btrfs: make btrfs_cleanup_fs_roots use the radix tree lock
[linux-block.git] / fs / btrfs / backref.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a542ad1b
JS
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
a542ad1b
JS
4 */
5
f54de068 6#include <linux/mm.h>
afce772e 7#include <linux/rbtree.h>
00142756 8#include <trace/events/btrfs.h>
a542ad1b
JS
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
8da6d581
JS
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
b916a59a 15#include "locking.h"
a542ad1b 16
dc046b10
JB
17/* Just an arbitrary number so we can be sure this happened */
18#define BACKREF_FOUND_SHARED 6
19
976b1908
JS
20struct extent_inode_elem {
21 u64 inum;
22 u64 offset;
23 struct extent_inode_elem *next;
24};
25
73980bec
JM
26static int check_extent_in_eb(const struct btrfs_key *key,
27 const struct extent_buffer *eb,
28 const struct btrfs_file_extent_item *fi,
29 u64 extent_item_pos,
c995ab3c
ZB
30 struct extent_inode_elem **eie,
31 bool ignore_offset)
976b1908 32{
8ca15e05 33 u64 offset = 0;
976b1908
JS
34 struct extent_inode_elem *e;
35
c995ab3c
ZB
36 if (!ignore_offset &&
37 !btrfs_file_extent_compression(eb, fi) &&
8ca15e05
JB
38 !btrfs_file_extent_encryption(eb, fi) &&
39 !btrfs_file_extent_other_encoding(eb, fi)) {
40 u64 data_offset;
41 u64 data_len;
976b1908 42
8ca15e05
JB
43 data_offset = btrfs_file_extent_offset(eb, fi);
44 data_len = btrfs_file_extent_num_bytes(eb, fi);
45
46 if (extent_item_pos < data_offset ||
47 extent_item_pos >= data_offset + data_len)
48 return 1;
49 offset = extent_item_pos - data_offset;
50 }
976b1908
JS
51
52 e = kmalloc(sizeof(*e), GFP_NOFS);
53 if (!e)
54 return -ENOMEM;
55
56 e->next = *eie;
57 e->inum = key->objectid;
8ca15e05 58 e->offset = key->offset + offset;
976b1908
JS
59 *eie = e;
60
61 return 0;
62}
63
f05c4746
WS
64static void free_inode_elem_list(struct extent_inode_elem *eie)
65{
66 struct extent_inode_elem *eie_next;
67
68 for (; eie; eie = eie_next) {
69 eie_next = eie->next;
70 kfree(eie);
71 }
72}
73
73980bec
JM
74static int find_extent_in_eb(const struct extent_buffer *eb,
75 u64 wanted_disk_byte, u64 extent_item_pos,
c995ab3c
ZB
76 struct extent_inode_elem **eie,
77 bool ignore_offset)
976b1908
JS
78{
79 u64 disk_byte;
80 struct btrfs_key key;
81 struct btrfs_file_extent_item *fi;
82 int slot;
83 int nritems;
84 int extent_type;
85 int ret;
86
87 /*
88 * from the shared data ref, we only have the leaf but we need
89 * the key. thus, we must look into all items and see that we
90 * find one (some) with a reference to our extent item.
91 */
92 nritems = btrfs_header_nritems(eb);
93 for (slot = 0; slot < nritems; ++slot) {
94 btrfs_item_key_to_cpu(eb, &key, slot);
95 if (key.type != BTRFS_EXTENT_DATA_KEY)
96 continue;
97 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
98 extent_type = btrfs_file_extent_type(eb, fi);
99 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
100 continue;
101 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
102 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
103 if (disk_byte != wanted_disk_byte)
104 continue;
105
c995ab3c 106 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
976b1908
JS
107 if (ret < 0)
108 return ret;
109 }
110
111 return 0;
112}
113
86d5f994 114struct preftree {
ecf160b4 115 struct rb_root_cached root;
6c336b21 116 unsigned int count;
86d5f994
EN
117};
118
ecf160b4 119#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
86d5f994
EN
120
121struct preftrees {
122 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
123 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
124 struct preftree indirect_missing_keys;
125};
126
3ec4d323
EN
127/*
128 * Checks for a shared extent during backref search.
129 *
130 * The share_count tracks prelim_refs (direct and indirect) having a
131 * ref->count >0:
132 * - incremented when a ref->count transitions to >0
133 * - decremented when a ref->count transitions to <1
134 */
135struct share_check {
136 u64 root_objectid;
137 u64 inum;
138 int share_count;
139};
140
141static inline int extent_is_shared(struct share_check *sc)
142{
143 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
144}
145
b9e9a6cb
WS
146static struct kmem_cache *btrfs_prelim_ref_cache;
147
148int __init btrfs_prelim_ref_init(void)
149{
150 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
e0c476b1 151 sizeof(struct prelim_ref),
b9e9a6cb 152 0,
fba4b697 153 SLAB_MEM_SPREAD,
b9e9a6cb
WS
154 NULL);
155 if (!btrfs_prelim_ref_cache)
156 return -ENOMEM;
157 return 0;
158}
159
e67c718b 160void __cold btrfs_prelim_ref_exit(void)
b9e9a6cb 161{
5598e900 162 kmem_cache_destroy(btrfs_prelim_ref_cache);
b9e9a6cb
WS
163}
164
86d5f994
EN
165static void free_pref(struct prelim_ref *ref)
166{
167 kmem_cache_free(btrfs_prelim_ref_cache, ref);
168}
169
170/*
171 * Return 0 when both refs are for the same block (and can be merged).
172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
173 * indicates a 'higher' block.
174 */
175static int prelim_ref_compare(struct prelim_ref *ref1,
176 struct prelim_ref *ref2)
177{
178 if (ref1->level < ref2->level)
179 return -1;
180 if (ref1->level > ref2->level)
181 return 1;
182 if (ref1->root_id < ref2->root_id)
183 return -1;
184 if (ref1->root_id > ref2->root_id)
185 return 1;
186 if (ref1->key_for_search.type < ref2->key_for_search.type)
187 return -1;
188 if (ref1->key_for_search.type > ref2->key_for_search.type)
189 return 1;
190 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
191 return -1;
192 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
193 return 1;
194 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
195 return -1;
196 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
197 return 1;
198 if (ref1->parent < ref2->parent)
199 return -1;
200 if (ref1->parent > ref2->parent)
201 return 1;
202
203 return 0;
204}
205
ccc8dc75
CIK
206static void update_share_count(struct share_check *sc, int oldcount,
207 int newcount)
3ec4d323
EN
208{
209 if ((!sc) || (oldcount == 0 && newcount < 1))
210 return;
211
212 if (oldcount > 0 && newcount < 1)
213 sc->share_count--;
214 else if (oldcount < 1 && newcount > 0)
215 sc->share_count++;
216}
217
86d5f994
EN
218/*
219 * Add @newref to the @root rbtree, merging identical refs.
220 *
3ec4d323 221 * Callers should assume that newref has been freed after calling.
86d5f994 222 */
00142756
JM
223static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
224 struct preftree *preftree,
3ec4d323
EN
225 struct prelim_ref *newref,
226 struct share_check *sc)
86d5f994 227{
ecf160b4 228 struct rb_root_cached *root;
86d5f994
EN
229 struct rb_node **p;
230 struct rb_node *parent = NULL;
231 struct prelim_ref *ref;
232 int result;
ecf160b4 233 bool leftmost = true;
86d5f994
EN
234
235 root = &preftree->root;
ecf160b4 236 p = &root->rb_root.rb_node;
86d5f994
EN
237
238 while (*p) {
239 parent = *p;
240 ref = rb_entry(parent, struct prelim_ref, rbnode);
241 result = prelim_ref_compare(ref, newref);
242 if (result < 0) {
243 p = &(*p)->rb_left;
244 } else if (result > 0) {
245 p = &(*p)->rb_right;
ecf160b4 246 leftmost = false;
86d5f994
EN
247 } else {
248 /* Identical refs, merge them and free @newref */
249 struct extent_inode_elem *eie = ref->inode_list;
250
251 while (eie && eie->next)
252 eie = eie->next;
253
254 if (!eie)
255 ref->inode_list = newref->inode_list;
256 else
257 eie->next = newref->inode_list;
00142756
JM
258 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
259 preftree->count);
3ec4d323
EN
260 /*
261 * A delayed ref can have newref->count < 0.
262 * The ref->count is updated to follow any
263 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
264 */
265 update_share_count(sc, ref->count,
266 ref->count + newref->count);
86d5f994
EN
267 ref->count += newref->count;
268 free_pref(newref);
269 return;
270 }
271 }
272
3ec4d323 273 update_share_count(sc, 0, newref->count);
6c336b21 274 preftree->count++;
00142756 275 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
86d5f994 276 rb_link_node(&newref->rbnode, parent, p);
ecf160b4 277 rb_insert_color_cached(&newref->rbnode, root, leftmost);
86d5f994
EN
278}
279
280/*
281 * Release the entire tree. We don't care about internal consistency so
282 * just free everything and then reset the tree root.
283 */
284static void prelim_release(struct preftree *preftree)
285{
286 struct prelim_ref *ref, *next_ref;
287
ecf160b4
LB
288 rbtree_postorder_for_each_entry_safe(ref, next_ref,
289 &preftree->root.rb_root, rbnode)
86d5f994
EN
290 free_pref(ref);
291
ecf160b4 292 preftree->root = RB_ROOT_CACHED;
6c336b21 293 preftree->count = 0;
86d5f994
EN
294}
295
d5c88b73
JS
296/*
297 * the rules for all callers of this function are:
298 * - obtaining the parent is the goal
299 * - if you add a key, you must know that it is a correct key
300 * - if you cannot add the parent or a correct key, then we will look into the
301 * block later to set a correct key
302 *
303 * delayed refs
304 * ============
305 * backref type | shared | indirect | shared | indirect
306 * information | tree | tree | data | data
307 * --------------------+--------+----------+--------+----------
308 * parent logical | y | - | - | -
309 * key to resolve | - | y | y | y
310 * tree block logical | - | - | - | -
311 * root for resolving | y | y | y | y
312 *
313 * - column 1: we've the parent -> done
314 * - column 2, 3, 4: we use the key to find the parent
315 *
316 * on disk refs (inline or keyed)
317 * ==============================
318 * backref type | shared | indirect | shared | indirect
319 * information | tree | tree | data | data
320 * --------------------+--------+----------+--------+----------
321 * parent logical | y | - | y | -
322 * key to resolve | - | - | - | y
323 * tree block logical | y | y | y | y
324 * root for resolving | - | y | y | y
325 *
326 * - column 1, 3: we've the parent -> done
327 * - column 2: we take the first key from the block to find the parent
e0c476b1 328 * (see add_missing_keys)
d5c88b73
JS
329 * - column 4: we use the key to find the parent
330 *
331 * additional information that's available but not required to find the parent
332 * block might help in merging entries to gain some speed.
333 */
00142756
JM
334static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
335 struct preftree *preftree, u64 root_id,
e0c476b1 336 const struct btrfs_key *key, int level, u64 parent,
3ec4d323
EN
337 u64 wanted_disk_byte, int count,
338 struct share_check *sc, gfp_t gfp_mask)
8da6d581 339{
e0c476b1 340 struct prelim_ref *ref;
8da6d581 341
48ec4736
LB
342 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
343 return 0;
344
b9e9a6cb 345 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
346 if (!ref)
347 return -ENOMEM;
348
349 ref->root_id = root_id;
7ac8b88e 350 if (key)
d5c88b73 351 ref->key_for_search = *key;
7ac8b88e 352 else
d5c88b73 353 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 354
3301958b 355 ref->inode_list = NULL;
8da6d581
JS
356 ref->level = level;
357 ref->count = count;
358 ref->parent = parent;
359 ref->wanted_disk_byte = wanted_disk_byte;
3ec4d323
EN
360 prelim_ref_insert(fs_info, preftree, ref, sc);
361 return extent_is_shared(sc);
8da6d581
JS
362}
363
86d5f994 364/* direct refs use root == 0, key == NULL */
00142756
JM
365static int add_direct_ref(const struct btrfs_fs_info *fs_info,
366 struct preftrees *preftrees, int level, u64 parent,
3ec4d323
EN
367 u64 wanted_disk_byte, int count,
368 struct share_check *sc, gfp_t gfp_mask)
86d5f994 369{
00142756 370 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
3ec4d323 371 parent, wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
372}
373
374/* indirect refs use parent == 0 */
00142756
JM
375static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
376 struct preftrees *preftrees, u64 root_id,
86d5f994 377 const struct btrfs_key *key, int level,
3ec4d323
EN
378 u64 wanted_disk_byte, int count,
379 struct share_check *sc, gfp_t gfp_mask)
86d5f994
EN
380{
381 struct preftree *tree = &preftrees->indirect;
382
383 if (!key)
384 tree = &preftrees->indirect_missing_keys;
00142756 385 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
3ec4d323 386 wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
387}
388
ed58f2e6 389static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
390{
391 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
392 struct rb_node *parent = NULL;
393 struct prelim_ref *ref = NULL;
394 struct prelim_ref target = {0};
395 int result;
396
397 target.parent = bytenr;
398
399 while (*p) {
400 parent = *p;
401 ref = rb_entry(parent, struct prelim_ref, rbnode);
402 result = prelim_ref_compare(ref, &target);
403
404 if (result < 0)
405 p = &(*p)->rb_left;
406 else if (result > 0)
407 p = &(*p)->rb_right;
408 else
409 return 1;
410 }
411 return 0;
412}
413
8da6d581 414static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
ed58f2e6 415 struct ulist *parents,
416 struct preftrees *preftrees, struct prelim_ref *ref,
44853868 417 int level, u64 time_seq, const u64 *extent_item_pos,
b25b0b87 418 bool ignore_offset)
8da6d581 419{
69bca40d
AB
420 int ret = 0;
421 int slot;
422 struct extent_buffer *eb;
423 struct btrfs_key key;
7ef81ac8 424 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 425 struct btrfs_file_extent_item *fi;
ed8c4913 426 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 427 u64 disk_byte;
7ef81ac8
JB
428 u64 wanted_disk_byte = ref->wanted_disk_byte;
429 u64 count = 0;
7ac8b88e 430 u64 data_offset;
8da6d581 431
69bca40d
AB
432 if (level != 0) {
433 eb = path->nodes[level];
434 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
435 if (ret < 0)
436 return ret;
8da6d581 437 return 0;
69bca40d 438 }
8da6d581
JS
439
440 /*
ed58f2e6 441 * 1. We normally enter this function with the path already pointing to
442 * the first item to check. But sometimes, we may enter it with
443 * slot == nritems.
444 * 2. We are searching for normal backref but bytenr of this leaf
445 * matches shared data backref
cfc0eed0 446 * 3. The leaf owner is not equal to the root we are searching
447 *
ed58f2e6 448 * For these cases, go to the next leaf before we continue.
8da6d581 449 */
ed58f2e6 450 eb = path->nodes[0];
451 if (path->slots[0] >= btrfs_header_nritems(eb) ||
cfc0eed0 452 is_shared_data_backref(preftrees, eb->start) ||
453 ref->root_id != btrfs_header_owner(eb)) {
de47c9d3 454 if (time_seq == SEQ_LAST)
21633fc6
QW
455 ret = btrfs_next_leaf(root, path);
456 else
457 ret = btrfs_next_old_leaf(root, path, time_seq);
458 }
8da6d581 459
b25b0b87 460 while (!ret && count < ref->count) {
8da6d581 461 eb = path->nodes[0];
69bca40d
AB
462 slot = path->slots[0];
463
464 btrfs_item_key_to_cpu(eb, &key, slot);
465
466 if (key.objectid != key_for_search->objectid ||
467 key.type != BTRFS_EXTENT_DATA_KEY)
468 break;
469
ed58f2e6 470 /*
471 * We are searching for normal backref but bytenr of this leaf
cfc0eed0 472 * matches shared data backref, OR
473 * the leaf owner is not equal to the root we are searching for
ed58f2e6 474 */
cfc0eed0 475 if (slot == 0 &&
476 (is_shared_data_backref(preftrees, eb->start) ||
477 ref->root_id != btrfs_header_owner(eb))) {
ed58f2e6 478 if (time_seq == SEQ_LAST)
479 ret = btrfs_next_leaf(root, path);
480 else
481 ret = btrfs_next_old_leaf(root, path, time_seq);
482 continue;
483 }
69bca40d
AB
484 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
485 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
7ac8b88e 486 data_offset = btrfs_file_extent_offset(eb, fi);
69bca40d
AB
487
488 if (disk_byte == wanted_disk_byte) {
489 eie = NULL;
ed8c4913 490 old = NULL;
7ac8b88e 491 if (ref->key_for_search.offset == key.offset - data_offset)
492 count++;
493 else
494 goto next;
69bca40d
AB
495 if (extent_item_pos) {
496 ret = check_extent_in_eb(&key, eb, fi,
497 *extent_item_pos,
c995ab3c 498 &eie, ignore_offset);
69bca40d
AB
499 if (ret < 0)
500 break;
501 }
ed8c4913
JB
502 if (ret > 0)
503 goto next;
4eb1f66d
TI
504 ret = ulist_add_merge_ptr(parents, eb->start,
505 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
506 if (ret < 0)
507 break;
508 if (!ret && extent_item_pos) {
509 while (old->next)
510 old = old->next;
511 old->next = eie;
69bca40d 512 }
f05c4746 513 eie = NULL;
8da6d581 514 }
ed8c4913 515next:
de47c9d3 516 if (time_seq == SEQ_LAST)
21633fc6
QW
517 ret = btrfs_next_item(root, path);
518 else
519 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
520 }
521
69bca40d
AB
522 if (ret > 0)
523 ret = 0;
f05c4746
WS
524 else if (ret < 0)
525 free_inode_elem_list(eie);
69bca40d 526 return ret;
8da6d581
JS
527}
528
529/*
530 * resolve an indirect backref in the form (root_id, key, level)
531 * to a logical address
532 */
e0c476b1
JM
533static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
534 struct btrfs_path *path, u64 time_seq,
ed58f2e6 535 struct preftrees *preftrees,
e0c476b1 536 struct prelim_ref *ref, struct ulist *parents,
b25b0b87 537 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 538{
8da6d581
JS
539 struct btrfs_root *root;
540 struct btrfs_key root_key;
8da6d581
JS
541 struct extent_buffer *eb;
542 int ret = 0;
543 int root_level;
544 int level = ref->level;
538f72cd 545 int index;
7ac8b88e 546 struct btrfs_key search_key = ref->key_for_search;
8da6d581 547
8da6d581
JS
548 root_key.objectid = ref->root_id;
549 root_key.type = BTRFS_ROOT_ITEM_KEY;
550 root_key.offset = (u64)-1;
538f72cd
WS
551
552 index = srcu_read_lock(&fs_info->subvol_srcu);
553
2d9e9776 554 root = btrfs_get_fs_root(fs_info, &root_key, false);
8da6d581 555 if (IS_ERR(root)) {
538f72cd 556 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581 557 ret = PTR_ERR(root);
9326f76f
JB
558 goto out_free;
559 }
560
f5ee5c9a 561 if (btrfs_is_testing(fs_info)) {
d9ee522b
JB
562 srcu_read_unlock(&fs_info->subvol_srcu, index);
563 ret = -ENOENT;
564 goto out;
565 }
566
9e351cc8
JB
567 if (path->search_commit_root)
568 root_level = btrfs_header_level(root->commit_root);
de47c9d3 569 else if (time_seq == SEQ_LAST)
21633fc6 570 root_level = btrfs_header_level(root->node);
9e351cc8
JB
571 else
572 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 573
538f72cd
WS
574 if (root_level + 1 == level) {
575 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581 576 goto out;
538f72cd 577 }
8da6d581 578
7ac8b88e 579 /*
580 * We can often find data backrefs with an offset that is too large
581 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
582 * subtracting a file's offset with the data offset of its
583 * corresponding extent data item. This can happen for example in the
584 * clone ioctl.
585 *
586 * So if we detect such case we set the search key's offset to zero to
587 * make sure we will find the matching file extent item at
588 * add_all_parents(), otherwise we will miss it because the offset
589 * taken form the backref is much larger then the offset of the file
590 * extent item. This can make us scan a very large number of file
591 * extent items, but at least it will not make us miss any.
592 *
593 * This is an ugly workaround for a behaviour that should have never
594 * existed, but it does and a fix for the clone ioctl would touch a lot
595 * of places, cause backwards incompatibility and would not fix the
596 * problem for extents cloned with older kernels.
597 */
598 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
599 search_key.offset >= LLONG_MAX)
600 search_key.offset = 0;
8da6d581 601 path->lowest_level = level;
de47c9d3 602 if (time_seq == SEQ_LAST)
7ac8b88e 603 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
21633fc6 604 else
7ac8b88e 605 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
538f72cd
WS
606
607 /* root node has been locked, we can release @subvol_srcu safely here */
608 srcu_read_unlock(&fs_info->subvol_srcu, index);
609
ab8d0fc4
JM
610 btrfs_debug(fs_info,
611 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
c1c9ff7c
GU
612 ref->root_id, level, ref->count, ret,
613 ref->key_for_search.objectid, ref->key_for_search.type,
614 ref->key_for_search.offset);
8da6d581
JS
615 if (ret < 0)
616 goto out;
617
618 eb = path->nodes[level];
9345457f 619 while (!eb) {
fae7f21c 620 if (WARN_ON(!level)) {
9345457f
JS
621 ret = 1;
622 goto out;
623 }
624 level--;
625 eb = path->nodes[level];
8da6d581
JS
626 }
627
ed58f2e6 628 ret = add_all_parents(root, path, parents, preftrees, ref, level,
b25b0b87 629 time_seq, extent_item_pos, ignore_offset);
8da6d581 630out:
00246528 631 btrfs_put_root(root);
9326f76f 632out_free:
da61d31a
JB
633 path->lowest_level = 0;
634 btrfs_release_path(path);
8da6d581
JS
635 return ret;
636}
637
4dae077a
JM
638static struct extent_inode_elem *
639unode_aux_to_inode_list(struct ulist_node *node)
640{
641 if (!node)
642 return NULL;
643 return (struct extent_inode_elem *)(uintptr_t)node->aux;
644}
645
8da6d581 646/*
52042d8e 647 * We maintain three separate rbtrees: one for direct refs, one for
86d5f994
EN
648 * indirect refs which have a key, and one for indirect refs which do not
649 * have a key. Each tree does merge on insertion.
650 *
651 * Once all of the references are located, we iterate over the tree of
652 * indirect refs with missing keys. An appropriate key is located and
653 * the ref is moved onto the tree for indirect refs. After all missing
654 * keys are thus located, we iterate over the indirect ref tree, resolve
655 * each reference, and then insert the resolved reference onto the
656 * direct tree (merging there too).
657 *
658 * New backrefs (i.e., for parent nodes) are added to the appropriate
659 * rbtree as they are encountered. The new backrefs are subsequently
660 * resolved as above.
8da6d581 661 */
e0c476b1
JM
662static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
663 struct btrfs_path *path, u64 time_seq,
86d5f994 664 struct preftrees *preftrees,
b25b0b87 665 const u64 *extent_item_pos,
c995ab3c 666 struct share_check *sc, bool ignore_offset)
8da6d581
JS
667{
668 int err;
669 int ret = 0;
8da6d581
JS
670 struct ulist *parents;
671 struct ulist_node *node;
cd1b413c 672 struct ulist_iterator uiter;
86d5f994 673 struct rb_node *rnode;
8da6d581
JS
674
675 parents = ulist_alloc(GFP_NOFS);
676 if (!parents)
677 return -ENOMEM;
678
679 /*
86d5f994
EN
680 * We could trade memory usage for performance here by iterating
681 * the tree, allocating new refs for each insertion, and then
682 * freeing the entire indirect tree when we're done. In some test
683 * cases, the tree can grow quite large (~200k objects).
8da6d581 684 */
ecf160b4 685 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
86d5f994
EN
686 struct prelim_ref *ref;
687
688 ref = rb_entry(rnode, struct prelim_ref, rbnode);
689 if (WARN(ref->parent,
690 "BUG: direct ref found in indirect tree")) {
691 ret = -EINVAL;
692 goto out;
693 }
694
ecf160b4 695 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
6c336b21 696 preftrees->indirect.count--;
86d5f994
EN
697
698 if (ref->count == 0) {
699 free_pref(ref);
8da6d581 700 continue;
86d5f994
EN
701 }
702
3ec4d323
EN
703 if (sc && sc->root_objectid &&
704 ref->root_id != sc->root_objectid) {
86d5f994 705 free_pref(ref);
dc046b10
JB
706 ret = BACKREF_FOUND_SHARED;
707 goto out;
708 }
ed58f2e6 709 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
710 ref, parents, extent_item_pos,
b25b0b87 711 ignore_offset);
95def2ed
WS
712 /*
713 * we can only tolerate ENOENT,otherwise,we should catch error
714 * and return directly.
715 */
716 if (err == -ENOENT) {
3ec4d323
EN
717 prelim_ref_insert(fs_info, &preftrees->direct, ref,
718 NULL);
8da6d581 719 continue;
95def2ed 720 } else if (err) {
86d5f994 721 free_pref(ref);
95def2ed
WS
722 ret = err;
723 goto out;
724 }
8da6d581
JS
725
726 /* we put the first parent into the ref at hand */
cd1b413c
JS
727 ULIST_ITER_INIT(&uiter);
728 node = ulist_next(parents, &uiter);
8da6d581 729 ref->parent = node ? node->val : 0;
4dae077a 730 ref->inode_list = unode_aux_to_inode_list(node);
8da6d581 731
86d5f994 732 /* Add a prelim_ref(s) for any other parent(s). */
cd1b413c 733 while ((node = ulist_next(parents, &uiter))) {
86d5f994
EN
734 struct prelim_ref *new_ref;
735
b9e9a6cb
WS
736 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
737 GFP_NOFS);
8da6d581 738 if (!new_ref) {
86d5f994 739 free_pref(ref);
8da6d581 740 ret = -ENOMEM;
e36902d4 741 goto out;
8da6d581
JS
742 }
743 memcpy(new_ref, ref, sizeof(*ref));
744 new_ref->parent = node->val;
4dae077a 745 new_ref->inode_list = unode_aux_to_inode_list(node);
3ec4d323
EN
746 prelim_ref_insert(fs_info, &preftrees->direct,
747 new_ref, NULL);
8da6d581 748 }
86d5f994 749
3ec4d323 750 /*
52042d8e 751 * Now it's a direct ref, put it in the direct tree. We must
3ec4d323
EN
752 * do this last because the ref could be merged/freed here.
753 */
754 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
86d5f994 755
8da6d581 756 ulist_reinit(parents);
9dd14fd6 757 cond_resched();
8da6d581 758 }
e36902d4 759out:
8da6d581
JS
760 ulist_free(parents);
761 return ret;
762}
763
d5c88b73
JS
764/*
765 * read tree blocks and add keys where required.
766 */
e0c476b1 767static int add_missing_keys(struct btrfs_fs_info *fs_info,
38e3eebf 768 struct preftrees *preftrees, bool lock)
d5c88b73 769{
e0c476b1 770 struct prelim_ref *ref;
d5c88b73 771 struct extent_buffer *eb;
86d5f994
EN
772 struct preftree *tree = &preftrees->indirect_missing_keys;
773 struct rb_node *node;
d5c88b73 774
ecf160b4 775 while ((node = rb_first_cached(&tree->root))) {
86d5f994 776 ref = rb_entry(node, struct prelim_ref, rbnode);
ecf160b4 777 rb_erase_cached(node, &tree->root);
86d5f994
EN
778
779 BUG_ON(ref->parent); /* should not be a direct ref */
780 BUG_ON(ref->key_for_search.type);
d5c88b73 781 BUG_ON(!ref->wanted_disk_byte);
86d5f994 782
581c1760
QW
783 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
784 ref->level - 1, NULL);
64c043de 785 if (IS_ERR(eb)) {
86d5f994 786 free_pref(ref);
64c043de
LB
787 return PTR_ERR(eb);
788 } else if (!extent_buffer_uptodate(eb)) {
86d5f994 789 free_pref(ref);
416bc658
JB
790 free_extent_buffer(eb);
791 return -EIO;
792 }
38e3eebf
JB
793 if (lock)
794 btrfs_tree_read_lock(eb);
d5c88b73
JS
795 if (btrfs_header_level(eb) == 0)
796 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
797 else
798 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
38e3eebf
JB
799 if (lock)
800 btrfs_tree_read_unlock(eb);
d5c88b73 801 free_extent_buffer(eb);
3ec4d323 802 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
9dd14fd6 803 cond_resched();
d5c88b73
JS
804 }
805 return 0;
806}
807
8da6d581
JS
808/*
809 * add all currently queued delayed refs from this head whose seq nr is
810 * smaller or equal that seq to the list
811 */
00142756
JM
812static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
813 struct btrfs_delayed_ref_head *head, u64 seq,
b25b0b87 814 struct preftrees *preftrees, struct share_check *sc)
8da6d581 815{
c6fc2454 816 struct btrfs_delayed_ref_node *node;
8da6d581 817 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
d5c88b73 818 struct btrfs_key key;
86d5f994 819 struct btrfs_key tmp_op_key;
0e0adbcf 820 struct rb_node *n;
01747e92 821 int count;
b1375d64 822 int ret = 0;
8da6d581 823
a6dbceaf 824 if (extent_op && extent_op->update_key)
86d5f994 825 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
8da6d581 826
d7df2c79 827 spin_lock(&head->lock);
e3d03965 828 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
0e0adbcf
JB
829 node = rb_entry(n, struct btrfs_delayed_ref_node,
830 ref_node);
8da6d581
JS
831 if (node->seq > seq)
832 continue;
833
834 switch (node->action) {
835 case BTRFS_ADD_DELAYED_EXTENT:
836 case BTRFS_UPDATE_DELAYED_HEAD:
837 WARN_ON(1);
838 continue;
839 case BTRFS_ADD_DELAYED_REF:
01747e92 840 count = node->ref_mod;
8da6d581
JS
841 break;
842 case BTRFS_DROP_DELAYED_REF:
01747e92 843 count = node->ref_mod * -1;
8da6d581
JS
844 break;
845 default:
290342f6 846 BUG();
8da6d581
JS
847 }
848 switch (node->type) {
849 case BTRFS_TREE_BLOCK_REF_KEY: {
86d5f994 850 /* NORMAL INDIRECT METADATA backref */
8da6d581
JS
851 struct btrfs_delayed_tree_ref *ref;
852
853 ref = btrfs_delayed_node_to_tree_ref(node);
00142756
JM
854 ret = add_indirect_ref(fs_info, preftrees, ref->root,
855 &tmp_op_key, ref->level + 1,
01747e92
EN
856 node->bytenr, count, sc,
857 GFP_ATOMIC);
8da6d581
JS
858 break;
859 }
860 case BTRFS_SHARED_BLOCK_REF_KEY: {
86d5f994 861 /* SHARED DIRECT METADATA backref */
8da6d581
JS
862 struct btrfs_delayed_tree_ref *ref;
863
864 ref = btrfs_delayed_node_to_tree_ref(node);
86d5f994 865
01747e92
EN
866 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
867 ref->parent, node->bytenr, count,
3ec4d323 868 sc, GFP_ATOMIC);
8da6d581
JS
869 break;
870 }
871 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 872 /* NORMAL INDIRECT DATA backref */
8da6d581 873 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
874 ref = btrfs_delayed_node_to_data_ref(node);
875
876 key.objectid = ref->objectid;
877 key.type = BTRFS_EXTENT_DATA_KEY;
878 key.offset = ref->offset;
dc046b10
JB
879
880 /*
881 * Found a inum that doesn't match our known inum, we
882 * know it's shared.
883 */
3ec4d323 884 if (sc && sc->inum && ref->objectid != sc->inum) {
dc046b10 885 ret = BACKREF_FOUND_SHARED;
3ec4d323 886 goto out;
dc046b10
JB
887 }
888
00142756 889 ret = add_indirect_ref(fs_info, preftrees, ref->root,
01747e92
EN
890 &key, 0, node->bytenr, count, sc,
891 GFP_ATOMIC);
8da6d581
JS
892 break;
893 }
894 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 895 /* SHARED DIRECT FULL backref */
8da6d581 896 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
897
898 ref = btrfs_delayed_node_to_data_ref(node);
86d5f994 899
01747e92
EN
900 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
901 node->bytenr, count, sc,
902 GFP_ATOMIC);
8da6d581
JS
903 break;
904 }
905 default:
906 WARN_ON(1);
907 }
3ec4d323
EN
908 /*
909 * We must ignore BACKREF_FOUND_SHARED until all delayed
910 * refs have been checked.
911 */
912 if (ret && (ret != BACKREF_FOUND_SHARED))
d7df2c79 913 break;
8da6d581 914 }
3ec4d323
EN
915 if (!ret)
916 ret = extent_is_shared(sc);
917out:
d7df2c79
JB
918 spin_unlock(&head->lock);
919 return ret;
8da6d581
JS
920}
921
922/*
923 * add all inline backrefs for bytenr to the list
3ec4d323
EN
924 *
925 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 926 */
00142756
JM
927static int add_inline_refs(const struct btrfs_fs_info *fs_info,
928 struct btrfs_path *path, u64 bytenr,
86d5f994 929 int *info_level, struct preftrees *preftrees,
b25b0b87 930 struct share_check *sc)
8da6d581 931{
b1375d64 932 int ret = 0;
8da6d581
JS
933 int slot;
934 struct extent_buffer *leaf;
935 struct btrfs_key key;
261c84b6 936 struct btrfs_key found_key;
8da6d581
JS
937 unsigned long ptr;
938 unsigned long end;
939 struct btrfs_extent_item *ei;
940 u64 flags;
941 u64 item_size;
942
943 /*
944 * enumerate all inline refs
945 */
946 leaf = path->nodes[0];
dadcaf78 947 slot = path->slots[0];
8da6d581
JS
948
949 item_size = btrfs_item_size_nr(leaf, slot);
950 BUG_ON(item_size < sizeof(*ei));
951
952 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
953 flags = btrfs_extent_flags(leaf, ei);
261c84b6 954 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
955
956 ptr = (unsigned long)(ei + 1);
957 end = (unsigned long)ei + item_size;
958
261c84b6
JB
959 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
960 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 961 struct btrfs_tree_block_info *info;
8da6d581
JS
962
963 info = (struct btrfs_tree_block_info *)ptr;
964 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
965 ptr += sizeof(struct btrfs_tree_block_info);
966 BUG_ON(ptr > end);
261c84b6
JB
967 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
968 *info_level = found_key.offset;
8da6d581
JS
969 } else {
970 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
971 }
972
973 while (ptr < end) {
974 struct btrfs_extent_inline_ref *iref;
975 u64 offset;
976 int type;
977
978 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
979 type = btrfs_get_extent_inline_ref_type(leaf, iref,
980 BTRFS_REF_TYPE_ANY);
981 if (type == BTRFS_REF_TYPE_INVALID)
af431dcb 982 return -EUCLEAN;
3de28d57 983
8da6d581
JS
984 offset = btrfs_extent_inline_ref_offset(leaf, iref);
985
986 switch (type) {
987 case BTRFS_SHARED_BLOCK_REF_KEY:
00142756
JM
988 ret = add_direct_ref(fs_info, preftrees,
989 *info_level + 1, offset,
3ec4d323 990 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
991 break;
992 case BTRFS_SHARED_DATA_REF_KEY: {
993 struct btrfs_shared_data_ref *sdref;
994 int count;
995
996 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
997 count = btrfs_shared_data_ref_count(leaf, sdref);
86d5f994 998
00142756 999 ret = add_direct_ref(fs_info, preftrees, 0, offset,
3ec4d323 1000 bytenr, count, sc, GFP_NOFS);
8da6d581
JS
1001 break;
1002 }
1003 case BTRFS_TREE_BLOCK_REF_KEY:
00142756
JM
1004 ret = add_indirect_ref(fs_info, preftrees, offset,
1005 NULL, *info_level + 1,
3ec4d323 1006 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1007 break;
1008 case BTRFS_EXTENT_DATA_REF_KEY: {
1009 struct btrfs_extent_data_ref *dref;
1010 int count;
1011 u64 root;
1012
1013 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1014 count = btrfs_extent_data_ref_count(leaf, dref);
1015 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1016 dref);
1017 key.type = BTRFS_EXTENT_DATA_KEY;
1018 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1019
3ec4d323 1020 if (sc && sc->inum && key.objectid != sc->inum) {
dc046b10
JB
1021 ret = BACKREF_FOUND_SHARED;
1022 break;
1023 }
1024
8da6d581 1025 root = btrfs_extent_data_ref_root(leaf, dref);
86d5f994 1026
00142756
JM
1027 ret = add_indirect_ref(fs_info, preftrees, root,
1028 &key, 0, bytenr, count,
3ec4d323 1029 sc, GFP_NOFS);
8da6d581
JS
1030 break;
1031 }
1032 default:
1033 WARN_ON(1);
1034 }
1149ab6b
WS
1035 if (ret)
1036 return ret;
8da6d581
JS
1037 ptr += btrfs_extent_inline_ref_size(type);
1038 }
1039
1040 return 0;
1041}
1042
1043/*
1044 * add all non-inline backrefs for bytenr to the list
3ec4d323
EN
1045 *
1046 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 1047 */
e0c476b1
JM
1048static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1049 struct btrfs_path *path, u64 bytenr,
86d5f994 1050 int info_level, struct preftrees *preftrees,
3ec4d323 1051 struct share_check *sc)
8da6d581
JS
1052{
1053 struct btrfs_root *extent_root = fs_info->extent_root;
1054 int ret;
1055 int slot;
1056 struct extent_buffer *leaf;
1057 struct btrfs_key key;
1058
1059 while (1) {
1060 ret = btrfs_next_item(extent_root, path);
1061 if (ret < 0)
1062 break;
1063 if (ret) {
1064 ret = 0;
1065 break;
1066 }
1067
1068 slot = path->slots[0];
1069 leaf = path->nodes[0];
1070 btrfs_item_key_to_cpu(leaf, &key, slot);
1071
1072 if (key.objectid != bytenr)
1073 break;
1074 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1075 continue;
1076 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1077 break;
1078
1079 switch (key.type) {
1080 case BTRFS_SHARED_BLOCK_REF_KEY:
86d5f994 1081 /* SHARED DIRECT METADATA backref */
00142756
JM
1082 ret = add_direct_ref(fs_info, preftrees,
1083 info_level + 1, key.offset,
3ec4d323 1084 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1085 break;
1086 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 1087 /* SHARED DIRECT FULL backref */
8da6d581
JS
1088 struct btrfs_shared_data_ref *sdref;
1089 int count;
1090
1091 sdref = btrfs_item_ptr(leaf, slot,
1092 struct btrfs_shared_data_ref);
1093 count = btrfs_shared_data_ref_count(leaf, sdref);
00142756
JM
1094 ret = add_direct_ref(fs_info, preftrees, 0,
1095 key.offset, bytenr, count,
3ec4d323 1096 sc, GFP_NOFS);
8da6d581
JS
1097 break;
1098 }
1099 case BTRFS_TREE_BLOCK_REF_KEY:
86d5f994 1100 /* NORMAL INDIRECT METADATA backref */
00142756
JM
1101 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1102 NULL, info_level + 1, bytenr,
3ec4d323 1103 1, NULL, GFP_NOFS);
8da6d581
JS
1104 break;
1105 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 1106 /* NORMAL INDIRECT DATA backref */
8da6d581
JS
1107 struct btrfs_extent_data_ref *dref;
1108 int count;
1109 u64 root;
1110
1111 dref = btrfs_item_ptr(leaf, slot,
1112 struct btrfs_extent_data_ref);
1113 count = btrfs_extent_data_ref_count(leaf, dref);
1114 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1115 dref);
1116 key.type = BTRFS_EXTENT_DATA_KEY;
1117 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1118
3ec4d323 1119 if (sc && sc->inum && key.objectid != sc->inum) {
dc046b10
JB
1120 ret = BACKREF_FOUND_SHARED;
1121 break;
1122 }
1123
8da6d581 1124 root = btrfs_extent_data_ref_root(leaf, dref);
00142756
JM
1125 ret = add_indirect_ref(fs_info, preftrees, root,
1126 &key, 0, bytenr, count,
3ec4d323 1127 sc, GFP_NOFS);
8da6d581
JS
1128 break;
1129 }
1130 default:
1131 WARN_ON(1);
1132 }
1149ab6b
WS
1133 if (ret)
1134 return ret;
1135
8da6d581
JS
1136 }
1137
1138 return ret;
1139}
1140
1141/*
1142 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1143 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1144 * indirect refs to their parent bytenr.
1145 * When roots are found, they're added to the roots list
1146 *
de47c9d3 1147 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
21633fc6
QW
1148 * much like trans == NULL case, the difference only lies in it will not
1149 * commit root.
1150 * The special case is for qgroup to search roots in commit_transaction().
1151 *
3ec4d323
EN
1152 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1153 * shared extent is detected.
1154 *
1155 * Otherwise this returns 0 for success and <0 for an error.
1156 *
c995ab3c
ZB
1157 * If ignore_offset is set to false, only extent refs whose offsets match
1158 * extent_item_pos are returned. If true, every extent ref is returned
1159 * and extent_item_pos is ignored.
1160 *
8da6d581
JS
1161 * FIXME some caching might speed things up
1162 */
1163static int find_parent_nodes(struct btrfs_trans_handle *trans,
1164 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1165 u64 time_seq, struct ulist *refs,
dc046b10 1166 struct ulist *roots, const u64 *extent_item_pos,
c995ab3c 1167 struct share_check *sc, bool ignore_offset)
8da6d581
JS
1168{
1169 struct btrfs_key key;
1170 struct btrfs_path *path;
8da6d581 1171 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 1172 struct btrfs_delayed_ref_head *head;
8da6d581
JS
1173 int info_level = 0;
1174 int ret;
e0c476b1 1175 struct prelim_ref *ref;
86d5f994 1176 struct rb_node *node;
f05c4746 1177 struct extent_inode_elem *eie = NULL;
86d5f994
EN
1178 struct preftrees preftrees = {
1179 .direct = PREFTREE_INIT,
1180 .indirect = PREFTREE_INIT,
1181 .indirect_missing_keys = PREFTREE_INIT
1182 };
8da6d581
JS
1183
1184 key.objectid = bytenr;
8da6d581 1185 key.offset = (u64)-1;
261c84b6
JB
1186 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1187 key.type = BTRFS_METADATA_ITEM_KEY;
1188 else
1189 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
1190
1191 path = btrfs_alloc_path();
1192 if (!path)
1193 return -ENOMEM;
e84752d4 1194 if (!trans) {
da61d31a 1195 path->search_commit_root = 1;
e84752d4
WS
1196 path->skip_locking = 1;
1197 }
8da6d581 1198
de47c9d3 1199 if (time_seq == SEQ_LAST)
21633fc6
QW
1200 path->skip_locking = 1;
1201
8da6d581
JS
1202 /*
1203 * grab both a lock on the path and a lock on the delayed ref head.
1204 * We need both to get a consistent picture of how the refs look
1205 * at a specified point in time
1206 */
1207again:
d3b01064
LZ
1208 head = NULL;
1209
8da6d581
JS
1210 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1211 if (ret < 0)
1212 goto out;
1213 BUG_ON(ret == 0);
1214
faa2dbf0 1215#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
21633fc6 1216 if (trans && likely(trans->type != __TRANS_DUMMY) &&
de47c9d3 1217 time_seq != SEQ_LAST) {
faa2dbf0 1218#else
de47c9d3 1219 if (trans && time_seq != SEQ_LAST) {
faa2dbf0 1220#endif
7a3ae2f8
JS
1221 /*
1222 * look if there are updates for this ref queued and lock the
1223 * head
1224 */
1225 delayed_refs = &trans->transaction->delayed_refs;
1226 spin_lock(&delayed_refs->lock);
f72ad18e 1227 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7a3ae2f8
JS
1228 if (head) {
1229 if (!mutex_trylock(&head->mutex)) {
d278850e 1230 refcount_inc(&head->refs);
7a3ae2f8
JS
1231 spin_unlock(&delayed_refs->lock);
1232
1233 btrfs_release_path(path);
1234
1235 /*
1236 * Mutex was contended, block until it's
1237 * released and try again
1238 */
1239 mutex_lock(&head->mutex);
1240 mutex_unlock(&head->mutex);
d278850e 1241 btrfs_put_delayed_ref_head(head);
7a3ae2f8
JS
1242 goto again;
1243 }
d7df2c79 1244 spin_unlock(&delayed_refs->lock);
00142756 1245 ret = add_delayed_refs(fs_info, head, time_seq,
b25b0b87 1246 &preftrees, sc);
155725c9 1247 mutex_unlock(&head->mutex);
d7df2c79 1248 if (ret)
7a3ae2f8 1249 goto out;
d7df2c79
JB
1250 } else {
1251 spin_unlock(&delayed_refs->lock);
d3b01064 1252 }
8da6d581 1253 }
8da6d581
JS
1254
1255 if (path->slots[0]) {
1256 struct extent_buffer *leaf;
1257 int slot;
1258
dadcaf78 1259 path->slots[0]--;
8da6d581 1260 leaf = path->nodes[0];
dadcaf78 1261 slot = path->slots[0];
8da6d581
JS
1262 btrfs_item_key_to_cpu(leaf, &key, slot);
1263 if (key.objectid == bytenr &&
261c84b6
JB
1264 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1265 key.type == BTRFS_METADATA_ITEM_KEY)) {
00142756 1266 ret = add_inline_refs(fs_info, path, bytenr,
b25b0b87 1267 &info_level, &preftrees, sc);
8da6d581
JS
1268 if (ret)
1269 goto out;
e0c476b1 1270 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
3ec4d323 1271 &preftrees, sc);
8da6d581
JS
1272 if (ret)
1273 goto out;
1274 }
1275 }
8da6d581 1276
86d5f994 1277 btrfs_release_path(path);
8da6d581 1278
38e3eebf 1279 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
d5c88b73
JS
1280 if (ret)
1281 goto out;
1282
ecf160b4 1283 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
8da6d581 1284
86d5f994 1285 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
b25b0b87 1286 extent_item_pos, sc, ignore_offset);
8da6d581
JS
1287 if (ret)
1288 goto out;
1289
ecf160b4 1290 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
8da6d581 1291
86d5f994
EN
1292 /*
1293 * This walks the tree of merged and resolved refs. Tree blocks are
1294 * read in as needed. Unique entries are added to the ulist, and
1295 * the list of found roots is updated.
1296 *
1297 * We release the entire tree in one go before returning.
1298 */
ecf160b4 1299 node = rb_first_cached(&preftrees.direct.root);
86d5f994
EN
1300 while (node) {
1301 ref = rb_entry(node, struct prelim_ref, rbnode);
1302 node = rb_next(&ref->rbnode);
c8195a7b
ZB
1303 /*
1304 * ref->count < 0 can happen here if there are delayed
1305 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1306 * prelim_ref_insert() relies on this when merging
1307 * identical refs to keep the overall count correct.
1308 * prelim_ref_insert() will merge only those refs
1309 * which compare identically. Any refs having
1310 * e.g. different offsets would not be merged,
1311 * and would retain their original ref->count < 0.
1312 */
98cfee21 1313 if (roots && ref->count && ref->root_id && ref->parent == 0) {
3ec4d323
EN
1314 if (sc && sc->root_objectid &&
1315 ref->root_id != sc->root_objectid) {
dc046b10
JB
1316 ret = BACKREF_FOUND_SHARED;
1317 goto out;
1318 }
1319
8da6d581
JS
1320 /* no parent == root of tree */
1321 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1322 if (ret < 0)
1323 goto out;
8da6d581
JS
1324 }
1325 if (ref->count && ref->parent) {
8a56457f
JB
1326 if (extent_item_pos && !ref->inode_list &&
1327 ref->level == 0) {
976b1908 1328 struct extent_buffer *eb;
707e8a07 1329
581c1760
QW
1330 eb = read_tree_block(fs_info, ref->parent, 0,
1331 ref->level, NULL);
64c043de
LB
1332 if (IS_ERR(eb)) {
1333 ret = PTR_ERR(eb);
1334 goto out;
1335 } else if (!extent_buffer_uptodate(eb)) {
416bc658 1336 free_extent_buffer(eb);
c16c2e2e
WS
1337 ret = -EIO;
1338 goto out;
416bc658 1339 }
38e3eebf
JB
1340
1341 if (!path->skip_locking) {
1342 btrfs_tree_read_lock(eb);
1343 btrfs_set_lock_blocking_read(eb);
1344 }
976b1908 1345 ret = find_extent_in_eb(eb, bytenr,
c995ab3c 1346 *extent_item_pos, &eie, ignore_offset);
38e3eebf
JB
1347 if (!path->skip_locking)
1348 btrfs_tree_read_unlock_blocking(eb);
976b1908 1349 free_extent_buffer(eb);
f5929cd8
FDBM
1350 if (ret < 0)
1351 goto out;
1352 ref->inode_list = eie;
976b1908 1353 }
4eb1f66d
TI
1354 ret = ulist_add_merge_ptr(refs, ref->parent,
1355 ref->inode_list,
1356 (void **)&eie, GFP_NOFS);
f1723939
WS
1357 if (ret < 0)
1358 goto out;
3301958b
JS
1359 if (!ret && extent_item_pos) {
1360 /*
1361 * we've recorded that parent, so we must extend
1362 * its inode list here
1363 */
1364 BUG_ON(!eie);
1365 while (eie->next)
1366 eie = eie->next;
1367 eie->next = ref->inode_list;
1368 }
f05c4746 1369 eie = NULL;
8da6d581 1370 }
9dd14fd6 1371 cond_resched();
8da6d581
JS
1372 }
1373
1374out:
8da6d581 1375 btrfs_free_path(path);
86d5f994
EN
1376
1377 prelim_release(&preftrees.direct);
1378 prelim_release(&preftrees.indirect);
1379 prelim_release(&preftrees.indirect_missing_keys);
1380
f05c4746
WS
1381 if (ret < 0)
1382 free_inode_elem_list(eie);
8da6d581
JS
1383 return ret;
1384}
1385
976b1908
JS
1386static void free_leaf_list(struct ulist *blocks)
1387{
1388 struct ulist_node *node = NULL;
1389 struct extent_inode_elem *eie;
976b1908
JS
1390 struct ulist_iterator uiter;
1391
1392 ULIST_ITER_INIT(&uiter);
1393 while ((node = ulist_next(blocks, &uiter))) {
1394 if (!node->aux)
1395 continue;
4dae077a 1396 eie = unode_aux_to_inode_list(node);
f05c4746 1397 free_inode_elem_list(eie);
976b1908
JS
1398 node->aux = 0;
1399 }
1400
1401 ulist_free(blocks);
1402}
1403
8da6d581
JS
1404/*
1405 * Finds all leafs with a reference to the specified combination of bytenr and
1406 * offset. key_list_head will point to a list of corresponding keys (caller must
1407 * free each list element). The leafs will be stored in the leafs ulist, which
1408 * must be freed with ulist_free.
1409 *
1410 * returns 0 on success, <0 on error
1411 */
19b546d7
QW
1412int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1413 struct btrfs_fs_info *fs_info, u64 bytenr,
1414 u64 time_seq, struct ulist **leafs,
1415 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 1416{
8da6d581
JS
1417 int ret;
1418
8da6d581 1419 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1420 if (!*leafs)
8da6d581 1421 return -ENOMEM;
8da6d581 1422
afce772e 1423 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1424 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
8da6d581 1425 if (ret < 0 && ret != -ENOENT) {
976b1908 1426 free_leaf_list(*leafs);
8da6d581
JS
1427 return ret;
1428 }
1429
1430 return 0;
1431}
1432
1433/*
1434 * walk all backrefs for a given extent to find all roots that reference this
1435 * extent. Walking a backref means finding all extents that reference this
1436 * extent and in turn walk the backrefs of those, too. Naturally this is a
1437 * recursive process, but here it is implemented in an iterative fashion: We
1438 * find all referencing extents for the extent in question and put them on a
1439 * list. In turn, we find all referencing extents for those, further appending
1440 * to the list. The way we iterate the list allows adding more elements after
1441 * the current while iterating. The process stops when we reach the end of the
1442 * list. Found roots are added to the roots list.
1443 *
1444 * returns 0 on success, < 0 on error.
1445 */
e0c476b1
JM
1446static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1447 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1448 u64 time_seq, struct ulist **roots,
1449 bool ignore_offset)
8da6d581
JS
1450{
1451 struct ulist *tmp;
1452 struct ulist_node *node = NULL;
cd1b413c 1453 struct ulist_iterator uiter;
8da6d581
JS
1454 int ret;
1455
1456 tmp = ulist_alloc(GFP_NOFS);
1457 if (!tmp)
1458 return -ENOMEM;
1459 *roots = ulist_alloc(GFP_NOFS);
1460 if (!*roots) {
1461 ulist_free(tmp);
1462 return -ENOMEM;
1463 }
1464
cd1b413c 1465 ULIST_ITER_INIT(&uiter);
8da6d581 1466 while (1) {
afce772e 1467 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1468 tmp, *roots, NULL, NULL, ignore_offset);
8da6d581
JS
1469 if (ret < 0 && ret != -ENOENT) {
1470 ulist_free(tmp);
1471 ulist_free(*roots);
1472 return ret;
1473 }
cd1b413c 1474 node = ulist_next(tmp, &uiter);
8da6d581
JS
1475 if (!node)
1476 break;
1477 bytenr = node->val;
bca1a290 1478 cond_resched();
8da6d581
JS
1479 }
1480
1481 ulist_free(tmp);
1482 return 0;
1483}
1484
9e351cc8
JB
1485int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1486 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1487 u64 time_seq, struct ulist **roots,
1488 bool ignore_offset)
9e351cc8
JB
1489{
1490 int ret;
1491
1492 if (!trans)
1493 down_read(&fs_info->commit_root_sem);
e0c476b1 1494 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
c995ab3c 1495 time_seq, roots, ignore_offset);
9e351cc8
JB
1496 if (!trans)
1497 up_read(&fs_info->commit_root_sem);
1498 return ret;
1499}
1500
2c2ed5aa
MF
1501/**
1502 * btrfs_check_shared - tell us whether an extent is shared
1503 *
2c2ed5aa
MF
1504 * btrfs_check_shared uses the backref walking code but will short
1505 * circuit as soon as it finds a root or inode that doesn't match the
1506 * one passed in. This provides a significant performance benefit for
1507 * callers (such as fiemap) which want to know whether the extent is
1508 * shared but do not need a ref count.
1509 *
03628cdb
FM
1510 * This attempts to attach to the running transaction in order to account for
1511 * delayed refs, but continues on even when no running transaction exists.
bb739cf0 1512 *
2c2ed5aa
MF
1513 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1514 */
5911c8fe
DS
1515int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1516 struct ulist *roots, struct ulist *tmp)
dc046b10 1517{
bb739cf0
EN
1518 struct btrfs_fs_info *fs_info = root->fs_info;
1519 struct btrfs_trans_handle *trans;
dc046b10
JB
1520 struct ulist_iterator uiter;
1521 struct ulist_node *node;
3284da7b 1522 struct seq_list elem = SEQ_LIST_INIT(elem);
dc046b10 1523 int ret = 0;
3ec4d323 1524 struct share_check shared = {
4fd786e6 1525 .root_objectid = root->root_key.objectid,
3ec4d323
EN
1526 .inum = inum,
1527 .share_count = 0,
1528 };
dc046b10 1529
5911c8fe
DS
1530 ulist_init(roots);
1531 ulist_init(tmp);
dc046b10 1532
a6d155d2 1533 trans = btrfs_join_transaction_nostart(root);
bb739cf0 1534 if (IS_ERR(trans)) {
03628cdb
FM
1535 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1536 ret = PTR_ERR(trans);
1537 goto out;
1538 }
bb739cf0 1539 trans = NULL;
dc046b10 1540 down_read(&fs_info->commit_root_sem);
bb739cf0
EN
1541 } else {
1542 btrfs_get_tree_mod_seq(fs_info, &elem);
1543 }
1544
dc046b10
JB
1545 ULIST_ITER_INIT(&uiter);
1546 while (1) {
1547 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
c995ab3c 1548 roots, NULL, &shared, false);
dc046b10 1549 if (ret == BACKREF_FOUND_SHARED) {
2c2ed5aa 1550 /* this is the only condition under which we return 1 */
dc046b10
JB
1551 ret = 1;
1552 break;
1553 }
1554 if (ret < 0 && ret != -ENOENT)
1555 break;
2c2ed5aa 1556 ret = 0;
dc046b10
JB
1557 node = ulist_next(tmp, &uiter);
1558 if (!node)
1559 break;
1560 bytenr = node->val;
18bf591b 1561 shared.share_count = 0;
dc046b10
JB
1562 cond_resched();
1563 }
bb739cf0
EN
1564
1565 if (trans) {
dc046b10 1566 btrfs_put_tree_mod_seq(fs_info, &elem);
bb739cf0
EN
1567 btrfs_end_transaction(trans);
1568 } else {
dc046b10 1569 up_read(&fs_info->commit_root_sem);
bb739cf0 1570 }
03628cdb 1571out:
5911c8fe
DS
1572 ulist_release(roots);
1573 ulist_release(tmp);
dc046b10
JB
1574 return ret;
1575}
1576
f186373f
MF
1577int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1578 u64 start_off, struct btrfs_path *path,
1579 struct btrfs_inode_extref **ret_extref,
1580 u64 *found_off)
1581{
1582 int ret, slot;
1583 struct btrfs_key key;
1584 struct btrfs_key found_key;
1585 struct btrfs_inode_extref *extref;
73980bec 1586 const struct extent_buffer *leaf;
f186373f
MF
1587 unsigned long ptr;
1588
1589 key.objectid = inode_objectid;
962a298f 1590 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
1591 key.offset = start_off;
1592
1593 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1594 if (ret < 0)
1595 return ret;
1596
1597 while (1) {
1598 leaf = path->nodes[0];
1599 slot = path->slots[0];
1600 if (slot >= btrfs_header_nritems(leaf)) {
1601 /*
1602 * If the item at offset is not found,
1603 * btrfs_search_slot will point us to the slot
1604 * where it should be inserted. In our case
1605 * that will be the slot directly before the
1606 * next INODE_REF_KEY_V2 item. In the case
1607 * that we're pointing to the last slot in a
1608 * leaf, we must move one leaf over.
1609 */
1610 ret = btrfs_next_leaf(root, path);
1611 if (ret) {
1612 if (ret >= 1)
1613 ret = -ENOENT;
1614 break;
1615 }
1616 continue;
1617 }
1618
1619 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1620
1621 /*
1622 * Check that we're still looking at an extended ref key for
1623 * this particular objectid. If we have different
1624 * objectid or type then there are no more to be found
1625 * in the tree and we can exit.
1626 */
1627 ret = -ENOENT;
1628 if (found_key.objectid != inode_objectid)
1629 break;
962a298f 1630 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
1631 break;
1632
1633 ret = 0;
1634 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1635 extref = (struct btrfs_inode_extref *)ptr;
1636 *ret_extref = extref;
1637 if (found_off)
1638 *found_off = found_key.offset;
1639 break;
1640 }
1641
1642 return ret;
1643}
1644
48a3b636
ES
1645/*
1646 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1647 * Elements of the path are separated by '/' and the path is guaranteed to be
1648 * 0-terminated. the path is only given within the current file system.
1649 * Therefore, it never starts with a '/'. the caller is responsible to provide
1650 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1651 * the start point of the resulting string is returned. this pointer is within
1652 * dest, normally.
1653 * in case the path buffer would overflow, the pointer is decremented further
1654 * as if output was written to the buffer, though no more output is actually
1655 * generated. that way, the caller can determine how much space would be
1656 * required for the path to fit into the buffer. in that case, the returned
1657 * value will be smaller than dest. callers must check this!
1658 */
96b5bd77
JS
1659char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1660 u32 name_len, unsigned long name_off,
1661 struct extent_buffer *eb_in, u64 parent,
1662 char *dest, u32 size)
a542ad1b 1663{
a542ad1b
JS
1664 int slot;
1665 u64 next_inum;
1666 int ret;
661bec6b 1667 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1668 struct extent_buffer *eb = eb_in;
1669 struct btrfs_key found_key;
b916a59a 1670 int leave_spinning = path->leave_spinning;
d24bec3a 1671 struct btrfs_inode_ref *iref;
a542ad1b
JS
1672
1673 if (bytes_left >= 0)
1674 dest[bytes_left] = '\0';
1675
b916a59a 1676 path->leave_spinning = 1;
a542ad1b 1677 while (1) {
d24bec3a 1678 bytes_left -= name_len;
a542ad1b
JS
1679 if (bytes_left >= 0)
1680 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1681 name_off, name_len);
b916a59a 1682 if (eb != eb_in) {
0c0fe3b0
FM
1683 if (!path->skip_locking)
1684 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1685 free_extent_buffer(eb);
b916a59a 1686 }
c234a24d
DS
1687 ret = btrfs_find_item(fs_root, path, parent, 0,
1688 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
1689 if (ret > 0)
1690 ret = -ENOENT;
a542ad1b
JS
1691 if (ret)
1692 break;
d24bec3a 1693
a542ad1b
JS
1694 next_inum = found_key.offset;
1695
1696 /* regular exit ahead */
1697 if (parent == next_inum)
1698 break;
1699
1700 slot = path->slots[0];
1701 eb = path->nodes[0];
1702 /* make sure we can use eb after releasing the path */
b916a59a 1703 if (eb != eb_in) {
0c0fe3b0 1704 if (!path->skip_locking)
300aa896 1705 btrfs_set_lock_blocking_read(eb);
0c0fe3b0
FM
1706 path->nodes[0] = NULL;
1707 path->locks[0] = 0;
b916a59a 1708 }
a542ad1b 1709 btrfs_release_path(path);
a542ad1b 1710 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1711
1712 name_len = btrfs_inode_ref_name_len(eb, iref);
1713 name_off = (unsigned long)(iref + 1);
1714
a542ad1b
JS
1715 parent = next_inum;
1716 --bytes_left;
1717 if (bytes_left >= 0)
1718 dest[bytes_left] = '/';
1719 }
1720
1721 btrfs_release_path(path);
b916a59a 1722 path->leave_spinning = leave_spinning;
a542ad1b
JS
1723
1724 if (ret)
1725 return ERR_PTR(ret);
1726
1727 return dest + bytes_left;
1728}
1729
1730/*
1731 * this makes the path point to (logical EXTENT_ITEM *)
1732 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1733 * tree blocks and <0 on error.
1734 */
1735int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1736 struct btrfs_path *path, struct btrfs_key *found_key,
1737 u64 *flags_ret)
a542ad1b
JS
1738{
1739 int ret;
1740 u64 flags;
261c84b6 1741 u64 size = 0;
a542ad1b 1742 u32 item_size;
73980bec 1743 const struct extent_buffer *eb;
a542ad1b
JS
1744 struct btrfs_extent_item *ei;
1745 struct btrfs_key key;
1746
261c84b6
JB
1747 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1748 key.type = BTRFS_METADATA_ITEM_KEY;
1749 else
1750 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1751 key.objectid = logical;
1752 key.offset = (u64)-1;
1753
1754 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1755 if (ret < 0)
1756 return ret;
a542ad1b 1757
850a8cdf
WS
1758 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1759 if (ret) {
1760 if (ret > 0)
1761 ret = -ENOENT;
1762 return ret;
580f0a67 1763 }
850a8cdf 1764 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 1765 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
da17066c 1766 size = fs_info->nodesize;
261c84b6
JB
1767 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1768 size = found_key->offset;
1769
580f0a67 1770 if (found_key->objectid > logical ||
261c84b6 1771 found_key->objectid + size <= logical) {
ab8d0fc4
JM
1772 btrfs_debug(fs_info,
1773 "logical %llu is not within any extent", logical);
a542ad1b 1774 return -ENOENT;
4692cf58 1775 }
a542ad1b
JS
1776
1777 eb = path->nodes[0];
1778 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1779 BUG_ON(item_size < sizeof(*ei));
1780
1781 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1782 flags = btrfs_extent_flags(eb, ei);
1783
ab8d0fc4
JM
1784 btrfs_debug(fs_info,
1785 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
c1c9ff7c
GU
1786 logical, logical - found_key->objectid, found_key->objectid,
1787 found_key->offset, flags, item_size);
69917e43
LB
1788
1789 WARN_ON(!flags_ret);
1790 if (flags_ret) {
1791 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1792 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1793 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1794 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1795 else
290342f6 1796 BUG();
69917e43
LB
1797 return 0;
1798 }
a542ad1b
JS
1799
1800 return -EIO;
1801}
1802
1803/*
1804 * helper function to iterate extent inline refs. ptr must point to a 0 value
1805 * for the first call and may be modified. it is used to track state.
1806 * if more refs exist, 0 is returned and the next call to
e0c476b1 1807 * get_extent_inline_ref must pass the modified ptr parameter to get the
a542ad1b
JS
1808 * next ref. after the last ref was processed, 1 is returned.
1809 * returns <0 on error
1810 */
e0c476b1
JM
1811static int get_extent_inline_ref(unsigned long *ptr,
1812 const struct extent_buffer *eb,
1813 const struct btrfs_key *key,
1814 const struct btrfs_extent_item *ei,
1815 u32 item_size,
1816 struct btrfs_extent_inline_ref **out_eiref,
1817 int *out_type)
a542ad1b
JS
1818{
1819 unsigned long end;
1820 u64 flags;
1821 struct btrfs_tree_block_info *info;
1822
1823 if (!*ptr) {
1824 /* first call */
1825 flags = btrfs_extent_flags(eb, ei);
1826 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
1827 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1828 /* a skinny metadata extent */
1829 *out_eiref =
1830 (struct btrfs_extent_inline_ref *)(ei + 1);
1831 } else {
1832 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1833 info = (struct btrfs_tree_block_info *)(ei + 1);
1834 *out_eiref =
1835 (struct btrfs_extent_inline_ref *)(info + 1);
1836 }
a542ad1b
JS
1837 } else {
1838 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1839 }
1840 *ptr = (unsigned long)*out_eiref;
cd857dd6 1841 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
1842 return -ENOENT;
1843 }
1844
1845 end = (unsigned long)ei + item_size;
6eda71d0 1846 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
3de28d57
LB
1847 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1848 BTRFS_REF_TYPE_ANY);
1849 if (*out_type == BTRFS_REF_TYPE_INVALID)
af431dcb 1850 return -EUCLEAN;
a542ad1b
JS
1851
1852 *ptr += btrfs_extent_inline_ref_size(*out_type);
1853 WARN_ON(*ptr > end);
1854 if (*ptr == end)
1855 return 1; /* last */
1856
1857 return 0;
1858}
1859
1860/*
1861 * reads the tree block backref for an extent. tree level and root are returned
1862 * through out_level and out_root. ptr must point to a 0 value for the first
e0c476b1 1863 * call and may be modified (see get_extent_inline_ref comment).
a542ad1b
JS
1864 * returns 0 if data was provided, 1 if there was no more data to provide or
1865 * <0 on error.
1866 */
1867int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
1868 struct btrfs_key *key, struct btrfs_extent_item *ei,
1869 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
1870{
1871 int ret;
1872 int type;
a542ad1b
JS
1873 struct btrfs_extent_inline_ref *eiref;
1874
1875 if (*ptr == (unsigned long)-1)
1876 return 1;
1877
1878 while (1) {
e0c476b1 1879 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
6eda71d0 1880 &eiref, &type);
a542ad1b
JS
1881 if (ret < 0)
1882 return ret;
1883
1884 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1885 type == BTRFS_SHARED_BLOCK_REF_KEY)
1886 break;
1887
1888 if (ret == 1)
1889 return 1;
1890 }
1891
1892 /* we can treat both ref types equally here */
a542ad1b 1893 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
1894
1895 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1896 struct btrfs_tree_block_info *info;
1897
1898 info = (struct btrfs_tree_block_info *)(ei + 1);
1899 *out_level = btrfs_tree_block_level(eb, info);
1900 } else {
1901 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1902 *out_level = (u8)key->offset;
1903 }
a542ad1b
JS
1904
1905 if (ret == 1)
1906 *ptr = (unsigned long)-1;
1907
1908 return 0;
1909}
1910
ab8d0fc4
JM
1911static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1912 struct extent_inode_elem *inode_list,
1913 u64 root, u64 extent_item_objectid,
1914 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1915{
976b1908 1916 struct extent_inode_elem *eie;
4692cf58 1917 int ret = 0;
4692cf58 1918
976b1908 1919 for (eie = inode_list; eie; eie = eie->next) {
ab8d0fc4
JM
1920 btrfs_debug(fs_info,
1921 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1922 extent_item_objectid, eie->inum,
1923 eie->offset, root);
976b1908 1924 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1925 if (ret) {
ab8d0fc4
JM
1926 btrfs_debug(fs_info,
1927 "stopping iteration for %llu due to ret=%d",
1928 extent_item_objectid, ret);
4692cf58
JS
1929 break;
1930 }
a542ad1b
JS
1931 }
1932
a542ad1b
JS
1933 return ret;
1934}
1935
1936/*
1937 * calls iterate() for every inode that references the extent identified by
4692cf58 1938 * the given parameters.
a542ad1b
JS
1939 * when the iterator function returns a non-zero value, iteration stops.
1940 */
1941int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1942 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1943 int search_commit_root,
c995ab3c
ZB
1944 iterate_extent_inodes_t *iterate, void *ctx,
1945 bool ignore_offset)
a542ad1b 1946{
a542ad1b 1947 int ret;
da61d31a 1948 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1949 struct ulist *refs = NULL;
1950 struct ulist *roots = NULL;
4692cf58
JS
1951 struct ulist_node *ref_node = NULL;
1952 struct ulist_node *root_node = NULL;
3284da7b 1953 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
cd1b413c
JS
1954 struct ulist_iterator ref_uiter;
1955 struct ulist_iterator root_uiter;
a542ad1b 1956
ab8d0fc4 1957 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
4692cf58 1958 extent_item_objectid);
a542ad1b 1959
da61d31a 1960 if (!search_commit_root) {
bfc61c36
FM
1961 trans = btrfs_attach_transaction(fs_info->extent_root);
1962 if (IS_ERR(trans)) {
1963 if (PTR_ERR(trans) != -ENOENT &&
1964 PTR_ERR(trans) != -EROFS)
1965 return PTR_ERR(trans);
1966 trans = NULL;
1967 }
1968 }
1969
1970 if (trans)
8445f61c 1971 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
bfc61c36 1972 else
9e351cc8 1973 down_read(&fs_info->commit_root_sem);
a542ad1b 1974
4692cf58 1975 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1976 tree_mod_seq_elem.seq, &refs,
c995ab3c 1977 &extent_item_pos, ignore_offset);
4692cf58
JS
1978 if (ret)
1979 goto out;
a542ad1b 1980
cd1b413c
JS
1981 ULIST_ITER_INIT(&ref_uiter);
1982 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
e0c476b1 1983 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
c995ab3c
ZB
1984 tree_mod_seq_elem.seq, &roots,
1985 ignore_offset);
4692cf58
JS
1986 if (ret)
1987 break;
cd1b413c
JS
1988 ULIST_ITER_INIT(&root_uiter);
1989 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
ab8d0fc4
JM
1990 btrfs_debug(fs_info,
1991 "root %llu references leaf %llu, data list %#llx",
1992 root_node->val, ref_node->val,
1993 ref_node->aux);
1994 ret = iterate_leaf_refs(fs_info,
1995 (struct extent_inode_elem *)
995e01b7
JS
1996 (uintptr_t)ref_node->aux,
1997 root_node->val,
1998 extent_item_objectid,
1999 iterate, ctx);
4692cf58 2000 }
976b1908 2001 ulist_free(roots);
a542ad1b
JS
2002 }
2003
976b1908 2004 free_leaf_list(refs);
4692cf58 2005out:
bfc61c36 2006 if (trans) {
8445f61c 2007 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
3a45bb20 2008 btrfs_end_transaction(trans);
9e351cc8
JB
2009 } else {
2010 up_read(&fs_info->commit_root_sem);
7a3ae2f8
JS
2011 }
2012
a542ad1b
JS
2013 return ret;
2014}
2015
2016int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2017 struct btrfs_path *path,
c995ab3c
ZB
2018 iterate_extent_inodes_t *iterate, void *ctx,
2019 bool ignore_offset)
a542ad1b
JS
2020{
2021 int ret;
4692cf58 2022 u64 extent_item_pos;
69917e43 2023 u64 flags = 0;
a542ad1b 2024 struct btrfs_key found_key;
7a3ae2f8 2025 int search_commit_root = path->search_commit_root;
a542ad1b 2026
69917e43 2027 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 2028 btrfs_release_path(path);
a542ad1b
JS
2029 if (ret < 0)
2030 return ret;
69917e43 2031 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 2032 return -EINVAL;
a542ad1b 2033
4692cf58 2034 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
2035 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2036 extent_item_pos, search_commit_root,
c995ab3c 2037 iterate, ctx, ignore_offset);
a542ad1b
JS
2038
2039 return ret;
2040}
2041
d24bec3a
MF
2042typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2043 struct extent_buffer *eb, void *ctx);
2044
2045static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2046 struct btrfs_path *path,
2047 iterate_irefs_t *iterate, void *ctx)
a542ad1b 2048{
aefc1eb1 2049 int ret = 0;
a542ad1b
JS
2050 int slot;
2051 u32 cur;
2052 u32 len;
2053 u32 name_len;
2054 u64 parent = 0;
2055 int found = 0;
2056 struct extent_buffer *eb;
2057 struct btrfs_item *item;
2058 struct btrfs_inode_ref *iref;
2059 struct btrfs_key found_key;
2060
aefc1eb1 2061 while (!ret) {
c234a24d
DS
2062 ret = btrfs_find_item(fs_root, path, inum,
2063 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2064 &found_key);
2065
a542ad1b
JS
2066 if (ret < 0)
2067 break;
2068 if (ret) {
2069 ret = found ? 0 : -ENOENT;
2070 break;
2071 }
2072 ++found;
2073
2074 parent = found_key.offset;
2075 slot = path->slots[0];
3fe81ce2
FDBM
2076 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2077 if (!eb) {
2078 ret = -ENOMEM;
2079 break;
2080 }
a542ad1b
JS
2081 btrfs_release_path(path);
2082
dd3cc16b 2083 item = btrfs_item_nr(slot);
a542ad1b
JS
2084 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2085
2086 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2087 name_len = btrfs_inode_ref_name_len(eb, iref);
2088 /* path must be released before calling iterate()! */
ab8d0fc4
JM
2089 btrfs_debug(fs_root->fs_info,
2090 "following ref at offset %u for inode %llu in tree %llu",
4fd786e6
MT
2091 cur, found_key.objectid,
2092 fs_root->root_key.objectid);
d24bec3a
MF
2093 ret = iterate(parent, name_len,
2094 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 2095 if (ret)
a542ad1b 2096 break;
a542ad1b
JS
2097 len = sizeof(*iref) + name_len;
2098 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2099 }
2100 free_extent_buffer(eb);
2101 }
2102
2103 btrfs_release_path(path);
2104
2105 return ret;
2106}
2107
d24bec3a
MF
2108static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2109 struct btrfs_path *path,
2110 iterate_irefs_t *iterate, void *ctx)
2111{
2112 int ret;
2113 int slot;
2114 u64 offset = 0;
2115 u64 parent;
2116 int found = 0;
2117 struct extent_buffer *eb;
2118 struct btrfs_inode_extref *extref;
d24bec3a
MF
2119 u32 item_size;
2120 u32 cur_offset;
2121 unsigned long ptr;
2122
2123 while (1) {
2124 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2125 &offset);
2126 if (ret < 0)
2127 break;
2128 if (ret) {
2129 ret = found ? 0 : -ENOENT;
2130 break;
2131 }
2132 ++found;
2133
2134 slot = path->slots[0];
3fe81ce2
FDBM
2135 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2136 if (!eb) {
2137 ret = -ENOMEM;
2138 break;
2139 }
d24bec3a
MF
2140 btrfs_release_path(path);
2141
2849a854
CM
2142 item_size = btrfs_item_size_nr(eb, slot);
2143 ptr = btrfs_item_ptr_offset(eb, slot);
d24bec3a
MF
2144 cur_offset = 0;
2145
2146 while (cur_offset < item_size) {
2147 u32 name_len;
2148
2149 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2150 parent = btrfs_inode_extref_parent(eb, extref);
2151 name_len = btrfs_inode_extref_name_len(eb, extref);
2152 ret = iterate(parent, name_len,
2153 (unsigned long)&extref->name, eb, ctx);
2154 if (ret)
2155 break;
2156
2849a854 2157 cur_offset += btrfs_inode_extref_name_len(eb, extref);
d24bec3a
MF
2158 cur_offset += sizeof(*extref);
2159 }
d24bec3a
MF
2160 free_extent_buffer(eb);
2161
2162 offset++;
2163 }
2164
2165 btrfs_release_path(path);
2166
2167 return ret;
2168}
2169
2170static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2171 struct btrfs_path *path, iterate_irefs_t *iterate,
2172 void *ctx)
2173{
2174 int ret;
2175 int found_refs = 0;
2176
2177 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2178 if (!ret)
2179 ++found_refs;
2180 else if (ret != -ENOENT)
2181 return ret;
2182
2183 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2184 if (ret == -ENOENT && found_refs)
2185 return 0;
2186
2187 return ret;
2188}
2189
a542ad1b
JS
2190/*
2191 * returns 0 if the path could be dumped (probably truncated)
2192 * returns <0 in case of an error
2193 */
d24bec3a
MF
2194static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2195 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
2196{
2197 struct inode_fs_paths *ipath = ctx;
2198 char *fspath;
2199 char *fspath_min;
2200 int i = ipath->fspath->elem_cnt;
2201 const int s_ptr = sizeof(char *);
2202 u32 bytes_left;
2203
2204 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2205 ipath->fspath->bytes_left - s_ptr : 0;
2206
740c3d22 2207 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
2208 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2209 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
2210 if (IS_ERR(fspath))
2211 return PTR_ERR(fspath);
2212
2213 if (fspath > fspath_min) {
745c4d8e 2214 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
2215 ++ipath->fspath->elem_cnt;
2216 ipath->fspath->bytes_left = fspath - fspath_min;
2217 } else {
2218 ++ipath->fspath->elem_missed;
2219 ipath->fspath->bytes_missing += fspath_min - fspath;
2220 ipath->fspath->bytes_left = 0;
2221 }
2222
2223 return 0;
2224}
2225
2226/*
2227 * this dumps all file system paths to the inode into the ipath struct, provided
2228 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 2229 * from ipath->fspath->val[i].
a542ad1b 2230 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 2231 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
01327610 2232 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
a542ad1b
JS
2233 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2234 * have been needed to return all paths.
2235 */
2236int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2237{
2238 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 2239 inode_to_path, ipath);
a542ad1b
JS
2240}
2241
a542ad1b
JS
2242struct btrfs_data_container *init_data_container(u32 total_bytes)
2243{
2244 struct btrfs_data_container *data;
2245 size_t alloc_bytes;
2246
2247 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
f54de068 2248 data = kvmalloc(alloc_bytes, GFP_KERNEL);
a542ad1b
JS
2249 if (!data)
2250 return ERR_PTR(-ENOMEM);
2251
2252 if (total_bytes >= sizeof(*data)) {
2253 data->bytes_left = total_bytes - sizeof(*data);
2254 data->bytes_missing = 0;
2255 } else {
2256 data->bytes_missing = sizeof(*data) - total_bytes;
2257 data->bytes_left = 0;
2258 }
2259
2260 data->elem_cnt = 0;
2261 data->elem_missed = 0;
2262
2263 return data;
2264}
2265
2266/*
2267 * allocates space to return multiple file system paths for an inode.
2268 * total_bytes to allocate are passed, note that space usable for actual path
2269 * information will be total_bytes - sizeof(struct inode_fs_paths).
2270 * the returned pointer must be freed with free_ipath() in the end.
2271 */
2272struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2273 struct btrfs_path *path)
2274{
2275 struct inode_fs_paths *ifp;
2276 struct btrfs_data_container *fspath;
2277
2278 fspath = init_data_container(total_bytes);
2279 if (IS_ERR(fspath))
afc6961f 2280 return ERR_CAST(fspath);
a542ad1b 2281
f54de068 2282 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
a542ad1b 2283 if (!ifp) {
f54de068 2284 kvfree(fspath);
a542ad1b
JS
2285 return ERR_PTR(-ENOMEM);
2286 }
2287
2288 ifp->btrfs_path = path;
2289 ifp->fspath = fspath;
2290 ifp->fs_root = fs_root;
2291
2292 return ifp;
2293}
2294
2295void free_ipath(struct inode_fs_paths *ipath)
2296{
4735fb28
JJ
2297 if (!ipath)
2298 return;
f54de068 2299 kvfree(ipath->fspath);
a542ad1b
JS
2300 kfree(ipath);
2301}