Btrfs: fix race conditions in BTRFS_IOC_FS_INFO ioctl
[linux-2.6-block.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
425d17a2 19#include <linux/vmalloc.h>
a542ad1b
JS
20#include "ctree.h"
21#include "disk-io.h"
22#include "backref.h"
8da6d581
JS
23#include "ulist.h"
24#include "transaction.h"
25#include "delayed-ref.h"
b916a59a 26#include "locking.h"
a542ad1b 27
976b1908
JS
28struct extent_inode_elem {
29 u64 inum;
30 u64 offset;
31 struct extent_inode_elem *next;
32};
33
34static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 struct btrfs_file_extent_item *fi,
36 u64 extent_item_pos,
37 struct extent_inode_elem **eie)
38{
8ca15e05 39 u64 offset = 0;
976b1908
JS
40 struct extent_inode_elem *e;
41
8ca15e05
JB
42 if (!btrfs_file_extent_compression(eb, fi) &&
43 !btrfs_file_extent_encryption(eb, fi) &&
44 !btrfs_file_extent_other_encoding(eb, fi)) {
45 u64 data_offset;
46 u64 data_len;
976b1908 47
8ca15e05
JB
48 data_offset = btrfs_file_extent_offset(eb, fi);
49 data_len = btrfs_file_extent_num_bytes(eb, fi);
50
51 if (extent_item_pos < data_offset ||
52 extent_item_pos >= data_offset + data_len)
53 return 1;
54 offset = extent_item_pos - data_offset;
55 }
976b1908
JS
56
57 e = kmalloc(sizeof(*e), GFP_NOFS);
58 if (!e)
59 return -ENOMEM;
60
61 e->next = *eie;
62 e->inum = key->objectid;
8ca15e05 63 e->offset = key->offset + offset;
976b1908
JS
64 *eie = e;
65
66 return 0;
67}
68
69static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
70 u64 extent_item_pos,
71 struct extent_inode_elem **eie)
72{
73 u64 disk_byte;
74 struct btrfs_key key;
75 struct btrfs_file_extent_item *fi;
76 int slot;
77 int nritems;
78 int extent_type;
79 int ret;
80
81 /*
82 * from the shared data ref, we only have the leaf but we need
83 * the key. thus, we must look into all items and see that we
84 * find one (some) with a reference to our extent item.
85 */
86 nritems = btrfs_header_nritems(eb);
87 for (slot = 0; slot < nritems; ++slot) {
88 btrfs_item_key_to_cpu(eb, &key, slot);
89 if (key.type != BTRFS_EXTENT_DATA_KEY)
90 continue;
91 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
92 extent_type = btrfs_file_extent_type(eb, fi);
93 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
94 continue;
95 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
96 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
97 if (disk_byte != wanted_disk_byte)
98 continue;
99
100 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
101 if (ret < 0)
102 return ret;
103 }
104
105 return 0;
106}
107
8da6d581
JS
108/*
109 * this structure records all encountered refs on the way up to the root
110 */
111struct __prelim_ref {
112 struct list_head list;
113 u64 root_id;
d5c88b73 114 struct btrfs_key key_for_search;
8da6d581
JS
115 int level;
116 int count;
3301958b 117 struct extent_inode_elem *inode_list;
8da6d581
JS
118 u64 parent;
119 u64 wanted_disk_byte;
120};
121
d5c88b73
JS
122/*
123 * the rules for all callers of this function are:
124 * - obtaining the parent is the goal
125 * - if you add a key, you must know that it is a correct key
126 * - if you cannot add the parent or a correct key, then we will look into the
127 * block later to set a correct key
128 *
129 * delayed refs
130 * ============
131 * backref type | shared | indirect | shared | indirect
132 * information | tree | tree | data | data
133 * --------------------+--------+----------+--------+----------
134 * parent logical | y | - | - | -
135 * key to resolve | - | y | y | y
136 * tree block logical | - | - | - | -
137 * root for resolving | y | y | y | y
138 *
139 * - column 1: we've the parent -> done
140 * - column 2, 3, 4: we use the key to find the parent
141 *
142 * on disk refs (inline or keyed)
143 * ==============================
144 * backref type | shared | indirect | shared | indirect
145 * information | tree | tree | data | data
146 * --------------------+--------+----------+--------+----------
147 * parent logical | y | - | y | -
148 * key to resolve | - | - | - | y
149 * tree block logical | y | y | y | y
150 * root for resolving | - | y | y | y
151 *
152 * - column 1, 3: we've the parent -> done
153 * - column 2: we take the first key from the block to find the parent
154 * (see __add_missing_keys)
155 * - column 4: we use the key to find the parent
156 *
157 * additional information that's available but not required to find the parent
158 * block might help in merging entries to gain some speed.
159 */
160
8da6d581 161static int __add_prelim_ref(struct list_head *head, u64 root_id,
d5c88b73
JS
162 struct btrfs_key *key, int level,
163 u64 parent, u64 wanted_disk_byte, int count)
8da6d581
JS
164{
165 struct __prelim_ref *ref;
166
167 /* in case we're adding delayed refs, we're holding the refs spinlock */
168 ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
169 if (!ref)
170 return -ENOMEM;
171
172 ref->root_id = root_id;
173 if (key)
d5c88b73 174 ref->key_for_search = *key;
8da6d581 175 else
d5c88b73 176 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 177
3301958b 178 ref->inode_list = NULL;
8da6d581
JS
179 ref->level = level;
180 ref->count = count;
181 ref->parent = parent;
182 ref->wanted_disk_byte = wanted_disk_byte;
183 list_add_tail(&ref->list, head);
184
185 return 0;
186}
187
188static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
976b1908 189 struct ulist *parents, int level,
69bca40d 190 struct btrfs_key *key_for_search, u64 time_seq,
3d7806ec 191 u64 wanted_disk_byte,
976b1908 192 const u64 *extent_item_pos)
8da6d581 193{
69bca40d
AB
194 int ret = 0;
195 int slot;
196 struct extent_buffer *eb;
197 struct btrfs_key key;
8da6d581 198 struct btrfs_file_extent_item *fi;
ed8c4913 199 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581
JS
200 u64 disk_byte;
201
69bca40d
AB
202 if (level != 0) {
203 eb = path->nodes[level];
204 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
205 if (ret < 0)
206 return ret;
8da6d581 207 return 0;
69bca40d 208 }
8da6d581
JS
209
210 /*
69bca40d
AB
211 * We normally enter this function with the path already pointing to
212 * the first item to check. But sometimes, we may enter it with
213 * slot==nritems. In that case, go to the next leaf before we continue.
8da6d581 214 */
69bca40d 215 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
3d7806ec 216 ret = btrfs_next_old_leaf(root, path, time_seq);
8da6d581 217
69bca40d 218 while (!ret) {
8da6d581 219 eb = path->nodes[0];
69bca40d
AB
220 slot = path->slots[0];
221
222 btrfs_item_key_to_cpu(eb, &key, slot);
223
224 if (key.objectid != key_for_search->objectid ||
225 key.type != BTRFS_EXTENT_DATA_KEY)
226 break;
227
228 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
229 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
230
231 if (disk_byte == wanted_disk_byte) {
232 eie = NULL;
ed8c4913 233 old = NULL;
69bca40d
AB
234 if (extent_item_pos) {
235 ret = check_extent_in_eb(&key, eb, fi,
236 *extent_item_pos,
237 &eie);
238 if (ret < 0)
239 break;
240 }
ed8c4913
JB
241 if (ret > 0)
242 goto next;
243 ret = ulist_add_merge(parents, eb->start,
244 (uintptr_t)eie,
245 (u64 *)&old, GFP_NOFS);
246 if (ret < 0)
247 break;
248 if (!ret && extent_item_pos) {
249 while (old->next)
250 old = old->next;
251 old->next = eie;
69bca40d 252 }
8da6d581 253 }
ed8c4913 254next:
69bca40d 255 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
256 }
257
69bca40d
AB
258 if (ret > 0)
259 ret = 0;
260 return ret;
8da6d581
JS
261}
262
263/*
264 * resolve an indirect backref in the form (root_id, key, level)
265 * to a logical address
266 */
267static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
da61d31a
JB
268 struct btrfs_path *path, u64 time_seq,
269 struct __prelim_ref *ref,
270 struct ulist *parents,
271 const u64 *extent_item_pos)
8da6d581 272{
8da6d581
JS
273 struct btrfs_root *root;
274 struct btrfs_key root_key;
8da6d581
JS
275 struct extent_buffer *eb;
276 int ret = 0;
277 int root_level;
278 int level = ref->level;
279
8da6d581
JS
280 root_key.objectid = ref->root_id;
281 root_key.type = BTRFS_ROOT_ITEM_KEY;
282 root_key.offset = (u64)-1;
283 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
284 if (IS_ERR(root)) {
285 ret = PTR_ERR(root);
286 goto out;
287 }
288
5b6602e7 289 root_level = btrfs_old_root_level(root, time_seq);
8da6d581
JS
290
291 if (root_level + 1 == level)
292 goto out;
293
294 path->lowest_level = level;
8445f61c 295 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
8da6d581
JS
296 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
297 "%d for key (%llu %u %llu)\n",
c1c9ff7c
GU
298 ref->root_id, level, ref->count, ret,
299 ref->key_for_search.objectid, ref->key_for_search.type,
300 ref->key_for_search.offset);
8da6d581
JS
301 if (ret < 0)
302 goto out;
303
304 eb = path->nodes[level];
9345457f
JS
305 while (!eb) {
306 if (!level) {
307 WARN_ON(1);
308 ret = 1;
309 goto out;
310 }
311 level--;
312 eb = path->nodes[level];
8da6d581
JS
313 }
314
69bca40d
AB
315 ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
316 time_seq, ref->wanted_disk_byte,
317 extent_item_pos);
8da6d581 318out:
da61d31a
JB
319 path->lowest_level = 0;
320 btrfs_release_path(path);
8da6d581
JS
321 return ret;
322}
323
324/*
325 * resolve all indirect backrefs from the list
326 */
327static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
da61d31a 328 struct btrfs_path *path, u64 time_seq,
976b1908
JS
329 struct list_head *head,
330 const u64 *extent_item_pos)
8da6d581
JS
331{
332 int err;
333 int ret = 0;
334 struct __prelim_ref *ref;
335 struct __prelim_ref *ref_safe;
336 struct __prelim_ref *new_ref;
337 struct ulist *parents;
338 struct ulist_node *node;
cd1b413c 339 struct ulist_iterator uiter;
8da6d581
JS
340
341 parents = ulist_alloc(GFP_NOFS);
342 if (!parents)
343 return -ENOMEM;
344
345 /*
346 * _safe allows us to insert directly after the current item without
347 * iterating over the newly inserted items.
348 * we're also allowed to re-assign ref during iteration.
349 */
350 list_for_each_entry_safe(ref, ref_safe, head, list) {
351 if (ref->parent) /* already direct */
352 continue;
353 if (ref->count == 0)
354 continue;
da61d31a
JB
355 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
356 parents, extent_item_pos);
e36902d4
WS
357 if (err == -ENOMEM)
358 goto out;
ca60ebfa 359 if (err)
8da6d581 360 continue;
8da6d581
JS
361
362 /* we put the first parent into the ref at hand */
cd1b413c
JS
363 ULIST_ITER_INIT(&uiter);
364 node = ulist_next(parents, &uiter);
8da6d581 365 ref->parent = node ? node->val : 0;
995e01b7 366 ref->inode_list = node ?
35a3621b 367 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
8da6d581
JS
368
369 /* additional parents require new refs being added here */
cd1b413c 370 while ((node = ulist_next(parents, &uiter))) {
8da6d581
JS
371 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
372 if (!new_ref) {
373 ret = -ENOMEM;
e36902d4 374 goto out;
8da6d581
JS
375 }
376 memcpy(new_ref, ref, sizeof(*ref));
377 new_ref->parent = node->val;
995e01b7
JS
378 new_ref->inode_list = (struct extent_inode_elem *)
379 (uintptr_t)node->aux;
8da6d581
JS
380 list_add(&new_ref->list, &ref->list);
381 }
382 ulist_reinit(parents);
383 }
e36902d4 384out:
8da6d581
JS
385 ulist_free(parents);
386 return ret;
387}
388
d5c88b73
JS
389static inline int ref_for_same_block(struct __prelim_ref *ref1,
390 struct __prelim_ref *ref2)
391{
392 if (ref1->level != ref2->level)
393 return 0;
394 if (ref1->root_id != ref2->root_id)
395 return 0;
396 if (ref1->key_for_search.type != ref2->key_for_search.type)
397 return 0;
398 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
399 return 0;
400 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
401 return 0;
402 if (ref1->parent != ref2->parent)
403 return 0;
404
405 return 1;
406}
407
408/*
409 * read tree blocks and add keys where required.
410 */
411static int __add_missing_keys(struct btrfs_fs_info *fs_info,
412 struct list_head *head)
413{
414 struct list_head *pos;
415 struct extent_buffer *eb;
416
417 list_for_each(pos, head) {
418 struct __prelim_ref *ref;
419 ref = list_entry(pos, struct __prelim_ref, list);
420
421 if (ref->parent)
422 continue;
423 if (ref->key_for_search.type)
424 continue;
425 BUG_ON(!ref->wanted_disk_byte);
426 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
427 fs_info->tree_root->leafsize, 0);
416bc658
JB
428 if (!eb || !extent_buffer_uptodate(eb)) {
429 free_extent_buffer(eb);
430 return -EIO;
431 }
d5c88b73
JS
432 btrfs_tree_read_lock(eb);
433 if (btrfs_header_level(eb) == 0)
434 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
435 else
436 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
437 btrfs_tree_read_unlock(eb);
438 free_extent_buffer(eb);
439 }
440 return 0;
441}
442
8da6d581
JS
443/*
444 * merge two lists of backrefs and adjust counts accordingly
445 *
446 * mode = 1: merge identical keys, if key is set
d5c88b73
JS
447 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
448 * additionally, we could even add a key range for the blocks we
449 * looked into to merge even more (-> replace unresolved refs by those
450 * having a parent).
8da6d581
JS
451 * mode = 2: merge identical parents
452 */
692206b1 453static void __merge_refs(struct list_head *head, int mode)
8da6d581
JS
454{
455 struct list_head *pos1;
456
457 list_for_each(pos1, head) {
458 struct list_head *n2;
459 struct list_head *pos2;
460 struct __prelim_ref *ref1;
461
462 ref1 = list_entry(pos1, struct __prelim_ref, list);
463
8da6d581
JS
464 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
465 pos2 = n2, n2 = pos2->next) {
466 struct __prelim_ref *ref2;
d5c88b73 467 struct __prelim_ref *xchg;
3ef5969c 468 struct extent_inode_elem *eie;
8da6d581
JS
469
470 ref2 = list_entry(pos2, struct __prelim_ref, list);
471
472 if (mode == 1) {
d5c88b73 473 if (!ref_for_same_block(ref1, ref2))
8da6d581 474 continue;
d5c88b73
JS
475 if (!ref1->parent && ref2->parent) {
476 xchg = ref1;
477 ref1 = ref2;
478 ref2 = xchg;
479 }
8da6d581
JS
480 } else {
481 if (ref1->parent != ref2->parent)
482 continue;
8da6d581 483 }
3ef5969c
AB
484
485 eie = ref1->inode_list;
486 while (eie && eie->next)
487 eie = eie->next;
488 if (eie)
489 eie->next = ref2->inode_list;
490 else
491 ref1->inode_list = ref2->inode_list;
492 ref1->count += ref2->count;
493
8da6d581
JS
494 list_del(&ref2->list);
495 kfree(ref2);
496 }
497
498 }
8da6d581
JS
499}
500
501/*
502 * add all currently queued delayed refs from this head whose seq nr is
503 * smaller or equal that seq to the list
504 */
505static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
8da6d581
JS
506 struct list_head *prefs)
507{
508 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
509 struct rb_node *n = &head->node.rb_node;
d5c88b73
JS
510 struct btrfs_key key;
511 struct btrfs_key op_key = {0};
8da6d581 512 int sgn;
b1375d64 513 int ret = 0;
8da6d581
JS
514
515 if (extent_op && extent_op->update_key)
d5c88b73 516 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
8da6d581
JS
517
518 while ((n = rb_prev(n))) {
519 struct btrfs_delayed_ref_node *node;
520 node = rb_entry(n, struct btrfs_delayed_ref_node,
521 rb_node);
522 if (node->bytenr != head->node.bytenr)
523 break;
524 WARN_ON(node->is_head);
525
526 if (node->seq > seq)
527 continue;
528
529 switch (node->action) {
530 case BTRFS_ADD_DELAYED_EXTENT:
531 case BTRFS_UPDATE_DELAYED_HEAD:
532 WARN_ON(1);
533 continue;
534 case BTRFS_ADD_DELAYED_REF:
535 sgn = 1;
536 break;
537 case BTRFS_DROP_DELAYED_REF:
538 sgn = -1;
539 break;
540 default:
541 BUG_ON(1);
542 }
543 switch (node->type) {
544 case BTRFS_TREE_BLOCK_REF_KEY: {
545 struct btrfs_delayed_tree_ref *ref;
546
547 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 548 ret = __add_prelim_ref(prefs, ref->root, &op_key,
8da6d581
JS
549 ref->level + 1, 0, node->bytenr,
550 node->ref_mod * sgn);
551 break;
552 }
553 case BTRFS_SHARED_BLOCK_REF_KEY: {
554 struct btrfs_delayed_tree_ref *ref;
555
556 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 557 ret = __add_prelim_ref(prefs, ref->root, NULL,
8da6d581
JS
558 ref->level + 1, ref->parent,
559 node->bytenr,
560 node->ref_mod * sgn);
561 break;
562 }
563 case BTRFS_EXTENT_DATA_REF_KEY: {
564 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
565 ref = btrfs_delayed_node_to_data_ref(node);
566
567 key.objectid = ref->objectid;
568 key.type = BTRFS_EXTENT_DATA_KEY;
569 key.offset = ref->offset;
570 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
571 node->bytenr,
572 node->ref_mod * sgn);
573 break;
574 }
575 case BTRFS_SHARED_DATA_REF_KEY: {
576 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
577
578 ref = btrfs_delayed_node_to_data_ref(node);
579
580 key.objectid = ref->objectid;
581 key.type = BTRFS_EXTENT_DATA_KEY;
582 key.offset = ref->offset;
583 ret = __add_prelim_ref(prefs, ref->root, &key, 0,
584 ref->parent, node->bytenr,
585 node->ref_mod * sgn);
586 break;
587 }
588 default:
589 WARN_ON(1);
590 }
1149ab6b
WS
591 if (ret)
592 return ret;
8da6d581
JS
593 }
594
595 return 0;
596}
597
598/*
599 * add all inline backrefs for bytenr to the list
600 */
601static int __add_inline_refs(struct btrfs_fs_info *fs_info,
602 struct btrfs_path *path, u64 bytenr,
d5c88b73 603 int *info_level, struct list_head *prefs)
8da6d581 604{
b1375d64 605 int ret = 0;
8da6d581
JS
606 int slot;
607 struct extent_buffer *leaf;
608 struct btrfs_key key;
261c84b6 609 struct btrfs_key found_key;
8da6d581
JS
610 unsigned long ptr;
611 unsigned long end;
612 struct btrfs_extent_item *ei;
613 u64 flags;
614 u64 item_size;
615
616 /*
617 * enumerate all inline refs
618 */
619 leaf = path->nodes[0];
dadcaf78 620 slot = path->slots[0];
8da6d581
JS
621
622 item_size = btrfs_item_size_nr(leaf, slot);
623 BUG_ON(item_size < sizeof(*ei));
624
625 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
626 flags = btrfs_extent_flags(leaf, ei);
261c84b6 627 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
628
629 ptr = (unsigned long)(ei + 1);
630 end = (unsigned long)ei + item_size;
631
261c84b6
JB
632 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
633 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 634 struct btrfs_tree_block_info *info;
8da6d581
JS
635
636 info = (struct btrfs_tree_block_info *)ptr;
637 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
638 ptr += sizeof(struct btrfs_tree_block_info);
639 BUG_ON(ptr > end);
261c84b6
JB
640 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
641 *info_level = found_key.offset;
8da6d581
JS
642 } else {
643 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
644 }
645
646 while (ptr < end) {
647 struct btrfs_extent_inline_ref *iref;
648 u64 offset;
649 int type;
650
651 iref = (struct btrfs_extent_inline_ref *)ptr;
652 type = btrfs_extent_inline_ref_type(leaf, iref);
653 offset = btrfs_extent_inline_ref_offset(leaf, iref);
654
655 switch (type) {
656 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 657 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581
JS
658 *info_level + 1, offset,
659 bytenr, 1);
660 break;
661 case BTRFS_SHARED_DATA_REF_KEY: {
662 struct btrfs_shared_data_ref *sdref;
663 int count;
664
665 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
666 count = btrfs_shared_data_ref_count(leaf, sdref);
667 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
668 bytenr, count);
669 break;
670 }
671 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
672 ret = __add_prelim_ref(prefs, offset, NULL,
673 *info_level + 1, 0,
674 bytenr, 1);
8da6d581
JS
675 break;
676 case BTRFS_EXTENT_DATA_REF_KEY: {
677 struct btrfs_extent_data_ref *dref;
678 int count;
679 u64 root;
680
681 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
682 count = btrfs_extent_data_ref_count(leaf, dref);
683 key.objectid = btrfs_extent_data_ref_objectid(leaf,
684 dref);
685 key.type = BTRFS_EXTENT_DATA_KEY;
686 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
687 root = btrfs_extent_data_ref_root(leaf, dref);
d5c88b73
JS
688 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
689 bytenr, count);
8da6d581
JS
690 break;
691 }
692 default:
693 WARN_ON(1);
694 }
1149ab6b
WS
695 if (ret)
696 return ret;
8da6d581
JS
697 ptr += btrfs_extent_inline_ref_size(type);
698 }
699
700 return 0;
701}
702
703/*
704 * add all non-inline backrefs for bytenr to the list
705 */
706static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
707 struct btrfs_path *path, u64 bytenr,
d5c88b73 708 int info_level, struct list_head *prefs)
8da6d581
JS
709{
710 struct btrfs_root *extent_root = fs_info->extent_root;
711 int ret;
712 int slot;
713 struct extent_buffer *leaf;
714 struct btrfs_key key;
715
716 while (1) {
717 ret = btrfs_next_item(extent_root, path);
718 if (ret < 0)
719 break;
720 if (ret) {
721 ret = 0;
722 break;
723 }
724
725 slot = path->slots[0];
726 leaf = path->nodes[0];
727 btrfs_item_key_to_cpu(leaf, &key, slot);
728
729 if (key.objectid != bytenr)
730 break;
731 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
732 continue;
733 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
734 break;
735
736 switch (key.type) {
737 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 738 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581
JS
739 info_level + 1, key.offset,
740 bytenr, 1);
741 break;
742 case BTRFS_SHARED_DATA_REF_KEY: {
743 struct btrfs_shared_data_ref *sdref;
744 int count;
745
746 sdref = btrfs_item_ptr(leaf, slot,
747 struct btrfs_shared_data_ref);
748 count = btrfs_shared_data_ref_count(leaf, sdref);
749 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
750 bytenr, count);
751 break;
752 }
753 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
754 ret = __add_prelim_ref(prefs, key.offset, NULL,
755 info_level + 1, 0,
756 bytenr, 1);
8da6d581
JS
757 break;
758 case BTRFS_EXTENT_DATA_REF_KEY: {
759 struct btrfs_extent_data_ref *dref;
760 int count;
761 u64 root;
762
763 dref = btrfs_item_ptr(leaf, slot,
764 struct btrfs_extent_data_ref);
765 count = btrfs_extent_data_ref_count(leaf, dref);
766 key.objectid = btrfs_extent_data_ref_objectid(leaf,
767 dref);
768 key.type = BTRFS_EXTENT_DATA_KEY;
769 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
770 root = btrfs_extent_data_ref_root(leaf, dref);
771 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
d5c88b73 772 bytenr, count);
8da6d581
JS
773 break;
774 }
775 default:
776 WARN_ON(1);
777 }
1149ab6b
WS
778 if (ret)
779 return ret;
780
8da6d581
JS
781 }
782
783 return ret;
784}
785
786/*
787 * this adds all existing backrefs (inline backrefs, backrefs and delayed
788 * refs) for the given bytenr to the refs list, merges duplicates and resolves
789 * indirect refs to their parent bytenr.
790 * When roots are found, they're added to the roots list
791 *
792 * FIXME some caching might speed things up
793 */
794static int find_parent_nodes(struct btrfs_trans_handle *trans,
795 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c
JS
796 u64 time_seq, struct ulist *refs,
797 struct ulist *roots, const u64 *extent_item_pos)
8da6d581
JS
798{
799 struct btrfs_key key;
800 struct btrfs_path *path;
8da6d581 801 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 802 struct btrfs_delayed_ref_head *head;
8da6d581
JS
803 int info_level = 0;
804 int ret;
805 struct list_head prefs_delayed;
806 struct list_head prefs;
807 struct __prelim_ref *ref;
808
809 INIT_LIST_HEAD(&prefs);
810 INIT_LIST_HEAD(&prefs_delayed);
811
812 key.objectid = bytenr;
8da6d581 813 key.offset = (u64)-1;
261c84b6
JB
814 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
815 key.type = BTRFS_METADATA_ITEM_KEY;
816 else
817 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
818
819 path = btrfs_alloc_path();
820 if (!path)
821 return -ENOMEM;
da61d31a
JB
822 if (!trans)
823 path->search_commit_root = 1;
8da6d581
JS
824
825 /*
826 * grab both a lock on the path and a lock on the delayed ref head.
827 * We need both to get a consistent picture of how the refs look
828 * at a specified point in time
829 */
830again:
d3b01064
LZ
831 head = NULL;
832
8da6d581
JS
833 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
834 if (ret < 0)
835 goto out;
836 BUG_ON(ret == 0);
837
da61d31a 838 if (trans) {
7a3ae2f8
JS
839 /*
840 * look if there are updates for this ref queued and lock the
841 * head
842 */
843 delayed_refs = &trans->transaction->delayed_refs;
844 spin_lock(&delayed_refs->lock);
845 head = btrfs_find_delayed_ref_head(trans, bytenr);
846 if (head) {
847 if (!mutex_trylock(&head->mutex)) {
848 atomic_inc(&head->node.refs);
849 spin_unlock(&delayed_refs->lock);
850
851 btrfs_release_path(path);
852
853 /*
854 * Mutex was contended, block until it's
855 * released and try again
856 */
857 mutex_lock(&head->mutex);
858 mutex_unlock(&head->mutex);
859 btrfs_put_delayed_ref(&head->node);
860 goto again;
861 }
097b8a7c 862 ret = __add_delayed_refs(head, time_seq,
8445f61c 863 &prefs_delayed);
155725c9 864 mutex_unlock(&head->mutex);
7a3ae2f8
JS
865 if (ret) {
866 spin_unlock(&delayed_refs->lock);
867 goto out;
868 }
d3b01064 869 }
7a3ae2f8 870 spin_unlock(&delayed_refs->lock);
8da6d581 871 }
8da6d581
JS
872
873 if (path->slots[0]) {
874 struct extent_buffer *leaf;
875 int slot;
876
dadcaf78 877 path->slots[0]--;
8da6d581 878 leaf = path->nodes[0];
dadcaf78 879 slot = path->slots[0];
8da6d581
JS
880 btrfs_item_key_to_cpu(leaf, &key, slot);
881 if (key.objectid == bytenr &&
261c84b6
JB
882 (key.type == BTRFS_EXTENT_ITEM_KEY ||
883 key.type == BTRFS_METADATA_ITEM_KEY)) {
8da6d581 884 ret = __add_inline_refs(fs_info, path, bytenr,
d5c88b73 885 &info_level, &prefs);
8da6d581
JS
886 if (ret)
887 goto out;
d5c88b73 888 ret = __add_keyed_refs(fs_info, path, bytenr,
8da6d581
JS
889 info_level, &prefs);
890 if (ret)
891 goto out;
892 }
893 }
894 btrfs_release_path(path);
895
8da6d581
JS
896 list_splice_init(&prefs_delayed, &prefs);
897
d5c88b73
JS
898 ret = __add_missing_keys(fs_info, &prefs);
899 if (ret)
900 goto out;
901
692206b1 902 __merge_refs(&prefs, 1);
8da6d581 903
da61d31a
JB
904 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
905 extent_item_pos);
8da6d581
JS
906 if (ret)
907 goto out;
908
692206b1 909 __merge_refs(&prefs, 2);
8da6d581
JS
910
911 while (!list_empty(&prefs)) {
912 ref = list_first_entry(&prefs, struct __prelim_ref, list);
6c1500f2 913 WARN_ON(ref->count < 0);
8da6d581
JS
914 if (ref->count && ref->root_id && ref->parent == 0) {
915 /* no parent == root of tree */
916 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
917 if (ret < 0)
918 goto out;
8da6d581
JS
919 }
920 if (ref->count && ref->parent) {
976b1908 921 struct extent_inode_elem *eie = NULL;
3301958b 922 if (extent_item_pos && !ref->inode_list) {
976b1908
JS
923 u32 bsz;
924 struct extent_buffer *eb;
925 bsz = btrfs_level_size(fs_info->extent_root,
926 info_level);
927 eb = read_tree_block(fs_info->extent_root,
928 ref->parent, bsz, 0);
416bc658
JB
929 if (!eb || !extent_buffer_uptodate(eb)) {
930 free_extent_buffer(eb);
c16c2e2e
WS
931 ret = -EIO;
932 goto out;
416bc658 933 }
976b1908
JS
934 ret = find_extent_in_eb(eb, bytenr,
935 *extent_item_pos, &eie);
936 free_extent_buffer(eb);
f5929cd8
FDBM
937 if (ret < 0)
938 goto out;
939 ref->inode_list = eie;
976b1908 940 }
3301958b 941 ret = ulist_add_merge(refs, ref->parent,
995e01b7 942 (uintptr_t)ref->inode_list,
34d73f54 943 (u64 *)&eie, GFP_NOFS);
f1723939
WS
944 if (ret < 0)
945 goto out;
3301958b
JS
946 if (!ret && extent_item_pos) {
947 /*
948 * we've recorded that parent, so we must extend
949 * its inode list here
950 */
951 BUG_ON(!eie);
952 while (eie->next)
953 eie = eie->next;
954 eie->next = ref->inode_list;
955 }
8da6d581 956 }
a4fdb61e 957 list_del(&ref->list);
8da6d581
JS
958 kfree(ref);
959 }
960
961out:
8da6d581
JS
962 btrfs_free_path(path);
963 while (!list_empty(&prefs)) {
964 ref = list_first_entry(&prefs, struct __prelim_ref, list);
965 list_del(&ref->list);
966 kfree(ref);
967 }
968 while (!list_empty(&prefs_delayed)) {
969 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
970 list);
971 list_del(&ref->list);
972 kfree(ref);
973 }
974
975 return ret;
976}
977
976b1908
JS
978static void free_leaf_list(struct ulist *blocks)
979{
980 struct ulist_node *node = NULL;
981 struct extent_inode_elem *eie;
982 struct extent_inode_elem *eie_next;
983 struct ulist_iterator uiter;
984
985 ULIST_ITER_INIT(&uiter);
986 while ((node = ulist_next(blocks, &uiter))) {
987 if (!node->aux)
988 continue;
995e01b7 989 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
976b1908
JS
990 for (; eie; eie = eie_next) {
991 eie_next = eie->next;
992 kfree(eie);
993 }
994 node->aux = 0;
995 }
996
997 ulist_free(blocks);
998}
999
8da6d581
JS
1000/*
1001 * Finds all leafs with a reference to the specified combination of bytenr and
1002 * offset. key_list_head will point to a list of corresponding keys (caller must
1003 * free each list element). The leafs will be stored in the leafs ulist, which
1004 * must be freed with ulist_free.
1005 *
1006 * returns 0 on success, <0 on error
1007 */
1008static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1009 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1010 u64 time_seq, struct ulist **leafs,
976b1908 1011 const u64 *extent_item_pos)
8da6d581
JS
1012{
1013 struct ulist *tmp;
1014 int ret;
1015
1016 tmp = ulist_alloc(GFP_NOFS);
1017 if (!tmp)
1018 return -ENOMEM;
1019 *leafs = ulist_alloc(GFP_NOFS);
1020 if (!*leafs) {
1021 ulist_free(tmp);
1022 return -ENOMEM;
1023 }
1024
097b8a7c 1025 ret = find_parent_nodes(trans, fs_info, bytenr,
8445f61c 1026 time_seq, *leafs, tmp, extent_item_pos);
8da6d581
JS
1027 ulist_free(tmp);
1028
1029 if (ret < 0 && ret != -ENOENT) {
976b1908 1030 free_leaf_list(*leafs);
8da6d581
JS
1031 return ret;
1032 }
1033
1034 return 0;
1035}
1036
1037/*
1038 * walk all backrefs for a given extent to find all roots that reference this
1039 * extent. Walking a backref means finding all extents that reference this
1040 * extent and in turn walk the backrefs of those, too. Naturally this is a
1041 * recursive process, but here it is implemented in an iterative fashion: We
1042 * find all referencing extents for the extent in question and put them on a
1043 * list. In turn, we find all referencing extents for those, further appending
1044 * to the list. The way we iterate the list allows adding more elements after
1045 * the current while iterating. The process stops when we reach the end of the
1046 * list. Found roots are added to the roots list.
1047 *
1048 * returns 0 on success, < 0 on error.
1049 */
1050int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1051 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1052 u64 time_seq, struct ulist **roots)
8da6d581
JS
1053{
1054 struct ulist *tmp;
1055 struct ulist_node *node = NULL;
cd1b413c 1056 struct ulist_iterator uiter;
8da6d581
JS
1057 int ret;
1058
1059 tmp = ulist_alloc(GFP_NOFS);
1060 if (!tmp)
1061 return -ENOMEM;
1062 *roots = ulist_alloc(GFP_NOFS);
1063 if (!*roots) {
1064 ulist_free(tmp);
1065 return -ENOMEM;
1066 }
1067
cd1b413c 1068 ULIST_ITER_INIT(&uiter);
8da6d581 1069 while (1) {
097b8a7c 1070 ret = find_parent_nodes(trans, fs_info, bytenr,
8445f61c 1071 time_seq, tmp, *roots, NULL);
8da6d581
JS
1072 if (ret < 0 && ret != -ENOENT) {
1073 ulist_free(tmp);
1074 ulist_free(*roots);
1075 return ret;
1076 }
cd1b413c 1077 node = ulist_next(tmp, &uiter);
8da6d581
JS
1078 if (!node)
1079 break;
1080 bytenr = node->val;
1081 }
1082
1083 ulist_free(tmp);
1084 return 0;
1085}
1086
1087
a542ad1b
JS
1088static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1089 struct btrfs_root *fs_root, struct btrfs_path *path,
1090 struct btrfs_key *found_key)
1091{
1092 int ret;
1093 struct btrfs_key key;
1094 struct extent_buffer *eb;
1095
1096 key.type = key_type;
1097 key.objectid = inum;
1098 key.offset = ioff;
1099
1100 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1101 if (ret < 0)
1102 return ret;
1103
1104 eb = path->nodes[0];
1105 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1106 ret = btrfs_next_leaf(fs_root, path);
1107 if (ret)
1108 return ret;
1109 eb = path->nodes[0];
1110 }
1111
1112 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1113 if (found_key->type != key.type || found_key->objectid != key.objectid)
1114 return 1;
1115
1116 return 0;
1117}
1118
1119/*
1120 * this makes the path point to (inum INODE_ITEM ioff)
1121 */
1122int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1123 struct btrfs_path *path)
1124{
1125 struct btrfs_key key;
1126 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1127 &key);
1128}
1129
1130static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1131 struct btrfs_path *path,
1132 struct btrfs_key *found_key)
1133{
1134 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1135 found_key);
1136}
1137
f186373f
MF
1138int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1139 u64 start_off, struct btrfs_path *path,
1140 struct btrfs_inode_extref **ret_extref,
1141 u64 *found_off)
1142{
1143 int ret, slot;
1144 struct btrfs_key key;
1145 struct btrfs_key found_key;
1146 struct btrfs_inode_extref *extref;
1147 struct extent_buffer *leaf;
1148 unsigned long ptr;
1149
1150 key.objectid = inode_objectid;
1151 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1152 key.offset = start_off;
1153
1154 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1155 if (ret < 0)
1156 return ret;
1157
1158 while (1) {
1159 leaf = path->nodes[0];
1160 slot = path->slots[0];
1161 if (slot >= btrfs_header_nritems(leaf)) {
1162 /*
1163 * If the item at offset is not found,
1164 * btrfs_search_slot will point us to the slot
1165 * where it should be inserted. In our case
1166 * that will be the slot directly before the
1167 * next INODE_REF_KEY_V2 item. In the case
1168 * that we're pointing to the last slot in a
1169 * leaf, we must move one leaf over.
1170 */
1171 ret = btrfs_next_leaf(root, path);
1172 if (ret) {
1173 if (ret >= 1)
1174 ret = -ENOENT;
1175 break;
1176 }
1177 continue;
1178 }
1179
1180 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1181
1182 /*
1183 * Check that we're still looking at an extended ref key for
1184 * this particular objectid. If we have different
1185 * objectid or type then there are no more to be found
1186 * in the tree and we can exit.
1187 */
1188 ret = -ENOENT;
1189 if (found_key.objectid != inode_objectid)
1190 break;
1191 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1192 break;
1193
1194 ret = 0;
1195 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1196 extref = (struct btrfs_inode_extref *)ptr;
1197 *ret_extref = extref;
1198 if (found_off)
1199 *found_off = found_key.offset;
1200 break;
1201 }
1202
1203 return ret;
1204}
1205
48a3b636
ES
1206/*
1207 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1208 * Elements of the path are separated by '/' and the path is guaranteed to be
1209 * 0-terminated. the path is only given within the current file system.
1210 * Therefore, it never starts with a '/'. the caller is responsible to provide
1211 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1212 * the start point of the resulting string is returned. this pointer is within
1213 * dest, normally.
1214 * in case the path buffer would overflow, the pointer is decremented further
1215 * as if output was written to the buffer, though no more output is actually
1216 * generated. that way, the caller can determine how much space would be
1217 * required for the path to fit into the buffer. in that case, the returned
1218 * value will be smaller than dest. callers must check this!
1219 */
96b5bd77
JS
1220char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1221 u32 name_len, unsigned long name_off,
1222 struct extent_buffer *eb_in, u64 parent,
1223 char *dest, u32 size)
a542ad1b 1224{
a542ad1b
JS
1225 int slot;
1226 u64 next_inum;
1227 int ret;
661bec6b 1228 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1229 struct extent_buffer *eb = eb_in;
1230 struct btrfs_key found_key;
b916a59a 1231 int leave_spinning = path->leave_spinning;
d24bec3a 1232 struct btrfs_inode_ref *iref;
a542ad1b
JS
1233
1234 if (bytes_left >= 0)
1235 dest[bytes_left] = '\0';
1236
b916a59a 1237 path->leave_spinning = 1;
a542ad1b 1238 while (1) {
d24bec3a 1239 bytes_left -= name_len;
a542ad1b
JS
1240 if (bytes_left >= 0)
1241 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1242 name_off, name_len);
b916a59a
JS
1243 if (eb != eb_in) {
1244 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1245 free_extent_buffer(eb);
b916a59a 1246 }
a542ad1b 1247 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
8f24b496
JS
1248 if (ret > 0)
1249 ret = -ENOENT;
a542ad1b
JS
1250 if (ret)
1251 break;
d24bec3a 1252
a542ad1b
JS
1253 next_inum = found_key.offset;
1254
1255 /* regular exit ahead */
1256 if (parent == next_inum)
1257 break;
1258
1259 slot = path->slots[0];
1260 eb = path->nodes[0];
1261 /* make sure we can use eb after releasing the path */
b916a59a 1262 if (eb != eb_in) {
a542ad1b 1263 atomic_inc(&eb->refs);
b916a59a
JS
1264 btrfs_tree_read_lock(eb);
1265 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1266 }
a542ad1b 1267 btrfs_release_path(path);
a542ad1b 1268 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1269
1270 name_len = btrfs_inode_ref_name_len(eb, iref);
1271 name_off = (unsigned long)(iref + 1);
1272
a542ad1b
JS
1273 parent = next_inum;
1274 --bytes_left;
1275 if (bytes_left >= 0)
1276 dest[bytes_left] = '/';
1277 }
1278
1279 btrfs_release_path(path);
b916a59a 1280 path->leave_spinning = leave_spinning;
a542ad1b
JS
1281
1282 if (ret)
1283 return ERR_PTR(ret);
1284
1285 return dest + bytes_left;
1286}
1287
1288/*
1289 * this makes the path point to (logical EXTENT_ITEM *)
1290 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1291 * tree blocks and <0 on error.
1292 */
1293int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1294 struct btrfs_path *path, struct btrfs_key *found_key,
1295 u64 *flags_ret)
a542ad1b
JS
1296{
1297 int ret;
1298 u64 flags;
261c84b6 1299 u64 size = 0;
a542ad1b
JS
1300 u32 item_size;
1301 struct extent_buffer *eb;
1302 struct btrfs_extent_item *ei;
1303 struct btrfs_key key;
1304
261c84b6
JB
1305 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1306 key.type = BTRFS_METADATA_ITEM_KEY;
1307 else
1308 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1309 key.objectid = logical;
1310 key.offset = (u64)-1;
1311
1312 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1313 if (ret < 0)
1314 return ret;
1315 ret = btrfs_previous_item(fs_info->extent_root, path,
1316 0, BTRFS_EXTENT_ITEM_KEY);
1317 if (ret < 0)
1318 return ret;
1319
1320 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6
JB
1321 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1322 size = fs_info->extent_root->leafsize;
1323 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1324 size = found_key->offset;
1325
1326 if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
1327 found_key->type != BTRFS_METADATA_ITEM_KEY) ||
a542ad1b 1328 found_key->objectid > logical ||
261c84b6 1329 found_key->objectid + size <= logical) {
c1c9ff7c 1330 pr_debug("logical %llu is not within any extent\n", logical);
a542ad1b 1331 return -ENOENT;
4692cf58 1332 }
a542ad1b
JS
1333
1334 eb = path->nodes[0];
1335 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1336 BUG_ON(item_size < sizeof(*ei));
1337
1338 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1339 flags = btrfs_extent_flags(eb, ei);
1340
4692cf58
JS
1341 pr_debug("logical %llu is at position %llu within the extent (%llu "
1342 "EXTENT_ITEM %llu) flags %#llx size %u\n",
c1c9ff7c
GU
1343 logical, logical - found_key->objectid, found_key->objectid,
1344 found_key->offset, flags, item_size);
69917e43
LB
1345
1346 WARN_ON(!flags_ret);
1347 if (flags_ret) {
1348 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1349 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1350 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1351 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1352 else
1353 BUG_ON(1);
1354 return 0;
1355 }
a542ad1b
JS
1356
1357 return -EIO;
1358}
1359
1360/*
1361 * helper function to iterate extent inline refs. ptr must point to a 0 value
1362 * for the first call and may be modified. it is used to track state.
1363 * if more refs exist, 0 is returned and the next call to
1364 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1365 * next ref. after the last ref was processed, 1 is returned.
1366 * returns <0 on error
1367 */
1368static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1369 struct btrfs_extent_item *ei, u32 item_size,
1370 struct btrfs_extent_inline_ref **out_eiref,
1371 int *out_type)
1372{
1373 unsigned long end;
1374 u64 flags;
1375 struct btrfs_tree_block_info *info;
1376
1377 if (!*ptr) {
1378 /* first call */
1379 flags = btrfs_extent_flags(eb, ei);
1380 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1381 info = (struct btrfs_tree_block_info *)(ei + 1);
1382 *out_eiref =
1383 (struct btrfs_extent_inline_ref *)(info + 1);
1384 } else {
1385 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1386 }
1387 *ptr = (unsigned long)*out_eiref;
1388 if ((void *)*ptr >= (void *)ei + item_size)
1389 return -ENOENT;
1390 }
1391
1392 end = (unsigned long)ei + item_size;
1393 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1394 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1395
1396 *ptr += btrfs_extent_inline_ref_size(*out_type);
1397 WARN_ON(*ptr > end);
1398 if (*ptr == end)
1399 return 1; /* last */
1400
1401 return 0;
1402}
1403
1404/*
1405 * reads the tree block backref for an extent. tree level and root are returned
1406 * through out_level and out_root. ptr must point to a 0 value for the first
1407 * call and may be modified (see __get_extent_inline_ref comment).
1408 * returns 0 if data was provided, 1 if there was no more data to provide or
1409 * <0 on error.
1410 */
1411int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1412 struct btrfs_extent_item *ei, u32 item_size,
1413 u64 *out_root, u8 *out_level)
1414{
1415 int ret;
1416 int type;
1417 struct btrfs_tree_block_info *info;
1418 struct btrfs_extent_inline_ref *eiref;
1419
1420 if (*ptr == (unsigned long)-1)
1421 return 1;
1422
1423 while (1) {
1424 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1425 &eiref, &type);
1426 if (ret < 0)
1427 return ret;
1428
1429 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1430 type == BTRFS_SHARED_BLOCK_REF_KEY)
1431 break;
1432
1433 if (ret == 1)
1434 return 1;
1435 }
1436
1437 /* we can treat both ref types equally here */
1438 info = (struct btrfs_tree_block_info *)(ei + 1);
1439 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1440 *out_level = btrfs_tree_block_level(eb, info);
1441
1442 if (ret == 1)
1443 *ptr = (unsigned long)-1;
1444
1445 return 0;
1446}
1447
976b1908
JS
1448static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1449 u64 root, u64 extent_item_objectid,
4692cf58 1450 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1451{
976b1908 1452 struct extent_inode_elem *eie;
4692cf58 1453 int ret = 0;
4692cf58 1454
976b1908 1455 for (eie = inode_list; eie; eie = eie->next) {
4692cf58 1456 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
976b1908
JS
1457 "root %llu\n", extent_item_objectid,
1458 eie->inum, eie->offset, root);
1459 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1460 if (ret) {
976b1908
JS
1461 pr_debug("stopping iteration for %llu due to ret=%d\n",
1462 extent_item_objectid, ret);
4692cf58
JS
1463 break;
1464 }
a542ad1b
JS
1465 }
1466
a542ad1b
JS
1467 return ret;
1468}
1469
1470/*
1471 * calls iterate() for every inode that references the extent identified by
4692cf58 1472 * the given parameters.
a542ad1b
JS
1473 * when the iterator function returns a non-zero value, iteration stops.
1474 */
1475int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1476 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1477 int search_commit_root,
a542ad1b
JS
1478 iterate_extent_inodes_t *iterate, void *ctx)
1479{
a542ad1b 1480 int ret;
da61d31a 1481 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1482 struct ulist *refs = NULL;
1483 struct ulist *roots = NULL;
4692cf58
JS
1484 struct ulist_node *ref_node = NULL;
1485 struct ulist_node *root_node = NULL;
8445f61c 1486 struct seq_list tree_mod_seq_elem = {};
cd1b413c
JS
1487 struct ulist_iterator ref_uiter;
1488 struct ulist_iterator root_uiter;
a542ad1b 1489
4692cf58
JS
1490 pr_debug("resolving all inodes for extent %llu\n",
1491 extent_item_objectid);
a542ad1b 1492
da61d31a 1493 if (!search_commit_root) {
7a3ae2f8
JS
1494 trans = btrfs_join_transaction(fs_info->extent_root);
1495 if (IS_ERR(trans))
1496 return PTR_ERR(trans);
8445f61c 1497 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8 1498 }
a542ad1b 1499
4692cf58 1500 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1501 tree_mod_seq_elem.seq, &refs,
8445f61c 1502 &extent_item_pos);
4692cf58
JS
1503 if (ret)
1504 goto out;
a542ad1b 1505
cd1b413c
JS
1506 ULIST_ITER_INIT(&ref_uiter);
1507 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
976b1908 1508 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
097b8a7c 1509 tree_mod_seq_elem.seq, &roots);
4692cf58
JS
1510 if (ret)
1511 break;
cd1b413c
JS
1512 ULIST_ITER_INIT(&root_uiter);
1513 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
976b1908 1514 pr_debug("root %llu references leaf %llu, data list "
34d73f54 1515 "%#llx\n", root_node->val, ref_node->val,
c1c9ff7c 1516 ref_node->aux);
995e01b7
JS
1517 ret = iterate_leaf_refs((struct extent_inode_elem *)
1518 (uintptr_t)ref_node->aux,
1519 root_node->val,
1520 extent_item_objectid,
1521 iterate, ctx);
4692cf58 1522 }
976b1908 1523 ulist_free(roots);
a542ad1b
JS
1524 }
1525
976b1908 1526 free_leaf_list(refs);
4692cf58 1527out:
7a3ae2f8 1528 if (!search_commit_root) {
8445f61c 1529 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8
JS
1530 btrfs_end_transaction(trans, fs_info->extent_root);
1531 }
1532
a542ad1b
JS
1533 return ret;
1534}
1535
1536int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1537 struct btrfs_path *path,
1538 iterate_extent_inodes_t *iterate, void *ctx)
1539{
1540 int ret;
4692cf58 1541 u64 extent_item_pos;
69917e43 1542 u64 flags = 0;
a542ad1b 1543 struct btrfs_key found_key;
7a3ae2f8 1544 int search_commit_root = path->search_commit_root;
a542ad1b 1545
69917e43 1546 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 1547 btrfs_release_path(path);
a542ad1b
JS
1548 if (ret < 0)
1549 return ret;
69917e43 1550 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 1551 return -EINVAL;
a542ad1b 1552
4692cf58 1553 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1554 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1555 extent_item_pos, search_commit_root,
1556 iterate, ctx);
a542ad1b
JS
1557
1558 return ret;
1559}
1560
d24bec3a
MF
1561typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1562 struct extent_buffer *eb, void *ctx);
1563
1564static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1565 struct btrfs_path *path,
1566 iterate_irefs_t *iterate, void *ctx)
a542ad1b 1567{
aefc1eb1 1568 int ret = 0;
a542ad1b
JS
1569 int slot;
1570 u32 cur;
1571 u32 len;
1572 u32 name_len;
1573 u64 parent = 0;
1574 int found = 0;
1575 struct extent_buffer *eb;
1576 struct btrfs_item *item;
1577 struct btrfs_inode_ref *iref;
1578 struct btrfs_key found_key;
1579
aefc1eb1 1580 while (!ret) {
b916a59a 1581 path->leave_spinning = 1;
a542ad1b 1582 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
d24bec3a 1583 &found_key);
a542ad1b
JS
1584 if (ret < 0)
1585 break;
1586 if (ret) {
1587 ret = found ? 0 : -ENOENT;
1588 break;
1589 }
1590 ++found;
1591
1592 parent = found_key.offset;
1593 slot = path->slots[0];
1594 eb = path->nodes[0];
1595 /* make sure we can use eb after releasing the path */
1596 atomic_inc(&eb->refs);
b916a59a
JS
1597 btrfs_tree_read_lock(eb);
1598 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
1599 btrfs_release_path(path);
1600
1601 item = btrfs_item_nr(eb, slot);
1602 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1603
1604 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1605 name_len = btrfs_inode_ref_name_len(eb, iref);
1606 /* path must be released before calling iterate()! */
4692cf58 1607 pr_debug("following ref at offset %u for inode %llu in "
c1c9ff7c
GU
1608 "tree %llu\n", cur, found_key.objectid,
1609 fs_root->objectid);
d24bec3a
MF
1610 ret = iterate(parent, name_len,
1611 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 1612 if (ret)
a542ad1b 1613 break;
a542ad1b
JS
1614 len = sizeof(*iref) + name_len;
1615 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1616 }
b916a59a 1617 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
1618 free_extent_buffer(eb);
1619 }
1620
1621 btrfs_release_path(path);
1622
1623 return ret;
1624}
1625
d24bec3a
MF
1626static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1627 struct btrfs_path *path,
1628 iterate_irefs_t *iterate, void *ctx)
1629{
1630 int ret;
1631 int slot;
1632 u64 offset = 0;
1633 u64 parent;
1634 int found = 0;
1635 struct extent_buffer *eb;
1636 struct btrfs_inode_extref *extref;
1637 struct extent_buffer *leaf;
1638 u32 item_size;
1639 u32 cur_offset;
1640 unsigned long ptr;
1641
1642 while (1) {
1643 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1644 &offset);
1645 if (ret < 0)
1646 break;
1647 if (ret) {
1648 ret = found ? 0 : -ENOENT;
1649 break;
1650 }
1651 ++found;
1652
1653 slot = path->slots[0];
1654 eb = path->nodes[0];
1655 /* make sure we can use eb after releasing the path */
1656 atomic_inc(&eb->refs);
1657
1658 btrfs_tree_read_lock(eb);
1659 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1660 btrfs_release_path(path);
1661
1662 leaf = path->nodes[0];
1663 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1664 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1665 cur_offset = 0;
1666
1667 while (cur_offset < item_size) {
1668 u32 name_len;
1669
1670 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1671 parent = btrfs_inode_extref_parent(eb, extref);
1672 name_len = btrfs_inode_extref_name_len(eb, extref);
1673 ret = iterate(parent, name_len,
1674 (unsigned long)&extref->name, eb, ctx);
1675 if (ret)
1676 break;
1677
1678 cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1679 cur_offset += sizeof(*extref);
1680 }
1681 btrfs_tree_read_unlock_blocking(eb);
1682 free_extent_buffer(eb);
1683
1684 offset++;
1685 }
1686
1687 btrfs_release_path(path);
1688
1689 return ret;
1690}
1691
1692static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1693 struct btrfs_path *path, iterate_irefs_t *iterate,
1694 void *ctx)
1695{
1696 int ret;
1697 int found_refs = 0;
1698
1699 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1700 if (!ret)
1701 ++found_refs;
1702 else if (ret != -ENOENT)
1703 return ret;
1704
1705 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1706 if (ret == -ENOENT && found_refs)
1707 return 0;
1708
1709 return ret;
1710}
1711
a542ad1b
JS
1712/*
1713 * returns 0 if the path could be dumped (probably truncated)
1714 * returns <0 in case of an error
1715 */
d24bec3a
MF
1716static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1717 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
1718{
1719 struct inode_fs_paths *ipath = ctx;
1720 char *fspath;
1721 char *fspath_min;
1722 int i = ipath->fspath->elem_cnt;
1723 const int s_ptr = sizeof(char *);
1724 u32 bytes_left;
1725
1726 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1727 ipath->fspath->bytes_left - s_ptr : 0;
1728
740c3d22 1729 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
1730 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1731 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
1732 if (IS_ERR(fspath))
1733 return PTR_ERR(fspath);
1734
1735 if (fspath > fspath_min) {
745c4d8e 1736 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
1737 ++ipath->fspath->elem_cnt;
1738 ipath->fspath->bytes_left = fspath - fspath_min;
1739 } else {
1740 ++ipath->fspath->elem_missed;
1741 ipath->fspath->bytes_missing += fspath_min - fspath;
1742 ipath->fspath->bytes_left = 0;
1743 }
1744
1745 return 0;
1746}
1747
1748/*
1749 * this dumps all file system paths to the inode into the ipath struct, provided
1750 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 1751 * from ipath->fspath->val[i].
a542ad1b 1752 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 1753 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
a542ad1b
JS
1754 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1755 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1756 * have been needed to return all paths.
1757 */
1758int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1759{
1760 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 1761 inode_to_path, ipath);
a542ad1b
JS
1762}
1763
a542ad1b
JS
1764struct btrfs_data_container *init_data_container(u32 total_bytes)
1765{
1766 struct btrfs_data_container *data;
1767 size_t alloc_bytes;
1768
1769 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
425d17a2 1770 data = vmalloc(alloc_bytes);
a542ad1b
JS
1771 if (!data)
1772 return ERR_PTR(-ENOMEM);
1773
1774 if (total_bytes >= sizeof(*data)) {
1775 data->bytes_left = total_bytes - sizeof(*data);
1776 data->bytes_missing = 0;
1777 } else {
1778 data->bytes_missing = sizeof(*data) - total_bytes;
1779 data->bytes_left = 0;
1780 }
1781
1782 data->elem_cnt = 0;
1783 data->elem_missed = 0;
1784
1785 return data;
1786}
1787
1788/*
1789 * allocates space to return multiple file system paths for an inode.
1790 * total_bytes to allocate are passed, note that space usable for actual path
1791 * information will be total_bytes - sizeof(struct inode_fs_paths).
1792 * the returned pointer must be freed with free_ipath() in the end.
1793 */
1794struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1795 struct btrfs_path *path)
1796{
1797 struct inode_fs_paths *ifp;
1798 struct btrfs_data_container *fspath;
1799
1800 fspath = init_data_container(total_bytes);
1801 if (IS_ERR(fspath))
1802 return (void *)fspath;
1803
1804 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1805 if (!ifp) {
1806 kfree(fspath);
1807 return ERR_PTR(-ENOMEM);
1808 }
1809
1810 ifp->btrfs_path = path;
1811 ifp->fspath = fspath;
1812 ifp->fs_root = fs_root;
1813
1814 return ifp;
1815}
1816
1817void free_ipath(struct inode_fs_paths *ipath)
1818{
4735fb28
JJ
1819 if (!ipath)
1820 return;
425d17a2 1821 vfree(ipath->fspath);
a542ad1b
JS
1822 kfree(ipath);
1823}