Merge tag 'tag-chrome-platform-for-v5.7' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / fs / btrfs / block-group.c
CommitLineData
2e405ad8
JB
1// SPDX-License-Identifier: GPL-2.0
2
784352fe 3#include "misc.h"
2e405ad8
JB
4#include "ctree.h"
5#include "block-group.h"
3eeb3226 6#include "space-info.h"
9f21246d
JB
7#include "disk-io.h"
8#include "free-space-cache.h"
9#include "free-space-tree.h"
e3e0520b
JB
10#include "disk-io.h"
11#include "volumes.h"
12#include "transaction.h"
13#include "ref-verify.h"
4358d963
JB
14#include "sysfs.h"
15#include "tree-log.h"
77745c05 16#include "delalloc-space.h"
b0643e59 17#include "discard.h"
96a14336 18#include "raid56.h"
2e405ad8 19
878d7b67
JB
20/*
21 * Return target flags in extended format or 0 if restripe for this chunk_type
22 * is not in progress
23 *
24 * Should be called with balance_lock held
25 */
e11c0406 26static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
878d7b67
JB
27{
28 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29 u64 target = 0;
30
31 if (!bctl)
32 return 0;
33
34 if (flags & BTRFS_BLOCK_GROUP_DATA &&
35 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43 }
44
45 return target;
46}
47
48/*
49 * @flags: available profiles in extended format (see ctree.h)
50 *
51 * Return reduced profile in chunk format. If profile changing is in progress
52 * (either running or paused) picks the target profile (if it's already
53 * available), otherwise falls back to plain reducing.
54 */
55static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56{
57 u64 num_devices = fs_info->fs_devices->rw_devices;
58 u64 target;
59 u64 raid_type;
60 u64 allowed = 0;
61
62 /*
63 * See if restripe for this chunk_type is in progress, if so try to
64 * reduce to the target profile
65 */
66 spin_lock(&fs_info->balance_lock);
e11c0406 67 target = get_restripe_target(fs_info, flags);
878d7b67
JB
68 if (target) {
69 /* Pick target profile only if it's already available */
70 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
71 spin_unlock(&fs_info->balance_lock);
72 return extended_to_chunk(target);
73 }
74 }
75 spin_unlock(&fs_info->balance_lock);
76
77 /* First, mask out the RAID levels which aren't possible */
78 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
79 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
80 allowed |= btrfs_raid_array[raid_type].bg_flag;
81 }
82 allowed &= flags;
83
84 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
85 allowed = BTRFS_BLOCK_GROUP_RAID6;
86 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
87 allowed = BTRFS_BLOCK_GROUP_RAID5;
88 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
89 allowed = BTRFS_BLOCK_GROUP_RAID10;
90 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
91 allowed = BTRFS_BLOCK_GROUP_RAID1;
92 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
93 allowed = BTRFS_BLOCK_GROUP_RAID0;
94
95 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
96
97 return extended_to_chunk(flags | allowed);
98}
99
ef0a82da 100u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
878d7b67
JB
101{
102 unsigned seq;
103 u64 flags;
104
105 do {
106 flags = orig_flags;
107 seq = read_seqbegin(&fs_info->profiles_lock);
108
109 if (flags & BTRFS_BLOCK_GROUP_DATA)
110 flags |= fs_info->avail_data_alloc_bits;
111 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
112 flags |= fs_info->avail_system_alloc_bits;
113 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
114 flags |= fs_info->avail_metadata_alloc_bits;
115 } while (read_seqretry(&fs_info->profiles_lock, seq));
116
117 return btrfs_reduce_alloc_profile(fs_info, flags);
118}
119
32da5386 120void btrfs_get_block_group(struct btrfs_block_group *cache)
3cad1284
JB
121{
122 atomic_inc(&cache->count);
123}
124
32da5386 125void btrfs_put_block_group(struct btrfs_block_group *cache)
3cad1284
JB
126{
127 if (atomic_dec_and_test(&cache->count)) {
128 WARN_ON(cache->pinned > 0);
129 WARN_ON(cache->reserved > 0);
130
b0643e59
DZ
131 /*
132 * A block_group shouldn't be on the discard_list anymore.
133 * Remove the block_group from the discard_list to prevent us
134 * from causing a panic due to NULL pointer dereference.
135 */
136 if (WARN_ON(!list_empty(&cache->discard_list)))
137 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
138 cache);
139
3cad1284
JB
140 /*
141 * If not empty, someone is still holding mutex of
142 * full_stripe_lock, which can only be released by caller.
143 * And it will definitely cause use-after-free when caller
144 * tries to release full stripe lock.
145 *
146 * No better way to resolve, but only to warn.
147 */
148 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
149 kfree(cache->free_space_ctl);
150 kfree(cache);
151 }
152}
153
4358d963
JB
154/*
155 * This adds the block group to the fs_info rb tree for the block group cache
156 */
157static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
32da5386 158 struct btrfs_block_group *block_group)
4358d963
JB
159{
160 struct rb_node **p;
161 struct rb_node *parent = NULL;
32da5386 162 struct btrfs_block_group *cache;
4358d963
JB
163
164 spin_lock(&info->block_group_cache_lock);
165 p = &info->block_group_cache_tree.rb_node;
166
167 while (*p) {
168 parent = *p;
32da5386 169 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
b3470b5d 170 if (block_group->start < cache->start) {
4358d963 171 p = &(*p)->rb_left;
b3470b5d 172 } else if (block_group->start > cache->start) {
4358d963
JB
173 p = &(*p)->rb_right;
174 } else {
175 spin_unlock(&info->block_group_cache_lock);
176 return -EEXIST;
177 }
178 }
179
180 rb_link_node(&block_group->cache_node, parent, p);
181 rb_insert_color(&block_group->cache_node,
182 &info->block_group_cache_tree);
183
b3470b5d
DS
184 if (info->first_logical_byte > block_group->start)
185 info->first_logical_byte = block_group->start;
4358d963
JB
186
187 spin_unlock(&info->block_group_cache_lock);
188
189 return 0;
190}
191
2e405ad8
JB
192/*
193 * This will return the block group at or after bytenr if contains is 0, else
194 * it will return the block group that contains the bytenr
195 */
32da5386 196static struct btrfs_block_group *block_group_cache_tree_search(
2e405ad8
JB
197 struct btrfs_fs_info *info, u64 bytenr, int contains)
198{
32da5386 199 struct btrfs_block_group *cache, *ret = NULL;
2e405ad8
JB
200 struct rb_node *n;
201 u64 end, start;
202
203 spin_lock(&info->block_group_cache_lock);
204 n = info->block_group_cache_tree.rb_node;
205
206 while (n) {
32da5386 207 cache = rb_entry(n, struct btrfs_block_group, cache_node);
b3470b5d
DS
208 end = cache->start + cache->length - 1;
209 start = cache->start;
2e405ad8
JB
210
211 if (bytenr < start) {
b3470b5d 212 if (!contains && (!ret || start < ret->start))
2e405ad8
JB
213 ret = cache;
214 n = n->rb_left;
215 } else if (bytenr > start) {
216 if (contains && bytenr <= end) {
217 ret = cache;
218 break;
219 }
220 n = n->rb_right;
221 } else {
222 ret = cache;
223 break;
224 }
225 }
226 if (ret) {
227 btrfs_get_block_group(ret);
b3470b5d
DS
228 if (bytenr == 0 && info->first_logical_byte > ret->start)
229 info->first_logical_byte = ret->start;
2e405ad8
JB
230 }
231 spin_unlock(&info->block_group_cache_lock);
232
233 return ret;
234}
235
236/*
237 * Return the block group that starts at or after bytenr
238 */
32da5386 239struct btrfs_block_group *btrfs_lookup_first_block_group(
2e405ad8
JB
240 struct btrfs_fs_info *info, u64 bytenr)
241{
242 return block_group_cache_tree_search(info, bytenr, 0);
243}
244
245/*
246 * Return the block group that contains the given bytenr
247 */
32da5386 248struct btrfs_block_group *btrfs_lookup_block_group(
2e405ad8
JB
249 struct btrfs_fs_info *info, u64 bytenr)
250{
251 return block_group_cache_tree_search(info, bytenr, 1);
252}
253
32da5386
DS
254struct btrfs_block_group *btrfs_next_block_group(
255 struct btrfs_block_group *cache)
2e405ad8
JB
256{
257 struct btrfs_fs_info *fs_info = cache->fs_info;
258 struct rb_node *node;
259
260 spin_lock(&fs_info->block_group_cache_lock);
261
262 /* If our block group was removed, we need a full search. */
263 if (RB_EMPTY_NODE(&cache->cache_node)) {
b3470b5d 264 const u64 next_bytenr = cache->start + cache->length;
2e405ad8
JB
265
266 spin_unlock(&fs_info->block_group_cache_lock);
267 btrfs_put_block_group(cache);
268 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
269 }
270 node = rb_next(&cache->cache_node);
271 btrfs_put_block_group(cache);
272 if (node) {
32da5386 273 cache = rb_entry(node, struct btrfs_block_group, cache_node);
2e405ad8
JB
274 btrfs_get_block_group(cache);
275 } else
276 cache = NULL;
277 spin_unlock(&fs_info->block_group_cache_lock);
278 return cache;
279}
3eeb3226
JB
280
281bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
282{
32da5386 283 struct btrfs_block_group *bg;
3eeb3226
JB
284 bool ret = true;
285
286 bg = btrfs_lookup_block_group(fs_info, bytenr);
287 if (!bg)
288 return false;
289
290 spin_lock(&bg->lock);
291 if (bg->ro)
292 ret = false;
293 else
294 atomic_inc(&bg->nocow_writers);
295 spin_unlock(&bg->lock);
296
297 /* No put on block group, done by btrfs_dec_nocow_writers */
298 if (!ret)
299 btrfs_put_block_group(bg);
300
301 return ret;
302}
303
304void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
305{
32da5386 306 struct btrfs_block_group *bg;
3eeb3226
JB
307
308 bg = btrfs_lookup_block_group(fs_info, bytenr);
309 ASSERT(bg);
310 if (atomic_dec_and_test(&bg->nocow_writers))
311 wake_up_var(&bg->nocow_writers);
312 /*
313 * Once for our lookup and once for the lookup done by a previous call
314 * to btrfs_inc_nocow_writers()
315 */
316 btrfs_put_block_group(bg);
317 btrfs_put_block_group(bg);
318}
319
32da5386 320void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
3eeb3226
JB
321{
322 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
323}
324
325void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
326 const u64 start)
327{
32da5386 328 struct btrfs_block_group *bg;
3eeb3226
JB
329
330 bg = btrfs_lookup_block_group(fs_info, start);
331 ASSERT(bg);
332 if (atomic_dec_and_test(&bg->reservations))
333 wake_up_var(&bg->reservations);
334 btrfs_put_block_group(bg);
335}
336
32da5386 337void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
3eeb3226
JB
338{
339 struct btrfs_space_info *space_info = bg->space_info;
340
341 ASSERT(bg->ro);
342
343 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
344 return;
345
346 /*
347 * Our block group is read only but before we set it to read only,
348 * some task might have had allocated an extent from it already, but it
349 * has not yet created a respective ordered extent (and added it to a
350 * root's list of ordered extents).
351 * Therefore wait for any task currently allocating extents, since the
352 * block group's reservations counter is incremented while a read lock
353 * on the groups' semaphore is held and decremented after releasing
354 * the read access on that semaphore and creating the ordered extent.
355 */
356 down_write(&space_info->groups_sem);
357 up_write(&space_info->groups_sem);
358
359 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
360}
9f21246d
JB
361
362struct btrfs_caching_control *btrfs_get_caching_control(
32da5386 363 struct btrfs_block_group *cache)
9f21246d
JB
364{
365 struct btrfs_caching_control *ctl;
366
367 spin_lock(&cache->lock);
368 if (!cache->caching_ctl) {
369 spin_unlock(&cache->lock);
370 return NULL;
371 }
372
373 ctl = cache->caching_ctl;
374 refcount_inc(&ctl->count);
375 spin_unlock(&cache->lock);
376 return ctl;
377}
378
379void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
380{
381 if (refcount_dec_and_test(&ctl->count))
382 kfree(ctl);
383}
384
385/*
386 * When we wait for progress in the block group caching, its because our
387 * allocation attempt failed at least once. So, we must sleep and let some
388 * progress happen before we try again.
389 *
390 * This function will sleep at least once waiting for new free space to show
391 * up, and then it will check the block group free space numbers for our min
392 * num_bytes. Another option is to have it go ahead and look in the rbtree for
393 * a free extent of a given size, but this is a good start.
394 *
395 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
396 * any of the information in this block group.
397 */
32da5386 398void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
9f21246d
JB
399 u64 num_bytes)
400{
401 struct btrfs_caching_control *caching_ctl;
402
403 caching_ctl = btrfs_get_caching_control(cache);
404 if (!caching_ctl)
405 return;
406
32da5386 407 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
9f21246d
JB
408 (cache->free_space_ctl->free_space >= num_bytes));
409
410 btrfs_put_caching_control(caching_ctl);
411}
412
32da5386 413int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
9f21246d
JB
414{
415 struct btrfs_caching_control *caching_ctl;
416 int ret = 0;
417
418 caching_ctl = btrfs_get_caching_control(cache);
419 if (!caching_ctl)
420 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
421
32da5386 422 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
9f21246d
JB
423 if (cache->cached == BTRFS_CACHE_ERROR)
424 ret = -EIO;
425 btrfs_put_caching_control(caching_ctl);
426 return ret;
427}
428
429#ifdef CONFIG_BTRFS_DEBUG
32da5386 430static void fragment_free_space(struct btrfs_block_group *block_group)
9f21246d
JB
431{
432 struct btrfs_fs_info *fs_info = block_group->fs_info;
b3470b5d
DS
433 u64 start = block_group->start;
434 u64 len = block_group->length;
9f21246d
JB
435 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
436 fs_info->nodesize : fs_info->sectorsize;
437 u64 step = chunk << 1;
438
439 while (len > chunk) {
440 btrfs_remove_free_space(block_group, start, chunk);
441 start += step;
442 if (len < step)
443 len = 0;
444 else
445 len -= step;
446 }
447}
448#endif
449
450/*
451 * This is only called by btrfs_cache_block_group, since we could have freed
452 * extents we need to check the pinned_extents for any extents that can't be
453 * used yet since their free space will be released as soon as the transaction
454 * commits.
455 */
32da5386 456u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
9f21246d
JB
457{
458 struct btrfs_fs_info *info = block_group->fs_info;
459 u64 extent_start, extent_end, size, total_added = 0;
460 int ret;
461
462 while (start < end) {
fe119a6e 463 ret = find_first_extent_bit(&info->excluded_extents, start,
9f21246d
JB
464 &extent_start, &extent_end,
465 EXTENT_DIRTY | EXTENT_UPTODATE,
466 NULL);
467 if (ret)
468 break;
469
470 if (extent_start <= start) {
471 start = extent_end + 1;
472 } else if (extent_start > start && extent_start < end) {
473 size = extent_start - start;
474 total_added += size;
b0643e59
DZ
475 ret = btrfs_add_free_space_async_trimmed(block_group,
476 start, size);
9f21246d
JB
477 BUG_ON(ret); /* -ENOMEM or logic error */
478 start = extent_end + 1;
479 } else {
480 break;
481 }
482 }
483
484 if (start < end) {
485 size = end - start;
486 total_added += size;
b0643e59
DZ
487 ret = btrfs_add_free_space_async_trimmed(block_group, start,
488 size);
9f21246d
JB
489 BUG_ON(ret); /* -ENOMEM or logic error */
490 }
491
492 return total_added;
493}
494
495static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
496{
32da5386 497 struct btrfs_block_group *block_group = caching_ctl->block_group;
9f21246d
JB
498 struct btrfs_fs_info *fs_info = block_group->fs_info;
499 struct btrfs_root *extent_root = fs_info->extent_root;
500 struct btrfs_path *path;
501 struct extent_buffer *leaf;
502 struct btrfs_key key;
503 u64 total_found = 0;
504 u64 last = 0;
505 u32 nritems;
506 int ret;
507 bool wakeup = true;
508
509 path = btrfs_alloc_path();
510 if (!path)
511 return -ENOMEM;
512
b3470b5d 513 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
9f21246d
JB
514
515#ifdef CONFIG_BTRFS_DEBUG
516 /*
517 * If we're fragmenting we don't want to make anybody think we can
518 * allocate from this block group until we've had a chance to fragment
519 * the free space.
520 */
521 if (btrfs_should_fragment_free_space(block_group))
522 wakeup = false;
523#endif
524 /*
525 * We don't want to deadlock with somebody trying to allocate a new
526 * extent for the extent root while also trying to search the extent
527 * root to add free space. So we skip locking and search the commit
528 * root, since its read-only
529 */
530 path->skip_locking = 1;
531 path->search_commit_root = 1;
532 path->reada = READA_FORWARD;
533
534 key.objectid = last;
535 key.offset = 0;
536 key.type = BTRFS_EXTENT_ITEM_KEY;
537
538next:
539 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
540 if (ret < 0)
541 goto out;
542
543 leaf = path->nodes[0];
544 nritems = btrfs_header_nritems(leaf);
545
546 while (1) {
547 if (btrfs_fs_closing(fs_info) > 1) {
548 last = (u64)-1;
549 break;
550 }
551
552 if (path->slots[0] < nritems) {
553 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
554 } else {
555 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
556 if (ret)
557 break;
558
559 if (need_resched() ||
560 rwsem_is_contended(&fs_info->commit_root_sem)) {
561 if (wakeup)
562 caching_ctl->progress = last;
563 btrfs_release_path(path);
564 up_read(&fs_info->commit_root_sem);
565 mutex_unlock(&caching_ctl->mutex);
566 cond_resched();
567 mutex_lock(&caching_ctl->mutex);
568 down_read(&fs_info->commit_root_sem);
569 goto next;
570 }
571
572 ret = btrfs_next_leaf(extent_root, path);
573 if (ret < 0)
574 goto out;
575 if (ret)
576 break;
577 leaf = path->nodes[0];
578 nritems = btrfs_header_nritems(leaf);
579 continue;
580 }
581
582 if (key.objectid < last) {
583 key.objectid = last;
584 key.offset = 0;
585 key.type = BTRFS_EXTENT_ITEM_KEY;
586
587 if (wakeup)
588 caching_ctl->progress = last;
589 btrfs_release_path(path);
590 goto next;
591 }
592
b3470b5d 593 if (key.objectid < block_group->start) {
9f21246d
JB
594 path->slots[0]++;
595 continue;
596 }
597
b3470b5d 598 if (key.objectid >= block_group->start + block_group->length)
9f21246d
JB
599 break;
600
601 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
602 key.type == BTRFS_METADATA_ITEM_KEY) {
603 total_found += add_new_free_space(block_group, last,
604 key.objectid);
605 if (key.type == BTRFS_METADATA_ITEM_KEY)
606 last = key.objectid +
607 fs_info->nodesize;
608 else
609 last = key.objectid + key.offset;
610
611 if (total_found > CACHING_CTL_WAKE_UP) {
612 total_found = 0;
613 if (wakeup)
614 wake_up(&caching_ctl->wait);
615 }
616 }
617 path->slots[0]++;
618 }
619 ret = 0;
620
621 total_found += add_new_free_space(block_group, last,
b3470b5d 622 block_group->start + block_group->length);
9f21246d
JB
623 caching_ctl->progress = (u64)-1;
624
625out:
626 btrfs_free_path(path);
627 return ret;
628}
629
630static noinline void caching_thread(struct btrfs_work *work)
631{
32da5386 632 struct btrfs_block_group *block_group;
9f21246d
JB
633 struct btrfs_fs_info *fs_info;
634 struct btrfs_caching_control *caching_ctl;
635 int ret;
636
637 caching_ctl = container_of(work, struct btrfs_caching_control, work);
638 block_group = caching_ctl->block_group;
639 fs_info = block_group->fs_info;
640
641 mutex_lock(&caching_ctl->mutex);
642 down_read(&fs_info->commit_root_sem);
643
644 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
645 ret = load_free_space_tree(caching_ctl);
646 else
647 ret = load_extent_tree_free(caching_ctl);
648
649 spin_lock(&block_group->lock);
650 block_group->caching_ctl = NULL;
651 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
652 spin_unlock(&block_group->lock);
653
654#ifdef CONFIG_BTRFS_DEBUG
655 if (btrfs_should_fragment_free_space(block_group)) {
656 u64 bytes_used;
657
658 spin_lock(&block_group->space_info->lock);
659 spin_lock(&block_group->lock);
b3470b5d 660 bytes_used = block_group->length - block_group->used;
9f21246d
JB
661 block_group->space_info->bytes_used += bytes_used >> 1;
662 spin_unlock(&block_group->lock);
663 spin_unlock(&block_group->space_info->lock);
e11c0406 664 fragment_free_space(block_group);
9f21246d
JB
665 }
666#endif
667
668 caching_ctl->progress = (u64)-1;
669
670 up_read(&fs_info->commit_root_sem);
671 btrfs_free_excluded_extents(block_group);
672 mutex_unlock(&caching_ctl->mutex);
673
674 wake_up(&caching_ctl->wait);
675
676 btrfs_put_caching_control(caching_ctl);
677 btrfs_put_block_group(block_group);
678}
679
32da5386 680int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
9f21246d
JB
681{
682 DEFINE_WAIT(wait);
683 struct btrfs_fs_info *fs_info = cache->fs_info;
684 struct btrfs_caching_control *caching_ctl;
685 int ret = 0;
686
687 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
688 if (!caching_ctl)
689 return -ENOMEM;
690
691 INIT_LIST_HEAD(&caching_ctl->list);
692 mutex_init(&caching_ctl->mutex);
693 init_waitqueue_head(&caching_ctl->wait);
694 caching_ctl->block_group = cache;
b3470b5d 695 caching_ctl->progress = cache->start;
9f21246d 696 refcount_set(&caching_ctl->count, 1);
a0cac0ec 697 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
9f21246d
JB
698
699 spin_lock(&cache->lock);
700 /*
701 * This should be a rare occasion, but this could happen I think in the
702 * case where one thread starts to load the space cache info, and then
703 * some other thread starts a transaction commit which tries to do an
704 * allocation while the other thread is still loading the space cache
705 * info. The previous loop should have kept us from choosing this block
706 * group, but if we've moved to the state where we will wait on caching
707 * block groups we need to first check if we're doing a fast load here,
708 * so we can wait for it to finish, otherwise we could end up allocating
709 * from a block group who's cache gets evicted for one reason or
710 * another.
711 */
712 while (cache->cached == BTRFS_CACHE_FAST) {
713 struct btrfs_caching_control *ctl;
714
715 ctl = cache->caching_ctl;
716 refcount_inc(&ctl->count);
717 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
718 spin_unlock(&cache->lock);
719
720 schedule();
721
722 finish_wait(&ctl->wait, &wait);
723 btrfs_put_caching_control(ctl);
724 spin_lock(&cache->lock);
725 }
726
727 if (cache->cached != BTRFS_CACHE_NO) {
728 spin_unlock(&cache->lock);
729 kfree(caching_ctl);
730 return 0;
731 }
732 WARN_ON(cache->caching_ctl);
733 cache->caching_ctl = caching_ctl;
734 cache->cached = BTRFS_CACHE_FAST;
735 spin_unlock(&cache->lock);
736
737 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
738 mutex_lock(&caching_ctl->mutex);
739 ret = load_free_space_cache(cache);
740
741 spin_lock(&cache->lock);
742 if (ret == 1) {
743 cache->caching_ctl = NULL;
744 cache->cached = BTRFS_CACHE_FINISHED;
745 cache->last_byte_to_unpin = (u64)-1;
746 caching_ctl->progress = (u64)-1;
747 } else {
748 if (load_cache_only) {
749 cache->caching_ctl = NULL;
750 cache->cached = BTRFS_CACHE_NO;
751 } else {
752 cache->cached = BTRFS_CACHE_STARTED;
753 cache->has_caching_ctl = 1;
754 }
755 }
756 spin_unlock(&cache->lock);
757#ifdef CONFIG_BTRFS_DEBUG
758 if (ret == 1 &&
759 btrfs_should_fragment_free_space(cache)) {
760 u64 bytes_used;
761
762 spin_lock(&cache->space_info->lock);
763 spin_lock(&cache->lock);
b3470b5d 764 bytes_used = cache->length - cache->used;
9f21246d
JB
765 cache->space_info->bytes_used += bytes_used >> 1;
766 spin_unlock(&cache->lock);
767 spin_unlock(&cache->space_info->lock);
e11c0406 768 fragment_free_space(cache);
9f21246d
JB
769 }
770#endif
771 mutex_unlock(&caching_ctl->mutex);
772
773 wake_up(&caching_ctl->wait);
774 if (ret == 1) {
775 btrfs_put_caching_control(caching_ctl);
776 btrfs_free_excluded_extents(cache);
777 return 0;
778 }
779 } else {
780 /*
781 * We're either using the free space tree or no caching at all.
782 * Set cached to the appropriate value and wakeup any waiters.
783 */
784 spin_lock(&cache->lock);
785 if (load_cache_only) {
786 cache->caching_ctl = NULL;
787 cache->cached = BTRFS_CACHE_NO;
788 } else {
789 cache->cached = BTRFS_CACHE_STARTED;
790 cache->has_caching_ctl = 1;
791 }
792 spin_unlock(&cache->lock);
793 wake_up(&caching_ctl->wait);
794 }
795
796 if (load_cache_only) {
797 btrfs_put_caching_control(caching_ctl);
798 return 0;
799 }
800
801 down_write(&fs_info->commit_root_sem);
802 refcount_inc(&caching_ctl->count);
803 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
804 up_write(&fs_info->commit_root_sem);
805
806 btrfs_get_block_group(cache);
807
808 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
809
810 return ret;
811}
e3e0520b
JB
812
813static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
814{
815 u64 extra_flags = chunk_to_extended(flags) &
816 BTRFS_EXTENDED_PROFILE_MASK;
817
818 write_seqlock(&fs_info->profiles_lock);
819 if (flags & BTRFS_BLOCK_GROUP_DATA)
820 fs_info->avail_data_alloc_bits &= ~extra_flags;
821 if (flags & BTRFS_BLOCK_GROUP_METADATA)
822 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
823 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
824 fs_info->avail_system_alloc_bits &= ~extra_flags;
825 write_sequnlock(&fs_info->profiles_lock);
826}
827
828/*
829 * Clear incompat bits for the following feature(s):
830 *
831 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
832 * in the whole filesystem
9c907446
DS
833 *
834 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
e3e0520b
JB
835 */
836static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
837{
9c907446
DS
838 bool found_raid56 = false;
839 bool found_raid1c34 = false;
840
841 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
842 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
843 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
e3e0520b
JB
844 struct list_head *head = &fs_info->space_info;
845 struct btrfs_space_info *sinfo;
846
847 list_for_each_entry_rcu(sinfo, head, list) {
e3e0520b
JB
848 down_read(&sinfo->groups_sem);
849 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
9c907446 850 found_raid56 = true;
e3e0520b 851 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
9c907446
DS
852 found_raid56 = true;
853 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
854 found_raid1c34 = true;
855 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
856 found_raid1c34 = true;
e3e0520b 857 up_read(&sinfo->groups_sem);
e3e0520b 858 }
d8e6fd5c 859 if (!found_raid56)
9c907446 860 btrfs_clear_fs_incompat(fs_info, RAID56);
d8e6fd5c 861 if (!found_raid1c34)
9c907446 862 btrfs_clear_fs_incompat(fs_info, RAID1C34);
e3e0520b
JB
863 }
864}
865
866int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
867 u64 group_start, struct extent_map *em)
868{
869 struct btrfs_fs_info *fs_info = trans->fs_info;
870 struct btrfs_root *root = fs_info->extent_root;
871 struct btrfs_path *path;
32da5386 872 struct btrfs_block_group *block_group;
e3e0520b
JB
873 struct btrfs_free_cluster *cluster;
874 struct btrfs_root *tree_root = fs_info->tree_root;
875 struct btrfs_key key;
876 struct inode *inode;
877 struct kobject *kobj = NULL;
878 int ret;
879 int index;
880 int factor;
881 struct btrfs_caching_control *caching_ctl = NULL;
882 bool remove_em;
883 bool remove_rsv = false;
884
885 block_group = btrfs_lookup_block_group(fs_info, group_start);
886 BUG_ON(!block_group);
887 BUG_ON(!block_group->ro);
888
889 trace_btrfs_remove_block_group(block_group);
890 /*
891 * Free the reserved super bytes from this block group before
892 * remove it.
893 */
894 btrfs_free_excluded_extents(block_group);
b3470b5d
DS
895 btrfs_free_ref_tree_range(fs_info, block_group->start,
896 block_group->length);
e3e0520b 897
e3e0520b
JB
898 index = btrfs_bg_flags_to_raid_index(block_group->flags);
899 factor = btrfs_bg_type_to_factor(block_group->flags);
900
901 /* make sure this block group isn't part of an allocation cluster */
902 cluster = &fs_info->data_alloc_cluster;
903 spin_lock(&cluster->refill_lock);
904 btrfs_return_cluster_to_free_space(block_group, cluster);
905 spin_unlock(&cluster->refill_lock);
906
907 /*
908 * make sure this block group isn't part of a metadata
909 * allocation cluster
910 */
911 cluster = &fs_info->meta_alloc_cluster;
912 spin_lock(&cluster->refill_lock);
913 btrfs_return_cluster_to_free_space(block_group, cluster);
914 spin_unlock(&cluster->refill_lock);
915
916 path = btrfs_alloc_path();
917 if (!path) {
918 ret = -ENOMEM;
919 goto out;
920 }
921
922 /*
923 * get the inode first so any iput calls done for the io_list
924 * aren't the final iput (no unlinks allowed now)
925 */
926 inode = lookup_free_space_inode(block_group, path);
927
928 mutex_lock(&trans->transaction->cache_write_mutex);
929 /*
930 * Make sure our free space cache IO is done before removing the
931 * free space inode
932 */
933 spin_lock(&trans->transaction->dirty_bgs_lock);
934 if (!list_empty(&block_group->io_list)) {
935 list_del_init(&block_group->io_list);
936
937 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
938
939 spin_unlock(&trans->transaction->dirty_bgs_lock);
940 btrfs_wait_cache_io(trans, block_group, path);
941 btrfs_put_block_group(block_group);
942 spin_lock(&trans->transaction->dirty_bgs_lock);
943 }
944
945 if (!list_empty(&block_group->dirty_list)) {
946 list_del_init(&block_group->dirty_list);
947 remove_rsv = true;
948 btrfs_put_block_group(block_group);
949 }
950 spin_unlock(&trans->transaction->dirty_bgs_lock);
951 mutex_unlock(&trans->transaction->cache_write_mutex);
952
953 if (!IS_ERR(inode)) {
954 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
955 if (ret) {
956 btrfs_add_delayed_iput(inode);
957 goto out;
958 }
959 clear_nlink(inode);
960 /* One for the block groups ref */
961 spin_lock(&block_group->lock);
962 if (block_group->iref) {
963 block_group->iref = 0;
964 block_group->inode = NULL;
965 spin_unlock(&block_group->lock);
966 iput(inode);
967 } else {
968 spin_unlock(&block_group->lock);
969 }
970 /* One for our lookup ref */
971 btrfs_add_delayed_iput(inode);
972 }
973
974 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
e3e0520b 975 key.type = 0;
b3470b5d 976 key.offset = block_group->start;
e3e0520b
JB
977
978 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
979 if (ret < 0)
980 goto out;
981 if (ret > 0)
982 btrfs_release_path(path);
983 if (ret == 0) {
984 ret = btrfs_del_item(trans, tree_root, path);
985 if (ret)
986 goto out;
987 btrfs_release_path(path);
988 }
989
990 spin_lock(&fs_info->block_group_cache_lock);
991 rb_erase(&block_group->cache_node,
992 &fs_info->block_group_cache_tree);
993 RB_CLEAR_NODE(&block_group->cache_node);
994
b3470b5d 995 if (fs_info->first_logical_byte == block_group->start)
e3e0520b
JB
996 fs_info->first_logical_byte = (u64)-1;
997 spin_unlock(&fs_info->block_group_cache_lock);
998
999 down_write(&block_group->space_info->groups_sem);
1000 /*
1001 * we must use list_del_init so people can check to see if they
1002 * are still on the list after taking the semaphore
1003 */
1004 list_del_init(&block_group->list);
1005 if (list_empty(&block_group->space_info->block_groups[index])) {
1006 kobj = block_group->space_info->block_group_kobjs[index];
1007 block_group->space_info->block_group_kobjs[index] = NULL;
1008 clear_avail_alloc_bits(fs_info, block_group->flags);
1009 }
1010 up_write(&block_group->space_info->groups_sem);
1011 clear_incompat_bg_bits(fs_info, block_group->flags);
1012 if (kobj) {
1013 kobject_del(kobj);
1014 kobject_put(kobj);
1015 }
1016
1017 if (block_group->has_caching_ctl)
1018 caching_ctl = btrfs_get_caching_control(block_group);
1019 if (block_group->cached == BTRFS_CACHE_STARTED)
1020 btrfs_wait_block_group_cache_done(block_group);
1021 if (block_group->has_caching_ctl) {
1022 down_write(&fs_info->commit_root_sem);
1023 if (!caching_ctl) {
1024 struct btrfs_caching_control *ctl;
1025
1026 list_for_each_entry(ctl,
1027 &fs_info->caching_block_groups, list)
1028 if (ctl->block_group == block_group) {
1029 caching_ctl = ctl;
1030 refcount_inc(&caching_ctl->count);
1031 break;
1032 }
1033 }
1034 if (caching_ctl)
1035 list_del_init(&caching_ctl->list);
1036 up_write(&fs_info->commit_root_sem);
1037 if (caching_ctl) {
1038 /* Once for the caching bgs list and once for us. */
1039 btrfs_put_caching_control(caching_ctl);
1040 btrfs_put_caching_control(caching_ctl);
1041 }
1042 }
1043
1044 spin_lock(&trans->transaction->dirty_bgs_lock);
1045 WARN_ON(!list_empty(&block_group->dirty_list));
1046 WARN_ON(!list_empty(&block_group->io_list));
1047 spin_unlock(&trans->transaction->dirty_bgs_lock);
1048
1049 btrfs_remove_free_space_cache(block_group);
1050
1051 spin_lock(&block_group->space_info->lock);
1052 list_del_init(&block_group->ro_list);
1053
1054 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1055 WARN_ON(block_group->space_info->total_bytes
b3470b5d 1056 < block_group->length);
e3e0520b 1057 WARN_ON(block_group->space_info->bytes_readonly
b3470b5d 1058 < block_group->length);
e3e0520b 1059 WARN_ON(block_group->space_info->disk_total
b3470b5d 1060 < block_group->length * factor);
e3e0520b 1061 }
b3470b5d
DS
1062 block_group->space_info->total_bytes -= block_group->length;
1063 block_group->space_info->bytes_readonly -= block_group->length;
1064 block_group->space_info->disk_total -= block_group->length * factor;
e3e0520b
JB
1065
1066 spin_unlock(&block_group->space_info->lock);
1067
b3470b5d
DS
1068 key.objectid = block_group->start;
1069 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1070 key.offset = block_group->length;
e3e0520b
JB
1071
1072 mutex_lock(&fs_info->chunk_mutex);
1073 spin_lock(&block_group->lock);
1074 block_group->removed = 1;
1075 /*
1076 * At this point trimming can't start on this block group, because we
1077 * removed the block group from the tree fs_info->block_group_cache_tree
1078 * so no one can't find it anymore and even if someone already got this
1079 * block group before we removed it from the rbtree, they have already
1080 * incremented block_group->trimming - if they didn't, they won't find
1081 * any free space entries because we already removed them all when we
1082 * called btrfs_remove_free_space_cache().
1083 *
1084 * And we must not remove the extent map from the fs_info->mapping_tree
1085 * to prevent the same logical address range and physical device space
1086 * ranges from being reused for a new block group. This is because our
1087 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1088 * completely transactionless, so while it is trimming a range the
1089 * currently running transaction might finish and a new one start,
1090 * allowing for new block groups to be created that can reuse the same
1091 * physical device locations unless we take this special care.
1092 *
1093 * There may also be an implicit trim operation if the file system
1094 * is mounted with -odiscard. The same protections must remain
1095 * in place until the extents have been discarded completely when
1096 * the transaction commit has completed.
1097 */
1098 remove_em = (atomic_read(&block_group->trimming) == 0);
1099 spin_unlock(&block_group->lock);
1100
1101 mutex_unlock(&fs_info->chunk_mutex);
1102
1103 ret = remove_block_group_free_space(trans, block_group);
1104 if (ret)
1105 goto out;
1106
1107 btrfs_put_block_group(block_group);
1108 btrfs_put_block_group(block_group);
1109
1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 if (ret > 0)
1112 ret = -EIO;
1113 if (ret < 0)
1114 goto out;
1115
1116 ret = btrfs_del_item(trans, root, path);
1117 if (ret)
1118 goto out;
1119
1120 if (remove_em) {
1121 struct extent_map_tree *em_tree;
1122
1123 em_tree = &fs_info->mapping_tree;
1124 write_lock(&em_tree->lock);
1125 remove_extent_mapping(em_tree, em);
1126 write_unlock(&em_tree->lock);
1127 /* once for the tree */
1128 free_extent_map(em);
1129 }
1130out:
1131 if (remove_rsv)
1132 btrfs_delayed_refs_rsv_release(fs_info, 1);
1133 btrfs_free_path(path);
1134 return ret;
1135}
1136
1137struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1138 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1139{
1140 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1141 struct extent_map *em;
1142 struct map_lookup *map;
1143 unsigned int num_items;
1144
1145 read_lock(&em_tree->lock);
1146 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1147 read_unlock(&em_tree->lock);
1148 ASSERT(em && em->start == chunk_offset);
1149
1150 /*
1151 * We need to reserve 3 + N units from the metadata space info in order
1152 * to remove a block group (done at btrfs_remove_chunk() and at
1153 * btrfs_remove_block_group()), which are used for:
1154 *
1155 * 1 unit for adding the free space inode's orphan (located in the tree
1156 * of tree roots).
1157 * 1 unit for deleting the block group item (located in the extent
1158 * tree).
1159 * 1 unit for deleting the free space item (located in tree of tree
1160 * roots).
1161 * N units for deleting N device extent items corresponding to each
1162 * stripe (located in the device tree).
1163 *
1164 * In order to remove a block group we also need to reserve units in the
1165 * system space info in order to update the chunk tree (update one or
1166 * more device items and remove one chunk item), but this is done at
1167 * btrfs_remove_chunk() through a call to check_system_chunk().
1168 */
1169 map = em->map_lookup;
1170 num_items = 3 + map->num_stripes;
1171 free_extent_map(em);
1172
1173 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1174 num_items, 1);
1175}
1176
26ce2095
JB
1177/*
1178 * Mark block group @cache read-only, so later write won't happen to block
1179 * group @cache.
1180 *
1181 * If @force is not set, this function will only mark the block group readonly
1182 * if we have enough free space (1M) in other metadata/system block groups.
1183 * If @force is not set, this function will mark the block group readonly
1184 * without checking free space.
1185 *
1186 * NOTE: This function doesn't care if other block groups can contain all the
1187 * data in this block group. That check should be done by relocation routine,
1188 * not this function.
1189 */
32da5386 1190static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
26ce2095
JB
1191{
1192 struct btrfs_space_info *sinfo = cache->space_info;
1193 u64 num_bytes;
26ce2095
JB
1194 int ret = -ENOSPC;
1195
26ce2095
JB
1196 spin_lock(&sinfo->lock);
1197 spin_lock(&cache->lock);
1198
1199 if (cache->ro) {
1200 cache->ro++;
1201 ret = 0;
1202 goto out;
1203 }
1204
b3470b5d 1205 num_bytes = cache->length - cache->reserved - cache->pinned -
bf38be65 1206 cache->bytes_super - cache->used;
26ce2095
JB
1207
1208 /*
a30a3d20
JB
1209 * Data never overcommits, even in mixed mode, so do just the straight
1210 * check of left over space in how much we have allocated.
26ce2095 1211 */
a30a3d20
JB
1212 if (force) {
1213 ret = 0;
1214 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1215 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1216
1217 /*
1218 * Here we make sure if we mark this bg RO, we still have enough
1219 * free space as buffer.
1220 */
1221 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1222 ret = 0;
1223 } else {
1224 /*
1225 * We overcommit metadata, so we need to do the
1226 * btrfs_can_overcommit check here, and we need to pass in
1227 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1228 * leeway to allow us to mark this block group as read only.
1229 */
1230 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1231 BTRFS_RESERVE_NO_FLUSH))
1232 ret = 0;
1233 }
1234
1235 if (!ret) {
26ce2095
JB
1236 sinfo->bytes_readonly += num_bytes;
1237 cache->ro++;
1238 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
26ce2095
JB
1239 }
1240out:
1241 spin_unlock(&cache->lock);
1242 spin_unlock(&sinfo->lock);
1243 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1244 btrfs_info(cache->fs_info,
b3470b5d 1245 "unable to make block group %llu ro", cache->start);
26ce2095
JB
1246 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1247 }
1248 return ret;
1249}
1250
fe119a6e
NB
1251static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1252 struct btrfs_block_group *bg)
45bb5d6a
NB
1253{
1254 struct btrfs_fs_info *fs_info = bg->fs_info;
fe119a6e 1255 struct btrfs_transaction *prev_trans = NULL;
45bb5d6a
NB
1256 const u64 start = bg->start;
1257 const u64 end = start + bg->length - 1;
1258 int ret;
1259
fe119a6e
NB
1260 spin_lock(&fs_info->trans_lock);
1261 if (trans->transaction->list.prev != &fs_info->trans_list) {
1262 prev_trans = list_last_entry(&trans->transaction->list,
1263 struct btrfs_transaction, list);
1264 refcount_inc(&prev_trans->use_count);
1265 }
1266 spin_unlock(&fs_info->trans_lock);
1267
45bb5d6a
NB
1268 /*
1269 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1270 * btrfs_finish_extent_commit(). If we are at transaction N, another
1271 * task might be running finish_extent_commit() for the previous
1272 * transaction N - 1, and have seen a range belonging to the block
fe119a6e
NB
1273 * group in pinned_extents before we were able to clear the whole block
1274 * group range from pinned_extents. This means that task can lookup for
1275 * the block group after we unpinned it from pinned_extents and removed
1276 * it, leading to a BUG_ON() at unpin_extent_range().
45bb5d6a
NB
1277 */
1278 mutex_lock(&fs_info->unused_bg_unpin_mutex);
fe119a6e
NB
1279 if (prev_trans) {
1280 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1281 EXTENT_DIRTY);
1282 if (ret)
1283 goto err;
1284 }
45bb5d6a 1285
fe119a6e 1286 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
45bb5d6a
NB
1287 EXTENT_DIRTY);
1288 if (ret)
1289 goto err;
1290 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1291
1292 return true;
1293
1294err:
1295 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1296 btrfs_dec_block_group_ro(bg);
1297 return false;
1298}
1299
e3e0520b
JB
1300/*
1301 * Process the unused_bgs list and remove any that don't have any allocated
1302 * space inside of them.
1303 */
1304void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1305{
32da5386 1306 struct btrfs_block_group *block_group;
e3e0520b
JB
1307 struct btrfs_space_info *space_info;
1308 struct btrfs_trans_handle *trans;
6e80d4f8 1309 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
e3e0520b
JB
1310 int ret = 0;
1311
1312 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1313 return;
1314
1315 spin_lock(&fs_info->unused_bgs_lock);
1316 while (!list_empty(&fs_info->unused_bgs)) {
e3e0520b
JB
1317 int trimming;
1318
1319 block_group = list_first_entry(&fs_info->unused_bgs,
32da5386 1320 struct btrfs_block_group,
e3e0520b
JB
1321 bg_list);
1322 list_del_init(&block_group->bg_list);
1323
1324 space_info = block_group->space_info;
1325
1326 if (ret || btrfs_mixed_space_info(space_info)) {
1327 btrfs_put_block_group(block_group);
1328 continue;
1329 }
1330 spin_unlock(&fs_info->unused_bgs_lock);
1331
b0643e59
DZ
1332 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1333
e3e0520b
JB
1334 mutex_lock(&fs_info->delete_unused_bgs_mutex);
1335
1336 /* Don't want to race with allocators so take the groups_sem */
1337 down_write(&space_info->groups_sem);
6e80d4f8
DZ
1338
1339 /*
1340 * Async discard moves the final block group discard to be prior
1341 * to the unused_bgs code path. Therefore, if it's not fully
1342 * trimmed, punt it back to the async discard lists.
1343 */
1344 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1345 !btrfs_is_free_space_trimmed(block_group)) {
1346 trace_btrfs_skip_unused_block_group(block_group);
1347 up_write(&space_info->groups_sem);
1348 /* Requeue if we failed because of async discard */
1349 btrfs_discard_queue_work(&fs_info->discard_ctl,
1350 block_group);
1351 goto next;
1352 }
1353
e3e0520b
JB
1354 spin_lock(&block_group->lock);
1355 if (block_group->reserved || block_group->pinned ||
bf38be65 1356 block_group->used || block_group->ro ||
e3e0520b
JB
1357 list_is_singular(&block_group->list)) {
1358 /*
1359 * We want to bail if we made new allocations or have
1360 * outstanding allocations in this block group. We do
1361 * the ro check in case balance is currently acting on
1362 * this block group.
1363 */
1364 trace_btrfs_skip_unused_block_group(block_group);
1365 spin_unlock(&block_group->lock);
1366 up_write(&space_info->groups_sem);
1367 goto next;
1368 }
1369 spin_unlock(&block_group->lock);
1370
1371 /* We don't want to force the issue, only flip if it's ok. */
e11c0406 1372 ret = inc_block_group_ro(block_group, 0);
e3e0520b
JB
1373 up_write(&space_info->groups_sem);
1374 if (ret < 0) {
1375 ret = 0;
1376 goto next;
1377 }
1378
1379 /*
1380 * Want to do this before we do anything else so we can recover
1381 * properly if we fail to join the transaction.
1382 */
1383 trans = btrfs_start_trans_remove_block_group(fs_info,
b3470b5d 1384 block_group->start);
e3e0520b
JB
1385 if (IS_ERR(trans)) {
1386 btrfs_dec_block_group_ro(block_group);
1387 ret = PTR_ERR(trans);
1388 goto next;
1389 }
1390
1391 /*
1392 * We could have pending pinned extents for this block group,
1393 * just delete them, we don't care about them anymore.
1394 */
fe119a6e 1395 if (!clean_pinned_extents(trans, block_group))
e3e0520b 1396 goto end_trans;
e3e0520b 1397
b0643e59
DZ
1398 /*
1399 * At this point, the block_group is read only and should fail
1400 * new allocations. However, btrfs_finish_extent_commit() can
1401 * cause this block_group to be placed back on the discard
1402 * lists because now the block_group isn't fully discarded.
1403 * Bail here and try again later after discarding everything.
1404 */
1405 spin_lock(&fs_info->discard_ctl.lock);
1406 if (!list_empty(&block_group->discard_list)) {
1407 spin_unlock(&fs_info->discard_ctl.lock);
1408 btrfs_dec_block_group_ro(block_group);
1409 btrfs_discard_queue_work(&fs_info->discard_ctl,
1410 block_group);
1411 goto end_trans;
1412 }
1413 spin_unlock(&fs_info->discard_ctl.lock);
1414
e3e0520b
JB
1415 /* Reset pinned so btrfs_put_block_group doesn't complain */
1416 spin_lock(&space_info->lock);
1417 spin_lock(&block_group->lock);
1418
1419 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1420 -block_group->pinned);
1421 space_info->bytes_readonly += block_group->pinned;
1422 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1423 -block_group->pinned,
1424 BTRFS_TOTAL_BYTES_PINNED_BATCH);
1425 block_group->pinned = 0;
1426
1427 spin_unlock(&block_group->lock);
1428 spin_unlock(&space_info->lock);
1429
6e80d4f8
DZ
1430 /*
1431 * The normal path here is an unused block group is passed here,
1432 * then trimming is handled in the transaction commit path.
1433 * Async discard interposes before this to do the trimming
1434 * before coming down the unused block group path as trimming
1435 * will no longer be done later in the transaction commit path.
1436 */
1437 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1438 goto flip_async;
1439
e3e0520b 1440 /* DISCARD can flip during remount */
46b27f50 1441 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
e3e0520b
JB
1442
1443 /* Implicit trim during transaction commit. */
1444 if (trimming)
1445 btrfs_get_block_group_trimming(block_group);
1446
1447 /*
1448 * Btrfs_remove_chunk will abort the transaction if things go
1449 * horribly wrong.
1450 */
b3470b5d 1451 ret = btrfs_remove_chunk(trans, block_group->start);
e3e0520b
JB
1452
1453 if (ret) {
1454 if (trimming)
1455 btrfs_put_block_group_trimming(block_group);
1456 goto end_trans;
1457 }
1458
1459 /*
1460 * If we're not mounted with -odiscard, we can just forget
1461 * about this block group. Otherwise we'll need to wait
1462 * until transaction commit to do the actual discard.
1463 */
1464 if (trimming) {
1465 spin_lock(&fs_info->unused_bgs_lock);
1466 /*
1467 * A concurrent scrub might have added us to the list
1468 * fs_info->unused_bgs, so use a list_move operation
1469 * to add the block group to the deleted_bgs list.
1470 */
1471 list_move(&block_group->bg_list,
1472 &trans->transaction->deleted_bgs);
1473 spin_unlock(&fs_info->unused_bgs_lock);
1474 btrfs_get_block_group(block_group);
1475 }
1476end_trans:
1477 btrfs_end_transaction(trans);
1478next:
1479 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1480 btrfs_put_block_group(block_group);
1481 spin_lock(&fs_info->unused_bgs_lock);
1482 }
1483 spin_unlock(&fs_info->unused_bgs_lock);
6e80d4f8
DZ
1484 return;
1485
1486flip_async:
1487 btrfs_end_transaction(trans);
1488 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1489 btrfs_put_block_group(block_group);
1490 btrfs_discard_punt_unused_bgs_list(fs_info);
e3e0520b
JB
1491}
1492
32da5386 1493void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
e3e0520b
JB
1494{
1495 struct btrfs_fs_info *fs_info = bg->fs_info;
1496
1497 spin_lock(&fs_info->unused_bgs_lock);
1498 if (list_empty(&bg->bg_list)) {
1499 btrfs_get_block_group(bg);
1500 trace_btrfs_add_unused_block_group(bg);
1501 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1502 }
1503 spin_unlock(&fs_info->unused_bgs_lock);
1504}
4358d963
JB
1505
1506static int find_first_block_group(struct btrfs_fs_info *fs_info,
1507 struct btrfs_path *path,
1508 struct btrfs_key *key)
1509{
1510 struct btrfs_root *root = fs_info->extent_root;
1511 int ret = 0;
1512 struct btrfs_key found_key;
1513 struct extent_buffer *leaf;
1514 struct btrfs_block_group_item bg;
1515 u64 flags;
1516 int slot;
1517
1518 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1519 if (ret < 0)
1520 goto out;
1521
1522 while (1) {
1523 slot = path->slots[0];
1524 leaf = path->nodes[0];
1525 if (slot >= btrfs_header_nritems(leaf)) {
1526 ret = btrfs_next_leaf(root, path);
1527 if (ret == 0)
1528 continue;
1529 if (ret < 0)
1530 goto out;
1531 break;
1532 }
1533 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1534
1535 if (found_key.objectid >= key->objectid &&
1536 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1537 struct extent_map_tree *em_tree;
1538 struct extent_map *em;
1539
1540 em_tree = &root->fs_info->mapping_tree;
1541 read_lock(&em_tree->lock);
1542 em = lookup_extent_mapping(em_tree, found_key.objectid,
1543 found_key.offset);
1544 read_unlock(&em_tree->lock);
1545 if (!em) {
1546 btrfs_err(fs_info,
1547 "logical %llu len %llu found bg but no related chunk",
1548 found_key.objectid, found_key.offset);
1549 ret = -ENOENT;
1550 } else if (em->start != found_key.objectid ||
1551 em->len != found_key.offset) {
1552 btrfs_err(fs_info,
1553 "block group %llu len %llu mismatch with chunk %llu len %llu",
1554 found_key.objectid, found_key.offset,
1555 em->start, em->len);
1556 ret = -EUCLEAN;
1557 } else {
1558 read_extent_buffer(leaf, &bg,
1559 btrfs_item_ptr_offset(leaf, slot),
1560 sizeof(bg));
de0dc456 1561 flags = btrfs_stack_block_group_flags(&bg) &
4358d963
JB
1562 BTRFS_BLOCK_GROUP_TYPE_MASK;
1563
1564 if (flags != (em->map_lookup->type &
1565 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1566 btrfs_err(fs_info,
1567"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1568 found_key.objectid,
1569 found_key.offset, flags,
1570 (BTRFS_BLOCK_GROUP_TYPE_MASK &
1571 em->map_lookup->type));
1572 ret = -EUCLEAN;
1573 } else {
1574 ret = 0;
1575 }
1576 }
1577 free_extent_map(em);
1578 goto out;
1579 }
1580 path->slots[0]++;
1581 }
1582out:
1583 return ret;
1584}
1585
1586static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1587{
1588 u64 extra_flags = chunk_to_extended(flags) &
1589 BTRFS_EXTENDED_PROFILE_MASK;
1590
1591 write_seqlock(&fs_info->profiles_lock);
1592 if (flags & BTRFS_BLOCK_GROUP_DATA)
1593 fs_info->avail_data_alloc_bits |= extra_flags;
1594 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1595 fs_info->avail_metadata_alloc_bits |= extra_flags;
1596 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1597 fs_info->avail_system_alloc_bits |= extra_flags;
1598 write_sequnlock(&fs_info->profiles_lock);
1599}
1600
96a14336
NB
1601/**
1602 * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1603 * @chunk_start: logical address of block group
1604 * @physical: physical address to map to logical addresses
1605 * @logical: return array of logical addresses which map to @physical
1606 * @naddrs: length of @logical
1607 * @stripe_len: size of IO stripe for the given block group
1608 *
1609 * Maps a particular @physical disk address to a list of @logical addresses.
1610 * Used primarily to exclude those portions of a block group that contain super
1611 * block copies.
1612 */
1613EXPORT_FOR_TESTS
1614int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1615 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1616{
1617 struct extent_map *em;
1618 struct map_lookup *map;
1619 u64 *buf;
1620 u64 bytenr;
1776ad17
NB
1621 u64 data_stripe_length;
1622 u64 io_stripe_size;
1623 int i, nr = 0;
1624 int ret = 0;
96a14336
NB
1625
1626 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1627 if (IS_ERR(em))
1628 return -EIO;
1629
1630 map = em->map_lookup;
1776ad17
NB
1631 data_stripe_length = em->len;
1632 io_stripe_size = map->stripe_len;
96a14336
NB
1633
1634 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1776ad17
NB
1635 data_stripe_length = div_u64(data_stripe_length,
1636 map->num_stripes / map->sub_stripes);
96a14336 1637 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1776ad17 1638 data_stripe_length = div_u64(data_stripe_length, map->num_stripes);
96a14336 1639 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1776ad17
NB
1640 data_stripe_length = div_u64(data_stripe_length,
1641 nr_data_stripes(map));
1642 io_stripe_size = map->stripe_len * nr_data_stripes(map);
96a14336
NB
1643 }
1644
1645 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1776ad17
NB
1646 if (!buf) {
1647 ret = -ENOMEM;
1648 goto out;
1649 }
96a14336
NB
1650
1651 for (i = 0; i < map->num_stripes; i++) {
1776ad17
NB
1652 bool already_inserted = false;
1653 u64 stripe_nr;
1654 int j;
1655
1656 if (!in_range(physical, map->stripes[i].physical,
1657 data_stripe_length))
96a14336
NB
1658 continue;
1659
1660 stripe_nr = physical - map->stripes[i].physical;
1661 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1662
1663 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1664 stripe_nr = stripe_nr * map->num_stripes + i;
1665 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1666 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1667 stripe_nr = stripe_nr * map->num_stripes + i;
1668 }
1669 /*
1670 * The remaining case would be for RAID56, multiply by
1671 * nr_data_stripes(). Alternatively, just use rmap_len below
1672 * instead of map->stripe_len
1673 */
1674
1776ad17
NB
1675 bytenr = chunk_start + stripe_nr * io_stripe_size;
1676
1677 /* Ensure we don't add duplicate addresses */
96a14336 1678 for (j = 0; j < nr; j++) {
1776ad17
NB
1679 if (buf[j] == bytenr) {
1680 already_inserted = true;
96a14336 1681 break;
1776ad17 1682 }
96a14336 1683 }
1776ad17
NB
1684
1685 if (!already_inserted)
96a14336 1686 buf[nr++] = bytenr;
96a14336
NB
1687 }
1688
1689 *logical = buf;
1690 *naddrs = nr;
1776ad17
NB
1691 *stripe_len = io_stripe_size;
1692out:
96a14336 1693 free_extent_map(em);
1776ad17 1694 return ret;
96a14336
NB
1695}
1696
32da5386 1697static int exclude_super_stripes(struct btrfs_block_group *cache)
4358d963
JB
1698{
1699 struct btrfs_fs_info *fs_info = cache->fs_info;
1700 u64 bytenr;
1701 u64 *logical;
1702 int stripe_len;
1703 int i, nr, ret;
1704
b3470b5d
DS
1705 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1706 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
4358d963 1707 cache->bytes_super += stripe_len;
b3470b5d 1708 ret = btrfs_add_excluded_extent(fs_info, cache->start,
4358d963
JB
1709 stripe_len);
1710 if (ret)
1711 return ret;
1712 }
1713
1714 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1715 bytenr = btrfs_sb_offset(i);
b3470b5d 1716 ret = btrfs_rmap_block(fs_info, cache->start,
4358d963
JB
1717 bytenr, &logical, &nr, &stripe_len);
1718 if (ret)
1719 return ret;
1720
1721 while (nr--) {
1722 u64 start, len;
1723
b3470b5d 1724 if (logical[nr] > cache->start + cache->length)
4358d963
JB
1725 continue;
1726
b3470b5d 1727 if (logical[nr] + stripe_len <= cache->start)
4358d963
JB
1728 continue;
1729
1730 start = logical[nr];
b3470b5d
DS
1731 if (start < cache->start) {
1732 start = cache->start;
4358d963
JB
1733 len = (logical[nr] + stripe_len) - start;
1734 } else {
1735 len = min_t(u64, stripe_len,
b3470b5d 1736 cache->start + cache->length - start);
4358d963
JB
1737 }
1738
1739 cache->bytes_super += len;
1740 ret = btrfs_add_excluded_extent(fs_info, start, len);
1741 if (ret) {
1742 kfree(logical);
1743 return ret;
1744 }
1745 }
1746
1747 kfree(logical);
1748 }
1749 return 0;
1750}
1751
32da5386 1752static void link_block_group(struct btrfs_block_group *cache)
4358d963
JB
1753{
1754 struct btrfs_space_info *space_info = cache->space_info;
1755 int index = btrfs_bg_flags_to_raid_index(cache->flags);
1756 bool first = false;
1757
1758 down_write(&space_info->groups_sem);
1759 if (list_empty(&space_info->block_groups[index]))
1760 first = true;
1761 list_add_tail(&cache->list, &space_info->block_groups[index]);
1762 up_write(&space_info->groups_sem);
1763
1764 if (first)
1765 btrfs_sysfs_add_block_group_type(cache);
1766}
1767
32da5386 1768static struct btrfs_block_group *btrfs_create_block_group_cache(
4358d963
JB
1769 struct btrfs_fs_info *fs_info, u64 start, u64 size)
1770{
32da5386 1771 struct btrfs_block_group *cache;
4358d963
JB
1772
1773 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1774 if (!cache)
1775 return NULL;
1776
1777 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1778 GFP_NOFS);
1779 if (!cache->free_space_ctl) {
1780 kfree(cache);
1781 return NULL;
1782 }
1783
b3470b5d
DS
1784 cache->start = start;
1785 cache->length = size;
4358d963
JB
1786
1787 cache->fs_info = fs_info;
1788 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1789 set_free_space_tree_thresholds(cache);
1790
6e80d4f8
DZ
1791 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1792
4358d963
JB
1793 atomic_set(&cache->count, 1);
1794 spin_lock_init(&cache->lock);
1795 init_rwsem(&cache->data_rwsem);
1796 INIT_LIST_HEAD(&cache->list);
1797 INIT_LIST_HEAD(&cache->cluster_list);
1798 INIT_LIST_HEAD(&cache->bg_list);
1799 INIT_LIST_HEAD(&cache->ro_list);
b0643e59 1800 INIT_LIST_HEAD(&cache->discard_list);
4358d963
JB
1801 INIT_LIST_HEAD(&cache->dirty_list);
1802 INIT_LIST_HEAD(&cache->io_list);
1803 btrfs_init_free_space_ctl(cache);
1804 atomic_set(&cache->trimming, 0);
1805 mutex_init(&cache->free_space_lock);
1806 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1807
1808 return cache;
1809}
1810
1811/*
1812 * Iterate all chunks and verify that each of them has the corresponding block
1813 * group
1814 */
1815static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1816{
1817 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1818 struct extent_map *em;
32da5386 1819 struct btrfs_block_group *bg;
4358d963
JB
1820 u64 start = 0;
1821 int ret = 0;
1822
1823 while (1) {
1824 read_lock(&map_tree->lock);
1825 /*
1826 * lookup_extent_mapping will return the first extent map
1827 * intersecting the range, so setting @len to 1 is enough to
1828 * get the first chunk.
1829 */
1830 em = lookup_extent_mapping(map_tree, start, 1);
1831 read_unlock(&map_tree->lock);
1832 if (!em)
1833 break;
1834
1835 bg = btrfs_lookup_block_group(fs_info, em->start);
1836 if (!bg) {
1837 btrfs_err(fs_info,
1838 "chunk start=%llu len=%llu doesn't have corresponding block group",
1839 em->start, em->len);
1840 ret = -EUCLEAN;
1841 free_extent_map(em);
1842 break;
1843 }
b3470b5d 1844 if (bg->start != em->start || bg->length != em->len ||
4358d963
JB
1845 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1846 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1847 btrfs_err(fs_info,
1848"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1849 em->start, em->len,
1850 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
b3470b5d 1851 bg->start, bg->length,
4358d963
JB
1852 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1853 ret = -EUCLEAN;
1854 free_extent_map(em);
1855 btrfs_put_block_group(bg);
1856 break;
1857 }
1858 start = em->start + em->len;
1859 free_extent_map(em);
1860 btrfs_put_block_group(bg);
1861 }
1862 return ret;
1863}
1864
ffb9e0f0
QW
1865static int read_one_block_group(struct btrfs_fs_info *info,
1866 struct btrfs_path *path,
d49a2ddb 1867 const struct btrfs_key *key,
ffb9e0f0
QW
1868 int need_clear)
1869{
1870 struct extent_buffer *leaf = path->nodes[0];
32da5386 1871 struct btrfs_block_group *cache;
ffb9e0f0 1872 struct btrfs_space_info *space_info;
ffb9e0f0
QW
1873 struct btrfs_block_group_item bgi;
1874 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1875 int slot = path->slots[0];
1876 int ret;
1877
d49a2ddb 1878 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
ffb9e0f0 1879
d49a2ddb 1880 cache = btrfs_create_block_group_cache(info, key->objectid, key->offset);
ffb9e0f0
QW
1881 if (!cache)
1882 return -ENOMEM;
1883
1884 if (need_clear) {
1885 /*
1886 * When we mount with old space cache, we need to
1887 * set BTRFS_DC_CLEAR and set dirty flag.
1888 *
1889 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1890 * truncate the old free space cache inode and
1891 * setup a new one.
1892 * b) Setting 'dirty flag' makes sure that we flush
1893 * the new space cache info onto disk.
1894 */
1895 if (btrfs_test_opt(info, SPACE_CACHE))
1896 cache->disk_cache_state = BTRFS_DC_CLEAR;
1897 }
1898 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1899 sizeof(bgi));
1900 cache->used = btrfs_stack_block_group_used(&bgi);
1901 cache->flags = btrfs_stack_block_group_flags(&bgi);
1902 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1903 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1904 btrfs_err(info,
1905"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1906 cache->start);
1907 ret = -EINVAL;
1908 goto error;
1909 }
1910
1911 /*
1912 * We need to exclude the super stripes now so that the space info has
1913 * super bytes accounted for, otherwise we'll think we have more space
1914 * than we actually do.
1915 */
1916 ret = exclude_super_stripes(cache);
1917 if (ret) {
1918 /* We may have excluded something, so call this just in case. */
1919 btrfs_free_excluded_extents(cache);
1920 goto error;
1921 }
1922
1923 /*
1924 * Check for two cases, either we are full, and therefore don't need
1925 * to bother with the caching work since we won't find any space, or we
1926 * are empty, and we can just add all the space in and be done with it.
1927 * This saves us _a_lot_ of time, particularly in the full case.
1928 */
d49a2ddb 1929 if (key->offset == cache->used) {
ffb9e0f0
QW
1930 cache->last_byte_to_unpin = (u64)-1;
1931 cache->cached = BTRFS_CACHE_FINISHED;
1932 btrfs_free_excluded_extents(cache);
1933 } else if (cache->used == 0) {
1934 cache->last_byte_to_unpin = (u64)-1;
1935 cache->cached = BTRFS_CACHE_FINISHED;
d49a2ddb
QW
1936 add_new_free_space(cache, key->objectid,
1937 key->objectid + key->offset);
ffb9e0f0
QW
1938 btrfs_free_excluded_extents(cache);
1939 }
1940
1941 ret = btrfs_add_block_group_cache(info, cache);
1942 if (ret) {
1943 btrfs_remove_free_space_cache(cache);
1944 goto error;
1945 }
1946 trace_btrfs_add_block_group(info, cache, 0);
d49a2ddb 1947 btrfs_update_space_info(info, cache->flags, key->offset,
ffb9e0f0
QW
1948 cache->used, cache->bytes_super, &space_info);
1949
1950 cache->space_info = space_info;
1951
1952 link_block_group(cache);
1953
1954 set_avail_alloc_bits(info, cache->flags);
1955 if (btrfs_chunk_readonly(info, cache->start)) {
1956 inc_block_group_ro(cache, 1);
1957 } else if (cache->used == 0) {
1958 ASSERT(list_empty(&cache->bg_list));
6e80d4f8
DZ
1959 if (btrfs_test_opt(info, DISCARD_ASYNC))
1960 btrfs_discard_queue_work(&info->discard_ctl, cache);
1961 else
1962 btrfs_mark_bg_unused(cache);
ffb9e0f0
QW
1963 }
1964 return 0;
1965error:
1966 btrfs_put_block_group(cache);
1967 return ret;
1968}
1969
4358d963
JB
1970int btrfs_read_block_groups(struct btrfs_fs_info *info)
1971{
1972 struct btrfs_path *path;
1973 int ret;
32da5386 1974 struct btrfs_block_group *cache;
4358d963
JB
1975 struct btrfs_space_info *space_info;
1976 struct btrfs_key key;
4358d963
JB
1977 int need_clear = 0;
1978 u64 cache_gen;
4358d963
JB
1979
1980 key.objectid = 0;
1981 key.offset = 0;
1982 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1983 path = btrfs_alloc_path();
1984 if (!path)
1985 return -ENOMEM;
1986 path->reada = READA_FORWARD;
1987
1988 cache_gen = btrfs_super_cache_generation(info->super_copy);
1989 if (btrfs_test_opt(info, SPACE_CACHE) &&
1990 btrfs_super_generation(info->super_copy) != cache_gen)
1991 need_clear = 1;
1992 if (btrfs_test_opt(info, CLEAR_CACHE))
1993 need_clear = 1;
1994
1995 while (1) {
1996 ret = find_first_block_group(info, path, &key);
1997 if (ret > 0)
1998 break;
1999 if (ret != 0)
2000 goto error;
2001
ffb9e0f0 2002 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
d49a2ddb 2003 ret = read_one_block_group(info, path, &key, need_clear);
ffb9e0f0 2004 if (ret < 0)
4358d963 2005 goto error;
ffb9e0f0
QW
2006 key.objectid += key.offset;
2007 key.offset = 0;
4358d963 2008 btrfs_release_path(path);
4358d963
JB
2009 }
2010
29566c9c 2011 rcu_read_lock();
4358d963
JB
2012 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2013 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2014 (BTRFS_BLOCK_GROUP_RAID10 |
2015 BTRFS_BLOCK_GROUP_RAID1_MASK |
2016 BTRFS_BLOCK_GROUP_RAID56_MASK |
2017 BTRFS_BLOCK_GROUP_DUP)))
2018 continue;
2019 /*
2020 * Avoid allocating from un-mirrored block group if there are
2021 * mirrored block groups.
2022 */
2023 list_for_each_entry(cache,
2024 &space_info->block_groups[BTRFS_RAID_RAID0],
2025 list)
e11c0406 2026 inc_block_group_ro(cache, 1);
4358d963
JB
2027 list_for_each_entry(cache,
2028 &space_info->block_groups[BTRFS_RAID_SINGLE],
2029 list)
e11c0406 2030 inc_block_group_ro(cache, 1);
4358d963 2031 }
29566c9c 2032 rcu_read_unlock();
4358d963
JB
2033
2034 btrfs_init_global_block_rsv(info);
2035 ret = check_chunk_block_group_mappings(info);
2036error:
2037 btrfs_free_path(path);
2038 return ret;
2039}
2040
2041void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2042{
2043 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2044 struct btrfs_block_group *block_group;
4358d963
JB
2045 struct btrfs_root *extent_root = fs_info->extent_root;
2046 struct btrfs_block_group_item item;
2047 struct btrfs_key key;
2048 int ret = 0;
2049
2050 if (!trans->can_flush_pending_bgs)
2051 return;
2052
2053 while (!list_empty(&trans->new_bgs)) {
2054 block_group = list_first_entry(&trans->new_bgs,
32da5386 2055 struct btrfs_block_group,
4358d963
JB
2056 bg_list);
2057 if (ret)
2058 goto next;
2059
2060 spin_lock(&block_group->lock);
de0dc456
DS
2061 btrfs_set_stack_block_group_used(&item, block_group->used);
2062 btrfs_set_stack_block_group_chunk_objectid(&item,
3d976388 2063 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
de0dc456 2064 btrfs_set_stack_block_group_flags(&item, block_group->flags);
b3470b5d
DS
2065 key.objectid = block_group->start;
2066 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2067 key.offset = block_group->length;
4358d963
JB
2068 spin_unlock(&block_group->lock);
2069
2070 ret = btrfs_insert_item(trans, extent_root, &key, &item,
2071 sizeof(item));
2072 if (ret)
2073 btrfs_abort_transaction(trans, ret);
2074 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
2075 if (ret)
2076 btrfs_abort_transaction(trans, ret);
2077 add_block_group_free_space(trans, block_group);
2078 /* Already aborted the transaction if it failed. */
2079next:
2080 btrfs_delayed_refs_rsv_release(fs_info, 1);
2081 list_del_init(&block_group->bg_list);
2082 }
2083 btrfs_trans_release_chunk_metadata(trans);
2084}
2085
2086int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2087 u64 type, u64 chunk_offset, u64 size)
2088{
2089 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2090 struct btrfs_block_group *cache;
4358d963
JB
2091 int ret;
2092
2093 btrfs_set_log_full_commit(trans);
2094
2095 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
2096 if (!cache)
2097 return -ENOMEM;
2098
bf38be65 2099 cache->used = bytes_used;
4358d963
JB
2100 cache->flags = type;
2101 cache->last_byte_to_unpin = (u64)-1;
2102 cache->cached = BTRFS_CACHE_FINISHED;
2103 cache->needs_free_space = 1;
2104 ret = exclude_super_stripes(cache);
2105 if (ret) {
2106 /* We may have excluded something, so call this just in case */
2107 btrfs_free_excluded_extents(cache);
2108 btrfs_put_block_group(cache);
2109 return ret;
2110 }
2111
2112 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2113
2114 btrfs_free_excluded_extents(cache);
2115
2116#ifdef CONFIG_BTRFS_DEBUG
2117 if (btrfs_should_fragment_free_space(cache)) {
2118 u64 new_bytes_used = size - bytes_used;
2119
2120 bytes_used += new_bytes_used >> 1;
e11c0406 2121 fragment_free_space(cache);
4358d963
JB
2122 }
2123#endif
2124 /*
2125 * Ensure the corresponding space_info object is created and
2126 * assigned to our block group. We want our bg to be added to the rbtree
2127 * with its ->space_info set.
2128 */
2129 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2130 ASSERT(cache->space_info);
2131
2132 ret = btrfs_add_block_group_cache(fs_info, cache);
2133 if (ret) {
2134 btrfs_remove_free_space_cache(cache);
2135 btrfs_put_block_group(cache);
2136 return ret;
2137 }
2138
2139 /*
2140 * Now that our block group has its ->space_info set and is inserted in
2141 * the rbtree, update the space info's counters.
2142 */
2143 trace_btrfs_add_block_group(fs_info, cache, 1);
2144 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2145 cache->bytes_super, &cache->space_info);
2146 btrfs_update_global_block_rsv(fs_info);
2147
2148 link_block_group(cache);
2149
2150 list_add_tail(&cache->bg_list, &trans->new_bgs);
2151 trans->delayed_ref_updates++;
2152 btrfs_update_delayed_refs_rsv(trans);
2153
2154 set_avail_alloc_bits(fs_info, type);
2155 return 0;
2156}
26ce2095
JB
2157
2158static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
2159{
2160 u64 num_devices;
2161 u64 stripped;
2162
2163 /*
2164 * if restripe for this chunk_type is on pick target profile and
2165 * return, otherwise do the usual balance
2166 */
e11c0406 2167 stripped = get_restripe_target(fs_info, flags);
26ce2095
JB
2168 if (stripped)
2169 return extended_to_chunk(stripped);
2170
2171 num_devices = fs_info->fs_devices->rw_devices;
2172
2173 stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
2174 BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
2175
2176 if (num_devices == 1) {
2177 stripped |= BTRFS_BLOCK_GROUP_DUP;
2178 stripped = flags & ~stripped;
2179
2180 /* turn raid0 into single device chunks */
2181 if (flags & BTRFS_BLOCK_GROUP_RAID0)
2182 return stripped;
2183
2184 /* turn mirroring into duplication */
2185 if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
2186 BTRFS_BLOCK_GROUP_RAID10))
2187 return stripped | BTRFS_BLOCK_GROUP_DUP;
2188 } else {
2189 /* they already had raid on here, just return */
2190 if (flags & stripped)
2191 return flags;
2192
2193 stripped |= BTRFS_BLOCK_GROUP_DUP;
2194 stripped = flags & ~stripped;
2195
2196 /* switch duplicated blocks with raid1 */
2197 if (flags & BTRFS_BLOCK_GROUP_DUP)
2198 return stripped | BTRFS_BLOCK_GROUP_RAID1;
2199
2200 /* this is drive concat, leave it alone */
2201 }
2202
2203 return flags;
2204}
2205
b12de528
QW
2206/*
2207 * Mark one block group RO, can be called several times for the same block
2208 * group.
2209 *
2210 * @cache: the destination block group
2211 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2212 * ensure we still have some free space after marking this
2213 * block group RO.
2214 */
2215int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2216 bool do_chunk_alloc)
26ce2095
JB
2217{
2218 struct btrfs_fs_info *fs_info = cache->fs_info;
2219 struct btrfs_trans_handle *trans;
2220 u64 alloc_flags;
2221 int ret;
2222
2223again:
2224 trans = btrfs_join_transaction(fs_info->extent_root);
2225 if (IS_ERR(trans))
2226 return PTR_ERR(trans);
2227
2228 /*
2229 * we're not allowed to set block groups readonly after the dirty
2230 * block groups cache has started writing. If it already started,
2231 * back off and let this transaction commit
2232 */
2233 mutex_lock(&fs_info->ro_block_group_mutex);
2234 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2235 u64 transid = trans->transid;
2236
2237 mutex_unlock(&fs_info->ro_block_group_mutex);
2238 btrfs_end_transaction(trans);
2239
2240 ret = btrfs_wait_for_commit(fs_info, transid);
2241 if (ret)
2242 return ret;
2243 goto again;
2244 }
2245
b12de528 2246 if (do_chunk_alloc) {
26ce2095 2247 /*
b12de528
QW
2248 * If we are changing raid levels, try to allocate a
2249 * corresponding block group with the new raid level.
26ce2095 2250 */
b12de528
QW
2251 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2252 if (alloc_flags != cache->flags) {
2253 ret = btrfs_chunk_alloc(trans, alloc_flags,
2254 CHUNK_ALLOC_FORCE);
2255 /*
2256 * ENOSPC is allowed here, we may have enough space
2257 * already allocated at the new raid level to carry on
2258 */
2259 if (ret == -ENOSPC)
2260 ret = 0;
2261 if (ret < 0)
2262 goto out;
2263 }
26ce2095
JB
2264 }
2265
a7a63acc 2266 ret = inc_block_group_ro(cache, 0);
b12de528
QW
2267 if (!do_chunk_alloc)
2268 goto unlock_out;
26ce2095
JB
2269 if (!ret)
2270 goto out;
2271 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2272 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2273 if (ret < 0)
2274 goto out;
e11c0406 2275 ret = inc_block_group_ro(cache, 0);
26ce2095
JB
2276out:
2277 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2278 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2279 mutex_lock(&fs_info->chunk_mutex);
2280 check_system_chunk(trans, alloc_flags);
2281 mutex_unlock(&fs_info->chunk_mutex);
2282 }
b12de528 2283unlock_out:
26ce2095
JB
2284 mutex_unlock(&fs_info->ro_block_group_mutex);
2285
2286 btrfs_end_transaction(trans);
2287 return ret;
2288}
2289
32da5386 2290void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
26ce2095
JB
2291{
2292 struct btrfs_space_info *sinfo = cache->space_info;
2293 u64 num_bytes;
2294
2295 BUG_ON(!cache->ro);
2296
2297 spin_lock(&sinfo->lock);
2298 spin_lock(&cache->lock);
2299 if (!--cache->ro) {
b3470b5d 2300 num_bytes = cache->length - cache->reserved -
bf38be65 2301 cache->pinned - cache->bytes_super - cache->used;
26ce2095
JB
2302 sinfo->bytes_readonly -= num_bytes;
2303 list_del_init(&cache->ro_list);
2304 }
2305 spin_unlock(&cache->lock);
2306 spin_unlock(&sinfo->lock);
2307}
77745c05
JB
2308
2309static int write_one_cache_group(struct btrfs_trans_handle *trans,
2310 struct btrfs_path *path,
32da5386 2311 struct btrfs_block_group *cache)
77745c05
JB
2312{
2313 struct btrfs_fs_info *fs_info = trans->fs_info;
2314 int ret;
2315 struct btrfs_root *extent_root = fs_info->extent_root;
2316 unsigned long bi;
2317 struct extent_buffer *leaf;
bf38be65 2318 struct btrfs_block_group_item bgi;
b3470b5d
DS
2319 struct btrfs_key key;
2320
2321 key.objectid = cache->start;
2322 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2323 key.offset = cache->length;
77745c05 2324
b3470b5d 2325 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1);
77745c05
JB
2326 if (ret) {
2327 if (ret > 0)
2328 ret = -ENOENT;
2329 goto fail;
2330 }
2331
2332 leaf = path->nodes[0];
2333 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
de0dc456
DS
2334 btrfs_set_stack_block_group_used(&bgi, cache->used);
2335 btrfs_set_stack_block_group_chunk_objectid(&bgi,
3d976388 2336 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
de0dc456 2337 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
bf38be65 2338 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
77745c05
JB
2339 btrfs_mark_buffer_dirty(leaf);
2340fail:
2341 btrfs_release_path(path);
2342 return ret;
2343
2344}
2345
32da5386 2346static int cache_save_setup(struct btrfs_block_group *block_group,
77745c05
JB
2347 struct btrfs_trans_handle *trans,
2348 struct btrfs_path *path)
2349{
2350 struct btrfs_fs_info *fs_info = block_group->fs_info;
2351 struct btrfs_root *root = fs_info->tree_root;
2352 struct inode *inode = NULL;
2353 struct extent_changeset *data_reserved = NULL;
2354 u64 alloc_hint = 0;
2355 int dcs = BTRFS_DC_ERROR;
2356 u64 num_pages = 0;
2357 int retries = 0;
2358 int ret = 0;
2359
2360 /*
2361 * If this block group is smaller than 100 megs don't bother caching the
2362 * block group.
2363 */
b3470b5d 2364 if (block_group->length < (100 * SZ_1M)) {
77745c05
JB
2365 spin_lock(&block_group->lock);
2366 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2367 spin_unlock(&block_group->lock);
2368 return 0;
2369 }
2370
bf31f87f 2371 if (TRANS_ABORTED(trans))
77745c05
JB
2372 return 0;
2373again:
2374 inode = lookup_free_space_inode(block_group, path);
2375 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2376 ret = PTR_ERR(inode);
2377 btrfs_release_path(path);
2378 goto out;
2379 }
2380
2381 if (IS_ERR(inode)) {
2382 BUG_ON(retries);
2383 retries++;
2384
2385 if (block_group->ro)
2386 goto out_free;
2387
2388 ret = create_free_space_inode(trans, block_group, path);
2389 if (ret)
2390 goto out_free;
2391 goto again;
2392 }
2393
2394 /*
2395 * We want to set the generation to 0, that way if anything goes wrong
2396 * from here on out we know not to trust this cache when we load up next
2397 * time.
2398 */
2399 BTRFS_I(inode)->generation = 0;
2400 ret = btrfs_update_inode(trans, root, inode);
2401 if (ret) {
2402 /*
2403 * So theoretically we could recover from this, simply set the
2404 * super cache generation to 0 so we know to invalidate the
2405 * cache, but then we'd have to keep track of the block groups
2406 * that fail this way so we know we _have_ to reset this cache
2407 * before the next commit or risk reading stale cache. So to
2408 * limit our exposure to horrible edge cases lets just abort the
2409 * transaction, this only happens in really bad situations
2410 * anyway.
2411 */
2412 btrfs_abort_transaction(trans, ret);
2413 goto out_put;
2414 }
2415 WARN_ON(ret);
2416
2417 /* We've already setup this transaction, go ahead and exit */
2418 if (block_group->cache_generation == trans->transid &&
2419 i_size_read(inode)) {
2420 dcs = BTRFS_DC_SETUP;
2421 goto out_put;
2422 }
2423
2424 if (i_size_read(inode) > 0) {
2425 ret = btrfs_check_trunc_cache_free_space(fs_info,
2426 &fs_info->global_block_rsv);
2427 if (ret)
2428 goto out_put;
2429
2430 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2431 if (ret)
2432 goto out_put;
2433 }
2434
2435 spin_lock(&block_group->lock);
2436 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2437 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2438 /*
2439 * don't bother trying to write stuff out _if_
2440 * a) we're not cached,
2441 * b) we're with nospace_cache mount option,
2442 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2443 */
2444 dcs = BTRFS_DC_WRITTEN;
2445 spin_unlock(&block_group->lock);
2446 goto out_put;
2447 }
2448 spin_unlock(&block_group->lock);
2449
2450 /*
2451 * We hit an ENOSPC when setting up the cache in this transaction, just
2452 * skip doing the setup, we've already cleared the cache so we're safe.
2453 */
2454 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2455 ret = -ENOSPC;
2456 goto out_put;
2457 }
2458
2459 /*
2460 * Try to preallocate enough space based on how big the block group is.
2461 * Keep in mind this has to include any pinned space which could end up
2462 * taking up quite a bit since it's not folded into the other space
2463 * cache.
2464 */
b3470b5d 2465 num_pages = div_u64(block_group->length, SZ_256M);
77745c05
JB
2466 if (!num_pages)
2467 num_pages = 1;
2468
2469 num_pages *= 16;
2470 num_pages *= PAGE_SIZE;
2471
2472 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
2473 if (ret)
2474 goto out_put;
2475
2476 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2477 num_pages, num_pages,
2478 &alloc_hint);
2479 /*
2480 * Our cache requires contiguous chunks so that we don't modify a bunch
2481 * of metadata or split extents when writing the cache out, which means
2482 * we can enospc if we are heavily fragmented in addition to just normal
2483 * out of space conditions. So if we hit this just skip setting up any
2484 * other block groups for this transaction, maybe we'll unpin enough
2485 * space the next time around.
2486 */
2487 if (!ret)
2488 dcs = BTRFS_DC_SETUP;
2489 else if (ret == -ENOSPC)
2490 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2491
2492out_put:
2493 iput(inode);
2494out_free:
2495 btrfs_release_path(path);
2496out:
2497 spin_lock(&block_group->lock);
2498 if (!ret && dcs == BTRFS_DC_SETUP)
2499 block_group->cache_generation = trans->transid;
2500 block_group->disk_cache_state = dcs;
2501 spin_unlock(&block_group->lock);
2502
2503 extent_changeset_free(data_reserved);
2504 return ret;
2505}
2506
2507int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2508{
2509 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2510 struct btrfs_block_group *cache, *tmp;
77745c05
JB
2511 struct btrfs_transaction *cur_trans = trans->transaction;
2512 struct btrfs_path *path;
2513
2514 if (list_empty(&cur_trans->dirty_bgs) ||
2515 !btrfs_test_opt(fs_info, SPACE_CACHE))
2516 return 0;
2517
2518 path = btrfs_alloc_path();
2519 if (!path)
2520 return -ENOMEM;
2521
2522 /* Could add new block groups, use _safe just in case */
2523 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2524 dirty_list) {
2525 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2526 cache_save_setup(cache, trans, path);
2527 }
2528
2529 btrfs_free_path(path);
2530 return 0;
2531}
2532
2533/*
2534 * Transaction commit does final block group cache writeback during a critical
2535 * section where nothing is allowed to change the FS. This is required in
2536 * order for the cache to actually match the block group, but can introduce a
2537 * lot of latency into the commit.
2538 *
2539 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2540 * There's a chance we'll have to redo some of it if the block group changes
2541 * again during the commit, but it greatly reduces the commit latency by
2542 * getting rid of the easy block groups while we're still allowing others to
2543 * join the commit.
2544 */
2545int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2546{
2547 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2548 struct btrfs_block_group *cache;
77745c05
JB
2549 struct btrfs_transaction *cur_trans = trans->transaction;
2550 int ret = 0;
2551 int should_put;
2552 struct btrfs_path *path = NULL;
2553 LIST_HEAD(dirty);
2554 struct list_head *io = &cur_trans->io_bgs;
2555 int num_started = 0;
2556 int loops = 0;
2557
2558 spin_lock(&cur_trans->dirty_bgs_lock);
2559 if (list_empty(&cur_trans->dirty_bgs)) {
2560 spin_unlock(&cur_trans->dirty_bgs_lock);
2561 return 0;
2562 }
2563 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2564 spin_unlock(&cur_trans->dirty_bgs_lock);
2565
2566again:
2567 /* Make sure all the block groups on our dirty list actually exist */
2568 btrfs_create_pending_block_groups(trans);
2569
2570 if (!path) {
2571 path = btrfs_alloc_path();
2572 if (!path)
2573 return -ENOMEM;
2574 }
2575
2576 /*
2577 * cache_write_mutex is here only to save us from balance or automatic
2578 * removal of empty block groups deleting this block group while we are
2579 * writing out the cache
2580 */
2581 mutex_lock(&trans->transaction->cache_write_mutex);
2582 while (!list_empty(&dirty)) {
2583 bool drop_reserve = true;
2584
32da5386 2585 cache = list_first_entry(&dirty, struct btrfs_block_group,
77745c05
JB
2586 dirty_list);
2587 /*
2588 * This can happen if something re-dirties a block group that
2589 * is already under IO. Just wait for it to finish and then do
2590 * it all again
2591 */
2592 if (!list_empty(&cache->io_list)) {
2593 list_del_init(&cache->io_list);
2594 btrfs_wait_cache_io(trans, cache, path);
2595 btrfs_put_block_group(cache);
2596 }
2597
2598
2599 /*
2600 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2601 * it should update the cache_state. Don't delete until after
2602 * we wait.
2603 *
2604 * Since we're not running in the commit critical section
2605 * we need the dirty_bgs_lock to protect from update_block_group
2606 */
2607 spin_lock(&cur_trans->dirty_bgs_lock);
2608 list_del_init(&cache->dirty_list);
2609 spin_unlock(&cur_trans->dirty_bgs_lock);
2610
2611 should_put = 1;
2612
2613 cache_save_setup(cache, trans, path);
2614
2615 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2616 cache->io_ctl.inode = NULL;
2617 ret = btrfs_write_out_cache(trans, cache, path);
2618 if (ret == 0 && cache->io_ctl.inode) {
2619 num_started++;
2620 should_put = 0;
2621
2622 /*
2623 * The cache_write_mutex is protecting the
2624 * io_list, also refer to the definition of
2625 * btrfs_transaction::io_bgs for more details
2626 */
2627 list_add_tail(&cache->io_list, io);
2628 } else {
2629 /*
2630 * If we failed to write the cache, the
2631 * generation will be bad and life goes on
2632 */
2633 ret = 0;
2634 }
2635 }
2636 if (!ret) {
2637 ret = write_one_cache_group(trans, path, cache);
2638 /*
2639 * Our block group might still be attached to the list
2640 * of new block groups in the transaction handle of some
2641 * other task (struct btrfs_trans_handle->new_bgs). This
2642 * means its block group item isn't yet in the extent
2643 * tree. If this happens ignore the error, as we will
2644 * try again later in the critical section of the
2645 * transaction commit.
2646 */
2647 if (ret == -ENOENT) {
2648 ret = 0;
2649 spin_lock(&cur_trans->dirty_bgs_lock);
2650 if (list_empty(&cache->dirty_list)) {
2651 list_add_tail(&cache->dirty_list,
2652 &cur_trans->dirty_bgs);
2653 btrfs_get_block_group(cache);
2654 drop_reserve = false;
2655 }
2656 spin_unlock(&cur_trans->dirty_bgs_lock);
2657 } else if (ret) {
2658 btrfs_abort_transaction(trans, ret);
2659 }
2660 }
2661
2662 /* If it's not on the io list, we need to put the block group */
2663 if (should_put)
2664 btrfs_put_block_group(cache);
2665 if (drop_reserve)
2666 btrfs_delayed_refs_rsv_release(fs_info, 1);
2667
2668 if (ret)
2669 break;
2670
2671 /*
2672 * Avoid blocking other tasks for too long. It might even save
2673 * us from writing caches for block groups that are going to be
2674 * removed.
2675 */
2676 mutex_unlock(&trans->transaction->cache_write_mutex);
2677 mutex_lock(&trans->transaction->cache_write_mutex);
2678 }
2679 mutex_unlock(&trans->transaction->cache_write_mutex);
2680
2681 /*
2682 * Go through delayed refs for all the stuff we've just kicked off
2683 * and then loop back (just once)
2684 */
2685 ret = btrfs_run_delayed_refs(trans, 0);
2686 if (!ret && loops == 0) {
2687 loops++;
2688 spin_lock(&cur_trans->dirty_bgs_lock);
2689 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2690 /*
2691 * dirty_bgs_lock protects us from concurrent block group
2692 * deletes too (not just cache_write_mutex).
2693 */
2694 if (!list_empty(&dirty)) {
2695 spin_unlock(&cur_trans->dirty_bgs_lock);
2696 goto again;
2697 }
2698 spin_unlock(&cur_trans->dirty_bgs_lock);
2699 } else if (ret < 0) {
2700 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2701 }
2702
2703 btrfs_free_path(path);
2704 return ret;
2705}
2706
2707int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2708{
2709 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2710 struct btrfs_block_group *cache;
77745c05
JB
2711 struct btrfs_transaction *cur_trans = trans->transaction;
2712 int ret = 0;
2713 int should_put;
2714 struct btrfs_path *path;
2715 struct list_head *io = &cur_trans->io_bgs;
2716 int num_started = 0;
2717
2718 path = btrfs_alloc_path();
2719 if (!path)
2720 return -ENOMEM;
2721
2722 /*
2723 * Even though we are in the critical section of the transaction commit,
2724 * we can still have concurrent tasks adding elements to this
2725 * transaction's list of dirty block groups. These tasks correspond to
2726 * endio free space workers started when writeback finishes for a
2727 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2728 * allocate new block groups as a result of COWing nodes of the root
2729 * tree when updating the free space inode. The writeback for the space
2730 * caches is triggered by an earlier call to
2731 * btrfs_start_dirty_block_groups() and iterations of the following
2732 * loop.
2733 * Also we want to do the cache_save_setup first and then run the
2734 * delayed refs to make sure we have the best chance at doing this all
2735 * in one shot.
2736 */
2737 spin_lock(&cur_trans->dirty_bgs_lock);
2738 while (!list_empty(&cur_trans->dirty_bgs)) {
2739 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 2740 struct btrfs_block_group,
77745c05
JB
2741 dirty_list);
2742
2743 /*
2744 * This can happen if cache_save_setup re-dirties a block group
2745 * that is already under IO. Just wait for it to finish and
2746 * then do it all again
2747 */
2748 if (!list_empty(&cache->io_list)) {
2749 spin_unlock(&cur_trans->dirty_bgs_lock);
2750 list_del_init(&cache->io_list);
2751 btrfs_wait_cache_io(trans, cache, path);
2752 btrfs_put_block_group(cache);
2753 spin_lock(&cur_trans->dirty_bgs_lock);
2754 }
2755
2756 /*
2757 * Don't remove from the dirty list until after we've waited on
2758 * any pending IO
2759 */
2760 list_del_init(&cache->dirty_list);
2761 spin_unlock(&cur_trans->dirty_bgs_lock);
2762 should_put = 1;
2763
2764 cache_save_setup(cache, trans, path);
2765
2766 if (!ret)
2767 ret = btrfs_run_delayed_refs(trans,
2768 (unsigned long) -1);
2769
2770 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2771 cache->io_ctl.inode = NULL;
2772 ret = btrfs_write_out_cache(trans, cache, path);
2773 if (ret == 0 && cache->io_ctl.inode) {
2774 num_started++;
2775 should_put = 0;
2776 list_add_tail(&cache->io_list, io);
2777 } else {
2778 /*
2779 * If we failed to write the cache, the
2780 * generation will be bad and life goes on
2781 */
2782 ret = 0;
2783 }
2784 }
2785 if (!ret) {
2786 ret = write_one_cache_group(trans, path, cache);
2787 /*
2788 * One of the free space endio workers might have
2789 * created a new block group while updating a free space
2790 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2791 * and hasn't released its transaction handle yet, in
2792 * which case the new block group is still attached to
2793 * its transaction handle and its creation has not
2794 * finished yet (no block group item in the extent tree
2795 * yet, etc). If this is the case, wait for all free
2796 * space endio workers to finish and retry. This is a
2797 * a very rare case so no need for a more efficient and
2798 * complex approach.
2799 */
2800 if (ret == -ENOENT) {
2801 wait_event(cur_trans->writer_wait,
2802 atomic_read(&cur_trans->num_writers) == 1);
2803 ret = write_one_cache_group(trans, path, cache);
2804 }
2805 if (ret)
2806 btrfs_abort_transaction(trans, ret);
2807 }
2808
2809 /* If its not on the io list, we need to put the block group */
2810 if (should_put)
2811 btrfs_put_block_group(cache);
2812 btrfs_delayed_refs_rsv_release(fs_info, 1);
2813 spin_lock(&cur_trans->dirty_bgs_lock);
2814 }
2815 spin_unlock(&cur_trans->dirty_bgs_lock);
2816
2817 /*
2818 * Refer to the definition of io_bgs member for details why it's safe
2819 * to use it without any locking
2820 */
2821 while (!list_empty(io)) {
32da5386 2822 cache = list_first_entry(io, struct btrfs_block_group,
77745c05
JB
2823 io_list);
2824 list_del_init(&cache->io_list);
2825 btrfs_wait_cache_io(trans, cache, path);
2826 btrfs_put_block_group(cache);
2827 }
2828
2829 btrfs_free_path(path);
2830 return ret;
2831}
606d1bf1
JB
2832
2833int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2834 u64 bytenr, u64 num_bytes, int alloc)
2835{
2836 struct btrfs_fs_info *info = trans->fs_info;
32da5386 2837 struct btrfs_block_group *cache = NULL;
606d1bf1
JB
2838 u64 total = num_bytes;
2839 u64 old_val;
2840 u64 byte_in_group;
2841 int factor;
2842 int ret = 0;
2843
2844 /* Block accounting for super block */
2845 spin_lock(&info->delalloc_root_lock);
2846 old_val = btrfs_super_bytes_used(info->super_copy);
2847 if (alloc)
2848 old_val += num_bytes;
2849 else
2850 old_val -= num_bytes;
2851 btrfs_set_super_bytes_used(info->super_copy, old_val);
2852 spin_unlock(&info->delalloc_root_lock);
2853
2854 while (total) {
2855 cache = btrfs_lookup_block_group(info, bytenr);
2856 if (!cache) {
2857 ret = -ENOENT;
2858 break;
2859 }
2860 factor = btrfs_bg_type_to_factor(cache->flags);
2861
2862 /*
2863 * If this block group has free space cache written out, we
2864 * need to make sure to load it if we are removing space. This
2865 * is because we need the unpinning stage to actually add the
2866 * space back to the block group, otherwise we will leak space.
2867 */
32da5386 2868 if (!alloc && !btrfs_block_group_done(cache))
606d1bf1
JB
2869 btrfs_cache_block_group(cache, 1);
2870
b3470b5d
DS
2871 byte_in_group = bytenr - cache->start;
2872 WARN_ON(byte_in_group > cache->length);
606d1bf1
JB
2873
2874 spin_lock(&cache->space_info->lock);
2875 spin_lock(&cache->lock);
2876
2877 if (btrfs_test_opt(info, SPACE_CACHE) &&
2878 cache->disk_cache_state < BTRFS_DC_CLEAR)
2879 cache->disk_cache_state = BTRFS_DC_CLEAR;
2880
bf38be65 2881 old_val = cache->used;
b3470b5d 2882 num_bytes = min(total, cache->length - byte_in_group);
606d1bf1
JB
2883 if (alloc) {
2884 old_val += num_bytes;
bf38be65 2885 cache->used = old_val;
606d1bf1
JB
2886 cache->reserved -= num_bytes;
2887 cache->space_info->bytes_reserved -= num_bytes;
2888 cache->space_info->bytes_used += num_bytes;
2889 cache->space_info->disk_used += num_bytes * factor;
2890 spin_unlock(&cache->lock);
2891 spin_unlock(&cache->space_info->lock);
2892 } else {
2893 old_val -= num_bytes;
bf38be65 2894 cache->used = old_val;
606d1bf1
JB
2895 cache->pinned += num_bytes;
2896 btrfs_space_info_update_bytes_pinned(info,
2897 cache->space_info, num_bytes);
2898 cache->space_info->bytes_used -= num_bytes;
2899 cache->space_info->disk_used -= num_bytes * factor;
2900 spin_unlock(&cache->lock);
2901 spin_unlock(&cache->space_info->lock);
2902
606d1bf1
JB
2903 percpu_counter_add_batch(
2904 &cache->space_info->total_bytes_pinned,
2905 num_bytes,
2906 BTRFS_TOTAL_BYTES_PINNED_BATCH);
fe119a6e 2907 set_extent_dirty(&trans->transaction->pinned_extents,
606d1bf1
JB
2908 bytenr, bytenr + num_bytes - 1,
2909 GFP_NOFS | __GFP_NOFAIL);
2910 }
2911
2912 spin_lock(&trans->transaction->dirty_bgs_lock);
2913 if (list_empty(&cache->dirty_list)) {
2914 list_add_tail(&cache->dirty_list,
2915 &trans->transaction->dirty_bgs);
2916 trans->delayed_ref_updates++;
2917 btrfs_get_block_group(cache);
2918 }
2919 spin_unlock(&trans->transaction->dirty_bgs_lock);
2920
2921 /*
2922 * No longer have used bytes in this block group, queue it for
2923 * deletion. We do this after adding the block group to the
2924 * dirty list to avoid races between cleaner kthread and space
2925 * cache writeout.
2926 */
6e80d4f8
DZ
2927 if (!alloc && old_val == 0) {
2928 if (!btrfs_test_opt(info, DISCARD_ASYNC))
2929 btrfs_mark_bg_unused(cache);
2930 }
606d1bf1
JB
2931
2932 btrfs_put_block_group(cache);
2933 total -= num_bytes;
2934 bytenr += num_bytes;
2935 }
2936
2937 /* Modified block groups are accounted for in the delayed_refs_rsv. */
2938 btrfs_update_delayed_refs_rsv(trans);
2939 return ret;
2940}
2941
2942/**
2943 * btrfs_add_reserved_bytes - update the block_group and space info counters
2944 * @cache: The cache we are manipulating
2945 * @ram_bytes: The number of bytes of file content, and will be same to
2946 * @num_bytes except for the compress path.
2947 * @num_bytes: The number of bytes in question
2948 * @delalloc: The blocks are allocated for the delalloc write
2949 *
2950 * This is called by the allocator when it reserves space. If this is a
2951 * reservation and the block group has become read only we cannot make the
2952 * reservation and return -EAGAIN, otherwise this function always succeeds.
2953 */
32da5386 2954int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
2955 u64 ram_bytes, u64 num_bytes, int delalloc)
2956{
2957 struct btrfs_space_info *space_info = cache->space_info;
2958 int ret = 0;
2959
2960 spin_lock(&space_info->lock);
2961 spin_lock(&cache->lock);
2962 if (cache->ro) {
2963 ret = -EAGAIN;
2964 } else {
2965 cache->reserved += num_bytes;
2966 space_info->bytes_reserved += num_bytes;
a43c3835
JB
2967 trace_btrfs_space_reservation(cache->fs_info, "space_info",
2968 space_info->flags, num_bytes, 1);
606d1bf1
JB
2969 btrfs_space_info_update_bytes_may_use(cache->fs_info,
2970 space_info, -ram_bytes);
2971 if (delalloc)
2972 cache->delalloc_bytes += num_bytes;
2973 }
2974 spin_unlock(&cache->lock);
2975 spin_unlock(&space_info->lock);
2976 return ret;
2977}
2978
2979/**
2980 * btrfs_free_reserved_bytes - update the block_group and space info counters
2981 * @cache: The cache we are manipulating
2982 * @num_bytes: The number of bytes in question
2983 * @delalloc: The blocks are allocated for the delalloc write
2984 *
2985 * This is called by somebody who is freeing space that was never actually used
2986 * on disk. For example if you reserve some space for a new leaf in transaction
2987 * A and before transaction A commits you free that leaf, you call this with
2988 * reserve set to 0 in order to clear the reservation.
2989 */
32da5386 2990void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
2991 u64 num_bytes, int delalloc)
2992{
2993 struct btrfs_space_info *space_info = cache->space_info;
2994
2995 spin_lock(&space_info->lock);
2996 spin_lock(&cache->lock);
2997 if (cache->ro)
2998 space_info->bytes_readonly += num_bytes;
2999 cache->reserved -= num_bytes;
3000 space_info->bytes_reserved -= num_bytes;
3001 space_info->max_extent_size = 0;
3002
3003 if (delalloc)
3004 cache->delalloc_bytes -= num_bytes;
3005 spin_unlock(&cache->lock);
3006 spin_unlock(&space_info->lock);
3007}
07730d87
JB
3008
3009static void force_metadata_allocation(struct btrfs_fs_info *info)
3010{
3011 struct list_head *head = &info->space_info;
3012 struct btrfs_space_info *found;
3013
3014 rcu_read_lock();
3015 list_for_each_entry_rcu(found, head, list) {
3016 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3017 found->force_alloc = CHUNK_ALLOC_FORCE;
3018 }
3019 rcu_read_unlock();
3020}
3021
3022static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3023 struct btrfs_space_info *sinfo, int force)
3024{
3025 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3026 u64 thresh;
3027
3028 if (force == CHUNK_ALLOC_FORCE)
3029 return 1;
3030
3031 /*
3032 * in limited mode, we want to have some free space up to
3033 * about 1% of the FS size.
3034 */
3035 if (force == CHUNK_ALLOC_LIMITED) {
3036 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3037 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3038
3039 if (sinfo->total_bytes - bytes_used < thresh)
3040 return 1;
3041 }
3042
3043 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3044 return 0;
3045 return 1;
3046}
3047
3048int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3049{
3050 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3051
3052 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3053}
3054
3055/*
3056 * If force is CHUNK_ALLOC_FORCE:
3057 * - return 1 if it successfully allocates a chunk,
3058 * - return errors including -ENOSPC otherwise.
3059 * If force is NOT CHUNK_ALLOC_FORCE:
3060 * - return 0 if it doesn't need to allocate a new chunk,
3061 * - return 1 if it successfully allocates a chunk,
3062 * - return errors including -ENOSPC otherwise.
3063 */
3064int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3065 enum btrfs_chunk_alloc_enum force)
3066{
3067 struct btrfs_fs_info *fs_info = trans->fs_info;
3068 struct btrfs_space_info *space_info;
3069 bool wait_for_alloc = false;
3070 bool should_alloc = false;
3071 int ret = 0;
3072
3073 /* Don't re-enter if we're already allocating a chunk */
3074 if (trans->allocating_chunk)
3075 return -ENOSPC;
3076
3077 space_info = btrfs_find_space_info(fs_info, flags);
3078 ASSERT(space_info);
3079
3080 do {
3081 spin_lock(&space_info->lock);
3082 if (force < space_info->force_alloc)
3083 force = space_info->force_alloc;
3084 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3085 if (space_info->full) {
3086 /* No more free physical space */
3087 if (should_alloc)
3088 ret = -ENOSPC;
3089 else
3090 ret = 0;
3091 spin_unlock(&space_info->lock);
3092 return ret;
3093 } else if (!should_alloc) {
3094 spin_unlock(&space_info->lock);
3095 return 0;
3096 } else if (space_info->chunk_alloc) {
3097 /*
3098 * Someone is already allocating, so we need to block
3099 * until this someone is finished and then loop to
3100 * recheck if we should continue with our allocation
3101 * attempt.
3102 */
3103 wait_for_alloc = true;
3104 spin_unlock(&space_info->lock);
3105 mutex_lock(&fs_info->chunk_mutex);
3106 mutex_unlock(&fs_info->chunk_mutex);
3107 } else {
3108 /* Proceed with allocation */
3109 space_info->chunk_alloc = 1;
3110 wait_for_alloc = false;
3111 spin_unlock(&space_info->lock);
3112 }
3113
3114 cond_resched();
3115 } while (wait_for_alloc);
3116
3117 mutex_lock(&fs_info->chunk_mutex);
3118 trans->allocating_chunk = true;
3119
3120 /*
3121 * If we have mixed data/metadata chunks we want to make sure we keep
3122 * allocating mixed chunks instead of individual chunks.
3123 */
3124 if (btrfs_mixed_space_info(space_info))
3125 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3126
3127 /*
3128 * if we're doing a data chunk, go ahead and make sure that
3129 * we keep a reasonable number of metadata chunks allocated in the
3130 * FS as well.
3131 */
3132 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3133 fs_info->data_chunk_allocations++;
3134 if (!(fs_info->data_chunk_allocations %
3135 fs_info->metadata_ratio))
3136 force_metadata_allocation(fs_info);
3137 }
3138
3139 /*
3140 * Check if we have enough space in SYSTEM chunk because we may need
3141 * to update devices.
3142 */
3143 check_system_chunk(trans, flags);
3144
3145 ret = btrfs_alloc_chunk(trans, flags);
3146 trans->allocating_chunk = false;
3147
3148 spin_lock(&space_info->lock);
3149 if (ret < 0) {
3150 if (ret == -ENOSPC)
3151 space_info->full = 1;
3152 else
3153 goto out;
3154 } else {
3155 ret = 1;
3156 space_info->max_extent_size = 0;
3157 }
3158
3159 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3160out:
3161 space_info->chunk_alloc = 0;
3162 spin_unlock(&space_info->lock);
3163 mutex_unlock(&fs_info->chunk_mutex);
3164 /*
3165 * When we allocate a new chunk we reserve space in the chunk block
3166 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3167 * add new nodes/leafs to it if we end up needing to do it when
3168 * inserting the chunk item and updating device items as part of the
3169 * second phase of chunk allocation, performed by
3170 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3171 * large number of new block groups to create in our transaction
3172 * handle's new_bgs list to avoid exhausting the chunk block reserve
3173 * in extreme cases - like having a single transaction create many new
3174 * block groups when starting to write out the free space caches of all
3175 * the block groups that were made dirty during the lifetime of the
3176 * transaction.
3177 */
3178 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3179 btrfs_create_pending_block_groups(trans);
3180
3181 return ret;
3182}
3183
3184static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3185{
3186 u64 num_dev;
3187
3188 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3189 if (!num_dev)
3190 num_dev = fs_info->fs_devices->rw_devices;
3191
3192 return num_dev;
3193}
3194
3195/*
a9143bd3 3196 * Reserve space in the system space for allocating or removing a chunk
07730d87
JB
3197 */
3198void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3199{
3200 struct btrfs_fs_info *fs_info = trans->fs_info;
3201 struct btrfs_space_info *info;
3202 u64 left;
3203 u64 thresh;
3204 int ret = 0;
3205 u64 num_devs;
3206
3207 /*
3208 * Needed because we can end up allocating a system chunk and for an
3209 * atomic and race free space reservation in the chunk block reserve.
3210 */
3211 lockdep_assert_held(&fs_info->chunk_mutex);
3212
3213 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3214 spin_lock(&info->lock);
3215 left = info->total_bytes - btrfs_space_info_used(info, true);
3216 spin_unlock(&info->lock);
3217
3218 num_devs = get_profile_num_devs(fs_info, type);
3219
3220 /* num_devs device items to update and 1 chunk item to add or remove */
2bd36e7b
JB
3221 thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3222 btrfs_calc_insert_metadata_size(fs_info, 1);
07730d87
JB
3223
3224 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3225 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3226 left, thresh, type);
3227 btrfs_dump_space_info(fs_info, info, 0, 0);
3228 }
3229
3230 if (left < thresh) {
3231 u64 flags = btrfs_system_alloc_profile(fs_info);
3232
3233 /*
3234 * Ignore failure to create system chunk. We might end up not
3235 * needing it, as we might not need to COW all nodes/leafs from
3236 * the paths we visit in the chunk tree (they were already COWed
3237 * or created in the current transaction for example).
3238 */
3239 ret = btrfs_alloc_chunk(trans, flags);
3240 }
3241
3242 if (!ret) {
3243 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3244 &fs_info->chunk_block_rsv,
3245 thresh, BTRFS_RESERVE_NO_FLUSH);
3246 if (!ret)
3247 trans->chunk_bytes_reserved += thresh;
3248 }
3249}
3250
3e43c279
JB
3251void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3252{
32da5386 3253 struct btrfs_block_group *block_group;
3e43c279
JB
3254 u64 last = 0;
3255
3256 while (1) {
3257 struct inode *inode;
3258
3259 block_group = btrfs_lookup_first_block_group(info, last);
3260 while (block_group) {
3261 btrfs_wait_block_group_cache_done(block_group);
3262 spin_lock(&block_group->lock);
3263 if (block_group->iref)
3264 break;
3265 spin_unlock(&block_group->lock);
3266 block_group = btrfs_next_block_group(block_group);
3267 }
3268 if (!block_group) {
3269 if (last == 0)
3270 break;
3271 last = 0;
3272 continue;
3273 }
3274
3275 inode = block_group->inode;
3276 block_group->iref = 0;
3277 block_group->inode = NULL;
3278 spin_unlock(&block_group->lock);
3279 ASSERT(block_group->io_ctl.inode == NULL);
3280 iput(inode);
b3470b5d 3281 last = block_group->start + block_group->length;
3e43c279
JB
3282 btrfs_put_block_group(block_group);
3283 }
3284}
3285
3286/*
3287 * Must be called only after stopping all workers, since we could have block
3288 * group caching kthreads running, and therefore they could race with us if we
3289 * freed the block groups before stopping them.
3290 */
3291int btrfs_free_block_groups(struct btrfs_fs_info *info)
3292{
32da5386 3293 struct btrfs_block_group *block_group;
3e43c279
JB
3294 struct btrfs_space_info *space_info;
3295 struct btrfs_caching_control *caching_ctl;
3296 struct rb_node *n;
3297
3298 down_write(&info->commit_root_sem);
3299 while (!list_empty(&info->caching_block_groups)) {
3300 caching_ctl = list_entry(info->caching_block_groups.next,
3301 struct btrfs_caching_control, list);
3302 list_del(&caching_ctl->list);
3303 btrfs_put_caching_control(caching_ctl);
3304 }
3305 up_write(&info->commit_root_sem);
3306
3307 spin_lock(&info->unused_bgs_lock);
3308 while (!list_empty(&info->unused_bgs)) {
3309 block_group = list_first_entry(&info->unused_bgs,
32da5386 3310 struct btrfs_block_group,
3e43c279
JB
3311 bg_list);
3312 list_del_init(&block_group->bg_list);
3313 btrfs_put_block_group(block_group);
3314 }
3315 spin_unlock(&info->unused_bgs_lock);
3316
3317 spin_lock(&info->block_group_cache_lock);
3318 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
32da5386 3319 block_group = rb_entry(n, struct btrfs_block_group,
3e43c279
JB
3320 cache_node);
3321 rb_erase(&block_group->cache_node,
3322 &info->block_group_cache_tree);
3323 RB_CLEAR_NODE(&block_group->cache_node);
3324 spin_unlock(&info->block_group_cache_lock);
3325
3326 down_write(&block_group->space_info->groups_sem);
3327 list_del(&block_group->list);
3328 up_write(&block_group->space_info->groups_sem);
3329
3330 /*
3331 * We haven't cached this block group, which means we could
3332 * possibly have excluded extents on this block group.
3333 */
3334 if (block_group->cached == BTRFS_CACHE_NO ||
3335 block_group->cached == BTRFS_CACHE_ERROR)
3336 btrfs_free_excluded_extents(block_group);
3337
3338 btrfs_remove_free_space_cache(block_group);
3339 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3340 ASSERT(list_empty(&block_group->dirty_list));
3341 ASSERT(list_empty(&block_group->io_list));
3342 ASSERT(list_empty(&block_group->bg_list));
3343 ASSERT(atomic_read(&block_group->count) == 1);
3344 btrfs_put_block_group(block_group);
3345
3346 spin_lock(&info->block_group_cache_lock);
3347 }
3348 spin_unlock(&info->block_group_cache_lock);
3349
3350 /*
3351 * Now that all the block groups are freed, go through and free all the
3352 * space_info structs. This is only called during the final stages of
3353 * unmount, and so we know nobody is using them. We call
3354 * synchronize_rcu() once before we start, just to be on the safe side.
3355 */
3356 synchronize_rcu();
3357
3358 btrfs_release_global_block_rsv(info);
3359
3360 while (!list_empty(&info->space_info)) {
3361 space_info = list_entry(info->space_info.next,
3362 struct btrfs_space_info,
3363 list);
3364
3365 /*
3366 * Do not hide this behind enospc_debug, this is actually
3367 * important and indicates a real bug if this happens.
3368 */
3369 if (WARN_ON(space_info->bytes_pinned > 0 ||
3370 space_info->bytes_reserved > 0 ||
3371 space_info->bytes_may_use > 0))
3372 btrfs_dump_space_info(info, space_info, 0, 0);
3373 list_del(&space_info->list);
3374 btrfs_sysfs_remove_space_info(space_info);
3375 }
3376 return 0;
3377}