block_group->length < used &&
1570 block_group->zone_unusable < block_group->length) {
f4a9f219
FM
1571 /*
1572 * Add a reference for the list, compensate for the ref
1573 * drop under the "next" label for the
1574 * fs_info->unused_bgs list.
1575 */
1576 btrfs_get_block_group(block_group);
1577 list_add_tail(&block_group->bg_list, &retry_list);
1578
1579 trace_btrfs_skip_unused_block_group(block_group);
1580 spin_unlock(&block_group->lock);
1581 spin_unlock(&space_info->lock);
1582 up_write(&space_info->groups_sem);
1583 goto next;
1584 }
1585
e3e0520b 1586 spin_unlock(&block_group->lock);
f4a9f219 1587 spin_unlock(&space_info->lock);
e3e0520b
JB
1588
1589 /* We don't want to force the issue, only flip if it's ok. */
e11c0406 1590 ret = inc_block_group_ro(block_group, 0);
e3e0520b
JB
1591 up_write(&space_info->groups_sem);
1592 if (ret < 0) {
1593 ret = 0;
1594 goto next;
1595 }
1596
74e91b12
NA
1597 ret = btrfs_zone_finish(block_group);
1598 if (ret < 0) {
1599 btrfs_dec_block_group_ro(block_group);
1600 if (ret == -EAGAIN)
1601 ret = 0;
1602 goto next;
1603 }
1604
e3e0520b
JB
1605 /*
1606 * Want to do this before we do anything else so we can recover
1607 * properly if we fail to join the transaction.
1608 */
1609 trans = btrfs_start_trans_remove_block_group(fs_info,
b3470b5d 1610 block_group->start);
e3e0520b
JB
1611 if (IS_ERR(trans)) {
1612 btrfs_dec_block_group_ro(block_group);
1613 ret = PTR_ERR(trans);
1614 goto next;
1615 }
1616
1617 /*
1618 * We could have pending pinned extents for this block group,
1619 * just delete them, we don't care about them anymore.
1620 */
534cf531
FM
1621 if (!clean_pinned_extents(trans, block_group)) {
1622 btrfs_dec_block_group_ro(block_group);
e3e0520b 1623 goto end_trans;
534cf531 1624 }
e3e0520b 1625
b0643e59
DZ
1626 /*
1627 * At this point, the block_group is read only and should fail
1628 * new allocations. However, btrfs_finish_extent_commit() can
1629 * cause this block_group to be placed back on the discard
1630 * lists because now the block_group isn't fully discarded.
1631 * Bail here and try again later after discarding everything.
1632 */
1633 spin_lock(&fs_info->discard_ctl.lock);
1634 if (!list_empty(&block_group->discard_list)) {
1635 spin_unlock(&fs_info->discard_ctl.lock);
1636 btrfs_dec_block_group_ro(block_group);
1637 btrfs_discard_queue_work(&fs_info->discard_ctl,
1638 block_group);
1639 goto end_trans;
1640 }
1641 spin_unlock(&fs_info->discard_ctl.lock);
1642
e3e0520b
JB
1643 /* Reset pinned so btrfs_put_block_group doesn't complain */
1644 spin_lock(&space_info->lock);
1645 spin_lock(&block_group->lock);
1646
1647 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1648 -block_group->pinned);
1649 space_info->bytes_readonly += block_group->pinned;
e3e0520b
JB
1650 block_group->pinned = 0;
1651
1652 spin_unlock(&block_group->lock);
1653 spin_unlock(&space_info->lock);
1654
6e80d4f8
DZ
1655 /*
1656 * The normal path here is an unused block group is passed here,
1657 * then trimming is handled in the transaction commit path.
1658 * Async discard interposes before this to do the trimming
1659 * before coming down the unused block group path as trimming
1660 * will no longer be done later in the transaction commit path.
1661 */
1662 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1663 goto flip_async;
1664
dcba6e48
NA
1665 /*
1666 * DISCARD can flip during remount. On zoned filesystems, we
1667 * need to reset sequential-required zones.
1668 */
1669 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1670 btrfs_is_zoned(fs_info);
e3e0520b
JB
1671
1672 /* Implicit trim during transaction commit. */
1673 if (trimming)
6b7304af 1674 btrfs_freeze_block_group(block_group);
e3e0520b
JB
1675
1676 /*
1677 * Btrfs_remove_chunk will abort the transaction if things go
1678 * horribly wrong.
1679 */
b3470b5d 1680 ret = btrfs_remove_chunk(trans, block_group->start);
e3e0520b
JB
1681
1682 if (ret) {
1683 if (trimming)
6b7304af 1684 btrfs_unfreeze_block_group(block_group);
e3e0520b
JB
1685 goto end_trans;
1686 }
1687
1688 /*
1689 * If we're not mounted with -odiscard, we can just forget
1690 * about this block group. Otherwise we'll need to wait
1691 * until transaction commit to do the actual discard.
1692 */
1693 if (trimming) {
1694 spin_lock(&fs_info->unused_bgs_lock);
1695 /*
1696 * A concurrent scrub might have added us to the list
1697 * fs_info->unused_bgs, so use a list_move operation
1698 * to add the block group to the deleted_bgs list.
1699 */
1700 list_move(&block_group->bg_list,
1701 &trans->transaction->deleted_bgs);
1702 spin_unlock(&fs_info->unused_bgs_lock);
1703 btrfs_get_block_group(block_group);
1704 }
1705end_trans:
1706 btrfs_end_transaction(trans);
1707next:
e3e0520b
JB
1708 btrfs_put_block_group(block_group);
1709 spin_lock(&fs_info->unused_bgs_lock);
1710 }
f4a9f219 1711 list_splice_tail(&retry_list, &fs_info->unused_bgs);
e3e0520b 1712 spin_unlock(&fs_info->unused_bgs_lock);
f3372065 1713 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1714 return;
1715
1716flip_async:
1717 btrfs_end_transaction(trans);
f4a9f219
FM
1718 spin_lock(&fs_info->unused_bgs_lock);
1719 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1720 spin_unlock(&fs_info->unused_bgs_lock);
f3372065 1721 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1722 btrfs_put_block_group(block_group);
1723 btrfs_discard_punt_unused_bgs_list(fs_info);
e3e0520b
JB
1724}
1725
32da5386 1726void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
e3e0520b
JB
1727{
1728 struct btrfs_fs_info *fs_info = bg->fs_info;
1729
1730 spin_lock(&fs_info->unused_bgs_lock);
1731 if (list_empty(&bg->bg_list)) {
1732 btrfs_get_block_group(bg);
0657b20c 1733 trace_btrfs_add_unused_block_group(bg);
e3e0520b 1734 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
0657b20c 1735 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
a9f18971 1736 /* Pull out the block group from the reclaim_bgs list. */
0657b20c 1737 trace_btrfs_add_unused_block_group(bg);
a9f18971 1738 list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
e3e0520b
JB
1739 }
1740 spin_unlock(&fs_info->unused_bgs_lock);
1741}
4358d963 1742
2ca0ec77
JT
1743/*
1744 * We want block groups with a low number of used bytes to be in the beginning
1745 * of the list, so they will get reclaimed first.
1746 */
1747static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1748 const struct list_head *b)
1749{
1750 const struct btrfs_block_group *bg1, *bg2;
1751
1752 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1753 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1754
1755 return bg1->used > bg2->used;
1756}
1757
3687fcb0
JT
1758static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1759{
1760 if (btrfs_is_zoned(fs_info))
1761 return btrfs_zoned_should_reclaim(fs_info);
1762 return true;
1763}
1764
81531225
BB
1765static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1766{
f5ff64cc
BB
1767 const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info);
1768 u64 thresh_bytes = mult_perc(bg->length, thresh_pct);
81531225
BB
1769 const u64 new_val = bg->used;
1770 const u64 old_val = new_val + bytes_freed;
81531225 1771
f5ff64cc 1772 if (thresh_bytes == 0)
81531225
BB
1773 return false;
1774
81531225
BB
1775 /*
1776 * If we were below the threshold before don't reclaim, we are likely a
1777 * brand new block group and we don't want to relocate new block groups.
1778 */
f5ff64cc 1779 if (old_val < thresh_bytes)
81531225 1780 return false;
f5ff64cc 1781 if (new_val >= thresh_bytes)
81531225
BB
1782 return false;
1783 return true;
1784}
1785
18bb8bbf
JT
1786void btrfs_reclaim_bgs_work(struct work_struct *work)
1787{
1788 struct btrfs_fs_info *fs_info =
1789 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1790 struct btrfs_block_group *bg;
1791 struct btrfs_space_info *space_info;
4eb4e85c 1792 LIST_HEAD(retry_list);
18bb8bbf
JT
1793
1794 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1795 return;
1796
2f12741f
JB
1797 if (btrfs_fs_closing(fs_info))
1798 return;
1799
3687fcb0
JT
1800 if (!btrfs_should_reclaim(fs_info))
1801 return;
1802
ca5e4ea0
NA
1803 sb_start_write(fs_info->sb);
1804
1805 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1806 sb_end_write(fs_info->sb);
18bb8bbf 1807 return;
ca5e4ea0 1808 }
18bb8bbf 1809
9cc0b837
JT
1810 /*
1811 * Long running balances can keep us blocked here for eternity, so
1812 * simply skip reclaim if we're unable to get the mutex.
1813 */
1814 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1815 btrfs_exclop_finish(fs_info);
ca5e4ea0 1816 sb_end_write(fs_info->sb);
9cc0b837
JT
1817 return;
1818 }
1819
18bb8bbf 1820 spin_lock(&fs_info->unused_bgs_lock);
2ca0ec77
JT
1821 /*
1822 * Sort happens under lock because we can't simply splice it and sort.
1823 * The block groups might still be in use and reachable via bg_list,
1824 * and their presence in the reclaim_bgs list must be preserved.
1825 */
1826 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
18bb8bbf 1827 while (!list_empty(&fs_info->reclaim_bgs)) {
5f93e776 1828 u64 zone_unusable;
243192b6 1829 u64 reclaimed;
1cea5cf0
FM
1830 int ret = 0;
1831
18bb8bbf
JT
1832 bg = list_first_entry(&fs_info->reclaim_bgs,
1833 struct btrfs_block_group,
1834 bg_list);
1835 list_del_init(&bg->bg_list);
1836
1837 space_info = bg->space_info;
1838 spin_unlock(&fs_info->unused_bgs_lock);
1839
1840 /* Don't race with allocators so take the groups_sem */
1841 down_write(&space_info->groups_sem);
1842
f5ff64cc 1843 spin_lock(&space_info->lock);
18bb8bbf
JT
1844 spin_lock(&bg->lock);
1845 if (bg->reserved || bg->pinned || bg->ro) {
1846 /*
1847 * We want to bail if we made new allocations or have
1848 * outstanding allocations in this block group. We do
1849 * the ro check in case balance is currently acting on
1850 * this block group.
1851 */
1852 spin_unlock(&bg->lock);
f5ff64cc 1853 spin_unlock(&space_info->lock);
18bb8bbf
JT
1854 up_write(&space_info->groups_sem);
1855 goto next;
1856 }
cc4804bf
BB
1857 if (bg->used == 0) {
1858 /*
1859 * It is possible that we trigger relocation on a block
1860 * group as its extents are deleted and it first goes
1861 * below the threshold, then shortly after goes empty.
1862 *
1863 * In this case, relocating it does delete it, but has
1864 * some overhead in relocation specific metadata, looking
1865 * for the non-existent extents and running some extra
1866 * transactions, which we can avoid by using one of the
1867 * other mechanisms for dealing with empty block groups.
1868 */
1869 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1870 btrfs_mark_bg_unused(bg);
1871 spin_unlock(&bg->lock);
f5ff64cc 1872 spin_unlock(&space_info->lock);
cc4804bf
BB
1873 up_write(&space_info->groups_sem);
1874 goto next;
81531225
BB
1875
1876 }
1877 /*
1878 * The block group might no longer meet the reclaim condition by
1879 * the time we get around to reclaiming it, so to avoid
1880 * reclaiming overly full block_groups, skip reclaiming them.
1881 *
1882 * Since the decision making process also depends on the amount
1883 * being freed, pass in a fake giant value to skip that extra
1884 * check, which is more meaningful when adding to the list in
1885 * the first place.
1886 */
1887 if (!should_reclaim_block_group(bg, bg->length)) {
1888 spin_unlock(&bg->lock);
f5ff64cc 1889 spin_unlock(&space_info->lock);
81531225
BB
1890 up_write(&space_info->groups_sem);
1891 goto next;
cc4804bf 1892 }
18bb8bbf 1893 spin_unlock(&bg->lock);
f5ff64cc 1894 spin_unlock(&space_info->lock);
18bb8bbf 1895
93463ff7
NA
1896 /*
1897 * Get out fast, in case we're read-only or unmounting the
1898 * filesystem. It is OK to drop block groups from the list even
1899 * for the read-only case. As we did sb_start_write(),
1900 * "mount -o remount,ro" won't happen and read-only filesystem
1901 * means it is forced read-only due to a fatal error. So, it
1902 * never gets back to read-write to let us reclaim again.
1903 */
1904 if (btrfs_need_cleaner_sleep(fs_info)) {
18bb8bbf
JT
1905 up_write(&space_info->groups_sem);
1906 goto next;
1907 }
1908
5f93e776
JT
1909 /*
1910 * Cache the zone_unusable value before turning the block group
1911 * to read only. As soon as the blog group is read only it's
1912 * zone_unusable value gets moved to the block group's read-only
1913 * bytes and isn't available for calculations anymore.
1914 */
1915 zone_unusable = bg->zone_unusable;
18bb8bbf
JT
1916 ret = inc_block_group_ro(bg, 0);
1917 up_write(&space_info->groups_sem);
1918 if (ret < 0)
1919 goto next;
1920
5f93e776
JT
1921 btrfs_info(fs_info,
1922 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
95cd356c
JT
1923 bg->start,
1924 div64_u64(bg->used * 100, bg->length),
5f93e776 1925 div64_u64(zone_unusable * 100, bg->length));
18bb8bbf 1926 trace_btrfs_reclaim_block_group(bg);
243192b6 1927 reclaimed = bg->used;
18bb8bbf 1928 ret = btrfs_relocate_chunk(fs_info, bg->start);
74944c87
JB
1929 if (ret) {
1930 btrfs_dec_block_group_ro(bg);
18bb8bbf
JT
1931 btrfs_err(fs_info, "error relocating chunk %llu",
1932 bg->start);
243192b6
BB
1933 reclaimed = 0;
1934 spin_lock(&space_info->lock);
1935 space_info->reclaim_errors++;
813d4c64
BB
1936 if (READ_ONCE(space_info->periodic_reclaim))
1937 space_info->periodic_reclaim_ready = false;
243192b6 1938 spin_unlock(&space_info->lock);
74944c87 1939 }
243192b6
BB
1940 spin_lock(&space_info->lock);
1941 space_info->reclaim_count++;
1942 space_info->reclaim_bytes += reclaimed;
1943 spin_unlock(&space_info->lock);
18bb8bbf
JT
1944
1945next:
813d4c64 1946 if (ret && !READ_ONCE(space_info->periodic_reclaim)) {
4eb4e85c 1947 /* Refcount held by the reclaim_bgs list after splice. */
48f091fd
NA
1948 spin_lock(&fs_info->unused_bgs_lock);
1949 /*
1950 * This block group might be added to the unused list
1951 * during the above process. Move it back to the
1952 * reclaim list otherwise.
1953 */
1954 if (list_empty(&bg->bg_list)) {
1955 btrfs_get_block_group(bg);
1956 list_add_tail(&bg->bg_list, &retry_list);
1957 }
1958 spin_unlock(&fs_info->unused_bgs_lock);
4eb4e85c 1959 }
d96b3424 1960 btrfs_put_block_group(bg);
3ed01616
NA
1961
1962 mutex_unlock(&fs_info->reclaim_bgs_lock);
1963 /*
1964 * Reclaiming all the block groups in the list can take really
1965 * long. Prioritize cleaning up unused block groups.
1966 */
1967 btrfs_delete_unused_bgs(fs_info);
1968 /*
1969 * If we are interrupted by a balance, we can just bail out. The
1970 * cleaner thread restart again if necessary.
1971 */
1972 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1973 goto end;
18bb8bbf
JT
1974 spin_lock(&fs_info->unused_bgs_lock);
1975 }
1976 spin_unlock(&fs_info->unused_bgs_lock);
1977 mutex_unlock(&fs_info->reclaim_bgs_lock);
3ed01616 1978end:
4eb4e85c
BB
1979 spin_lock(&fs_info->unused_bgs_lock);
1980 list_splice_tail(&retry_list, &fs_info->reclaim_bgs);
1981 spin_unlock(&fs_info->unused_bgs_lock);
18bb8bbf 1982 btrfs_exclop_finish(fs_info);
ca5e4ea0 1983 sb_end_write(fs_info->sb);
18bb8bbf
JT
1984}
1985
1986void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1987{
e4ca3932 1988 btrfs_reclaim_sweep(fs_info);
18bb8bbf
JT
1989 spin_lock(&fs_info->unused_bgs_lock);
1990 if (!list_empty(&fs_info->reclaim_bgs))
1991 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1992 spin_unlock(&fs_info->unused_bgs_lock);
1993}
1994
1995void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1996{
1997 struct btrfs_fs_info *fs_info = bg->fs_info;
1998
1999 spin_lock(&fs_info->unused_bgs_lock);
2000 if (list_empty(&bg->bg_list)) {
2001 btrfs_get_block_group(bg);
2002 trace_btrfs_add_reclaim_block_group(bg);
2003 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
2004 }
2005 spin_unlock(&fs_info->unused_bgs_lock);
2006}
2007
e3ba67a1
JT
2008static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
2009 struct btrfs_path *path)
2010{
7dc66abb 2011 struct btrfs_chunk_map *map;
e3ba67a1
JT
2012 struct btrfs_block_group_item bg;
2013 struct extent_buffer *leaf;
2014 int slot;
2015 u64 flags;
2016 int ret = 0;
2017
2018 slot = path->slots[0];
2019 leaf = path->nodes[0];
2020
7dc66abb
FM
2021 map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset);
2022 if (!map) {
e3ba67a1
JT
2023 btrfs_err(fs_info,
2024 "logical %llu len %llu found bg but no related chunk",
2025 key->objectid, key->offset);
2026 return -ENOENT;
2027 }
2028
7dc66abb 2029 if (map->start != key->objectid || map->chunk_len != key->offset) {
e3ba67a1
JT
2030 btrfs_err(fs_info,
2031 "block group %llu len %llu mismatch with chunk %llu len %llu",
7dc66abb 2032 key->objectid, key->offset, map->start, map->chunk_len);
e3ba67a1 2033 ret = -EUCLEAN;
7dc66abb 2034 goto out_free_map;
e3ba67a1
JT
2035 }
2036
2037 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2038 sizeof(bg));
2039 flags = btrfs_stack_block_group_flags(&bg) &
2040 BTRFS_BLOCK_GROUP_TYPE_MASK;
2041
7dc66abb 2042 if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
e3ba67a1
JT
2043 btrfs_err(fs_info,
2044"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2045 key->objectid, key->offset, flags,
7dc66abb 2046 (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type));
e3ba67a1
JT
2047 ret = -EUCLEAN;
2048 }
2049
7dc66abb
FM
2050out_free_map:
2051 btrfs_free_chunk_map(map);
e3ba67a1
JT
2052 return ret;
2053}
2054
4358d963
JB
2055static int find_first_block_group(struct btrfs_fs_info *fs_info,
2056 struct btrfs_path *path,
2057 struct btrfs_key *key)
2058{
dfe8aec4 2059 struct btrfs_root *root = btrfs_block_group_root(fs_info);
e3ba67a1 2060 int ret;
4358d963 2061 struct btrfs_key found_key;
4358d963 2062
36dfbbe2 2063 btrfs_for_each_slot(root, key, &found_key, path, ret) {
4358d963
JB
2064 if (found_key.objectid >= key->objectid &&
2065 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
36dfbbe2 2066 return read_bg_from_eb(fs_info, &found_key, path);
4358d963 2067 }
4358d963 2068 }
4358d963
JB
2069 return ret;
2070}
2071
2072static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2073{
2074 u64 extra_flags = chunk_to_extended(flags) &
2075 BTRFS_EXTENDED_PROFILE_MASK;
2076
2077 write_seqlock(&fs_info->profiles_lock);
2078 if (flags & BTRFS_BLOCK_GROUP_DATA)
2079 fs_info->avail_data_alloc_bits |= extra_flags;
2080 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2081 fs_info->avail_metadata_alloc_bits |= extra_flags;
2082 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2083 fs_info->avail_system_alloc_bits |= extra_flags;
2084 write_sequnlock(&fs_info->profiles_lock);
2085}
2086
43dd529a
DS
2087/*
2088 * Map a physical disk address to a list of logical addresses.
9ee9b979
NB
2089 *
2090 * @fs_info: the filesystem
96a14336
NB
2091 * @chunk_start: logical address of block group
2092 * @physical: physical address to map to logical addresses
2093 * @logical: return array of logical addresses which map to @physical
2094 * @naddrs: length of @logical
2095 * @stripe_len: size of IO stripe for the given block group
2096 *
2097 * Maps a particular @physical disk address to a list of @logical addresses.
2098 * Used primarily to exclude those portions of a block group that contain super
2099 * block copies.
2100 */
96a14336 2101int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1eb82ef8 2102 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
96a14336 2103{
7dc66abb 2104 struct btrfs_chunk_map *map;
96a14336
NB
2105 u64 *buf;
2106 u64 bytenr;
1776ad17
NB
2107 u64 data_stripe_length;
2108 u64 io_stripe_size;
2109 int i, nr = 0;
2110 int ret = 0;
96a14336 2111
7dc66abb
FM
2112 map = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2113 if (IS_ERR(map))
96a14336
NB
2114 return -EIO;
2115
7dc66abb 2116 data_stripe_length = map->stripe_size;
a97699d1 2117 io_stripe_size = BTRFS_STRIPE_LEN;
7dc66abb 2118 chunk_start = map->start;
96a14336 2119
9e22b925
NB
2120 /* For RAID5/6 adjust to a full IO stripe length */
2121 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
cb091225 2122 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
96a14336
NB
2123
2124 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1776ad17
NB
2125 if (!buf) {
2126 ret = -ENOMEM;
2127 goto out;
2128 }
96a14336
NB
2129
2130 for (i = 0; i < map->num_stripes; i++) {
1776ad17 2131 bool already_inserted = false;
6ded22c1
QW
2132 u32 stripe_nr;
2133 u32 offset;
1776ad17
NB
2134 int j;
2135
2136 if (!in_range(physical, map->stripes[i].physical,
2137 data_stripe_length))
96a14336
NB
2138 continue;
2139
a97699d1
QW
2140 stripe_nr = (physical - map->stripes[i].physical) >>
2141 BTRFS_STRIPE_LEN_SHIFT;
2142 offset = (physical - map->stripes[i].physical) &
2143 BTRFS_STRIPE_LEN_MASK;
96a14336 2144
ac067734 2145 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6ded22c1
QW
2146 BTRFS_BLOCK_GROUP_RAID10))
2147 stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2148 map->sub_stripes);
96a14336
NB
2149 /*
2150 * The remaining case would be for RAID56, multiply by
2151 * nr_data_stripes(). Alternatively, just use rmap_len below
2152 * instead of map->stripe_len
2153 */
138082f3 2154 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1776ad17
NB
2155
2156 /* Ensure we don't add duplicate addresses */
96a14336 2157 for (j = 0; j < nr; j++) {
1776ad17
NB
2158 if (buf[j] == bytenr) {
2159 already_inserted = true;
96a14336 2160 break;
1776ad17 2161 }
96a14336 2162 }
1776ad17
NB
2163
2164 if (!already_inserted)
96a14336 2165 buf[nr++] = bytenr;
96a14336
NB
2166 }
2167
2168 *logical = buf;
2169 *naddrs = nr;
1776ad17
NB
2170 *stripe_len = io_stripe_size;
2171out:
7dc66abb 2172 btrfs_free_chunk_map(map);
1776ad17 2173 return ret;
96a14336
NB
2174}
2175
32da5386 2176static int exclude_super_stripes(struct btrfs_block_group *cache)
4358d963
JB
2177{
2178 struct btrfs_fs_info *fs_info = cache->fs_info;
12659251 2179 const bool zoned = btrfs_is_zoned(fs_info);
4358d963
JB
2180 u64 bytenr;
2181 u64 *logical;
2182 int stripe_len;
2183 int i, nr, ret;
2184
b3470b5d
DS
2185 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2186 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
4358d963 2187 cache->bytes_super += stripe_len;
b1c8f527
FM
2188 ret = set_extent_bit(&fs_info->excluded_extents, cache->start,
2189 cache->start + stripe_len - 1,
2190 EXTENT_UPTODATE, NULL);
4358d963
JB
2191 if (ret)
2192 return ret;
2193 }
2194
2195 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2196 bytenr = btrfs_sb_offset(i);
1eb82ef8 2197 ret = btrfs_rmap_block(fs_info, cache->start,
4358d963
JB
2198 bytenr, &logical, &nr, &stripe_len);
2199 if (ret)
2200 return ret;
2201
12659251
NA
2202 /* Shouldn't have super stripes in sequential zones */
2203 if (zoned && nr) {
f1a07c2b 2204 kfree(logical);
12659251
NA
2205 btrfs_err(fs_info,
2206 "zoned: block group %llu must not contain super block",
2207 cache->start);
2208 return -EUCLEAN;
2209 }
2210
4358d963 2211 while (nr--) {
96f9b0f2
NB
2212 u64 len = min_t(u64, stripe_len,
2213 cache->start + cache->length - logical[nr]);
4358d963
JB
2214
2215 cache->bytes_super += len;
b1c8f527
FM
2216 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr],
2217 logical[nr] + len - 1,
2218 EXTENT_UPTODATE, NULL);
4358d963
JB
2219 if (ret) {
2220 kfree(logical);
2221 return ret;
2222 }
2223 }
2224
2225 kfree(logical);
2226 }
2227 return 0;
2228}
2229
32da5386 2230static struct btrfs_block_group *btrfs_create_block_group_cache(
9afc6649 2231 struct btrfs_fs_info *fs_info, u64 start)
4358d963 2232{
32da5386 2233 struct btrfs_block_group *cache;
4358d963
JB
2234
2235 cache = kzalloc(sizeof(*cache), GFP_NOFS);
2236 if (!cache)
2237 return NULL;
2238
2239 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2240 GFP_NOFS);
2241 if (!cache->free_space_ctl) {
2242 kfree(cache);
2243 return NULL;
2244 }
2245
b3470b5d 2246 cache->start = start;
4358d963
JB
2247
2248 cache->fs_info = fs_info;
2249 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
4358d963 2250
6e80d4f8
DZ
2251 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2252
48aaeebe 2253 refcount_set(&cache->refs, 1);
4358d963
JB
2254 spin_lock_init(&cache->lock);
2255 init_rwsem(&cache->data_rwsem);
2256 INIT_LIST_HEAD(&cache->list);
2257 INIT_LIST_HEAD(&cache->cluster_list);
2258 INIT_LIST_HEAD(&cache->bg_list);
2259 INIT_LIST_HEAD(&cache->ro_list);
b0643e59 2260 INIT_LIST_HEAD(&cache->discard_list);
4358d963
JB
2261 INIT_LIST_HEAD(&cache->dirty_list);
2262 INIT_LIST_HEAD(&cache->io_list);
afba2bc0 2263 INIT_LIST_HEAD(&cache->active_bg_list);
cd79909b 2264 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
6b7304af 2265 atomic_set(&cache->frozen, 0);
4358d963 2266 mutex_init(&cache->free_space_lock);
4358d963
JB
2267
2268 return cache;
2269}
2270
2271/*
2272 * Iterate all chunks and verify that each of them has the corresponding block
2273 * group
2274 */
2275static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2276{
4358d963
JB
2277 u64 start = 0;
2278 int ret = 0;
2279
2280 while (1) {
7dc66abb
FM
2281 struct btrfs_chunk_map *map;
2282 struct btrfs_block_group *bg;
2283
4358d963 2284 /*
7dc66abb
FM
2285 * btrfs_find_chunk_map() will return the first chunk map
2286 * intersecting the range, so setting @length to 1 is enough to
4358d963
JB
2287 * get the first chunk.
2288 */
7dc66abb
FM
2289 map = btrfs_find_chunk_map(fs_info, start, 1);
2290 if (!map)
4358d963
JB
2291 break;
2292
7dc66abb 2293 bg = btrfs_lookup_block_group(fs_info, map->start);
4358d963
JB
2294 if (!bg) {
2295 btrfs_err(fs_info,
2296 "chunk start=%llu len=%llu doesn't have corresponding block group",
7dc66abb 2297 map->start, map->chunk_len);
4358d963 2298 ret = -EUCLEAN;
7dc66abb 2299 btrfs_free_chunk_map(map);
4358d963
JB
2300 break;
2301 }
7dc66abb 2302 if (bg->start != map->start || bg->length != map->chunk_len ||
4358d963 2303 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
7dc66abb 2304 (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
4358d963
JB
2305 btrfs_err(fs_info,
2306"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
7dc66abb
FM
2307 map->start, map->chunk_len,
2308 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
b3470b5d 2309 bg->start, bg->length,
4358d963
JB
2310 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2311 ret = -EUCLEAN;
7dc66abb 2312 btrfs_free_chunk_map(map);
4358d963
JB
2313 btrfs_put_block_group(bg);
2314 break;
2315 }
7dc66abb
FM
2316 start = map->start + map->chunk_len;
2317 btrfs_free_chunk_map(map);
4358d963
JB
2318 btrfs_put_block_group(bg);
2319 }
2320 return ret;
2321}
2322
ffb9e0f0 2323static int read_one_block_group(struct btrfs_fs_info *info,
4afd2fe8 2324 struct btrfs_block_group_item *bgi,
d49a2ddb 2325 const struct btrfs_key *key,
ffb9e0f0
QW
2326 int need_clear)
2327{
32da5386 2328 struct btrfs_block_group *cache;
ffb9e0f0 2329 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
ffb9e0f0
QW
2330 int ret;
2331
d49a2ddb 2332 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
ffb9e0f0 2333
9afc6649 2334 cache = btrfs_create_block_group_cache(info, key->objectid);
ffb9e0f0
QW
2335 if (!cache)
2336 return -ENOMEM;
2337
4afd2fe8
JT
2338 cache->length = key->offset;
2339 cache->used = btrfs_stack_block_group_used(bgi);
7248e0ce 2340 cache->commit_used = cache->used;
4afd2fe8 2341 cache->flags = btrfs_stack_block_group_flags(bgi);
f7238e50 2342 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
9afc6649 2343
e3e39c72
MPS
2344 set_free_space_tree_thresholds(cache);
2345
ffb9e0f0
QW
2346 if (need_clear) {
2347 /*
2348 * When we mount with old space cache, we need to
2349 * set BTRFS_DC_CLEAR and set dirty flag.
2350 *
2351 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2352 * truncate the old free space cache inode and
2353 * setup a new one.
2354 * b) Setting 'dirty flag' makes sure that we flush
2355 * the new space cache info onto disk.
2356 */
2357 if (btrfs_test_opt(info, SPACE_CACHE))
2358 cache->disk_cache_state = BTRFS_DC_CLEAR;
2359 }
ffb9e0f0
QW
2360 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2361 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2362 btrfs_err(info,
2363"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2364 cache->start);
2365 ret = -EINVAL;
2366 goto error;
2367 }
2368
a94794d5 2369 ret = btrfs_load_block_group_zone_info(cache, false);
08e11a3d
NA
2370 if (ret) {
2371 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2372 cache->start);
2373 goto error;
2374 }
2375
ffb9e0f0
QW
2376 /*
2377 * We need to exclude the super stripes now so that the space info has
2378 * super bytes accounted for, otherwise we'll think we have more space
2379 * than we actually do.
2380 */
2381 ret = exclude_super_stripes(cache);
2382 if (ret) {
2383 /* We may have excluded something, so call this just in case. */
2384 btrfs_free_excluded_extents(cache);
2385 goto error;
2386 }
2387
2388 /*
169e0da9
NA
2389 * For zoned filesystem, space after the allocation offset is the only
2390 * free space for a block group. So, we don't need any caching work.
2391 * btrfs_calc_zone_unusable() will set the amount of free space and
2392 * zone_unusable space.
2393 *
2394 * For regular filesystem, check for two cases, either we are full, and
2395 * therefore don't need to bother with the caching work since we won't
2396 * find any space, or we are empty, and we can just add all the space
2397 * in and be done with it. This saves us _a_lot_ of time, particularly
2398 * in the full case.
ffb9e0f0 2399 */
169e0da9
NA
2400 if (btrfs_is_zoned(info)) {
2401 btrfs_calc_zone_unusable(cache);
c46c4247
NA
2402 /* Should not have any excluded extents. Just in case, though. */
2403 btrfs_free_excluded_extents(cache);
169e0da9 2404 } else if (cache->length == cache->used) {
ffb9e0f0
QW
2405 cache->cached = BTRFS_CACHE_FINISHED;
2406 btrfs_free_excluded_extents(cache);
2407 } else if (cache->used == 0) {
ffb9e0f0 2408 cache->cached = BTRFS_CACHE_FINISHED;
3b9f0995
FM
2409 ret = btrfs_add_new_free_space(cache, cache->start,
2410 cache->start + cache->length, NULL);
ffb9e0f0 2411 btrfs_free_excluded_extents(cache);
d8ccbd21
FM
2412 if (ret)
2413 goto error;
ffb9e0f0
QW
2414 }
2415
2416 ret = btrfs_add_block_group_cache(info, cache);
2417 if (ret) {
2418 btrfs_remove_free_space_cache(cache);
2419 goto error;
2420 }
2421 trace_btrfs_add_block_group(info, cache, 0);
723de71d 2422 btrfs_add_bg_to_space_info(info, cache);
ffb9e0f0
QW
2423
2424 set_avail_alloc_bits(info, cache->flags);
a09f23c3
AJ
2425 if (btrfs_chunk_writeable(info, cache->start)) {
2426 if (cache->used == 0) {
2427 ASSERT(list_empty(&cache->bg_list));
2428 if (btrfs_test_opt(info, DISCARD_ASYNC))
2429 btrfs_discard_queue_work(&info->discard_ctl, cache);
2430 else
2431 btrfs_mark_bg_unused(cache);
2432 }
2433 } else {
ffb9e0f0 2434 inc_block_group_ro(cache, 1);
ffb9e0f0 2435 }
a09f23c3 2436
ffb9e0f0
QW
2437 return 0;
2438error:
2439 btrfs_put_block_group(cache);
2440 return ret;
2441}
2442
42437a63
JB
2443static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2444{
42437a63
JB
2445 struct rb_node *node;
2446 int ret = 0;
2447
7dc66abb
FM
2448 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
2449 struct btrfs_chunk_map *map;
42437a63
JB
2450 struct btrfs_block_group *bg;
2451
7dc66abb
FM
2452 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
2453 bg = btrfs_create_block_group_cache(fs_info, map->start);
42437a63
JB
2454 if (!bg) {
2455 ret = -ENOMEM;
2456 break;
2457 }
2458
2459 /* Fill dummy cache as FULL */
7dc66abb 2460 bg->length = map->chunk_len;
42437a63 2461 bg->flags = map->type;
42437a63 2462 bg->cached = BTRFS_CACHE_FINISHED;
7dc66abb 2463 bg->used = map->chunk_len;
42437a63
JB
2464 bg->flags = map->type;
2465 ret = btrfs_add_block_group_cache(fs_info, bg);
2b29726c
QW
2466 /*
2467 * We may have some valid block group cache added already, in
2468 * that case we skip to the next one.
2469 */
2470 if (ret == -EEXIST) {
2471 ret = 0;
2472 btrfs_put_block_group(bg);
2473 continue;
2474 }
2475
42437a63
JB
2476 if (ret) {
2477 btrfs_remove_free_space_cache(bg);
2478 btrfs_put_block_group(bg);
2479 break;
2480 }
2b29726c 2481
723de71d 2482 btrfs_add_bg_to_space_info(fs_info, bg);
42437a63
JB
2483
2484 set_avail_alloc_bits(fs_info, bg->flags);
2485 }
2486 if (!ret)
2487 btrfs_init_global_block_rsv(fs_info);
2488 return ret;
2489}
2490
4358d963
JB
2491int btrfs_read_block_groups(struct btrfs_fs_info *info)
2492{
dfe8aec4 2493 struct btrfs_root *root = btrfs_block_group_root(info);
4358d963
JB
2494 struct btrfs_path *path;
2495 int ret;
32da5386 2496 struct btrfs_block_group *cache;
4358d963
JB
2497 struct btrfs_space_info *space_info;
2498 struct btrfs_key key;
4358d963
JB
2499 int need_clear = 0;
2500 u64 cache_gen;
4358d963 2501
81d5d614
QW
2502 /*
2503 * Either no extent root (with ibadroots rescue option) or we have
2504 * unsupported RO options. The fs can never be mounted read-write, so no
2505 * need to waste time searching block group items.
2506 *
2507 * This also allows new extent tree related changes to be RO compat,
2508 * no need for a full incompat flag.
2509 */
2510 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2511 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
42437a63
JB
2512 return fill_dummy_bgs(info);
2513
4358d963
JB
2514 key.objectid = 0;
2515 key.offset = 0;
2516 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2517 path = btrfs_alloc_path();
2518 if (!path)
2519 return -ENOMEM;
4358d963
JB
2520
2521 cache_gen = btrfs_super_cache_generation(info->super_copy);
2522 if (btrfs_test_opt(info, SPACE_CACHE) &&
2523 btrfs_super_generation(info->super_copy) != cache_gen)
2524 need_clear = 1;
2525 if (btrfs_test_opt(info, CLEAR_CACHE))
2526 need_clear = 1;
2527
2528 while (1) {
4afd2fe8
JT
2529 struct btrfs_block_group_item bgi;
2530 struct extent_buffer *leaf;
2531 int slot;
2532
4358d963
JB
2533 ret = find_first_block_group(info, path, &key);
2534 if (ret > 0)
2535 break;
2536 if (ret != 0)
2537 goto error;
2538
4afd2fe8
JT
2539 leaf = path->nodes[0];
2540 slot = path->slots[0];
2541
2542 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2543 sizeof(bgi));
2544
2545 btrfs_item_key_to_cpu(leaf, &key, slot);
2546 btrfs_release_path(path);
2547 ret = read_one_block_group(info, &bgi, &key, need_clear);
ffb9e0f0 2548 if (ret < 0)
4358d963 2549 goto error;
ffb9e0f0
QW
2550 key.objectid += key.offset;
2551 key.offset = 0;
4358d963 2552 }
7837fa88 2553 btrfs_release_path(path);
4358d963 2554
72804905 2555 list_for_each_entry(space_info, &info->space_info, list) {
49ea112d
JB
2556 int i;
2557
2558 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2559 if (list_empty(&space_info->block_groups[i]))
2560 continue;
2561 cache = list_first_entry(&space_info->block_groups[i],
2562 struct btrfs_block_group,
2563 list);
2564 btrfs_sysfs_add_block_group_type(cache);
2565 }
2566
4358d963
JB
2567 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2568 (BTRFS_BLOCK_GROUP_RAID10 |
2569 BTRFS_BLOCK_GROUP_RAID1_MASK |
2570 BTRFS_BLOCK_GROUP_RAID56_MASK |
2571 BTRFS_BLOCK_GROUP_DUP)))
2572 continue;
2573 /*
2574 * Avoid allocating from un-mirrored block group if there are
2575 * mirrored block groups.
2576 */
2577 list_for_each_entry(cache,
2578 &space_info->block_groups[BTRFS_RAID_RAID0],
2579 list)
e11c0406 2580 inc_block_group_ro(cache, 1);
4358d963
JB
2581 list_for_each_entry(cache,
2582 &space_info->block_groups[BTRFS_RAID_SINGLE],
2583 list)
e11c0406 2584 inc_block_group_ro(cache, 1);
4358d963
JB
2585 }
2586
2587 btrfs_init_global_block_rsv(info);
2588 ret = check_chunk_block_group_mappings(info);
2589error:
2590 btrfs_free_path(path);
2b29726c
QW
2591 /*
2592 * We've hit some error while reading the extent tree, and have
2593 * rescue=ibadroots mount option.
2594 * Try to fill the tree using dummy block groups so that the user can
2595 * continue to mount and grab their data.
2596 */
2597 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2598 ret = fill_dummy_bgs(info);
4358d963
JB
2599 return ret;
2600}
2601
79bd3712
FM
2602/*
2603 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2604 * allocation.
2605 *
2606 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2607 * phases.
2608 */
97f4728a
QW
2609static int insert_block_group_item(struct btrfs_trans_handle *trans,
2610 struct btrfs_block_group *block_group)
2611{
2612 struct btrfs_fs_info *fs_info = trans->fs_info;
2613 struct btrfs_block_group_item bgi;
dfe8aec4 2614 struct btrfs_root *root = btrfs_block_group_root(fs_info);
97f4728a 2615 struct btrfs_key key;
675dfe12
FM
2616 u64 old_commit_used;
2617 int ret;
97f4728a
QW
2618
2619 spin_lock(&block_group->lock);
2620 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2621 btrfs_set_stack_block_group_chunk_objectid(&bgi,
f7238e50 2622 block_group->global_root_id);
97f4728a 2623 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
675dfe12
FM
2624 old_commit_used = block_group->commit_used;
2625 block_group->commit_used = block_group->used;
97f4728a
QW
2626 key.objectid = block_group->start;
2627 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2628 key.offset = block_group->length;
2629 spin_unlock(&block_group->lock);
2630
675dfe12
FM
2631 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2632 if (ret < 0) {
2633 spin_lock(&block_group->lock);
2634 block_group->commit_used = old_commit_used;
2635 spin_unlock(&block_group->lock);
2636 }
2637
2638 return ret;
97f4728a
QW
2639}
2640
2eadb9e7
NB
2641static int insert_dev_extent(struct btrfs_trans_handle *trans,
2642 struct btrfs_device *device, u64 chunk_offset,
2643 u64 start, u64 num_bytes)
2644{
2645 struct btrfs_fs_info *fs_info = device->fs_info;
2646 struct btrfs_root *root = fs_info->dev_root;
2647 struct btrfs_path *path;
2648 struct btrfs_dev_extent *extent;
2649 struct extent_buffer *leaf;
2650 struct btrfs_key key;
2651 int ret;
2652
2653 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2654 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2655 path = btrfs_alloc_path();
2656 if (!path)
2657 return -ENOMEM;
2658
2659 key.objectid = device->devid;
2660 key.type = BTRFS_DEV_EXTENT_KEY;
2661 key.offset = start;
2662 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2663 if (ret)
2664 goto out;
2665
2666 leaf = path->nodes[0];
2667 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2668 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2669 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2670 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2671 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2672
2673 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
50564b65 2674 btrfs_mark_buffer_dirty(trans, leaf);
2eadb9e7
NB
2675out:
2676 btrfs_free_path(path);
2677 return ret;
2678}
2679
2680/*
2681 * This function belongs to phase 2.
2682 *
2683 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2684 * phases.
2685 */
2686static int insert_dev_extents(struct btrfs_trans_handle *trans,
2687 u64 chunk_offset, u64 chunk_size)
2688{
2689 struct btrfs_fs_info *fs_info = trans->fs_info;
2690 struct btrfs_device *device;
7dc66abb 2691 struct btrfs_chunk_map *map;
2eadb9e7 2692 u64 dev_offset;
2eadb9e7
NB
2693 int i;
2694 int ret = 0;
2695
7dc66abb
FM
2696 map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2697 if (IS_ERR(map))
2698 return PTR_ERR(map);
2eadb9e7 2699
2eadb9e7
NB
2700 /*
2701 * Take the device list mutex to prevent races with the final phase of
2702 * a device replace operation that replaces the device object associated
2703 * with the map's stripes, because the device object's id can change
2704 * at any time during that final phase of the device replace operation
2705 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2706 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2707 * resulting in persisting a device extent item with such ID.
2708 */
2709 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2710 for (i = 0; i < map->num_stripes; i++) {
2711 device = map->stripes[i].dev;
2712 dev_offset = map->stripes[i].physical;
2713
2714 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
71fca47b 2715 map->stripe_size);
2eadb9e7
NB
2716 if (ret)
2717 break;
2718 }
2719 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2720
7dc66abb 2721 btrfs_free_chunk_map(map);
2eadb9e7
NB
2722 return ret;
2723}
2724
79bd3712
FM
2725/*
2726 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2727 * chunk allocation.
2728 *
2729 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2730 * phases.
2731 */
4358d963
JB
2732void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2733{
2734 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2735 struct btrfs_block_group *block_group;
4358d963
JB
2736 int ret = 0;
2737
4358d963 2738 while (!list_empty(&trans->new_bgs)) {
49ea112d
JB
2739 int index;
2740
4358d963 2741 block_group = list_first_entry(&trans->new_bgs,
32da5386 2742 struct btrfs_block_group,
4358d963
JB
2743 bg_list);
2744 if (ret)
2745 goto next;
2746
49ea112d
JB
2747 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2748
97f4728a 2749 ret = insert_block_group_item(trans, block_group);
4358d963
JB
2750 if (ret)
2751 btrfs_abort_transaction(trans, ret);
3349b57f
JB
2752 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2753 &block_group->runtime_flags)) {
79bd3712
FM
2754 mutex_lock(&fs_info->chunk_mutex);
2755 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2756 mutex_unlock(&fs_info->chunk_mutex);
2757 if (ret)
2758 btrfs_abort_transaction(trans, ret);
2759 }
2eadb9e7
NB
2760 ret = insert_dev_extents(trans, block_group->start,
2761 block_group->length);
4358d963
JB
2762 if (ret)
2763 btrfs_abort_transaction(trans, ret);
2764 add_block_group_free_space(trans, block_group);
49ea112d
JB
2765
2766 /*
2767 * If we restriped during balance, we may have added a new raid
2768 * type, so now add the sysfs entries when it is safe to do so.
2769 * We don't have to worry about locking here as it's handled in
2770 * btrfs_sysfs_add_block_group_type.
2771 */
2772 if (block_group->space_info->block_group_kobjs[index] == NULL)
2773 btrfs_sysfs_add_block_group_type(block_group);
2774
4358d963
JB
2775 /* Already aborted the transaction if it failed. */
2776next:
9ef17228 2777 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
4358d963 2778 list_del_init(&block_group->bg_list);
0657b20c 2779 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
12c5128f
FM
2780
2781 /*
2782 * If the block group is still unused, add it to the list of
2783 * unused block groups. The block group may have been created in
2784 * order to satisfy a space reservation, in which case the
2785 * extent allocation only happens later. But often we don't
2786 * actually need to allocate space that we previously reserved,
2787 * so the block group may become unused for a long time. For
2788 * example for metadata we generally reserve space for a worst
2789 * possible scenario, but then don't end up allocating all that
2790 * space or none at all (due to no need to COW, extent buffers
2791 * were already COWed in the current transaction and still
2792 * unwritten, tree heights lower than the maximum possible
2793 * height, etc). For data we generally reserve the axact amount
2794 * of space we are going to allocate later, the exception is
2795 * when using compression, as we must reserve space based on the
2796 * uncompressed data size, because the compression is only done
2797 * when writeback triggered and we don't know how much space we
2798 * are actually going to need, so we reserve the uncompressed
2799 * size because the data may be uncompressible in the worst case.
2800 */
2801 if (ret == 0) {
2802 bool used;
2803
2804 spin_lock(&block_group->lock);
2805 used = btrfs_is_block_group_used(block_group);
2806 spin_unlock(&block_group->lock);
2807
2808 if (!used)
2809 btrfs_mark_bg_unused(block_group);
2810 }
4358d963
JB
2811 }
2812 btrfs_trans_release_chunk_metadata(trans);
2813}
2814
f7238e50
JB
2815/*
2816 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2817 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2818 */
2819static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2820{
2821 u64 div = SZ_1G;
2822 u64 index;
2823
2824 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2825 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2826
2827 /* If we have a smaller fs index based on 128MiB. */
2828 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2829 div = SZ_128M;
2830
2831 offset = div64_u64(offset, div);
2832 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2833 return index;
2834}
2835
79bd3712 2836struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
5758d1bd 2837 u64 type,
79bd3712 2838 u64 chunk_offset, u64 size)
4358d963
JB
2839{
2840 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2841 struct btrfs_block_group *cache;
4358d963
JB
2842 int ret;
2843
2844 btrfs_set_log_full_commit(trans);
2845
9afc6649 2846 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
4358d963 2847 if (!cache)
79bd3712 2848 return ERR_PTR(-ENOMEM);
4358d963 2849
0657b20c
FM
2850 /*
2851 * Mark it as new before adding it to the rbtree of block groups or any
2852 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2853 * before the new flag is set.
2854 */
2855 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2856
9afc6649 2857 cache->length = size;
e3e39c72 2858 set_free_space_tree_thresholds(cache);
4358d963 2859 cache->flags = type;
4358d963 2860 cache->cached = BTRFS_CACHE_FINISHED;
f7238e50
JB
2861 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2862
997e3e2e 2863 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
0d7764ff 2864 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
08e11a3d 2865
a94794d5 2866 ret = btrfs_load_block_group_zone_info(cache, true);
08e11a3d
NA
2867 if (ret) {
2868 btrfs_put_block_group(cache);
79bd3712 2869 return ERR_PTR(ret);
08e11a3d
NA
2870 }
2871
4358d963
JB
2872 ret = exclude_super_stripes(cache);
2873 if (ret) {
2874 /* We may have excluded something, so call this just in case */
2875 btrfs_free_excluded_extents(cache);
2876 btrfs_put_block_group(cache);
79bd3712 2877 return ERR_PTR(ret);
4358d963
JB
2878 }
2879
3b9f0995 2880 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
4358d963 2881 btrfs_free_excluded_extents(cache);
d8ccbd21
FM
2882 if (ret) {
2883 btrfs_put_block_group(cache);
2884 return ERR_PTR(ret);
2885 }
4358d963 2886
4358d963
JB
2887 /*
2888 * Ensure the corresponding space_info object is created and
2889 * assigned to our block group. We want our bg to be added to the rbtree
2890 * with its ->space_info set.
2891 */
2892 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2893 ASSERT(cache->space_info);
2894
2895 ret = btrfs_add_block_group_cache(fs_info, cache);
2896 if (ret) {
2897 btrfs_remove_free_space_cache(cache);
2898 btrfs_put_block_group(cache);
79bd3712 2899 return ERR_PTR(ret);
4358d963
JB
2900 }
2901
2902 /*
2903 * Now that our block group has its ->space_info set and is inserted in
2904 * the rbtree, update the space info's counters.
2905 */
2906 trace_btrfs_add_block_group(fs_info, cache, 1);
723de71d 2907 btrfs_add_bg_to_space_info(fs_info, cache);
4358d963
JB
2908 btrfs_update_global_block_rsv(fs_info);
2909
9d4b0a12
JB
2910#ifdef CONFIG_BTRFS_DEBUG
2911 if (btrfs_should_fragment_free_space(cache)) {
5758d1bd 2912 cache->space_info->bytes_used += size >> 1;
9d4b0a12
JB
2913 fragment_free_space(cache);
2914 }
2915#endif
4358d963
JB
2916
2917 list_add_tail(&cache->bg_list, &trans->new_bgs);
9ef17228 2918 btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info);
4358d963
JB
2919
2920 set_avail_alloc_bits(fs_info, type);
79bd3712 2921 return cache;
4358d963 2922}
26ce2095 2923
b12de528
QW
2924/*
2925 * Mark one block group RO, can be called several times for the same block
2926 * group.
2927 *
2928 * @cache: the destination block group
2929 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2930 * ensure we still have some free space after marking this
2931 * block group RO.
2932 */
2933int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2934 bool do_chunk_alloc)
26ce2095
JB
2935{
2936 struct btrfs_fs_info *fs_info = cache->fs_info;
2937 struct btrfs_trans_handle *trans;
dfe8aec4 2938 struct btrfs_root *root = btrfs_block_group_root(fs_info);
26ce2095
JB
2939 u64 alloc_flags;
2940 int ret;
b6e9f16c 2941 bool dirty_bg_running;
26ce2095 2942
2d192fc4
QW
2943 /*
2944 * This can only happen when we are doing read-only scrub on read-only
2945 * mount.
2946 * In that case we should not start a new transaction on read-only fs.
2947 * Thus here we skip all chunk allocations.
2948 */
2949 if (sb_rdonly(fs_info->sb)) {
2950 mutex_lock(&fs_info->ro_block_group_mutex);
2951 ret = inc_block_group_ro(cache, 0);
2952 mutex_unlock(&fs_info->ro_block_group_mutex);
2953 return ret;
2954 }
2955
b6e9f16c 2956 do {
dfe8aec4 2957 trans = btrfs_join_transaction(root);
b6e9f16c
NB
2958 if (IS_ERR(trans))
2959 return PTR_ERR(trans);
26ce2095 2960
b6e9f16c 2961 dirty_bg_running = false;
26ce2095 2962
b6e9f16c
NB
2963 /*
2964 * We're not allowed to set block groups readonly after the dirty
2965 * block group cache has started writing. If it already started,
2966 * back off and let this transaction commit.
2967 */
2968 mutex_lock(&fs_info->ro_block_group_mutex);
2969 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2970 u64 transid = trans->transid;
26ce2095 2971
b6e9f16c
NB
2972 mutex_unlock(&fs_info->ro_block_group_mutex);
2973 btrfs_end_transaction(trans);
2974
2975 ret = btrfs_wait_for_commit(fs_info, transid);
2976 if (ret)
2977 return ret;
2978 dirty_bg_running = true;
2979 }
2980 } while (dirty_bg_running);
26ce2095 2981
b12de528 2982 if (do_chunk_alloc) {
26ce2095 2983 /*
b12de528
QW
2984 * If we are changing raid levels, try to allocate a
2985 * corresponding block group with the new raid level.
26ce2095 2986 */
349e120e 2987 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
b12de528
QW
2988 if (alloc_flags != cache->flags) {
2989 ret = btrfs_chunk_alloc(trans, alloc_flags,
2990 CHUNK_ALLOC_FORCE);
2991 /*
2992 * ENOSPC is allowed here, we may have enough space
2993 * already allocated at the new raid level to carry on
2994 */
2995 if (ret == -ENOSPC)
2996 ret = 0;
2997 if (ret < 0)
2998 goto out;
2999 }
26ce2095
JB
3000 }
3001
a7a63acc 3002 ret = inc_block_group_ro(cache, 0);
26ce2095
JB
3003 if (!ret)
3004 goto out;
7561551e
QW
3005 if (ret == -ETXTBSY)
3006 goto unlock_out;
3007
3008 /*
eefaf0a1 3009 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system
7561551e
QW
3010 * chunk allocation storm to exhaust the system chunk array. Otherwise
3011 * we still want to try our best to mark the block group read-only.
3012 */
3013 if (!do_chunk_alloc && ret == -ENOSPC &&
3014 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
3015 goto unlock_out;
3016
26ce2095
JB
3017 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
3018 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3019 if (ret < 0)
3020 goto out;
b6a98021
NA
3021 /*
3022 * We have allocated a new chunk. We also need to activate that chunk to
3023 * grant metadata tickets for zoned filesystem.
3024 */
3025 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
3026 if (ret < 0)
3027 goto out;
3028
e11c0406 3029 ret = inc_block_group_ro(cache, 0);
195a49ea
FM
3030 if (ret == -ETXTBSY)
3031 goto unlock_out;
26ce2095
JB
3032out:
3033 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
349e120e 3034 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
26ce2095
JB
3035 mutex_lock(&fs_info->chunk_mutex);
3036 check_system_chunk(trans, alloc_flags);
3037 mutex_unlock(&fs_info->chunk_mutex);
3038 }
b12de528 3039unlock_out:
26ce2095
JB
3040 mutex_unlock(&fs_info->ro_block_group_mutex);
3041
3042 btrfs_end_transaction(trans);
3043 return ret;
3044}
3045
32da5386 3046void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
26ce2095
JB
3047{
3048 struct btrfs_space_info *sinfo = cache->space_info;
3049 u64 num_bytes;
3050
3051 BUG_ON(!cache->ro);
3052
3053 spin_lock(&sinfo->lock);
3054 spin_lock(&cache->lock);
3055 if (!--cache->ro) {
169e0da9
NA
3056 if (btrfs_is_zoned(cache->fs_info)) {
3057 /* Migrate zone_unusable bytes back */
98173255
NA
3058 cache->zone_unusable =
3059 (cache->alloc_offset - cache->used) +
3060 (cache->length - cache->zone_capacity);
169e0da9
NA
3061 sinfo->bytes_zone_unusable += cache->zone_unusable;
3062 sinfo->bytes_readonly -= cache->zone_unusable;
3063 }
f9f28e5b
NA
3064 num_bytes = cache->length - cache->reserved -
3065 cache->pinned - cache->bytes_super -
3066 cache->zone_unusable - cache->used;
3067 sinfo->bytes_readonly -= num_bytes;
26ce2095
JB
3068 list_del_init(&cache->ro_list);
3069 }
3070 spin_unlock(&cache->lock);
3071 spin_unlock(&sinfo->lock);
3072}
77745c05 3073
3be4d8ef
QW
3074static int update_block_group_item(struct btrfs_trans_handle *trans,
3075 struct btrfs_path *path,
3076 struct btrfs_block_group *cache)
77745c05
JB
3077{
3078 struct btrfs_fs_info *fs_info = trans->fs_info;
3079 int ret;
dfe8aec4 3080 struct btrfs_root *root = btrfs_block_group_root(fs_info);
77745c05
JB
3081 unsigned long bi;
3082 struct extent_buffer *leaf;
bf38be65 3083 struct btrfs_block_group_item bgi;
b3470b5d 3084 struct btrfs_key key;
7248e0ce
QW
3085 u64 old_commit_used;
3086 u64 used;
3087
3088 /*
3089 * Block group items update can be triggered out of commit transaction
3090 * critical section, thus we need a consistent view of used bytes.
3091 * We cannot use cache->used directly outside of the spin lock, as it
3092 * may be changed.
3093 */
3094 spin_lock(&cache->lock);
3095 old_commit_used = cache->commit_used;
3096 used = cache->used;
3097 /* No change in used bytes, can safely skip it. */
3098 if (cache->commit_used == used) {
3099 spin_unlock(&cache->lock);
3100 return 0;
3101 }
3102 cache->commit_used = used;
3103 spin_unlock(&cache->lock);
b3470b5d
DS
3104
3105 key.objectid = cache->start;
3106 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3107 key.offset = cache->length;
77745c05 3108
3be4d8ef 3109 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
77745c05
JB
3110 if (ret) {
3111 if (ret > 0)
3112 ret = -ENOENT;
3113 goto fail;
3114 }
3115
3116 leaf = path->nodes[0];
3117 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
7248e0ce 3118 btrfs_set_stack_block_group_used(&bgi, used);
de0dc456 3119 btrfs_set_stack_block_group_chunk_objectid(&bgi,
f7238e50 3120 cache->global_root_id);
de0dc456 3121 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
bf38be65 3122 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
50564b65 3123 btrfs_mark_buffer_dirty(trans, leaf);
77745c05
JB
3124fail:
3125 btrfs_release_path(path);
2d6cd791
FM
3126 /*
3127 * We didn't update the block group item, need to revert commit_used
3128 * unless the block group item didn't exist yet - this is to prevent a
3129 * race with a concurrent insertion of the block group item, with
3130 * insert_block_group_item(), that happened just after we attempted to
3131 * update. In that case we would reset commit_used to 0 just after the
3132 * insertion set it to a value greater than 0 - if the block group later
3133 * becomes with 0 used bytes, we would incorrectly skip its update.
3134 */
3135 if (ret < 0 && ret != -ENOENT) {
7248e0ce
QW
3136 spin_lock(&cache->lock);
3137 cache->commit_used = old_commit_used;
3138 spin_unlock(&cache->lock);
3139 }
77745c05
JB
3140 return ret;
3141
3142}
3143
32da5386 3144static int cache_save_setup(struct btrfs_block_group *block_group,
77745c05
JB
3145 struct btrfs_trans_handle *trans,
3146 struct btrfs_path *path)
3147{
3148 struct btrfs_fs_info *fs_info = block_group->fs_info;
77745c05
JB
3149 struct inode *inode = NULL;
3150 struct extent_changeset *data_reserved = NULL;
3151 u64 alloc_hint = 0;
3152 int dcs = BTRFS_DC_ERROR;
0044ae11 3153 u64 cache_size = 0;
77745c05
JB
3154 int retries = 0;
3155 int ret = 0;
3156
af456a2c
BB
3157 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3158 return 0;
3159
77745c05
JB
3160 /*
3161 * If this block group is smaller than 100 megs don't bother caching the
3162 * block group.
3163 */
b3470b5d 3164 if (block_group->length < (100 * SZ_1M)) {
77745c05
JB
3165 spin_lock(&block_group->lock);
3166 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3167 spin_unlock(&block_group->lock);
3168 return 0;
3169 }
3170
bf31f87f 3171 if (TRANS_ABORTED(trans))
77745c05
JB
3172 return 0;
3173again:
3174 inode = lookup_free_space_inode(block_group, path);
3175 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3176 ret = PTR_ERR(inode);
3177 btrfs_release_path(path);
3178 goto out;
3179 }
3180
3181 if (IS_ERR(inode)) {
3182 BUG_ON(retries);
3183 retries++;
3184
3185 if (block_group->ro)
3186 goto out_free;
3187
3188 ret = create_free_space_inode(trans, block_group, path);
3189 if (ret)
3190 goto out_free;
3191 goto again;
3192 }
3193
3194 /*
3195 * We want to set the generation to 0, that way if anything goes wrong
3196 * from here on out we know not to trust this cache when we load up next
3197 * time.
3198 */
3199 BTRFS_I(inode)->generation = 0;
8b9d0322 3200 ret = btrfs_update_inode(trans, BTRFS_I(inode));
77745c05
JB
3201 if (ret) {
3202 /*
3203 * So theoretically we could recover from this, simply set the
3204 * super cache generation to 0 so we know to invalidate the
3205 * cache, but then we'd have to keep track of the block groups
3206 * that fail this way so we know we _have_ to reset this cache
3207 * before the next commit or risk reading stale cache. So to
3208 * limit our exposure to horrible edge cases lets just abort the
3209 * transaction, this only happens in really bad situations
3210 * anyway.
3211 */
3212 btrfs_abort_transaction(trans, ret);
3213 goto out_put;
3214 }
3215 WARN_ON(ret);
3216
3217 /* We've already setup this transaction, go ahead and exit */
3218 if (block_group->cache_generation == trans->transid &&
3219 i_size_read(inode)) {
3220 dcs = BTRFS_DC_SETUP;
3221 goto out_put;
3222 }
3223
3224 if (i_size_read(inode) > 0) {
3225 ret = btrfs_check_trunc_cache_free_space(fs_info,
3226 &fs_info->global_block_rsv);
3227 if (ret)
3228 goto out_put;
3229
3230 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3231 if (ret)
3232 goto out_put;
3233 }
3234
3235 spin_lock(&block_group->lock);
3236 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3237 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3238 /*
3239 * don't bother trying to write stuff out _if_
3240 * a) we're not cached,
3241 * b) we're with nospace_cache mount option,
3242 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3243 */
3244 dcs = BTRFS_DC_WRITTEN;
3245 spin_unlock(&block_group->lock);
3246 goto out_put;
3247 }
3248 spin_unlock(&block_group->lock);
3249
3250 /*
3251 * We hit an ENOSPC when setting up the cache in this transaction, just
3252 * skip doing the setup, we've already cleared the cache so we're safe.
3253 */
3254 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3255 ret = -ENOSPC;
3256 goto out_put;
3257 }
3258
3259 /*
3260 * Try to preallocate enough space based on how big the block group is.
3261 * Keep in mind this has to include any pinned space which could end up
3262 * taking up quite a bit since it's not folded into the other space
3263 * cache.
3264 */
0044ae11
QW
3265 cache_size = div_u64(block_group->length, SZ_256M);
3266 if (!cache_size)
3267 cache_size = 1;
77745c05 3268
0044ae11
QW
3269 cache_size *= 16;
3270 cache_size *= fs_info->sectorsize;
77745c05 3271
36ea6f3e 3272 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
1daedb1d 3273 cache_size, false);
77745c05
JB
3274 if (ret)
3275 goto out_put;
3276
0044ae11
QW
3277 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3278 cache_size, cache_size,
77745c05
JB
3279 &alloc_hint);
3280 /*
3281 * Our cache requires contiguous chunks so that we don't modify a bunch
3282 * of metadata or split extents when writing the cache out, which means
3283 * we can enospc if we are heavily fragmented in addition to just normal
3284 * out of space conditions. So if we hit this just skip setting up any
3285 * other block groups for this transaction, maybe we'll unpin enough
3286 * space the next time around.
3287 */
3288 if (!ret)
3289 dcs = BTRFS_DC_SETUP;
3290 else if (ret == -ENOSPC)
3291 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3292
3293out_put:
3294 iput(inode);
3295out_free:
3296 btrfs_release_path(path);
3297out:
3298 spin_lock(&block_group->lock);
3299 if (!ret && dcs == BTRFS_DC_SETUP)
3300 block_group->cache_generation = trans->transid;
3301 block_group->disk_cache_state = dcs;
3302 spin_unlock(&block_group->lock);
3303
3304 extent_changeset_free(data_reserved);
3305 return ret;
3306}
3307
3308int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3309{
3310 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 3311 struct btrfs_block_group *cache, *tmp;
77745c05
JB
3312 struct btrfs_transaction *cur_trans = trans->transaction;
3313 struct btrfs_path *path;
3314
3315 if (list_empty(&cur_trans->dirty_bgs) ||
3316 !btrfs_test_opt(fs_info, SPACE_CACHE))
3317 return 0;
3318
3319 path = btrfs_alloc_path();
3320 if (!path)
3321 return -ENOMEM;
3322
3323 /* Could add new block groups, use _safe just in case */
3324 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3325 dirty_list) {
3326 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3327 cache_save_setup(cache, trans, path);
3328 }
3329
3330 btrfs_free_path(path);
3331 return 0;
3332}
3333
3334/*
3335 * Transaction commit does final block group cache writeback during a critical
3336 * section where nothing is allowed to change the FS. This is required in
3337 * order for the cache to actually match the block group, but can introduce a
3338 * lot of latency into the commit.
3339 *
3340 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3341 * There's a chance we'll have to redo some of it if the block group changes
3342 * again during the commit, but it greatly reduces the commit latency by
3343 * getting rid of the easy block groups while we're still allowing others to
3344 * join the commit.
3345 */
3346int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3347{
3348 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 3349 struct btrfs_block_group *cache;
77745c05
JB
3350 struct btrfs_transaction *cur_trans = trans->transaction;
3351 int ret = 0;
3352 int should_put;
3353 struct btrfs_path *path = NULL;
3354 LIST_HEAD(dirty);
3355 struct list_head *io = &cur_trans->io_bgs;
77745c05
JB
3356 int loops = 0;
3357
3358 spin_lock(&cur_trans->dirty_bgs_lock);
3359 if (list_empty(&cur_trans->dirty_bgs)) {
3360 spin_unlock(&cur_trans->dirty_bgs_lock);
3361 return 0;
3362 }
3363 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3364 spin_unlock(&cur_trans->dirty_bgs_lock);
3365
3366again:
3367 /* Make sure all the block groups on our dirty list actually exist */
3368 btrfs_create_pending_block_groups(trans);
3369
3370 if (!path) {
3371 path = btrfs_alloc_path();
938fcbfb
JB
3372 if (!path) {
3373 ret = -ENOMEM;
3374 goto out;
3375 }
77745c05
JB
3376 }
3377
3378 /*
3379 * cache_write_mutex is here only to save us from balance or automatic
3380 * removal of empty block groups deleting this block group while we are
3381 * writing out the cache
3382 */
3383 mutex_lock(&trans->transaction->cache_write_mutex);
3384 while (!list_empty(&dirty)) {
3385 bool drop_reserve = true;
3386
32da5386 3387 cache = list_first_entry(&dirty, struct btrfs_block_group,
77745c05
JB
3388 dirty_list);
3389 /*
3390 * This can happen if something re-dirties a block group that
3391 * is already under IO. Just wait for it to finish and then do
3392 * it all again
3393 */
3394 if (!list_empty(&cache->io_list)) {
3395 list_del_init(&cache->io_list);
3396 btrfs_wait_cache_io(trans, cache, path);
3397 btrfs_put_block_group(cache);
3398 }
3399
3400
3401 /*
3402 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3403 * it should update the cache_state. Don't delete until after
3404 * we wait.
3405 *
3406 * Since we're not running in the commit critical section
3407 * we need the dirty_bgs_lock to protect from update_block_group
3408 */
3409 spin_lock(&cur_trans->dirty_bgs_lock);
3410 list_del_init(&cache->dirty_list);
3411 spin_unlock(&cur_trans->dirty_bgs_lock);
3412
3413 should_put = 1;
3414
3415 cache_save_setup(cache, trans, path);
3416
3417 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3418 cache->io_ctl.inode = NULL;
3419 ret = btrfs_write_out_cache(trans, cache, path);
3420 if (ret == 0 && cache->io_ctl.inode) {
77745c05
JB
3421 should_put = 0;
3422
3423 /*
3424 * The cache_write_mutex is protecting the
3425 * io_list, also refer to the definition of
3426 * btrfs_transaction::io_bgs for more details
3427 */
3428 list_add_tail(&cache->io_list, io);
3429 } else {
3430 /*
3431 * If we failed to write the cache, the
3432 * generation will be bad and life goes on
3433 */
3434 ret = 0;
3435 }
3436 }
3437 if (!ret) {
3be4d8ef 3438 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3439 /*
3440 * Our block group might still be attached to the list
3441 * of new block groups in the transaction handle of some
3442 * other task (struct btrfs_trans_handle->new_bgs). This
3443 * means its block group item isn't yet in the extent
3444 * tree. If this happens ignore the error, as we will
3445 * try again later in the critical section of the
3446 * transaction commit.
3447 */
3448 if (ret == -ENOENT) {
3449 ret = 0;
3450 spin_lock(&cur_trans->dirty_bgs_lock);
3451 if (list_empty(&cache->dirty_list)) {
3452 list_add_tail(&cache->dirty_list,
3453 &cur_trans->dirty_bgs);
3454 btrfs_get_block_group(cache);
3455 drop_reserve = false;
3456 }
3457 spin_unlock(&cur_trans->dirty_bgs_lock);
3458 } else if (ret) {
3459 btrfs_abort_transaction(trans, ret);
3460 }
3461 }
3462
3463 /* If it's not on the io list, we need to put the block group */
3464 if (should_put)
3465 btrfs_put_block_group(cache);
3466 if (drop_reserve)
f66e0209 3467 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
77745c05
JB
3468 /*
3469 * Avoid blocking other tasks for too long. It might even save
3470 * us from writing caches for block groups that are going to be
3471 * removed.
3472 */
3473 mutex_unlock(&trans->transaction->cache_write_mutex);
938fcbfb
JB
3474 if (ret)
3475 goto out;
77745c05
JB
3476 mutex_lock(&trans->transaction->cache_write_mutex);
3477 }
3478 mutex_unlock(&trans->transaction->cache_write_mutex);
3479
3480 /*
3481 * Go through delayed refs for all the stuff we've just kicked off
3482 * and then loop back (just once)
3483 */
34d1eb0e
JB
3484 if (!ret)
3485 ret = btrfs_run_delayed_refs(trans, 0);
77745c05
JB
3486 if (!ret && loops == 0) {
3487 loops++;
3488 spin_lock(&cur_trans->dirty_bgs_lock);
3489 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3490 /*
3491 * dirty_bgs_lock protects us from concurrent block group
3492 * deletes too (not just cache_write_mutex).
3493 */
3494 if (!list_empty(&dirty)) {
3495 spin_unlock(&cur_trans->dirty_bgs_lock);
3496 goto again;
3497 }
3498 spin_unlock(&cur_trans->dirty_bgs_lock);
938fcbfb
JB
3499 }
3500out:
3501 if (ret < 0) {
3502 spin_lock(&cur_trans->dirty_bgs_lock);
3503 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3504 spin_unlock(&cur_trans->dirty_bgs_lock);
77745c05
JB
3505 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3506 }
3507
3508 btrfs_free_path(path);
3509 return ret;
3510}
3511
3512int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3513{
3514 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 3515 struct btrfs_block_group *cache;
77745c05
JB
3516 struct btrfs_transaction *cur_trans = trans->transaction;
3517 int ret = 0;
3518 int should_put;
3519 struct btrfs_path *path;
3520 struct list_head *io = &cur_trans->io_bgs;
77745c05
JB
3521
3522 path = btrfs_alloc_path();
3523 if (!path)
3524 return -ENOMEM;
3525
3526 /*
3527 * Even though we are in the critical section of the transaction commit,
3528 * we can still have concurrent tasks adding elements to this
3529 * transaction's list of dirty block groups. These tasks correspond to
3530 * endio free space workers started when writeback finishes for a
3531 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3532 * allocate new block groups as a result of COWing nodes of the root
3533 * tree when updating the free space inode. The writeback for the space
3534 * caches is triggered by an earlier call to
3535 * btrfs_start_dirty_block_groups() and iterations of the following
3536 * loop.
3537 * Also we want to do the cache_save_setup first and then run the
3538 * delayed refs to make sure we have the best chance at doing this all
3539 * in one shot.
3540 */
3541 spin_lock(&cur_trans->dirty_bgs_lock);
3542 while (!list_empty(&cur_trans->dirty_bgs)) {
3543 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 3544 struct btrfs_block_group,
77745c05
JB
3545 dirty_list);
3546
3547 /*
3548 * This can happen if cache_save_setup re-dirties a block group
3549 * that is already under IO. Just wait for it to finish and
3550 * then do it all again
3551 */
3552 if (!list_empty(&cache->io_list)) {
3553 spin_unlock(&cur_trans->dirty_bgs_lock);
3554 list_del_init(&cache->io_list);
3555 btrfs_wait_cache_io(trans, cache, path);
3556 btrfs_put_block_group(cache);
3557 spin_lock(&cur_trans->dirty_bgs_lock);
3558 }
3559
3560 /*
3561 * Don't remove from the dirty list until after we've waited on
3562 * any pending IO
3563 */
3564 list_del_init(&cache->dirty_list);
3565 spin_unlock(&cur_trans->dirty_bgs_lock);
3566 should_put = 1;
3567
3568 cache_save_setup(cache, trans, path);
3569
3570 if (!ret)
8a526c44 3571 ret = btrfs_run_delayed_refs(trans, U64_MAX);
77745c05
JB
3572
3573 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3574 cache->io_ctl.inode = NULL;
3575 ret = btrfs_write_out_cache(trans, cache, path);
3576 if (ret == 0 && cache->io_ctl.inode) {
77745c05
JB
3577 should_put = 0;
3578 list_add_tail(&cache->io_list, io);
3579 } else {
3580 /*
3581 * If we failed to write the cache, the
3582 * generation will be bad and life goes on
3583 */
3584 ret = 0;
3585 }
3586 }
3587 if (!ret) {
3be4d8ef 3588 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3589 /*
3590 * One of the free space endio workers might have
3591 * created a new block group while updating a free space
3592 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3593 * and hasn't released its transaction handle yet, in
3594 * which case the new block group is still attached to
3595 * its transaction handle and its creation has not
3596 * finished yet (no block group item in the extent tree
3597 * yet, etc). If this is the case, wait for all free
3598 * space endio workers to finish and retry. This is a
260db43c 3599 * very rare case so no need for a more efficient and
77745c05
JB
3600 * complex approach.
3601 */
3602 if (ret == -ENOENT) {
3603 wait_event(cur_trans->writer_wait,
3604 atomic_read(&cur_trans->num_writers) == 1);
3be4d8ef 3605 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3606 }
3607 if (ret)
3608 btrfs_abort_transaction(trans, ret);
3609 }
3610
3611 /* If its not on the io list, we need to put the block group */
3612 if (should_put)
3613 btrfs_put_block_group(cache);
f66e0209 3614 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
77745c05
JB
3615 spin_lock(&cur_trans->dirty_bgs_lock);
3616 }
3617 spin_unlock(&cur_trans->dirty_bgs_lock);
3618
3619 /*
3620 * Refer to the definition of io_bgs member for details why it's safe
3621 * to use it without any locking
3622 */
3623 while (!list_empty(io)) {
32da5386 3624 cache = list_first_entry(io, struct btrfs_block_group,
77745c05
JB
3625 io_list);
3626 list_del_init(&cache->io_list);
3627 btrfs_wait_cache_io(trans, cache, path);
3628 btrfs_put_block_group(cache);
3629 }
3630
3631 btrfs_free_path(path);
3632 return ret;
3633}
606d1bf1
JB
3634
3635int btrfs_update_block_group(struct btrfs_trans_handle *trans,
11b66fa6 3636 u64 bytenr, u64 num_bytes, bool alloc)
606d1bf1
JB
3637{
3638 struct btrfs_fs_info *info = trans->fs_info;
4d20c1de
FM
3639 struct btrfs_space_info *space_info;
3640 struct btrfs_block_group *cache;
606d1bf1 3641 u64 old_val;
4d20c1de 3642 bool reclaim = false;
f66e0209 3643 bool bg_already_dirty = true;
606d1bf1 3644 int factor;
606d1bf1
JB
3645
3646 /* Block accounting for super block */
3647 spin_lock(&info->delalloc_root_lock);
3648 old_val = btrfs_super_bytes_used(info->super_copy);
3649 if (alloc)
3650 old_val += num_bytes;
3651 else
3652 old_val -= num_bytes;
3653 btrfs_set_super_bytes_used(info->super_copy, old_val);
3654 spin_unlock(&info->delalloc_root_lock);
3655
4d20c1de
FM
3656 cache = btrfs_lookup_block_group(info, bytenr);
3657 if (!cache)
3658 return -ENOENT;
ac2f1e63 3659
4d20c1de
FM
3660 /* An extent can not span multiple block groups. */
3661 ASSERT(bytenr + num_bytes <= cache->start + cache->length);
606d1bf1 3662
4d20c1de
FM
3663 space_info = cache->space_info;
3664 factor = btrfs_bg_type_to_factor(cache->flags);
606d1bf1 3665
4d20c1de
FM
3666 /*
3667 * If this block group has free space cache written out, we need to make
3668 * sure to load it if we are removing space. This is because we need
3669 * the unpinning stage to actually add the space back to the block group,
3670 * otherwise we will leak space.
3671 */
3672 if (!alloc && !btrfs_block_group_done(cache))
3673 btrfs_cache_block_group(cache, true);
606d1bf1 3674
4d20c1de
FM
3675 spin_lock(&space_info->lock);
3676 spin_lock(&cache->lock);
606d1bf1 3677
4d20c1de
FM
3678 if (btrfs_test_opt(info, SPACE_CACHE) &&
3679 cache->disk_cache_state < BTRFS_DC_CLEAR)
3680 cache->disk_cache_state = BTRFS_DC_CLEAR;
606d1bf1 3681
4d20c1de
FM
3682 old_val = cache->used;
3683 if (alloc) {
3684 old_val += num_bytes;
3685 cache->used = old_val;
3686 cache->reserved -= num_bytes;
e4ca3932 3687 cache->reclaim_mark = 0;
4d20c1de
FM
3688 space_info->bytes_reserved -= num_bytes;
3689 space_info->bytes_used += num_bytes;
3690 space_info->disk_used += num_bytes * factor;
813d4c64
BB
3691 if (READ_ONCE(space_info->periodic_reclaim))
3692 btrfs_space_info_update_reclaimable(space_info, -num_bytes);
4d20c1de
FM
3693 spin_unlock(&cache->lock);
3694 spin_unlock(&space_info->lock);
3695 } else {
3696 old_val -= num_bytes;
3697 cache->used = old_val;
3698 cache->pinned += num_bytes;
3699 btrfs_space_info_update_bytes_pinned(info, space_info, num_bytes);
3700 space_info->bytes_used -= num_bytes;
3701 space_info->disk_used -= num_bytes * factor;
813d4c64
BB
3702 if (READ_ONCE(space_info->periodic_reclaim))
3703 btrfs_space_info_update_reclaimable(space_info, num_bytes);
3704 else
3705 reclaim = should_reclaim_block_group(cache, num_bytes);
606d1bf1 3706
4d20c1de
FM
3707 spin_unlock(&cache->lock);
3708 spin_unlock(&space_info->lock);
606d1bf1 3709
4d20c1de
FM
3710 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
3711 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
3712 }
3713
3714 spin_lock(&trans->transaction->dirty_bgs_lock);
3715 if (list_empty(&cache->dirty_list)) {
3716 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs);
f66e0209 3717 bg_already_dirty = false;
4d20c1de
FM
3718 btrfs_get_block_group(cache);
3719 }
3720 spin_unlock(&trans->transaction->dirty_bgs_lock);
3721
3722 /*
3723 * No longer have used bytes in this block group, queue it for deletion.
3724 * We do this after adding the block group to the dirty list to avoid
3725 * races between cleaner kthread and space cache writeout.
3726 */
3727 if (!alloc && old_val == 0) {
3728 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3729 btrfs_mark_bg_unused(cache);
3730 } else if (!alloc && reclaim) {
3731 btrfs_mark_bg_to_reclaim(cache);
606d1bf1
JB
3732 }
3733
4d20c1de
FM
3734 btrfs_put_block_group(cache);
3735
606d1bf1 3736 /* Modified block groups are accounted for in the delayed_refs_rsv. */
f66e0209
FM
3737 if (!bg_already_dirty)
3738 btrfs_inc_delayed_refs_rsv_bg_updates(info);
4d20c1de
FM
3739
3740 return 0;
606d1bf1
JB
3741}
3742
43dd529a
DS
3743/*
3744 * Update the block_group and space info counters.
3745 *
606d1bf1
JB
3746 * @cache: The cache we are manipulating
3747 * @ram_bytes: The number of bytes of file content, and will be same to
3748 * @num_bytes except for the compress path.
3749 * @num_bytes: The number of bytes in question
3750 * @delalloc: The blocks are allocated for the delalloc write
3751 *
3752 * This is called by the allocator when it reserves space. If this is a
3753 * reservation and the block group has become read only we cannot make the
3754 * reservation and return -EAGAIN, otherwise this function always succeeds.
3755 */
32da5386 3756int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
52bb7a21
BB
3757 u64 ram_bytes, u64 num_bytes, int delalloc,
3758 bool force_wrong_size_class)
606d1bf1
JB
3759{
3760 struct btrfs_space_info *space_info = cache->space_info;
52bb7a21 3761 enum btrfs_block_group_size_class size_class;
606d1bf1
JB
3762 int ret = 0;
3763
3764 spin_lock(&space_info->lock);
3765 spin_lock(&cache->lock);
3766 if (cache->ro) {
3767 ret = -EAGAIN;
52bb7a21
BB
3768 goto out;
3769 }
99ffb43e 3770
cb0922f2 3771 if (btrfs_block_group_should_use_size_class(cache)) {
52bb7a21
BB
3772 size_class = btrfs_calc_block_group_size_class(num_bytes);
3773 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3774 if (ret)
3775 goto out;
606d1bf1 3776 }
52bb7a21
BB
3777 cache->reserved += num_bytes;
3778 space_info->bytes_reserved += num_bytes;
3779 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3780 space_info->flags, num_bytes, 1);
3781 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3782 space_info, -ram_bytes);
3783 if (delalloc)
3784 cache->delalloc_bytes += num_bytes;
3785
3786 /*
3787 * Compression can use less space than we reserved, so wake tickets if
3788 * that happens.
3789 */
3790 if (num_bytes < ram_bytes)
3791 btrfs_try_granting_tickets(cache->fs_info, space_info);
3792out:
606d1bf1
JB
3793 spin_unlock(&cache->lock);
3794 spin_unlock(&space_info->lock);
3795 return ret;
3796}
3797
43dd529a
DS
3798/*
3799 * Update the block_group and space info counters.
3800 *
606d1bf1
JB
3801 * @cache: The cache we are manipulating
3802 * @num_bytes: The number of bytes in question
3803 * @delalloc: The blocks are allocated for the delalloc write
3804 *
3805 * This is called by somebody who is freeing space that was never actually used
3806 * on disk. For example if you reserve some space for a new leaf in transaction
3807 * A and before transaction A commits you free that leaf, you call this with
3808 * reserve set to 0 in order to clear the reservation.
3809 */
32da5386 3810void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3811 u64 num_bytes, int delalloc)
3812{
3813 struct btrfs_space_info *space_info = cache->space_info;
3814
3815 spin_lock(&space_info->lock);
3816 spin_lock(&cache->lock);
3817 if (cache->ro)
3818 space_info->bytes_readonly += num_bytes;
3819 cache->reserved -= num_bytes;
3820 space_info->bytes_reserved -= num_bytes;
3821 space_info->max_extent_size = 0;
3822
3823 if (delalloc)
3824 cache->delalloc_bytes -= num_bytes;
3825 spin_unlock(&cache->lock);
3308234a
JB
3826
3827 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3828 spin_unlock(&space_info->lock);
3829}
07730d87
JB
3830
3831static void force_metadata_allocation(struct btrfs_fs_info *info)
3832{
3833 struct list_head *head = &info->space_info;
3834 struct btrfs_space_info *found;
3835
72804905 3836 list_for_each_entry(found, head, list) {
07730d87
JB
3837 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3838 found->force_alloc = CHUNK_ALLOC_FORCE;
3839 }
07730d87
JB
3840}
3841
3842static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3843 struct btrfs_space_info *sinfo, int force)
3844{
3845 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3846 u64 thresh;
3847
3848 if (force == CHUNK_ALLOC_FORCE)
3849 return 1;
3850
3851 /*
3852 * in limited mode, we want to have some free space up to
3853 * about 1% of the FS size.
3854 */
3855 if (force == CHUNK_ALLOC_LIMITED) {
3856 thresh = btrfs_super_total_bytes(fs_info->super_copy);
428c8e03 3857 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
07730d87
JB
3858
3859 if (sinfo->total_bytes - bytes_used < thresh)
3860 return 1;
3861 }
3862
428c8e03 3863 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
07730d87
JB
3864 return 0;
3865 return 1;
3866}
3867
3868int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3869{
3870 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3871
3872 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3873}
3874
820c363b 3875static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
79bd3712
FM
3876{
3877 struct btrfs_block_group *bg;
3878 int ret;
3879
3880 /*
3881 * Check if we have enough space in the system space info because we
3882 * will need to update device items in the chunk btree and insert a new
3883 * chunk item in the chunk btree as well. This will allocate a new
3884 * system block group if needed.
3885 */
3886 check_system_chunk(trans, flags);
3887
f6f39f7a 3888 bg = btrfs_create_chunk(trans, flags);
79bd3712
FM
3889 if (IS_ERR(bg)) {
3890 ret = PTR_ERR(bg);
3891 goto out;
3892 }
3893
79bd3712
FM
3894 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3895 /*
3896 * Normally we are not expected to fail with -ENOSPC here, since we have
3897 * previously reserved space in the system space_info and allocated one
ecd84d54 3898 * new system chunk if necessary. However there are three exceptions:
79bd3712
FM
3899 *
3900 * 1) We may have enough free space in the system space_info but all the
3901 * existing system block groups have a profile which can not be used
3902 * for extent allocation.
3903 *
3904 * This happens when mounting in degraded mode. For example we have a
3905 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3906 * using the other device in degraded mode. If we then allocate a chunk,
3907 * we may have enough free space in the existing system space_info, but
3908 * none of the block groups can be used for extent allocation since they
3909 * have a RAID1 profile, and because we are in degraded mode with a
3910 * single device, we are forced to allocate a new system chunk with a
3911 * SINGLE profile. Making check_system_chunk() iterate over all system
3912 * block groups and check if they have a usable profile and enough space
3913 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3914 * try again after forcing allocation of a new system chunk. Like this
3915 * we avoid paying the cost of that search in normal circumstances, when
3916 * we were not mounted in degraded mode;
3917 *
3918 * 2) We had enough free space info the system space_info, and one suitable
3919 * block group to allocate from when we called check_system_chunk()
3920 * above. However right after we called it, the only system block group
3921 * with enough free space got turned into RO mode by a running scrub,
3922 * and in this case we have to allocate a new one and retry. We only
3923 * need do this allocate and retry once, since we have a transaction
ecd84d54
FM
3924 * handle and scrub uses the commit root to search for block groups;
3925 *
3926 * 3) We had one system block group with enough free space when we called
3927 * check_system_chunk(), but after that, right before we tried to
3928 * allocate the last extent buffer we needed, a discard operation came
3929 * in and it temporarily removed the last free space entry from the
3930 * block group (discard removes a free space entry, discards it, and
3931 * then adds back the entry to the block group cache).
79bd3712
FM
3932 */
3933 if (ret == -ENOSPC) {
3934 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3935 struct btrfs_block_group *sys_bg;
3936
f6f39f7a 3937 sys_bg = btrfs_create_chunk(trans, sys_flags);
79bd3712
FM
3938 if (IS_ERR(sys_bg)) {
3939 ret = PTR_ERR(sys_bg);
3940 btrfs_abort_transaction(trans, ret);
3941 goto out;
3942 }
3943
3944 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3945 if (ret) {
3946 btrfs_abort_transaction(trans, ret);
3947 goto out;
3948 }
3949
3950 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3951 if (ret) {
3952 btrfs_abort_transaction(trans, ret);
3953 goto out;
3954 }
3955 } else if (ret) {
3956 btrfs_abort_transaction(trans, ret);
3957 goto out;
3958 }
3959out:
3960 btrfs_trans_release_chunk_metadata(trans);
3961
820c363b
NA
3962 if (ret)
3963 return ERR_PTR(ret);
3964
3965 btrfs_get_block_group(bg);
3966 return bg;
79bd3712
FM
3967}
3968
07730d87 3969/*
79bd3712
FM
3970 * Chunk allocation is done in 2 phases:
3971 *
3972 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3973 * the chunk, the chunk mapping, create its block group and add the items
3974 * that belong in the chunk btree to it - more specifically, we need to
3975 * update device items in the chunk btree and add a new chunk item to it.
3976 *
3977 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3978 * group item to the extent btree and the device extent items to the devices
3979 * btree.
3980 *
3981 * This is done to prevent deadlocks. For example when COWing a node from the
3982 * extent btree we are holding a write lock on the node's parent and if we
3983 * trigger chunk allocation and attempted to insert the new block group item
3984 * in the extent btree right way, we could deadlock because the path for the
3985 * insertion can include that parent node. At first glance it seems impossible
3986 * to trigger chunk allocation after starting a transaction since tasks should
3987 * reserve enough transaction units (metadata space), however while that is true
3988 * most of the time, chunk allocation may still be triggered for several reasons:
3989 *
3990 * 1) When reserving metadata, we check if there is enough free space in the
3991 * metadata space_info and therefore don't trigger allocation of a new chunk.
3992 * However later when the task actually tries to COW an extent buffer from
3993 * the extent btree or from the device btree for example, it is forced to
3994 * allocate a new block group (chunk) because the only one that had enough
3995 * free space was just turned to RO mode by a running scrub for example (or
3996 * device replace, block group reclaim thread, etc), so we can not use it
3997 * for allocating an extent and end up being forced to allocate a new one;
3998 *
3999 * 2) Because we only check that the metadata space_info has enough free bytes,
4000 * we end up not allocating a new metadata chunk in that case. However if
4001 * the filesystem was mounted in degraded mode, none of the existing block
4002 * groups might be suitable for extent allocation due to their incompatible
4003 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
4004 * use a RAID1 profile, in degraded mode using a single device). In this case
4005 * when the task attempts to COW some extent buffer of the extent btree for
4006 * example, it will trigger allocation of a new metadata block group with a
4007 * suitable profile (SINGLE profile in the example of the degraded mount of
4008 * the RAID1 filesystem);
4009 *
4010 * 3) The task has reserved enough transaction units / metadata space, but when
4011 * it attempts to COW an extent buffer from the extent or device btree for
4012 * example, it does not find any free extent in any metadata block group,
4013 * therefore forced to try to allocate a new metadata block group.
4014 * This is because some other task allocated all available extents in the
4015 * meanwhile - this typically happens with tasks that don't reserve space
4016 * properly, either intentionally or as a bug. One example where this is
4017 * done intentionally is fsync, as it does not reserve any transaction units
4018 * and ends up allocating a variable number of metadata extents for log
ecd84d54
FM
4019 * tree extent buffers;
4020 *
4021 * 4) The task has reserved enough transaction units / metadata space, but right
4022 * before it tries to allocate the last extent buffer it needs, a discard
4023 * operation comes in and, temporarily, removes the last free space entry from
4024 * the only metadata block group that had free space (discard starts by
4025 * removing a free space entry from a block group, then does the discard
4026 * operation and, once it's done, it adds back the free space entry to the
4027 * block group).
79bd3712
FM
4028 *
4029 * We also need this 2 phases setup when adding a device to a filesystem with
4030 * a seed device - we must create new metadata and system chunks without adding
4031 * any of the block group items to the chunk, extent and device btrees. If we
4032 * did not do it this way, we would get ENOSPC when attempting to update those
4033 * btrees, since all the chunks from the seed device are read-only.
4034 *
4035 * Phase 1 does the updates and insertions to the chunk btree because if we had
4036 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
4037 * parallel, we risk having too many system chunks allocated by many tasks if
4038 * many tasks reach phase 1 without the previous ones completing phase 2. In the
4039 * extreme case this leads to exhaustion of the system chunk array in the
4040 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
4041 * and with RAID filesystems (so we have more device items in the chunk btree).
4042 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4043 * the system chunk array due to concurrent allocations") provides more details.
4044 *
2bb2e00e
FM
4045 * Allocation of system chunks does not happen through this function. A task that
4046 * needs to update the chunk btree (the only btree that uses system chunks), must
4047 * preallocate chunk space by calling either check_system_chunk() or
4048 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4049 * metadata chunk or when removing a chunk, while the later is used before doing
4050 * a modification to the chunk btree - use cases for the later are adding,
4051 * removing and resizing a device as well as relocation of a system chunk.
4052 * See the comment below for more details.
79bd3712
FM
4053 *
4054 * The reservation of system space, done through check_system_chunk(), as well
4055 * as all the updates and insertions into the chunk btree must be done while
4056 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4057 * an extent buffer from the chunks btree we never trigger allocation of a new
4058 * system chunk, which would result in a deadlock (trying to lock twice an
4059 * extent buffer of the chunk btree, first time before triggering the chunk
4060 * allocation and the second time during chunk allocation while attempting to
4061 * update the chunks btree). The system chunk array is also updated while holding
4062 * that mutex. The same logic applies to removing chunks - we must reserve system
4063 * space, update the chunk btree and the system chunk array in the superblock
4064 * while holding fs_info->chunk_mutex.
4065 *
4066 * This function, btrfs_chunk_alloc(), belongs to phase 1.
4067 *
4068 * If @force is CHUNK_ALLOC_FORCE:
07730d87
JB
4069 * - return 1 if it successfully allocates a chunk,
4070 * - return errors including -ENOSPC otherwise.
79bd3712 4071 * If @force is NOT CHUNK_ALLOC_FORCE:
07730d87
JB
4072 * - return 0 if it doesn't need to allocate a new chunk,
4073 * - return 1 if it successfully allocates a chunk,
4074 * - return errors including -ENOSPC otherwise.
4075 */
4076int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4077 enum btrfs_chunk_alloc_enum force)
4078{
4079 struct btrfs_fs_info *fs_info = trans->fs_info;
4080 struct btrfs_space_info *space_info;
820c363b 4081 struct btrfs_block_group *ret_bg;
07730d87
JB
4082 bool wait_for_alloc = false;
4083 bool should_alloc = false;
760e69c4 4084 bool from_extent_allocation = false;
07730d87
JB
4085 int ret = 0;
4086
760e69c4
NA
4087 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4088 from_extent_allocation = true;
4089 force = CHUNK_ALLOC_FORCE;
4090 }
4091
07730d87
JB
4092 /* Don't re-enter if we're already allocating a chunk */
4093 if (trans->allocating_chunk)
4094 return -ENOSPC;
79bd3712 4095 /*
2bb2e00e
FM
4096 * Allocation of system chunks can not happen through this path, as we
4097 * could end up in a deadlock if we are allocating a data or metadata
4098 * chunk and there is another task modifying the chunk btree.
4099 *
4100 * This is because while we are holding the chunk mutex, we will attempt
4101 * to add the new chunk item to the chunk btree or update an existing
4102 * device item in the chunk btree, while the other task that is modifying
4103 * the chunk btree is attempting to COW an extent buffer while holding a
4104 * lock on it and on its parent - if the COW operation triggers a system
4105 * chunk allocation, then we can deadlock because we are holding the
4106 * chunk mutex and we may need to access that extent buffer or its parent
4107 * in order to add the chunk item or update a device item.
4108 *
4109 * Tasks that want to modify the chunk tree should reserve system space
4110 * before updating the chunk btree, by calling either
4111 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4112 * It's possible that after a task reserves the space, it still ends up
4113 * here - this happens in the cases described above at do_chunk_alloc().
4114 * The task will have to either retry or fail.
79bd3712 4115 */
2bb2e00e 4116 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
79bd3712 4117 return -ENOSPC;
07730d87
JB
4118
4119 space_info = btrfs_find_space_info(fs_info, flags);
4120 ASSERT(space_info);
4121
4122 do {
4123 spin_lock(&space_info->lock);
4124 if (force < space_info->force_alloc)
4125 force = space_info->force_alloc;
4126 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4127 if (space_info->full) {
4128 /* No more free physical space */
4129 if (should_alloc)
4130 ret = -ENOSPC;
4131 else
4132 ret = 0;
4133 spin_unlock(&space_info->lock);
4134 return ret;
4135 } else if (!should_alloc) {
4136 spin_unlock(&space_info->lock);
4137 return 0;
4138 } else if (space_info->chunk_alloc) {
4139 /*
4140 * Someone is already allocating, so we need to block
4141 * until this someone is finished and then loop to
4142 * recheck if we should continue with our allocation
4143 * attempt.
4144 */
4145 wait_for_alloc = true;
1314ca78 4146 force = CHUNK_ALLOC_NO_FORCE;
07730d87
JB
4147 spin_unlock(&space_info->lock);
4148 mutex_lock(&fs_info->chunk_mutex);
4149 mutex_unlock(&fs_info->chunk_mutex);
4150 } else {
4151 /* Proceed with allocation */
4152 space_info->chunk_alloc = 1;
4153 wait_for_alloc = false;
4154 spin_unlock(&space_info->lock);
4155 }
4156
4157 cond_resched();
4158 } while (wait_for_alloc);
4159
4160 mutex_lock(&fs_info->chunk_mutex);
4161 trans->allocating_chunk = true;
4162
4163 /*
4164 * If we have mixed data/metadata chunks we want to make sure we keep
4165 * allocating mixed chunks instead of individual chunks.
4166 */
4167 if (btrfs_mixed_space_info(space_info))
4168 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4169
4170 /*
4171 * if we're doing a data chunk, go ahead and make sure that
4172 * we keep a reasonable number of metadata chunks allocated in the
4173 * FS as well.
4174 */
4175 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4176 fs_info->data_chunk_allocations++;
4177 if (!(fs_info->data_chunk_allocations %
4178 fs_info->metadata_ratio))
4179 force_metadata_allocation(fs_info);
4180 }
4181
820c363b 4182 ret_bg = do_chunk_alloc(trans, flags);
07730d87
JB
4183 trans->allocating_chunk = false;
4184
760e69c4 4185 if (IS_ERR(ret_bg)) {
820c363b 4186 ret = PTR_ERR(ret_bg);
5a7d107e 4187 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
760e69c4
NA
4188 /*
4189 * New block group is likely to be used soon. Try to activate
4190 * it now. Failure is OK for now.
4191 */
4192 btrfs_zone_activate(ret_bg);
4193 }
4194
4195 if (!ret)
820c363b
NA
4196 btrfs_put_block_group(ret_bg);
4197
07730d87
JB
4198 spin_lock(&space_info->lock);
4199 if (ret < 0) {
4200 if (ret == -ENOSPC)
4201 space_info->full = 1;
4202 else
4203 goto out;
4204 } else {
4205 ret = 1;
4206 space_info->max_extent_size = 0;
4207 }
4208
4209 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4210out:
4211 space_info->chunk_alloc = 0;
4212 spin_unlock(&space_info->lock);
4213 mutex_unlock(&fs_info->chunk_mutex);
07730d87
JB
4214
4215 return ret;
4216}
4217
4218static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4219{
4220 u64 num_dev;
4221
4222 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4223 if (!num_dev)
4224 num_dev = fs_info->fs_devices->rw_devices;
4225
4226 return num_dev;
4227}
4228
2bb2e00e
FM
4229static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4230 u64 bytes,
4231 u64 type)
07730d87
JB
4232{
4233 struct btrfs_fs_info *fs_info = trans->fs_info;
4234 struct btrfs_space_info *info;
4235 u64 left;
07730d87 4236 int ret = 0;
07730d87
JB
4237
4238 /*
4239 * Needed because we can end up allocating a system chunk and for an
4240 * atomic and race free space reservation in the chunk block reserve.
4241 */
4242 lockdep_assert_held(&fs_info->chunk_mutex);
4243
4244 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4245 spin_lock(&info->lock);
4246 left = info->total_bytes - btrfs_space_info_used(info, true);
4247 spin_unlock(&info->lock);
4248
2bb2e00e 4249 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
07730d87 4250 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
2bb2e00e 4251 left, bytes, type);
07730d87
JB
4252 btrfs_dump_space_info(fs_info, info, 0, 0);
4253 }
4254
2bb2e00e 4255 if (left < bytes) {
07730d87 4256 u64 flags = btrfs_system_alloc_profile(fs_info);
79bd3712 4257 struct btrfs_block_group *bg;
07730d87
JB
4258
4259 /*
4260 * Ignore failure to create system chunk. We might end up not
4261 * needing it, as we might not need to COW all nodes/leafs from
4262 * the paths we visit in the chunk tree (they were already COWed
4263 * or created in the current transaction for example).
4264 */
f6f39f7a 4265 bg = btrfs_create_chunk(trans, flags);
79bd3712
FM
4266 if (IS_ERR(bg)) {
4267 ret = PTR_ERR(bg);
2bb2e00e 4268 } else {
b6a98021
NA
4269 /*
4270 * We have a new chunk. We also need to activate it for
4271 * zoned filesystem.
4272 */
4273 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4274 if (ret < 0)
4275 return;
4276
79bd3712
FM
4277 /*
4278 * If we fail to add the chunk item here, we end up
4279 * trying again at phase 2 of chunk allocation, at
4280 * btrfs_create_pending_block_groups(). So ignore
2bb2e00e
FM
4281 * any error here. An ENOSPC here could happen, due to
4282 * the cases described at do_chunk_alloc() - the system
4283 * block group we just created was just turned into RO
4284 * mode by a scrub for example, or a running discard
4285 * temporarily removed its free space entries, etc.
79bd3712
FM
4286 */
4287 btrfs_chunk_alloc_add_chunk_item(trans, bg);
4288 }
07730d87
JB
4289 }
4290
4291 if (!ret) {
9270501c 4292 ret = btrfs_block_rsv_add(fs_info,
07730d87 4293 &fs_info->chunk_block_rsv,
2bb2e00e 4294 bytes, BTRFS_RESERVE_NO_FLUSH);
1cb3db1c 4295 if (!ret)
2bb2e00e 4296 trans->chunk_bytes_reserved += bytes;
07730d87
JB
4297 }
4298}
4299
2bb2e00e
FM
4300/*
4301 * Reserve space in the system space for allocating or removing a chunk.
4302 * The caller must be holding fs_info->chunk_mutex.
4303 */
4304void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4305{
4306 struct btrfs_fs_info *fs_info = trans->fs_info;
4307 const u64 num_devs = get_profile_num_devs(fs_info, type);
4308 u64 bytes;
4309
4310 /* num_devs device items to update and 1 chunk item to add or remove. */
4311 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4312 btrfs_calc_insert_metadata_size(fs_info, 1);
4313
4314 reserve_chunk_space(trans, bytes, type);
4315}
4316
4317/*
4318 * Reserve space in the system space, if needed, for doing a modification to the
4319 * chunk btree.
4320 *
4321 * @trans: A transaction handle.
4322 * @is_item_insertion: Indicate if the modification is for inserting a new item
4323 * in the chunk btree or if it's for the deletion or update
4324 * of an existing item.
4325 *
4326 * This is used in a context where we need to update the chunk btree outside
4327 * block group allocation and removal, to avoid a deadlock with a concurrent
4328 * task that is allocating a metadata or data block group and therefore needs to
4329 * update the chunk btree while holding the chunk mutex. After the update to the
4330 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4331 *
4332 */
4333void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4334 bool is_item_insertion)
4335{
4336 struct btrfs_fs_info *fs_info = trans->fs_info;
4337 u64 bytes;
4338
4339 if (is_item_insertion)
4340 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4341 else
4342 bytes = btrfs_calc_metadata_size(fs_info, 1);
4343
4344 mutex_lock(&fs_info->chunk_mutex);
4345 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4346 mutex_unlock(&fs_info->chunk_mutex);
4347}
4348
3e43c279
JB
4349void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4350{
32da5386 4351 struct btrfs_block_group *block_group;
3e43c279 4352
50c31eaa
JB
4353 block_group = btrfs_lookup_first_block_group(info, 0);
4354 while (block_group) {
4355 btrfs_wait_block_group_cache_done(block_group);
4356 spin_lock(&block_group->lock);
4357 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4358 &block_group->runtime_flags)) {
e108c86b 4359 struct btrfs_inode *inode = block_group->inode;
50c31eaa
JB
4360
4361 block_group->inode = NULL;
3e43c279 4362 spin_unlock(&block_group->lock);
3e43c279 4363
50c31eaa 4364 ASSERT(block_group->io_ctl.inode == NULL);
e108c86b 4365 iput(&inode->vfs_inode);
50c31eaa
JB
4366 } else {
4367 spin_unlock(&block_group->lock);
4368 }
4369 block_group = btrfs_next_block_group(block_group);
3e43c279
JB
4370 }
4371}
4372
4373/*
4374 * Must be called only after stopping all workers, since we could have block
4375 * group caching kthreads running, and therefore they could race with us if we
4376 * freed the block groups before stopping them.
4377 */
4378int btrfs_free_block_groups(struct btrfs_fs_info *info)
4379{
32da5386 4380 struct btrfs_block_group *block_group;
3e43c279
JB
4381 struct btrfs_space_info *space_info;
4382 struct btrfs_caching_control *caching_ctl;
4383 struct rb_node *n;
4384
13bb483d
NA
4385 if (btrfs_is_zoned(info)) {
4386 if (info->active_meta_bg) {
4387 btrfs_put_block_group(info->active_meta_bg);
4388 info->active_meta_bg = NULL;
4389 }
4390 if (info->active_system_bg) {
4391 btrfs_put_block_group(info->active_system_bg);
4392 info->active_system_bg = NULL;
4393 }
4394 }
4395
16b0c258 4396 write_lock(&info->block_group_cache_lock);
3e43c279
JB
4397 while (!list_empty(&info->caching_block_groups)) {
4398 caching_ctl = list_entry(info->caching_block_groups.next,
4399 struct btrfs_caching_control, list);
4400 list_del(&caching_ctl->list);
4401 btrfs_put_caching_control(caching_ctl);
4402 }
16b0c258 4403 write_unlock(&info->block_group_cache_lock);
3e43c279
JB
4404
4405 spin_lock(&info->unused_bgs_lock);
4406 while (!list_empty(&info->unused_bgs)) {
4407 block_group = list_first_entry(&info->unused_bgs,
32da5386 4408 struct btrfs_block_group,
3e43c279
JB
4409 bg_list);
4410 list_del_init(&block_group->bg_list);
4411 btrfs_put_block_group(block_group);
4412 }
3e43c279 4413
18bb8bbf
JT
4414 while (!list_empty(&info->reclaim_bgs)) {
4415 block_group = list_first_entry(&info->reclaim_bgs,
4416 struct btrfs_block_group,
4417 bg_list);
4418 list_del_init(&block_group->bg_list);
4419 btrfs_put_block_group(block_group);
4420 }
4421 spin_unlock(&info->unused_bgs_lock);
4422
afba2bc0
NA
4423 spin_lock(&info->zone_active_bgs_lock);
4424 while (!list_empty(&info->zone_active_bgs)) {
4425 block_group = list_first_entry(&info->zone_active_bgs,
4426 struct btrfs_block_group,
4427 active_bg_list);
4428 list_del_init(&block_group->active_bg_list);
4429 btrfs_put_block_group(block_group);
4430 }
4431 spin_unlock(&info->zone_active_bgs_lock);
4432
16b0c258 4433 write_lock(&info->block_group_cache_lock);
08dddb29 4434 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
32da5386 4435 block_group = rb_entry(n, struct btrfs_block_group,
3e43c279 4436 cache_node);
08dddb29
FM
4437 rb_erase_cached(&block_group->cache_node,
4438 &info->block_group_cache_tree);
3e43c279 4439 RB_CLEAR_NODE(&block_group->cache_node);
16b0c258 4440 write_unlock(&info->block_group_cache_lock);
3e43c279
JB
4441
4442 down_write(&block_group->space_info->groups_sem);
4443 list_del(&block_group->list);
4444 up_write(&block_group->space_info->groups_sem);
4445
4446 /*
4447 * We haven't cached this block group, which means we could
4448 * possibly have excluded extents on this block group.
4449 */
4450 if (block_group->cached == BTRFS_CACHE_NO ||
4451 block_group->cached == BTRFS_CACHE_ERROR)
4452 btrfs_free_excluded_extents(block_group);
4453
4454 btrfs_remove_free_space_cache(block_group);
4455 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4456 ASSERT(list_empty(&block_group->dirty_list));
4457 ASSERT(list_empty(&block_group->io_list));
4458 ASSERT(list_empty(&block_group->bg_list));
48aaeebe 4459 ASSERT(refcount_read(&block_group->refs) == 1);
195a49ea 4460 ASSERT(block_group->swap_extents == 0);
3e43c279
JB
4461 btrfs_put_block_group(block_group);
4462
16b0c258 4463 write_lock(&info->block_group_cache_lock);
3e43c279 4464 }
16b0c258 4465 write_unlock(&info->block_group_cache_lock);
3e43c279 4466
3e43c279
JB
4467 btrfs_release_global_block_rsv(info);
4468
4469 while (!list_empty(&info->space_info)) {
4470 space_info = list_entry(info->space_info.next,
4471 struct btrfs_space_info,
4472 list);
4473
4474 /*
4475 * Do not hide this behind enospc_debug, this is actually
4476 * important and indicates a real bug if this happens.
4477 */
4478 if (WARN_ON(space_info->bytes_pinned > 0 ||
3e43c279
JB
4479 space_info->bytes_may_use > 0))
4480 btrfs_dump_space_info(info, space_info, 0, 0);
40cdc509
FM
4481
4482 /*
4483 * If there was a failure to cleanup a log tree, very likely due
4484 * to an IO failure on a writeback attempt of one or more of its
4485 * extent buffers, we could not do proper (and cheap) unaccounting
4486 * of their reserved space, so don't warn on bytes_reserved > 0 in
4487 * that case.
4488 */
4489 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4490 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4491 if (WARN_ON(space_info->bytes_reserved > 0))
4492 btrfs_dump_space_info(info, space_info, 0, 0);
4493 }
4494
d611add4 4495 WARN_ON(space_info->reclaim_size > 0);
3e43c279
JB
4496 list_del(&space_info->list);
4497 btrfs_sysfs_remove_space_info(space_info);
4498 }
4499 return 0;
4500}
684b752b
FM
4501
4502void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4503{
4504 atomic_inc(&cache->frozen);
4505}
4506
4507void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4508{
4509 struct btrfs_fs_info *fs_info = block_group->fs_info;
684b752b
FM
4510 bool cleanup;
4511
4512 spin_lock(&block_group->lock);
4513 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3349b57f 4514 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
684b752b
FM
4515 spin_unlock(&block_group->lock);
4516
4517 if (cleanup) {
7dc66abb
FM
4518 struct btrfs_chunk_map *map;
4519
4520 map = btrfs_find_chunk_map(fs_info, block_group->start, 1);
4521 /* Logic error, can't happen. */
4522 ASSERT(map);
4523
4524 btrfs_remove_chunk_map(fs_info, map);
4525
4526 /* Once for our lookup reference. */
4527 btrfs_free_chunk_map(map);
684b752b
FM
4528
4529 /*
4530 * We may have left one free space entry and other possible
4531 * tasks trimming this block group have left 1 entry each one.
4532 * Free them if any.
4533 */
fc80f7ac 4534 btrfs_remove_free_space_cache(block_group);
684b752b
FM
4535 }
4536}
195a49ea
FM
4537
4538bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4539{
4540 bool ret = true;
4541
4542 spin_lock(&bg->lock);
4543 if (bg->ro)
4544 ret = false;
4545 else
4546 bg->swap_extents++;
4547 spin_unlock(&bg->lock);
4548
4549 return ret;
4550}
4551
4552void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4553{
4554 spin_lock(&bg->lock);
4555 ASSERT(!bg->ro);
4556 ASSERT(bg->swap_extents >= amount);
4557 bg->swap_extents -= amount;
4558 spin_unlock(&bg->lock);
4559}
52bb7a21
BB
4560
4561enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4562{
4563 if (size <= SZ_128K)
4564 return BTRFS_BG_SZ_SMALL;
4565 if (size <= SZ_8M)
4566 return BTRFS_BG_SZ_MEDIUM;
4567 return BTRFS_BG_SZ_LARGE;
4568}
4569
4570/*
4571 * Handle a block group allocating an extent in a size class
4572 *
4573 * @bg: The block group we allocated in.
4574 * @size_class: The size class of the allocation.
4575 * @force_wrong_size_class: Whether we are desperate enough to allow
4576 * mismatched size classes.
4577 *
4578 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4579 * case of a race that leads to the wrong size class without
4580 * force_wrong_size_class set.
4581 *
4582 * find_free_extent will skip block groups with a mismatched size class until
4583 * it really needs to avoid ENOSPC. In that case it will set
4584 * force_wrong_size_class. However, if a block group is newly allocated and
4585 * doesn't yet have a size class, then it is possible for two allocations of
4586 * different sizes to race and both try to use it. The loser is caught here and
4587 * has to retry.
4588 */
4589int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4590 enum btrfs_block_group_size_class size_class,
4591 bool force_wrong_size_class)
4592{
4593 ASSERT(size_class != BTRFS_BG_SZ_NONE);
4594
4595 /* The new allocation is in the right size class, do nothing */
4596 if (bg->size_class == size_class)
4597 return 0;
4598 /*
4599 * The new allocation is in a mismatched size class.
4600 * This means one of two things:
4601 *
4602 * 1. Two tasks in find_free_extent for different size_classes raced
4603 * and hit the same empty block_group. Make the loser try again.
4604 * 2. A call to find_free_extent got desperate enough to set
4605 * 'force_wrong_slab'. Don't change the size_class, but allow the
4606 * allocation.
4607 */
4608 if (bg->size_class != BTRFS_BG_SZ_NONE) {
4609 if (force_wrong_size_class)
4610 return 0;
4611 return -EAGAIN;
4612 }
4613 /*
4614 * The happy new block group case: the new allocation is the first
4615 * one in the block_group so we set size_class.
4616 */
4617 bg->size_class = size_class;
4618
4619 return 0;
4620}
cb0922f2
BB
4621
4622bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4623{
4624 if (btrfs_is_zoned(bg->fs_info))
4625 return false;
4626 if (!btrfs_is_block_group_data_only(bg))
4627 return false;
4628 return true;
4629}