btrfs: wire up iter_file_splice_write
[linux-block.git] / fs / btrfs / backref.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a542ad1b
JS
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
a542ad1b
JS
4 */
5
f54de068 6#include <linux/mm.h>
afce772e 7#include <linux/rbtree.h>
00142756 8#include <trace/events/btrfs.h>
a542ad1b
JS
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
8da6d581
JS
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
b916a59a 15#include "locking.h"
1b60d2ec 16#include "misc.h"
a542ad1b 17
dc046b10
JB
18/* Just an arbitrary number so we can be sure this happened */
19#define BACKREF_FOUND_SHARED 6
20
976b1908
JS
21struct extent_inode_elem {
22 u64 inum;
23 u64 offset;
24 struct extent_inode_elem *next;
25};
26
73980bec
JM
27static int check_extent_in_eb(const struct btrfs_key *key,
28 const struct extent_buffer *eb,
29 const struct btrfs_file_extent_item *fi,
30 u64 extent_item_pos,
c995ab3c
ZB
31 struct extent_inode_elem **eie,
32 bool ignore_offset)
976b1908 33{
8ca15e05 34 u64 offset = 0;
976b1908
JS
35 struct extent_inode_elem *e;
36
c995ab3c
ZB
37 if (!ignore_offset &&
38 !btrfs_file_extent_compression(eb, fi) &&
8ca15e05
JB
39 !btrfs_file_extent_encryption(eb, fi) &&
40 !btrfs_file_extent_other_encoding(eb, fi)) {
41 u64 data_offset;
42 u64 data_len;
976b1908 43
8ca15e05
JB
44 data_offset = btrfs_file_extent_offset(eb, fi);
45 data_len = btrfs_file_extent_num_bytes(eb, fi);
46
47 if (extent_item_pos < data_offset ||
48 extent_item_pos >= data_offset + data_len)
49 return 1;
50 offset = extent_item_pos - data_offset;
51 }
976b1908
JS
52
53 e = kmalloc(sizeof(*e), GFP_NOFS);
54 if (!e)
55 return -ENOMEM;
56
57 e->next = *eie;
58 e->inum = key->objectid;
8ca15e05 59 e->offset = key->offset + offset;
976b1908
JS
60 *eie = e;
61
62 return 0;
63}
64
f05c4746
WS
65static void free_inode_elem_list(struct extent_inode_elem *eie)
66{
67 struct extent_inode_elem *eie_next;
68
69 for (; eie; eie = eie_next) {
70 eie_next = eie->next;
71 kfree(eie);
72 }
73}
74
73980bec
JM
75static int find_extent_in_eb(const struct extent_buffer *eb,
76 u64 wanted_disk_byte, u64 extent_item_pos,
c995ab3c
ZB
77 struct extent_inode_elem **eie,
78 bool ignore_offset)
976b1908
JS
79{
80 u64 disk_byte;
81 struct btrfs_key key;
82 struct btrfs_file_extent_item *fi;
83 int slot;
84 int nritems;
85 int extent_type;
86 int ret;
87
88 /*
89 * from the shared data ref, we only have the leaf but we need
90 * the key. thus, we must look into all items and see that we
91 * find one (some) with a reference to our extent item.
92 */
93 nritems = btrfs_header_nritems(eb);
94 for (slot = 0; slot < nritems; ++slot) {
95 btrfs_item_key_to_cpu(eb, &key, slot);
96 if (key.type != BTRFS_EXTENT_DATA_KEY)
97 continue;
98 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
99 extent_type = btrfs_file_extent_type(eb, fi);
100 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
101 continue;
102 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
103 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
104 if (disk_byte != wanted_disk_byte)
105 continue;
106
c995ab3c 107 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
976b1908
JS
108 if (ret < 0)
109 return ret;
110 }
111
112 return 0;
113}
114
86d5f994 115struct preftree {
ecf160b4 116 struct rb_root_cached root;
6c336b21 117 unsigned int count;
86d5f994
EN
118};
119
ecf160b4 120#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
86d5f994
EN
121
122struct preftrees {
123 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
124 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
125 struct preftree indirect_missing_keys;
126};
127
3ec4d323
EN
128/*
129 * Checks for a shared extent during backref search.
130 *
131 * The share_count tracks prelim_refs (direct and indirect) having a
132 * ref->count >0:
133 * - incremented when a ref->count transitions to >0
134 * - decremented when a ref->count transitions to <1
135 */
136struct share_check {
137 u64 root_objectid;
138 u64 inum;
139 int share_count;
140};
141
142static inline int extent_is_shared(struct share_check *sc)
143{
144 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
145}
146
b9e9a6cb
WS
147static struct kmem_cache *btrfs_prelim_ref_cache;
148
149int __init btrfs_prelim_ref_init(void)
150{
151 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
e0c476b1 152 sizeof(struct prelim_ref),
b9e9a6cb 153 0,
fba4b697 154 SLAB_MEM_SPREAD,
b9e9a6cb
WS
155 NULL);
156 if (!btrfs_prelim_ref_cache)
157 return -ENOMEM;
158 return 0;
159}
160
e67c718b 161void __cold btrfs_prelim_ref_exit(void)
b9e9a6cb 162{
5598e900 163 kmem_cache_destroy(btrfs_prelim_ref_cache);
b9e9a6cb
WS
164}
165
86d5f994
EN
166static void free_pref(struct prelim_ref *ref)
167{
168 kmem_cache_free(btrfs_prelim_ref_cache, ref);
169}
170
171/*
172 * Return 0 when both refs are for the same block (and can be merged).
173 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
174 * indicates a 'higher' block.
175 */
176static int prelim_ref_compare(struct prelim_ref *ref1,
177 struct prelim_ref *ref2)
178{
179 if (ref1->level < ref2->level)
180 return -1;
181 if (ref1->level > ref2->level)
182 return 1;
183 if (ref1->root_id < ref2->root_id)
184 return -1;
185 if (ref1->root_id > ref2->root_id)
186 return 1;
187 if (ref1->key_for_search.type < ref2->key_for_search.type)
188 return -1;
189 if (ref1->key_for_search.type > ref2->key_for_search.type)
190 return 1;
191 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
192 return -1;
193 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
194 return 1;
195 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
196 return -1;
197 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
198 return 1;
199 if (ref1->parent < ref2->parent)
200 return -1;
201 if (ref1->parent > ref2->parent)
202 return 1;
203
204 return 0;
205}
206
ccc8dc75
CIK
207static void update_share_count(struct share_check *sc, int oldcount,
208 int newcount)
3ec4d323
EN
209{
210 if ((!sc) || (oldcount == 0 && newcount < 1))
211 return;
212
213 if (oldcount > 0 && newcount < 1)
214 sc->share_count--;
215 else if (oldcount < 1 && newcount > 0)
216 sc->share_count++;
217}
218
86d5f994
EN
219/*
220 * Add @newref to the @root rbtree, merging identical refs.
221 *
3ec4d323 222 * Callers should assume that newref has been freed after calling.
86d5f994 223 */
00142756
JM
224static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
225 struct preftree *preftree,
3ec4d323
EN
226 struct prelim_ref *newref,
227 struct share_check *sc)
86d5f994 228{
ecf160b4 229 struct rb_root_cached *root;
86d5f994
EN
230 struct rb_node **p;
231 struct rb_node *parent = NULL;
232 struct prelim_ref *ref;
233 int result;
ecf160b4 234 bool leftmost = true;
86d5f994
EN
235
236 root = &preftree->root;
ecf160b4 237 p = &root->rb_root.rb_node;
86d5f994
EN
238
239 while (*p) {
240 parent = *p;
241 ref = rb_entry(parent, struct prelim_ref, rbnode);
242 result = prelim_ref_compare(ref, newref);
243 if (result < 0) {
244 p = &(*p)->rb_left;
245 } else if (result > 0) {
246 p = &(*p)->rb_right;
ecf160b4 247 leftmost = false;
86d5f994
EN
248 } else {
249 /* Identical refs, merge them and free @newref */
250 struct extent_inode_elem *eie = ref->inode_list;
251
252 while (eie && eie->next)
253 eie = eie->next;
254
255 if (!eie)
256 ref->inode_list = newref->inode_list;
257 else
258 eie->next = newref->inode_list;
00142756
JM
259 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
260 preftree->count);
3ec4d323
EN
261 /*
262 * A delayed ref can have newref->count < 0.
263 * The ref->count is updated to follow any
264 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
265 */
266 update_share_count(sc, ref->count,
267 ref->count + newref->count);
86d5f994
EN
268 ref->count += newref->count;
269 free_pref(newref);
270 return;
271 }
272 }
273
3ec4d323 274 update_share_count(sc, 0, newref->count);
6c336b21 275 preftree->count++;
00142756 276 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
86d5f994 277 rb_link_node(&newref->rbnode, parent, p);
ecf160b4 278 rb_insert_color_cached(&newref->rbnode, root, leftmost);
86d5f994
EN
279}
280
281/*
282 * Release the entire tree. We don't care about internal consistency so
283 * just free everything and then reset the tree root.
284 */
285static void prelim_release(struct preftree *preftree)
286{
287 struct prelim_ref *ref, *next_ref;
288
ecf160b4
LB
289 rbtree_postorder_for_each_entry_safe(ref, next_ref,
290 &preftree->root.rb_root, rbnode)
86d5f994
EN
291 free_pref(ref);
292
ecf160b4 293 preftree->root = RB_ROOT_CACHED;
6c336b21 294 preftree->count = 0;
86d5f994
EN
295}
296
d5c88b73
JS
297/*
298 * the rules for all callers of this function are:
299 * - obtaining the parent is the goal
300 * - if you add a key, you must know that it is a correct key
301 * - if you cannot add the parent or a correct key, then we will look into the
302 * block later to set a correct key
303 *
304 * delayed refs
305 * ============
306 * backref type | shared | indirect | shared | indirect
307 * information | tree | tree | data | data
308 * --------------------+--------+----------+--------+----------
309 * parent logical | y | - | - | -
310 * key to resolve | - | y | y | y
311 * tree block logical | - | - | - | -
312 * root for resolving | y | y | y | y
313 *
314 * - column 1: we've the parent -> done
315 * - column 2, 3, 4: we use the key to find the parent
316 *
317 * on disk refs (inline or keyed)
318 * ==============================
319 * backref type | shared | indirect | shared | indirect
320 * information | tree | tree | data | data
321 * --------------------+--------+----------+--------+----------
322 * parent logical | y | - | y | -
323 * key to resolve | - | - | - | y
324 * tree block logical | y | y | y | y
325 * root for resolving | - | y | y | y
326 *
327 * - column 1, 3: we've the parent -> done
328 * - column 2: we take the first key from the block to find the parent
e0c476b1 329 * (see add_missing_keys)
d5c88b73
JS
330 * - column 4: we use the key to find the parent
331 *
332 * additional information that's available but not required to find the parent
333 * block might help in merging entries to gain some speed.
334 */
00142756
JM
335static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
336 struct preftree *preftree, u64 root_id,
e0c476b1 337 const struct btrfs_key *key, int level, u64 parent,
3ec4d323
EN
338 u64 wanted_disk_byte, int count,
339 struct share_check *sc, gfp_t gfp_mask)
8da6d581 340{
e0c476b1 341 struct prelim_ref *ref;
8da6d581 342
48ec4736
LB
343 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
344 return 0;
345
b9e9a6cb 346 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
347 if (!ref)
348 return -ENOMEM;
349
350 ref->root_id = root_id;
7ac8b88e 351 if (key)
d5c88b73 352 ref->key_for_search = *key;
7ac8b88e 353 else
d5c88b73 354 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 355
3301958b 356 ref->inode_list = NULL;
8da6d581
JS
357 ref->level = level;
358 ref->count = count;
359 ref->parent = parent;
360 ref->wanted_disk_byte = wanted_disk_byte;
3ec4d323
EN
361 prelim_ref_insert(fs_info, preftree, ref, sc);
362 return extent_is_shared(sc);
8da6d581
JS
363}
364
86d5f994 365/* direct refs use root == 0, key == NULL */
00142756
JM
366static int add_direct_ref(const struct btrfs_fs_info *fs_info,
367 struct preftrees *preftrees, int level, u64 parent,
3ec4d323
EN
368 u64 wanted_disk_byte, int count,
369 struct share_check *sc, gfp_t gfp_mask)
86d5f994 370{
00142756 371 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
3ec4d323 372 parent, wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
373}
374
375/* indirect refs use parent == 0 */
00142756
JM
376static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
377 struct preftrees *preftrees, u64 root_id,
86d5f994 378 const struct btrfs_key *key, int level,
3ec4d323
EN
379 u64 wanted_disk_byte, int count,
380 struct share_check *sc, gfp_t gfp_mask)
86d5f994
EN
381{
382 struct preftree *tree = &preftrees->indirect;
383
384 if (!key)
385 tree = &preftrees->indirect_missing_keys;
00142756 386 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
3ec4d323 387 wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
388}
389
ed58f2e6 390static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
391{
392 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
393 struct rb_node *parent = NULL;
394 struct prelim_ref *ref = NULL;
9c6c723f 395 struct prelim_ref target = {};
ed58f2e6 396 int result;
397
398 target.parent = bytenr;
399
400 while (*p) {
401 parent = *p;
402 ref = rb_entry(parent, struct prelim_ref, rbnode);
403 result = prelim_ref_compare(ref, &target);
404
405 if (result < 0)
406 p = &(*p)->rb_left;
407 else if (result > 0)
408 p = &(*p)->rb_right;
409 else
410 return 1;
411 }
412 return 0;
413}
414
8da6d581 415static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
ed58f2e6 416 struct ulist *parents,
417 struct preftrees *preftrees, struct prelim_ref *ref,
44853868 418 int level, u64 time_seq, const u64 *extent_item_pos,
b25b0b87 419 bool ignore_offset)
8da6d581 420{
69bca40d
AB
421 int ret = 0;
422 int slot;
423 struct extent_buffer *eb;
424 struct btrfs_key key;
7ef81ac8 425 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 426 struct btrfs_file_extent_item *fi;
ed8c4913 427 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 428 u64 disk_byte;
7ef81ac8
JB
429 u64 wanted_disk_byte = ref->wanted_disk_byte;
430 u64 count = 0;
7ac8b88e 431 u64 data_offset;
8da6d581 432
69bca40d
AB
433 if (level != 0) {
434 eb = path->nodes[level];
435 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
436 if (ret < 0)
437 return ret;
8da6d581 438 return 0;
69bca40d 439 }
8da6d581
JS
440
441 /*
ed58f2e6 442 * 1. We normally enter this function with the path already pointing to
443 * the first item to check. But sometimes, we may enter it with
444 * slot == nritems.
445 * 2. We are searching for normal backref but bytenr of this leaf
446 * matches shared data backref
cfc0eed0 447 * 3. The leaf owner is not equal to the root we are searching
448 *
ed58f2e6 449 * For these cases, go to the next leaf before we continue.
8da6d581 450 */
ed58f2e6 451 eb = path->nodes[0];
452 if (path->slots[0] >= btrfs_header_nritems(eb) ||
cfc0eed0 453 is_shared_data_backref(preftrees, eb->start) ||
454 ref->root_id != btrfs_header_owner(eb)) {
de47c9d3 455 if (time_seq == SEQ_LAST)
21633fc6
QW
456 ret = btrfs_next_leaf(root, path);
457 else
458 ret = btrfs_next_old_leaf(root, path, time_seq);
459 }
8da6d581 460
b25b0b87 461 while (!ret && count < ref->count) {
8da6d581 462 eb = path->nodes[0];
69bca40d
AB
463 slot = path->slots[0];
464
465 btrfs_item_key_to_cpu(eb, &key, slot);
466
467 if (key.objectid != key_for_search->objectid ||
468 key.type != BTRFS_EXTENT_DATA_KEY)
469 break;
470
ed58f2e6 471 /*
472 * We are searching for normal backref but bytenr of this leaf
cfc0eed0 473 * matches shared data backref, OR
474 * the leaf owner is not equal to the root we are searching for
ed58f2e6 475 */
cfc0eed0 476 if (slot == 0 &&
477 (is_shared_data_backref(preftrees, eb->start) ||
478 ref->root_id != btrfs_header_owner(eb))) {
ed58f2e6 479 if (time_seq == SEQ_LAST)
480 ret = btrfs_next_leaf(root, path);
481 else
482 ret = btrfs_next_old_leaf(root, path, time_seq);
483 continue;
484 }
69bca40d
AB
485 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
486 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
7ac8b88e 487 data_offset = btrfs_file_extent_offset(eb, fi);
69bca40d
AB
488
489 if (disk_byte == wanted_disk_byte) {
490 eie = NULL;
ed8c4913 491 old = NULL;
7ac8b88e 492 if (ref->key_for_search.offset == key.offset - data_offset)
493 count++;
494 else
495 goto next;
69bca40d
AB
496 if (extent_item_pos) {
497 ret = check_extent_in_eb(&key, eb, fi,
498 *extent_item_pos,
c995ab3c 499 &eie, ignore_offset);
69bca40d
AB
500 if (ret < 0)
501 break;
502 }
ed8c4913
JB
503 if (ret > 0)
504 goto next;
4eb1f66d
TI
505 ret = ulist_add_merge_ptr(parents, eb->start,
506 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
507 if (ret < 0)
508 break;
509 if (!ret && extent_item_pos) {
510 while (old->next)
511 old = old->next;
512 old->next = eie;
69bca40d 513 }
f05c4746 514 eie = NULL;
8da6d581 515 }
ed8c4913 516next:
de47c9d3 517 if (time_seq == SEQ_LAST)
21633fc6
QW
518 ret = btrfs_next_item(root, path);
519 else
520 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
521 }
522
69bca40d
AB
523 if (ret > 0)
524 ret = 0;
f05c4746
WS
525 else if (ret < 0)
526 free_inode_elem_list(eie);
69bca40d 527 return ret;
8da6d581
JS
528}
529
530/*
531 * resolve an indirect backref in the form (root_id, key, level)
532 * to a logical address
533 */
e0c476b1
JM
534static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
535 struct btrfs_path *path, u64 time_seq,
ed58f2e6 536 struct preftrees *preftrees,
e0c476b1 537 struct prelim_ref *ref, struct ulist *parents,
b25b0b87 538 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 539{
8da6d581 540 struct btrfs_root *root;
8da6d581
JS
541 struct extent_buffer *eb;
542 int ret = 0;
543 int root_level;
544 int level = ref->level;
7ac8b88e 545 struct btrfs_key search_key = ref->key_for_search;
8da6d581 546
56e9357a 547 root = btrfs_get_fs_root(fs_info, ref->root_id, false);
8da6d581
JS
548 if (IS_ERR(root)) {
549 ret = PTR_ERR(root);
9326f76f
JB
550 goto out_free;
551 }
552
39dba873
JB
553 if (!path->search_commit_root &&
554 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
555 ret = -ENOENT;
556 goto out;
557 }
558
f5ee5c9a 559 if (btrfs_is_testing(fs_info)) {
d9ee522b
JB
560 ret = -ENOENT;
561 goto out;
562 }
563
9e351cc8
JB
564 if (path->search_commit_root)
565 root_level = btrfs_header_level(root->commit_root);
de47c9d3 566 else if (time_seq == SEQ_LAST)
21633fc6 567 root_level = btrfs_header_level(root->node);
9e351cc8
JB
568 else
569 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 570
c75e8394 571 if (root_level + 1 == level)
8da6d581
JS
572 goto out;
573
7ac8b88e 574 /*
575 * We can often find data backrefs with an offset that is too large
576 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
577 * subtracting a file's offset with the data offset of its
578 * corresponding extent data item. This can happen for example in the
579 * clone ioctl.
580 *
581 * So if we detect such case we set the search key's offset to zero to
582 * make sure we will find the matching file extent item at
583 * add_all_parents(), otherwise we will miss it because the offset
584 * taken form the backref is much larger then the offset of the file
585 * extent item. This can make us scan a very large number of file
586 * extent items, but at least it will not make us miss any.
587 *
588 * This is an ugly workaround for a behaviour that should have never
589 * existed, but it does and a fix for the clone ioctl would touch a lot
590 * of places, cause backwards incompatibility and would not fix the
591 * problem for extents cloned with older kernels.
592 */
593 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
594 search_key.offset >= LLONG_MAX)
595 search_key.offset = 0;
8da6d581 596 path->lowest_level = level;
de47c9d3 597 if (time_seq == SEQ_LAST)
7ac8b88e 598 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
21633fc6 599 else
7ac8b88e 600 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
538f72cd 601
ab8d0fc4
JM
602 btrfs_debug(fs_info,
603 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
c1c9ff7c
GU
604 ref->root_id, level, ref->count, ret,
605 ref->key_for_search.objectid, ref->key_for_search.type,
606 ref->key_for_search.offset);
8da6d581
JS
607 if (ret < 0)
608 goto out;
609
610 eb = path->nodes[level];
9345457f 611 while (!eb) {
fae7f21c 612 if (WARN_ON(!level)) {
9345457f
JS
613 ret = 1;
614 goto out;
615 }
616 level--;
617 eb = path->nodes[level];
8da6d581
JS
618 }
619
ed58f2e6 620 ret = add_all_parents(root, path, parents, preftrees, ref, level,
b25b0b87 621 time_seq, extent_item_pos, ignore_offset);
8da6d581 622out:
00246528 623 btrfs_put_root(root);
9326f76f 624out_free:
da61d31a
JB
625 path->lowest_level = 0;
626 btrfs_release_path(path);
8da6d581
JS
627 return ret;
628}
629
4dae077a
JM
630static struct extent_inode_elem *
631unode_aux_to_inode_list(struct ulist_node *node)
632{
633 if (!node)
634 return NULL;
635 return (struct extent_inode_elem *)(uintptr_t)node->aux;
636}
637
8da6d581 638/*
52042d8e 639 * We maintain three separate rbtrees: one for direct refs, one for
86d5f994
EN
640 * indirect refs which have a key, and one for indirect refs which do not
641 * have a key. Each tree does merge on insertion.
642 *
643 * Once all of the references are located, we iterate over the tree of
644 * indirect refs with missing keys. An appropriate key is located and
645 * the ref is moved onto the tree for indirect refs. After all missing
646 * keys are thus located, we iterate over the indirect ref tree, resolve
647 * each reference, and then insert the resolved reference onto the
648 * direct tree (merging there too).
649 *
650 * New backrefs (i.e., for parent nodes) are added to the appropriate
651 * rbtree as they are encountered. The new backrefs are subsequently
652 * resolved as above.
8da6d581 653 */
e0c476b1
JM
654static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
655 struct btrfs_path *path, u64 time_seq,
86d5f994 656 struct preftrees *preftrees,
b25b0b87 657 const u64 *extent_item_pos,
c995ab3c 658 struct share_check *sc, bool ignore_offset)
8da6d581
JS
659{
660 int err;
661 int ret = 0;
8da6d581
JS
662 struct ulist *parents;
663 struct ulist_node *node;
cd1b413c 664 struct ulist_iterator uiter;
86d5f994 665 struct rb_node *rnode;
8da6d581
JS
666
667 parents = ulist_alloc(GFP_NOFS);
668 if (!parents)
669 return -ENOMEM;
670
671 /*
86d5f994
EN
672 * We could trade memory usage for performance here by iterating
673 * the tree, allocating new refs for each insertion, and then
674 * freeing the entire indirect tree when we're done. In some test
675 * cases, the tree can grow quite large (~200k objects).
8da6d581 676 */
ecf160b4 677 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
86d5f994
EN
678 struct prelim_ref *ref;
679
680 ref = rb_entry(rnode, struct prelim_ref, rbnode);
681 if (WARN(ref->parent,
682 "BUG: direct ref found in indirect tree")) {
683 ret = -EINVAL;
684 goto out;
685 }
686
ecf160b4 687 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
6c336b21 688 preftrees->indirect.count--;
86d5f994
EN
689
690 if (ref->count == 0) {
691 free_pref(ref);
8da6d581 692 continue;
86d5f994
EN
693 }
694
3ec4d323
EN
695 if (sc && sc->root_objectid &&
696 ref->root_id != sc->root_objectid) {
86d5f994 697 free_pref(ref);
dc046b10
JB
698 ret = BACKREF_FOUND_SHARED;
699 goto out;
700 }
ed58f2e6 701 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
702 ref, parents, extent_item_pos,
b25b0b87 703 ignore_offset);
95def2ed
WS
704 /*
705 * we can only tolerate ENOENT,otherwise,we should catch error
706 * and return directly.
707 */
708 if (err == -ENOENT) {
3ec4d323
EN
709 prelim_ref_insert(fs_info, &preftrees->direct, ref,
710 NULL);
8da6d581 711 continue;
95def2ed 712 } else if (err) {
86d5f994 713 free_pref(ref);
95def2ed
WS
714 ret = err;
715 goto out;
716 }
8da6d581
JS
717
718 /* we put the first parent into the ref at hand */
cd1b413c
JS
719 ULIST_ITER_INIT(&uiter);
720 node = ulist_next(parents, &uiter);
8da6d581 721 ref->parent = node ? node->val : 0;
4dae077a 722 ref->inode_list = unode_aux_to_inode_list(node);
8da6d581 723
86d5f994 724 /* Add a prelim_ref(s) for any other parent(s). */
cd1b413c 725 while ((node = ulist_next(parents, &uiter))) {
86d5f994
EN
726 struct prelim_ref *new_ref;
727
b9e9a6cb
WS
728 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
729 GFP_NOFS);
8da6d581 730 if (!new_ref) {
86d5f994 731 free_pref(ref);
8da6d581 732 ret = -ENOMEM;
e36902d4 733 goto out;
8da6d581
JS
734 }
735 memcpy(new_ref, ref, sizeof(*ref));
736 new_ref->parent = node->val;
4dae077a 737 new_ref->inode_list = unode_aux_to_inode_list(node);
3ec4d323
EN
738 prelim_ref_insert(fs_info, &preftrees->direct,
739 new_ref, NULL);
8da6d581 740 }
86d5f994 741
3ec4d323 742 /*
52042d8e 743 * Now it's a direct ref, put it in the direct tree. We must
3ec4d323
EN
744 * do this last because the ref could be merged/freed here.
745 */
746 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
86d5f994 747
8da6d581 748 ulist_reinit(parents);
9dd14fd6 749 cond_resched();
8da6d581 750 }
e36902d4 751out:
8da6d581
JS
752 ulist_free(parents);
753 return ret;
754}
755
d5c88b73
JS
756/*
757 * read tree blocks and add keys where required.
758 */
e0c476b1 759static int add_missing_keys(struct btrfs_fs_info *fs_info,
38e3eebf 760 struct preftrees *preftrees, bool lock)
d5c88b73 761{
e0c476b1 762 struct prelim_ref *ref;
d5c88b73 763 struct extent_buffer *eb;
86d5f994
EN
764 struct preftree *tree = &preftrees->indirect_missing_keys;
765 struct rb_node *node;
d5c88b73 766
ecf160b4 767 while ((node = rb_first_cached(&tree->root))) {
86d5f994 768 ref = rb_entry(node, struct prelim_ref, rbnode);
ecf160b4 769 rb_erase_cached(node, &tree->root);
86d5f994
EN
770
771 BUG_ON(ref->parent); /* should not be a direct ref */
772 BUG_ON(ref->key_for_search.type);
d5c88b73 773 BUG_ON(!ref->wanted_disk_byte);
86d5f994 774
581c1760
QW
775 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
776 ref->level - 1, NULL);
64c043de 777 if (IS_ERR(eb)) {
86d5f994 778 free_pref(ref);
64c043de
LB
779 return PTR_ERR(eb);
780 } else if (!extent_buffer_uptodate(eb)) {
86d5f994 781 free_pref(ref);
416bc658
JB
782 free_extent_buffer(eb);
783 return -EIO;
784 }
38e3eebf
JB
785 if (lock)
786 btrfs_tree_read_lock(eb);
d5c88b73
JS
787 if (btrfs_header_level(eb) == 0)
788 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
789 else
790 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
38e3eebf
JB
791 if (lock)
792 btrfs_tree_read_unlock(eb);
d5c88b73 793 free_extent_buffer(eb);
3ec4d323 794 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
9dd14fd6 795 cond_resched();
d5c88b73
JS
796 }
797 return 0;
798}
799
8da6d581
JS
800/*
801 * add all currently queued delayed refs from this head whose seq nr is
802 * smaller or equal that seq to the list
803 */
00142756
JM
804static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
805 struct btrfs_delayed_ref_head *head, u64 seq,
b25b0b87 806 struct preftrees *preftrees, struct share_check *sc)
8da6d581 807{
c6fc2454 808 struct btrfs_delayed_ref_node *node;
8da6d581 809 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
d5c88b73 810 struct btrfs_key key;
86d5f994 811 struct btrfs_key tmp_op_key;
0e0adbcf 812 struct rb_node *n;
01747e92 813 int count;
b1375d64 814 int ret = 0;
8da6d581 815
a6dbceaf 816 if (extent_op && extent_op->update_key)
86d5f994 817 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
8da6d581 818
d7df2c79 819 spin_lock(&head->lock);
e3d03965 820 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
0e0adbcf
JB
821 node = rb_entry(n, struct btrfs_delayed_ref_node,
822 ref_node);
8da6d581
JS
823 if (node->seq > seq)
824 continue;
825
826 switch (node->action) {
827 case BTRFS_ADD_DELAYED_EXTENT:
828 case BTRFS_UPDATE_DELAYED_HEAD:
829 WARN_ON(1);
830 continue;
831 case BTRFS_ADD_DELAYED_REF:
01747e92 832 count = node->ref_mod;
8da6d581
JS
833 break;
834 case BTRFS_DROP_DELAYED_REF:
01747e92 835 count = node->ref_mod * -1;
8da6d581
JS
836 break;
837 default:
290342f6 838 BUG();
8da6d581
JS
839 }
840 switch (node->type) {
841 case BTRFS_TREE_BLOCK_REF_KEY: {
86d5f994 842 /* NORMAL INDIRECT METADATA backref */
8da6d581
JS
843 struct btrfs_delayed_tree_ref *ref;
844
845 ref = btrfs_delayed_node_to_tree_ref(node);
00142756
JM
846 ret = add_indirect_ref(fs_info, preftrees, ref->root,
847 &tmp_op_key, ref->level + 1,
01747e92
EN
848 node->bytenr, count, sc,
849 GFP_ATOMIC);
8da6d581
JS
850 break;
851 }
852 case BTRFS_SHARED_BLOCK_REF_KEY: {
86d5f994 853 /* SHARED DIRECT METADATA backref */
8da6d581
JS
854 struct btrfs_delayed_tree_ref *ref;
855
856 ref = btrfs_delayed_node_to_tree_ref(node);
86d5f994 857
01747e92
EN
858 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
859 ref->parent, node->bytenr, count,
3ec4d323 860 sc, GFP_ATOMIC);
8da6d581
JS
861 break;
862 }
863 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 864 /* NORMAL INDIRECT DATA backref */
8da6d581 865 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
866 ref = btrfs_delayed_node_to_data_ref(node);
867
868 key.objectid = ref->objectid;
869 key.type = BTRFS_EXTENT_DATA_KEY;
870 key.offset = ref->offset;
dc046b10
JB
871
872 /*
873 * Found a inum that doesn't match our known inum, we
874 * know it's shared.
875 */
3ec4d323 876 if (sc && sc->inum && ref->objectid != sc->inum) {
dc046b10 877 ret = BACKREF_FOUND_SHARED;
3ec4d323 878 goto out;
dc046b10
JB
879 }
880
00142756 881 ret = add_indirect_ref(fs_info, preftrees, ref->root,
01747e92
EN
882 &key, 0, node->bytenr, count, sc,
883 GFP_ATOMIC);
8da6d581
JS
884 break;
885 }
886 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 887 /* SHARED DIRECT FULL backref */
8da6d581 888 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
889
890 ref = btrfs_delayed_node_to_data_ref(node);
86d5f994 891
01747e92
EN
892 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
893 node->bytenr, count, sc,
894 GFP_ATOMIC);
8da6d581
JS
895 break;
896 }
897 default:
898 WARN_ON(1);
899 }
3ec4d323
EN
900 /*
901 * We must ignore BACKREF_FOUND_SHARED until all delayed
902 * refs have been checked.
903 */
904 if (ret && (ret != BACKREF_FOUND_SHARED))
d7df2c79 905 break;
8da6d581 906 }
3ec4d323
EN
907 if (!ret)
908 ret = extent_is_shared(sc);
909out:
d7df2c79
JB
910 spin_unlock(&head->lock);
911 return ret;
8da6d581
JS
912}
913
914/*
915 * add all inline backrefs for bytenr to the list
3ec4d323
EN
916 *
917 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 918 */
00142756
JM
919static int add_inline_refs(const struct btrfs_fs_info *fs_info,
920 struct btrfs_path *path, u64 bytenr,
86d5f994 921 int *info_level, struct preftrees *preftrees,
b25b0b87 922 struct share_check *sc)
8da6d581 923{
b1375d64 924 int ret = 0;
8da6d581
JS
925 int slot;
926 struct extent_buffer *leaf;
927 struct btrfs_key key;
261c84b6 928 struct btrfs_key found_key;
8da6d581
JS
929 unsigned long ptr;
930 unsigned long end;
931 struct btrfs_extent_item *ei;
932 u64 flags;
933 u64 item_size;
934
935 /*
936 * enumerate all inline refs
937 */
938 leaf = path->nodes[0];
dadcaf78 939 slot = path->slots[0];
8da6d581
JS
940
941 item_size = btrfs_item_size_nr(leaf, slot);
942 BUG_ON(item_size < sizeof(*ei));
943
944 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
945 flags = btrfs_extent_flags(leaf, ei);
261c84b6 946 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
947
948 ptr = (unsigned long)(ei + 1);
949 end = (unsigned long)ei + item_size;
950
261c84b6
JB
951 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
952 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 953 struct btrfs_tree_block_info *info;
8da6d581
JS
954
955 info = (struct btrfs_tree_block_info *)ptr;
956 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
957 ptr += sizeof(struct btrfs_tree_block_info);
958 BUG_ON(ptr > end);
261c84b6
JB
959 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
960 *info_level = found_key.offset;
8da6d581
JS
961 } else {
962 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
963 }
964
965 while (ptr < end) {
966 struct btrfs_extent_inline_ref *iref;
967 u64 offset;
968 int type;
969
970 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
971 type = btrfs_get_extent_inline_ref_type(leaf, iref,
972 BTRFS_REF_TYPE_ANY);
973 if (type == BTRFS_REF_TYPE_INVALID)
af431dcb 974 return -EUCLEAN;
3de28d57 975
8da6d581
JS
976 offset = btrfs_extent_inline_ref_offset(leaf, iref);
977
978 switch (type) {
979 case BTRFS_SHARED_BLOCK_REF_KEY:
00142756
JM
980 ret = add_direct_ref(fs_info, preftrees,
981 *info_level + 1, offset,
3ec4d323 982 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
983 break;
984 case BTRFS_SHARED_DATA_REF_KEY: {
985 struct btrfs_shared_data_ref *sdref;
986 int count;
987
988 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
989 count = btrfs_shared_data_ref_count(leaf, sdref);
86d5f994 990
00142756 991 ret = add_direct_ref(fs_info, preftrees, 0, offset,
3ec4d323 992 bytenr, count, sc, GFP_NOFS);
8da6d581
JS
993 break;
994 }
995 case BTRFS_TREE_BLOCK_REF_KEY:
00142756
JM
996 ret = add_indirect_ref(fs_info, preftrees, offset,
997 NULL, *info_level + 1,
3ec4d323 998 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
999 break;
1000 case BTRFS_EXTENT_DATA_REF_KEY: {
1001 struct btrfs_extent_data_ref *dref;
1002 int count;
1003 u64 root;
1004
1005 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1006 count = btrfs_extent_data_ref_count(leaf, dref);
1007 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1008 dref);
1009 key.type = BTRFS_EXTENT_DATA_KEY;
1010 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1011
3ec4d323 1012 if (sc && sc->inum && key.objectid != sc->inum) {
dc046b10
JB
1013 ret = BACKREF_FOUND_SHARED;
1014 break;
1015 }
1016
8da6d581 1017 root = btrfs_extent_data_ref_root(leaf, dref);
86d5f994 1018
00142756
JM
1019 ret = add_indirect_ref(fs_info, preftrees, root,
1020 &key, 0, bytenr, count,
3ec4d323 1021 sc, GFP_NOFS);
8da6d581
JS
1022 break;
1023 }
1024 default:
1025 WARN_ON(1);
1026 }
1149ab6b
WS
1027 if (ret)
1028 return ret;
8da6d581
JS
1029 ptr += btrfs_extent_inline_ref_size(type);
1030 }
1031
1032 return 0;
1033}
1034
1035/*
1036 * add all non-inline backrefs for bytenr to the list
3ec4d323
EN
1037 *
1038 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 1039 */
e0c476b1
JM
1040static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1041 struct btrfs_path *path, u64 bytenr,
86d5f994 1042 int info_level, struct preftrees *preftrees,
3ec4d323 1043 struct share_check *sc)
8da6d581
JS
1044{
1045 struct btrfs_root *extent_root = fs_info->extent_root;
1046 int ret;
1047 int slot;
1048 struct extent_buffer *leaf;
1049 struct btrfs_key key;
1050
1051 while (1) {
1052 ret = btrfs_next_item(extent_root, path);
1053 if (ret < 0)
1054 break;
1055 if (ret) {
1056 ret = 0;
1057 break;
1058 }
1059
1060 slot = path->slots[0];
1061 leaf = path->nodes[0];
1062 btrfs_item_key_to_cpu(leaf, &key, slot);
1063
1064 if (key.objectid != bytenr)
1065 break;
1066 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1067 continue;
1068 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1069 break;
1070
1071 switch (key.type) {
1072 case BTRFS_SHARED_BLOCK_REF_KEY:
86d5f994 1073 /* SHARED DIRECT METADATA backref */
00142756
JM
1074 ret = add_direct_ref(fs_info, preftrees,
1075 info_level + 1, key.offset,
3ec4d323 1076 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1077 break;
1078 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 1079 /* SHARED DIRECT FULL backref */
8da6d581
JS
1080 struct btrfs_shared_data_ref *sdref;
1081 int count;
1082
1083 sdref = btrfs_item_ptr(leaf, slot,
1084 struct btrfs_shared_data_ref);
1085 count = btrfs_shared_data_ref_count(leaf, sdref);
00142756
JM
1086 ret = add_direct_ref(fs_info, preftrees, 0,
1087 key.offset, bytenr, count,
3ec4d323 1088 sc, GFP_NOFS);
8da6d581
JS
1089 break;
1090 }
1091 case BTRFS_TREE_BLOCK_REF_KEY:
86d5f994 1092 /* NORMAL INDIRECT METADATA backref */
00142756
JM
1093 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1094 NULL, info_level + 1, bytenr,
3ec4d323 1095 1, NULL, GFP_NOFS);
8da6d581
JS
1096 break;
1097 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 1098 /* NORMAL INDIRECT DATA backref */
8da6d581
JS
1099 struct btrfs_extent_data_ref *dref;
1100 int count;
1101 u64 root;
1102
1103 dref = btrfs_item_ptr(leaf, slot,
1104 struct btrfs_extent_data_ref);
1105 count = btrfs_extent_data_ref_count(leaf, dref);
1106 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1107 dref);
1108 key.type = BTRFS_EXTENT_DATA_KEY;
1109 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1110
3ec4d323 1111 if (sc && sc->inum && key.objectid != sc->inum) {
dc046b10
JB
1112 ret = BACKREF_FOUND_SHARED;
1113 break;
1114 }
1115
8da6d581 1116 root = btrfs_extent_data_ref_root(leaf, dref);
00142756
JM
1117 ret = add_indirect_ref(fs_info, preftrees, root,
1118 &key, 0, bytenr, count,
3ec4d323 1119 sc, GFP_NOFS);
8da6d581
JS
1120 break;
1121 }
1122 default:
1123 WARN_ON(1);
1124 }
1149ab6b
WS
1125 if (ret)
1126 return ret;
1127
8da6d581
JS
1128 }
1129
1130 return ret;
1131}
1132
1133/*
1134 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1135 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1136 * indirect refs to their parent bytenr.
1137 * When roots are found, they're added to the roots list
1138 *
de47c9d3 1139 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
21633fc6
QW
1140 * much like trans == NULL case, the difference only lies in it will not
1141 * commit root.
1142 * The special case is for qgroup to search roots in commit_transaction().
1143 *
3ec4d323
EN
1144 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1145 * shared extent is detected.
1146 *
1147 * Otherwise this returns 0 for success and <0 for an error.
1148 *
c995ab3c
ZB
1149 * If ignore_offset is set to false, only extent refs whose offsets match
1150 * extent_item_pos are returned. If true, every extent ref is returned
1151 * and extent_item_pos is ignored.
1152 *
8da6d581
JS
1153 * FIXME some caching might speed things up
1154 */
1155static int find_parent_nodes(struct btrfs_trans_handle *trans,
1156 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1157 u64 time_seq, struct ulist *refs,
dc046b10 1158 struct ulist *roots, const u64 *extent_item_pos,
c995ab3c 1159 struct share_check *sc, bool ignore_offset)
8da6d581
JS
1160{
1161 struct btrfs_key key;
1162 struct btrfs_path *path;
8da6d581 1163 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 1164 struct btrfs_delayed_ref_head *head;
8da6d581
JS
1165 int info_level = 0;
1166 int ret;
e0c476b1 1167 struct prelim_ref *ref;
86d5f994 1168 struct rb_node *node;
f05c4746 1169 struct extent_inode_elem *eie = NULL;
86d5f994
EN
1170 struct preftrees preftrees = {
1171 .direct = PREFTREE_INIT,
1172 .indirect = PREFTREE_INIT,
1173 .indirect_missing_keys = PREFTREE_INIT
1174 };
8da6d581
JS
1175
1176 key.objectid = bytenr;
8da6d581 1177 key.offset = (u64)-1;
261c84b6
JB
1178 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1179 key.type = BTRFS_METADATA_ITEM_KEY;
1180 else
1181 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
1182
1183 path = btrfs_alloc_path();
1184 if (!path)
1185 return -ENOMEM;
e84752d4 1186 if (!trans) {
da61d31a 1187 path->search_commit_root = 1;
e84752d4
WS
1188 path->skip_locking = 1;
1189 }
8da6d581 1190
de47c9d3 1191 if (time_seq == SEQ_LAST)
21633fc6
QW
1192 path->skip_locking = 1;
1193
8da6d581
JS
1194 /*
1195 * grab both a lock on the path and a lock on the delayed ref head.
1196 * We need both to get a consistent picture of how the refs look
1197 * at a specified point in time
1198 */
1199again:
d3b01064
LZ
1200 head = NULL;
1201
8da6d581
JS
1202 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1203 if (ret < 0)
1204 goto out;
1205 BUG_ON(ret == 0);
1206
faa2dbf0 1207#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
21633fc6 1208 if (trans && likely(trans->type != __TRANS_DUMMY) &&
de47c9d3 1209 time_seq != SEQ_LAST) {
faa2dbf0 1210#else
de47c9d3 1211 if (trans && time_seq != SEQ_LAST) {
faa2dbf0 1212#endif
7a3ae2f8
JS
1213 /*
1214 * look if there are updates for this ref queued and lock the
1215 * head
1216 */
1217 delayed_refs = &trans->transaction->delayed_refs;
1218 spin_lock(&delayed_refs->lock);
f72ad18e 1219 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7a3ae2f8
JS
1220 if (head) {
1221 if (!mutex_trylock(&head->mutex)) {
d278850e 1222 refcount_inc(&head->refs);
7a3ae2f8
JS
1223 spin_unlock(&delayed_refs->lock);
1224
1225 btrfs_release_path(path);
1226
1227 /*
1228 * Mutex was contended, block until it's
1229 * released and try again
1230 */
1231 mutex_lock(&head->mutex);
1232 mutex_unlock(&head->mutex);
d278850e 1233 btrfs_put_delayed_ref_head(head);
7a3ae2f8
JS
1234 goto again;
1235 }
d7df2c79 1236 spin_unlock(&delayed_refs->lock);
00142756 1237 ret = add_delayed_refs(fs_info, head, time_seq,
b25b0b87 1238 &preftrees, sc);
155725c9 1239 mutex_unlock(&head->mutex);
d7df2c79 1240 if (ret)
7a3ae2f8 1241 goto out;
d7df2c79
JB
1242 } else {
1243 spin_unlock(&delayed_refs->lock);
d3b01064 1244 }
8da6d581 1245 }
8da6d581
JS
1246
1247 if (path->slots[0]) {
1248 struct extent_buffer *leaf;
1249 int slot;
1250
dadcaf78 1251 path->slots[0]--;
8da6d581 1252 leaf = path->nodes[0];
dadcaf78 1253 slot = path->slots[0];
8da6d581
JS
1254 btrfs_item_key_to_cpu(leaf, &key, slot);
1255 if (key.objectid == bytenr &&
261c84b6
JB
1256 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1257 key.type == BTRFS_METADATA_ITEM_KEY)) {
00142756 1258 ret = add_inline_refs(fs_info, path, bytenr,
b25b0b87 1259 &info_level, &preftrees, sc);
8da6d581
JS
1260 if (ret)
1261 goto out;
e0c476b1 1262 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
3ec4d323 1263 &preftrees, sc);
8da6d581
JS
1264 if (ret)
1265 goto out;
1266 }
1267 }
8da6d581 1268
86d5f994 1269 btrfs_release_path(path);
8da6d581 1270
38e3eebf 1271 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
d5c88b73
JS
1272 if (ret)
1273 goto out;
1274
ecf160b4 1275 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
8da6d581 1276
86d5f994 1277 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
b25b0b87 1278 extent_item_pos, sc, ignore_offset);
8da6d581
JS
1279 if (ret)
1280 goto out;
1281
ecf160b4 1282 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
8da6d581 1283
86d5f994
EN
1284 /*
1285 * This walks the tree of merged and resolved refs. Tree blocks are
1286 * read in as needed. Unique entries are added to the ulist, and
1287 * the list of found roots is updated.
1288 *
1289 * We release the entire tree in one go before returning.
1290 */
ecf160b4 1291 node = rb_first_cached(&preftrees.direct.root);
86d5f994
EN
1292 while (node) {
1293 ref = rb_entry(node, struct prelim_ref, rbnode);
1294 node = rb_next(&ref->rbnode);
c8195a7b
ZB
1295 /*
1296 * ref->count < 0 can happen here if there are delayed
1297 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1298 * prelim_ref_insert() relies on this when merging
1299 * identical refs to keep the overall count correct.
1300 * prelim_ref_insert() will merge only those refs
1301 * which compare identically. Any refs having
1302 * e.g. different offsets would not be merged,
1303 * and would retain their original ref->count < 0.
1304 */
98cfee21 1305 if (roots && ref->count && ref->root_id && ref->parent == 0) {
3ec4d323
EN
1306 if (sc && sc->root_objectid &&
1307 ref->root_id != sc->root_objectid) {
dc046b10
JB
1308 ret = BACKREF_FOUND_SHARED;
1309 goto out;
1310 }
1311
8da6d581
JS
1312 /* no parent == root of tree */
1313 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1314 if (ret < 0)
1315 goto out;
8da6d581
JS
1316 }
1317 if (ref->count && ref->parent) {
8a56457f
JB
1318 if (extent_item_pos && !ref->inode_list &&
1319 ref->level == 0) {
976b1908 1320 struct extent_buffer *eb;
707e8a07 1321
581c1760
QW
1322 eb = read_tree_block(fs_info, ref->parent, 0,
1323 ref->level, NULL);
64c043de
LB
1324 if (IS_ERR(eb)) {
1325 ret = PTR_ERR(eb);
1326 goto out;
1327 } else if (!extent_buffer_uptodate(eb)) {
416bc658 1328 free_extent_buffer(eb);
c16c2e2e
WS
1329 ret = -EIO;
1330 goto out;
416bc658 1331 }
38e3eebf
JB
1332
1333 if (!path->skip_locking) {
1334 btrfs_tree_read_lock(eb);
1335 btrfs_set_lock_blocking_read(eb);
1336 }
976b1908 1337 ret = find_extent_in_eb(eb, bytenr,
c995ab3c 1338 *extent_item_pos, &eie, ignore_offset);
38e3eebf
JB
1339 if (!path->skip_locking)
1340 btrfs_tree_read_unlock_blocking(eb);
976b1908 1341 free_extent_buffer(eb);
f5929cd8
FDBM
1342 if (ret < 0)
1343 goto out;
1344 ref->inode_list = eie;
976b1908 1345 }
4eb1f66d
TI
1346 ret = ulist_add_merge_ptr(refs, ref->parent,
1347 ref->inode_list,
1348 (void **)&eie, GFP_NOFS);
f1723939
WS
1349 if (ret < 0)
1350 goto out;
3301958b
JS
1351 if (!ret && extent_item_pos) {
1352 /*
1353 * we've recorded that parent, so we must extend
1354 * its inode list here
1355 */
1356 BUG_ON(!eie);
1357 while (eie->next)
1358 eie = eie->next;
1359 eie->next = ref->inode_list;
1360 }
f05c4746 1361 eie = NULL;
8da6d581 1362 }
9dd14fd6 1363 cond_resched();
8da6d581
JS
1364 }
1365
1366out:
8da6d581 1367 btrfs_free_path(path);
86d5f994
EN
1368
1369 prelim_release(&preftrees.direct);
1370 prelim_release(&preftrees.indirect);
1371 prelim_release(&preftrees.indirect_missing_keys);
1372
f05c4746
WS
1373 if (ret < 0)
1374 free_inode_elem_list(eie);
8da6d581
JS
1375 return ret;
1376}
1377
976b1908
JS
1378static void free_leaf_list(struct ulist *blocks)
1379{
1380 struct ulist_node *node = NULL;
1381 struct extent_inode_elem *eie;
976b1908
JS
1382 struct ulist_iterator uiter;
1383
1384 ULIST_ITER_INIT(&uiter);
1385 while ((node = ulist_next(blocks, &uiter))) {
1386 if (!node->aux)
1387 continue;
4dae077a 1388 eie = unode_aux_to_inode_list(node);
f05c4746 1389 free_inode_elem_list(eie);
976b1908
JS
1390 node->aux = 0;
1391 }
1392
1393 ulist_free(blocks);
1394}
1395
8da6d581
JS
1396/*
1397 * Finds all leafs with a reference to the specified combination of bytenr and
1398 * offset. key_list_head will point to a list of corresponding keys (caller must
1399 * free each list element). The leafs will be stored in the leafs ulist, which
1400 * must be freed with ulist_free.
1401 *
1402 * returns 0 on success, <0 on error
1403 */
19b546d7
QW
1404int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1405 struct btrfs_fs_info *fs_info, u64 bytenr,
1406 u64 time_seq, struct ulist **leafs,
1407 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 1408{
8da6d581
JS
1409 int ret;
1410
8da6d581 1411 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1412 if (!*leafs)
8da6d581 1413 return -ENOMEM;
8da6d581 1414
afce772e 1415 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1416 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
8da6d581 1417 if (ret < 0 && ret != -ENOENT) {
976b1908 1418 free_leaf_list(*leafs);
8da6d581
JS
1419 return ret;
1420 }
1421
1422 return 0;
1423}
1424
1425/*
1426 * walk all backrefs for a given extent to find all roots that reference this
1427 * extent. Walking a backref means finding all extents that reference this
1428 * extent and in turn walk the backrefs of those, too. Naturally this is a
1429 * recursive process, but here it is implemented in an iterative fashion: We
1430 * find all referencing extents for the extent in question and put them on a
1431 * list. In turn, we find all referencing extents for those, further appending
1432 * to the list. The way we iterate the list allows adding more elements after
1433 * the current while iterating. The process stops when we reach the end of the
1434 * list. Found roots are added to the roots list.
1435 *
1436 * returns 0 on success, < 0 on error.
1437 */
e0c476b1
JM
1438static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1439 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1440 u64 time_seq, struct ulist **roots,
1441 bool ignore_offset)
8da6d581
JS
1442{
1443 struct ulist *tmp;
1444 struct ulist_node *node = NULL;
cd1b413c 1445 struct ulist_iterator uiter;
8da6d581
JS
1446 int ret;
1447
1448 tmp = ulist_alloc(GFP_NOFS);
1449 if (!tmp)
1450 return -ENOMEM;
1451 *roots = ulist_alloc(GFP_NOFS);
1452 if (!*roots) {
1453 ulist_free(tmp);
1454 return -ENOMEM;
1455 }
1456
cd1b413c 1457 ULIST_ITER_INIT(&uiter);
8da6d581 1458 while (1) {
afce772e 1459 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1460 tmp, *roots, NULL, NULL, ignore_offset);
8da6d581
JS
1461 if (ret < 0 && ret != -ENOENT) {
1462 ulist_free(tmp);
1463 ulist_free(*roots);
1464 return ret;
1465 }
cd1b413c 1466 node = ulist_next(tmp, &uiter);
8da6d581
JS
1467 if (!node)
1468 break;
1469 bytenr = node->val;
bca1a290 1470 cond_resched();
8da6d581
JS
1471 }
1472
1473 ulist_free(tmp);
1474 return 0;
1475}
1476
9e351cc8
JB
1477int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1478 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1479 u64 time_seq, struct ulist **roots,
1480 bool ignore_offset)
9e351cc8
JB
1481{
1482 int ret;
1483
1484 if (!trans)
1485 down_read(&fs_info->commit_root_sem);
e0c476b1 1486 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
c995ab3c 1487 time_seq, roots, ignore_offset);
9e351cc8
JB
1488 if (!trans)
1489 up_read(&fs_info->commit_root_sem);
1490 return ret;
1491}
1492
2c2ed5aa
MF
1493/**
1494 * btrfs_check_shared - tell us whether an extent is shared
1495 *
2c2ed5aa
MF
1496 * btrfs_check_shared uses the backref walking code but will short
1497 * circuit as soon as it finds a root or inode that doesn't match the
1498 * one passed in. This provides a significant performance benefit for
1499 * callers (such as fiemap) which want to know whether the extent is
1500 * shared but do not need a ref count.
1501 *
03628cdb
FM
1502 * This attempts to attach to the running transaction in order to account for
1503 * delayed refs, but continues on even when no running transaction exists.
bb739cf0 1504 *
2c2ed5aa
MF
1505 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1506 */
5911c8fe
DS
1507int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1508 struct ulist *roots, struct ulist *tmp)
dc046b10 1509{
bb739cf0
EN
1510 struct btrfs_fs_info *fs_info = root->fs_info;
1511 struct btrfs_trans_handle *trans;
dc046b10
JB
1512 struct ulist_iterator uiter;
1513 struct ulist_node *node;
3284da7b 1514 struct seq_list elem = SEQ_LIST_INIT(elem);
dc046b10 1515 int ret = 0;
3ec4d323 1516 struct share_check shared = {
4fd786e6 1517 .root_objectid = root->root_key.objectid,
3ec4d323
EN
1518 .inum = inum,
1519 .share_count = 0,
1520 };
dc046b10 1521
5911c8fe
DS
1522 ulist_init(roots);
1523 ulist_init(tmp);
dc046b10 1524
a6d155d2 1525 trans = btrfs_join_transaction_nostart(root);
bb739cf0 1526 if (IS_ERR(trans)) {
03628cdb
FM
1527 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1528 ret = PTR_ERR(trans);
1529 goto out;
1530 }
bb739cf0 1531 trans = NULL;
dc046b10 1532 down_read(&fs_info->commit_root_sem);
bb739cf0
EN
1533 } else {
1534 btrfs_get_tree_mod_seq(fs_info, &elem);
1535 }
1536
dc046b10
JB
1537 ULIST_ITER_INIT(&uiter);
1538 while (1) {
1539 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
c995ab3c 1540 roots, NULL, &shared, false);
dc046b10 1541 if (ret == BACKREF_FOUND_SHARED) {
2c2ed5aa 1542 /* this is the only condition under which we return 1 */
dc046b10
JB
1543 ret = 1;
1544 break;
1545 }
1546 if (ret < 0 && ret != -ENOENT)
1547 break;
2c2ed5aa 1548 ret = 0;
dc046b10
JB
1549 node = ulist_next(tmp, &uiter);
1550 if (!node)
1551 break;
1552 bytenr = node->val;
18bf591b 1553 shared.share_count = 0;
dc046b10
JB
1554 cond_resched();
1555 }
bb739cf0
EN
1556
1557 if (trans) {
dc046b10 1558 btrfs_put_tree_mod_seq(fs_info, &elem);
bb739cf0
EN
1559 btrfs_end_transaction(trans);
1560 } else {
dc046b10 1561 up_read(&fs_info->commit_root_sem);
bb739cf0 1562 }
03628cdb 1563out:
5911c8fe
DS
1564 ulist_release(roots);
1565 ulist_release(tmp);
dc046b10
JB
1566 return ret;
1567}
1568
f186373f
MF
1569int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1570 u64 start_off, struct btrfs_path *path,
1571 struct btrfs_inode_extref **ret_extref,
1572 u64 *found_off)
1573{
1574 int ret, slot;
1575 struct btrfs_key key;
1576 struct btrfs_key found_key;
1577 struct btrfs_inode_extref *extref;
73980bec 1578 const struct extent_buffer *leaf;
f186373f
MF
1579 unsigned long ptr;
1580
1581 key.objectid = inode_objectid;
962a298f 1582 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
1583 key.offset = start_off;
1584
1585 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1586 if (ret < 0)
1587 return ret;
1588
1589 while (1) {
1590 leaf = path->nodes[0];
1591 slot = path->slots[0];
1592 if (slot >= btrfs_header_nritems(leaf)) {
1593 /*
1594 * If the item at offset is not found,
1595 * btrfs_search_slot will point us to the slot
1596 * where it should be inserted. In our case
1597 * that will be the slot directly before the
1598 * next INODE_REF_KEY_V2 item. In the case
1599 * that we're pointing to the last slot in a
1600 * leaf, we must move one leaf over.
1601 */
1602 ret = btrfs_next_leaf(root, path);
1603 if (ret) {
1604 if (ret >= 1)
1605 ret = -ENOENT;
1606 break;
1607 }
1608 continue;
1609 }
1610
1611 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1612
1613 /*
1614 * Check that we're still looking at an extended ref key for
1615 * this particular objectid. If we have different
1616 * objectid or type then there are no more to be found
1617 * in the tree and we can exit.
1618 */
1619 ret = -ENOENT;
1620 if (found_key.objectid != inode_objectid)
1621 break;
962a298f 1622 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
1623 break;
1624
1625 ret = 0;
1626 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1627 extref = (struct btrfs_inode_extref *)ptr;
1628 *ret_extref = extref;
1629 if (found_off)
1630 *found_off = found_key.offset;
1631 break;
1632 }
1633
1634 return ret;
1635}
1636
48a3b636
ES
1637/*
1638 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1639 * Elements of the path are separated by '/' and the path is guaranteed to be
1640 * 0-terminated. the path is only given within the current file system.
1641 * Therefore, it never starts with a '/'. the caller is responsible to provide
1642 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1643 * the start point of the resulting string is returned. this pointer is within
1644 * dest, normally.
1645 * in case the path buffer would overflow, the pointer is decremented further
1646 * as if output was written to the buffer, though no more output is actually
1647 * generated. that way, the caller can determine how much space would be
1648 * required for the path to fit into the buffer. in that case, the returned
1649 * value will be smaller than dest. callers must check this!
1650 */
96b5bd77
JS
1651char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1652 u32 name_len, unsigned long name_off,
1653 struct extent_buffer *eb_in, u64 parent,
1654 char *dest, u32 size)
a542ad1b 1655{
a542ad1b
JS
1656 int slot;
1657 u64 next_inum;
1658 int ret;
661bec6b 1659 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1660 struct extent_buffer *eb = eb_in;
1661 struct btrfs_key found_key;
b916a59a 1662 int leave_spinning = path->leave_spinning;
d24bec3a 1663 struct btrfs_inode_ref *iref;
a542ad1b
JS
1664
1665 if (bytes_left >= 0)
1666 dest[bytes_left] = '\0';
1667
b916a59a 1668 path->leave_spinning = 1;
a542ad1b 1669 while (1) {
d24bec3a 1670 bytes_left -= name_len;
a542ad1b
JS
1671 if (bytes_left >= 0)
1672 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1673 name_off, name_len);
b916a59a 1674 if (eb != eb_in) {
0c0fe3b0
FM
1675 if (!path->skip_locking)
1676 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1677 free_extent_buffer(eb);
b916a59a 1678 }
c234a24d
DS
1679 ret = btrfs_find_item(fs_root, path, parent, 0,
1680 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
1681 if (ret > 0)
1682 ret = -ENOENT;
a542ad1b
JS
1683 if (ret)
1684 break;
d24bec3a 1685
a542ad1b
JS
1686 next_inum = found_key.offset;
1687
1688 /* regular exit ahead */
1689 if (parent == next_inum)
1690 break;
1691
1692 slot = path->slots[0];
1693 eb = path->nodes[0];
1694 /* make sure we can use eb after releasing the path */
b916a59a 1695 if (eb != eb_in) {
0c0fe3b0 1696 if (!path->skip_locking)
300aa896 1697 btrfs_set_lock_blocking_read(eb);
0c0fe3b0
FM
1698 path->nodes[0] = NULL;
1699 path->locks[0] = 0;
b916a59a 1700 }
a542ad1b 1701 btrfs_release_path(path);
a542ad1b 1702 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1703
1704 name_len = btrfs_inode_ref_name_len(eb, iref);
1705 name_off = (unsigned long)(iref + 1);
1706
a542ad1b
JS
1707 parent = next_inum;
1708 --bytes_left;
1709 if (bytes_left >= 0)
1710 dest[bytes_left] = '/';
1711 }
1712
1713 btrfs_release_path(path);
b916a59a 1714 path->leave_spinning = leave_spinning;
a542ad1b
JS
1715
1716 if (ret)
1717 return ERR_PTR(ret);
1718
1719 return dest + bytes_left;
1720}
1721
1722/*
1723 * this makes the path point to (logical EXTENT_ITEM *)
1724 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1725 * tree blocks and <0 on error.
1726 */
1727int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1728 struct btrfs_path *path, struct btrfs_key *found_key,
1729 u64 *flags_ret)
a542ad1b
JS
1730{
1731 int ret;
1732 u64 flags;
261c84b6 1733 u64 size = 0;
a542ad1b 1734 u32 item_size;
73980bec 1735 const struct extent_buffer *eb;
a542ad1b
JS
1736 struct btrfs_extent_item *ei;
1737 struct btrfs_key key;
1738
261c84b6
JB
1739 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1740 key.type = BTRFS_METADATA_ITEM_KEY;
1741 else
1742 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1743 key.objectid = logical;
1744 key.offset = (u64)-1;
1745
1746 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1747 if (ret < 0)
1748 return ret;
a542ad1b 1749
850a8cdf
WS
1750 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1751 if (ret) {
1752 if (ret > 0)
1753 ret = -ENOENT;
1754 return ret;
580f0a67 1755 }
850a8cdf 1756 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 1757 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
da17066c 1758 size = fs_info->nodesize;
261c84b6
JB
1759 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1760 size = found_key->offset;
1761
580f0a67 1762 if (found_key->objectid > logical ||
261c84b6 1763 found_key->objectid + size <= logical) {
ab8d0fc4
JM
1764 btrfs_debug(fs_info,
1765 "logical %llu is not within any extent", logical);
a542ad1b 1766 return -ENOENT;
4692cf58 1767 }
a542ad1b
JS
1768
1769 eb = path->nodes[0];
1770 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1771 BUG_ON(item_size < sizeof(*ei));
1772
1773 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1774 flags = btrfs_extent_flags(eb, ei);
1775
ab8d0fc4
JM
1776 btrfs_debug(fs_info,
1777 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
c1c9ff7c
GU
1778 logical, logical - found_key->objectid, found_key->objectid,
1779 found_key->offset, flags, item_size);
69917e43
LB
1780
1781 WARN_ON(!flags_ret);
1782 if (flags_ret) {
1783 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1784 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1785 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1786 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1787 else
290342f6 1788 BUG();
69917e43
LB
1789 return 0;
1790 }
a542ad1b
JS
1791
1792 return -EIO;
1793}
1794
1795/*
1796 * helper function to iterate extent inline refs. ptr must point to a 0 value
1797 * for the first call and may be modified. it is used to track state.
1798 * if more refs exist, 0 is returned and the next call to
e0c476b1 1799 * get_extent_inline_ref must pass the modified ptr parameter to get the
a542ad1b
JS
1800 * next ref. after the last ref was processed, 1 is returned.
1801 * returns <0 on error
1802 */
e0c476b1
JM
1803static int get_extent_inline_ref(unsigned long *ptr,
1804 const struct extent_buffer *eb,
1805 const struct btrfs_key *key,
1806 const struct btrfs_extent_item *ei,
1807 u32 item_size,
1808 struct btrfs_extent_inline_ref **out_eiref,
1809 int *out_type)
a542ad1b
JS
1810{
1811 unsigned long end;
1812 u64 flags;
1813 struct btrfs_tree_block_info *info;
1814
1815 if (!*ptr) {
1816 /* first call */
1817 flags = btrfs_extent_flags(eb, ei);
1818 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
1819 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1820 /* a skinny metadata extent */
1821 *out_eiref =
1822 (struct btrfs_extent_inline_ref *)(ei + 1);
1823 } else {
1824 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1825 info = (struct btrfs_tree_block_info *)(ei + 1);
1826 *out_eiref =
1827 (struct btrfs_extent_inline_ref *)(info + 1);
1828 }
a542ad1b
JS
1829 } else {
1830 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1831 }
1832 *ptr = (unsigned long)*out_eiref;
cd857dd6 1833 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
1834 return -ENOENT;
1835 }
1836
1837 end = (unsigned long)ei + item_size;
6eda71d0 1838 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
3de28d57
LB
1839 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1840 BTRFS_REF_TYPE_ANY);
1841 if (*out_type == BTRFS_REF_TYPE_INVALID)
af431dcb 1842 return -EUCLEAN;
a542ad1b
JS
1843
1844 *ptr += btrfs_extent_inline_ref_size(*out_type);
1845 WARN_ON(*ptr > end);
1846 if (*ptr == end)
1847 return 1; /* last */
1848
1849 return 0;
1850}
1851
1852/*
1853 * reads the tree block backref for an extent. tree level and root are returned
1854 * through out_level and out_root. ptr must point to a 0 value for the first
e0c476b1 1855 * call and may be modified (see get_extent_inline_ref comment).
a542ad1b
JS
1856 * returns 0 if data was provided, 1 if there was no more data to provide or
1857 * <0 on error.
1858 */
1859int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
1860 struct btrfs_key *key, struct btrfs_extent_item *ei,
1861 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
1862{
1863 int ret;
1864 int type;
a542ad1b
JS
1865 struct btrfs_extent_inline_ref *eiref;
1866
1867 if (*ptr == (unsigned long)-1)
1868 return 1;
1869
1870 while (1) {
e0c476b1 1871 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
6eda71d0 1872 &eiref, &type);
a542ad1b
JS
1873 if (ret < 0)
1874 return ret;
1875
1876 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1877 type == BTRFS_SHARED_BLOCK_REF_KEY)
1878 break;
1879
1880 if (ret == 1)
1881 return 1;
1882 }
1883
1884 /* we can treat both ref types equally here */
a542ad1b 1885 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
1886
1887 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1888 struct btrfs_tree_block_info *info;
1889
1890 info = (struct btrfs_tree_block_info *)(ei + 1);
1891 *out_level = btrfs_tree_block_level(eb, info);
1892 } else {
1893 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1894 *out_level = (u8)key->offset;
1895 }
a542ad1b
JS
1896
1897 if (ret == 1)
1898 *ptr = (unsigned long)-1;
1899
1900 return 0;
1901}
1902
ab8d0fc4
JM
1903static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1904 struct extent_inode_elem *inode_list,
1905 u64 root, u64 extent_item_objectid,
1906 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1907{
976b1908 1908 struct extent_inode_elem *eie;
4692cf58 1909 int ret = 0;
4692cf58 1910
976b1908 1911 for (eie = inode_list; eie; eie = eie->next) {
ab8d0fc4
JM
1912 btrfs_debug(fs_info,
1913 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1914 extent_item_objectid, eie->inum,
1915 eie->offset, root);
976b1908 1916 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1917 if (ret) {
ab8d0fc4
JM
1918 btrfs_debug(fs_info,
1919 "stopping iteration for %llu due to ret=%d",
1920 extent_item_objectid, ret);
4692cf58
JS
1921 break;
1922 }
a542ad1b
JS
1923 }
1924
a542ad1b
JS
1925 return ret;
1926}
1927
1928/*
1929 * calls iterate() for every inode that references the extent identified by
4692cf58 1930 * the given parameters.
a542ad1b
JS
1931 * when the iterator function returns a non-zero value, iteration stops.
1932 */
1933int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1934 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1935 int search_commit_root,
c995ab3c
ZB
1936 iterate_extent_inodes_t *iterate, void *ctx,
1937 bool ignore_offset)
a542ad1b 1938{
a542ad1b 1939 int ret;
da61d31a 1940 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1941 struct ulist *refs = NULL;
1942 struct ulist *roots = NULL;
4692cf58
JS
1943 struct ulist_node *ref_node = NULL;
1944 struct ulist_node *root_node = NULL;
3284da7b 1945 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
cd1b413c
JS
1946 struct ulist_iterator ref_uiter;
1947 struct ulist_iterator root_uiter;
a542ad1b 1948
ab8d0fc4 1949 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
4692cf58 1950 extent_item_objectid);
a542ad1b 1951
da61d31a 1952 if (!search_commit_root) {
bfc61c36
FM
1953 trans = btrfs_attach_transaction(fs_info->extent_root);
1954 if (IS_ERR(trans)) {
1955 if (PTR_ERR(trans) != -ENOENT &&
1956 PTR_ERR(trans) != -EROFS)
1957 return PTR_ERR(trans);
1958 trans = NULL;
1959 }
1960 }
1961
1962 if (trans)
8445f61c 1963 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
bfc61c36 1964 else
9e351cc8 1965 down_read(&fs_info->commit_root_sem);
a542ad1b 1966
4692cf58 1967 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1968 tree_mod_seq_elem.seq, &refs,
c995ab3c 1969 &extent_item_pos, ignore_offset);
4692cf58
JS
1970 if (ret)
1971 goto out;
a542ad1b 1972
cd1b413c
JS
1973 ULIST_ITER_INIT(&ref_uiter);
1974 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
e0c476b1 1975 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
c995ab3c
ZB
1976 tree_mod_seq_elem.seq, &roots,
1977 ignore_offset);
4692cf58
JS
1978 if (ret)
1979 break;
cd1b413c
JS
1980 ULIST_ITER_INIT(&root_uiter);
1981 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
ab8d0fc4
JM
1982 btrfs_debug(fs_info,
1983 "root %llu references leaf %llu, data list %#llx",
1984 root_node->val, ref_node->val,
1985 ref_node->aux);
1986 ret = iterate_leaf_refs(fs_info,
1987 (struct extent_inode_elem *)
995e01b7
JS
1988 (uintptr_t)ref_node->aux,
1989 root_node->val,
1990 extent_item_objectid,
1991 iterate, ctx);
4692cf58 1992 }
976b1908 1993 ulist_free(roots);
a542ad1b
JS
1994 }
1995
976b1908 1996 free_leaf_list(refs);
4692cf58 1997out:
bfc61c36 1998 if (trans) {
8445f61c 1999 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
3a45bb20 2000 btrfs_end_transaction(trans);
9e351cc8
JB
2001 } else {
2002 up_read(&fs_info->commit_root_sem);
7a3ae2f8
JS
2003 }
2004
a542ad1b
JS
2005 return ret;
2006}
2007
2008int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2009 struct btrfs_path *path,
c995ab3c
ZB
2010 iterate_extent_inodes_t *iterate, void *ctx,
2011 bool ignore_offset)
a542ad1b
JS
2012{
2013 int ret;
4692cf58 2014 u64 extent_item_pos;
69917e43 2015 u64 flags = 0;
a542ad1b 2016 struct btrfs_key found_key;
7a3ae2f8 2017 int search_commit_root = path->search_commit_root;
a542ad1b 2018
69917e43 2019 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 2020 btrfs_release_path(path);
a542ad1b
JS
2021 if (ret < 0)
2022 return ret;
69917e43 2023 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 2024 return -EINVAL;
a542ad1b 2025
4692cf58 2026 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
2027 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2028 extent_item_pos, search_commit_root,
c995ab3c 2029 iterate, ctx, ignore_offset);
a542ad1b
JS
2030
2031 return ret;
2032}
2033
d24bec3a
MF
2034typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2035 struct extent_buffer *eb, void *ctx);
2036
2037static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2038 struct btrfs_path *path,
2039 iterate_irefs_t *iterate, void *ctx)
a542ad1b 2040{
aefc1eb1 2041 int ret = 0;
a542ad1b
JS
2042 int slot;
2043 u32 cur;
2044 u32 len;
2045 u32 name_len;
2046 u64 parent = 0;
2047 int found = 0;
2048 struct extent_buffer *eb;
2049 struct btrfs_item *item;
2050 struct btrfs_inode_ref *iref;
2051 struct btrfs_key found_key;
2052
aefc1eb1 2053 while (!ret) {
c234a24d
DS
2054 ret = btrfs_find_item(fs_root, path, inum,
2055 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2056 &found_key);
2057
a542ad1b
JS
2058 if (ret < 0)
2059 break;
2060 if (ret) {
2061 ret = found ? 0 : -ENOENT;
2062 break;
2063 }
2064 ++found;
2065
2066 parent = found_key.offset;
2067 slot = path->slots[0];
3fe81ce2
FDBM
2068 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2069 if (!eb) {
2070 ret = -ENOMEM;
2071 break;
2072 }
a542ad1b
JS
2073 btrfs_release_path(path);
2074
dd3cc16b 2075 item = btrfs_item_nr(slot);
a542ad1b
JS
2076 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2077
2078 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2079 name_len = btrfs_inode_ref_name_len(eb, iref);
2080 /* path must be released before calling iterate()! */
ab8d0fc4
JM
2081 btrfs_debug(fs_root->fs_info,
2082 "following ref at offset %u for inode %llu in tree %llu",
4fd786e6
MT
2083 cur, found_key.objectid,
2084 fs_root->root_key.objectid);
d24bec3a
MF
2085 ret = iterate(parent, name_len,
2086 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 2087 if (ret)
a542ad1b 2088 break;
a542ad1b
JS
2089 len = sizeof(*iref) + name_len;
2090 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2091 }
2092 free_extent_buffer(eb);
2093 }
2094
2095 btrfs_release_path(path);
2096
2097 return ret;
2098}
2099
d24bec3a
MF
2100static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2101 struct btrfs_path *path,
2102 iterate_irefs_t *iterate, void *ctx)
2103{
2104 int ret;
2105 int slot;
2106 u64 offset = 0;
2107 u64 parent;
2108 int found = 0;
2109 struct extent_buffer *eb;
2110 struct btrfs_inode_extref *extref;
d24bec3a
MF
2111 u32 item_size;
2112 u32 cur_offset;
2113 unsigned long ptr;
2114
2115 while (1) {
2116 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2117 &offset);
2118 if (ret < 0)
2119 break;
2120 if (ret) {
2121 ret = found ? 0 : -ENOENT;
2122 break;
2123 }
2124 ++found;
2125
2126 slot = path->slots[0];
3fe81ce2
FDBM
2127 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2128 if (!eb) {
2129 ret = -ENOMEM;
2130 break;
2131 }
d24bec3a
MF
2132 btrfs_release_path(path);
2133
2849a854
CM
2134 item_size = btrfs_item_size_nr(eb, slot);
2135 ptr = btrfs_item_ptr_offset(eb, slot);
d24bec3a
MF
2136 cur_offset = 0;
2137
2138 while (cur_offset < item_size) {
2139 u32 name_len;
2140
2141 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2142 parent = btrfs_inode_extref_parent(eb, extref);
2143 name_len = btrfs_inode_extref_name_len(eb, extref);
2144 ret = iterate(parent, name_len,
2145 (unsigned long)&extref->name, eb, ctx);
2146 if (ret)
2147 break;
2148
2849a854 2149 cur_offset += btrfs_inode_extref_name_len(eb, extref);
d24bec3a
MF
2150 cur_offset += sizeof(*extref);
2151 }
d24bec3a
MF
2152 free_extent_buffer(eb);
2153
2154 offset++;
2155 }
2156
2157 btrfs_release_path(path);
2158
2159 return ret;
2160}
2161
2162static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2163 struct btrfs_path *path, iterate_irefs_t *iterate,
2164 void *ctx)
2165{
2166 int ret;
2167 int found_refs = 0;
2168
2169 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2170 if (!ret)
2171 ++found_refs;
2172 else if (ret != -ENOENT)
2173 return ret;
2174
2175 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2176 if (ret == -ENOENT && found_refs)
2177 return 0;
2178
2179 return ret;
2180}
2181
a542ad1b
JS
2182/*
2183 * returns 0 if the path could be dumped (probably truncated)
2184 * returns <0 in case of an error
2185 */
d24bec3a
MF
2186static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2187 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
2188{
2189 struct inode_fs_paths *ipath = ctx;
2190 char *fspath;
2191 char *fspath_min;
2192 int i = ipath->fspath->elem_cnt;
2193 const int s_ptr = sizeof(char *);
2194 u32 bytes_left;
2195
2196 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2197 ipath->fspath->bytes_left - s_ptr : 0;
2198
740c3d22 2199 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
2200 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2201 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
2202 if (IS_ERR(fspath))
2203 return PTR_ERR(fspath);
2204
2205 if (fspath > fspath_min) {
745c4d8e 2206 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
2207 ++ipath->fspath->elem_cnt;
2208 ipath->fspath->bytes_left = fspath - fspath_min;
2209 } else {
2210 ++ipath->fspath->elem_missed;
2211 ipath->fspath->bytes_missing += fspath_min - fspath;
2212 ipath->fspath->bytes_left = 0;
2213 }
2214
2215 return 0;
2216}
2217
2218/*
2219 * this dumps all file system paths to the inode into the ipath struct, provided
2220 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 2221 * from ipath->fspath->val[i].
a542ad1b 2222 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 2223 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
01327610 2224 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
a542ad1b
JS
2225 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2226 * have been needed to return all paths.
2227 */
2228int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2229{
2230 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 2231 inode_to_path, ipath);
a542ad1b
JS
2232}
2233
a542ad1b
JS
2234struct btrfs_data_container *init_data_container(u32 total_bytes)
2235{
2236 struct btrfs_data_container *data;
2237 size_t alloc_bytes;
2238
2239 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
f54de068 2240 data = kvmalloc(alloc_bytes, GFP_KERNEL);
a542ad1b
JS
2241 if (!data)
2242 return ERR_PTR(-ENOMEM);
2243
2244 if (total_bytes >= sizeof(*data)) {
2245 data->bytes_left = total_bytes - sizeof(*data);
2246 data->bytes_missing = 0;
2247 } else {
2248 data->bytes_missing = sizeof(*data) - total_bytes;
2249 data->bytes_left = 0;
2250 }
2251
2252 data->elem_cnt = 0;
2253 data->elem_missed = 0;
2254
2255 return data;
2256}
2257
2258/*
2259 * allocates space to return multiple file system paths for an inode.
2260 * total_bytes to allocate are passed, note that space usable for actual path
2261 * information will be total_bytes - sizeof(struct inode_fs_paths).
2262 * the returned pointer must be freed with free_ipath() in the end.
2263 */
2264struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2265 struct btrfs_path *path)
2266{
2267 struct inode_fs_paths *ifp;
2268 struct btrfs_data_container *fspath;
2269
2270 fspath = init_data_container(total_bytes);
2271 if (IS_ERR(fspath))
afc6961f 2272 return ERR_CAST(fspath);
a542ad1b 2273
f54de068 2274 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
a542ad1b 2275 if (!ifp) {
f54de068 2276 kvfree(fspath);
a542ad1b
JS
2277 return ERR_PTR(-ENOMEM);
2278 }
2279
2280 ifp->btrfs_path = path;
2281 ifp->fspath = fspath;
2282 ifp->fs_root = fs_root;
2283
2284 return ifp;
2285}
2286
2287void free_ipath(struct inode_fs_paths *ipath)
2288{
4735fb28
JJ
2289 if (!ipath)
2290 return;
f54de068 2291 kvfree(ipath->fspath);
a542ad1b
JS
2292 kfree(ipath);
2293}
a37f232b
QW
2294
2295struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2296 struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2297{
2298 struct btrfs_backref_iter *ret;
2299
2300 ret = kzalloc(sizeof(*ret), gfp_flag);
2301 if (!ret)
2302 return NULL;
2303
2304 ret->path = btrfs_alloc_path();
2305 if (!ret) {
2306 kfree(ret);
2307 return NULL;
2308 }
2309
2310 /* Current backref iterator only supports iteration in commit root */
2311 ret->path->search_commit_root = 1;
2312 ret->path->skip_locking = 1;
2313 ret->fs_info = fs_info;
2314
2315 return ret;
2316}
2317
2318int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2319{
2320 struct btrfs_fs_info *fs_info = iter->fs_info;
2321 struct btrfs_path *path = iter->path;
2322 struct btrfs_extent_item *ei;
2323 struct btrfs_key key;
2324 int ret;
2325
2326 key.objectid = bytenr;
2327 key.type = BTRFS_METADATA_ITEM_KEY;
2328 key.offset = (u64)-1;
2329 iter->bytenr = bytenr;
2330
2331 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2332 if (ret < 0)
2333 return ret;
2334 if (ret == 0) {
2335 ret = -EUCLEAN;
2336 goto release;
2337 }
2338 if (path->slots[0] == 0) {
2339 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2340 ret = -EUCLEAN;
2341 goto release;
2342 }
2343 path->slots[0]--;
2344
2345 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2346 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2347 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2348 ret = -ENOENT;
2349 goto release;
2350 }
2351 memcpy(&iter->cur_key, &key, sizeof(key));
2352 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2353 path->slots[0]);
2354 iter->end_ptr = (u32)(iter->item_ptr +
2355 btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2356 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2357 struct btrfs_extent_item);
2358
2359 /*
2360 * Only support iteration on tree backref yet.
2361 *
2362 * This is an extra precaution for non skinny-metadata, where
2363 * EXTENT_ITEM is also used for tree blocks, that we can only use
2364 * extent flags to determine if it's a tree block.
2365 */
2366 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2367 ret = -ENOTSUPP;
2368 goto release;
2369 }
2370 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2371
2372 /* If there is no inline backref, go search for keyed backref */
2373 if (iter->cur_ptr >= iter->end_ptr) {
2374 ret = btrfs_next_item(fs_info->extent_root, path);
2375
2376 /* No inline nor keyed ref */
2377 if (ret > 0) {
2378 ret = -ENOENT;
2379 goto release;
2380 }
2381 if (ret < 0)
2382 goto release;
2383
2384 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2385 path->slots[0]);
2386 if (iter->cur_key.objectid != bytenr ||
2387 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2388 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2389 ret = -ENOENT;
2390 goto release;
2391 }
2392 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2393 path->slots[0]);
2394 iter->item_ptr = iter->cur_ptr;
2395 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2396 path->nodes[0], path->slots[0]));
2397 }
2398
2399 return 0;
2400release:
2401 btrfs_backref_iter_release(iter);
2402 return ret;
2403}
c39c2ddc
QW
2404
2405/*
2406 * Go to the next backref item of current bytenr, can be either inlined or
2407 * keyed.
2408 *
2409 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2410 *
2411 * Return 0 if we get next backref without problem.
2412 * Return >0 if there is no extra backref for this bytenr.
2413 * Return <0 if there is something wrong happened.
2414 */
2415int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2416{
2417 struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2418 struct btrfs_path *path = iter->path;
2419 struct btrfs_extent_inline_ref *iref;
2420 int ret;
2421 u32 size;
2422
2423 if (btrfs_backref_iter_is_inline_ref(iter)) {
2424 /* We're still inside the inline refs */
2425 ASSERT(iter->cur_ptr < iter->end_ptr);
2426
2427 if (btrfs_backref_has_tree_block_info(iter)) {
2428 /* First tree block info */
2429 size = sizeof(struct btrfs_tree_block_info);
2430 } else {
2431 /* Use inline ref type to determine the size */
2432 int type;
2433
2434 iref = (struct btrfs_extent_inline_ref *)
2435 ((unsigned long)iter->cur_ptr);
2436 type = btrfs_extent_inline_ref_type(eb, iref);
2437
2438 size = btrfs_extent_inline_ref_size(type);
2439 }
2440 iter->cur_ptr += size;
2441 if (iter->cur_ptr < iter->end_ptr)
2442 return 0;
2443
2444 /* All inline items iterated, fall through */
2445 }
2446
2447 /* We're at keyed items, there is no inline item, go to the next one */
2448 ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2449 if (ret)
2450 return ret;
2451
2452 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2453 if (iter->cur_key.objectid != iter->bytenr ||
2454 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2455 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2456 return 1;
2457 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2458 path->slots[0]);
2459 iter->cur_ptr = iter->item_ptr;
2460 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2461 path->slots[0]);
2462 return 0;
2463}
584fb121
QW
2464
2465void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2466 struct btrfs_backref_cache *cache, int is_reloc)
2467{
2468 int i;
2469
2470 cache->rb_root = RB_ROOT;
2471 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2472 INIT_LIST_HEAD(&cache->pending[i]);
2473 INIT_LIST_HEAD(&cache->changed);
2474 INIT_LIST_HEAD(&cache->detached);
2475 INIT_LIST_HEAD(&cache->leaves);
2476 INIT_LIST_HEAD(&cache->pending_edge);
2477 INIT_LIST_HEAD(&cache->useless_node);
2478 cache->fs_info = fs_info;
2479 cache->is_reloc = is_reloc;
2480}
b1818dab
QW
2481
2482struct btrfs_backref_node *btrfs_backref_alloc_node(
2483 struct btrfs_backref_cache *cache, u64 bytenr, int level)
2484{
2485 struct btrfs_backref_node *node;
2486
2487 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2488 node = kzalloc(sizeof(*node), GFP_NOFS);
2489 if (!node)
2490 return node;
2491
2492 INIT_LIST_HEAD(&node->list);
2493 INIT_LIST_HEAD(&node->upper);
2494 INIT_LIST_HEAD(&node->lower);
2495 RB_CLEAR_NODE(&node->rb_node);
2496 cache->nr_nodes++;
2497 node->level = level;
2498 node->bytenr = bytenr;
2499
2500 return node;
2501}
47254d07
QW
2502
2503struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2504 struct btrfs_backref_cache *cache)
2505{
2506 struct btrfs_backref_edge *edge;
2507
2508 edge = kzalloc(sizeof(*edge), GFP_NOFS);
2509 if (edge)
2510 cache->nr_edges++;
2511 return edge;
2512}
023acb07
QW
2513
2514/*
2515 * Drop the backref node from cache, also cleaning up all its
2516 * upper edges and any uncached nodes in the path.
2517 *
2518 * This cleanup happens bottom up, thus the node should either
2519 * be the lowest node in the cache or a detached node.
2520 */
2521void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2522 struct btrfs_backref_node *node)
2523{
2524 struct btrfs_backref_node *upper;
2525 struct btrfs_backref_edge *edge;
2526
2527 if (!node)
2528 return;
2529
2530 BUG_ON(!node->lowest && !node->detached);
2531 while (!list_empty(&node->upper)) {
2532 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2533 list[LOWER]);
2534 upper = edge->node[UPPER];
2535 list_del(&edge->list[LOWER]);
2536 list_del(&edge->list[UPPER]);
2537 btrfs_backref_free_edge(cache, edge);
2538
2539 if (RB_EMPTY_NODE(&upper->rb_node)) {
2540 BUG_ON(!list_empty(&node->upper));
2541 btrfs_backref_drop_node(cache, node);
2542 node = upper;
2543 node->lowest = 1;
2544 continue;
2545 }
2546 /*
2547 * Add the node to leaf node list if no other child block
2548 * cached.
2549 */
2550 if (list_empty(&upper->lower)) {
2551 list_add_tail(&upper->lower, &cache->leaves);
2552 upper->lowest = 1;
2553 }
2554 }
2555
2556 btrfs_backref_drop_node(cache, node);
2557}
13fe1bdb
QW
2558
2559/*
2560 * Release all nodes/edges from current cache
2561 */
2562void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2563{
2564 struct btrfs_backref_node *node;
2565 int i;
2566
2567 while (!list_empty(&cache->detached)) {
2568 node = list_entry(cache->detached.next,
2569 struct btrfs_backref_node, list);
2570 btrfs_backref_cleanup_node(cache, node);
2571 }
2572
2573 while (!list_empty(&cache->leaves)) {
2574 node = list_entry(cache->leaves.next,
2575 struct btrfs_backref_node, lower);
2576 btrfs_backref_cleanup_node(cache, node);
2577 }
2578
2579 cache->last_trans = 0;
2580
2581 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2582 ASSERT(list_empty(&cache->pending[i]));
2583 ASSERT(list_empty(&cache->pending_edge));
2584 ASSERT(list_empty(&cache->useless_node));
2585 ASSERT(list_empty(&cache->changed));
2586 ASSERT(list_empty(&cache->detached));
2587 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2588 ASSERT(!cache->nr_nodes);
2589 ASSERT(!cache->nr_edges);
2590}
1b60d2ec
QW
2591
2592/*
2593 * Handle direct tree backref
2594 *
2595 * Direct tree backref means, the backref item shows its parent bytenr
2596 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2597 *
2598 * @ref_key: The converted backref key.
2599 * For keyed backref, it's the item key.
2600 * For inlined backref, objectid is the bytenr,
2601 * type is btrfs_inline_ref_type, offset is
2602 * btrfs_inline_ref_offset.
2603 */
2604static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2605 struct btrfs_key *ref_key,
2606 struct btrfs_backref_node *cur)
2607{
2608 struct btrfs_backref_edge *edge;
2609 struct btrfs_backref_node *upper;
2610 struct rb_node *rb_node;
2611
2612 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2613
2614 /* Only reloc root uses backref pointing to itself */
2615 if (ref_key->objectid == ref_key->offset) {
2616 struct btrfs_root *root;
2617
2618 cur->is_reloc_root = 1;
2619 /* Only reloc backref cache cares about a specific root */
2620 if (cache->is_reloc) {
2621 root = find_reloc_root(cache->fs_info, cur->bytenr);
2622 if (WARN_ON(!root))
2623 return -ENOENT;
2624 cur->root = root;
2625 } else {
2626 /*
2627 * For generic purpose backref cache, reloc root node
2628 * is useless.
2629 */
2630 list_add(&cur->list, &cache->useless_node);
2631 }
2632 return 0;
2633 }
2634
2635 edge = btrfs_backref_alloc_edge(cache);
2636 if (!edge)
2637 return -ENOMEM;
2638
2639 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2640 if (!rb_node) {
2641 /* Parent node not yet cached */
2642 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2643 cur->level + 1);
2644 if (!upper) {
2645 btrfs_backref_free_edge(cache, edge);
2646 return -ENOMEM;
2647 }
2648
2649 /*
2650 * Backrefs for the upper level block isn't cached, add the
2651 * block to pending list
2652 */
2653 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2654 } else {
2655 /* Parent node already cached */
2656 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2657 ASSERT(upper->checked);
2658 INIT_LIST_HEAD(&edge->list[UPPER]);
2659 }
2660 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2661 return 0;
2662}
2663
2664/*
2665 * Handle indirect tree backref
2666 *
2667 * Indirect tree backref means, we only know which tree the node belongs to.
2668 * We still need to do a tree search to find out the parents. This is for
2669 * TREE_BLOCK_REF backref (keyed or inlined).
2670 *
2671 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
2672 * @tree_key: The first key of this tree block.
2673 * @path: A clean (released) path, to avoid allocating path everytime
2674 * the function get called.
2675 */
2676static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2677 struct btrfs_path *path,
2678 struct btrfs_key *ref_key,
2679 struct btrfs_key *tree_key,
2680 struct btrfs_backref_node *cur)
2681{
2682 struct btrfs_fs_info *fs_info = cache->fs_info;
2683 struct btrfs_backref_node *upper;
2684 struct btrfs_backref_node *lower;
2685 struct btrfs_backref_edge *edge;
2686 struct extent_buffer *eb;
2687 struct btrfs_root *root;
1b60d2ec
QW
2688 struct rb_node *rb_node;
2689 int level;
2690 bool need_check = true;
2691 int ret;
2692
56e9357a 2693 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
1b60d2ec
QW
2694 if (IS_ERR(root))
2695 return PTR_ERR(root);
92a7cc42 2696 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
1b60d2ec
QW
2697 cur->cowonly = 1;
2698
2699 if (btrfs_root_level(&root->root_item) == cur->level) {
2700 /* Tree root */
2701 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
876de781
QW
2702 /*
2703 * For reloc backref cache, we may ignore reloc root. But for
2704 * general purpose backref cache, we can't rely on
2705 * btrfs_should_ignore_reloc_root() as it may conflict with
2706 * current running relocation and lead to missing root.
2707 *
2708 * For general purpose backref cache, reloc root detection is
2709 * completely relying on direct backref (key->offset is parent
2710 * bytenr), thus only do such check for reloc cache.
2711 */
2712 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
1b60d2ec
QW
2713 btrfs_put_root(root);
2714 list_add(&cur->list, &cache->useless_node);
2715 } else {
2716 cur->root = root;
2717 }
2718 return 0;
2719 }
2720
2721 level = cur->level + 1;
2722
2723 /* Search the tree to find parent blocks referring to the block */
2724 path->search_commit_root = 1;
2725 path->skip_locking = 1;
2726 path->lowest_level = level;
2727 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2728 path->lowest_level = 0;
2729 if (ret < 0) {
2730 btrfs_put_root(root);
2731 return ret;
2732 }
2733 if (ret > 0 && path->slots[level] > 0)
2734 path->slots[level]--;
2735
2736 eb = path->nodes[level];
2737 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2738 btrfs_err(fs_info,
2739"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2740 cur->bytenr, level - 1, root->root_key.objectid,
2741 tree_key->objectid, tree_key->type, tree_key->offset);
2742 btrfs_put_root(root);
2743 ret = -ENOENT;
2744 goto out;
2745 }
2746 lower = cur;
2747
2748 /* Add all nodes and edges in the path */
2749 for (; level < BTRFS_MAX_LEVEL; level++) {
2750 if (!path->nodes[level]) {
2751 ASSERT(btrfs_root_bytenr(&root->root_item) ==
2752 lower->bytenr);
876de781
QW
2753 /* Same as previous should_ignore_reloc_root() call */
2754 if (btrfs_should_ignore_reloc_root(root) &&
2755 cache->is_reloc) {
1b60d2ec
QW
2756 btrfs_put_root(root);
2757 list_add(&lower->list, &cache->useless_node);
2758 } else {
2759 lower->root = root;
2760 }
2761 break;
2762 }
2763
2764 edge = btrfs_backref_alloc_edge(cache);
2765 if (!edge) {
2766 btrfs_put_root(root);
2767 ret = -ENOMEM;
2768 goto out;
2769 }
2770
2771 eb = path->nodes[level];
2772 rb_node = rb_simple_search(&cache->rb_root, eb->start);
2773 if (!rb_node) {
2774 upper = btrfs_backref_alloc_node(cache, eb->start,
2775 lower->level + 1);
2776 if (!upper) {
2777 btrfs_put_root(root);
2778 btrfs_backref_free_edge(cache, edge);
2779 ret = -ENOMEM;
2780 goto out;
2781 }
2782 upper->owner = btrfs_header_owner(eb);
92a7cc42 2783 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
1b60d2ec
QW
2784 upper->cowonly = 1;
2785
2786 /*
2787 * If we know the block isn't shared we can avoid
2788 * checking its backrefs.
2789 */
2790 if (btrfs_block_can_be_shared(root, eb))
2791 upper->checked = 0;
2792 else
2793 upper->checked = 1;
2794
2795 /*
2796 * Add the block to pending list if we need to check its
2797 * backrefs, we only do this once while walking up a
2798 * tree as we will catch anything else later on.
2799 */
2800 if (!upper->checked && need_check) {
2801 need_check = false;
2802 list_add_tail(&edge->list[UPPER],
2803 &cache->pending_edge);
2804 } else {
2805 if (upper->checked)
2806 need_check = true;
2807 INIT_LIST_HEAD(&edge->list[UPPER]);
2808 }
2809 } else {
2810 upper = rb_entry(rb_node, struct btrfs_backref_node,
2811 rb_node);
2812 ASSERT(upper->checked);
2813 INIT_LIST_HEAD(&edge->list[UPPER]);
2814 if (!upper->owner)
2815 upper->owner = btrfs_header_owner(eb);
2816 }
2817 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2818
2819 if (rb_node) {
2820 btrfs_put_root(root);
2821 break;
2822 }
2823 lower = upper;
2824 upper = NULL;
2825 }
2826out:
2827 btrfs_release_path(path);
2828 return ret;
2829}
2830
2831/*
2832 * Add backref node @cur into @cache.
2833 *
2834 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2835 * links aren't yet bi-directional. Needs to finish such links.
fc997ed0 2836 * Use btrfs_backref_finish_upper_links() to finish such linkage.
1b60d2ec
QW
2837 *
2838 * @path: Released path for indirect tree backref lookup
2839 * @iter: Released backref iter for extent tree search
2840 * @node_key: The first key of the tree block
2841 */
2842int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2843 struct btrfs_path *path,
2844 struct btrfs_backref_iter *iter,
2845 struct btrfs_key *node_key,
2846 struct btrfs_backref_node *cur)
2847{
2848 struct btrfs_fs_info *fs_info = cache->fs_info;
2849 struct btrfs_backref_edge *edge;
2850 struct btrfs_backref_node *exist;
2851 int ret;
2852
2853 ret = btrfs_backref_iter_start(iter, cur->bytenr);
2854 if (ret < 0)
2855 return ret;
2856 /*
2857 * We skip the first btrfs_tree_block_info, as we don't use the key
2858 * stored in it, but fetch it from the tree block
2859 */
2860 if (btrfs_backref_has_tree_block_info(iter)) {
2861 ret = btrfs_backref_iter_next(iter);
2862 if (ret < 0)
2863 goto out;
2864 /* No extra backref? This means the tree block is corrupted */
2865 if (ret > 0) {
2866 ret = -EUCLEAN;
2867 goto out;
2868 }
2869 }
2870 WARN_ON(cur->checked);
2871 if (!list_empty(&cur->upper)) {
2872 /*
2873 * The backref was added previously when processing backref of
2874 * type BTRFS_TREE_BLOCK_REF_KEY
2875 */
2876 ASSERT(list_is_singular(&cur->upper));
2877 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2878 list[LOWER]);
2879 ASSERT(list_empty(&edge->list[UPPER]));
2880 exist = edge->node[UPPER];
2881 /*
2882 * Add the upper level block to pending list if we need check
2883 * its backrefs
2884 */
2885 if (!exist->checked)
2886 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2887 } else {
2888 exist = NULL;
2889 }
2890
2891 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2892 struct extent_buffer *eb;
2893 struct btrfs_key key;
2894 int type;
2895
2896 cond_resched();
2897 eb = btrfs_backref_get_eb(iter);
2898
2899 key.objectid = iter->bytenr;
2900 if (btrfs_backref_iter_is_inline_ref(iter)) {
2901 struct btrfs_extent_inline_ref *iref;
2902
2903 /* Update key for inline backref */
2904 iref = (struct btrfs_extent_inline_ref *)
2905 ((unsigned long)iter->cur_ptr);
2906 type = btrfs_get_extent_inline_ref_type(eb, iref,
2907 BTRFS_REF_TYPE_BLOCK);
2908 if (type == BTRFS_REF_TYPE_INVALID) {
2909 ret = -EUCLEAN;
2910 goto out;
2911 }
2912 key.type = type;
2913 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2914 } else {
2915 key.type = iter->cur_key.type;
2916 key.offset = iter->cur_key.offset;
2917 }
2918
2919 /*
2920 * Parent node found and matches current inline ref, no need to
2921 * rebuild this node for this inline ref
2922 */
2923 if (exist &&
2924 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2925 exist->owner == key.offset) ||
2926 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2927 exist->bytenr == key.offset))) {
2928 exist = NULL;
2929 continue;
2930 }
2931
2932 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2933 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2934 ret = handle_direct_tree_backref(cache, &key, cur);
2935 if (ret < 0)
2936 goto out;
2937 continue;
2938 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2939 ret = -EINVAL;
2940 btrfs_print_v0_err(fs_info);
2941 btrfs_handle_fs_error(fs_info, ret, NULL);
2942 goto out;
2943 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2944 continue;
2945 }
2946
2947 /*
2948 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2949 * means the root objectid. We need to search the tree to get
2950 * its parent bytenr.
2951 */
2952 ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2953 cur);
2954 if (ret < 0)
2955 goto out;
2956 }
2957 ret = 0;
2958 cur->checked = 1;
2959 WARN_ON(exist);
2960out:
2961 btrfs_backref_iter_release(iter);
2962 return ret;
2963}
fc997ed0
QW
2964
2965/*
2966 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2967 */
2968int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2969 struct btrfs_backref_node *start)
2970{
2971 struct list_head *useless_node = &cache->useless_node;
2972 struct btrfs_backref_edge *edge;
2973 struct rb_node *rb_node;
2974 LIST_HEAD(pending_edge);
2975
2976 ASSERT(start->checked);
2977
2978 /* Insert this node to cache if it's not COW-only */
2979 if (!start->cowonly) {
2980 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2981 &start->rb_node);
2982 if (rb_node)
2983 btrfs_backref_panic(cache->fs_info, start->bytenr,
2984 -EEXIST);
2985 list_add_tail(&start->lower, &cache->leaves);
2986 }
2987
2988 /*
2989 * Use breadth first search to iterate all related edges.
2990 *
2991 * The starting points are all the edges of this node
2992 */
2993 list_for_each_entry(edge, &start->upper, list[LOWER])
2994 list_add_tail(&edge->list[UPPER], &pending_edge);
2995
2996 while (!list_empty(&pending_edge)) {
2997 struct btrfs_backref_node *upper;
2998 struct btrfs_backref_node *lower;
2999 struct rb_node *rb_node;
3000
3001 edge = list_first_entry(&pending_edge,
3002 struct btrfs_backref_edge, list[UPPER]);
3003 list_del_init(&edge->list[UPPER]);
3004 upper = edge->node[UPPER];
3005 lower = edge->node[LOWER];
3006
3007 /* Parent is detached, no need to keep any edges */
3008 if (upper->detached) {
3009 list_del(&edge->list[LOWER]);
3010 btrfs_backref_free_edge(cache, edge);
3011
3012 /* Lower node is orphan, queue for cleanup */
3013 if (list_empty(&lower->upper))
3014 list_add(&lower->list, useless_node);
3015 continue;
3016 }
3017
3018 /*
3019 * All new nodes added in current build_backref_tree() haven't
3020 * been linked to the cache rb tree.
3021 * So if we have upper->rb_node populated, this means a cache
3022 * hit. We only need to link the edge, as @upper and all its
3023 * parents have already been linked.
3024 */
3025 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3026 if (upper->lowest) {
3027 list_del_init(&upper->lower);
3028 upper->lowest = 0;
3029 }
3030
3031 list_add_tail(&edge->list[UPPER], &upper->lower);
3032 continue;
3033 }
3034
3035 /* Sanity check, we shouldn't have any unchecked nodes */
3036 if (!upper->checked) {
3037 ASSERT(0);
3038 return -EUCLEAN;
3039 }
3040
3041 /* Sanity check, COW-only node has non-COW-only parent */
3042 if (start->cowonly != upper->cowonly) {
3043 ASSERT(0);
3044 return -EUCLEAN;
3045 }
3046
3047 /* Only cache non-COW-only (subvolume trees) tree blocks */
3048 if (!upper->cowonly) {
3049 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3050 &upper->rb_node);
3051 if (rb_node) {
3052 btrfs_backref_panic(cache->fs_info,
3053 upper->bytenr, -EEXIST);
3054 return -EUCLEAN;
3055 }
3056 }
3057
3058 list_add_tail(&edge->list[UPPER], &upper->lower);
3059
3060 /*
3061 * Also queue all the parent edges of this uncached node
3062 * to finish the upper linkage
3063 */
3064 list_for_each_entry(edge, &upper->upper, list[LOWER])
3065 list_add_tail(&edge->list[UPPER], &pending_edge);
3066 }
3067 return 0;
3068}
1b23ea18
QW
3069
3070void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3071 struct btrfs_backref_node *node)
3072{
3073 struct btrfs_backref_node *lower;
3074 struct btrfs_backref_node *upper;
3075 struct btrfs_backref_edge *edge;
3076
3077 while (!list_empty(&cache->useless_node)) {
3078 lower = list_first_entry(&cache->useless_node,
3079 struct btrfs_backref_node, list);
3080 list_del_init(&lower->list);
3081 }
3082 while (!list_empty(&cache->pending_edge)) {
3083 edge = list_first_entry(&cache->pending_edge,
3084 struct btrfs_backref_edge, list[UPPER]);
3085 list_del(&edge->list[UPPER]);
3086 list_del(&edge->list[LOWER]);
3087 lower = edge->node[LOWER];
3088 upper = edge->node[UPPER];
3089 btrfs_backref_free_edge(cache, edge);
3090
3091 /*
3092 * Lower is no longer linked to any upper backref nodes and
3093 * isn't in the cache, we can free it ourselves.
3094 */
3095 if (list_empty(&lower->upper) &&
3096 RB_EMPTY_NODE(&lower->rb_node))
3097 list_add(&lower->list, &cache->useless_node);
3098
3099 if (!RB_EMPTY_NODE(&upper->rb_node))
3100 continue;
3101
3102 /* Add this guy's upper edges to the list to process */
3103 list_for_each_entry(edge, &upper->upper, list[LOWER])
3104 list_add_tail(&edge->list[UPPER],
3105 &cache->pending_edge);
3106 if (list_empty(&upper->upper))
3107 list_add(&upper->list, &cache->useless_node);
3108 }
3109
3110 while (!list_empty(&cache->useless_node)) {
3111 lower = list_first_entry(&cache->useless_node,
3112 struct btrfs_backref_node, list);
3113 list_del_init(&lower->list);
3114 if (lower == node)
3115 node = NULL;
3116 btrfs_backref_free_node(cache, lower);
3117 }
3118
3119 btrfs_backref_cleanup_node(cache, node);
3120 ASSERT(list_empty(&cache->useless_node) &&
3121 list_empty(&cache->pending_edge));
3122}