btrfs: track reloc roots based on their commit root bytenr
[linux-block.git] / fs / btrfs / backref.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a542ad1b
JS
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
a542ad1b
JS
4 */
5
f54de068 6#include <linux/mm.h>
afce772e 7#include <linux/rbtree.h>
00142756 8#include <trace/events/btrfs.h>
a542ad1b
JS
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
8da6d581
JS
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
b916a59a 15#include "locking.h"
a542ad1b 16
dc046b10
JB
17/* Just an arbitrary number so we can be sure this happened */
18#define BACKREF_FOUND_SHARED 6
19
976b1908
JS
20struct extent_inode_elem {
21 u64 inum;
22 u64 offset;
23 struct extent_inode_elem *next;
24};
25
73980bec
JM
26static int check_extent_in_eb(const struct btrfs_key *key,
27 const struct extent_buffer *eb,
28 const struct btrfs_file_extent_item *fi,
29 u64 extent_item_pos,
c995ab3c
ZB
30 struct extent_inode_elem **eie,
31 bool ignore_offset)
976b1908 32{
8ca15e05 33 u64 offset = 0;
976b1908
JS
34 struct extent_inode_elem *e;
35
c995ab3c
ZB
36 if (!ignore_offset &&
37 !btrfs_file_extent_compression(eb, fi) &&
8ca15e05
JB
38 !btrfs_file_extent_encryption(eb, fi) &&
39 !btrfs_file_extent_other_encoding(eb, fi)) {
40 u64 data_offset;
41 u64 data_len;
976b1908 42
8ca15e05
JB
43 data_offset = btrfs_file_extent_offset(eb, fi);
44 data_len = btrfs_file_extent_num_bytes(eb, fi);
45
46 if (extent_item_pos < data_offset ||
47 extent_item_pos >= data_offset + data_len)
48 return 1;
49 offset = extent_item_pos - data_offset;
50 }
976b1908
JS
51
52 e = kmalloc(sizeof(*e), GFP_NOFS);
53 if (!e)
54 return -ENOMEM;
55
56 e->next = *eie;
57 e->inum = key->objectid;
8ca15e05 58 e->offset = key->offset + offset;
976b1908
JS
59 *eie = e;
60
61 return 0;
62}
63
f05c4746
WS
64static void free_inode_elem_list(struct extent_inode_elem *eie)
65{
66 struct extent_inode_elem *eie_next;
67
68 for (; eie; eie = eie_next) {
69 eie_next = eie->next;
70 kfree(eie);
71 }
72}
73
73980bec
JM
74static int find_extent_in_eb(const struct extent_buffer *eb,
75 u64 wanted_disk_byte, u64 extent_item_pos,
c995ab3c
ZB
76 struct extent_inode_elem **eie,
77 bool ignore_offset)
976b1908
JS
78{
79 u64 disk_byte;
80 struct btrfs_key key;
81 struct btrfs_file_extent_item *fi;
82 int slot;
83 int nritems;
84 int extent_type;
85 int ret;
86
87 /*
88 * from the shared data ref, we only have the leaf but we need
89 * the key. thus, we must look into all items and see that we
90 * find one (some) with a reference to our extent item.
91 */
92 nritems = btrfs_header_nritems(eb);
93 for (slot = 0; slot < nritems; ++slot) {
94 btrfs_item_key_to_cpu(eb, &key, slot);
95 if (key.type != BTRFS_EXTENT_DATA_KEY)
96 continue;
97 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
98 extent_type = btrfs_file_extent_type(eb, fi);
99 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
100 continue;
101 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
102 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
103 if (disk_byte != wanted_disk_byte)
104 continue;
105
c995ab3c 106 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
976b1908
JS
107 if (ret < 0)
108 return ret;
109 }
110
111 return 0;
112}
113
86d5f994 114struct preftree {
ecf160b4 115 struct rb_root_cached root;
6c336b21 116 unsigned int count;
86d5f994
EN
117};
118
ecf160b4 119#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
86d5f994
EN
120
121struct preftrees {
122 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
123 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
124 struct preftree indirect_missing_keys;
125};
126
3ec4d323
EN
127/*
128 * Checks for a shared extent during backref search.
129 *
130 * The share_count tracks prelim_refs (direct and indirect) having a
131 * ref->count >0:
132 * - incremented when a ref->count transitions to >0
133 * - decremented when a ref->count transitions to <1
134 */
135struct share_check {
136 u64 root_objectid;
137 u64 inum;
138 int share_count;
139};
140
141static inline int extent_is_shared(struct share_check *sc)
142{
143 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
144}
145
b9e9a6cb
WS
146static struct kmem_cache *btrfs_prelim_ref_cache;
147
148int __init btrfs_prelim_ref_init(void)
149{
150 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
e0c476b1 151 sizeof(struct prelim_ref),
b9e9a6cb 152 0,
fba4b697 153 SLAB_MEM_SPREAD,
b9e9a6cb
WS
154 NULL);
155 if (!btrfs_prelim_ref_cache)
156 return -ENOMEM;
157 return 0;
158}
159
e67c718b 160void __cold btrfs_prelim_ref_exit(void)
b9e9a6cb 161{
5598e900 162 kmem_cache_destroy(btrfs_prelim_ref_cache);
b9e9a6cb
WS
163}
164
86d5f994
EN
165static void free_pref(struct prelim_ref *ref)
166{
167 kmem_cache_free(btrfs_prelim_ref_cache, ref);
168}
169
170/*
171 * Return 0 when both refs are for the same block (and can be merged).
172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
173 * indicates a 'higher' block.
174 */
175static int prelim_ref_compare(struct prelim_ref *ref1,
176 struct prelim_ref *ref2)
177{
178 if (ref1->level < ref2->level)
179 return -1;
180 if (ref1->level > ref2->level)
181 return 1;
182 if (ref1->root_id < ref2->root_id)
183 return -1;
184 if (ref1->root_id > ref2->root_id)
185 return 1;
186 if (ref1->key_for_search.type < ref2->key_for_search.type)
187 return -1;
188 if (ref1->key_for_search.type > ref2->key_for_search.type)
189 return 1;
190 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
191 return -1;
192 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
193 return 1;
194 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
195 return -1;
196 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
197 return 1;
198 if (ref1->parent < ref2->parent)
199 return -1;
200 if (ref1->parent > ref2->parent)
201 return 1;
202
203 return 0;
204}
205
ccc8dc75
CIK
206static void update_share_count(struct share_check *sc, int oldcount,
207 int newcount)
3ec4d323
EN
208{
209 if ((!sc) || (oldcount == 0 && newcount < 1))
210 return;
211
212 if (oldcount > 0 && newcount < 1)
213 sc->share_count--;
214 else if (oldcount < 1 && newcount > 0)
215 sc->share_count++;
216}
217
86d5f994
EN
218/*
219 * Add @newref to the @root rbtree, merging identical refs.
220 *
3ec4d323 221 * Callers should assume that newref has been freed after calling.
86d5f994 222 */
00142756
JM
223static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
224 struct preftree *preftree,
3ec4d323
EN
225 struct prelim_ref *newref,
226 struct share_check *sc)
86d5f994 227{
ecf160b4 228 struct rb_root_cached *root;
86d5f994
EN
229 struct rb_node **p;
230 struct rb_node *parent = NULL;
231 struct prelim_ref *ref;
232 int result;
ecf160b4 233 bool leftmost = true;
86d5f994
EN
234
235 root = &preftree->root;
ecf160b4 236 p = &root->rb_root.rb_node;
86d5f994
EN
237
238 while (*p) {
239 parent = *p;
240 ref = rb_entry(parent, struct prelim_ref, rbnode);
241 result = prelim_ref_compare(ref, newref);
242 if (result < 0) {
243 p = &(*p)->rb_left;
244 } else if (result > 0) {
245 p = &(*p)->rb_right;
ecf160b4 246 leftmost = false;
86d5f994
EN
247 } else {
248 /* Identical refs, merge them and free @newref */
249 struct extent_inode_elem *eie = ref->inode_list;
250
251 while (eie && eie->next)
252 eie = eie->next;
253
254 if (!eie)
255 ref->inode_list = newref->inode_list;
256 else
257 eie->next = newref->inode_list;
00142756
JM
258 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
259 preftree->count);
3ec4d323
EN
260 /*
261 * A delayed ref can have newref->count < 0.
262 * The ref->count is updated to follow any
263 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
264 */
265 update_share_count(sc, ref->count,
266 ref->count + newref->count);
86d5f994
EN
267 ref->count += newref->count;
268 free_pref(newref);
269 return;
270 }
271 }
272
3ec4d323 273 update_share_count(sc, 0, newref->count);
6c336b21 274 preftree->count++;
00142756 275 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
86d5f994 276 rb_link_node(&newref->rbnode, parent, p);
ecf160b4 277 rb_insert_color_cached(&newref->rbnode, root, leftmost);
86d5f994
EN
278}
279
280/*
281 * Release the entire tree. We don't care about internal consistency so
282 * just free everything and then reset the tree root.
283 */
284static void prelim_release(struct preftree *preftree)
285{
286 struct prelim_ref *ref, *next_ref;
287
ecf160b4
LB
288 rbtree_postorder_for_each_entry_safe(ref, next_ref,
289 &preftree->root.rb_root, rbnode)
86d5f994
EN
290 free_pref(ref);
291
ecf160b4 292 preftree->root = RB_ROOT_CACHED;
6c336b21 293 preftree->count = 0;
86d5f994
EN
294}
295
d5c88b73
JS
296/*
297 * the rules for all callers of this function are:
298 * - obtaining the parent is the goal
299 * - if you add a key, you must know that it is a correct key
300 * - if you cannot add the parent or a correct key, then we will look into the
301 * block later to set a correct key
302 *
303 * delayed refs
304 * ============
305 * backref type | shared | indirect | shared | indirect
306 * information | tree | tree | data | data
307 * --------------------+--------+----------+--------+----------
308 * parent logical | y | - | - | -
309 * key to resolve | - | y | y | y
310 * tree block logical | - | - | - | -
311 * root for resolving | y | y | y | y
312 *
313 * - column 1: we've the parent -> done
314 * - column 2, 3, 4: we use the key to find the parent
315 *
316 * on disk refs (inline or keyed)
317 * ==============================
318 * backref type | shared | indirect | shared | indirect
319 * information | tree | tree | data | data
320 * --------------------+--------+----------+--------+----------
321 * parent logical | y | - | y | -
322 * key to resolve | - | - | - | y
323 * tree block logical | y | y | y | y
324 * root for resolving | - | y | y | y
325 *
326 * - column 1, 3: we've the parent -> done
327 * - column 2: we take the first key from the block to find the parent
e0c476b1 328 * (see add_missing_keys)
d5c88b73
JS
329 * - column 4: we use the key to find the parent
330 *
331 * additional information that's available but not required to find the parent
332 * block might help in merging entries to gain some speed.
333 */
00142756
JM
334static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
335 struct preftree *preftree, u64 root_id,
e0c476b1 336 const struct btrfs_key *key, int level, u64 parent,
3ec4d323
EN
337 u64 wanted_disk_byte, int count,
338 struct share_check *sc, gfp_t gfp_mask)
8da6d581 339{
e0c476b1 340 struct prelim_ref *ref;
8da6d581 341
48ec4736
LB
342 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
343 return 0;
344
b9e9a6cb 345 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
346 if (!ref)
347 return -ENOMEM;
348
349 ref->root_id = root_id;
7ac8b88e 350 if (key)
d5c88b73 351 ref->key_for_search = *key;
7ac8b88e 352 else
d5c88b73 353 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 354
3301958b 355 ref->inode_list = NULL;
8da6d581
JS
356 ref->level = level;
357 ref->count = count;
358 ref->parent = parent;
359 ref->wanted_disk_byte = wanted_disk_byte;
3ec4d323
EN
360 prelim_ref_insert(fs_info, preftree, ref, sc);
361 return extent_is_shared(sc);
8da6d581
JS
362}
363
86d5f994 364/* direct refs use root == 0, key == NULL */
00142756
JM
365static int add_direct_ref(const struct btrfs_fs_info *fs_info,
366 struct preftrees *preftrees, int level, u64 parent,
3ec4d323
EN
367 u64 wanted_disk_byte, int count,
368 struct share_check *sc, gfp_t gfp_mask)
86d5f994 369{
00142756 370 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
3ec4d323 371 parent, wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
372}
373
374/* indirect refs use parent == 0 */
00142756
JM
375static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
376 struct preftrees *preftrees, u64 root_id,
86d5f994 377 const struct btrfs_key *key, int level,
3ec4d323
EN
378 u64 wanted_disk_byte, int count,
379 struct share_check *sc, gfp_t gfp_mask)
86d5f994
EN
380{
381 struct preftree *tree = &preftrees->indirect;
382
383 if (!key)
384 tree = &preftrees->indirect_missing_keys;
00142756 385 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
3ec4d323 386 wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
387}
388
ed58f2e6 389static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
390{
391 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
392 struct rb_node *parent = NULL;
393 struct prelim_ref *ref = NULL;
394 struct prelim_ref target = {0};
395 int result;
396
397 target.parent = bytenr;
398
399 while (*p) {
400 parent = *p;
401 ref = rb_entry(parent, struct prelim_ref, rbnode);
402 result = prelim_ref_compare(ref, &target);
403
404 if (result < 0)
405 p = &(*p)->rb_left;
406 else if (result > 0)
407 p = &(*p)->rb_right;
408 else
409 return 1;
410 }
411 return 0;
412}
413
8da6d581 414static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
ed58f2e6 415 struct ulist *parents,
416 struct preftrees *preftrees, struct prelim_ref *ref,
44853868 417 int level, u64 time_seq, const u64 *extent_item_pos,
b25b0b87 418 bool ignore_offset)
8da6d581 419{
69bca40d
AB
420 int ret = 0;
421 int slot;
422 struct extent_buffer *eb;
423 struct btrfs_key key;
7ef81ac8 424 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 425 struct btrfs_file_extent_item *fi;
ed8c4913 426 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 427 u64 disk_byte;
7ef81ac8
JB
428 u64 wanted_disk_byte = ref->wanted_disk_byte;
429 u64 count = 0;
7ac8b88e 430 u64 data_offset;
8da6d581 431
69bca40d
AB
432 if (level != 0) {
433 eb = path->nodes[level];
434 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
435 if (ret < 0)
436 return ret;
8da6d581 437 return 0;
69bca40d 438 }
8da6d581
JS
439
440 /*
ed58f2e6 441 * 1. We normally enter this function with the path already pointing to
442 * the first item to check. But sometimes, we may enter it with
443 * slot == nritems.
444 * 2. We are searching for normal backref but bytenr of this leaf
445 * matches shared data backref
cfc0eed0 446 * 3. The leaf owner is not equal to the root we are searching
447 *
ed58f2e6 448 * For these cases, go to the next leaf before we continue.
8da6d581 449 */
ed58f2e6 450 eb = path->nodes[0];
451 if (path->slots[0] >= btrfs_header_nritems(eb) ||
cfc0eed0 452 is_shared_data_backref(preftrees, eb->start) ||
453 ref->root_id != btrfs_header_owner(eb)) {
de47c9d3 454 if (time_seq == SEQ_LAST)
21633fc6
QW
455 ret = btrfs_next_leaf(root, path);
456 else
457 ret = btrfs_next_old_leaf(root, path, time_seq);
458 }
8da6d581 459
b25b0b87 460 while (!ret && count < ref->count) {
8da6d581 461 eb = path->nodes[0];
69bca40d
AB
462 slot = path->slots[0];
463
464 btrfs_item_key_to_cpu(eb, &key, slot);
465
466 if (key.objectid != key_for_search->objectid ||
467 key.type != BTRFS_EXTENT_DATA_KEY)
468 break;
469
ed58f2e6 470 /*
471 * We are searching for normal backref but bytenr of this leaf
cfc0eed0 472 * matches shared data backref, OR
473 * the leaf owner is not equal to the root we are searching for
ed58f2e6 474 */
cfc0eed0 475 if (slot == 0 &&
476 (is_shared_data_backref(preftrees, eb->start) ||
477 ref->root_id != btrfs_header_owner(eb))) {
ed58f2e6 478 if (time_seq == SEQ_LAST)
479 ret = btrfs_next_leaf(root, path);
480 else
481 ret = btrfs_next_old_leaf(root, path, time_seq);
482 continue;
483 }
69bca40d
AB
484 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
485 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
7ac8b88e 486 data_offset = btrfs_file_extent_offset(eb, fi);
69bca40d
AB
487
488 if (disk_byte == wanted_disk_byte) {
489 eie = NULL;
ed8c4913 490 old = NULL;
7ac8b88e 491 if (ref->key_for_search.offset == key.offset - data_offset)
492 count++;
493 else
494 goto next;
69bca40d
AB
495 if (extent_item_pos) {
496 ret = check_extent_in_eb(&key, eb, fi,
497 *extent_item_pos,
c995ab3c 498 &eie, ignore_offset);
69bca40d
AB
499 if (ret < 0)
500 break;
501 }
ed8c4913
JB
502 if (ret > 0)
503 goto next;
4eb1f66d
TI
504 ret = ulist_add_merge_ptr(parents, eb->start,
505 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
506 if (ret < 0)
507 break;
508 if (!ret && extent_item_pos) {
509 while (old->next)
510 old = old->next;
511 old->next = eie;
69bca40d 512 }
f05c4746 513 eie = NULL;
8da6d581 514 }
ed8c4913 515next:
de47c9d3 516 if (time_seq == SEQ_LAST)
21633fc6
QW
517 ret = btrfs_next_item(root, path);
518 else
519 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
520 }
521
69bca40d
AB
522 if (ret > 0)
523 ret = 0;
f05c4746
WS
524 else if (ret < 0)
525 free_inode_elem_list(eie);
69bca40d 526 return ret;
8da6d581
JS
527}
528
529/*
530 * resolve an indirect backref in the form (root_id, key, level)
531 * to a logical address
532 */
e0c476b1
JM
533static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
534 struct btrfs_path *path, u64 time_seq,
ed58f2e6 535 struct preftrees *preftrees,
e0c476b1 536 struct prelim_ref *ref, struct ulist *parents,
b25b0b87 537 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 538{
8da6d581
JS
539 struct btrfs_root *root;
540 struct btrfs_key root_key;
8da6d581
JS
541 struct extent_buffer *eb;
542 int ret = 0;
543 int root_level;
544 int level = ref->level;
7ac8b88e 545 struct btrfs_key search_key = ref->key_for_search;
8da6d581 546
8da6d581
JS
547 root_key.objectid = ref->root_id;
548 root_key.type = BTRFS_ROOT_ITEM_KEY;
549 root_key.offset = (u64)-1;
538f72cd 550
2d9e9776 551 root = btrfs_get_fs_root(fs_info, &root_key, false);
8da6d581
JS
552 if (IS_ERR(root)) {
553 ret = PTR_ERR(root);
9326f76f
JB
554 goto out_free;
555 }
556
f5ee5c9a 557 if (btrfs_is_testing(fs_info)) {
d9ee522b
JB
558 ret = -ENOENT;
559 goto out;
560 }
561
9e351cc8
JB
562 if (path->search_commit_root)
563 root_level = btrfs_header_level(root->commit_root);
de47c9d3 564 else if (time_seq == SEQ_LAST)
21633fc6 565 root_level = btrfs_header_level(root->node);
9e351cc8
JB
566 else
567 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 568
c75e8394 569 if (root_level + 1 == level)
8da6d581
JS
570 goto out;
571
7ac8b88e 572 /*
573 * We can often find data backrefs with an offset that is too large
574 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
575 * subtracting a file's offset with the data offset of its
576 * corresponding extent data item. This can happen for example in the
577 * clone ioctl.
578 *
579 * So if we detect such case we set the search key's offset to zero to
580 * make sure we will find the matching file extent item at
581 * add_all_parents(), otherwise we will miss it because the offset
582 * taken form the backref is much larger then the offset of the file
583 * extent item. This can make us scan a very large number of file
584 * extent items, but at least it will not make us miss any.
585 *
586 * This is an ugly workaround for a behaviour that should have never
587 * existed, but it does and a fix for the clone ioctl would touch a lot
588 * of places, cause backwards incompatibility and would not fix the
589 * problem for extents cloned with older kernels.
590 */
591 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
592 search_key.offset >= LLONG_MAX)
593 search_key.offset = 0;
8da6d581 594 path->lowest_level = level;
de47c9d3 595 if (time_seq == SEQ_LAST)
7ac8b88e 596 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
21633fc6 597 else
7ac8b88e 598 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
538f72cd 599
ab8d0fc4
JM
600 btrfs_debug(fs_info,
601 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
c1c9ff7c
GU
602 ref->root_id, level, ref->count, ret,
603 ref->key_for_search.objectid, ref->key_for_search.type,
604 ref->key_for_search.offset);
8da6d581
JS
605 if (ret < 0)
606 goto out;
607
608 eb = path->nodes[level];
9345457f 609 while (!eb) {
fae7f21c 610 if (WARN_ON(!level)) {
9345457f
JS
611 ret = 1;
612 goto out;
613 }
614 level--;
615 eb = path->nodes[level];
8da6d581
JS
616 }
617
ed58f2e6 618 ret = add_all_parents(root, path, parents, preftrees, ref, level,
b25b0b87 619 time_seq, extent_item_pos, ignore_offset);
8da6d581 620out:
00246528 621 btrfs_put_root(root);
9326f76f 622out_free:
da61d31a
JB
623 path->lowest_level = 0;
624 btrfs_release_path(path);
8da6d581
JS
625 return ret;
626}
627
4dae077a
JM
628static struct extent_inode_elem *
629unode_aux_to_inode_list(struct ulist_node *node)
630{
631 if (!node)
632 return NULL;
633 return (struct extent_inode_elem *)(uintptr_t)node->aux;
634}
635
8da6d581 636/*
52042d8e 637 * We maintain three separate rbtrees: one for direct refs, one for
86d5f994
EN
638 * indirect refs which have a key, and one for indirect refs which do not
639 * have a key. Each tree does merge on insertion.
640 *
641 * Once all of the references are located, we iterate over the tree of
642 * indirect refs with missing keys. An appropriate key is located and
643 * the ref is moved onto the tree for indirect refs. After all missing
644 * keys are thus located, we iterate over the indirect ref tree, resolve
645 * each reference, and then insert the resolved reference onto the
646 * direct tree (merging there too).
647 *
648 * New backrefs (i.e., for parent nodes) are added to the appropriate
649 * rbtree as they are encountered. The new backrefs are subsequently
650 * resolved as above.
8da6d581 651 */
e0c476b1
JM
652static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
653 struct btrfs_path *path, u64 time_seq,
86d5f994 654 struct preftrees *preftrees,
b25b0b87 655 const u64 *extent_item_pos,
c995ab3c 656 struct share_check *sc, bool ignore_offset)
8da6d581
JS
657{
658 int err;
659 int ret = 0;
8da6d581
JS
660 struct ulist *parents;
661 struct ulist_node *node;
cd1b413c 662 struct ulist_iterator uiter;
86d5f994 663 struct rb_node *rnode;
8da6d581
JS
664
665 parents = ulist_alloc(GFP_NOFS);
666 if (!parents)
667 return -ENOMEM;
668
669 /*
86d5f994
EN
670 * We could trade memory usage for performance here by iterating
671 * the tree, allocating new refs for each insertion, and then
672 * freeing the entire indirect tree when we're done. In some test
673 * cases, the tree can grow quite large (~200k objects).
8da6d581 674 */
ecf160b4 675 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
86d5f994
EN
676 struct prelim_ref *ref;
677
678 ref = rb_entry(rnode, struct prelim_ref, rbnode);
679 if (WARN(ref->parent,
680 "BUG: direct ref found in indirect tree")) {
681 ret = -EINVAL;
682 goto out;
683 }
684
ecf160b4 685 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
6c336b21 686 preftrees->indirect.count--;
86d5f994
EN
687
688 if (ref->count == 0) {
689 free_pref(ref);
8da6d581 690 continue;
86d5f994
EN
691 }
692
3ec4d323
EN
693 if (sc && sc->root_objectid &&
694 ref->root_id != sc->root_objectid) {
86d5f994 695 free_pref(ref);
dc046b10
JB
696 ret = BACKREF_FOUND_SHARED;
697 goto out;
698 }
ed58f2e6 699 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
700 ref, parents, extent_item_pos,
b25b0b87 701 ignore_offset);
95def2ed
WS
702 /*
703 * we can only tolerate ENOENT,otherwise,we should catch error
704 * and return directly.
705 */
706 if (err == -ENOENT) {
3ec4d323
EN
707 prelim_ref_insert(fs_info, &preftrees->direct, ref,
708 NULL);
8da6d581 709 continue;
95def2ed 710 } else if (err) {
86d5f994 711 free_pref(ref);
95def2ed
WS
712 ret = err;
713 goto out;
714 }
8da6d581
JS
715
716 /* we put the first parent into the ref at hand */
cd1b413c
JS
717 ULIST_ITER_INIT(&uiter);
718 node = ulist_next(parents, &uiter);
8da6d581 719 ref->parent = node ? node->val : 0;
4dae077a 720 ref->inode_list = unode_aux_to_inode_list(node);
8da6d581 721
86d5f994 722 /* Add a prelim_ref(s) for any other parent(s). */
cd1b413c 723 while ((node = ulist_next(parents, &uiter))) {
86d5f994
EN
724 struct prelim_ref *new_ref;
725
b9e9a6cb
WS
726 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
727 GFP_NOFS);
8da6d581 728 if (!new_ref) {
86d5f994 729 free_pref(ref);
8da6d581 730 ret = -ENOMEM;
e36902d4 731 goto out;
8da6d581
JS
732 }
733 memcpy(new_ref, ref, sizeof(*ref));
734 new_ref->parent = node->val;
4dae077a 735 new_ref->inode_list = unode_aux_to_inode_list(node);
3ec4d323
EN
736 prelim_ref_insert(fs_info, &preftrees->direct,
737 new_ref, NULL);
8da6d581 738 }
86d5f994 739
3ec4d323 740 /*
52042d8e 741 * Now it's a direct ref, put it in the direct tree. We must
3ec4d323
EN
742 * do this last because the ref could be merged/freed here.
743 */
744 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
86d5f994 745
8da6d581 746 ulist_reinit(parents);
9dd14fd6 747 cond_resched();
8da6d581 748 }
e36902d4 749out:
8da6d581
JS
750 ulist_free(parents);
751 return ret;
752}
753
d5c88b73
JS
754/*
755 * read tree blocks and add keys where required.
756 */
e0c476b1 757static int add_missing_keys(struct btrfs_fs_info *fs_info,
38e3eebf 758 struct preftrees *preftrees, bool lock)
d5c88b73 759{
e0c476b1 760 struct prelim_ref *ref;
d5c88b73 761 struct extent_buffer *eb;
86d5f994
EN
762 struct preftree *tree = &preftrees->indirect_missing_keys;
763 struct rb_node *node;
d5c88b73 764
ecf160b4 765 while ((node = rb_first_cached(&tree->root))) {
86d5f994 766 ref = rb_entry(node, struct prelim_ref, rbnode);
ecf160b4 767 rb_erase_cached(node, &tree->root);
86d5f994
EN
768
769 BUG_ON(ref->parent); /* should not be a direct ref */
770 BUG_ON(ref->key_for_search.type);
d5c88b73 771 BUG_ON(!ref->wanted_disk_byte);
86d5f994 772
581c1760
QW
773 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
774 ref->level - 1, NULL);
64c043de 775 if (IS_ERR(eb)) {
86d5f994 776 free_pref(ref);
64c043de
LB
777 return PTR_ERR(eb);
778 } else if (!extent_buffer_uptodate(eb)) {
86d5f994 779 free_pref(ref);
416bc658
JB
780 free_extent_buffer(eb);
781 return -EIO;
782 }
38e3eebf
JB
783 if (lock)
784 btrfs_tree_read_lock(eb);
d5c88b73
JS
785 if (btrfs_header_level(eb) == 0)
786 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
787 else
788 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
38e3eebf
JB
789 if (lock)
790 btrfs_tree_read_unlock(eb);
d5c88b73 791 free_extent_buffer(eb);
3ec4d323 792 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
9dd14fd6 793 cond_resched();
d5c88b73
JS
794 }
795 return 0;
796}
797
8da6d581
JS
798/*
799 * add all currently queued delayed refs from this head whose seq nr is
800 * smaller or equal that seq to the list
801 */
00142756
JM
802static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
803 struct btrfs_delayed_ref_head *head, u64 seq,
b25b0b87 804 struct preftrees *preftrees, struct share_check *sc)
8da6d581 805{
c6fc2454 806 struct btrfs_delayed_ref_node *node;
8da6d581 807 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
d5c88b73 808 struct btrfs_key key;
86d5f994 809 struct btrfs_key tmp_op_key;
0e0adbcf 810 struct rb_node *n;
01747e92 811 int count;
b1375d64 812 int ret = 0;
8da6d581 813
a6dbceaf 814 if (extent_op && extent_op->update_key)
86d5f994 815 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
8da6d581 816
d7df2c79 817 spin_lock(&head->lock);
e3d03965 818 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
0e0adbcf
JB
819 node = rb_entry(n, struct btrfs_delayed_ref_node,
820 ref_node);
8da6d581
JS
821 if (node->seq > seq)
822 continue;
823
824 switch (node->action) {
825 case BTRFS_ADD_DELAYED_EXTENT:
826 case BTRFS_UPDATE_DELAYED_HEAD:
827 WARN_ON(1);
828 continue;
829 case BTRFS_ADD_DELAYED_REF:
01747e92 830 count = node->ref_mod;
8da6d581
JS
831 break;
832 case BTRFS_DROP_DELAYED_REF:
01747e92 833 count = node->ref_mod * -1;
8da6d581
JS
834 break;
835 default:
290342f6 836 BUG();
8da6d581
JS
837 }
838 switch (node->type) {
839 case BTRFS_TREE_BLOCK_REF_KEY: {
86d5f994 840 /* NORMAL INDIRECT METADATA backref */
8da6d581
JS
841 struct btrfs_delayed_tree_ref *ref;
842
843 ref = btrfs_delayed_node_to_tree_ref(node);
00142756
JM
844 ret = add_indirect_ref(fs_info, preftrees, ref->root,
845 &tmp_op_key, ref->level + 1,
01747e92
EN
846 node->bytenr, count, sc,
847 GFP_ATOMIC);
8da6d581
JS
848 break;
849 }
850 case BTRFS_SHARED_BLOCK_REF_KEY: {
86d5f994 851 /* SHARED DIRECT METADATA backref */
8da6d581
JS
852 struct btrfs_delayed_tree_ref *ref;
853
854 ref = btrfs_delayed_node_to_tree_ref(node);
86d5f994 855
01747e92
EN
856 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
857 ref->parent, node->bytenr, count,
3ec4d323 858 sc, GFP_ATOMIC);
8da6d581
JS
859 break;
860 }
861 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 862 /* NORMAL INDIRECT DATA backref */
8da6d581 863 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
864 ref = btrfs_delayed_node_to_data_ref(node);
865
866 key.objectid = ref->objectid;
867 key.type = BTRFS_EXTENT_DATA_KEY;
868 key.offset = ref->offset;
dc046b10
JB
869
870 /*
871 * Found a inum that doesn't match our known inum, we
872 * know it's shared.
873 */
3ec4d323 874 if (sc && sc->inum && ref->objectid != sc->inum) {
dc046b10 875 ret = BACKREF_FOUND_SHARED;
3ec4d323 876 goto out;
dc046b10
JB
877 }
878
00142756 879 ret = add_indirect_ref(fs_info, preftrees, ref->root,
01747e92
EN
880 &key, 0, node->bytenr, count, sc,
881 GFP_ATOMIC);
8da6d581
JS
882 break;
883 }
884 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 885 /* SHARED DIRECT FULL backref */
8da6d581 886 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
887
888 ref = btrfs_delayed_node_to_data_ref(node);
86d5f994 889
01747e92
EN
890 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
891 node->bytenr, count, sc,
892 GFP_ATOMIC);
8da6d581
JS
893 break;
894 }
895 default:
896 WARN_ON(1);
897 }
3ec4d323
EN
898 /*
899 * We must ignore BACKREF_FOUND_SHARED until all delayed
900 * refs have been checked.
901 */
902 if (ret && (ret != BACKREF_FOUND_SHARED))
d7df2c79 903 break;
8da6d581 904 }
3ec4d323
EN
905 if (!ret)
906 ret = extent_is_shared(sc);
907out:
d7df2c79
JB
908 spin_unlock(&head->lock);
909 return ret;
8da6d581
JS
910}
911
912/*
913 * add all inline backrefs for bytenr to the list
3ec4d323
EN
914 *
915 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 916 */
00142756
JM
917static int add_inline_refs(const struct btrfs_fs_info *fs_info,
918 struct btrfs_path *path, u64 bytenr,
86d5f994 919 int *info_level, struct preftrees *preftrees,
b25b0b87 920 struct share_check *sc)
8da6d581 921{
b1375d64 922 int ret = 0;
8da6d581
JS
923 int slot;
924 struct extent_buffer *leaf;
925 struct btrfs_key key;
261c84b6 926 struct btrfs_key found_key;
8da6d581
JS
927 unsigned long ptr;
928 unsigned long end;
929 struct btrfs_extent_item *ei;
930 u64 flags;
931 u64 item_size;
932
933 /*
934 * enumerate all inline refs
935 */
936 leaf = path->nodes[0];
dadcaf78 937 slot = path->slots[0];
8da6d581
JS
938
939 item_size = btrfs_item_size_nr(leaf, slot);
940 BUG_ON(item_size < sizeof(*ei));
941
942 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
943 flags = btrfs_extent_flags(leaf, ei);
261c84b6 944 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
945
946 ptr = (unsigned long)(ei + 1);
947 end = (unsigned long)ei + item_size;
948
261c84b6
JB
949 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
950 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 951 struct btrfs_tree_block_info *info;
8da6d581
JS
952
953 info = (struct btrfs_tree_block_info *)ptr;
954 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
955 ptr += sizeof(struct btrfs_tree_block_info);
956 BUG_ON(ptr > end);
261c84b6
JB
957 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
958 *info_level = found_key.offset;
8da6d581
JS
959 } else {
960 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
961 }
962
963 while (ptr < end) {
964 struct btrfs_extent_inline_ref *iref;
965 u64 offset;
966 int type;
967
968 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
969 type = btrfs_get_extent_inline_ref_type(leaf, iref,
970 BTRFS_REF_TYPE_ANY);
971 if (type == BTRFS_REF_TYPE_INVALID)
af431dcb 972 return -EUCLEAN;
3de28d57 973
8da6d581
JS
974 offset = btrfs_extent_inline_ref_offset(leaf, iref);
975
976 switch (type) {
977 case BTRFS_SHARED_BLOCK_REF_KEY:
00142756
JM
978 ret = add_direct_ref(fs_info, preftrees,
979 *info_level + 1, offset,
3ec4d323 980 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
981 break;
982 case BTRFS_SHARED_DATA_REF_KEY: {
983 struct btrfs_shared_data_ref *sdref;
984 int count;
985
986 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
987 count = btrfs_shared_data_ref_count(leaf, sdref);
86d5f994 988
00142756 989 ret = add_direct_ref(fs_info, preftrees, 0, offset,
3ec4d323 990 bytenr, count, sc, GFP_NOFS);
8da6d581
JS
991 break;
992 }
993 case BTRFS_TREE_BLOCK_REF_KEY:
00142756
JM
994 ret = add_indirect_ref(fs_info, preftrees, offset,
995 NULL, *info_level + 1,
3ec4d323 996 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
997 break;
998 case BTRFS_EXTENT_DATA_REF_KEY: {
999 struct btrfs_extent_data_ref *dref;
1000 int count;
1001 u64 root;
1002
1003 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1004 count = btrfs_extent_data_ref_count(leaf, dref);
1005 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1006 dref);
1007 key.type = BTRFS_EXTENT_DATA_KEY;
1008 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1009
3ec4d323 1010 if (sc && sc->inum && key.objectid != sc->inum) {
dc046b10
JB
1011 ret = BACKREF_FOUND_SHARED;
1012 break;
1013 }
1014
8da6d581 1015 root = btrfs_extent_data_ref_root(leaf, dref);
86d5f994 1016
00142756
JM
1017 ret = add_indirect_ref(fs_info, preftrees, root,
1018 &key, 0, bytenr, count,
3ec4d323 1019 sc, GFP_NOFS);
8da6d581
JS
1020 break;
1021 }
1022 default:
1023 WARN_ON(1);
1024 }
1149ab6b
WS
1025 if (ret)
1026 return ret;
8da6d581
JS
1027 ptr += btrfs_extent_inline_ref_size(type);
1028 }
1029
1030 return 0;
1031}
1032
1033/*
1034 * add all non-inline backrefs for bytenr to the list
3ec4d323
EN
1035 *
1036 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 1037 */
e0c476b1
JM
1038static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1039 struct btrfs_path *path, u64 bytenr,
86d5f994 1040 int info_level, struct preftrees *preftrees,
3ec4d323 1041 struct share_check *sc)
8da6d581
JS
1042{
1043 struct btrfs_root *extent_root = fs_info->extent_root;
1044 int ret;
1045 int slot;
1046 struct extent_buffer *leaf;
1047 struct btrfs_key key;
1048
1049 while (1) {
1050 ret = btrfs_next_item(extent_root, path);
1051 if (ret < 0)
1052 break;
1053 if (ret) {
1054 ret = 0;
1055 break;
1056 }
1057
1058 slot = path->slots[0];
1059 leaf = path->nodes[0];
1060 btrfs_item_key_to_cpu(leaf, &key, slot);
1061
1062 if (key.objectid != bytenr)
1063 break;
1064 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1065 continue;
1066 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1067 break;
1068
1069 switch (key.type) {
1070 case BTRFS_SHARED_BLOCK_REF_KEY:
86d5f994 1071 /* SHARED DIRECT METADATA backref */
00142756
JM
1072 ret = add_direct_ref(fs_info, preftrees,
1073 info_level + 1, key.offset,
3ec4d323 1074 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1075 break;
1076 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 1077 /* SHARED DIRECT FULL backref */
8da6d581
JS
1078 struct btrfs_shared_data_ref *sdref;
1079 int count;
1080
1081 sdref = btrfs_item_ptr(leaf, slot,
1082 struct btrfs_shared_data_ref);
1083 count = btrfs_shared_data_ref_count(leaf, sdref);
00142756
JM
1084 ret = add_direct_ref(fs_info, preftrees, 0,
1085 key.offset, bytenr, count,
3ec4d323 1086 sc, GFP_NOFS);
8da6d581
JS
1087 break;
1088 }
1089 case BTRFS_TREE_BLOCK_REF_KEY:
86d5f994 1090 /* NORMAL INDIRECT METADATA backref */
00142756
JM
1091 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1092 NULL, info_level + 1, bytenr,
3ec4d323 1093 1, NULL, GFP_NOFS);
8da6d581
JS
1094 break;
1095 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 1096 /* NORMAL INDIRECT DATA backref */
8da6d581
JS
1097 struct btrfs_extent_data_ref *dref;
1098 int count;
1099 u64 root;
1100
1101 dref = btrfs_item_ptr(leaf, slot,
1102 struct btrfs_extent_data_ref);
1103 count = btrfs_extent_data_ref_count(leaf, dref);
1104 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1105 dref);
1106 key.type = BTRFS_EXTENT_DATA_KEY;
1107 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1108
3ec4d323 1109 if (sc && sc->inum && key.objectid != sc->inum) {
dc046b10
JB
1110 ret = BACKREF_FOUND_SHARED;
1111 break;
1112 }
1113
8da6d581 1114 root = btrfs_extent_data_ref_root(leaf, dref);
00142756
JM
1115 ret = add_indirect_ref(fs_info, preftrees, root,
1116 &key, 0, bytenr, count,
3ec4d323 1117 sc, GFP_NOFS);
8da6d581
JS
1118 break;
1119 }
1120 default:
1121 WARN_ON(1);
1122 }
1149ab6b
WS
1123 if (ret)
1124 return ret;
1125
8da6d581
JS
1126 }
1127
1128 return ret;
1129}
1130
1131/*
1132 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1133 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1134 * indirect refs to their parent bytenr.
1135 * When roots are found, they're added to the roots list
1136 *
de47c9d3 1137 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
21633fc6
QW
1138 * much like trans == NULL case, the difference only lies in it will not
1139 * commit root.
1140 * The special case is for qgroup to search roots in commit_transaction().
1141 *
3ec4d323
EN
1142 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1143 * shared extent is detected.
1144 *
1145 * Otherwise this returns 0 for success and <0 for an error.
1146 *
c995ab3c
ZB
1147 * If ignore_offset is set to false, only extent refs whose offsets match
1148 * extent_item_pos are returned. If true, every extent ref is returned
1149 * and extent_item_pos is ignored.
1150 *
8da6d581
JS
1151 * FIXME some caching might speed things up
1152 */
1153static int find_parent_nodes(struct btrfs_trans_handle *trans,
1154 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1155 u64 time_seq, struct ulist *refs,
dc046b10 1156 struct ulist *roots, const u64 *extent_item_pos,
c995ab3c 1157 struct share_check *sc, bool ignore_offset)
8da6d581
JS
1158{
1159 struct btrfs_key key;
1160 struct btrfs_path *path;
8da6d581 1161 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 1162 struct btrfs_delayed_ref_head *head;
8da6d581
JS
1163 int info_level = 0;
1164 int ret;
e0c476b1 1165 struct prelim_ref *ref;
86d5f994 1166 struct rb_node *node;
f05c4746 1167 struct extent_inode_elem *eie = NULL;
86d5f994
EN
1168 struct preftrees preftrees = {
1169 .direct = PREFTREE_INIT,
1170 .indirect = PREFTREE_INIT,
1171 .indirect_missing_keys = PREFTREE_INIT
1172 };
8da6d581
JS
1173
1174 key.objectid = bytenr;
8da6d581 1175 key.offset = (u64)-1;
261c84b6
JB
1176 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1177 key.type = BTRFS_METADATA_ITEM_KEY;
1178 else
1179 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
1180
1181 path = btrfs_alloc_path();
1182 if (!path)
1183 return -ENOMEM;
e84752d4 1184 if (!trans) {
da61d31a 1185 path->search_commit_root = 1;
e84752d4
WS
1186 path->skip_locking = 1;
1187 }
8da6d581 1188
de47c9d3 1189 if (time_seq == SEQ_LAST)
21633fc6
QW
1190 path->skip_locking = 1;
1191
8da6d581
JS
1192 /*
1193 * grab both a lock on the path and a lock on the delayed ref head.
1194 * We need both to get a consistent picture of how the refs look
1195 * at a specified point in time
1196 */
1197again:
d3b01064
LZ
1198 head = NULL;
1199
8da6d581
JS
1200 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1201 if (ret < 0)
1202 goto out;
1203 BUG_ON(ret == 0);
1204
faa2dbf0 1205#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
21633fc6 1206 if (trans && likely(trans->type != __TRANS_DUMMY) &&
de47c9d3 1207 time_seq != SEQ_LAST) {
faa2dbf0 1208#else
de47c9d3 1209 if (trans && time_seq != SEQ_LAST) {
faa2dbf0 1210#endif
7a3ae2f8
JS
1211 /*
1212 * look if there are updates for this ref queued and lock the
1213 * head
1214 */
1215 delayed_refs = &trans->transaction->delayed_refs;
1216 spin_lock(&delayed_refs->lock);
f72ad18e 1217 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7a3ae2f8
JS
1218 if (head) {
1219 if (!mutex_trylock(&head->mutex)) {
d278850e 1220 refcount_inc(&head->refs);
7a3ae2f8
JS
1221 spin_unlock(&delayed_refs->lock);
1222
1223 btrfs_release_path(path);
1224
1225 /*
1226 * Mutex was contended, block until it's
1227 * released and try again
1228 */
1229 mutex_lock(&head->mutex);
1230 mutex_unlock(&head->mutex);
d278850e 1231 btrfs_put_delayed_ref_head(head);
7a3ae2f8
JS
1232 goto again;
1233 }
d7df2c79 1234 spin_unlock(&delayed_refs->lock);
00142756 1235 ret = add_delayed_refs(fs_info, head, time_seq,
b25b0b87 1236 &preftrees, sc);
155725c9 1237 mutex_unlock(&head->mutex);
d7df2c79 1238 if (ret)
7a3ae2f8 1239 goto out;
d7df2c79
JB
1240 } else {
1241 spin_unlock(&delayed_refs->lock);
d3b01064 1242 }
8da6d581 1243 }
8da6d581
JS
1244
1245 if (path->slots[0]) {
1246 struct extent_buffer *leaf;
1247 int slot;
1248
dadcaf78 1249 path->slots[0]--;
8da6d581 1250 leaf = path->nodes[0];
dadcaf78 1251 slot = path->slots[0];
8da6d581
JS
1252 btrfs_item_key_to_cpu(leaf, &key, slot);
1253 if (key.objectid == bytenr &&
261c84b6
JB
1254 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1255 key.type == BTRFS_METADATA_ITEM_KEY)) {
00142756 1256 ret = add_inline_refs(fs_info, path, bytenr,
b25b0b87 1257 &info_level, &preftrees, sc);
8da6d581
JS
1258 if (ret)
1259 goto out;
e0c476b1 1260 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
3ec4d323 1261 &preftrees, sc);
8da6d581
JS
1262 if (ret)
1263 goto out;
1264 }
1265 }
8da6d581 1266
86d5f994 1267 btrfs_release_path(path);
8da6d581 1268
38e3eebf 1269 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
d5c88b73
JS
1270 if (ret)
1271 goto out;
1272
ecf160b4 1273 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
8da6d581 1274
86d5f994 1275 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
b25b0b87 1276 extent_item_pos, sc, ignore_offset);
8da6d581
JS
1277 if (ret)
1278 goto out;
1279
ecf160b4 1280 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
8da6d581 1281
86d5f994
EN
1282 /*
1283 * This walks the tree of merged and resolved refs. Tree blocks are
1284 * read in as needed. Unique entries are added to the ulist, and
1285 * the list of found roots is updated.
1286 *
1287 * We release the entire tree in one go before returning.
1288 */
ecf160b4 1289 node = rb_first_cached(&preftrees.direct.root);
86d5f994
EN
1290 while (node) {
1291 ref = rb_entry(node, struct prelim_ref, rbnode);
1292 node = rb_next(&ref->rbnode);
c8195a7b
ZB
1293 /*
1294 * ref->count < 0 can happen here if there are delayed
1295 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1296 * prelim_ref_insert() relies on this when merging
1297 * identical refs to keep the overall count correct.
1298 * prelim_ref_insert() will merge only those refs
1299 * which compare identically. Any refs having
1300 * e.g. different offsets would not be merged,
1301 * and would retain their original ref->count < 0.
1302 */
98cfee21 1303 if (roots && ref->count && ref->root_id && ref->parent == 0) {
3ec4d323
EN
1304 if (sc && sc->root_objectid &&
1305 ref->root_id != sc->root_objectid) {
dc046b10
JB
1306 ret = BACKREF_FOUND_SHARED;
1307 goto out;
1308 }
1309
8da6d581
JS
1310 /* no parent == root of tree */
1311 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1312 if (ret < 0)
1313 goto out;
8da6d581
JS
1314 }
1315 if (ref->count && ref->parent) {
8a56457f
JB
1316 if (extent_item_pos && !ref->inode_list &&
1317 ref->level == 0) {
976b1908 1318 struct extent_buffer *eb;
707e8a07 1319
581c1760
QW
1320 eb = read_tree_block(fs_info, ref->parent, 0,
1321 ref->level, NULL);
64c043de
LB
1322 if (IS_ERR(eb)) {
1323 ret = PTR_ERR(eb);
1324 goto out;
1325 } else if (!extent_buffer_uptodate(eb)) {
416bc658 1326 free_extent_buffer(eb);
c16c2e2e
WS
1327 ret = -EIO;
1328 goto out;
416bc658 1329 }
38e3eebf
JB
1330
1331 if (!path->skip_locking) {
1332 btrfs_tree_read_lock(eb);
1333 btrfs_set_lock_blocking_read(eb);
1334 }
976b1908 1335 ret = find_extent_in_eb(eb, bytenr,
c995ab3c 1336 *extent_item_pos, &eie, ignore_offset);
38e3eebf
JB
1337 if (!path->skip_locking)
1338 btrfs_tree_read_unlock_blocking(eb);
976b1908 1339 free_extent_buffer(eb);
f5929cd8
FDBM
1340 if (ret < 0)
1341 goto out;
1342 ref->inode_list = eie;
976b1908 1343 }
4eb1f66d
TI
1344 ret = ulist_add_merge_ptr(refs, ref->parent,
1345 ref->inode_list,
1346 (void **)&eie, GFP_NOFS);
f1723939
WS
1347 if (ret < 0)
1348 goto out;
3301958b
JS
1349 if (!ret && extent_item_pos) {
1350 /*
1351 * we've recorded that parent, so we must extend
1352 * its inode list here
1353 */
1354 BUG_ON(!eie);
1355 while (eie->next)
1356 eie = eie->next;
1357 eie->next = ref->inode_list;
1358 }
f05c4746 1359 eie = NULL;
8da6d581 1360 }
9dd14fd6 1361 cond_resched();
8da6d581
JS
1362 }
1363
1364out:
8da6d581 1365 btrfs_free_path(path);
86d5f994
EN
1366
1367 prelim_release(&preftrees.direct);
1368 prelim_release(&preftrees.indirect);
1369 prelim_release(&preftrees.indirect_missing_keys);
1370
f05c4746
WS
1371 if (ret < 0)
1372 free_inode_elem_list(eie);
8da6d581
JS
1373 return ret;
1374}
1375
976b1908
JS
1376static void free_leaf_list(struct ulist *blocks)
1377{
1378 struct ulist_node *node = NULL;
1379 struct extent_inode_elem *eie;
976b1908
JS
1380 struct ulist_iterator uiter;
1381
1382 ULIST_ITER_INIT(&uiter);
1383 while ((node = ulist_next(blocks, &uiter))) {
1384 if (!node->aux)
1385 continue;
4dae077a 1386 eie = unode_aux_to_inode_list(node);
f05c4746 1387 free_inode_elem_list(eie);
976b1908
JS
1388 node->aux = 0;
1389 }
1390
1391 ulist_free(blocks);
1392}
1393
8da6d581
JS
1394/*
1395 * Finds all leafs with a reference to the specified combination of bytenr and
1396 * offset. key_list_head will point to a list of corresponding keys (caller must
1397 * free each list element). The leafs will be stored in the leafs ulist, which
1398 * must be freed with ulist_free.
1399 *
1400 * returns 0 on success, <0 on error
1401 */
19b546d7
QW
1402int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1403 struct btrfs_fs_info *fs_info, u64 bytenr,
1404 u64 time_seq, struct ulist **leafs,
1405 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 1406{
8da6d581
JS
1407 int ret;
1408
8da6d581 1409 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1410 if (!*leafs)
8da6d581 1411 return -ENOMEM;
8da6d581 1412
afce772e 1413 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1414 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
8da6d581 1415 if (ret < 0 && ret != -ENOENT) {
976b1908 1416 free_leaf_list(*leafs);
8da6d581
JS
1417 return ret;
1418 }
1419
1420 return 0;
1421}
1422
1423/*
1424 * walk all backrefs for a given extent to find all roots that reference this
1425 * extent. Walking a backref means finding all extents that reference this
1426 * extent and in turn walk the backrefs of those, too. Naturally this is a
1427 * recursive process, but here it is implemented in an iterative fashion: We
1428 * find all referencing extents for the extent in question and put them on a
1429 * list. In turn, we find all referencing extents for those, further appending
1430 * to the list. The way we iterate the list allows adding more elements after
1431 * the current while iterating. The process stops when we reach the end of the
1432 * list. Found roots are added to the roots list.
1433 *
1434 * returns 0 on success, < 0 on error.
1435 */
e0c476b1
JM
1436static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1437 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1438 u64 time_seq, struct ulist **roots,
1439 bool ignore_offset)
8da6d581
JS
1440{
1441 struct ulist *tmp;
1442 struct ulist_node *node = NULL;
cd1b413c 1443 struct ulist_iterator uiter;
8da6d581
JS
1444 int ret;
1445
1446 tmp = ulist_alloc(GFP_NOFS);
1447 if (!tmp)
1448 return -ENOMEM;
1449 *roots = ulist_alloc(GFP_NOFS);
1450 if (!*roots) {
1451 ulist_free(tmp);
1452 return -ENOMEM;
1453 }
1454
cd1b413c 1455 ULIST_ITER_INIT(&uiter);
8da6d581 1456 while (1) {
afce772e 1457 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1458 tmp, *roots, NULL, NULL, ignore_offset);
8da6d581
JS
1459 if (ret < 0 && ret != -ENOENT) {
1460 ulist_free(tmp);
1461 ulist_free(*roots);
1462 return ret;
1463 }
cd1b413c 1464 node = ulist_next(tmp, &uiter);
8da6d581
JS
1465 if (!node)
1466 break;
1467 bytenr = node->val;
bca1a290 1468 cond_resched();
8da6d581
JS
1469 }
1470
1471 ulist_free(tmp);
1472 return 0;
1473}
1474
9e351cc8
JB
1475int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1476 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1477 u64 time_seq, struct ulist **roots,
1478 bool ignore_offset)
9e351cc8
JB
1479{
1480 int ret;
1481
1482 if (!trans)
1483 down_read(&fs_info->commit_root_sem);
e0c476b1 1484 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
c995ab3c 1485 time_seq, roots, ignore_offset);
9e351cc8
JB
1486 if (!trans)
1487 up_read(&fs_info->commit_root_sem);
1488 return ret;
1489}
1490
2c2ed5aa
MF
1491/**
1492 * btrfs_check_shared - tell us whether an extent is shared
1493 *
2c2ed5aa
MF
1494 * btrfs_check_shared uses the backref walking code but will short
1495 * circuit as soon as it finds a root or inode that doesn't match the
1496 * one passed in. This provides a significant performance benefit for
1497 * callers (such as fiemap) which want to know whether the extent is
1498 * shared but do not need a ref count.
1499 *
03628cdb
FM
1500 * This attempts to attach to the running transaction in order to account for
1501 * delayed refs, but continues on even when no running transaction exists.
bb739cf0 1502 *
2c2ed5aa
MF
1503 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1504 */
5911c8fe
DS
1505int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1506 struct ulist *roots, struct ulist *tmp)
dc046b10 1507{
bb739cf0
EN
1508 struct btrfs_fs_info *fs_info = root->fs_info;
1509 struct btrfs_trans_handle *trans;
dc046b10
JB
1510 struct ulist_iterator uiter;
1511 struct ulist_node *node;
3284da7b 1512 struct seq_list elem = SEQ_LIST_INIT(elem);
dc046b10 1513 int ret = 0;
3ec4d323 1514 struct share_check shared = {
4fd786e6 1515 .root_objectid = root->root_key.objectid,
3ec4d323
EN
1516 .inum = inum,
1517 .share_count = 0,
1518 };
dc046b10 1519
5911c8fe
DS
1520 ulist_init(roots);
1521 ulist_init(tmp);
dc046b10 1522
a6d155d2 1523 trans = btrfs_join_transaction_nostart(root);
bb739cf0 1524 if (IS_ERR(trans)) {
03628cdb
FM
1525 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1526 ret = PTR_ERR(trans);
1527 goto out;
1528 }
bb739cf0 1529 trans = NULL;
dc046b10 1530 down_read(&fs_info->commit_root_sem);
bb739cf0
EN
1531 } else {
1532 btrfs_get_tree_mod_seq(fs_info, &elem);
1533 }
1534
dc046b10
JB
1535 ULIST_ITER_INIT(&uiter);
1536 while (1) {
1537 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
c995ab3c 1538 roots, NULL, &shared, false);
dc046b10 1539 if (ret == BACKREF_FOUND_SHARED) {
2c2ed5aa 1540 /* this is the only condition under which we return 1 */
dc046b10
JB
1541 ret = 1;
1542 break;
1543 }
1544 if (ret < 0 && ret != -ENOENT)
1545 break;
2c2ed5aa 1546 ret = 0;
dc046b10
JB
1547 node = ulist_next(tmp, &uiter);
1548 if (!node)
1549 break;
1550 bytenr = node->val;
18bf591b 1551 shared.share_count = 0;
dc046b10
JB
1552 cond_resched();
1553 }
bb739cf0
EN
1554
1555 if (trans) {
dc046b10 1556 btrfs_put_tree_mod_seq(fs_info, &elem);
bb739cf0
EN
1557 btrfs_end_transaction(trans);
1558 } else {
dc046b10 1559 up_read(&fs_info->commit_root_sem);
bb739cf0 1560 }
03628cdb 1561out:
5911c8fe
DS
1562 ulist_release(roots);
1563 ulist_release(tmp);
dc046b10
JB
1564 return ret;
1565}
1566
f186373f
MF
1567int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1568 u64 start_off, struct btrfs_path *path,
1569 struct btrfs_inode_extref **ret_extref,
1570 u64 *found_off)
1571{
1572 int ret, slot;
1573 struct btrfs_key key;
1574 struct btrfs_key found_key;
1575 struct btrfs_inode_extref *extref;
73980bec 1576 const struct extent_buffer *leaf;
f186373f
MF
1577 unsigned long ptr;
1578
1579 key.objectid = inode_objectid;
962a298f 1580 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
1581 key.offset = start_off;
1582
1583 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1584 if (ret < 0)
1585 return ret;
1586
1587 while (1) {
1588 leaf = path->nodes[0];
1589 slot = path->slots[0];
1590 if (slot >= btrfs_header_nritems(leaf)) {
1591 /*
1592 * If the item at offset is not found,
1593 * btrfs_search_slot will point us to the slot
1594 * where it should be inserted. In our case
1595 * that will be the slot directly before the
1596 * next INODE_REF_KEY_V2 item. In the case
1597 * that we're pointing to the last slot in a
1598 * leaf, we must move one leaf over.
1599 */
1600 ret = btrfs_next_leaf(root, path);
1601 if (ret) {
1602 if (ret >= 1)
1603 ret = -ENOENT;
1604 break;
1605 }
1606 continue;
1607 }
1608
1609 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1610
1611 /*
1612 * Check that we're still looking at an extended ref key for
1613 * this particular objectid. If we have different
1614 * objectid or type then there are no more to be found
1615 * in the tree and we can exit.
1616 */
1617 ret = -ENOENT;
1618 if (found_key.objectid != inode_objectid)
1619 break;
962a298f 1620 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
1621 break;
1622
1623 ret = 0;
1624 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1625 extref = (struct btrfs_inode_extref *)ptr;
1626 *ret_extref = extref;
1627 if (found_off)
1628 *found_off = found_key.offset;
1629 break;
1630 }
1631
1632 return ret;
1633}
1634
48a3b636
ES
1635/*
1636 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1637 * Elements of the path are separated by '/' and the path is guaranteed to be
1638 * 0-terminated. the path is only given within the current file system.
1639 * Therefore, it never starts with a '/'. the caller is responsible to provide
1640 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1641 * the start point of the resulting string is returned. this pointer is within
1642 * dest, normally.
1643 * in case the path buffer would overflow, the pointer is decremented further
1644 * as if output was written to the buffer, though no more output is actually
1645 * generated. that way, the caller can determine how much space would be
1646 * required for the path to fit into the buffer. in that case, the returned
1647 * value will be smaller than dest. callers must check this!
1648 */
96b5bd77
JS
1649char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1650 u32 name_len, unsigned long name_off,
1651 struct extent_buffer *eb_in, u64 parent,
1652 char *dest, u32 size)
a542ad1b 1653{
a542ad1b
JS
1654 int slot;
1655 u64 next_inum;
1656 int ret;
661bec6b 1657 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1658 struct extent_buffer *eb = eb_in;
1659 struct btrfs_key found_key;
b916a59a 1660 int leave_spinning = path->leave_spinning;
d24bec3a 1661 struct btrfs_inode_ref *iref;
a542ad1b
JS
1662
1663 if (bytes_left >= 0)
1664 dest[bytes_left] = '\0';
1665
b916a59a 1666 path->leave_spinning = 1;
a542ad1b 1667 while (1) {
d24bec3a 1668 bytes_left -= name_len;
a542ad1b
JS
1669 if (bytes_left >= 0)
1670 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1671 name_off, name_len);
b916a59a 1672 if (eb != eb_in) {
0c0fe3b0
FM
1673 if (!path->skip_locking)
1674 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1675 free_extent_buffer(eb);
b916a59a 1676 }
c234a24d
DS
1677 ret = btrfs_find_item(fs_root, path, parent, 0,
1678 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
1679 if (ret > 0)
1680 ret = -ENOENT;
a542ad1b
JS
1681 if (ret)
1682 break;
d24bec3a 1683
a542ad1b
JS
1684 next_inum = found_key.offset;
1685
1686 /* regular exit ahead */
1687 if (parent == next_inum)
1688 break;
1689
1690 slot = path->slots[0];
1691 eb = path->nodes[0];
1692 /* make sure we can use eb after releasing the path */
b916a59a 1693 if (eb != eb_in) {
0c0fe3b0 1694 if (!path->skip_locking)
300aa896 1695 btrfs_set_lock_blocking_read(eb);
0c0fe3b0
FM
1696 path->nodes[0] = NULL;
1697 path->locks[0] = 0;
b916a59a 1698 }
a542ad1b 1699 btrfs_release_path(path);
a542ad1b 1700 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1701
1702 name_len = btrfs_inode_ref_name_len(eb, iref);
1703 name_off = (unsigned long)(iref + 1);
1704
a542ad1b
JS
1705 parent = next_inum;
1706 --bytes_left;
1707 if (bytes_left >= 0)
1708 dest[bytes_left] = '/';
1709 }
1710
1711 btrfs_release_path(path);
b916a59a 1712 path->leave_spinning = leave_spinning;
a542ad1b
JS
1713
1714 if (ret)
1715 return ERR_PTR(ret);
1716
1717 return dest + bytes_left;
1718}
1719
1720/*
1721 * this makes the path point to (logical EXTENT_ITEM *)
1722 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1723 * tree blocks and <0 on error.
1724 */
1725int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1726 struct btrfs_path *path, struct btrfs_key *found_key,
1727 u64 *flags_ret)
a542ad1b
JS
1728{
1729 int ret;
1730 u64 flags;
261c84b6 1731 u64 size = 0;
a542ad1b 1732 u32 item_size;
73980bec 1733 const struct extent_buffer *eb;
a542ad1b
JS
1734 struct btrfs_extent_item *ei;
1735 struct btrfs_key key;
1736
261c84b6
JB
1737 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1738 key.type = BTRFS_METADATA_ITEM_KEY;
1739 else
1740 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1741 key.objectid = logical;
1742 key.offset = (u64)-1;
1743
1744 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1745 if (ret < 0)
1746 return ret;
a542ad1b 1747
850a8cdf
WS
1748 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1749 if (ret) {
1750 if (ret > 0)
1751 ret = -ENOENT;
1752 return ret;
580f0a67 1753 }
850a8cdf 1754 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 1755 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
da17066c 1756 size = fs_info->nodesize;
261c84b6
JB
1757 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1758 size = found_key->offset;
1759
580f0a67 1760 if (found_key->objectid > logical ||
261c84b6 1761 found_key->objectid + size <= logical) {
ab8d0fc4
JM
1762 btrfs_debug(fs_info,
1763 "logical %llu is not within any extent", logical);
a542ad1b 1764 return -ENOENT;
4692cf58 1765 }
a542ad1b
JS
1766
1767 eb = path->nodes[0];
1768 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1769 BUG_ON(item_size < sizeof(*ei));
1770
1771 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1772 flags = btrfs_extent_flags(eb, ei);
1773
ab8d0fc4
JM
1774 btrfs_debug(fs_info,
1775 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
c1c9ff7c
GU
1776 logical, logical - found_key->objectid, found_key->objectid,
1777 found_key->offset, flags, item_size);
69917e43
LB
1778
1779 WARN_ON(!flags_ret);
1780 if (flags_ret) {
1781 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1782 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1783 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1784 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1785 else
290342f6 1786 BUG();
69917e43
LB
1787 return 0;
1788 }
a542ad1b
JS
1789
1790 return -EIO;
1791}
1792
1793/*
1794 * helper function to iterate extent inline refs. ptr must point to a 0 value
1795 * for the first call and may be modified. it is used to track state.
1796 * if more refs exist, 0 is returned and the next call to
e0c476b1 1797 * get_extent_inline_ref must pass the modified ptr parameter to get the
a542ad1b
JS
1798 * next ref. after the last ref was processed, 1 is returned.
1799 * returns <0 on error
1800 */
e0c476b1
JM
1801static int get_extent_inline_ref(unsigned long *ptr,
1802 const struct extent_buffer *eb,
1803 const struct btrfs_key *key,
1804 const struct btrfs_extent_item *ei,
1805 u32 item_size,
1806 struct btrfs_extent_inline_ref **out_eiref,
1807 int *out_type)
a542ad1b
JS
1808{
1809 unsigned long end;
1810 u64 flags;
1811 struct btrfs_tree_block_info *info;
1812
1813 if (!*ptr) {
1814 /* first call */
1815 flags = btrfs_extent_flags(eb, ei);
1816 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
1817 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1818 /* a skinny metadata extent */
1819 *out_eiref =
1820 (struct btrfs_extent_inline_ref *)(ei + 1);
1821 } else {
1822 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1823 info = (struct btrfs_tree_block_info *)(ei + 1);
1824 *out_eiref =
1825 (struct btrfs_extent_inline_ref *)(info + 1);
1826 }
a542ad1b
JS
1827 } else {
1828 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1829 }
1830 *ptr = (unsigned long)*out_eiref;
cd857dd6 1831 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
1832 return -ENOENT;
1833 }
1834
1835 end = (unsigned long)ei + item_size;
6eda71d0 1836 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
3de28d57
LB
1837 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1838 BTRFS_REF_TYPE_ANY);
1839 if (*out_type == BTRFS_REF_TYPE_INVALID)
af431dcb 1840 return -EUCLEAN;
a542ad1b
JS
1841
1842 *ptr += btrfs_extent_inline_ref_size(*out_type);
1843 WARN_ON(*ptr > end);
1844 if (*ptr == end)
1845 return 1; /* last */
1846
1847 return 0;
1848}
1849
1850/*
1851 * reads the tree block backref for an extent. tree level and root are returned
1852 * through out_level and out_root. ptr must point to a 0 value for the first
e0c476b1 1853 * call and may be modified (see get_extent_inline_ref comment).
a542ad1b
JS
1854 * returns 0 if data was provided, 1 if there was no more data to provide or
1855 * <0 on error.
1856 */
1857int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
1858 struct btrfs_key *key, struct btrfs_extent_item *ei,
1859 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
1860{
1861 int ret;
1862 int type;
a542ad1b
JS
1863 struct btrfs_extent_inline_ref *eiref;
1864
1865 if (*ptr == (unsigned long)-1)
1866 return 1;
1867
1868 while (1) {
e0c476b1 1869 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
6eda71d0 1870 &eiref, &type);
a542ad1b
JS
1871 if (ret < 0)
1872 return ret;
1873
1874 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1875 type == BTRFS_SHARED_BLOCK_REF_KEY)
1876 break;
1877
1878 if (ret == 1)
1879 return 1;
1880 }
1881
1882 /* we can treat both ref types equally here */
a542ad1b 1883 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
1884
1885 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1886 struct btrfs_tree_block_info *info;
1887
1888 info = (struct btrfs_tree_block_info *)(ei + 1);
1889 *out_level = btrfs_tree_block_level(eb, info);
1890 } else {
1891 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1892 *out_level = (u8)key->offset;
1893 }
a542ad1b
JS
1894
1895 if (ret == 1)
1896 *ptr = (unsigned long)-1;
1897
1898 return 0;
1899}
1900
ab8d0fc4
JM
1901static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1902 struct extent_inode_elem *inode_list,
1903 u64 root, u64 extent_item_objectid,
1904 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1905{
976b1908 1906 struct extent_inode_elem *eie;
4692cf58 1907 int ret = 0;
4692cf58 1908
976b1908 1909 for (eie = inode_list; eie; eie = eie->next) {
ab8d0fc4
JM
1910 btrfs_debug(fs_info,
1911 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1912 extent_item_objectid, eie->inum,
1913 eie->offset, root);
976b1908 1914 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1915 if (ret) {
ab8d0fc4
JM
1916 btrfs_debug(fs_info,
1917 "stopping iteration for %llu due to ret=%d",
1918 extent_item_objectid, ret);
4692cf58
JS
1919 break;
1920 }
a542ad1b
JS
1921 }
1922
a542ad1b
JS
1923 return ret;
1924}
1925
1926/*
1927 * calls iterate() for every inode that references the extent identified by
4692cf58 1928 * the given parameters.
a542ad1b
JS
1929 * when the iterator function returns a non-zero value, iteration stops.
1930 */
1931int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1932 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1933 int search_commit_root,
c995ab3c
ZB
1934 iterate_extent_inodes_t *iterate, void *ctx,
1935 bool ignore_offset)
a542ad1b 1936{
a542ad1b 1937 int ret;
da61d31a 1938 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1939 struct ulist *refs = NULL;
1940 struct ulist *roots = NULL;
4692cf58
JS
1941 struct ulist_node *ref_node = NULL;
1942 struct ulist_node *root_node = NULL;
3284da7b 1943 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
cd1b413c
JS
1944 struct ulist_iterator ref_uiter;
1945 struct ulist_iterator root_uiter;
a542ad1b 1946
ab8d0fc4 1947 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
4692cf58 1948 extent_item_objectid);
a542ad1b 1949
da61d31a 1950 if (!search_commit_root) {
bfc61c36
FM
1951 trans = btrfs_attach_transaction(fs_info->extent_root);
1952 if (IS_ERR(trans)) {
1953 if (PTR_ERR(trans) != -ENOENT &&
1954 PTR_ERR(trans) != -EROFS)
1955 return PTR_ERR(trans);
1956 trans = NULL;
1957 }
1958 }
1959
1960 if (trans)
8445f61c 1961 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
bfc61c36 1962 else
9e351cc8 1963 down_read(&fs_info->commit_root_sem);
a542ad1b 1964
4692cf58 1965 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1966 tree_mod_seq_elem.seq, &refs,
c995ab3c 1967 &extent_item_pos, ignore_offset);
4692cf58
JS
1968 if (ret)
1969 goto out;
a542ad1b 1970
cd1b413c
JS
1971 ULIST_ITER_INIT(&ref_uiter);
1972 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
e0c476b1 1973 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
c995ab3c
ZB
1974 tree_mod_seq_elem.seq, &roots,
1975 ignore_offset);
4692cf58
JS
1976 if (ret)
1977 break;
cd1b413c
JS
1978 ULIST_ITER_INIT(&root_uiter);
1979 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
ab8d0fc4
JM
1980 btrfs_debug(fs_info,
1981 "root %llu references leaf %llu, data list %#llx",
1982 root_node->val, ref_node->val,
1983 ref_node->aux);
1984 ret = iterate_leaf_refs(fs_info,
1985 (struct extent_inode_elem *)
995e01b7
JS
1986 (uintptr_t)ref_node->aux,
1987 root_node->val,
1988 extent_item_objectid,
1989 iterate, ctx);
4692cf58 1990 }
976b1908 1991 ulist_free(roots);
a542ad1b
JS
1992 }
1993
976b1908 1994 free_leaf_list(refs);
4692cf58 1995out:
bfc61c36 1996 if (trans) {
8445f61c 1997 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
3a45bb20 1998 btrfs_end_transaction(trans);
9e351cc8
JB
1999 } else {
2000 up_read(&fs_info->commit_root_sem);
7a3ae2f8
JS
2001 }
2002
a542ad1b
JS
2003 return ret;
2004}
2005
2006int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2007 struct btrfs_path *path,
c995ab3c
ZB
2008 iterate_extent_inodes_t *iterate, void *ctx,
2009 bool ignore_offset)
a542ad1b
JS
2010{
2011 int ret;
4692cf58 2012 u64 extent_item_pos;
69917e43 2013 u64 flags = 0;
a542ad1b 2014 struct btrfs_key found_key;
7a3ae2f8 2015 int search_commit_root = path->search_commit_root;
a542ad1b 2016
69917e43 2017 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 2018 btrfs_release_path(path);
a542ad1b
JS
2019 if (ret < 0)
2020 return ret;
69917e43 2021 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 2022 return -EINVAL;
a542ad1b 2023
4692cf58 2024 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
2025 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2026 extent_item_pos, search_commit_root,
c995ab3c 2027 iterate, ctx, ignore_offset);
a542ad1b
JS
2028
2029 return ret;
2030}
2031
d24bec3a
MF
2032typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2033 struct extent_buffer *eb, void *ctx);
2034
2035static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2036 struct btrfs_path *path,
2037 iterate_irefs_t *iterate, void *ctx)
a542ad1b 2038{
aefc1eb1 2039 int ret = 0;
a542ad1b
JS
2040 int slot;
2041 u32 cur;
2042 u32 len;
2043 u32 name_len;
2044 u64 parent = 0;
2045 int found = 0;
2046 struct extent_buffer *eb;
2047 struct btrfs_item *item;
2048 struct btrfs_inode_ref *iref;
2049 struct btrfs_key found_key;
2050
aefc1eb1 2051 while (!ret) {
c234a24d
DS
2052 ret = btrfs_find_item(fs_root, path, inum,
2053 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2054 &found_key);
2055
a542ad1b
JS
2056 if (ret < 0)
2057 break;
2058 if (ret) {
2059 ret = found ? 0 : -ENOENT;
2060 break;
2061 }
2062 ++found;
2063
2064 parent = found_key.offset;
2065 slot = path->slots[0];
3fe81ce2
FDBM
2066 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2067 if (!eb) {
2068 ret = -ENOMEM;
2069 break;
2070 }
a542ad1b
JS
2071 btrfs_release_path(path);
2072
dd3cc16b 2073 item = btrfs_item_nr(slot);
a542ad1b
JS
2074 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2075
2076 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2077 name_len = btrfs_inode_ref_name_len(eb, iref);
2078 /* path must be released before calling iterate()! */
ab8d0fc4
JM
2079 btrfs_debug(fs_root->fs_info,
2080 "following ref at offset %u for inode %llu in tree %llu",
4fd786e6
MT
2081 cur, found_key.objectid,
2082 fs_root->root_key.objectid);
d24bec3a
MF
2083 ret = iterate(parent, name_len,
2084 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 2085 if (ret)
a542ad1b 2086 break;
a542ad1b
JS
2087 len = sizeof(*iref) + name_len;
2088 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2089 }
2090 free_extent_buffer(eb);
2091 }
2092
2093 btrfs_release_path(path);
2094
2095 return ret;
2096}
2097
d24bec3a
MF
2098static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2099 struct btrfs_path *path,
2100 iterate_irefs_t *iterate, void *ctx)
2101{
2102 int ret;
2103 int slot;
2104 u64 offset = 0;
2105 u64 parent;
2106 int found = 0;
2107 struct extent_buffer *eb;
2108 struct btrfs_inode_extref *extref;
d24bec3a
MF
2109 u32 item_size;
2110 u32 cur_offset;
2111 unsigned long ptr;
2112
2113 while (1) {
2114 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2115 &offset);
2116 if (ret < 0)
2117 break;
2118 if (ret) {
2119 ret = found ? 0 : -ENOENT;
2120 break;
2121 }
2122 ++found;
2123
2124 slot = path->slots[0];
3fe81ce2
FDBM
2125 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2126 if (!eb) {
2127 ret = -ENOMEM;
2128 break;
2129 }
d24bec3a
MF
2130 btrfs_release_path(path);
2131
2849a854
CM
2132 item_size = btrfs_item_size_nr(eb, slot);
2133 ptr = btrfs_item_ptr_offset(eb, slot);
d24bec3a
MF
2134 cur_offset = 0;
2135
2136 while (cur_offset < item_size) {
2137 u32 name_len;
2138
2139 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2140 parent = btrfs_inode_extref_parent(eb, extref);
2141 name_len = btrfs_inode_extref_name_len(eb, extref);
2142 ret = iterate(parent, name_len,
2143 (unsigned long)&extref->name, eb, ctx);
2144 if (ret)
2145 break;
2146
2849a854 2147 cur_offset += btrfs_inode_extref_name_len(eb, extref);
d24bec3a
MF
2148 cur_offset += sizeof(*extref);
2149 }
d24bec3a
MF
2150 free_extent_buffer(eb);
2151
2152 offset++;
2153 }
2154
2155 btrfs_release_path(path);
2156
2157 return ret;
2158}
2159
2160static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2161 struct btrfs_path *path, iterate_irefs_t *iterate,
2162 void *ctx)
2163{
2164 int ret;
2165 int found_refs = 0;
2166
2167 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2168 if (!ret)
2169 ++found_refs;
2170 else if (ret != -ENOENT)
2171 return ret;
2172
2173 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2174 if (ret == -ENOENT && found_refs)
2175 return 0;
2176
2177 return ret;
2178}
2179
a542ad1b
JS
2180/*
2181 * returns 0 if the path could be dumped (probably truncated)
2182 * returns <0 in case of an error
2183 */
d24bec3a
MF
2184static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2185 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
2186{
2187 struct inode_fs_paths *ipath = ctx;
2188 char *fspath;
2189 char *fspath_min;
2190 int i = ipath->fspath->elem_cnt;
2191 const int s_ptr = sizeof(char *);
2192 u32 bytes_left;
2193
2194 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2195 ipath->fspath->bytes_left - s_ptr : 0;
2196
740c3d22 2197 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
2198 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2199 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
2200 if (IS_ERR(fspath))
2201 return PTR_ERR(fspath);
2202
2203 if (fspath > fspath_min) {
745c4d8e 2204 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
2205 ++ipath->fspath->elem_cnt;
2206 ipath->fspath->bytes_left = fspath - fspath_min;
2207 } else {
2208 ++ipath->fspath->elem_missed;
2209 ipath->fspath->bytes_missing += fspath_min - fspath;
2210 ipath->fspath->bytes_left = 0;
2211 }
2212
2213 return 0;
2214}
2215
2216/*
2217 * this dumps all file system paths to the inode into the ipath struct, provided
2218 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 2219 * from ipath->fspath->val[i].
a542ad1b 2220 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 2221 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
01327610 2222 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
a542ad1b
JS
2223 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2224 * have been needed to return all paths.
2225 */
2226int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2227{
2228 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 2229 inode_to_path, ipath);
a542ad1b
JS
2230}
2231
a542ad1b
JS
2232struct btrfs_data_container *init_data_container(u32 total_bytes)
2233{
2234 struct btrfs_data_container *data;
2235 size_t alloc_bytes;
2236
2237 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
f54de068 2238 data = kvmalloc(alloc_bytes, GFP_KERNEL);
a542ad1b
JS
2239 if (!data)
2240 return ERR_PTR(-ENOMEM);
2241
2242 if (total_bytes >= sizeof(*data)) {
2243 data->bytes_left = total_bytes - sizeof(*data);
2244 data->bytes_missing = 0;
2245 } else {
2246 data->bytes_missing = sizeof(*data) - total_bytes;
2247 data->bytes_left = 0;
2248 }
2249
2250 data->elem_cnt = 0;
2251 data->elem_missed = 0;
2252
2253 return data;
2254}
2255
2256/*
2257 * allocates space to return multiple file system paths for an inode.
2258 * total_bytes to allocate are passed, note that space usable for actual path
2259 * information will be total_bytes - sizeof(struct inode_fs_paths).
2260 * the returned pointer must be freed with free_ipath() in the end.
2261 */
2262struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2263 struct btrfs_path *path)
2264{
2265 struct inode_fs_paths *ifp;
2266 struct btrfs_data_container *fspath;
2267
2268 fspath = init_data_container(total_bytes);
2269 if (IS_ERR(fspath))
afc6961f 2270 return ERR_CAST(fspath);
a542ad1b 2271
f54de068 2272 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
a542ad1b 2273 if (!ifp) {
f54de068 2274 kvfree(fspath);
a542ad1b
JS
2275 return ERR_PTR(-ENOMEM);
2276 }
2277
2278 ifp->btrfs_path = path;
2279 ifp->fspath = fspath;
2280 ifp->fs_root = fs_root;
2281
2282 return ifp;
2283}
2284
2285void free_ipath(struct inode_fs_paths *ipath)
2286{
4735fb28
JJ
2287 if (!ipath)
2288 return;
f54de068 2289 kvfree(ipath->fspath);
a542ad1b
JS
2290 kfree(ipath);
2291}