btrfs: remove ref_tree implementation from backref.c
[linux-block.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
f54de068 19#include <linux/mm.h>
afce772e 20#include <linux/rbtree.h>
a542ad1b
JS
21#include "ctree.h"
22#include "disk-io.h"
23#include "backref.h"
8da6d581
JS
24#include "ulist.h"
25#include "transaction.h"
26#include "delayed-ref.h"
b916a59a 27#include "locking.h"
a542ad1b 28
f58d88b3
EN
29enum merge_mode {
30 MERGE_IDENTICAL_KEYS = 1,
31 MERGE_IDENTICAL_PARENTS,
32};
33
dc046b10
JB
34/* Just an arbitrary number so we can be sure this happened */
35#define BACKREF_FOUND_SHARED 6
36
976b1908
JS
37struct extent_inode_elem {
38 u64 inum;
39 u64 offset;
40 struct extent_inode_elem *next;
41};
42
73980bec
JM
43static int check_extent_in_eb(const struct btrfs_key *key,
44 const struct extent_buffer *eb,
45 const struct btrfs_file_extent_item *fi,
46 u64 extent_item_pos,
47 struct extent_inode_elem **eie)
976b1908 48{
8ca15e05 49 u64 offset = 0;
976b1908
JS
50 struct extent_inode_elem *e;
51
8ca15e05
JB
52 if (!btrfs_file_extent_compression(eb, fi) &&
53 !btrfs_file_extent_encryption(eb, fi) &&
54 !btrfs_file_extent_other_encoding(eb, fi)) {
55 u64 data_offset;
56 u64 data_len;
976b1908 57
8ca15e05
JB
58 data_offset = btrfs_file_extent_offset(eb, fi);
59 data_len = btrfs_file_extent_num_bytes(eb, fi);
60
61 if (extent_item_pos < data_offset ||
62 extent_item_pos >= data_offset + data_len)
63 return 1;
64 offset = extent_item_pos - data_offset;
65 }
976b1908
JS
66
67 e = kmalloc(sizeof(*e), GFP_NOFS);
68 if (!e)
69 return -ENOMEM;
70
71 e->next = *eie;
72 e->inum = key->objectid;
8ca15e05 73 e->offset = key->offset + offset;
976b1908
JS
74 *eie = e;
75
76 return 0;
77}
78
f05c4746
WS
79static void free_inode_elem_list(struct extent_inode_elem *eie)
80{
81 struct extent_inode_elem *eie_next;
82
83 for (; eie; eie = eie_next) {
84 eie_next = eie->next;
85 kfree(eie);
86 }
87}
88
73980bec
JM
89static int find_extent_in_eb(const struct extent_buffer *eb,
90 u64 wanted_disk_byte, u64 extent_item_pos,
91 struct extent_inode_elem **eie)
976b1908
JS
92{
93 u64 disk_byte;
94 struct btrfs_key key;
95 struct btrfs_file_extent_item *fi;
96 int slot;
97 int nritems;
98 int extent_type;
99 int ret;
100
101 /*
102 * from the shared data ref, we only have the leaf but we need
103 * the key. thus, we must look into all items and see that we
104 * find one (some) with a reference to our extent item.
105 */
106 nritems = btrfs_header_nritems(eb);
107 for (slot = 0; slot < nritems; ++slot) {
108 btrfs_item_key_to_cpu(eb, &key, slot);
109 if (key.type != BTRFS_EXTENT_DATA_KEY)
110 continue;
111 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
112 extent_type = btrfs_file_extent_type(eb, fi);
113 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
114 continue;
115 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
116 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
117 if (disk_byte != wanted_disk_byte)
118 continue;
119
120 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
121 if (ret < 0)
122 return ret;
123 }
124
125 return 0;
126}
127
8da6d581
JS
128/*
129 * this structure records all encountered refs on the way up to the root
130 */
e0c476b1 131struct prelim_ref {
8da6d581
JS
132 struct list_head list;
133 u64 root_id;
d5c88b73 134 struct btrfs_key key_for_search;
8da6d581
JS
135 int level;
136 int count;
3301958b 137 struct extent_inode_elem *inode_list;
8da6d581
JS
138 u64 parent;
139 u64 wanted_disk_byte;
140};
141
b9e9a6cb
WS
142static struct kmem_cache *btrfs_prelim_ref_cache;
143
144int __init btrfs_prelim_ref_init(void)
145{
146 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
e0c476b1 147 sizeof(struct prelim_ref),
b9e9a6cb 148 0,
fba4b697 149 SLAB_MEM_SPREAD,
b9e9a6cb
WS
150 NULL);
151 if (!btrfs_prelim_ref_cache)
152 return -ENOMEM;
153 return 0;
154}
155
156void btrfs_prelim_ref_exit(void)
157{
5598e900 158 kmem_cache_destroy(btrfs_prelim_ref_cache);
b9e9a6cb
WS
159}
160
d5c88b73
JS
161/*
162 * the rules for all callers of this function are:
163 * - obtaining the parent is the goal
164 * - if you add a key, you must know that it is a correct key
165 * - if you cannot add the parent or a correct key, then we will look into the
166 * block later to set a correct key
167 *
168 * delayed refs
169 * ============
170 * backref type | shared | indirect | shared | indirect
171 * information | tree | tree | data | data
172 * --------------------+--------+----------+--------+----------
173 * parent logical | y | - | - | -
174 * key to resolve | - | y | y | y
175 * tree block logical | - | - | - | -
176 * root for resolving | y | y | y | y
177 *
178 * - column 1: we've the parent -> done
179 * - column 2, 3, 4: we use the key to find the parent
180 *
181 * on disk refs (inline or keyed)
182 * ==============================
183 * backref type | shared | indirect | shared | indirect
184 * information | tree | tree | data | data
185 * --------------------+--------+----------+--------+----------
186 * parent logical | y | - | y | -
187 * key to resolve | - | - | - | y
188 * tree block logical | y | y | y | y
189 * root for resolving | - | y | y | y
190 *
191 * - column 1, 3: we've the parent -> done
192 * - column 2: we take the first key from the block to find the parent
e0c476b1 193 * (see add_missing_keys)
d5c88b73
JS
194 * - column 4: we use the key to find the parent
195 *
196 * additional information that's available but not required to find the parent
197 * block might help in merging entries to gain some speed.
198 */
e0c476b1
JM
199static int add_prelim_ref(struct list_head *head, u64 root_id,
200 const struct btrfs_key *key, int level, u64 parent,
201 u64 wanted_disk_byte, int count, gfp_t gfp_mask)
8da6d581 202{
e0c476b1 203 struct prelim_ref *ref;
8da6d581 204
48ec4736
LB
205 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
206 return 0;
207
b9e9a6cb 208 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
209 if (!ref)
210 return -ENOMEM;
211
212 ref->root_id = root_id;
d6589101 213 if (key) {
d5c88b73 214 ref->key_for_search = *key;
d6589101
FM
215 /*
216 * We can often find data backrefs with an offset that is too
217 * large (>= LLONG_MAX, maximum allowed file offset) due to
218 * underflows when subtracting a file's offset with the data
219 * offset of its corresponding extent data item. This can
220 * happen for example in the clone ioctl.
221 * So if we detect such case we set the search key's offset to
222 * zero to make sure we will find the matching file extent item
223 * at add_all_parents(), otherwise we will miss it because the
224 * offset taken form the backref is much larger then the offset
225 * of the file extent item. This can make us scan a very large
226 * number of file extent items, but at least it will not make
227 * us miss any.
228 * This is an ugly workaround for a behaviour that should have
229 * never existed, but it does and a fix for the clone ioctl
230 * would touch a lot of places, cause backwards incompatibility
231 * and would not fix the problem for extents cloned with older
232 * kernels.
233 */
234 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
235 ref->key_for_search.offset >= LLONG_MAX)
236 ref->key_for_search.offset = 0;
237 } else {
d5c88b73 238 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
d6589101 239 }
8da6d581 240
3301958b 241 ref->inode_list = NULL;
8da6d581
JS
242 ref->level = level;
243 ref->count = count;
244 ref->parent = parent;
245 ref->wanted_disk_byte = wanted_disk_byte;
246 list_add_tail(&ref->list, head);
247
248 return 0;
249}
250
251static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
e0c476b1 252 struct ulist *parents, struct prelim_ref *ref,
44853868
JB
253 int level, u64 time_seq, const u64 *extent_item_pos,
254 u64 total_refs)
8da6d581 255{
69bca40d
AB
256 int ret = 0;
257 int slot;
258 struct extent_buffer *eb;
259 struct btrfs_key key;
7ef81ac8 260 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 261 struct btrfs_file_extent_item *fi;
ed8c4913 262 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 263 u64 disk_byte;
7ef81ac8
JB
264 u64 wanted_disk_byte = ref->wanted_disk_byte;
265 u64 count = 0;
8da6d581 266
69bca40d
AB
267 if (level != 0) {
268 eb = path->nodes[level];
269 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
270 if (ret < 0)
271 return ret;
8da6d581 272 return 0;
69bca40d 273 }
8da6d581
JS
274
275 /*
69bca40d
AB
276 * We normally enter this function with the path already pointing to
277 * the first item to check. But sometimes, we may enter it with
278 * slot==nritems. In that case, go to the next leaf before we continue.
8da6d581 279 */
21633fc6 280 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
de47c9d3 281 if (time_seq == SEQ_LAST)
21633fc6
QW
282 ret = btrfs_next_leaf(root, path);
283 else
284 ret = btrfs_next_old_leaf(root, path, time_seq);
285 }
8da6d581 286
44853868 287 while (!ret && count < total_refs) {
8da6d581 288 eb = path->nodes[0];
69bca40d
AB
289 slot = path->slots[0];
290
291 btrfs_item_key_to_cpu(eb, &key, slot);
292
293 if (key.objectid != key_for_search->objectid ||
294 key.type != BTRFS_EXTENT_DATA_KEY)
295 break;
296
297 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
298 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
299
300 if (disk_byte == wanted_disk_byte) {
301 eie = NULL;
ed8c4913 302 old = NULL;
7ef81ac8 303 count++;
69bca40d
AB
304 if (extent_item_pos) {
305 ret = check_extent_in_eb(&key, eb, fi,
306 *extent_item_pos,
307 &eie);
308 if (ret < 0)
309 break;
310 }
ed8c4913
JB
311 if (ret > 0)
312 goto next;
4eb1f66d
TI
313 ret = ulist_add_merge_ptr(parents, eb->start,
314 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
315 if (ret < 0)
316 break;
317 if (!ret && extent_item_pos) {
318 while (old->next)
319 old = old->next;
320 old->next = eie;
69bca40d 321 }
f05c4746 322 eie = NULL;
8da6d581 323 }
ed8c4913 324next:
de47c9d3 325 if (time_seq == SEQ_LAST)
21633fc6
QW
326 ret = btrfs_next_item(root, path);
327 else
328 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
329 }
330
69bca40d
AB
331 if (ret > 0)
332 ret = 0;
f05c4746
WS
333 else if (ret < 0)
334 free_inode_elem_list(eie);
69bca40d 335 return ret;
8da6d581
JS
336}
337
338/*
339 * resolve an indirect backref in the form (root_id, key, level)
340 * to a logical address
341 */
e0c476b1
JM
342static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
343 struct btrfs_path *path, u64 time_seq,
344 struct prelim_ref *ref, struct ulist *parents,
345 const u64 *extent_item_pos, u64 total_refs)
8da6d581 346{
8da6d581
JS
347 struct btrfs_root *root;
348 struct btrfs_key root_key;
8da6d581
JS
349 struct extent_buffer *eb;
350 int ret = 0;
351 int root_level;
352 int level = ref->level;
538f72cd 353 int index;
8da6d581 354
8da6d581
JS
355 root_key.objectid = ref->root_id;
356 root_key.type = BTRFS_ROOT_ITEM_KEY;
357 root_key.offset = (u64)-1;
538f72cd
WS
358
359 index = srcu_read_lock(&fs_info->subvol_srcu);
360
2d9e9776 361 root = btrfs_get_fs_root(fs_info, &root_key, false);
8da6d581 362 if (IS_ERR(root)) {
538f72cd 363 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581
JS
364 ret = PTR_ERR(root);
365 goto out;
366 }
367
f5ee5c9a 368 if (btrfs_is_testing(fs_info)) {
d9ee522b
JB
369 srcu_read_unlock(&fs_info->subvol_srcu, index);
370 ret = -ENOENT;
371 goto out;
372 }
373
9e351cc8
JB
374 if (path->search_commit_root)
375 root_level = btrfs_header_level(root->commit_root);
de47c9d3 376 else if (time_seq == SEQ_LAST)
21633fc6 377 root_level = btrfs_header_level(root->node);
9e351cc8
JB
378 else
379 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 380
538f72cd
WS
381 if (root_level + 1 == level) {
382 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581 383 goto out;
538f72cd 384 }
8da6d581
JS
385
386 path->lowest_level = level;
de47c9d3 387 if (time_seq == SEQ_LAST)
21633fc6
QW
388 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
389 0, 0);
390 else
391 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
392 time_seq);
538f72cd
WS
393
394 /* root node has been locked, we can release @subvol_srcu safely here */
395 srcu_read_unlock(&fs_info->subvol_srcu, index);
396
ab8d0fc4
JM
397 btrfs_debug(fs_info,
398 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
c1c9ff7c
GU
399 ref->root_id, level, ref->count, ret,
400 ref->key_for_search.objectid, ref->key_for_search.type,
401 ref->key_for_search.offset);
8da6d581
JS
402 if (ret < 0)
403 goto out;
404
405 eb = path->nodes[level];
9345457f 406 while (!eb) {
fae7f21c 407 if (WARN_ON(!level)) {
9345457f
JS
408 ret = 1;
409 goto out;
410 }
411 level--;
412 eb = path->nodes[level];
8da6d581
JS
413 }
414
7ef81ac8 415 ret = add_all_parents(root, path, parents, ref, level, time_seq,
44853868 416 extent_item_pos, total_refs);
8da6d581 417out:
da61d31a
JB
418 path->lowest_level = 0;
419 btrfs_release_path(path);
8da6d581
JS
420 return ret;
421}
422
4dae077a
JM
423static struct extent_inode_elem *
424unode_aux_to_inode_list(struct ulist_node *node)
425{
426 if (!node)
427 return NULL;
428 return (struct extent_inode_elem *)(uintptr_t)node->aux;
429}
430
8da6d581
JS
431/*
432 * resolve all indirect backrefs from the list
433 */
e0c476b1
JM
434static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
435 struct btrfs_path *path, u64 time_seq,
436 struct list_head *head,
437 const u64 *extent_item_pos, u64 total_refs,
438 u64 root_objectid)
8da6d581
JS
439{
440 int err;
441 int ret = 0;
e0c476b1
JM
442 struct prelim_ref *ref;
443 struct prelim_ref *ref_safe;
444 struct prelim_ref *new_ref;
8da6d581
JS
445 struct ulist *parents;
446 struct ulist_node *node;
cd1b413c 447 struct ulist_iterator uiter;
8da6d581
JS
448
449 parents = ulist_alloc(GFP_NOFS);
450 if (!parents)
451 return -ENOMEM;
452
453 /*
454 * _safe allows us to insert directly after the current item without
455 * iterating over the newly inserted items.
456 * we're also allowed to re-assign ref during iteration.
457 */
458 list_for_each_entry_safe(ref, ref_safe, head, list) {
459 if (ref->parent) /* already direct */
460 continue;
461 if (ref->count == 0)
462 continue;
dc046b10
JB
463 if (root_objectid && ref->root_id != root_objectid) {
464 ret = BACKREF_FOUND_SHARED;
465 goto out;
466 }
e0c476b1
JM
467 err = resolve_indirect_ref(fs_info, path, time_seq, ref,
468 parents, extent_item_pos,
469 total_refs);
95def2ed
WS
470 /*
471 * we can only tolerate ENOENT,otherwise,we should catch error
472 * and return directly.
473 */
474 if (err == -ENOENT) {
8da6d581 475 continue;
95def2ed
WS
476 } else if (err) {
477 ret = err;
478 goto out;
479 }
8da6d581
JS
480
481 /* we put the first parent into the ref at hand */
cd1b413c
JS
482 ULIST_ITER_INIT(&uiter);
483 node = ulist_next(parents, &uiter);
8da6d581 484 ref->parent = node ? node->val : 0;
4dae077a 485 ref->inode_list = unode_aux_to_inode_list(node);
8da6d581
JS
486
487 /* additional parents require new refs being added here */
cd1b413c 488 while ((node = ulist_next(parents, &uiter))) {
b9e9a6cb
WS
489 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
490 GFP_NOFS);
8da6d581
JS
491 if (!new_ref) {
492 ret = -ENOMEM;
e36902d4 493 goto out;
8da6d581
JS
494 }
495 memcpy(new_ref, ref, sizeof(*ref));
496 new_ref->parent = node->val;
4dae077a 497 new_ref->inode_list = unode_aux_to_inode_list(node);
8da6d581
JS
498 list_add(&new_ref->list, &ref->list);
499 }
500 ulist_reinit(parents);
501 }
e36902d4 502out:
8da6d581
JS
503 ulist_free(parents);
504 return ret;
505}
506
e0c476b1
JM
507static inline int ref_for_same_block(struct prelim_ref *ref1,
508 struct prelim_ref *ref2)
d5c88b73
JS
509{
510 if (ref1->level != ref2->level)
511 return 0;
512 if (ref1->root_id != ref2->root_id)
513 return 0;
514 if (ref1->key_for_search.type != ref2->key_for_search.type)
515 return 0;
516 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
517 return 0;
518 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
519 return 0;
520 if (ref1->parent != ref2->parent)
521 return 0;
522
523 return 1;
524}
525
526/*
527 * read tree blocks and add keys where required.
528 */
e0c476b1
JM
529static int add_missing_keys(struct btrfs_fs_info *fs_info,
530 struct list_head *head)
d5c88b73 531{
e0c476b1 532 struct prelim_ref *ref;
d5c88b73
JS
533 struct extent_buffer *eb;
534
a7ca4225 535 list_for_each_entry(ref, head, list) {
d5c88b73
JS
536 if (ref->parent)
537 continue;
538 if (ref->key_for_search.type)
539 continue;
540 BUG_ON(!ref->wanted_disk_byte);
2ff7e61e 541 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
64c043de
LB
542 if (IS_ERR(eb)) {
543 return PTR_ERR(eb);
544 } else if (!extent_buffer_uptodate(eb)) {
416bc658
JB
545 free_extent_buffer(eb);
546 return -EIO;
547 }
d5c88b73
JS
548 btrfs_tree_read_lock(eb);
549 if (btrfs_header_level(eb) == 0)
550 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
551 else
552 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
553 btrfs_tree_read_unlock(eb);
554 free_extent_buffer(eb);
555 }
556 return 0;
557}
558
8da6d581 559/*
00db646d 560 * merge backrefs and adjust counts accordingly
8da6d581 561 *
e0c476b1 562 * FIXME: For MERGE_IDENTICAL_KEYS, if we add more keys in add_prelim_ref
f58d88b3
EN
563 * then we can merge more here. Additionally, we could even add a key
564 * range for the blocks we looked into to merge even more (-> replace
565 * unresolved refs by those having a parent).
8da6d581 566 */
e0c476b1 567static void merge_refs(struct list_head *head, enum merge_mode mode)
8da6d581 568{
e0c476b1 569 struct prelim_ref *pos1;
8da6d581 570
8e217858 571 list_for_each_entry(pos1, head, list) {
e0c476b1 572 struct prelim_ref *pos2 = pos1, *tmp;
8da6d581 573
8e217858 574 list_for_each_entry_safe_continue(pos2, tmp, head, list) {
e0c476b1 575 struct prelim_ref *ref1 = pos1, *ref2 = pos2;
3ef5969c 576 struct extent_inode_elem *eie;
8da6d581 577
00db646d
QW
578 if (!ref_for_same_block(ref1, ref2))
579 continue;
f58d88b3 580 if (mode == MERGE_IDENTICAL_KEYS) {
8f682f69
DJ
581 if (!ref1->parent && ref2->parent)
582 swap(ref1, ref2);
8da6d581
JS
583 } else {
584 if (ref1->parent != ref2->parent)
585 continue;
8da6d581 586 }
3ef5969c
AB
587
588 eie = ref1->inode_list;
589 while (eie && eie->next)
590 eie = eie->next;
591 if (eie)
592 eie->next = ref2->inode_list;
593 else
594 ref1->inode_list = ref2->inode_list;
595 ref1->count += ref2->count;
596
8da6d581 597 list_del(&ref2->list);
b9e9a6cb 598 kmem_cache_free(btrfs_prelim_ref_cache, ref2);
d8422ba3 599 cond_resched();
8da6d581
JS
600 }
601
602 }
8da6d581
JS
603}
604
605/*
606 * add all currently queued delayed refs from this head whose seq nr is
607 * smaller or equal that seq to the list
608 */
e0c476b1
JM
609static int add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
610 struct list_head *prefs, u64 *total_refs,
611 u64 inum)
8da6d581 612{
c6fc2454 613 struct btrfs_delayed_ref_node *node;
8da6d581 614 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
d5c88b73
JS
615 struct btrfs_key key;
616 struct btrfs_key op_key = {0};
8da6d581 617 int sgn;
b1375d64 618 int ret = 0;
8da6d581
JS
619
620 if (extent_op && extent_op->update_key)
d5c88b73 621 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
8da6d581 622
d7df2c79 623 spin_lock(&head->lock);
c6fc2454 624 list_for_each_entry(node, &head->ref_list, list) {
8da6d581
JS
625 if (node->seq > seq)
626 continue;
627
628 switch (node->action) {
629 case BTRFS_ADD_DELAYED_EXTENT:
630 case BTRFS_UPDATE_DELAYED_HEAD:
631 WARN_ON(1);
632 continue;
633 case BTRFS_ADD_DELAYED_REF:
634 sgn = 1;
635 break;
636 case BTRFS_DROP_DELAYED_REF:
637 sgn = -1;
638 break;
639 default:
640 BUG_ON(1);
641 }
44853868 642 *total_refs += (node->ref_mod * sgn);
8da6d581
JS
643 switch (node->type) {
644 case BTRFS_TREE_BLOCK_REF_KEY: {
645 struct btrfs_delayed_tree_ref *ref;
646
647 ref = btrfs_delayed_node_to_tree_ref(node);
e0c476b1
JM
648 ret = add_prelim_ref(prefs, ref->root, &op_key,
649 ref->level + 1, 0, node->bytenr,
650 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
651 break;
652 }
653 case BTRFS_SHARED_BLOCK_REF_KEY: {
654 struct btrfs_delayed_tree_ref *ref;
655
656 ref = btrfs_delayed_node_to_tree_ref(node);
e0c476b1
JM
657 ret = add_prelim_ref(prefs, 0, NULL, ref->level + 1,
658 ref->parent, node->bytenr,
659 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
660 break;
661 }
662 case BTRFS_EXTENT_DATA_REF_KEY: {
663 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
664 ref = btrfs_delayed_node_to_data_ref(node);
665
666 key.objectid = ref->objectid;
667 key.type = BTRFS_EXTENT_DATA_KEY;
668 key.offset = ref->offset;
dc046b10
JB
669
670 /*
671 * Found a inum that doesn't match our known inum, we
672 * know it's shared.
673 */
674 if (inum && ref->objectid != inum) {
675 ret = BACKREF_FOUND_SHARED;
676 break;
677 }
678
e0c476b1
JM
679 ret = add_prelim_ref(prefs, ref->root, &key, 0, 0,
680 node->bytenr, node->ref_mod * sgn,
681 GFP_ATOMIC);
8da6d581
JS
682 break;
683 }
684 case BTRFS_SHARED_DATA_REF_KEY: {
685 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
686
687 ref = btrfs_delayed_node_to_data_ref(node);
e0c476b1
JM
688 ret = add_prelim_ref(prefs, 0, NULL, 0, ref->parent,
689 node->bytenr, node->ref_mod * sgn,
690 GFP_ATOMIC);
8da6d581
JS
691 break;
692 }
693 default:
694 WARN_ON(1);
695 }
1149ab6b 696 if (ret)
d7df2c79 697 break;
8da6d581 698 }
d7df2c79
JB
699 spin_unlock(&head->lock);
700 return ret;
8da6d581
JS
701}
702
703/*
704 * add all inline backrefs for bytenr to the list
705 */
e0c476b1
JM
706static int add_inline_refs(struct btrfs_path *path, u64 bytenr,
707 int *info_level, struct list_head *prefs,
e0c476b1 708 u64 *total_refs, u64 inum)
8da6d581 709{
b1375d64 710 int ret = 0;
8da6d581
JS
711 int slot;
712 struct extent_buffer *leaf;
713 struct btrfs_key key;
261c84b6 714 struct btrfs_key found_key;
8da6d581
JS
715 unsigned long ptr;
716 unsigned long end;
717 struct btrfs_extent_item *ei;
718 u64 flags;
719 u64 item_size;
720
721 /*
722 * enumerate all inline refs
723 */
724 leaf = path->nodes[0];
dadcaf78 725 slot = path->slots[0];
8da6d581
JS
726
727 item_size = btrfs_item_size_nr(leaf, slot);
728 BUG_ON(item_size < sizeof(*ei));
729
730 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
731 flags = btrfs_extent_flags(leaf, ei);
44853868 732 *total_refs += btrfs_extent_refs(leaf, ei);
261c84b6 733 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
734
735 ptr = (unsigned long)(ei + 1);
736 end = (unsigned long)ei + item_size;
737
261c84b6
JB
738 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
739 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 740 struct btrfs_tree_block_info *info;
8da6d581
JS
741
742 info = (struct btrfs_tree_block_info *)ptr;
743 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
744 ptr += sizeof(struct btrfs_tree_block_info);
745 BUG_ON(ptr > end);
261c84b6
JB
746 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
747 *info_level = found_key.offset;
8da6d581
JS
748 } else {
749 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
750 }
751
752 while (ptr < end) {
753 struct btrfs_extent_inline_ref *iref;
754 u64 offset;
755 int type;
756
757 iref = (struct btrfs_extent_inline_ref *)ptr;
758 type = btrfs_extent_inline_ref_type(leaf, iref);
759 offset = btrfs_extent_inline_ref_offset(leaf, iref);
760
761 switch (type) {
762 case BTRFS_SHARED_BLOCK_REF_KEY:
e0c476b1
JM
763 ret = add_prelim_ref(prefs, 0, NULL, *info_level + 1,
764 offset, bytenr, 1, GFP_NOFS);
8da6d581
JS
765 break;
766 case BTRFS_SHARED_DATA_REF_KEY: {
767 struct btrfs_shared_data_ref *sdref;
768 int count;
769
770 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
771 count = btrfs_shared_data_ref_count(leaf, sdref);
e0c476b1
JM
772 ret = add_prelim_ref(prefs, 0, NULL, 0, offset,
773 bytenr, count, GFP_NOFS);
8da6d581
JS
774 break;
775 }
776 case BTRFS_TREE_BLOCK_REF_KEY:
e0c476b1
JM
777 ret = add_prelim_ref(prefs, offset, NULL,
778 *info_level + 1, 0,
779 bytenr, 1, GFP_NOFS);
8da6d581
JS
780 break;
781 case BTRFS_EXTENT_DATA_REF_KEY: {
782 struct btrfs_extent_data_ref *dref;
783 int count;
784 u64 root;
785
786 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
787 count = btrfs_extent_data_ref_count(leaf, dref);
788 key.objectid = btrfs_extent_data_ref_objectid(leaf,
789 dref);
790 key.type = BTRFS_EXTENT_DATA_KEY;
791 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10
JB
792
793 if (inum && key.objectid != inum) {
794 ret = BACKREF_FOUND_SHARED;
795 break;
796 }
797
8da6d581 798 root = btrfs_extent_data_ref_root(leaf, dref);
e0c476b1
JM
799 ret = add_prelim_ref(prefs, root, &key, 0, 0,
800 bytenr, count, GFP_NOFS);
8da6d581
JS
801 break;
802 }
803 default:
804 WARN_ON(1);
805 }
1149ab6b
WS
806 if (ret)
807 return ret;
8da6d581
JS
808 ptr += btrfs_extent_inline_ref_size(type);
809 }
810
811 return 0;
812}
813
814/*
815 * add all non-inline backrefs for bytenr to the list
816 */
e0c476b1
JM
817static int add_keyed_refs(struct btrfs_fs_info *fs_info,
818 struct btrfs_path *path, u64 bytenr,
f6954245 819 int info_level, struct list_head *prefs, u64 inum)
8da6d581
JS
820{
821 struct btrfs_root *extent_root = fs_info->extent_root;
822 int ret;
823 int slot;
824 struct extent_buffer *leaf;
825 struct btrfs_key key;
826
827 while (1) {
828 ret = btrfs_next_item(extent_root, path);
829 if (ret < 0)
830 break;
831 if (ret) {
832 ret = 0;
833 break;
834 }
835
836 slot = path->slots[0];
837 leaf = path->nodes[0];
838 btrfs_item_key_to_cpu(leaf, &key, slot);
839
840 if (key.objectid != bytenr)
841 break;
842 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
843 continue;
844 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
845 break;
846
847 switch (key.type) {
848 case BTRFS_SHARED_BLOCK_REF_KEY:
e0c476b1
JM
849 ret = add_prelim_ref(prefs, 0, NULL, info_level + 1,
850 key.offset, bytenr, 1, GFP_NOFS);
8da6d581
JS
851 break;
852 case BTRFS_SHARED_DATA_REF_KEY: {
853 struct btrfs_shared_data_ref *sdref;
854 int count;
855
856 sdref = btrfs_item_ptr(leaf, slot,
857 struct btrfs_shared_data_ref);
858 count = btrfs_shared_data_ref_count(leaf, sdref);
e0c476b1
JM
859 ret = add_prelim_ref(prefs, 0, NULL, 0, key.offset,
860 bytenr, count, GFP_NOFS);
8da6d581
JS
861 break;
862 }
863 case BTRFS_TREE_BLOCK_REF_KEY:
e0c476b1
JM
864 ret = add_prelim_ref(prefs, key.offset, NULL,
865 info_level + 1, 0,
866 bytenr, 1, GFP_NOFS);
8da6d581
JS
867 break;
868 case BTRFS_EXTENT_DATA_REF_KEY: {
869 struct btrfs_extent_data_ref *dref;
870 int count;
871 u64 root;
872
873 dref = btrfs_item_ptr(leaf, slot,
874 struct btrfs_extent_data_ref);
875 count = btrfs_extent_data_ref_count(leaf, dref);
876 key.objectid = btrfs_extent_data_ref_objectid(leaf,
877 dref);
878 key.type = BTRFS_EXTENT_DATA_KEY;
879 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10
JB
880
881 if (inum && key.objectid != inum) {
882 ret = BACKREF_FOUND_SHARED;
883 break;
884 }
885
8da6d581 886 root = btrfs_extent_data_ref_root(leaf, dref);
e0c476b1
JM
887 ret = add_prelim_ref(prefs, root, &key, 0, 0,
888 bytenr, count, GFP_NOFS);
8da6d581
JS
889 break;
890 }
891 default:
892 WARN_ON(1);
893 }
1149ab6b
WS
894 if (ret)
895 return ret;
896
8da6d581
JS
897 }
898
899 return ret;
900}
901
902/*
903 * this adds all existing backrefs (inline backrefs, backrefs and delayed
904 * refs) for the given bytenr to the refs list, merges duplicates and resolves
905 * indirect refs to their parent bytenr.
906 * When roots are found, they're added to the roots list
907 *
2c2ed5aa
MF
908 * NOTE: This can return values > 0
909 *
de47c9d3 910 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
21633fc6
QW
911 * much like trans == NULL case, the difference only lies in it will not
912 * commit root.
913 * The special case is for qgroup to search roots in commit_transaction().
914 *
8da6d581
JS
915 * FIXME some caching might speed things up
916 */
917static int find_parent_nodes(struct btrfs_trans_handle *trans,
918 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 919 u64 time_seq, struct ulist *refs,
dc046b10 920 struct ulist *roots, const u64 *extent_item_pos,
f6954245 921 u64 root_objectid, u64 inum)
8da6d581
JS
922{
923 struct btrfs_key key;
924 struct btrfs_path *path;
8da6d581 925 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 926 struct btrfs_delayed_ref_head *head;
8da6d581
JS
927 int info_level = 0;
928 int ret;
929 struct list_head prefs_delayed;
930 struct list_head prefs;
e0c476b1 931 struct prelim_ref *ref;
f05c4746 932 struct extent_inode_elem *eie = NULL;
44853868 933 u64 total_refs = 0;
8da6d581
JS
934
935 INIT_LIST_HEAD(&prefs);
936 INIT_LIST_HEAD(&prefs_delayed);
937
938 key.objectid = bytenr;
8da6d581 939 key.offset = (u64)-1;
261c84b6
JB
940 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
941 key.type = BTRFS_METADATA_ITEM_KEY;
942 else
943 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
944
945 path = btrfs_alloc_path();
946 if (!path)
947 return -ENOMEM;
e84752d4 948 if (!trans) {
da61d31a 949 path->search_commit_root = 1;
e84752d4
WS
950 path->skip_locking = 1;
951 }
8da6d581 952
de47c9d3 953 if (time_seq == SEQ_LAST)
21633fc6
QW
954 path->skip_locking = 1;
955
8da6d581
JS
956 /*
957 * grab both a lock on the path and a lock on the delayed ref head.
958 * We need both to get a consistent picture of how the refs look
959 * at a specified point in time
960 */
961again:
d3b01064
LZ
962 head = NULL;
963
8da6d581
JS
964 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
965 if (ret < 0)
966 goto out;
967 BUG_ON(ret == 0);
968
faa2dbf0 969#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
21633fc6 970 if (trans && likely(trans->type != __TRANS_DUMMY) &&
de47c9d3 971 time_seq != SEQ_LAST) {
faa2dbf0 972#else
de47c9d3 973 if (trans && time_seq != SEQ_LAST) {
faa2dbf0 974#endif
7a3ae2f8
JS
975 /*
976 * look if there are updates for this ref queued and lock the
977 * head
978 */
979 delayed_refs = &trans->transaction->delayed_refs;
980 spin_lock(&delayed_refs->lock);
f72ad18e 981 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7a3ae2f8
JS
982 if (head) {
983 if (!mutex_trylock(&head->mutex)) {
6df8cdf5 984 refcount_inc(&head->node.refs);
7a3ae2f8
JS
985 spin_unlock(&delayed_refs->lock);
986
987 btrfs_release_path(path);
988
989 /*
990 * Mutex was contended, block until it's
991 * released and try again
992 */
993 mutex_lock(&head->mutex);
994 mutex_unlock(&head->mutex);
995 btrfs_put_delayed_ref(&head->node);
996 goto again;
997 }
d7df2c79 998 spin_unlock(&delayed_refs->lock);
e0c476b1
JM
999 ret = add_delayed_refs(head, time_seq,
1000 &prefs_delayed, &total_refs,
1001 inum);
155725c9 1002 mutex_unlock(&head->mutex);
d7df2c79 1003 if (ret)
7a3ae2f8 1004 goto out;
d7df2c79
JB
1005 } else {
1006 spin_unlock(&delayed_refs->lock);
d3b01064 1007 }
8da6d581 1008 }
8da6d581
JS
1009
1010 if (path->slots[0]) {
1011 struct extent_buffer *leaf;
1012 int slot;
1013
dadcaf78 1014 path->slots[0]--;
8da6d581 1015 leaf = path->nodes[0];
dadcaf78 1016 slot = path->slots[0];
8da6d581
JS
1017 btrfs_item_key_to_cpu(leaf, &key, slot);
1018 if (key.objectid == bytenr &&
261c84b6
JB
1019 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1020 key.type == BTRFS_METADATA_ITEM_KEY)) {
e0c476b1 1021 ret = add_inline_refs(path, bytenr, &info_level,
f6954245 1022 &prefs, &total_refs, inum);
8da6d581
JS
1023 if (ret)
1024 goto out;
e0c476b1 1025 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
f6954245 1026 &prefs, inum);
8da6d581
JS
1027 if (ret)
1028 goto out;
1029 }
1030 }
1031 btrfs_release_path(path);
1032
8da6d581
JS
1033 list_splice_init(&prefs_delayed, &prefs);
1034
e0c476b1 1035 ret = add_missing_keys(fs_info, &prefs);
d5c88b73
JS
1036 if (ret)
1037 goto out;
1038
e0c476b1 1039 merge_refs(&prefs, MERGE_IDENTICAL_KEYS);
8da6d581 1040
e0c476b1
JM
1041 ret = resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1042 extent_item_pos, total_refs,
1043 root_objectid);
8da6d581
JS
1044 if (ret)
1045 goto out;
1046
e0c476b1 1047 merge_refs(&prefs, MERGE_IDENTICAL_PARENTS);
8da6d581
JS
1048
1049 while (!list_empty(&prefs)) {
e0c476b1 1050 ref = list_first_entry(&prefs, struct prelim_ref, list);
6c1500f2 1051 WARN_ON(ref->count < 0);
98cfee21 1052 if (roots && ref->count && ref->root_id && ref->parent == 0) {
dc046b10
JB
1053 if (root_objectid && ref->root_id != root_objectid) {
1054 ret = BACKREF_FOUND_SHARED;
1055 goto out;
1056 }
1057
8da6d581
JS
1058 /* no parent == root of tree */
1059 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1060 if (ret < 0)
1061 goto out;
8da6d581
JS
1062 }
1063 if (ref->count && ref->parent) {
8a56457f
JB
1064 if (extent_item_pos && !ref->inode_list &&
1065 ref->level == 0) {
976b1908 1066 struct extent_buffer *eb;
707e8a07 1067
2ff7e61e 1068 eb = read_tree_block(fs_info, ref->parent, 0);
64c043de
LB
1069 if (IS_ERR(eb)) {
1070 ret = PTR_ERR(eb);
1071 goto out;
1072 } else if (!extent_buffer_uptodate(eb)) {
416bc658 1073 free_extent_buffer(eb);
c16c2e2e
WS
1074 ret = -EIO;
1075 goto out;
416bc658 1076 }
6f7ff6d7
FM
1077 btrfs_tree_read_lock(eb);
1078 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
976b1908
JS
1079 ret = find_extent_in_eb(eb, bytenr,
1080 *extent_item_pos, &eie);
6f7ff6d7 1081 btrfs_tree_read_unlock_blocking(eb);
976b1908 1082 free_extent_buffer(eb);
f5929cd8
FDBM
1083 if (ret < 0)
1084 goto out;
1085 ref->inode_list = eie;
976b1908 1086 }
4eb1f66d
TI
1087 ret = ulist_add_merge_ptr(refs, ref->parent,
1088 ref->inode_list,
1089 (void **)&eie, GFP_NOFS);
f1723939
WS
1090 if (ret < 0)
1091 goto out;
3301958b
JS
1092 if (!ret && extent_item_pos) {
1093 /*
1094 * we've recorded that parent, so we must extend
1095 * its inode list here
1096 */
1097 BUG_ON(!eie);
1098 while (eie->next)
1099 eie = eie->next;
1100 eie->next = ref->inode_list;
1101 }
f05c4746 1102 eie = NULL;
8da6d581 1103 }
a4fdb61e 1104 list_del(&ref->list);
b9e9a6cb 1105 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
1106 }
1107
1108out:
8da6d581
JS
1109 btrfs_free_path(path);
1110 while (!list_empty(&prefs)) {
e0c476b1 1111 ref = list_first_entry(&prefs, struct prelim_ref, list);
8da6d581 1112 list_del(&ref->list);
b9e9a6cb 1113 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
1114 }
1115 while (!list_empty(&prefs_delayed)) {
e0c476b1 1116 ref = list_first_entry(&prefs_delayed, struct prelim_ref,
8da6d581
JS
1117 list);
1118 list_del(&ref->list);
b9e9a6cb 1119 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581 1120 }
f05c4746
WS
1121 if (ret < 0)
1122 free_inode_elem_list(eie);
8da6d581
JS
1123 return ret;
1124}
1125
976b1908
JS
1126static void free_leaf_list(struct ulist *blocks)
1127{
1128 struct ulist_node *node = NULL;
1129 struct extent_inode_elem *eie;
976b1908
JS
1130 struct ulist_iterator uiter;
1131
1132 ULIST_ITER_INIT(&uiter);
1133 while ((node = ulist_next(blocks, &uiter))) {
1134 if (!node->aux)
1135 continue;
4dae077a 1136 eie = unode_aux_to_inode_list(node);
f05c4746 1137 free_inode_elem_list(eie);
976b1908
JS
1138 node->aux = 0;
1139 }
1140
1141 ulist_free(blocks);
1142}
1143
8da6d581
JS
1144/*
1145 * Finds all leafs with a reference to the specified combination of bytenr and
1146 * offset. key_list_head will point to a list of corresponding keys (caller must
1147 * free each list element). The leafs will be stored in the leafs ulist, which
1148 * must be freed with ulist_free.
1149 *
1150 * returns 0 on success, <0 on error
1151 */
1152static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1153 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1154 u64 time_seq, struct ulist **leafs,
976b1908 1155 const u64 *extent_item_pos)
8da6d581 1156{
8da6d581
JS
1157 int ret;
1158
8da6d581 1159 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1160 if (!*leafs)
8da6d581 1161 return -ENOMEM;
8da6d581 1162
afce772e 1163 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
f6954245 1164 *leafs, NULL, extent_item_pos, 0, 0);
8da6d581 1165 if (ret < 0 && ret != -ENOENT) {
976b1908 1166 free_leaf_list(*leafs);
8da6d581
JS
1167 return ret;
1168 }
1169
1170 return 0;
1171}
1172
1173/*
1174 * walk all backrefs for a given extent to find all roots that reference this
1175 * extent. Walking a backref means finding all extents that reference this
1176 * extent and in turn walk the backrefs of those, too. Naturally this is a
1177 * recursive process, but here it is implemented in an iterative fashion: We
1178 * find all referencing extents for the extent in question and put them on a
1179 * list. In turn, we find all referencing extents for those, further appending
1180 * to the list. The way we iterate the list allows adding more elements after
1181 * the current while iterating. The process stops when we reach the end of the
1182 * list. Found roots are added to the roots list.
1183 *
1184 * returns 0 on success, < 0 on error.
1185 */
e0c476b1
JM
1186static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1187 struct btrfs_fs_info *fs_info, u64 bytenr,
1188 u64 time_seq, struct ulist **roots)
8da6d581
JS
1189{
1190 struct ulist *tmp;
1191 struct ulist_node *node = NULL;
cd1b413c 1192 struct ulist_iterator uiter;
8da6d581
JS
1193 int ret;
1194
1195 tmp = ulist_alloc(GFP_NOFS);
1196 if (!tmp)
1197 return -ENOMEM;
1198 *roots = ulist_alloc(GFP_NOFS);
1199 if (!*roots) {
1200 ulist_free(tmp);
1201 return -ENOMEM;
1202 }
1203
cd1b413c 1204 ULIST_ITER_INIT(&uiter);
8da6d581 1205 while (1) {
afce772e 1206 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
f6954245 1207 tmp, *roots, NULL, 0, 0);
8da6d581
JS
1208 if (ret < 0 && ret != -ENOENT) {
1209 ulist_free(tmp);
1210 ulist_free(*roots);
1211 return ret;
1212 }
cd1b413c 1213 node = ulist_next(tmp, &uiter);
8da6d581
JS
1214 if (!node)
1215 break;
1216 bytenr = node->val;
bca1a290 1217 cond_resched();
8da6d581
JS
1218 }
1219
1220 ulist_free(tmp);
1221 return 0;
1222}
1223
9e351cc8
JB
1224int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1225 struct btrfs_fs_info *fs_info, u64 bytenr,
1226 u64 time_seq, struct ulist **roots)
1227{
1228 int ret;
1229
1230 if (!trans)
1231 down_read(&fs_info->commit_root_sem);
e0c476b1
JM
1232 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1233 time_seq, roots);
9e351cc8
JB
1234 if (!trans)
1235 up_read(&fs_info->commit_root_sem);
1236 return ret;
1237}
1238
2c2ed5aa
MF
1239/**
1240 * btrfs_check_shared - tell us whether an extent is shared
1241 *
2c2ed5aa
MF
1242 * btrfs_check_shared uses the backref walking code but will short
1243 * circuit as soon as it finds a root or inode that doesn't match the
1244 * one passed in. This provides a significant performance benefit for
1245 * callers (such as fiemap) which want to know whether the extent is
1246 * shared but do not need a ref count.
1247 *
bb739cf0
EN
1248 * This attempts to allocate a transaction in order to account for
1249 * delayed refs, but continues on even when the alloc fails.
1250 *
2c2ed5aa
MF
1251 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1252 */
bb739cf0 1253int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
dc046b10 1254{
bb739cf0
EN
1255 struct btrfs_fs_info *fs_info = root->fs_info;
1256 struct btrfs_trans_handle *trans;
dc046b10
JB
1257 struct ulist *tmp = NULL;
1258 struct ulist *roots = NULL;
1259 struct ulist_iterator uiter;
1260 struct ulist_node *node;
3284da7b 1261 struct seq_list elem = SEQ_LIST_INIT(elem);
dc046b10
JB
1262 int ret = 0;
1263
1264 tmp = ulist_alloc(GFP_NOFS);
1265 roots = ulist_alloc(GFP_NOFS);
1266 if (!tmp || !roots) {
1267 ulist_free(tmp);
1268 ulist_free(roots);
1269 return -ENOMEM;
1270 }
1271
bb739cf0
EN
1272 trans = btrfs_join_transaction(root);
1273 if (IS_ERR(trans)) {
1274 trans = NULL;
dc046b10 1275 down_read(&fs_info->commit_root_sem);
bb739cf0
EN
1276 } else {
1277 btrfs_get_tree_mod_seq(fs_info, &elem);
1278 }
1279
dc046b10
JB
1280 ULIST_ITER_INIT(&uiter);
1281 while (1) {
1282 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
f6954245 1283 roots, NULL, root->objectid, inum);
dc046b10 1284 if (ret == BACKREF_FOUND_SHARED) {
2c2ed5aa 1285 /* this is the only condition under which we return 1 */
dc046b10
JB
1286 ret = 1;
1287 break;
1288 }
1289 if (ret < 0 && ret != -ENOENT)
1290 break;
2c2ed5aa 1291 ret = 0;
dc046b10
JB
1292 node = ulist_next(tmp, &uiter);
1293 if (!node)
1294 break;
1295 bytenr = node->val;
1296 cond_resched();
1297 }
bb739cf0
EN
1298
1299 if (trans) {
dc046b10 1300 btrfs_put_tree_mod_seq(fs_info, &elem);
bb739cf0
EN
1301 btrfs_end_transaction(trans);
1302 } else {
dc046b10 1303 up_read(&fs_info->commit_root_sem);
bb739cf0 1304 }
dc046b10
JB
1305 ulist_free(tmp);
1306 ulist_free(roots);
1307 return ret;
1308}
1309
f186373f
MF
1310int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1311 u64 start_off, struct btrfs_path *path,
1312 struct btrfs_inode_extref **ret_extref,
1313 u64 *found_off)
1314{
1315 int ret, slot;
1316 struct btrfs_key key;
1317 struct btrfs_key found_key;
1318 struct btrfs_inode_extref *extref;
73980bec 1319 const struct extent_buffer *leaf;
f186373f
MF
1320 unsigned long ptr;
1321
1322 key.objectid = inode_objectid;
962a298f 1323 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
1324 key.offset = start_off;
1325
1326 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1327 if (ret < 0)
1328 return ret;
1329
1330 while (1) {
1331 leaf = path->nodes[0];
1332 slot = path->slots[0];
1333 if (slot >= btrfs_header_nritems(leaf)) {
1334 /*
1335 * If the item at offset is not found,
1336 * btrfs_search_slot will point us to the slot
1337 * where it should be inserted. In our case
1338 * that will be the slot directly before the
1339 * next INODE_REF_KEY_V2 item. In the case
1340 * that we're pointing to the last slot in a
1341 * leaf, we must move one leaf over.
1342 */
1343 ret = btrfs_next_leaf(root, path);
1344 if (ret) {
1345 if (ret >= 1)
1346 ret = -ENOENT;
1347 break;
1348 }
1349 continue;
1350 }
1351
1352 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1353
1354 /*
1355 * Check that we're still looking at an extended ref key for
1356 * this particular objectid. If we have different
1357 * objectid or type then there are no more to be found
1358 * in the tree and we can exit.
1359 */
1360 ret = -ENOENT;
1361 if (found_key.objectid != inode_objectid)
1362 break;
962a298f 1363 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
1364 break;
1365
1366 ret = 0;
1367 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1368 extref = (struct btrfs_inode_extref *)ptr;
1369 *ret_extref = extref;
1370 if (found_off)
1371 *found_off = found_key.offset;
1372 break;
1373 }
1374
1375 return ret;
1376}
1377
48a3b636
ES
1378/*
1379 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1380 * Elements of the path are separated by '/' and the path is guaranteed to be
1381 * 0-terminated. the path is only given within the current file system.
1382 * Therefore, it never starts with a '/'. the caller is responsible to provide
1383 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1384 * the start point of the resulting string is returned. this pointer is within
1385 * dest, normally.
1386 * in case the path buffer would overflow, the pointer is decremented further
1387 * as if output was written to the buffer, though no more output is actually
1388 * generated. that way, the caller can determine how much space would be
1389 * required for the path to fit into the buffer. in that case, the returned
1390 * value will be smaller than dest. callers must check this!
1391 */
96b5bd77
JS
1392char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1393 u32 name_len, unsigned long name_off,
1394 struct extent_buffer *eb_in, u64 parent,
1395 char *dest, u32 size)
a542ad1b 1396{
a542ad1b
JS
1397 int slot;
1398 u64 next_inum;
1399 int ret;
661bec6b 1400 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1401 struct extent_buffer *eb = eb_in;
1402 struct btrfs_key found_key;
b916a59a 1403 int leave_spinning = path->leave_spinning;
d24bec3a 1404 struct btrfs_inode_ref *iref;
a542ad1b
JS
1405
1406 if (bytes_left >= 0)
1407 dest[bytes_left] = '\0';
1408
b916a59a 1409 path->leave_spinning = 1;
a542ad1b 1410 while (1) {
d24bec3a 1411 bytes_left -= name_len;
a542ad1b
JS
1412 if (bytes_left >= 0)
1413 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1414 name_off, name_len);
b916a59a 1415 if (eb != eb_in) {
0c0fe3b0
FM
1416 if (!path->skip_locking)
1417 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1418 free_extent_buffer(eb);
b916a59a 1419 }
c234a24d
DS
1420 ret = btrfs_find_item(fs_root, path, parent, 0,
1421 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
1422 if (ret > 0)
1423 ret = -ENOENT;
a542ad1b
JS
1424 if (ret)
1425 break;
d24bec3a 1426
a542ad1b
JS
1427 next_inum = found_key.offset;
1428
1429 /* regular exit ahead */
1430 if (parent == next_inum)
1431 break;
1432
1433 slot = path->slots[0];
1434 eb = path->nodes[0];
1435 /* make sure we can use eb after releasing the path */
b916a59a 1436 if (eb != eb_in) {
0c0fe3b0
FM
1437 if (!path->skip_locking)
1438 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1439 path->nodes[0] = NULL;
1440 path->locks[0] = 0;
b916a59a 1441 }
a542ad1b 1442 btrfs_release_path(path);
a542ad1b 1443 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1444
1445 name_len = btrfs_inode_ref_name_len(eb, iref);
1446 name_off = (unsigned long)(iref + 1);
1447
a542ad1b
JS
1448 parent = next_inum;
1449 --bytes_left;
1450 if (bytes_left >= 0)
1451 dest[bytes_left] = '/';
1452 }
1453
1454 btrfs_release_path(path);
b916a59a 1455 path->leave_spinning = leave_spinning;
a542ad1b
JS
1456
1457 if (ret)
1458 return ERR_PTR(ret);
1459
1460 return dest + bytes_left;
1461}
1462
1463/*
1464 * this makes the path point to (logical EXTENT_ITEM *)
1465 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1466 * tree blocks and <0 on error.
1467 */
1468int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1469 struct btrfs_path *path, struct btrfs_key *found_key,
1470 u64 *flags_ret)
a542ad1b
JS
1471{
1472 int ret;
1473 u64 flags;
261c84b6 1474 u64 size = 0;
a542ad1b 1475 u32 item_size;
73980bec 1476 const struct extent_buffer *eb;
a542ad1b
JS
1477 struct btrfs_extent_item *ei;
1478 struct btrfs_key key;
1479
261c84b6
JB
1480 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1481 key.type = BTRFS_METADATA_ITEM_KEY;
1482 else
1483 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1484 key.objectid = logical;
1485 key.offset = (u64)-1;
1486
1487 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1488 if (ret < 0)
1489 return ret;
a542ad1b 1490
850a8cdf
WS
1491 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1492 if (ret) {
1493 if (ret > 0)
1494 ret = -ENOENT;
1495 return ret;
580f0a67 1496 }
850a8cdf 1497 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 1498 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
da17066c 1499 size = fs_info->nodesize;
261c84b6
JB
1500 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1501 size = found_key->offset;
1502
580f0a67 1503 if (found_key->objectid > logical ||
261c84b6 1504 found_key->objectid + size <= logical) {
ab8d0fc4
JM
1505 btrfs_debug(fs_info,
1506 "logical %llu is not within any extent", logical);
a542ad1b 1507 return -ENOENT;
4692cf58 1508 }
a542ad1b
JS
1509
1510 eb = path->nodes[0];
1511 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1512 BUG_ON(item_size < sizeof(*ei));
1513
1514 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1515 flags = btrfs_extent_flags(eb, ei);
1516
ab8d0fc4
JM
1517 btrfs_debug(fs_info,
1518 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
c1c9ff7c
GU
1519 logical, logical - found_key->objectid, found_key->objectid,
1520 found_key->offset, flags, item_size);
69917e43
LB
1521
1522 WARN_ON(!flags_ret);
1523 if (flags_ret) {
1524 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1525 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1526 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1527 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1528 else
1529 BUG_ON(1);
1530 return 0;
1531 }
a542ad1b
JS
1532
1533 return -EIO;
1534}
1535
1536/*
1537 * helper function to iterate extent inline refs. ptr must point to a 0 value
1538 * for the first call and may be modified. it is used to track state.
1539 * if more refs exist, 0 is returned and the next call to
e0c476b1 1540 * get_extent_inline_ref must pass the modified ptr parameter to get the
a542ad1b
JS
1541 * next ref. after the last ref was processed, 1 is returned.
1542 * returns <0 on error
1543 */
e0c476b1
JM
1544static int get_extent_inline_ref(unsigned long *ptr,
1545 const struct extent_buffer *eb,
1546 const struct btrfs_key *key,
1547 const struct btrfs_extent_item *ei,
1548 u32 item_size,
1549 struct btrfs_extent_inline_ref **out_eiref,
1550 int *out_type)
a542ad1b
JS
1551{
1552 unsigned long end;
1553 u64 flags;
1554 struct btrfs_tree_block_info *info;
1555
1556 if (!*ptr) {
1557 /* first call */
1558 flags = btrfs_extent_flags(eb, ei);
1559 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
1560 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1561 /* a skinny metadata extent */
1562 *out_eiref =
1563 (struct btrfs_extent_inline_ref *)(ei + 1);
1564 } else {
1565 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1566 info = (struct btrfs_tree_block_info *)(ei + 1);
1567 *out_eiref =
1568 (struct btrfs_extent_inline_ref *)(info + 1);
1569 }
a542ad1b
JS
1570 } else {
1571 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1572 }
1573 *ptr = (unsigned long)*out_eiref;
cd857dd6 1574 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
1575 return -ENOENT;
1576 }
1577
1578 end = (unsigned long)ei + item_size;
6eda71d0 1579 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
a542ad1b
JS
1580 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1581
1582 *ptr += btrfs_extent_inline_ref_size(*out_type);
1583 WARN_ON(*ptr > end);
1584 if (*ptr == end)
1585 return 1; /* last */
1586
1587 return 0;
1588}
1589
1590/*
1591 * reads the tree block backref for an extent. tree level and root are returned
1592 * through out_level and out_root. ptr must point to a 0 value for the first
e0c476b1 1593 * call and may be modified (see get_extent_inline_ref comment).
a542ad1b
JS
1594 * returns 0 if data was provided, 1 if there was no more data to provide or
1595 * <0 on error.
1596 */
1597int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
1598 struct btrfs_key *key, struct btrfs_extent_item *ei,
1599 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
1600{
1601 int ret;
1602 int type;
a542ad1b
JS
1603 struct btrfs_extent_inline_ref *eiref;
1604
1605 if (*ptr == (unsigned long)-1)
1606 return 1;
1607
1608 while (1) {
e0c476b1 1609 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
6eda71d0 1610 &eiref, &type);
a542ad1b
JS
1611 if (ret < 0)
1612 return ret;
1613
1614 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1615 type == BTRFS_SHARED_BLOCK_REF_KEY)
1616 break;
1617
1618 if (ret == 1)
1619 return 1;
1620 }
1621
1622 /* we can treat both ref types equally here */
a542ad1b 1623 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
1624
1625 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1626 struct btrfs_tree_block_info *info;
1627
1628 info = (struct btrfs_tree_block_info *)(ei + 1);
1629 *out_level = btrfs_tree_block_level(eb, info);
1630 } else {
1631 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1632 *out_level = (u8)key->offset;
1633 }
a542ad1b
JS
1634
1635 if (ret == 1)
1636 *ptr = (unsigned long)-1;
1637
1638 return 0;
1639}
1640
ab8d0fc4
JM
1641static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1642 struct extent_inode_elem *inode_list,
1643 u64 root, u64 extent_item_objectid,
1644 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1645{
976b1908 1646 struct extent_inode_elem *eie;
4692cf58 1647 int ret = 0;
4692cf58 1648
976b1908 1649 for (eie = inode_list; eie; eie = eie->next) {
ab8d0fc4
JM
1650 btrfs_debug(fs_info,
1651 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1652 extent_item_objectid, eie->inum,
1653 eie->offset, root);
976b1908 1654 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1655 if (ret) {
ab8d0fc4
JM
1656 btrfs_debug(fs_info,
1657 "stopping iteration for %llu due to ret=%d",
1658 extent_item_objectid, ret);
4692cf58
JS
1659 break;
1660 }
a542ad1b
JS
1661 }
1662
a542ad1b
JS
1663 return ret;
1664}
1665
1666/*
1667 * calls iterate() for every inode that references the extent identified by
4692cf58 1668 * the given parameters.
a542ad1b
JS
1669 * when the iterator function returns a non-zero value, iteration stops.
1670 */
1671int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1672 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1673 int search_commit_root,
a542ad1b
JS
1674 iterate_extent_inodes_t *iterate, void *ctx)
1675{
a542ad1b 1676 int ret;
da61d31a 1677 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1678 struct ulist *refs = NULL;
1679 struct ulist *roots = NULL;
4692cf58
JS
1680 struct ulist_node *ref_node = NULL;
1681 struct ulist_node *root_node = NULL;
3284da7b 1682 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
cd1b413c
JS
1683 struct ulist_iterator ref_uiter;
1684 struct ulist_iterator root_uiter;
a542ad1b 1685
ab8d0fc4 1686 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
4692cf58 1687 extent_item_objectid);
a542ad1b 1688
da61d31a 1689 if (!search_commit_root) {
7a3ae2f8
JS
1690 trans = btrfs_join_transaction(fs_info->extent_root);
1691 if (IS_ERR(trans))
1692 return PTR_ERR(trans);
8445f61c 1693 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
9e351cc8
JB
1694 } else {
1695 down_read(&fs_info->commit_root_sem);
7a3ae2f8 1696 }
a542ad1b 1697
4692cf58 1698 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1699 tree_mod_seq_elem.seq, &refs,
8445f61c 1700 &extent_item_pos);
4692cf58
JS
1701 if (ret)
1702 goto out;
a542ad1b 1703
cd1b413c
JS
1704 ULIST_ITER_INIT(&ref_uiter);
1705 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
e0c476b1
JM
1706 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1707 tree_mod_seq_elem.seq, &roots);
4692cf58
JS
1708 if (ret)
1709 break;
cd1b413c
JS
1710 ULIST_ITER_INIT(&root_uiter);
1711 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
ab8d0fc4
JM
1712 btrfs_debug(fs_info,
1713 "root %llu references leaf %llu, data list %#llx",
1714 root_node->val, ref_node->val,
1715 ref_node->aux);
1716 ret = iterate_leaf_refs(fs_info,
1717 (struct extent_inode_elem *)
995e01b7
JS
1718 (uintptr_t)ref_node->aux,
1719 root_node->val,
1720 extent_item_objectid,
1721 iterate, ctx);
4692cf58 1722 }
976b1908 1723 ulist_free(roots);
a542ad1b
JS
1724 }
1725
976b1908 1726 free_leaf_list(refs);
4692cf58 1727out:
7a3ae2f8 1728 if (!search_commit_root) {
8445f61c 1729 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
3a45bb20 1730 btrfs_end_transaction(trans);
9e351cc8
JB
1731 } else {
1732 up_read(&fs_info->commit_root_sem);
7a3ae2f8
JS
1733 }
1734
a542ad1b
JS
1735 return ret;
1736}
1737
1738int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1739 struct btrfs_path *path,
1740 iterate_extent_inodes_t *iterate, void *ctx)
1741{
1742 int ret;
4692cf58 1743 u64 extent_item_pos;
69917e43 1744 u64 flags = 0;
a542ad1b 1745 struct btrfs_key found_key;
7a3ae2f8 1746 int search_commit_root = path->search_commit_root;
a542ad1b 1747
69917e43 1748 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 1749 btrfs_release_path(path);
a542ad1b
JS
1750 if (ret < 0)
1751 return ret;
69917e43 1752 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 1753 return -EINVAL;
a542ad1b 1754
4692cf58 1755 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1756 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1757 extent_item_pos, search_commit_root,
1758 iterate, ctx);
a542ad1b
JS
1759
1760 return ret;
1761}
1762
d24bec3a
MF
1763typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1764 struct extent_buffer *eb, void *ctx);
1765
1766static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1767 struct btrfs_path *path,
1768 iterate_irefs_t *iterate, void *ctx)
a542ad1b 1769{
aefc1eb1 1770 int ret = 0;
a542ad1b
JS
1771 int slot;
1772 u32 cur;
1773 u32 len;
1774 u32 name_len;
1775 u64 parent = 0;
1776 int found = 0;
1777 struct extent_buffer *eb;
1778 struct btrfs_item *item;
1779 struct btrfs_inode_ref *iref;
1780 struct btrfs_key found_key;
1781
aefc1eb1 1782 while (!ret) {
c234a24d
DS
1783 ret = btrfs_find_item(fs_root, path, inum,
1784 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
1785 &found_key);
1786
a542ad1b
JS
1787 if (ret < 0)
1788 break;
1789 if (ret) {
1790 ret = found ? 0 : -ENOENT;
1791 break;
1792 }
1793 ++found;
1794
1795 parent = found_key.offset;
1796 slot = path->slots[0];
3fe81ce2
FDBM
1797 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1798 if (!eb) {
1799 ret = -ENOMEM;
1800 break;
1801 }
1802 extent_buffer_get(eb);
b916a59a
JS
1803 btrfs_tree_read_lock(eb);
1804 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
1805 btrfs_release_path(path);
1806
dd3cc16b 1807 item = btrfs_item_nr(slot);
a542ad1b
JS
1808 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1809
1810 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1811 name_len = btrfs_inode_ref_name_len(eb, iref);
1812 /* path must be released before calling iterate()! */
ab8d0fc4
JM
1813 btrfs_debug(fs_root->fs_info,
1814 "following ref at offset %u for inode %llu in tree %llu",
1815 cur, found_key.objectid, fs_root->objectid);
d24bec3a
MF
1816 ret = iterate(parent, name_len,
1817 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 1818 if (ret)
a542ad1b 1819 break;
a542ad1b
JS
1820 len = sizeof(*iref) + name_len;
1821 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1822 }
b916a59a 1823 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
1824 free_extent_buffer(eb);
1825 }
1826
1827 btrfs_release_path(path);
1828
1829 return ret;
1830}
1831
d24bec3a
MF
1832static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1833 struct btrfs_path *path,
1834 iterate_irefs_t *iterate, void *ctx)
1835{
1836 int ret;
1837 int slot;
1838 u64 offset = 0;
1839 u64 parent;
1840 int found = 0;
1841 struct extent_buffer *eb;
1842 struct btrfs_inode_extref *extref;
d24bec3a
MF
1843 u32 item_size;
1844 u32 cur_offset;
1845 unsigned long ptr;
1846
1847 while (1) {
1848 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1849 &offset);
1850 if (ret < 0)
1851 break;
1852 if (ret) {
1853 ret = found ? 0 : -ENOENT;
1854 break;
1855 }
1856 ++found;
1857
1858 slot = path->slots[0];
3fe81ce2
FDBM
1859 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1860 if (!eb) {
1861 ret = -ENOMEM;
1862 break;
1863 }
1864 extent_buffer_get(eb);
d24bec3a
MF
1865
1866 btrfs_tree_read_lock(eb);
1867 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1868 btrfs_release_path(path);
1869
2849a854
CM
1870 item_size = btrfs_item_size_nr(eb, slot);
1871 ptr = btrfs_item_ptr_offset(eb, slot);
d24bec3a
MF
1872 cur_offset = 0;
1873
1874 while (cur_offset < item_size) {
1875 u32 name_len;
1876
1877 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1878 parent = btrfs_inode_extref_parent(eb, extref);
1879 name_len = btrfs_inode_extref_name_len(eb, extref);
1880 ret = iterate(parent, name_len,
1881 (unsigned long)&extref->name, eb, ctx);
1882 if (ret)
1883 break;
1884
2849a854 1885 cur_offset += btrfs_inode_extref_name_len(eb, extref);
d24bec3a
MF
1886 cur_offset += sizeof(*extref);
1887 }
1888 btrfs_tree_read_unlock_blocking(eb);
1889 free_extent_buffer(eb);
1890
1891 offset++;
1892 }
1893
1894 btrfs_release_path(path);
1895
1896 return ret;
1897}
1898
1899static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1900 struct btrfs_path *path, iterate_irefs_t *iterate,
1901 void *ctx)
1902{
1903 int ret;
1904 int found_refs = 0;
1905
1906 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1907 if (!ret)
1908 ++found_refs;
1909 else if (ret != -ENOENT)
1910 return ret;
1911
1912 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1913 if (ret == -ENOENT && found_refs)
1914 return 0;
1915
1916 return ret;
1917}
1918
a542ad1b
JS
1919/*
1920 * returns 0 if the path could be dumped (probably truncated)
1921 * returns <0 in case of an error
1922 */
d24bec3a
MF
1923static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1924 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
1925{
1926 struct inode_fs_paths *ipath = ctx;
1927 char *fspath;
1928 char *fspath_min;
1929 int i = ipath->fspath->elem_cnt;
1930 const int s_ptr = sizeof(char *);
1931 u32 bytes_left;
1932
1933 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1934 ipath->fspath->bytes_left - s_ptr : 0;
1935
740c3d22 1936 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
1937 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1938 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
1939 if (IS_ERR(fspath))
1940 return PTR_ERR(fspath);
1941
1942 if (fspath > fspath_min) {
745c4d8e 1943 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
1944 ++ipath->fspath->elem_cnt;
1945 ipath->fspath->bytes_left = fspath - fspath_min;
1946 } else {
1947 ++ipath->fspath->elem_missed;
1948 ipath->fspath->bytes_missing += fspath_min - fspath;
1949 ipath->fspath->bytes_left = 0;
1950 }
1951
1952 return 0;
1953}
1954
1955/*
1956 * this dumps all file system paths to the inode into the ipath struct, provided
1957 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 1958 * from ipath->fspath->val[i].
a542ad1b 1959 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 1960 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
01327610 1961 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
a542ad1b
JS
1962 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1963 * have been needed to return all paths.
1964 */
1965int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1966{
1967 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 1968 inode_to_path, ipath);
a542ad1b
JS
1969}
1970
a542ad1b
JS
1971struct btrfs_data_container *init_data_container(u32 total_bytes)
1972{
1973 struct btrfs_data_container *data;
1974 size_t alloc_bytes;
1975
1976 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
f54de068 1977 data = kvmalloc(alloc_bytes, GFP_KERNEL);
a542ad1b
JS
1978 if (!data)
1979 return ERR_PTR(-ENOMEM);
1980
1981 if (total_bytes >= sizeof(*data)) {
1982 data->bytes_left = total_bytes - sizeof(*data);
1983 data->bytes_missing = 0;
1984 } else {
1985 data->bytes_missing = sizeof(*data) - total_bytes;
1986 data->bytes_left = 0;
1987 }
1988
1989 data->elem_cnt = 0;
1990 data->elem_missed = 0;
1991
1992 return data;
1993}
1994
1995/*
1996 * allocates space to return multiple file system paths for an inode.
1997 * total_bytes to allocate are passed, note that space usable for actual path
1998 * information will be total_bytes - sizeof(struct inode_fs_paths).
1999 * the returned pointer must be freed with free_ipath() in the end.
2000 */
2001struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2002 struct btrfs_path *path)
2003{
2004 struct inode_fs_paths *ifp;
2005 struct btrfs_data_container *fspath;
2006
2007 fspath = init_data_container(total_bytes);
2008 if (IS_ERR(fspath))
2009 return (void *)fspath;
2010
f54de068 2011 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
a542ad1b 2012 if (!ifp) {
f54de068 2013 kvfree(fspath);
a542ad1b
JS
2014 return ERR_PTR(-ENOMEM);
2015 }
2016
2017 ifp->btrfs_path = path;
2018 ifp->fspath = fspath;
2019 ifp->fs_root = fs_root;
2020
2021 return ifp;
2022}
2023
2024void free_ipath(struct inode_fs_paths *ipath)
2025{
4735fb28
JJ
2026 if (!ipath)
2027 return;
f54de068 2028 kvfree(ipath->fspath);
a542ad1b
JS
2029 kfree(ipath);
2030}