btrfs: add (the only possible) __exit annotation
[linux-2.6-block.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
f54de068 19#include <linux/mm.h>
afce772e 20#include <linux/rbtree.h>
00142756 21#include <trace/events/btrfs.h>
a542ad1b
JS
22#include "ctree.h"
23#include "disk-io.h"
24#include "backref.h"
8da6d581
JS
25#include "ulist.h"
26#include "transaction.h"
27#include "delayed-ref.h"
b916a59a 28#include "locking.h"
a542ad1b 29
dc046b10
JB
30/* Just an arbitrary number so we can be sure this happened */
31#define BACKREF_FOUND_SHARED 6
32
976b1908
JS
33struct extent_inode_elem {
34 u64 inum;
35 u64 offset;
36 struct extent_inode_elem *next;
37};
38
73980bec
JM
39static int check_extent_in_eb(const struct btrfs_key *key,
40 const struct extent_buffer *eb,
41 const struct btrfs_file_extent_item *fi,
42 u64 extent_item_pos,
c995ab3c
ZB
43 struct extent_inode_elem **eie,
44 bool ignore_offset)
976b1908 45{
8ca15e05 46 u64 offset = 0;
976b1908
JS
47 struct extent_inode_elem *e;
48
c995ab3c
ZB
49 if (!ignore_offset &&
50 !btrfs_file_extent_compression(eb, fi) &&
8ca15e05
JB
51 !btrfs_file_extent_encryption(eb, fi) &&
52 !btrfs_file_extent_other_encoding(eb, fi)) {
53 u64 data_offset;
54 u64 data_len;
976b1908 55
8ca15e05
JB
56 data_offset = btrfs_file_extent_offset(eb, fi);
57 data_len = btrfs_file_extent_num_bytes(eb, fi);
58
59 if (extent_item_pos < data_offset ||
60 extent_item_pos >= data_offset + data_len)
61 return 1;
62 offset = extent_item_pos - data_offset;
63 }
976b1908
JS
64
65 e = kmalloc(sizeof(*e), GFP_NOFS);
66 if (!e)
67 return -ENOMEM;
68
69 e->next = *eie;
70 e->inum = key->objectid;
8ca15e05 71 e->offset = key->offset + offset;
976b1908
JS
72 *eie = e;
73
74 return 0;
75}
76
f05c4746
WS
77static void free_inode_elem_list(struct extent_inode_elem *eie)
78{
79 struct extent_inode_elem *eie_next;
80
81 for (; eie; eie = eie_next) {
82 eie_next = eie->next;
83 kfree(eie);
84 }
85}
86
73980bec
JM
87static int find_extent_in_eb(const struct extent_buffer *eb,
88 u64 wanted_disk_byte, u64 extent_item_pos,
c995ab3c
ZB
89 struct extent_inode_elem **eie,
90 bool ignore_offset)
976b1908
JS
91{
92 u64 disk_byte;
93 struct btrfs_key key;
94 struct btrfs_file_extent_item *fi;
95 int slot;
96 int nritems;
97 int extent_type;
98 int ret;
99
100 /*
101 * from the shared data ref, we only have the leaf but we need
102 * the key. thus, we must look into all items and see that we
103 * find one (some) with a reference to our extent item.
104 */
105 nritems = btrfs_header_nritems(eb);
106 for (slot = 0; slot < nritems; ++slot) {
107 btrfs_item_key_to_cpu(eb, &key, slot);
108 if (key.type != BTRFS_EXTENT_DATA_KEY)
109 continue;
110 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
111 extent_type = btrfs_file_extent_type(eb, fi);
112 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
113 continue;
114 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
115 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
116 if (disk_byte != wanted_disk_byte)
117 continue;
118
c995ab3c 119 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
976b1908
JS
120 if (ret < 0)
121 return ret;
122 }
123
124 return 0;
125}
126
86d5f994
EN
127struct preftree {
128 struct rb_root root;
6c336b21 129 unsigned int count;
86d5f994
EN
130};
131
6c336b21 132#define PREFTREE_INIT { .root = RB_ROOT, .count = 0 }
86d5f994
EN
133
134struct preftrees {
135 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
136 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
137 struct preftree indirect_missing_keys;
138};
139
3ec4d323
EN
140/*
141 * Checks for a shared extent during backref search.
142 *
143 * The share_count tracks prelim_refs (direct and indirect) having a
144 * ref->count >0:
145 * - incremented when a ref->count transitions to >0
146 * - decremented when a ref->count transitions to <1
147 */
148struct share_check {
149 u64 root_objectid;
150 u64 inum;
151 int share_count;
152};
153
154static inline int extent_is_shared(struct share_check *sc)
155{
156 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
157}
158
b9e9a6cb
WS
159static struct kmem_cache *btrfs_prelim_ref_cache;
160
161int __init btrfs_prelim_ref_init(void)
162{
163 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
e0c476b1 164 sizeof(struct prelim_ref),
b9e9a6cb 165 0,
fba4b697 166 SLAB_MEM_SPREAD,
b9e9a6cb
WS
167 NULL);
168 if (!btrfs_prelim_ref_cache)
169 return -ENOMEM;
170 return 0;
171}
172
173void btrfs_prelim_ref_exit(void)
174{
5598e900 175 kmem_cache_destroy(btrfs_prelim_ref_cache);
b9e9a6cb
WS
176}
177
86d5f994
EN
178static void free_pref(struct prelim_ref *ref)
179{
180 kmem_cache_free(btrfs_prelim_ref_cache, ref);
181}
182
183/*
184 * Return 0 when both refs are for the same block (and can be merged).
185 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
186 * indicates a 'higher' block.
187 */
188static int prelim_ref_compare(struct prelim_ref *ref1,
189 struct prelim_ref *ref2)
190{
191 if (ref1->level < ref2->level)
192 return -1;
193 if (ref1->level > ref2->level)
194 return 1;
195 if (ref1->root_id < ref2->root_id)
196 return -1;
197 if (ref1->root_id > ref2->root_id)
198 return 1;
199 if (ref1->key_for_search.type < ref2->key_for_search.type)
200 return -1;
201 if (ref1->key_for_search.type > ref2->key_for_search.type)
202 return 1;
203 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
204 return -1;
205 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
206 return 1;
207 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
208 return -1;
209 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
210 return 1;
211 if (ref1->parent < ref2->parent)
212 return -1;
213 if (ref1->parent > ref2->parent)
214 return 1;
215
216 return 0;
217}
218
ccc8dc75
CIK
219static void update_share_count(struct share_check *sc, int oldcount,
220 int newcount)
3ec4d323
EN
221{
222 if ((!sc) || (oldcount == 0 && newcount < 1))
223 return;
224
225 if (oldcount > 0 && newcount < 1)
226 sc->share_count--;
227 else if (oldcount < 1 && newcount > 0)
228 sc->share_count++;
229}
230
86d5f994
EN
231/*
232 * Add @newref to the @root rbtree, merging identical refs.
233 *
3ec4d323 234 * Callers should assume that newref has been freed after calling.
86d5f994 235 */
00142756
JM
236static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
237 struct preftree *preftree,
3ec4d323
EN
238 struct prelim_ref *newref,
239 struct share_check *sc)
86d5f994
EN
240{
241 struct rb_root *root;
242 struct rb_node **p;
243 struct rb_node *parent = NULL;
244 struct prelim_ref *ref;
245 int result;
246
247 root = &preftree->root;
248 p = &root->rb_node;
249
250 while (*p) {
251 parent = *p;
252 ref = rb_entry(parent, struct prelim_ref, rbnode);
253 result = prelim_ref_compare(ref, newref);
254 if (result < 0) {
255 p = &(*p)->rb_left;
256 } else if (result > 0) {
257 p = &(*p)->rb_right;
258 } else {
259 /* Identical refs, merge them and free @newref */
260 struct extent_inode_elem *eie = ref->inode_list;
261
262 while (eie && eie->next)
263 eie = eie->next;
264
265 if (!eie)
266 ref->inode_list = newref->inode_list;
267 else
268 eie->next = newref->inode_list;
00142756
JM
269 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
270 preftree->count);
3ec4d323
EN
271 /*
272 * A delayed ref can have newref->count < 0.
273 * The ref->count is updated to follow any
274 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
275 */
276 update_share_count(sc, ref->count,
277 ref->count + newref->count);
86d5f994
EN
278 ref->count += newref->count;
279 free_pref(newref);
280 return;
281 }
282 }
283
3ec4d323 284 update_share_count(sc, 0, newref->count);
6c336b21 285 preftree->count++;
00142756 286 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
86d5f994
EN
287 rb_link_node(&newref->rbnode, parent, p);
288 rb_insert_color(&newref->rbnode, root);
289}
290
291/*
292 * Release the entire tree. We don't care about internal consistency so
293 * just free everything and then reset the tree root.
294 */
295static void prelim_release(struct preftree *preftree)
296{
297 struct prelim_ref *ref, *next_ref;
298
299 rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
300 rbnode)
301 free_pref(ref);
302
303 preftree->root = RB_ROOT;
6c336b21 304 preftree->count = 0;
86d5f994
EN
305}
306
d5c88b73
JS
307/*
308 * the rules for all callers of this function are:
309 * - obtaining the parent is the goal
310 * - if you add a key, you must know that it is a correct key
311 * - if you cannot add the parent or a correct key, then we will look into the
312 * block later to set a correct key
313 *
314 * delayed refs
315 * ============
316 * backref type | shared | indirect | shared | indirect
317 * information | tree | tree | data | data
318 * --------------------+--------+----------+--------+----------
319 * parent logical | y | - | - | -
320 * key to resolve | - | y | y | y
321 * tree block logical | - | - | - | -
322 * root for resolving | y | y | y | y
323 *
324 * - column 1: we've the parent -> done
325 * - column 2, 3, 4: we use the key to find the parent
326 *
327 * on disk refs (inline or keyed)
328 * ==============================
329 * backref type | shared | indirect | shared | indirect
330 * information | tree | tree | data | data
331 * --------------------+--------+----------+--------+----------
332 * parent logical | y | - | y | -
333 * key to resolve | - | - | - | y
334 * tree block logical | y | y | y | y
335 * root for resolving | - | y | y | y
336 *
337 * - column 1, 3: we've the parent -> done
338 * - column 2: we take the first key from the block to find the parent
e0c476b1 339 * (see add_missing_keys)
d5c88b73
JS
340 * - column 4: we use the key to find the parent
341 *
342 * additional information that's available but not required to find the parent
343 * block might help in merging entries to gain some speed.
344 */
00142756
JM
345static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
346 struct preftree *preftree, u64 root_id,
e0c476b1 347 const struct btrfs_key *key, int level, u64 parent,
3ec4d323
EN
348 u64 wanted_disk_byte, int count,
349 struct share_check *sc, gfp_t gfp_mask)
8da6d581 350{
e0c476b1 351 struct prelim_ref *ref;
8da6d581 352
48ec4736
LB
353 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
354 return 0;
355
b9e9a6cb 356 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
357 if (!ref)
358 return -ENOMEM;
359
360 ref->root_id = root_id;
d6589101 361 if (key) {
d5c88b73 362 ref->key_for_search = *key;
d6589101
FM
363 /*
364 * We can often find data backrefs with an offset that is too
365 * large (>= LLONG_MAX, maximum allowed file offset) due to
366 * underflows when subtracting a file's offset with the data
367 * offset of its corresponding extent data item. This can
368 * happen for example in the clone ioctl.
369 * So if we detect such case we set the search key's offset to
370 * zero to make sure we will find the matching file extent item
371 * at add_all_parents(), otherwise we will miss it because the
372 * offset taken form the backref is much larger then the offset
373 * of the file extent item. This can make us scan a very large
374 * number of file extent items, but at least it will not make
375 * us miss any.
376 * This is an ugly workaround for a behaviour that should have
377 * never existed, but it does and a fix for the clone ioctl
378 * would touch a lot of places, cause backwards incompatibility
379 * and would not fix the problem for extents cloned with older
380 * kernels.
381 */
382 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
383 ref->key_for_search.offset >= LLONG_MAX)
384 ref->key_for_search.offset = 0;
385 } else {
d5c88b73 386 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
d6589101 387 }
8da6d581 388
3301958b 389 ref->inode_list = NULL;
8da6d581
JS
390 ref->level = level;
391 ref->count = count;
392 ref->parent = parent;
393 ref->wanted_disk_byte = wanted_disk_byte;
3ec4d323
EN
394 prelim_ref_insert(fs_info, preftree, ref, sc);
395 return extent_is_shared(sc);
8da6d581
JS
396}
397
86d5f994 398/* direct refs use root == 0, key == NULL */
00142756
JM
399static int add_direct_ref(const struct btrfs_fs_info *fs_info,
400 struct preftrees *preftrees, int level, u64 parent,
3ec4d323
EN
401 u64 wanted_disk_byte, int count,
402 struct share_check *sc, gfp_t gfp_mask)
86d5f994 403{
00142756 404 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
3ec4d323 405 parent, wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
406}
407
408/* indirect refs use parent == 0 */
00142756
JM
409static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
410 struct preftrees *preftrees, u64 root_id,
86d5f994 411 const struct btrfs_key *key, int level,
3ec4d323
EN
412 u64 wanted_disk_byte, int count,
413 struct share_check *sc, gfp_t gfp_mask)
86d5f994
EN
414{
415 struct preftree *tree = &preftrees->indirect;
416
417 if (!key)
418 tree = &preftrees->indirect_missing_keys;
00142756 419 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
3ec4d323 420 wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
421}
422
8da6d581 423static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
e0c476b1 424 struct ulist *parents, struct prelim_ref *ref,
44853868 425 int level, u64 time_seq, const u64 *extent_item_pos,
c995ab3c 426 u64 total_refs, bool ignore_offset)
8da6d581 427{
69bca40d
AB
428 int ret = 0;
429 int slot;
430 struct extent_buffer *eb;
431 struct btrfs_key key;
7ef81ac8 432 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 433 struct btrfs_file_extent_item *fi;
ed8c4913 434 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 435 u64 disk_byte;
7ef81ac8
JB
436 u64 wanted_disk_byte = ref->wanted_disk_byte;
437 u64 count = 0;
8da6d581 438
69bca40d
AB
439 if (level != 0) {
440 eb = path->nodes[level];
441 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
442 if (ret < 0)
443 return ret;
8da6d581 444 return 0;
69bca40d 445 }
8da6d581
JS
446
447 /*
69bca40d
AB
448 * We normally enter this function with the path already pointing to
449 * the first item to check. But sometimes, we may enter it with
450 * slot==nritems. In that case, go to the next leaf before we continue.
8da6d581 451 */
21633fc6 452 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
de47c9d3 453 if (time_seq == SEQ_LAST)
21633fc6
QW
454 ret = btrfs_next_leaf(root, path);
455 else
456 ret = btrfs_next_old_leaf(root, path, time_seq);
457 }
8da6d581 458
44853868 459 while (!ret && count < total_refs) {
8da6d581 460 eb = path->nodes[0];
69bca40d
AB
461 slot = path->slots[0];
462
463 btrfs_item_key_to_cpu(eb, &key, slot);
464
465 if (key.objectid != key_for_search->objectid ||
466 key.type != BTRFS_EXTENT_DATA_KEY)
467 break;
468
469 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
470 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
471
472 if (disk_byte == wanted_disk_byte) {
473 eie = NULL;
ed8c4913 474 old = NULL;
7ef81ac8 475 count++;
69bca40d
AB
476 if (extent_item_pos) {
477 ret = check_extent_in_eb(&key, eb, fi,
478 *extent_item_pos,
c995ab3c 479 &eie, ignore_offset);
69bca40d
AB
480 if (ret < 0)
481 break;
482 }
ed8c4913
JB
483 if (ret > 0)
484 goto next;
4eb1f66d
TI
485 ret = ulist_add_merge_ptr(parents, eb->start,
486 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
487 if (ret < 0)
488 break;
489 if (!ret && extent_item_pos) {
490 while (old->next)
491 old = old->next;
492 old->next = eie;
69bca40d 493 }
f05c4746 494 eie = NULL;
8da6d581 495 }
ed8c4913 496next:
de47c9d3 497 if (time_seq == SEQ_LAST)
21633fc6
QW
498 ret = btrfs_next_item(root, path);
499 else
500 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
501 }
502
69bca40d
AB
503 if (ret > 0)
504 ret = 0;
f05c4746
WS
505 else if (ret < 0)
506 free_inode_elem_list(eie);
69bca40d 507 return ret;
8da6d581
JS
508}
509
510/*
511 * resolve an indirect backref in the form (root_id, key, level)
512 * to a logical address
513 */
e0c476b1
JM
514static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
515 struct btrfs_path *path, u64 time_seq,
516 struct prelim_ref *ref, struct ulist *parents,
c995ab3c
ZB
517 const u64 *extent_item_pos, u64 total_refs,
518 bool ignore_offset)
8da6d581 519{
8da6d581
JS
520 struct btrfs_root *root;
521 struct btrfs_key root_key;
8da6d581
JS
522 struct extent_buffer *eb;
523 int ret = 0;
524 int root_level;
525 int level = ref->level;
538f72cd 526 int index;
8da6d581 527
8da6d581
JS
528 root_key.objectid = ref->root_id;
529 root_key.type = BTRFS_ROOT_ITEM_KEY;
530 root_key.offset = (u64)-1;
538f72cd
WS
531
532 index = srcu_read_lock(&fs_info->subvol_srcu);
533
2d9e9776 534 root = btrfs_get_fs_root(fs_info, &root_key, false);
8da6d581 535 if (IS_ERR(root)) {
538f72cd 536 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581
JS
537 ret = PTR_ERR(root);
538 goto out;
539 }
540
f5ee5c9a 541 if (btrfs_is_testing(fs_info)) {
d9ee522b
JB
542 srcu_read_unlock(&fs_info->subvol_srcu, index);
543 ret = -ENOENT;
544 goto out;
545 }
546
9e351cc8
JB
547 if (path->search_commit_root)
548 root_level = btrfs_header_level(root->commit_root);
de47c9d3 549 else if (time_seq == SEQ_LAST)
21633fc6 550 root_level = btrfs_header_level(root->node);
9e351cc8
JB
551 else
552 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 553
538f72cd
WS
554 if (root_level + 1 == level) {
555 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581 556 goto out;
538f72cd 557 }
8da6d581
JS
558
559 path->lowest_level = level;
de47c9d3 560 if (time_seq == SEQ_LAST)
21633fc6
QW
561 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
562 0, 0);
563 else
564 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
565 time_seq);
538f72cd
WS
566
567 /* root node has been locked, we can release @subvol_srcu safely here */
568 srcu_read_unlock(&fs_info->subvol_srcu, index);
569
ab8d0fc4
JM
570 btrfs_debug(fs_info,
571 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
c1c9ff7c
GU
572 ref->root_id, level, ref->count, ret,
573 ref->key_for_search.objectid, ref->key_for_search.type,
574 ref->key_for_search.offset);
8da6d581
JS
575 if (ret < 0)
576 goto out;
577
578 eb = path->nodes[level];
9345457f 579 while (!eb) {
fae7f21c 580 if (WARN_ON(!level)) {
9345457f
JS
581 ret = 1;
582 goto out;
583 }
584 level--;
585 eb = path->nodes[level];
8da6d581
JS
586 }
587
7ef81ac8 588 ret = add_all_parents(root, path, parents, ref, level, time_seq,
c995ab3c 589 extent_item_pos, total_refs, ignore_offset);
8da6d581 590out:
da61d31a
JB
591 path->lowest_level = 0;
592 btrfs_release_path(path);
8da6d581
JS
593 return ret;
594}
595
4dae077a
JM
596static struct extent_inode_elem *
597unode_aux_to_inode_list(struct ulist_node *node)
598{
599 if (!node)
600 return NULL;
601 return (struct extent_inode_elem *)(uintptr_t)node->aux;
602}
603
8da6d581 604/*
86d5f994
EN
605 * We maintain three seperate rbtrees: one for direct refs, one for
606 * indirect refs which have a key, and one for indirect refs which do not
607 * have a key. Each tree does merge on insertion.
608 *
609 * Once all of the references are located, we iterate over the tree of
610 * indirect refs with missing keys. An appropriate key is located and
611 * the ref is moved onto the tree for indirect refs. After all missing
612 * keys are thus located, we iterate over the indirect ref tree, resolve
613 * each reference, and then insert the resolved reference onto the
614 * direct tree (merging there too).
615 *
616 * New backrefs (i.e., for parent nodes) are added to the appropriate
617 * rbtree as they are encountered. The new backrefs are subsequently
618 * resolved as above.
8da6d581 619 */
e0c476b1
JM
620static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
621 struct btrfs_path *path, u64 time_seq,
86d5f994 622 struct preftrees *preftrees,
e0c476b1 623 const u64 *extent_item_pos, u64 total_refs,
c995ab3c 624 struct share_check *sc, bool ignore_offset)
8da6d581
JS
625{
626 int err;
627 int ret = 0;
8da6d581
JS
628 struct ulist *parents;
629 struct ulist_node *node;
cd1b413c 630 struct ulist_iterator uiter;
86d5f994 631 struct rb_node *rnode;
8da6d581
JS
632
633 parents = ulist_alloc(GFP_NOFS);
634 if (!parents)
635 return -ENOMEM;
636
637 /*
86d5f994
EN
638 * We could trade memory usage for performance here by iterating
639 * the tree, allocating new refs for each insertion, and then
640 * freeing the entire indirect tree when we're done. In some test
641 * cases, the tree can grow quite large (~200k objects).
8da6d581 642 */
86d5f994
EN
643 while ((rnode = rb_first(&preftrees->indirect.root))) {
644 struct prelim_ref *ref;
645
646 ref = rb_entry(rnode, struct prelim_ref, rbnode);
647 if (WARN(ref->parent,
648 "BUG: direct ref found in indirect tree")) {
649 ret = -EINVAL;
650 goto out;
651 }
652
653 rb_erase(&ref->rbnode, &preftrees->indirect.root);
6c336b21 654 preftrees->indirect.count--;
86d5f994
EN
655
656 if (ref->count == 0) {
657 free_pref(ref);
8da6d581 658 continue;
86d5f994
EN
659 }
660
3ec4d323
EN
661 if (sc && sc->root_objectid &&
662 ref->root_id != sc->root_objectid) {
86d5f994 663 free_pref(ref);
dc046b10
JB
664 ret = BACKREF_FOUND_SHARED;
665 goto out;
666 }
e0c476b1
JM
667 err = resolve_indirect_ref(fs_info, path, time_seq, ref,
668 parents, extent_item_pos,
c995ab3c 669 total_refs, ignore_offset);
95def2ed
WS
670 /*
671 * we can only tolerate ENOENT,otherwise,we should catch error
672 * and return directly.
673 */
674 if (err == -ENOENT) {
3ec4d323
EN
675 prelim_ref_insert(fs_info, &preftrees->direct, ref,
676 NULL);
8da6d581 677 continue;
95def2ed 678 } else if (err) {
86d5f994 679 free_pref(ref);
95def2ed
WS
680 ret = err;
681 goto out;
682 }
8da6d581
JS
683
684 /* we put the first parent into the ref at hand */
cd1b413c
JS
685 ULIST_ITER_INIT(&uiter);
686 node = ulist_next(parents, &uiter);
8da6d581 687 ref->parent = node ? node->val : 0;
4dae077a 688 ref->inode_list = unode_aux_to_inode_list(node);
8da6d581 689
86d5f994 690 /* Add a prelim_ref(s) for any other parent(s). */
cd1b413c 691 while ((node = ulist_next(parents, &uiter))) {
86d5f994
EN
692 struct prelim_ref *new_ref;
693
b9e9a6cb
WS
694 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
695 GFP_NOFS);
8da6d581 696 if (!new_ref) {
86d5f994 697 free_pref(ref);
8da6d581 698 ret = -ENOMEM;
e36902d4 699 goto out;
8da6d581
JS
700 }
701 memcpy(new_ref, ref, sizeof(*ref));
702 new_ref->parent = node->val;
4dae077a 703 new_ref->inode_list = unode_aux_to_inode_list(node);
3ec4d323
EN
704 prelim_ref_insert(fs_info, &preftrees->direct,
705 new_ref, NULL);
8da6d581 706 }
86d5f994 707
3ec4d323
EN
708 /*
709 * Now it's a direct ref, put it in the the direct tree. We must
710 * do this last because the ref could be merged/freed here.
711 */
712 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
86d5f994 713
8da6d581 714 ulist_reinit(parents);
9dd14fd6 715 cond_resched();
8da6d581 716 }
e36902d4 717out:
8da6d581
JS
718 ulist_free(parents);
719 return ret;
720}
721
d5c88b73
JS
722/*
723 * read tree blocks and add keys where required.
724 */
e0c476b1 725static int add_missing_keys(struct btrfs_fs_info *fs_info,
86d5f994 726 struct preftrees *preftrees)
d5c88b73 727{
e0c476b1 728 struct prelim_ref *ref;
d5c88b73 729 struct extent_buffer *eb;
86d5f994
EN
730 struct preftree *tree = &preftrees->indirect_missing_keys;
731 struct rb_node *node;
d5c88b73 732
86d5f994
EN
733 while ((node = rb_first(&tree->root))) {
734 ref = rb_entry(node, struct prelim_ref, rbnode);
735 rb_erase(node, &tree->root);
736
737 BUG_ON(ref->parent); /* should not be a direct ref */
738 BUG_ON(ref->key_for_search.type);
d5c88b73 739 BUG_ON(!ref->wanted_disk_byte);
86d5f994 740
2ff7e61e 741 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
64c043de 742 if (IS_ERR(eb)) {
86d5f994 743 free_pref(ref);
64c043de
LB
744 return PTR_ERR(eb);
745 } else if (!extent_buffer_uptodate(eb)) {
86d5f994 746 free_pref(ref);
416bc658
JB
747 free_extent_buffer(eb);
748 return -EIO;
749 }
d5c88b73
JS
750 btrfs_tree_read_lock(eb);
751 if (btrfs_header_level(eb) == 0)
752 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
753 else
754 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
755 btrfs_tree_read_unlock(eb);
756 free_extent_buffer(eb);
3ec4d323 757 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
9dd14fd6 758 cond_resched();
d5c88b73
JS
759 }
760 return 0;
761}
762
8da6d581
JS
763/*
764 * add all currently queued delayed refs from this head whose seq nr is
765 * smaller or equal that seq to the list
766 */
00142756
JM
767static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
768 struct btrfs_delayed_ref_head *head, u64 seq,
86d5f994 769 struct preftrees *preftrees, u64 *total_refs,
3ec4d323 770 struct share_check *sc)
8da6d581 771{
c6fc2454 772 struct btrfs_delayed_ref_node *node;
8da6d581 773 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
d5c88b73 774 struct btrfs_key key;
86d5f994
EN
775 struct btrfs_key tmp_op_key;
776 struct btrfs_key *op_key = NULL;
0e0adbcf 777 struct rb_node *n;
01747e92 778 int count;
b1375d64 779 int ret = 0;
8da6d581 780
86d5f994
EN
781 if (extent_op && extent_op->update_key) {
782 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
783 op_key = &tmp_op_key;
784 }
8da6d581 785
d7df2c79 786 spin_lock(&head->lock);
0e0adbcf
JB
787 for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) {
788 node = rb_entry(n, struct btrfs_delayed_ref_node,
789 ref_node);
8da6d581
JS
790 if (node->seq > seq)
791 continue;
792
793 switch (node->action) {
794 case BTRFS_ADD_DELAYED_EXTENT:
795 case BTRFS_UPDATE_DELAYED_HEAD:
796 WARN_ON(1);
797 continue;
798 case BTRFS_ADD_DELAYED_REF:
01747e92 799 count = node->ref_mod;
8da6d581
JS
800 break;
801 case BTRFS_DROP_DELAYED_REF:
01747e92 802 count = node->ref_mod * -1;
8da6d581
JS
803 break;
804 default:
805 BUG_ON(1);
806 }
01747e92 807 *total_refs += count;
8da6d581
JS
808 switch (node->type) {
809 case BTRFS_TREE_BLOCK_REF_KEY: {
86d5f994 810 /* NORMAL INDIRECT METADATA backref */
8da6d581
JS
811 struct btrfs_delayed_tree_ref *ref;
812
813 ref = btrfs_delayed_node_to_tree_ref(node);
00142756
JM
814 ret = add_indirect_ref(fs_info, preftrees, ref->root,
815 &tmp_op_key, ref->level + 1,
01747e92
EN
816 node->bytenr, count, sc,
817 GFP_ATOMIC);
8da6d581
JS
818 break;
819 }
820 case BTRFS_SHARED_BLOCK_REF_KEY: {
86d5f994 821 /* SHARED DIRECT METADATA backref */
8da6d581
JS
822 struct btrfs_delayed_tree_ref *ref;
823
824 ref = btrfs_delayed_node_to_tree_ref(node);
86d5f994 825
01747e92
EN
826 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
827 ref->parent, node->bytenr, count,
3ec4d323 828 sc, GFP_ATOMIC);
8da6d581
JS
829 break;
830 }
831 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 832 /* NORMAL INDIRECT DATA backref */
8da6d581 833 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
834 ref = btrfs_delayed_node_to_data_ref(node);
835
836 key.objectid = ref->objectid;
837 key.type = BTRFS_EXTENT_DATA_KEY;
838 key.offset = ref->offset;
dc046b10
JB
839
840 /*
841 * Found a inum that doesn't match our known inum, we
842 * know it's shared.
843 */
3ec4d323 844 if (sc && sc->inum && ref->objectid != sc->inum) {
dc046b10 845 ret = BACKREF_FOUND_SHARED;
3ec4d323 846 goto out;
dc046b10
JB
847 }
848
00142756 849 ret = add_indirect_ref(fs_info, preftrees, ref->root,
01747e92
EN
850 &key, 0, node->bytenr, count, sc,
851 GFP_ATOMIC);
8da6d581
JS
852 break;
853 }
854 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 855 /* SHARED DIRECT FULL backref */
8da6d581 856 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
857
858 ref = btrfs_delayed_node_to_data_ref(node);
86d5f994 859
01747e92
EN
860 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
861 node->bytenr, count, sc,
862 GFP_ATOMIC);
8da6d581
JS
863 break;
864 }
865 default:
866 WARN_ON(1);
867 }
3ec4d323
EN
868 /*
869 * We must ignore BACKREF_FOUND_SHARED until all delayed
870 * refs have been checked.
871 */
872 if (ret && (ret != BACKREF_FOUND_SHARED))
d7df2c79 873 break;
8da6d581 874 }
3ec4d323
EN
875 if (!ret)
876 ret = extent_is_shared(sc);
877out:
d7df2c79
JB
878 spin_unlock(&head->lock);
879 return ret;
8da6d581
JS
880}
881
882/*
883 * add all inline backrefs for bytenr to the list
3ec4d323
EN
884 *
885 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 886 */
00142756
JM
887static int add_inline_refs(const struct btrfs_fs_info *fs_info,
888 struct btrfs_path *path, u64 bytenr,
86d5f994 889 int *info_level, struct preftrees *preftrees,
3ec4d323 890 u64 *total_refs, struct share_check *sc)
8da6d581 891{
b1375d64 892 int ret = 0;
8da6d581
JS
893 int slot;
894 struct extent_buffer *leaf;
895 struct btrfs_key key;
261c84b6 896 struct btrfs_key found_key;
8da6d581
JS
897 unsigned long ptr;
898 unsigned long end;
899 struct btrfs_extent_item *ei;
900 u64 flags;
901 u64 item_size;
902
903 /*
904 * enumerate all inline refs
905 */
906 leaf = path->nodes[0];
dadcaf78 907 slot = path->slots[0];
8da6d581
JS
908
909 item_size = btrfs_item_size_nr(leaf, slot);
910 BUG_ON(item_size < sizeof(*ei));
911
912 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
913 flags = btrfs_extent_flags(leaf, ei);
44853868 914 *total_refs += btrfs_extent_refs(leaf, ei);
261c84b6 915 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
916
917 ptr = (unsigned long)(ei + 1);
918 end = (unsigned long)ei + item_size;
919
261c84b6
JB
920 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
921 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 922 struct btrfs_tree_block_info *info;
8da6d581
JS
923
924 info = (struct btrfs_tree_block_info *)ptr;
925 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
926 ptr += sizeof(struct btrfs_tree_block_info);
927 BUG_ON(ptr > end);
261c84b6
JB
928 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
929 *info_level = found_key.offset;
8da6d581
JS
930 } else {
931 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
932 }
933
934 while (ptr < end) {
935 struct btrfs_extent_inline_ref *iref;
936 u64 offset;
937 int type;
938
939 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
940 type = btrfs_get_extent_inline_ref_type(leaf, iref,
941 BTRFS_REF_TYPE_ANY);
942 if (type == BTRFS_REF_TYPE_INVALID)
943 return -EINVAL;
944
8da6d581
JS
945 offset = btrfs_extent_inline_ref_offset(leaf, iref);
946
947 switch (type) {
948 case BTRFS_SHARED_BLOCK_REF_KEY:
00142756
JM
949 ret = add_direct_ref(fs_info, preftrees,
950 *info_level + 1, offset,
3ec4d323 951 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
952 break;
953 case BTRFS_SHARED_DATA_REF_KEY: {
954 struct btrfs_shared_data_ref *sdref;
955 int count;
956
957 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
958 count = btrfs_shared_data_ref_count(leaf, sdref);
86d5f994 959
00142756 960 ret = add_direct_ref(fs_info, preftrees, 0, offset,
3ec4d323 961 bytenr, count, sc, GFP_NOFS);
8da6d581
JS
962 break;
963 }
964 case BTRFS_TREE_BLOCK_REF_KEY:
00142756
JM
965 ret = add_indirect_ref(fs_info, preftrees, offset,
966 NULL, *info_level + 1,
3ec4d323 967 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
968 break;
969 case BTRFS_EXTENT_DATA_REF_KEY: {
970 struct btrfs_extent_data_ref *dref;
971 int count;
972 u64 root;
973
974 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
975 count = btrfs_extent_data_ref_count(leaf, dref);
976 key.objectid = btrfs_extent_data_ref_objectid(leaf,
977 dref);
978 key.type = BTRFS_EXTENT_DATA_KEY;
979 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 980
3ec4d323 981 if (sc && sc->inum && key.objectid != sc->inum) {
dc046b10
JB
982 ret = BACKREF_FOUND_SHARED;
983 break;
984 }
985
8da6d581 986 root = btrfs_extent_data_ref_root(leaf, dref);
86d5f994 987
00142756
JM
988 ret = add_indirect_ref(fs_info, preftrees, root,
989 &key, 0, bytenr, count,
3ec4d323 990 sc, GFP_NOFS);
8da6d581
JS
991 break;
992 }
993 default:
994 WARN_ON(1);
995 }
1149ab6b
WS
996 if (ret)
997 return ret;
8da6d581
JS
998 ptr += btrfs_extent_inline_ref_size(type);
999 }
1000
1001 return 0;
1002}
1003
1004/*
1005 * add all non-inline backrefs for bytenr to the list
3ec4d323
EN
1006 *
1007 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 1008 */
e0c476b1
JM
1009static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1010 struct btrfs_path *path, u64 bytenr,
86d5f994 1011 int info_level, struct preftrees *preftrees,
3ec4d323 1012 struct share_check *sc)
8da6d581
JS
1013{
1014 struct btrfs_root *extent_root = fs_info->extent_root;
1015 int ret;
1016 int slot;
1017 struct extent_buffer *leaf;
1018 struct btrfs_key key;
1019
1020 while (1) {
1021 ret = btrfs_next_item(extent_root, path);
1022 if (ret < 0)
1023 break;
1024 if (ret) {
1025 ret = 0;
1026 break;
1027 }
1028
1029 slot = path->slots[0];
1030 leaf = path->nodes[0];
1031 btrfs_item_key_to_cpu(leaf, &key, slot);
1032
1033 if (key.objectid != bytenr)
1034 break;
1035 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1036 continue;
1037 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1038 break;
1039
1040 switch (key.type) {
1041 case BTRFS_SHARED_BLOCK_REF_KEY:
86d5f994 1042 /* SHARED DIRECT METADATA backref */
00142756
JM
1043 ret = add_direct_ref(fs_info, preftrees,
1044 info_level + 1, key.offset,
3ec4d323 1045 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1046 break;
1047 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 1048 /* SHARED DIRECT FULL backref */
8da6d581
JS
1049 struct btrfs_shared_data_ref *sdref;
1050 int count;
1051
1052 sdref = btrfs_item_ptr(leaf, slot,
1053 struct btrfs_shared_data_ref);
1054 count = btrfs_shared_data_ref_count(leaf, sdref);
00142756
JM
1055 ret = add_direct_ref(fs_info, preftrees, 0,
1056 key.offset, bytenr, count,
3ec4d323 1057 sc, GFP_NOFS);
8da6d581
JS
1058 break;
1059 }
1060 case BTRFS_TREE_BLOCK_REF_KEY:
86d5f994 1061 /* NORMAL INDIRECT METADATA backref */
00142756
JM
1062 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1063 NULL, info_level + 1, bytenr,
3ec4d323 1064 1, NULL, GFP_NOFS);
8da6d581
JS
1065 break;
1066 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 1067 /* NORMAL INDIRECT DATA backref */
8da6d581
JS
1068 struct btrfs_extent_data_ref *dref;
1069 int count;
1070 u64 root;
1071
1072 dref = btrfs_item_ptr(leaf, slot,
1073 struct btrfs_extent_data_ref);
1074 count = btrfs_extent_data_ref_count(leaf, dref);
1075 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1076 dref);
1077 key.type = BTRFS_EXTENT_DATA_KEY;
1078 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1079
3ec4d323 1080 if (sc && sc->inum && key.objectid != sc->inum) {
dc046b10
JB
1081 ret = BACKREF_FOUND_SHARED;
1082 break;
1083 }
1084
8da6d581 1085 root = btrfs_extent_data_ref_root(leaf, dref);
00142756
JM
1086 ret = add_indirect_ref(fs_info, preftrees, root,
1087 &key, 0, bytenr, count,
3ec4d323 1088 sc, GFP_NOFS);
8da6d581
JS
1089 break;
1090 }
1091 default:
1092 WARN_ON(1);
1093 }
1149ab6b
WS
1094 if (ret)
1095 return ret;
1096
8da6d581
JS
1097 }
1098
1099 return ret;
1100}
1101
1102/*
1103 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1104 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1105 * indirect refs to their parent bytenr.
1106 * When roots are found, they're added to the roots list
1107 *
de47c9d3 1108 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
21633fc6
QW
1109 * much like trans == NULL case, the difference only lies in it will not
1110 * commit root.
1111 * The special case is for qgroup to search roots in commit_transaction().
1112 *
3ec4d323
EN
1113 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1114 * shared extent is detected.
1115 *
1116 * Otherwise this returns 0 for success and <0 for an error.
1117 *
c995ab3c
ZB
1118 * If ignore_offset is set to false, only extent refs whose offsets match
1119 * extent_item_pos are returned. If true, every extent ref is returned
1120 * and extent_item_pos is ignored.
1121 *
8da6d581
JS
1122 * FIXME some caching might speed things up
1123 */
1124static int find_parent_nodes(struct btrfs_trans_handle *trans,
1125 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1126 u64 time_seq, struct ulist *refs,
dc046b10 1127 struct ulist *roots, const u64 *extent_item_pos,
c995ab3c 1128 struct share_check *sc, bool ignore_offset)
8da6d581
JS
1129{
1130 struct btrfs_key key;
1131 struct btrfs_path *path;
8da6d581 1132 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 1133 struct btrfs_delayed_ref_head *head;
8da6d581
JS
1134 int info_level = 0;
1135 int ret;
e0c476b1 1136 struct prelim_ref *ref;
86d5f994 1137 struct rb_node *node;
f05c4746 1138 struct extent_inode_elem *eie = NULL;
86d5f994 1139 /* total of both direct AND indirect refs! */
44853868 1140 u64 total_refs = 0;
86d5f994
EN
1141 struct preftrees preftrees = {
1142 .direct = PREFTREE_INIT,
1143 .indirect = PREFTREE_INIT,
1144 .indirect_missing_keys = PREFTREE_INIT
1145 };
8da6d581
JS
1146
1147 key.objectid = bytenr;
8da6d581 1148 key.offset = (u64)-1;
261c84b6
JB
1149 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1150 key.type = BTRFS_METADATA_ITEM_KEY;
1151 else
1152 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
1153
1154 path = btrfs_alloc_path();
1155 if (!path)
1156 return -ENOMEM;
e84752d4 1157 if (!trans) {
da61d31a 1158 path->search_commit_root = 1;
e84752d4
WS
1159 path->skip_locking = 1;
1160 }
8da6d581 1161
de47c9d3 1162 if (time_seq == SEQ_LAST)
21633fc6
QW
1163 path->skip_locking = 1;
1164
8da6d581
JS
1165 /*
1166 * grab both a lock on the path and a lock on the delayed ref head.
1167 * We need both to get a consistent picture of how the refs look
1168 * at a specified point in time
1169 */
1170again:
d3b01064
LZ
1171 head = NULL;
1172
8da6d581
JS
1173 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1174 if (ret < 0)
1175 goto out;
1176 BUG_ON(ret == 0);
1177
faa2dbf0 1178#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
21633fc6 1179 if (trans && likely(trans->type != __TRANS_DUMMY) &&
de47c9d3 1180 time_seq != SEQ_LAST) {
faa2dbf0 1181#else
de47c9d3 1182 if (trans && time_seq != SEQ_LAST) {
faa2dbf0 1183#endif
7a3ae2f8
JS
1184 /*
1185 * look if there are updates for this ref queued and lock the
1186 * head
1187 */
1188 delayed_refs = &trans->transaction->delayed_refs;
1189 spin_lock(&delayed_refs->lock);
f72ad18e 1190 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7a3ae2f8
JS
1191 if (head) {
1192 if (!mutex_trylock(&head->mutex)) {
d278850e 1193 refcount_inc(&head->refs);
7a3ae2f8
JS
1194 spin_unlock(&delayed_refs->lock);
1195
1196 btrfs_release_path(path);
1197
1198 /*
1199 * Mutex was contended, block until it's
1200 * released and try again
1201 */
1202 mutex_lock(&head->mutex);
1203 mutex_unlock(&head->mutex);
d278850e 1204 btrfs_put_delayed_ref_head(head);
7a3ae2f8
JS
1205 goto again;
1206 }
d7df2c79 1207 spin_unlock(&delayed_refs->lock);
00142756 1208 ret = add_delayed_refs(fs_info, head, time_seq,
3ec4d323 1209 &preftrees, &total_refs, sc);
155725c9 1210 mutex_unlock(&head->mutex);
d7df2c79 1211 if (ret)
7a3ae2f8 1212 goto out;
d7df2c79
JB
1213 } else {
1214 spin_unlock(&delayed_refs->lock);
d3b01064 1215 }
8da6d581 1216 }
8da6d581
JS
1217
1218 if (path->slots[0]) {
1219 struct extent_buffer *leaf;
1220 int slot;
1221
dadcaf78 1222 path->slots[0]--;
8da6d581 1223 leaf = path->nodes[0];
dadcaf78 1224 slot = path->slots[0];
8da6d581
JS
1225 btrfs_item_key_to_cpu(leaf, &key, slot);
1226 if (key.objectid == bytenr &&
261c84b6
JB
1227 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1228 key.type == BTRFS_METADATA_ITEM_KEY)) {
00142756
JM
1229 ret = add_inline_refs(fs_info, path, bytenr,
1230 &info_level, &preftrees,
3ec4d323 1231 &total_refs, sc);
8da6d581
JS
1232 if (ret)
1233 goto out;
e0c476b1 1234 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
3ec4d323 1235 &preftrees, sc);
8da6d581
JS
1236 if (ret)
1237 goto out;
1238 }
1239 }
8da6d581 1240
86d5f994 1241 btrfs_release_path(path);
8da6d581 1242
86d5f994 1243 ret = add_missing_keys(fs_info, &preftrees);
d5c88b73
JS
1244 if (ret)
1245 goto out;
1246
86d5f994 1247 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
8da6d581 1248
86d5f994 1249 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
c995ab3c 1250 extent_item_pos, total_refs, sc, ignore_offset);
8da6d581
JS
1251 if (ret)
1252 goto out;
1253
86d5f994 1254 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
8da6d581 1255
86d5f994
EN
1256 /*
1257 * This walks the tree of merged and resolved refs. Tree blocks are
1258 * read in as needed. Unique entries are added to the ulist, and
1259 * the list of found roots is updated.
1260 *
1261 * We release the entire tree in one go before returning.
1262 */
1263 node = rb_first(&preftrees.direct.root);
1264 while (node) {
1265 ref = rb_entry(node, struct prelim_ref, rbnode);
1266 node = rb_next(&ref->rbnode);
c8195a7b
ZB
1267 /*
1268 * ref->count < 0 can happen here if there are delayed
1269 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1270 * prelim_ref_insert() relies on this when merging
1271 * identical refs to keep the overall count correct.
1272 * prelim_ref_insert() will merge only those refs
1273 * which compare identically. Any refs having
1274 * e.g. different offsets would not be merged,
1275 * and would retain their original ref->count < 0.
1276 */
98cfee21 1277 if (roots && ref->count && ref->root_id && ref->parent == 0) {
3ec4d323
EN
1278 if (sc && sc->root_objectid &&
1279 ref->root_id != sc->root_objectid) {
dc046b10
JB
1280 ret = BACKREF_FOUND_SHARED;
1281 goto out;
1282 }
1283
8da6d581
JS
1284 /* no parent == root of tree */
1285 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1286 if (ret < 0)
1287 goto out;
8da6d581
JS
1288 }
1289 if (ref->count && ref->parent) {
8a56457f
JB
1290 if (extent_item_pos && !ref->inode_list &&
1291 ref->level == 0) {
976b1908 1292 struct extent_buffer *eb;
707e8a07 1293
2ff7e61e 1294 eb = read_tree_block(fs_info, ref->parent, 0);
64c043de
LB
1295 if (IS_ERR(eb)) {
1296 ret = PTR_ERR(eb);
1297 goto out;
1298 } else if (!extent_buffer_uptodate(eb)) {
416bc658 1299 free_extent_buffer(eb);
c16c2e2e
WS
1300 ret = -EIO;
1301 goto out;
416bc658 1302 }
6f7ff6d7
FM
1303 btrfs_tree_read_lock(eb);
1304 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
976b1908 1305 ret = find_extent_in_eb(eb, bytenr,
c995ab3c 1306 *extent_item_pos, &eie, ignore_offset);
6f7ff6d7 1307 btrfs_tree_read_unlock_blocking(eb);
976b1908 1308 free_extent_buffer(eb);
f5929cd8
FDBM
1309 if (ret < 0)
1310 goto out;
1311 ref->inode_list = eie;
976b1908 1312 }
4eb1f66d
TI
1313 ret = ulist_add_merge_ptr(refs, ref->parent,
1314 ref->inode_list,
1315 (void **)&eie, GFP_NOFS);
f1723939
WS
1316 if (ret < 0)
1317 goto out;
3301958b
JS
1318 if (!ret && extent_item_pos) {
1319 /*
1320 * we've recorded that parent, so we must extend
1321 * its inode list here
1322 */
1323 BUG_ON(!eie);
1324 while (eie->next)
1325 eie = eie->next;
1326 eie->next = ref->inode_list;
1327 }
f05c4746 1328 eie = NULL;
8da6d581 1329 }
9dd14fd6 1330 cond_resched();
8da6d581
JS
1331 }
1332
1333out:
8da6d581 1334 btrfs_free_path(path);
86d5f994
EN
1335
1336 prelim_release(&preftrees.direct);
1337 prelim_release(&preftrees.indirect);
1338 prelim_release(&preftrees.indirect_missing_keys);
1339
f05c4746
WS
1340 if (ret < 0)
1341 free_inode_elem_list(eie);
8da6d581
JS
1342 return ret;
1343}
1344
976b1908
JS
1345static void free_leaf_list(struct ulist *blocks)
1346{
1347 struct ulist_node *node = NULL;
1348 struct extent_inode_elem *eie;
976b1908
JS
1349 struct ulist_iterator uiter;
1350
1351 ULIST_ITER_INIT(&uiter);
1352 while ((node = ulist_next(blocks, &uiter))) {
1353 if (!node->aux)
1354 continue;
4dae077a 1355 eie = unode_aux_to_inode_list(node);
f05c4746 1356 free_inode_elem_list(eie);
976b1908
JS
1357 node->aux = 0;
1358 }
1359
1360 ulist_free(blocks);
1361}
1362
8da6d581
JS
1363/*
1364 * Finds all leafs with a reference to the specified combination of bytenr and
1365 * offset. key_list_head will point to a list of corresponding keys (caller must
1366 * free each list element). The leafs will be stored in the leafs ulist, which
1367 * must be freed with ulist_free.
1368 *
1369 * returns 0 on success, <0 on error
1370 */
1371static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1372 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1373 u64 time_seq, struct ulist **leafs,
c995ab3c 1374 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 1375{
8da6d581
JS
1376 int ret;
1377
8da6d581 1378 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1379 if (!*leafs)
8da6d581 1380 return -ENOMEM;
8da6d581 1381
afce772e 1382 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1383 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
8da6d581 1384 if (ret < 0 && ret != -ENOENT) {
976b1908 1385 free_leaf_list(*leafs);
8da6d581
JS
1386 return ret;
1387 }
1388
1389 return 0;
1390}
1391
1392/*
1393 * walk all backrefs for a given extent to find all roots that reference this
1394 * extent. Walking a backref means finding all extents that reference this
1395 * extent and in turn walk the backrefs of those, too. Naturally this is a
1396 * recursive process, but here it is implemented in an iterative fashion: We
1397 * find all referencing extents for the extent in question and put them on a
1398 * list. In turn, we find all referencing extents for those, further appending
1399 * to the list. The way we iterate the list allows adding more elements after
1400 * the current while iterating. The process stops when we reach the end of the
1401 * list. Found roots are added to the roots list.
1402 *
1403 * returns 0 on success, < 0 on error.
1404 */
e0c476b1
JM
1405static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1406 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1407 u64 time_seq, struct ulist **roots,
1408 bool ignore_offset)
8da6d581
JS
1409{
1410 struct ulist *tmp;
1411 struct ulist_node *node = NULL;
cd1b413c 1412 struct ulist_iterator uiter;
8da6d581
JS
1413 int ret;
1414
1415 tmp = ulist_alloc(GFP_NOFS);
1416 if (!tmp)
1417 return -ENOMEM;
1418 *roots = ulist_alloc(GFP_NOFS);
1419 if (!*roots) {
1420 ulist_free(tmp);
1421 return -ENOMEM;
1422 }
1423
cd1b413c 1424 ULIST_ITER_INIT(&uiter);
8da6d581 1425 while (1) {
afce772e 1426 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1427 tmp, *roots, NULL, NULL, ignore_offset);
8da6d581
JS
1428 if (ret < 0 && ret != -ENOENT) {
1429 ulist_free(tmp);
1430 ulist_free(*roots);
1431 return ret;
1432 }
cd1b413c 1433 node = ulist_next(tmp, &uiter);
8da6d581
JS
1434 if (!node)
1435 break;
1436 bytenr = node->val;
bca1a290 1437 cond_resched();
8da6d581
JS
1438 }
1439
1440 ulist_free(tmp);
1441 return 0;
1442}
1443
9e351cc8
JB
1444int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1445 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1446 u64 time_seq, struct ulist **roots,
1447 bool ignore_offset)
9e351cc8
JB
1448{
1449 int ret;
1450
1451 if (!trans)
1452 down_read(&fs_info->commit_root_sem);
e0c476b1 1453 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
c995ab3c 1454 time_seq, roots, ignore_offset);
9e351cc8
JB
1455 if (!trans)
1456 up_read(&fs_info->commit_root_sem);
1457 return ret;
1458}
1459
2c2ed5aa
MF
1460/**
1461 * btrfs_check_shared - tell us whether an extent is shared
1462 *
2c2ed5aa
MF
1463 * btrfs_check_shared uses the backref walking code but will short
1464 * circuit as soon as it finds a root or inode that doesn't match the
1465 * one passed in. This provides a significant performance benefit for
1466 * callers (such as fiemap) which want to know whether the extent is
1467 * shared but do not need a ref count.
1468 *
bb739cf0
EN
1469 * This attempts to allocate a transaction in order to account for
1470 * delayed refs, but continues on even when the alloc fails.
1471 *
2c2ed5aa
MF
1472 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1473 */
bb739cf0 1474int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
dc046b10 1475{
bb739cf0
EN
1476 struct btrfs_fs_info *fs_info = root->fs_info;
1477 struct btrfs_trans_handle *trans;
dc046b10
JB
1478 struct ulist *tmp = NULL;
1479 struct ulist *roots = NULL;
1480 struct ulist_iterator uiter;
1481 struct ulist_node *node;
3284da7b 1482 struct seq_list elem = SEQ_LIST_INIT(elem);
dc046b10 1483 int ret = 0;
3ec4d323
EN
1484 struct share_check shared = {
1485 .root_objectid = root->objectid,
1486 .inum = inum,
1487 .share_count = 0,
1488 };
dc046b10
JB
1489
1490 tmp = ulist_alloc(GFP_NOFS);
1491 roots = ulist_alloc(GFP_NOFS);
1492 if (!tmp || !roots) {
1493 ulist_free(tmp);
1494 ulist_free(roots);
1495 return -ENOMEM;
1496 }
1497
bb739cf0
EN
1498 trans = btrfs_join_transaction(root);
1499 if (IS_ERR(trans)) {
1500 trans = NULL;
dc046b10 1501 down_read(&fs_info->commit_root_sem);
bb739cf0
EN
1502 } else {
1503 btrfs_get_tree_mod_seq(fs_info, &elem);
1504 }
1505
dc046b10
JB
1506 ULIST_ITER_INIT(&uiter);
1507 while (1) {
1508 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
c995ab3c 1509 roots, NULL, &shared, false);
dc046b10 1510 if (ret == BACKREF_FOUND_SHARED) {
2c2ed5aa 1511 /* this is the only condition under which we return 1 */
dc046b10
JB
1512 ret = 1;
1513 break;
1514 }
1515 if (ret < 0 && ret != -ENOENT)
1516 break;
2c2ed5aa 1517 ret = 0;
dc046b10
JB
1518 node = ulist_next(tmp, &uiter);
1519 if (!node)
1520 break;
1521 bytenr = node->val;
18bf591b 1522 shared.share_count = 0;
dc046b10
JB
1523 cond_resched();
1524 }
bb739cf0
EN
1525
1526 if (trans) {
dc046b10 1527 btrfs_put_tree_mod_seq(fs_info, &elem);
bb739cf0
EN
1528 btrfs_end_transaction(trans);
1529 } else {
dc046b10 1530 up_read(&fs_info->commit_root_sem);
bb739cf0 1531 }
dc046b10
JB
1532 ulist_free(tmp);
1533 ulist_free(roots);
1534 return ret;
1535}
1536
f186373f
MF
1537int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1538 u64 start_off, struct btrfs_path *path,
1539 struct btrfs_inode_extref **ret_extref,
1540 u64 *found_off)
1541{
1542 int ret, slot;
1543 struct btrfs_key key;
1544 struct btrfs_key found_key;
1545 struct btrfs_inode_extref *extref;
73980bec 1546 const struct extent_buffer *leaf;
f186373f
MF
1547 unsigned long ptr;
1548
1549 key.objectid = inode_objectid;
962a298f 1550 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
1551 key.offset = start_off;
1552
1553 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1554 if (ret < 0)
1555 return ret;
1556
1557 while (1) {
1558 leaf = path->nodes[0];
1559 slot = path->slots[0];
1560 if (slot >= btrfs_header_nritems(leaf)) {
1561 /*
1562 * If the item at offset is not found,
1563 * btrfs_search_slot will point us to the slot
1564 * where it should be inserted. In our case
1565 * that will be the slot directly before the
1566 * next INODE_REF_KEY_V2 item. In the case
1567 * that we're pointing to the last slot in a
1568 * leaf, we must move one leaf over.
1569 */
1570 ret = btrfs_next_leaf(root, path);
1571 if (ret) {
1572 if (ret >= 1)
1573 ret = -ENOENT;
1574 break;
1575 }
1576 continue;
1577 }
1578
1579 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1580
1581 /*
1582 * Check that we're still looking at an extended ref key for
1583 * this particular objectid. If we have different
1584 * objectid or type then there are no more to be found
1585 * in the tree and we can exit.
1586 */
1587 ret = -ENOENT;
1588 if (found_key.objectid != inode_objectid)
1589 break;
962a298f 1590 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
1591 break;
1592
1593 ret = 0;
1594 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1595 extref = (struct btrfs_inode_extref *)ptr;
1596 *ret_extref = extref;
1597 if (found_off)
1598 *found_off = found_key.offset;
1599 break;
1600 }
1601
1602 return ret;
1603}
1604
48a3b636
ES
1605/*
1606 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1607 * Elements of the path are separated by '/' and the path is guaranteed to be
1608 * 0-terminated. the path is only given within the current file system.
1609 * Therefore, it never starts with a '/'. the caller is responsible to provide
1610 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1611 * the start point of the resulting string is returned. this pointer is within
1612 * dest, normally.
1613 * in case the path buffer would overflow, the pointer is decremented further
1614 * as if output was written to the buffer, though no more output is actually
1615 * generated. that way, the caller can determine how much space would be
1616 * required for the path to fit into the buffer. in that case, the returned
1617 * value will be smaller than dest. callers must check this!
1618 */
96b5bd77
JS
1619char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1620 u32 name_len, unsigned long name_off,
1621 struct extent_buffer *eb_in, u64 parent,
1622 char *dest, u32 size)
a542ad1b 1623{
a542ad1b
JS
1624 int slot;
1625 u64 next_inum;
1626 int ret;
661bec6b 1627 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1628 struct extent_buffer *eb = eb_in;
1629 struct btrfs_key found_key;
b916a59a 1630 int leave_spinning = path->leave_spinning;
d24bec3a 1631 struct btrfs_inode_ref *iref;
a542ad1b
JS
1632
1633 if (bytes_left >= 0)
1634 dest[bytes_left] = '\0';
1635
b916a59a 1636 path->leave_spinning = 1;
a542ad1b 1637 while (1) {
d24bec3a 1638 bytes_left -= name_len;
a542ad1b
JS
1639 if (bytes_left >= 0)
1640 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1641 name_off, name_len);
b916a59a 1642 if (eb != eb_in) {
0c0fe3b0
FM
1643 if (!path->skip_locking)
1644 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1645 free_extent_buffer(eb);
b916a59a 1646 }
c234a24d
DS
1647 ret = btrfs_find_item(fs_root, path, parent, 0,
1648 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
1649 if (ret > 0)
1650 ret = -ENOENT;
a542ad1b
JS
1651 if (ret)
1652 break;
d24bec3a 1653
a542ad1b
JS
1654 next_inum = found_key.offset;
1655
1656 /* regular exit ahead */
1657 if (parent == next_inum)
1658 break;
1659
1660 slot = path->slots[0];
1661 eb = path->nodes[0];
1662 /* make sure we can use eb after releasing the path */
b916a59a 1663 if (eb != eb_in) {
0c0fe3b0
FM
1664 if (!path->skip_locking)
1665 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1666 path->nodes[0] = NULL;
1667 path->locks[0] = 0;
b916a59a 1668 }
a542ad1b 1669 btrfs_release_path(path);
a542ad1b 1670 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1671
1672 name_len = btrfs_inode_ref_name_len(eb, iref);
1673 name_off = (unsigned long)(iref + 1);
1674
a542ad1b
JS
1675 parent = next_inum;
1676 --bytes_left;
1677 if (bytes_left >= 0)
1678 dest[bytes_left] = '/';
1679 }
1680
1681 btrfs_release_path(path);
b916a59a 1682 path->leave_spinning = leave_spinning;
a542ad1b
JS
1683
1684 if (ret)
1685 return ERR_PTR(ret);
1686
1687 return dest + bytes_left;
1688}
1689
1690/*
1691 * this makes the path point to (logical EXTENT_ITEM *)
1692 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1693 * tree blocks and <0 on error.
1694 */
1695int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1696 struct btrfs_path *path, struct btrfs_key *found_key,
1697 u64 *flags_ret)
a542ad1b
JS
1698{
1699 int ret;
1700 u64 flags;
261c84b6 1701 u64 size = 0;
a542ad1b 1702 u32 item_size;
73980bec 1703 const struct extent_buffer *eb;
a542ad1b
JS
1704 struct btrfs_extent_item *ei;
1705 struct btrfs_key key;
1706
261c84b6
JB
1707 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1708 key.type = BTRFS_METADATA_ITEM_KEY;
1709 else
1710 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1711 key.objectid = logical;
1712 key.offset = (u64)-1;
1713
1714 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1715 if (ret < 0)
1716 return ret;
a542ad1b 1717
850a8cdf
WS
1718 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1719 if (ret) {
1720 if (ret > 0)
1721 ret = -ENOENT;
1722 return ret;
580f0a67 1723 }
850a8cdf 1724 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 1725 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
da17066c 1726 size = fs_info->nodesize;
261c84b6
JB
1727 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1728 size = found_key->offset;
1729
580f0a67 1730 if (found_key->objectid > logical ||
261c84b6 1731 found_key->objectid + size <= logical) {
ab8d0fc4
JM
1732 btrfs_debug(fs_info,
1733 "logical %llu is not within any extent", logical);
a542ad1b 1734 return -ENOENT;
4692cf58 1735 }
a542ad1b
JS
1736
1737 eb = path->nodes[0];
1738 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1739 BUG_ON(item_size < sizeof(*ei));
1740
1741 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1742 flags = btrfs_extent_flags(eb, ei);
1743
ab8d0fc4
JM
1744 btrfs_debug(fs_info,
1745 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
c1c9ff7c
GU
1746 logical, logical - found_key->objectid, found_key->objectid,
1747 found_key->offset, flags, item_size);
69917e43
LB
1748
1749 WARN_ON(!flags_ret);
1750 if (flags_ret) {
1751 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1752 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1753 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1754 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1755 else
1756 BUG_ON(1);
1757 return 0;
1758 }
a542ad1b
JS
1759
1760 return -EIO;
1761}
1762
1763/*
1764 * helper function to iterate extent inline refs. ptr must point to a 0 value
1765 * for the first call and may be modified. it is used to track state.
1766 * if more refs exist, 0 is returned and the next call to
e0c476b1 1767 * get_extent_inline_ref must pass the modified ptr parameter to get the
a542ad1b
JS
1768 * next ref. after the last ref was processed, 1 is returned.
1769 * returns <0 on error
1770 */
e0c476b1
JM
1771static int get_extent_inline_ref(unsigned long *ptr,
1772 const struct extent_buffer *eb,
1773 const struct btrfs_key *key,
1774 const struct btrfs_extent_item *ei,
1775 u32 item_size,
1776 struct btrfs_extent_inline_ref **out_eiref,
1777 int *out_type)
a542ad1b
JS
1778{
1779 unsigned long end;
1780 u64 flags;
1781 struct btrfs_tree_block_info *info;
1782
1783 if (!*ptr) {
1784 /* first call */
1785 flags = btrfs_extent_flags(eb, ei);
1786 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
1787 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1788 /* a skinny metadata extent */
1789 *out_eiref =
1790 (struct btrfs_extent_inline_ref *)(ei + 1);
1791 } else {
1792 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1793 info = (struct btrfs_tree_block_info *)(ei + 1);
1794 *out_eiref =
1795 (struct btrfs_extent_inline_ref *)(info + 1);
1796 }
a542ad1b
JS
1797 } else {
1798 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1799 }
1800 *ptr = (unsigned long)*out_eiref;
cd857dd6 1801 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
1802 return -ENOENT;
1803 }
1804
1805 end = (unsigned long)ei + item_size;
6eda71d0 1806 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
3de28d57
LB
1807 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1808 BTRFS_REF_TYPE_ANY);
1809 if (*out_type == BTRFS_REF_TYPE_INVALID)
1810 return -EINVAL;
a542ad1b
JS
1811
1812 *ptr += btrfs_extent_inline_ref_size(*out_type);
1813 WARN_ON(*ptr > end);
1814 if (*ptr == end)
1815 return 1; /* last */
1816
1817 return 0;
1818}
1819
1820/*
1821 * reads the tree block backref for an extent. tree level and root are returned
1822 * through out_level and out_root. ptr must point to a 0 value for the first
e0c476b1 1823 * call and may be modified (see get_extent_inline_ref comment).
a542ad1b
JS
1824 * returns 0 if data was provided, 1 if there was no more data to provide or
1825 * <0 on error.
1826 */
1827int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
1828 struct btrfs_key *key, struct btrfs_extent_item *ei,
1829 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
1830{
1831 int ret;
1832 int type;
a542ad1b
JS
1833 struct btrfs_extent_inline_ref *eiref;
1834
1835 if (*ptr == (unsigned long)-1)
1836 return 1;
1837
1838 while (1) {
e0c476b1 1839 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
6eda71d0 1840 &eiref, &type);
a542ad1b
JS
1841 if (ret < 0)
1842 return ret;
1843
1844 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1845 type == BTRFS_SHARED_BLOCK_REF_KEY)
1846 break;
1847
1848 if (ret == 1)
1849 return 1;
1850 }
1851
1852 /* we can treat both ref types equally here */
a542ad1b 1853 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
1854
1855 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1856 struct btrfs_tree_block_info *info;
1857
1858 info = (struct btrfs_tree_block_info *)(ei + 1);
1859 *out_level = btrfs_tree_block_level(eb, info);
1860 } else {
1861 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1862 *out_level = (u8)key->offset;
1863 }
a542ad1b
JS
1864
1865 if (ret == 1)
1866 *ptr = (unsigned long)-1;
1867
1868 return 0;
1869}
1870
ab8d0fc4
JM
1871static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1872 struct extent_inode_elem *inode_list,
1873 u64 root, u64 extent_item_objectid,
1874 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1875{
976b1908 1876 struct extent_inode_elem *eie;
4692cf58 1877 int ret = 0;
4692cf58 1878
976b1908 1879 for (eie = inode_list; eie; eie = eie->next) {
ab8d0fc4
JM
1880 btrfs_debug(fs_info,
1881 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1882 extent_item_objectid, eie->inum,
1883 eie->offset, root);
976b1908 1884 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1885 if (ret) {
ab8d0fc4
JM
1886 btrfs_debug(fs_info,
1887 "stopping iteration for %llu due to ret=%d",
1888 extent_item_objectid, ret);
4692cf58
JS
1889 break;
1890 }
a542ad1b
JS
1891 }
1892
a542ad1b
JS
1893 return ret;
1894}
1895
1896/*
1897 * calls iterate() for every inode that references the extent identified by
4692cf58 1898 * the given parameters.
a542ad1b
JS
1899 * when the iterator function returns a non-zero value, iteration stops.
1900 */
1901int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1902 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1903 int search_commit_root,
c995ab3c
ZB
1904 iterate_extent_inodes_t *iterate, void *ctx,
1905 bool ignore_offset)
a542ad1b 1906{
a542ad1b 1907 int ret;
da61d31a 1908 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1909 struct ulist *refs = NULL;
1910 struct ulist *roots = NULL;
4692cf58
JS
1911 struct ulist_node *ref_node = NULL;
1912 struct ulist_node *root_node = NULL;
3284da7b 1913 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
cd1b413c
JS
1914 struct ulist_iterator ref_uiter;
1915 struct ulist_iterator root_uiter;
a542ad1b 1916
ab8d0fc4 1917 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
4692cf58 1918 extent_item_objectid);
a542ad1b 1919
da61d31a 1920 if (!search_commit_root) {
7a3ae2f8
JS
1921 trans = btrfs_join_transaction(fs_info->extent_root);
1922 if (IS_ERR(trans))
1923 return PTR_ERR(trans);
8445f61c 1924 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
9e351cc8
JB
1925 } else {
1926 down_read(&fs_info->commit_root_sem);
7a3ae2f8 1927 }
a542ad1b 1928
4692cf58 1929 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1930 tree_mod_seq_elem.seq, &refs,
c995ab3c 1931 &extent_item_pos, ignore_offset);
4692cf58
JS
1932 if (ret)
1933 goto out;
a542ad1b 1934
cd1b413c
JS
1935 ULIST_ITER_INIT(&ref_uiter);
1936 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
e0c476b1 1937 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
c995ab3c
ZB
1938 tree_mod_seq_elem.seq, &roots,
1939 ignore_offset);
4692cf58
JS
1940 if (ret)
1941 break;
cd1b413c
JS
1942 ULIST_ITER_INIT(&root_uiter);
1943 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
ab8d0fc4
JM
1944 btrfs_debug(fs_info,
1945 "root %llu references leaf %llu, data list %#llx",
1946 root_node->val, ref_node->val,
1947 ref_node->aux);
1948 ret = iterate_leaf_refs(fs_info,
1949 (struct extent_inode_elem *)
995e01b7
JS
1950 (uintptr_t)ref_node->aux,
1951 root_node->val,
1952 extent_item_objectid,
1953 iterate, ctx);
4692cf58 1954 }
976b1908 1955 ulist_free(roots);
a542ad1b
JS
1956 }
1957
976b1908 1958 free_leaf_list(refs);
4692cf58 1959out:
7a3ae2f8 1960 if (!search_commit_root) {
8445f61c 1961 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
3a45bb20 1962 btrfs_end_transaction(trans);
9e351cc8
JB
1963 } else {
1964 up_read(&fs_info->commit_root_sem);
7a3ae2f8
JS
1965 }
1966
a542ad1b
JS
1967 return ret;
1968}
1969
1970int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1971 struct btrfs_path *path,
c995ab3c
ZB
1972 iterate_extent_inodes_t *iterate, void *ctx,
1973 bool ignore_offset)
a542ad1b
JS
1974{
1975 int ret;
4692cf58 1976 u64 extent_item_pos;
69917e43 1977 u64 flags = 0;
a542ad1b 1978 struct btrfs_key found_key;
7a3ae2f8 1979 int search_commit_root = path->search_commit_root;
a542ad1b 1980
69917e43 1981 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 1982 btrfs_release_path(path);
a542ad1b
JS
1983 if (ret < 0)
1984 return ret;
69917e43 1985 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 1986 return -EINVAL;
a542ad1b 1987
4692cf58 1988 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1989 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1990 extent_item_pos, search_commit_root,
c995ab3c 1991 iterate, ctx, ignore_offset);
a542ad1b
JS
1992
1993 return ret;
1994}
1995
d24bec3a
MF
1996typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1997 struct extent_buffer *eb, void *ctx);
1998
1999static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2000 struct btrfs_path *path,
2001 iterate_irefs_t *iterate, void *ctx)
a542ad1b 2002{
aefc1eb1 2003 int ret = 0;
a542ad1b
JS
2004 int slot;
2005 u32 cur;
2006 u32 len;
2007 u32 name_len;
2008 u64 parent = 0;
2009 int found = 0;
2010 struct extent_buffer *eb;
2011 struct btrfs_item *item;
2012 struct btrfs_inode_ref *iref;
2013 struct btrfs_key found_key;
2014
aefc1eb1 2015 while (!ret) {
c234a24d
DS
2016 ret = btrfs_find_item(fs_root, path, inum,
2017 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2018 &found_key);
2019
a542ad1b
JS
2020 if (ret < 0)
2021 break;
2022 if (ret) {
2023 ret = found ? 0 : -ENOENT;
2024 break;
2025 }
2026 ++found;
2027
2028 parent = found_key.offset;
2029 slot = path->slots[0];
3fe81ce2
FDBM
2030 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2031 if (!eb) {
2032 ret = -ENOMEM;
2033 break;
2034 }
2035 extent_buffer_get(eb);
b916a59a
JS
2036 btrfs_tree_read_lock(eb);
2037 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
2038 btrfs_release_path(path);
2039
dd3cc16b 2040 item = btrfs_item_nr(slot);
a542ad1b
JS
2041 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2042
2043 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2044 name_len = btrfs_inode_ref_name_len(eb, iref);
2045 /* path must be released before calling iterate()! */
ab8d0fc4
JM
2046 btrfs_debug(fs_root->fs_info,
2047 "following ref at offset %u for inode %llu in tree %llu",
2048 cur, found_key.objectid, fs_root->objectid);
d24bec3a
MF
2049 ret = iterate(parent, name_len,
2050 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 2051 if (ret)
a542ad1b 2052 break;
a542ad1b
JS
2053 len = sizeof(*iref) + name_len;
2054 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2055 }
b916a59a 2056 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
2057 free_extent_buffer(eb);
2058 }
2059
2060 btrfs_release_path(path);
2061
2062 return ret;
2063}
2064
d24bec3a
MF
2065static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2066 struct btrfs_path *path,
2067 iterate_irefs_t *iterate, void *ctx)
2068{
2069 int ret;
2070 int slot;
2071 u64 offset = 0;
2072 u64 parent;
2073 int found = 0;
2074 struct extent_buffer *eb;
2075 struct btrfs_inode_extref *extref;
d24bec3a
MF
2076 u32 item_size;
2077 u32 cur_offset;
2078 unsigned long ptr;
2079
2080 while (1) {
2081 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2082 &offset);
2083 if (ret < 0)
2084 break;
2085 if (ret) {
2086 ret = found ? 0 : -ENOENT;
2087 break;
2088 }
2089 ++found;
2090
2091 slot = path->slots[0];
3fe81ce2
FDBM
2092 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2093 if (!eb) {
2094 ret = -ENOMEM;
2095 break;
2096 }
2097 extent_buffer_get(eb);
d24bec3a
MF
2098
2099 btrfs_tree_read_lock(eb);
2100 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2101 btrfs_release_path(path);
2102
2849a854
CM
2103 item_size = btrfs_item_size_nr(eb, slot);
2104 ptr = btrfs_item_ptr_offset(eb, slot);
d24bec3a
MF
2105 cur_offset = 0;
2106
2107 while (cur_offset < item_size) {
2108 u32 name_len;
2109
2110 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2111 parent = btrfs_inode_extref_parent(eb, extref);
2112 name_len = btrfs_inode_extref_name_len(eb, extref);
2113 ret = iterate(parent, name_len,
2114 (unsigned long)&extref->name, eb, ctx);
2115 if (ret)
2116 break;
2117
2849a854 2118 cur_offset += btrfs_inode_extref_name_len(eb, extref);
d24bec3a
MF
2119 cur_offset += sizeof(*extref);
2120 }
2121 btrfs_tree_read_unlock_blocking(eb);
2122 free_extent_buffer(eb);
2123
2124 offset++;
2125 }
2126
2127 btrfs_release_path(path);
2128
2129 return ret;
2130}
2131
2132static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2133 struct btrfs_path *path, iterate_irefs_t *iterate,
2134 void *ctx)
2135{
2136 int ret;
2137 int found_refs = 0;
2138
2139 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2140 if (!ret)
2141 ++found_refs;
2142 else if (ret != -ENOENT)
2143 return ret;
2144
2145 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2146 if (ret == -ENOENT && found_refs)
2147 return 0;
2148
2149 return ret;
2150}
2151
a542ad1b
JS
2152/*
2153 * returns 0 if the path could be dumped (probably truncated)
2154 * returns <0 in case of an error
2155 */
d24bec3a
MF
2156static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2157 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
2158{
2159 struct inode_fs_paths *ipath = ctx;
2160 char *fspath;
2161 char *fspath_min;
2162 int i = ipath->fspath->elem_cnt;
2163 const int s_ptr = sizeof(char *);
2164 u32 bytes_left;
2165
2166 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2167 ipath->fspath->bytes_left - s_ptr : 0;
2168
740c3d22 2169 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
2170 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2171 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
2172 if (IS_ERR(fspath))
2173 return PTR_ERR(fspath);
2174
2175 if (fspath > fspath_min) {
745c4d8e 2176 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
2177 ++ipath->fspath->elem_cnt;
2178 ipath->fspath->bytes_left = fspath - fspath_min;
2179 } else {
2180 ++ipath->fspath->elem_missed;
2181 ipath->fspath->bytes_missing += fspath_min - fspath;
2182 ipath->fspath->bytes_left = 0;
2183 }
2184
2185 return 0;
2186}
2187
2188/*
2189 * this dumps all file system paths to the inode into the ipath struct, provided
2190 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 2191 * from ipath->fspath->val[i].
a542ad1b 2192 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 2193 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
01327610 2194 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
a542ad1b
JS
2195 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2196 * have been needed to return all paths.
2197 */
2198int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2199{
2200 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 2201 inode_to_path, ipath);
a542ad1b
JS
2202}
2203
a542ad1b
JS
2204struct btrfs_data_container *init_data_container(u32 total_bytes)
2205{
2206 struct btrfs_data_container *data;
2207 size_t alloc_bytes;
2208
2209 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
f54de068 2210 data = kvmalloc(alloc_bytes, GFP_KERNEL);
a542ad1b
JS
2211 if (!data)
2212 return ERR_PTR(-ENOMEM);
2213
2214 if (total_bytes >= sizeof(*data)) {
2215 data->bytes_left = total_bytes - sizeof(*data);
2216 data->bytes_missing = 0;
2217 } else {
2218 data->bytes_missing = sizeof(*data) - total_bytes;
2219 data->bytes_left = 0;
2220 }
2221
2222 data->elem_cnt = 0;
2223 data->elem_missed = 0;
2224
2225 return data;
2226}
2227
2228/*
2229 * allocates space to return multiple file system paths for an inode.
2230 * total_bytes to allocate are passed, note that space usable for actual path
2231 * information will be total_bytes - sizeof(struct inode_fs_paths).
2232 * the returned pointer must be freed with free_ipath() in the end.
2233 */
2234struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2235 struct btrfs_path *path)
2236{
2237 struct inode_fs_paths *ifp;
2238 struct btrfs_data_container *fspath;
2239
2240 fspath = init_data_container(total_bytes);
2241 if (IS_ERR(fspath))
2242 return (void *)fspath;
2243
f54de068 2244 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
a542ad1b 2245 if (!ifp) {
f54de068 2246 kvfree(fspath);
a542ad1b
JS
2247 return ERR_PTR(-ENOMEM);
2248 }
2249
2250 ifp->btrfs_path = path;
2251 ifp->fspath = fspath;
2252 ifp->fs_root = fs_root;
2253
2254 return ifp;
2255}
2256
2257void free_ipath(struct inode_fs_paths *ipath)
2258{
4735fb28
JJ
2259 if (!ipath)
2260 return;
f54de068 2261 kvfree(ipath->fspath);
a542ad1b
JS
2262 kfree(ipath);
2263}