Merge tag 'block-6.1-2022-10-20' of git://git.kernel.dk/linux
[linux-block.git] / fs / btrfs / backref.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a542ad1b
JS
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
a542ad1b
JS
4 */
5
f54de068 6#include <linux/mm.h>
afce772e 7#include <linux/rbtree.h>
00142756 8#include <trace/events/btrfs.h>
a542ad1b
JS
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
8da6d581
JS
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
b916a59a 15#include "locking.h"
1b60d2ec 16#include "misc.h"
f3a84ccd 17#include "tree-mod-log.h"
a542ad1b 18
dc046b10
JB
19/* Just an arbitrary number so we can be sure this happened */
20#define BACKREF_FOUND_SHARED 6
21
976b1908
JS
22struct extent_inode_elem {
23 u64 inum;
24 u64 offset;
25 struct extent_inode_elem *next;
26};
27
73980bec
JM
28static int check_extent_in_eb(const struct btrfs_key *key,
29 const struct extent_buffer *eb,
30 const struct btrfs_file_extent_item *fi,
31 u64 extent_item_pos,
c995ab3c
ZB
32 struct extent_inode_elem **eie,
33 bool ignore_offset)
976b1908 34{
8ca15e05 35 u64 offset = 0;
976b1908
JS
36 struct extent_inode_elem *e;
37
c995ab3c
ZB
38 if (!ignore_offset &&
39 !btrfs_file_extent_compression(eb, fi) &&
8ca15e05
JB
40 !btrfs_file_extent_encryption(eb, fi) &&
41 !btrfs_file_extent_other_encoding(eb, fi)) {
42 u64 data_offset;
43 u64 data_len;
976b1908 44
8ca15e05
JB
45 data_offset = btrfs_file_extent_offset(eb, fi);
46 data_len = btrfs_file_extent_num_bytes(eb, fi);
47
48 if (extent_item_pos < data_offset ||
49 extent_item_pos >= data_offset + data_len)
50 return 1;
51 offset = extent_item_pos - data_offset;
52 }
976b1908
JS
53
54 e = kmalloc(sizeof(*e), GFP_NOFS);
55 if (!e)
56 return -ENOMEM;
57
58 e->next = *eie;
59 e->inum = key->objectid;
8ca15e05 60 e->offset = key->offset + offset;
976b1908
JS
61 *eie = e;
62
63 return 0;
64}
65
f05c4746
WS
66static void free_inode_elem_list(struct extent_inode_elem *eie)
67{
68 struct extent_inode_elem *eie_next;
69
70 for (; eie; eie = eie_next) {
71 eie_next = eie->next;
72 kfree(eie);
73 }
74}
75
73980bec
JM
76static int find_extent_in_eb(const struct extent_buffer *eb,
77 u64 wanted_disk_byte, u64 extent_item_pos,
c995ab3c
ZB
78 struct extent_inode_elem **eie,
79 bool ignore_offset)
976b1908
JS
80{
81 u64 disk_byte;
82 struct btrfs_key key;
83 struct btrfs_file_extent_item *fi;
84 int slot;
85 int nritems;
86 int extent_type;
87 int ret;
88
89 /*
90 * from the shared data ref, we only have the leaf but we need
91 * the key. thus, we must look into all items and see that we
92 * find one (some) with a reference to our extent item.
93 */
94 nritems = btrfs_header_nritems(eb);
95 for (slot = 0; slot < nritems; ++slot) {
96 btrfs_item_key_to_cpu(eb, &key, slot);
97 if (key.type != BTRFS_EXTENT_DATA_KEY)
98 continue;
99 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
100 extent_type = btrfs_file_extent_type(eb, fi);
101 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
102 continue;
103 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
104 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
105 if (disk_byte != wanted_disk_byte)
106 continue;
107
c995ab3c 108 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
976b1908
JS
109 if (ret < 0)
110 return ret;
111 }
112
113 return 0;
114}
115
86d5f994 116struct preftree {
ecf160b4 117 struct rb_root_cached root;
6c336b21 118 unsigned int count;
86d5f994
EN
119};
120
ecf160b4 121#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
86d5f994
EN
122
123struct preftrees {
124 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
125 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
126 struct preftree indirect_missing_keys;
127};
128
3ec4d323
EN
129/*
130 * Checks for a shared extent during backref search.
131 *
132 * The share_count tracks prelim_refs (direct and indirect) having a
133 * ref->count >0:
134 * - incremented when a ref->count transitions to >0
135 * - decremented when a ref->count transitions to <1
136 */
137struct share_check {
138 u64 root_objectid;
139 u64 inum;
140 int share_count;
4fc7b572 141 bool have_delayed_delete_refs;
3ec4d323
EN
142};
143
144static inline int extent_is_shared(struct share_check *sc)
145{
146 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
147}
148
b9e9a6cb
WS
149static struct kmem_cache *btrfs_prelim_ref_cache;
150
151int __init btrfs_prelim_ref_init(void)
152{
153 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
e0c476b1 154 sizeof(struct prelim_ref),
b9e9a6cb 155 0,
fba4b697 156 SLAB_MEM_SPREAD,
b9e9a6cb
WS
157 NULL);
158 if (!btrfs_prelim_ref_cache)
159 return -ENOMEM;
160 return 0;
161}
162
e67c718b 163void __cold btrfs_prelim_ref_exit(void)
b9e9a6cb 164{
5598e900 165 kmem_cache_destroy(btrfs_prelim_ref_cache);
b9e9a6cb
WS
166}
167
86d5f994
EN
168static void free_pref(struct prelim_ref *ref)
169{
170 kmem_cache_free(btrfs_prelim_ref_cache, ref);
171}
172
173/*
174 * Return 0 when both refs are for the same block (and can be merged).
175 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
176 * indicates a 'higher' block.
177 */
178static int prelim_ref_compare(struct prelim_ref *ref1,
179 struct prelim_ref *ref2)
180{
181 if (ref1->level < ref2->level)
182 return -1;
183 if (ref1->level > ref2->level)
184 return 1;
185 if (ref1->root_id < ref2->root_id)
186 return -1;
187 if (ref1->root_id > ref2->root_id)
188 return 1;
189 if (ref1->key_for_search.type < ref2->key_for_search.type)
190 return -1;
191 if (ref1->key_for_search.type > ref2->key_for_search.type)
192 return 1;
193 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
194 return -1;
195 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
196 return 1;
197 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
198 return -1;
199 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
200 return 1;
201 if (ref1->parent < ref2->parent)
202 return -1;
203 if (ref1->parent > ref2->parent)
204 return 1;
205
206 return 0;
207}
208
ccc8dc75
CIK
209static void update_share_count(struct share_check *sc, int oldcount,
210 int newcount)
3ec4d323
EN
211{
212 if ((!sc) || (oldcount == 0 && newcount < 1))
213 return;
214
215 if (oldcount > 0 && newcount < 1)
216 sc->share_count--;
217 else if (oldcount < 1 && newcount > 0)
218 sc->share_count++;
219}
220
86d5f994
EN
221/*
222 * Add @newref to the @root rbtree, merging identical refs.
223 *
3ec4d323 224 * Callers should assume that newref has been freed after calling.
86d5f994 225 */
00142756
JM
226static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
227 struct preftree *preftree,
3ec4d323
EN
228 struct prelim_ref *newref,
229 struct share_check *sc)
86d5f994 230{
ecf160b4 231 struct rb_root_cached *root;
86d5f994
EN
232 struct rb_node **p;
233 struct rb_node *parent = NULL;
234 struct prelim_ref *ref;
235 int result;
ecf160b4 236 bool leftmost = true;
86d5f994
EN
237
238 root = &preftree->root;
ecf160b4 239 p = &root->rb_root.rb_node;
86d5f994
EN
240
241 while (*p) {
242 parent = *p;
243 ref = rb_entry(parent, struct prelim_ref, rbnode);
244 result = prelim_ref_compare(ref, newref);
245 if (result < 0) {
246 p = &(*p)->rb_left;
247 } else if (result > 0) {
248 p = &(*p)->rb_right;
ecf160b4 249 leftmost = false;
86d5f994
EN
250 } else {
251 /* Identical refs, merge them and free @newref */
252 struct extent_inode_elem *eie = ref->inode_list;
253
254 while (eie && eie->next)
255 eie = eie->next;
256
257 if (!eie)
258 ref->inode_list = newref->inode_list;
259 else
260 eie->next = newref->inode_list;
00142756
JM
261 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
262 preftree->count);
3ec4d323
EN
263 /*
264 * A delayed ref can have newref->count < 0.
265 * The ref->count is updated to follow any
266 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
267 */
268 update_share_count(sc, ref->count,
269 ref->count + newref->count);
86d5f994
EN
270 ref->count += newref->count;
271 free_pref(newref);
272 return;
273 }
274 }
275
3ec4d323 276 update_share_count(sc, 0, newref->count);
6c336b21 277 preftree->count++;
00142756 278 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
86d5f994 279 rb_link_node(&newref->rbnode, parent, p);
ecf160b4 280 rb_insert_color_cached(&newref->rbnode, root, leftmost);
86d5f994
EN
281}
282
283/*
284 * Release the entire tree. We don't care about internal consistency so
285 * just free everything and then reset the tree root.
286 */
287static void prelim_release(struct preftree *preftree)
288{
289 struct prelim_ref *ref, *next_ref;
290
ecf160b4
LB
291 rbtree_postorder_for_each_entry_safe(ref, next_ref,
292 &preftree->root.rb_root, rbnode)
86d5f994
EN
293 free_pref(ref);
294
ecf160b4 295 preftree->root = RB_ROOT_CACHED;
6c336b21 296 preftree->count = 0;
86d5f994
EN
297}
298
d5c88b73
JS
299/*
300 * the rules for all callers of this function are:
301 * - obtaining the parent is the goal
302 * - if you add a key, you must know that it is a correct key
303 * - if you cannot add the parent or a correct key, then we will look into the
304 * block later to set a correct key
305 *
306 * delayed refs
307 * ============
308 * backref type | shared | indirect | shared | indirect
309 * information | tree | tree | data | data
310 * --------------------+--------+----------+--------+----------
311 * parent logical | y | - | - | -
312 * key to resolve | - | y | y | y
313 * tree block logical | - | - | - | -
314 * root for resolving | y | y | y | y
315 *
316 * - column 1: we've the parent -> done
317 * - column 2, 3, 4: we use the key to find the parent
318 *
319 * on disk refs (inline or keyed)
320 * ==============================
321 * backref type | shared | indirect | shared | indirect
322 * information | tree | tree | data | data
323 * --------------------+--------+----------+--------+----------
324 * parent logical | y | - | y | -
325 * key to resolve | - | - | - | y
326 * tree block logical | y | y | y | y
327 * root for resolving | - | y | y | y
328 *
329 * - column 1, 3: we've the parent -> done
330 * - column 2: we take the first key from the block to find the parent
e0c476b1 331 * (see add_missing_keys)
d5c88b73
JS
332 * - column 4: we use the key to find the parent
333 *
334 * additional information that's available but not required to find the parent
335 * block might help in merging entries to gain some speed.
336 */
00142756
JM
337static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
338 struct preftree *preftree, u64 root_id,
e0c476b1 339 const struct btrfs_key *key, int level, u64 parent,
3ec4d323
EN
340 u64 wanted_disk_byte, int count,
341 struct share_check *sc, gfp_t gfp_mask)
8da6d581 342{
e0c476b1 343 struct prelim_ref *ref;
8da6d581 344
48ec4736
LB
345 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
346 return 0;
347
b9e9a6cb 348 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
349 if (!ref)
350 return -ENOMEM;
351
352 ref->root_id = root_id;
7ac8b88e 353 if (key)
d5c88b73 354 ref->key_for_search = *key;
7ac8b88e 355 else
d5c88b73 356 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 357
3301958b 358 ref->inode_list = NULL;
8da6d581
JS
359 ref->level = level;
360 ref->count = count;
361 ref->parent = parent;
362 ref->wanted_disk_byte = wanted_disk_byte;
3ec4d323
EN
363 prelim_ref_insert(fs_info, preftree, ref, sc);
364 return extent_is_shared(sc);
8da6d581
JS
365}
366
86d5f994 367/* direct refs use root == 0, key == NULL */
00142756
JM
368static int add_direct_ref(const struct btrfs_fs_info *fs_info,
369 struct preftrees *preftrees, int level, u64 parent,
3ec4d323
EN
370 u64 wanted_disk_byte, int count,
371 struct share_check *sc, gfp_t gfp_mask)
86d5f994 372{
00142756 373 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
3ec4d323 374 parent, wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
375}
376
377/* indirect refs use parent == 0 */
00142756
JM
378static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
379 struct preftrees *preftrees, u64 root_id,
86d5f994 380 const struct btrfs_key *key, int level,
3ec4d323
EN
381 u64 wanted_disk_byte, int count,
382 struct share_check *sc, gfp_t gfp_mask)
86d5f994
EN
383{
384 struct preftree *tree = &preftrees->indirect;
385
386 if (!key)
387 tree = &preftrees->indirect_missing_keys;
00142756 388 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
3ec4d323 389 wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
390}
391
ed58f2e6 392static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
393{
394 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
395 struct rb_node *parent = NULL;
396 struct prelim_ref *ref = NULL;
9c6c723f 397 struct prelim_ref target = {};
ed58f2e6 398 int result;
399
400 target.parent = bytenr;
401
402 while (*p) {
403 parent = *p;
404 ref = rb_entry(parent, struct prelim_ref, rbnode);
405 result = prelim_ref_compare(ref, &target);
406
407 if (result < 0)
408 p = &(*p)->rb_left;
409 else if (result > 0)
410 p = &(*p)->rb_right;
411 else
412 return 1;
413 }
414 return 0;
415}
416
8da6d581 417static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
ed58f2e6 418 struct ulist *parents,
419 struct preftrees *preftrees, struct prelim_ref *ref,
44853868 420 int level, u64 time_seq, const u64 *extent_item_pos,
b25b0b87 421 bool ignore_offset)
8da6d581 422{
69bca40d
AB
423 int ret = 0;
424 int slot;
425 struct extent_buffer *eb;
426 struct btrfs_key key;
7ef81ac8 427 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 428 struct btrfs_file_extent_item *fi;
ed8c4913 429 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 430 u64 disk_byte;
7ef81ac8
JB
431 u64 wanted_disk_byte = ref->wanted_disk_byte;
432 u64 count = 0;
7ac8b88e 433 u64 data_offset;
8da6d581 434
69bca40d
AB
435 if (level != 0) {
436 eb = path->nodes[level];
437 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
438 if (ret < 0)
439 return ret;
8da6d581 440 return 0;
69bca40d 441 }
8da6d581
JS
442
443 /*
ed58f2e6 444 * 1. We normally enter this function with the path already pointing to
445 * the first item to check. But sometimes, we may enter it with
446 * slot == nritems.
447 * 2. We are searching for normal backref but bytenr of this leaf
448 * matches shared data backref
cfc0eed0 449 * 3. The leaf owner is not equal to the root we are searching
450 *
ed58f2e6 451 * For these cases, go to the next leaf before we continue.
8da6d581 452 */
ed58f2e6 453 eb = path->nodes[0];
454 if (path->slots[0] >= btrfs_header_nritems(eb) ||
cfc0eed0 455 is_shared_data_backref(preftrees, eb->start) ||
456 ref->root_id != btrfs_header_owner(eb)) {
f3a84ccd 457 if (time_seq == BTRFS_SEQ_LAST)
21633fc6
QW
458 ret = btrfs_next_leaf(root, path);
459 else
460 ret = btrfs_next_old_leaf(root, path, time_seq);
461 }
8da6d581 462
b25b0b87 463 while (!ret && count < ref->count) {
8da6d581 464 eb = path->nodes[0];
69bca40d
AB
465 slot = path->slots[0];
466
467 btrfs_item_key_to_cpu(eb, &key, slot);
468
469 if (key.objectid != key_for_search->objectid ||
470 key.type != BTRFS_EXTENT_DATA_KEY)
471 break;
472
ed58f2e6 473 /*
474 * We are searching for normal backref but bytenr of this leaf
cfc0eed0 475 * matches shared data backref, OR
476 * the leaf owner is not equal to the root we are searching for
ed58f2e6 477 */
cfc0eed0 478 if (slot == 0 &&
479 (is_shared_data_backref(preftrees, eb->start) ||
480 ref->root_id != btrfs_header_owner(eb))) {
f3a84ccd 481 if (time_seq == BTRFS_SEQ_LAST)
ed58f2e6 482 ret = btrfs_next_leaf(root, path);
483 else
484 ret = btrfs_next_old_leaf(root, path, time_seq);
485 continue;
486 }
69bca40d
AB
487 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
488 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
7ac8b88e 489 data_offset = btrfs_file_extent_offset(eb, fi);
69bca40d
AB
490
491 if (disk_byte == wanted_disk_byte) {
492 eie = NULL;
ed8c4913 493 old = NULL;
7ac8b88e 494 if (ref->key_for_search.offset == key.offset - data_offset)
495 count++;
496 else
497 goto next;
69bca40d
AB
498 if (extent_item_pos) {
499 ret = check_extent_in_eb(&key, eb, fi,
500 *extent_item_pos,
c995ab3c 501 &eie, ignore_offset);
69bca40d
AB
502 if (ret < 0)
503 break;
504 }
ed8c4913
JB
505 if (ret > 0)
506 goto next;
4eb1f66d
TI
507 ret = ulist_add_merge_ptr(parents, eb->start,
508 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
509 if (ret < 0)
510 break;
511 if (!ret && extent_item_pos) {
512 while (old->next)
513 old = old->next;
514 old->next = eie;
69bca40d 515 }
f05c4746 516 eie = NULL;
8da6d581 517 }
ed8c4913 518next:
f3a84ccd 519 if (time_seq == BTRFS_SEQ_LAST)
21633fc6
QW
520 ret = btrfs_next_item(root, path);
521 else
522 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
523 }
524
69bca40d
AB
525 if (ret > 0)
526 ret = 0;
f05c4746
WS
527 else if (ret < 0)
528 free_inode_elem_list(eie);
69bca40d 529 return ret;
8da6d581
JS
530}
531
532/*
533 * resolve an indirect backref in the form (root_id, key, level)
534 * to a logical address
535 */
e0c476b1
JM
536static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
537 struct btrfs_path *path, u64 time_seq,
ed58f2e6 538 struct preftrees *preftrees,
e0c476b1 539 struct prelim_ref *ref, struct ulist *parents,
b25b0b87 540 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 541{
8da6d581 542 struct btrfs_root *root;
8da6d581
JS
543 struct extent_buffer *eb;
544 int ret = 0;
545 int root_level;
546 int level = ref->level;
7ac8b88e 547 struct btrfs_key search_key = ref->key_for_search;
8da6d581 548
49d11bea
JB
549 /*
550 * If we're search_commit_root we could possibly be holding locks on
551 * other tree nodes. This happens when qgroups does backref walks when
552 * adding new delayed refs. To deal with this we need to look in cache
553 * for the root, and if we don't find it then we need to search the
554 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
555 * here.
556 */
557 if (path->search_commit_root)
558 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
559 else
560 root = btrfs_get_fs_root(fs_info, ref->root_id, false);
8da6d581
JS
561 if (IS_ERR(root)) {
562 ret = PTR_ERR(root);
9326f76f
JB
563 goto out_free;
564 }
565
39dba873
JB
566 if (!path->search_commit_root &&
567 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
568 ret = -ENOENT;
569 goto out;
570 }
571
f5ee5c9a 572 if (btrfs_is_testing(fs_info)) {
d9ee522b
JB
573 ret = -ENOENT;
574 goto out;
575 }
576
9e351cc8
JB
577 if (path->search_commit_root)
578 root_level = btrfs_header_level(root->commit_root);
f3a84ccd 579 else if (time_seq == BTRFS_SEQ_LAST)
21633fc6 580 root_level = btrfs_header_level(root->node);
9e351cc8
JB
581 else
582 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 583
c75e8394 584 if (root_level + 1 == level)
8da6d581
JS
585 goto out;
586
7ac8b88e 587 /*
588 * We can often find data backrefs with an offset that is too large
589 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
590 * subtracting a file's offset with the data offset of its
591 * corresponding extent data item. This can happen for example in the
592 * clone ioctl.
593 *
594 * So if we detect such case we set the search key's offset to zero to
595 * make sure we will find the matching file extent item at
596 * add_all_parents(), otherwise we will miss it because the offset
597 * taken form the backref is much larger then the offset of the file
598 * extent item. This can make us scan a very large number of file
599 * extent items, but at least it will not make us miss any.
600 *
601 * This is an ugly workaround for a behaviour that should have never
602 * existed, but it does and a fix for the clone ioctl would touch a lot
603 * of places, cause backwards incompatibility and would not fix the
604 * problem for extents cloned with older kernels.
605 */
606 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
607 search_key.offset >= LLONG_MAX)
608 search_key.offset = 0;
8da6d581 609 path->lowest_level = level;
f3a84ccd 610 if (time_seq == BTRFS_SEQ_LAST)
7ac8b88e 611 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
21633fc6 612 else
7ac8b88e 613 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
538f72cd 614
ab8d0fc4
JM
615 btrfs_debug(fs_info,
616 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
c1c9ff7c
GU
617 ref->root_id, level, ref->count, ret,
618 ref->key_for_search.objectid, ref->key_for_search.type,
619 ref->key_for_search.offset);
8da6d581
JS
620 if (ret < 0)
621 goto out;
622
623 eb = path->nodes[level];
9345457f 624 while (!eb) {
fae7f21c 625 if (WARN_ON(!level)) {
9345457f
JS
626 ret = 1;
627 goto out;
628 }
629 level--;
630 eb = path->nodes[level];
8da6d581
JS
631 }
632
ed58f2e6 633 ret = add_all_parents(root, path, parents, preftrees, ref, level,
b25b0b87 634 time_seq, extent_item_pos, ignore_offset);
8da6d581 635out:
00246528 636 btrfs_put_root(root);
9326f76f 637out_free:
da61d31a
JB
638 path->lowest_level = 0;
639 btrfs_release_path(path);
8da6d581
JS
640 return ret;
641}
642
4dae077a
JM
643static struct extent_inode_elem *
644unode_aux_to_inode_list(struct ulist_node *node)
645{
646 if (!node)
647 return NULL;
648 return (struct extent_inode_elem *)(uintptr_t)node->aux;
649}
650
8da6d581 651/*
52042d8e 652 * We maintain three separate rbtrees: one for direct refs, one for
86d5f994
EN
653 * indirect refs which have a key, and one for indirect refs which do not
654 * have a key. Each tree does merge on insertion.
655 *
656 * Once all of the references are located, we iterate over the tree of
657 * indirect refs with missing keys. An appropriate key is located and
658 * the ref is moved onto the tree for indirect refs. After all missing
659 * keys are thus located, we iterate over the indirect ref tree, resolve
660 * each reference, and then insert the resolved reference onto the
661 * direct tree (merging there too).
662 *
663 * New backrefs (i.e., for parent nodes) are added to the appropriate
664 * rbtree as they are encountered. The new backrefs are subsequently
665 * resolved as above.
8da6d581 666 */
e0c476b1
JM
667static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
668 struct btrfs_path *path, u64 time_seq,
86d5f994 669 struct preftrees *preftrees,
b25b0b87 670 const u64 *extent_item_pos,
c995ab3c 671 struct share_check *sc, bool ignore_offset)
8da6d581
JS
672{
673 int err;
674 int ret = 0;
8da6d581
JS
675 struct ulist *parents;
676 struct ulist_node *node;
cd1b413c 677 struct ulist_iterator uiter;
86d5f994 678 struct rb_node *rnode;
8da6d581
JS
679
680 parents = ulist_alloc(GFP_NOFS);
681 if (!parents)
682 return -ENOMEM;
683
684 /*
86d5f994
EN
685 * We could trade memory usage for performance here by iterating
686 * the tree, allocating new refs for each insertion, and then
687 * freeing the entire indirect tree when we're done. In some test
688 * cases, the tree can grow quite large (~200k objects).
8da6d581 689 */
ecf160b4 690 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
86d5f994
EN
691 struct prelim_ref *ref;
692
693 ref = rb_entry(rnode, struct prelim_ref, rbnode);
694 if (WARN(ref->parent,
695 "BUG: direct ref found in indirect tree")) {
696 ret = -EINVAL;
697 goto out;
698 }
699
ecf160b4 700 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
6c336b21 701 preftrees->indirect.count--;
86d5f994
EN
702
703 if (ref->count == 0) {
704 free_pref(ref);
8da6d581 705 continue;
86d5f994
EN
706 }
707
3ec4d323
EN
708 if (sc && sc->root_objectid &&
709 ref->root_id != sc->root_objectid) {
86d5f994 710 free_pref(ref);
dc046b10
JB
711 ret = BACKREF_FOUND_SHARED;
712 goto out;
713 }
ed58f2e6 714 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
715 ref, parents, extent_item_pos,
b25b0b87 716 ignore_offset);
95def2ed
WS
717 /*
718 * we can only tolerate ENOENT,otherwise,we should catch error
719 * and return directly.
720 */
721 if (err == -ENOENT) {
3ec4d323
EN
722 prelim_ref_insert(fs_info, &preftrees->direct, ref,
723 NULL);
8da6d581 724 continue;
95def2ed 725 } else if (err) {
86d5f994 726 free_pref(ref);
95def2ed
WS
727 ret = err;
728 goto out;
729 }
8da6d581
JS
730
731 /* we put the first parent into the ref at hand */
cd1b413c
JS
732 ULIST_ITER_INIT(&uiter);
733 node = ulist_next(parents, &uiter);
8da6d581 734 ref->parent = node ? node->val : 0;
4dae077a 735 ref->inode_list = unode_aux_to_inode_list(node);
8da6d581 736
86d5f994 737 /* Add a prelim_ref(s) for any other parent(s). */
cd1b413c 738 while ((node = ulist_next(parents, &uiter))) {
86d5f994
EN
739 struct prelim_ref *new_ref;
740
b9e9a6cb
WS
741 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
742 GFP_NOFS);
8da6d581 743 if (!new_ref) {
86d5f994 744 free_pref(ref);
8da6d581 745 ret = -ENOMEM;
e36902d4 746 goto out;
8da6d581
JS
747 }
748 memcpy(new_ref, ref, sizeof(*ref));
749 new_ref->parent = node->val;
4dae077a 750 new_ref->inode_list = unode_aux_to_inode_list(node);
3ec4d323
EN
751 prelim_ref_insert(fs_info, &preftrees->direct,
752 new_ref, NULL);
8da6d581 753 }
86d5f994 754
3ec4d323 755 /*
52042d8e 756 * Now it's a direct ref, put it in the direct tree. We must
3ec4d323
EN
757 * do this last because the ref could be merged/freed here.
758 */
759 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
86d5f994 760
8da6d581 761 ulist_reinit(parents);
9dd14fd6 762 cond_resched();
8da6d581 763 }
e36902d4 764out:
8da6d581
JS
765 ulist_free(parents);
766 return ret;
767}
768
d5c88b73
JS
769/*
770 * read tree blocks and add keys where required.
771 */
e0c476b1 772static int add_missing_keys(struct btrfs_fs_info *fs_info,
38e3eebf 773 struct preftrees *preftrees, bool lock)
d5c88b73 774{
e0c476b1 775 struct prelim_ref *ref;
d5c88b73 776 struct extent_buffer *eb;
86d5f994
EN
777 struct preftree *tree = &preftrees->indirect_missing_keys;
778 struct rb_node *node;
d5c88b73 779
ecf160b4 780 while ((node = rb_first_cached(&tree->root))) {
86d5f994 781 ref = rb_entry(node, struct prelim_ref, rbnode);
ecf160b4 782 rb_erase_cached(node, &tree->root);
86d5f994
EN
783
784 BUG_ON(ref->parent); /* should not be a direct ref */
785 BUG_ON(ref->key_for_search.type);
d5c88b73 786 BUG_ON(!ref->wanted_disk_byte);
86d5f994 787
1b7ec85e
JB
788 eb = read_tree_block(fs_info, ref->wanted_disk_byte,
789 ref->root_id, 0, ref->level - 1, NULL);
64c043de 790 if (IS_ERR(eb)) {
86d5f994 791 free_pref(ref);
64c043de 792 return PTR_ERR(eb);
4eb150d6
QW
793 }
794 if (!extent_buffer_uptodate(eb)) {
86d5f994 795 free_pref(ref);
416bc658
JB
796 free_extent_buffer(eb);
797 return -EIO;
798 }
4eb150d6 799
38e3eebf
JB
800 if (lock)
801 btrfs_tree_read_lock(eb);
d5c88b73
JS
802 if (btrfs_header_level(eb) == 0)
803 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
804 else
805 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
38e3eebf
JB
806 if (lock)
807 btrfs_tree_read_unlock(eb);
d5c88b73 808 free_extent_buffer(eb);
3ec4d323 809 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
9dd14fd6 810 cond_resched();
d5c88b73
JS
811 }
812 return 0;
813}
814
8da6d581
JS
815/*
816 * add all currently queued delayed refs from this head whose seq nr is
817 * smaller or equal that seq to the list
818 */
00142756
JM
819static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
820 struct btrfs_delayed_ref_head *head, u64 seq,
b25b0b87 821 struct preftrees *preftrees, struct share_check *sc)
8da6d581 822{
c6fc2454 823 struct btrfs_delayed_ref_node *node;
d5c88b73 824 struct btrfs_key key;
0e0adbcf 825 struct rb_node *n;
01747e92 826 int count;
b1375d64 827 int ret = 0;
8da6d581 828
d7df2c79 829 spin_lock(&head->lock);
e3d03965 830 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
0e0adbcf
JB
831 node = rb_entry(n, struct btrfs_delayed_ref_node,
832 ref_node);
8da6d581
JS
833 if (node->seq > seq)
834 continue;
835
836 switch (node->action) {
837 case BTRFS_ADD_DELAYED_EXTENT:
838 case BTRFS_UPDATE_DELAYED_HEAD:
839 WARN_ON(1);
840 continue;
841 case BTRFS_ADD_DELAYED_REF:
01747e92 842 count = node->ref_mod;
8da6d581
JS
843 break;
844 case BTRFS_DROP_DELAYED_REF:
01747e92 845 count = node->ref_mod * -1;
8da6d581
JS
846 break;
847 default:
290342f6 848 BUG();
8da6d581
JS
849 }
850 switch (node->type) {
851 case BTRFS_TREE_BLOCK_REF_KEY: {
86d5f994 852 /* NORMAL INDIRECT METADATA backref */
8da6d581 853 struct btrfs_delayed_tree_ref *ref;
943553ef
FM
854 struct btrfs_key *key_ptr = NULL;
855
856 if (head->extent_op && head->extent_op->update_key) {
857 btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
858 key_ptr = &key;
859 }
8da6d581
JS
860
861 ref = btrfs_delayed_node_to_tree_ref(node);
00142756 862 ret = add_indirect_ref(fs_info, preftrees, ref->root,
943553ef 863 key_ptr, ref->level + 1,
01747e92
EN
864 node->bytenr, count, sc,
865 GFP_ATOMIC);
8da6d581
JS
866 break;
867 }
868 case BTRFS_SHARED_BLOCK_REF_KEY: {
86d5f994 869 /* SHARED DIRECT METADATA backref */
8da6d581
JS
870 struct btrfs_delayed_tree_ref *ref;
871
872 ref = btrfs_delayed_node_to_tree_ref(node);
86d5f994 873
01747e92
EN
874 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
875 ref->parent, node->bytenr, count,
3ec4d323 876 sc, GFP_ATOMIC);
8da6d581
JS
877 break;
878 }
879 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 880 /* NORMAL INDIRECT DATA backref */
8da6d581 881 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
882 ref = btrfs_delayed_node_to_data_ref(node);
883
884 key.objectid = ref->objectid;
885 key.type = BTRFS_EXTENT_DATA_KEY;
886 key.offset = ref->offset;
dc046b10
JB
887
888 /*
4fc7b572
FM
889 * If we have a share check context and a reference for
890 * another inode, we can't exit immediately. This is
891 * because even if this is a BTRFS_ADD_DELAYED_REF
892 * reference we may find next a BTRFS_DROP_DELAYED_REF
893 * which cancels out this ADD reference.
894 *
895 * If this is a DROP reference and there was no previous
896 * ADD reference, then we need to signal that when we
897 * process references from the extent tree (through
898 * add_inline_refs() and add_keyed_refs()), we should
899 * not exit early if we find a reference for another
900 * inode, because one of the delayed DROP references
901 * may cancel that reference in the extent tree.
dc046b10 902 */
4fc7b572
FM
903 if (sc && count < 0)
904 sc->have_delayed_delete_refs = true;
dc046b10 905
00142756 906 ret = add_indirect_ref(fs_info, preftrees, ref->root,
01747e92
EN
907 &key, 0, node->bytenr, count, sc,
908 GFP_ATOMIC);
8da6d581
JS
909 break;
910 }
911 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 912 /* SHARED DIRECT FULL backref */
8da6d581 913 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
914
915 ref = btrfs_delayed_node_to_data_ref(node);
86d5f994 916
01747e92
EN
917 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
918 node->bytenr, count, sc,
919 GFP_ATOMIC);
8da6d581
JS
920 break;
921 }
922 default:
923 WARN_ON(1);
924 }
3ec4d323
EN
925 /*
926 * We must ignore BACKREF_FOUND_SHARED until all delayed
927 * refs have been checked.
928 */
929 if (ret && (ret != BACKREF_FOUND_SHARED))
d7df2c79 930 break;
8da6d581 931 }
3ec4d323
EN
932 if (!ret)
933 ret = extent_is_shared(sc);
4fc7b572 934
d7df2c79
JB
935 spin_unlock(&head->lock);
936 return ret;
8da6d581
JS
937}
938
939/*
940 * add all inline backrefs for bytenr to the list
3ec4d323
EN
941 *
942 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 943 */
00142756
JM
944static int add_inline_refs(const struct btrfs_fs_info *fs_info,
945 struct btrfs_path *path, u64 bytenr,
86d5f994 946 int *info_level, struct preftrees *preftrees,
b25b0b87 947 struct share_check *sc)
8da6d581 948{
b1375d64 949 int ret = 0;
8da6d581
JS
950 int slot;
951 struct extent_buffer *leaf;
952 struct btrfs_key key;
261c84b6 953 struct btrfs_key found_key;
8da6d581
JS
954 unsigned long ptr;
955 unsigned long end;
956 struct btrfs_extent_item *ei;
957 u64 flags;
958 u64 item_size;
959
960 /*
961 * enumerate all inline refs
962 */
963 leaf = path->nodes[0];
dadcaf78 964 slot = path->slots[0];
8da6d581 965
3212fa14 966 item_size = btrfs_item_size(leaf, slot);
8da6d581
JS
967 BUG_ON(item_size < sizeof(*ei));
968
969 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
970 flags = btrfs_extent_flags(leaf, ei);
261c84b6 971 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
972
973 ptr = (unsigned long)(ei + 1);
974 end = (unsigned long)ei + item_size;
975
261c84b6
JB
976 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
977 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 978 struct btrfs_tree_block_info *info;
8da6d581
JS
979
980 info = (struct btrfs_tree_block_info *)ptr;
981 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
982 ptr += sizeof(struct btrfs_tree_block_info);
983 BUG_ON(ptr > end);
261c84b6
JB
984 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
985 *info_level = found_key.offset;
8da6d581
JS
986 } else {
987 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
988 }
989
990 while (ptr < end) {
991 struct btrfs_extent_inline_ref *iref;
992 u64 offset;
993 int type;
994
995 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
996 type = btrfs_get_extent_inline_ref_type(leaf, iref,
997 BTRFS_REF_TYPE_ANY);
998 if (type == BTRFS_REF_TYPE_INVALID)
af431dcb 999 return -EUCLEAN;
3de28d57 1000
8da6d581
JS
1001 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1002
1003 switch (type) {
1004 case BTRFS_SHARED_BLOCK_REF_KEY:
00142756
JM
1005 ret = add_direct_ref(fs_info, preftrees,
1006 *info_level + 1, offset,
3ec4d323 1007 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1008 break;
1009 case BTRFS_SHARED_DATA_REF_KEY: {
1010 struct btrfs_shared_data_ref *sdref;
1011 int count;
1012
1013 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1014 count = btrfs_shared_data_ref_count(leaf, sdref);
86d5f994 1015
00142756 1016 ret = add_direct_ref(fs_info, preftrees, 0, offset,
3ec4d323 1017 bytenr, count, sc, GFP_NOFS);
8da6d581
JS
1018 break;
1019 }
1020 case BTRFS_TREE_BLOCK_REF_KEY:
00142756
JM
1021 ret = add_indirect_ref(fs_info, preftrees, offset,
1022 NULL, *info_level + 1,
3ec4d323 1023 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1024 break;
1025 case BTRFS_EXTENT_DATA_REF_KEY: {
1026 struct btrfs_extent_data_ref *dref;
1027 int count;
1028 u64 root;
1029
1030 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1031 count = btrfs_extent_data_ref_count(leaf, dref);
1032 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1033 dref);
1034 key.type = BTRFS_EXTENT_DATA_KEY;
1035 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1036
4fc7b572
FM
1037 if (sc && sc->inum && key.objectid != sc->inum &&
1038 !sc->have_delayed_delete_refs) {
dc046b10
JB
1039 ret = BACKREF_FOUND_SHARED;
1040 break;
1041 }
1042
8da6d581 1043 root = btrfs_extent_data_ref_root(leaf, dref);
86d5f994 1044
00142756
JM
1045 ret = add_indirect_ref(fs_info, preftrees, root,
1046 &key, 0, bytenr, count,
3ec4d323 1047 sc, GFP_NOFS);
4fc7b572 1048
8da6d581
JS
1049 break;
1050 }
1051 default:
1052 WARN_ON(1);
1053 }
1149ab6b
WS
1054 if (ret)
1055 return ret;
8da6d581
JS
1056 ptr += btrfs_extent_inline_ref_size(type);
1057 }
1058
1059 return 0;
1060}
1061
1062/*
1063 * add all non-inline backrefs for bytenr to the list
3ec4d323
EN
1064 *
1065 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 1066 */
98cc4222 1067static int add_keyed_refs(struct btrfs_root *extent_root,
e0c476b1 1068 struct btrfs_path *path, u64 bytenr,
86d5f994 1069 int info_level, struct preftrees *preftrees,
3ec4d323 1070 struct share_check *sc)
8da6d581 1071{
98cc4222 1072 struct btrfs_fs_info *fs_info = extent_root->fs_info;
8da6d581
JS
1073 int ret;
1074 int slot;
1075 struct extent_buffer *leaf;
1076 struct btrfs_key key;
1077
1078 while (1) {
1079 ret = btrfs_next_item(extent_root, path);
1080 if (ret < 0)
1081 break;
1082 if (ret) {
1083 ret = 0;
1084 break;
1085 }
1086
1087 slot = path->slots[0];
1088 leaf = path->nodes[0];
1089 btrfs_item_key_to_cpu(leaf, &key, slot);
1090
1091 if (key.objectid != bytenr)
1092 break;
1093 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1094 continue;
1095 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1096 break;
1097
1098 switch (key.type) {
1099 case BTRFS_SHARED_BLOCK_REF_KEY:
86d5f994 1100 /* SHARED DIRECT METADATA backref */
00142756
JM
1101 ret = add_direct_ref(fs_info, preftrees,
1102 info_level + 1, key.offset,
3ec4d323 1103 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1104 break;
1105 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 1106 /* SHARED DIRECT FULL backref */
8da6d581
JS
1107 struct btrfs_shared_data_ref *sdref;
1108 int count;
1109
1110 sdref = btrfs_item_ptr(leaf, slot,
1111 struct btrfs_shared_data_ref);
1112 count = btrfs_shared_data_ref_count(leaf, sdref);
00142756
JM
1113 ret = add_direct_ref(fs_info, preftrees, 0,
1114 key.offset, bytenr, count,
3ec4d323 1115 sc, GFP_NOFS);
8da6d581
JS
1116 break;
1117 }
1118 case BTRFS_TREE_BLOCK_REF_KEY:
86d5f994 1119 /* NORMAL INDIRECT METADATA backref */
00142756
JM
1120 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1121 NULL, info_level + 1, bytenr,
3ec4d323 1122 1, NULL, GFP_NOFS);
8da6d581
JS
1123 break;
1124 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 1125 /* NORMAL INDIRECT DATA backref */
8da6d581
JS
1126 struct btrfs_extent_data_ref *dref;
1127 int count;
1128 u64 root;
1129
1130 dref = btrfs_item_ptr(leaf, slot,
1131 struct btrfs_extent_data_ref);
1132 count = btrfs_extent_data_ref_count(leaf, dref);
1133 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1134 dref);
1135 key.type = BTRFS_EXTENT_DATA_KEY;
1136 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1137
4fc7b572
FM
1138 if (sc && sc->inum && key.objectid != sc->inum &&
1139 !sc->have_delayed_delete_refs) {
dc046b10
JB
1140 ret = BACKREF_FOUND_SHARED;
1141 break;
1142 }
1143
8da6d581 1144 root = btrfs_extent_data_ref_root(leaf, dref);
00142756
JM
1145 ret = add_indirect_ref(fs_info, preftrees, root,
1146 &key, 0, bytenr, count,
3ec4d323 1147 sc, GFP_NOFS);
8da6d581
JS
1148 break;
1149 }
1150 default:
1151 WARN_ON(1);
1152 }
1149ab6b
WS
1153 if (ret)
1154 return ret;
1155
8da6d581
JS
1156 }
1157
1158 return ret;
1159}
1160
1161/*
1162 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1163 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1164 * indirect refs to their parent bytenr.
1165 * When roots are found, they're added to the roots list
1166 *
f3a84ccd
FM
1167 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1168 * behave much like trans == NULL case, the difference only lies in it will not
21633fc6
QW
1169 * commit root.
1170 * The special case is for qgroup to search roots in commit_transaction().
1171 *
3ec4d323
EN
1172 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1173 * shared extent is detected.
1174 *
1175 * Otherwise this returns 0 for success and <0 for an error.
1176 *
c995ab3c
ZB
1177 * If ignore_offset is set to false, only extent refs whose offsets match
1178 * extent_item_pos are returned. If true, every extent ref is returned
1179 * and extent_item_pos is ignored.
1180 *
8da6d581
JS
1181 * FIXME some caching might speed things up
1182 */
1183static int find_parent_nodes(struct btrfs_trans_handle *trans,
1184 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1185 u64 time_seq, struct ulist *refs,
dc046b10 1186 struct ulist *roots, const u64 *extent_item_pos,
c995ab3c 1187 struct share_check *sc, bool ignore_offset)
8da6d581 1188{
29cbcf40 1189 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
8da6d581
JS
1190 struct btrfs_key key;
1191 struct btrfs_path *path;
8da6d581 1192 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 1193 struct btrfs_delayed_ref_head *head;
8da6d581
JS
1194 int info_level = 0;
1195 int ret;
e0c476b1 1196 struct prelim_ref *ref;
86d5f994 1197 struct rb_node *node;
f05c4746 1198 struct extent_inode_elem *eie = NULL;
86d5f994
EN
1199 struct preftrees preftrees = {
1200 .direct = PREFTREE_INIT,
1201 .indirect = PREFTREE_INIT,
1202 .indirect_missing_keys = PREFTREE_INIT
1203 };
8da6d581
JS
1204
1205 key.objectid = bytenr;
8da6d581 1206 key.offset = (u64)-1;
261c84b6
JB
1207 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1208 key.type = BTRFS_METADATA_ITEM_KEY;
1209 else
1210 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
1211
1212 path = btrfs_alloc_path();
1213 if (!path)
1214 return -ENOMEM;
e84752d4 1215 if (!trans) {
da61d31a 1216 path->search_commit_root = 1;
e84752d4
WS
1217 path->skip_locking = 1;
1218 }
8da6d581 1219
f3a84ccd 1220 if (time_seq == BTRFS_SEQ_LAST)
21633fc6
QW
1221 path->skip_locking = 1;
1222
8da6d581 1223again:
d3b01064
LZ
1224 head = NULL;
1225
98cc4222 1226 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8da6d581
JS
1227 if (ret < 0)
1228 goto out;
fcba0120
JB
1229 if (ret == 0) {
1230 /* This shouldn't happen, indicates a bug or fs corruption. */
1231 ASSERT(ret != 0);
1232 ret = -EUCLEAN;
1233 goto out;
1234 }
8da6d581 1235
21633fc6 1236 if (trans && likely(trans->type != __TRANS_DUMMY) &&
f3a84ccd 1237 time_seq != BTRFS_SEQ_LAST) {
7a3ae2f8 1238 /*
9665ebd5
JB
1239 * We have a specific time_seq we care about and trans which
1240 * means we have the path lock, we need to grab the ref head and
1241 * lock it so we have a consistent view of the refs at the given
1242 * time.
7a3ae2f8
JS
1243 */
1244 delayed_refs = &trans->transaction->delayed_refs;
1245 spin_lock(&delayed_refs->lock);
f72ad18e 1246 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7a3ae2f8
JS
1247 if (head) {
1248 if (!mutex_trylock(&head->mutex)) {
d278850e 1249 refcount_inc(&head->refs);
7a3ae2f8
JS
1250 spin_unlock(&delayed_refs->lock);
1251
1252 btrfs_release_path(path);
1253
1254 /*
1255 * Mutex was contended, block until it's
1256 * released and try again
1257 */
1258 mutex_lock(&head->mutex);
1259 mutex_unlock(&head->mutex);
d278850e 1260 btrfs_put_delayed_ref_head(head);
7a3ae2f8
JS
1261 goto again;
1262 }
d7df2c79 1263 spin_unlock(&delayed_refs->lock);
00142756 1264 ret = add_delayed_refs(fs_info, head, time_seq,
b25b0b87 1265 &preftrees, sc);
155725c9 1266 mutex_unlock(&head->mutex);
d7df2c79 1267 if (ret)
7a3ae2f8 1268 goto out;
d7df2c79
JB
1269 } else {
1270 spin_unlock(&delayed_refs->lock);
d3b01064 1271 }
8da6d581 1272 }
8da6d581
JS
1273
1274 if (path->slots[0]) {
1275 struct extent_buffer *leaf;
1276 int slot;
1277
dadcaf78 1278 path->slots[0]--;
8da6d581 1279 leaf = path->nodes[0];
dadcaf78 1280 slot = path->slots[0];
8da6d581
JS
1281 btrfs_item_key_to_cpu(leaf, &key, slot);
1282 if (key.objectid == bytenr &&
261c84b6
JB
1283 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1284 key.type == BTRFS_METADATA_ITEM_KEY)) {
00142756 1285 ret = add_inline_refs(fs_info, path, bytenr,
b25b0b87 1286 &info_level, &preftrees, sc);
8da6d581
JS
1287 if (ret)
1288 goto out;
98cc4222 1289 ret = add_keyed_refs(root, path, bytenr, info_level,
3ec4d323 1290 &preftrees, sc);
8da6d581
JS
1291 if (ret)
1292 goto out;
1293 }
1294 }
8da6d581 1295
86d5f994 1296 btrfs_release_path(path);
8da6d581 1297
38e3eebf 1298 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
d5c88b73
JS
1299 if (ret)
1300 goto out;
1301
ecf160b4 1302 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
8da6d581 1303
86d5f994 1304 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
b25b0b87 1305 extent_item_pos, sc, ignore_offset);
8da6d581
JS
1306 if (ret)
1307 goto out;
1308
ecf160b4 1309 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
8da6d581 1310
86d5f994
EN
1311 /*
1312 * This walks the tree of merged and resolved refs. Tree blocks are
1313 * read in as needed. Unique entries are added to the ulist, and
1314 * the list of found roots is updated.
1315 *
1316 * We release the entire tree in one go before returning.
1317 */
ecf160b4 1318 node = rb_first_cached(&preftrees.direct.root);
86d5f994
EN
1319 while (node) {
1320 ref = rb_entry(node, struct prelim_ref, rbnode);
1321 node = rb_next(&ref->rbnode);
c8195a7b
ZB
1322 /*
1323 * ref->count < 0 can happen here if there are delayed
1324 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1325 * prelim_ref_insert() relies on this when merging
1326 * identical refs to keep the overall count correct.
1327 * prelim_ref_insert() will merge only those refs
1328 * which compare identically. Any refs having
1329 * e.g. different offsets would not be merged,
1330 * and would retain their original ref->count < 0.
1331 */
98cfee21 1332 if (roots && ref->count && ref->root_id && ref->parent == 0) {
3ec4d323
EN
1333 if (sc && sc->root_objectid &&
1334 ref->root_id != sc->root_objectid) {
dc046b10
JB
1335 ret = BACKREF_FOUND_SHARED;
1336 goto out;
1337 }
1338
8da6d581
JS
1339 /* no parent == root of tree */
1340 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1341 if (ret < 0)
1342 goto out;
8da6d581
JS
1343 }
1344 if (ref->count && ref->parent) {
8a56457f
JB
1345 if (extent_item_pos && !ref->inode_list &&
1346 ref->level == 0) {
976b1908 1347 struct extent_buffer *eb;
707e8a07 1348
581c1760 1349 eb = read_tree_block(fs_info, ref->parent, 0,
1b7ec85e 1350 0, ref->level, NULL);
64c043de
LB
1351 if (IS_ERR(eb)) {
1352 ret = PTR_ERR(eb);
1353 goto out;
4eb150d6
QW
1354 }
1355 if (!extent_buffer_uptodate(eb)) {
416bc658 1356 free_extent_buffer(eb);
c16c2e2e
WS
1357 ret = -EIO;
1358 goto out;
416bc658 1359 }
38e3eebf 1360
ac5887c8 1361 if (!path->skip_locking)
38e3eebf 1362 btrfs_tree_read_lock(eb);
976b1908 1363 ret = find_extent_in_eb(eb, bytenr,
c995ab3c 1364 *extent_item_pos, &eie, ignore_offset);
38e3eebf 1365 if (!path->skip_locking)
ac5887c8 1366 btrfs_tree_read_unlock(eb);
976b1908 1367 free_extent_buffer(eb);
f5929cd8
FDBM
1368 if (ret < 0)
1369 goto out;
1370 ref->inode_list = eie;
976b1908 1371 }
4eb1f66d
TI
1372 ret = ulist_add_merge_ptr(refs, ref->parent,
1373 ref->inode_list,
1374 (void **)&eie, GFP_NOFS);
f1723939
WS
1375 if (ret < 0)
1376 goto out;
3301958b
JS
1377 if (!ret && extent_item_pos) {
1378 /*
9f05c09d
JB
1379 * We've recorded that parent, so we must extend
1380 * its inode list here.
1381 *
1382 * However if there was corruption we may not
1383 * have found an eie, return an error in this
1384 * case.
3301958b 1385 */
9f05c09d
JB
1386 ASSERT(eie);
1387 if (!eie) {
1388 ret = -EUCLEAN;
1389 goto out;
1390 }
3301958b
JS
1391 while (eie->next)
1392 eie = eie->next;
1393 eie->next = ref->inode_list;
1394 }
f05c4746 1395 eie = NULL;
8da6d581 1396 }
9dd14fd6 1397 cond_resched();
8da6d581
JS
1398 }
1399
1400out:
8da6d581 1401 btrfs_free_path(path);
86d5f994
EN
1402
1403 prelim_release(&preftrees.direct);
1404 prelim_release(&preftrees.indirect);
1405 prelim_release(&preftrees.indirect_missing_keys);
1406
f05c4746
WS
1407 if (ret < 0)
1408 free_inode_elem_list(eie);
8da6d581
JS
1409 return ret;
1410}
1411
976b1908
JS
1412static void free_leaf_list(struct ulist *blocks)
1413{
1414 struct ulist_node *node = NULL;
1415 struct extent_inode_elem *eie;
976b1908
JS
1416 struct ulist_iterator uiter;
1417
1418 ULIST_ITER_INIT(&uiter);
1419 while ((node = ulist_next(blocks, &uiter))) {
1420 if (!node->aux)
1421 continue;
4dae077a 1422 eie = unode_aux_to_inode_list(node);
f05c4746 1423 free_inode_elem_list(eie);
976b1908
JS
1424 node->aux = 0;
1425 }
1426
1427 ulist_free(blocks);
1428}
1429
8da6d581
JS
1430/*
1431 * Finds all leafs with a reference to the specified combination of bytenr and
1432 * offset. key_list_head will point to a list of corresponding keys (caller must
1433 * free each list element). The leafs will be stored in the leafs ulist, which
1434 * must be freed with ulist_free.
1435 *
1436 * returns 0 on success, <0 on error
1437 */
19b546d7
QW
1438int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1439 struct btrfs_fs_info *fs_info, u64 bytenr,
1440 u64 time_seq, struct ulist **leafs,
1441 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 1442{
8da6d581
JS
1443 int ret;
1444
8da6d581 1445 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1446 if (!*leafs)
8da6d581 1447 return -ENOMEM;
8da6d581 1448
afce772e 1449 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1450 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
8da6d581 1451 if (ret < 0 && ret != -ENOENT) {
976b1908 1452 free_leaf_list(*leafs);
8da6d581
JS
1453 return ret;
1454 }
1455
1456 return 0;
1457}
1458
1459/*
1460 * walk all backrefs for a given extent to find all roots that reference this
1461 * extent. Walking a backref means finding all extents that reference this
1462 * extent and in turn walk the backrefs of those, too. Naturally this is a
1463 * recursive process, but here it is implemented in an iterative fashion: We
1464 * find all referencing extents for the extent in question and put them on a
1465 * list. In turn, we find all referencing extents for those, further appending
1466 * to the list. The way we iterate the list allows adding more elements after
1467 * the current while iterating. The process stops when we reach the end of the
1468 * list. Found roots are added to the roots list.
1469 *
1470 * returns 0 on success, < 0 on error.
1471 */
e0c476b1
JM
1472static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1473 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1474 u64 time_seq, struct ulist **roots,
1475 bool ignore_offset)
8da6d581
JS
1476{
1477 struct ulist *tmp;
1478 struct ulist_node *node = NULL;
cd1b413c 1479 struct ulist_iterator uiter;
8da6d581
JS
1480 int ret;
1481
1482 tmp = ulist_alloc(GFP_NOFS);
1483 if (!tmp)
1484 return -ENOMEM;
1485 *roots = ulist_alloc(GFP_NOFS);
1486 if (!*roots) {
1487 ulist_free(tmp);
1488 return -ENOMEM;
1489 }
1490
cd1b413c 1491 ULIST_ITER_INIT(&uiter);
8da6d581 1492 while (1) {
afce772e 1493 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1494 tmp, *roots, NULL, NULL, ignore_offset);
8da6d581
JS
1495 if (ret < 0 && ret != -ENOENT) {
1496 ulist_free(tmp);
1497 ulist_free(*roots);
580c079b 1498 *roots = NULL;
8da6d581
JS
1499 return ret;
1500 }
cd1b413c 1501 node = ulist_next(tmp, &uiter);
8da6d581
JS
1502 if (!node)
1503 break;
1504 bytenr = node->val;
bca1a290 1505 cond_resched();
8da6d581
JS
1506 }
1507
1508 ulist_free(tmp);
1509 return 0;
1510}
1511
9e351cc8
JB
1512int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1513 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c 1514 u64 time_seq, struct ulist **roots,
c7bcbb21 1515 bool skip_commit_root_sem)
9e351cc8
JB
1516{
1517 int ret;
1518
8949b9a1 1519 if (!trans && !skip_commit_root_sem)
9e351cc8 1520 down_read(&fs_info->commit_root_sem);
e0c476b1 1521 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
c7bcbb21 1522 time_seq, roots, false);
8949b9a1 1523 if (!trans && !skip_commit_root_sem)
9e351cc8
JB
1524 up_read(&fs_info->commit_root_sem);
1525 return ret;
1526}
1527
12a824dc
FM
1528/*
1529 * The caller has joined a transaction or is holding a read lock on the
1530 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1531 * snapshot field changing while updating or checking the cache.
1532 */
1533static bool lookup_backref_shared_cache(struct btrfs_backref_shared_cache *cache,
1534 struct btrfs_root *root,
1535 u64 bytenr, int level, bool *is_shared)
1536{
1537 struct btrfs_backref_shared_cache_entry *entry;
1538
63c84b46
FM
1539 if (!cache->use_cache)
1540 return false;
1541
12a824dc
FM
1542 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1543 return false;
1544
1545 /*
1546 * Level -1 is used for the data extent, which is not reliable to cache
1547 * because its reference count can increase or decrease without us
1548 * realizing. We cache results only for extent buffers that lead from
1549 * the root node down to the leaf with the file extent item.
1550 */
1551 ASSERT(level >= 0);
1552
1553 entry = &cache->entries[level];
1554
1555 /* Unused cache entry or being used for some other extent buffer. */
1556 if (entry->bytenr != bytenr)
1557 return false;
1558
1559 /*
1560 * We cached a false result, but the last snapshot generation of the
1561 * root changed, so we now have a snapshot. Don't trust the result.
1562 */
1563 if (!entry->is_shared &&
1564 entry->gen != btrfs_root_last_snapshot(&root->root_item))
1565 return false;
1566
1567 /*
1568 * If we cached a true result and the last generation used for dropping
1569 * a root changed, we can not trust the result, because the dropped root
1570 * could be a snapshot sharing this extent buffer.
1571 */
1572 if (entry->is_shared &&
1573 entry->gen != btrfs_get_last_root_drop_gen(root->fs_info))
1574 return false;
1575
1576 *is_shared = entry->is_shared;
96dbcc00
FM
1577 /*
1578 * If the node at this level is shared, than all nodes below are also
1579 * shared. Currently some of the nodes below may be marked as not shared
1580 * because we have just switched from one leaf to another, and switched
1581 * also other nodes above the leaf and below the current level, so mark
1582 * them as shared.
1583 */
1584 if (*is_shared) {
1585 for (int i = 0; i < level; i++) {
1586 cache->entries[i].is_shared = true;
1587 cache->entries[i].gen = entry->gen;
1588 }
1589 }
12a824dc
FM
1590
1591 return true;
1592}
1593
1594/*
1595 * The caller has joined a transaction or is holding a read lock on the
1596 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1597 * snapshot field changing while updating or checking the cache.
1598 */
1599static void store_backref_shared_cache(struct btrfs_backref_shared_cache *cache,
1600 struct btrfs_root *root,
1601 u64 bytenr, int level, bool is_shared)
1602{
1603 struct btrfs_backref_shared_cache_entry *entry;
1604 u64 gen;
1605
63c84b46
FM
1606 if (!cache->use_cache)
1607 return;
1608
12a824dc
FM
1609 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1610 return;
1611
1612 /*
1613 * Level -1 is used for the data extent, which is not reliable to cache
1614 * because its reference count can increase or decrease without us
1615 * realizing. We cache results only for extent buffers that lead from
1616 * the root node down to the leaf with the file extent item.
1617 */
1618 ASSERT(level >= 0);
1619
1620 if (is_shared)
1621 gen = btrfs_get_last_root_drop_gen(root->fs_info);
1622 else
1623 gen = btrfs_root_last_snapshot(&root->root_item);
1624
1625 entry = &cache->entries[level];
1626 entry->bytenr = bytenr;
1627 entry->is_shared = is_shared;
1628 entry->gen = gen;
1629
1630 /*
1631 * If we found an extent buffer is shared, set the cache result for all
1632 * extent buffers below it to true. As nodes in the path are COWed,
1633 * their sharedness is moved to their children, and if a leaf is COWed,
1634 * then the sharedness of a data extent becomes direct, the refcount of
1635 * data extent is increased in the extent item at the extent tree.
1636 */
1637 if (is_shared) {
1638 for (int i = 0; i < level; i++) {
1639 entry = &cache->entries[i];
1640 entry->is_shared = is_shared;
1641 entry->gen = gen;
1642 }
1643 }
1644}
1645
8eedadda
FM
1646/*
1647 * Check if a data extent is shared or not.
6e353e3b 1648 *
b8f164e3
FM
1649 * @root: The root the inode belongs to.
1650 * @inum: Number of the inode whose extent we are checking.
1651 * @bytenr: Logical bytenr of the extent we are checking.
1652 * @extent_gen: Generation of the extent (file extent item) or 0 if it is
1653 * not known.
1654 * @roots: List of roots this extent is shared among.
1655 * @tmp: Temporary list used for iteration.
1656 * @cache: A backref lookup result cache.
2c2ed5aa 1657 *
8eedadda 1658 * btrfs_is_data_extent_shared uses the backref walking code but will short
2c2ed5aa
MF
1659 * circuit as soon as it finds a root or inode that doesn't match the
1660 * one passed in. This provides a significant performance benefit for
1661 * callers (such as fiemap) which want to know whether the extent is
1662 * shared but do not need a ref count.
1663 *
03628cdb
FM
1664 * This attempts to attach to the running transaction in order to account for
1665 * delayed refs, but continues on even when no running transaction exists.
bb739cf0 1666 *
2c2ed5aa
MF
1667 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1668 */
8eedadda 1669int btrfs_is_data_extent_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
b8f164e3 1670 u64 extent_gen,
12a824dc
FM
1671 struct ulist *roots, struct ulist *tmp,
1672 struct btrfs_backref_shared_cache *cache)
dc046b10 1673{
bb739cf0
EN
1674 struct btrfs_fs_info *fs_info = root->fs_info;
1675 struct btrfs_trans_handle *trans;
dc046b10
JB
1676 struct ulist_iterator uiter;
1677 struct ulist_node *node;
f3a84ccd 1678 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
dc046b10 1679 int ret = 0;
3ec4d323 1680 struct share_check shared = {
4fd786e6 1681 .root_objectid = root->root_key.objectid,
3ec4d323
EN
1682 .inum = inum,
1683 .share_count = 0,
4fc7b572 1684 .have_delayed_delete_refs = false,
3ec4d323 1685 };
12a824dc 1686 int level;
dc046b10 1687
5911c8fe
DS
1688 ulist_init(roots);
1689 ulist_init(tmp);
dc046b10 1690
a6d155d2 1691 trans = btrfs_join_transaction_nostart(root);
bb739cf0 1692 if (IS_ERR(trans)) {
03628cdb
FM
1693 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1694 ret = PTR_ERR(trans);
1695 goto out;
1696 }
bb739cf0 1697 trans = NULL;
dc046b10 1698 down_read(&fs_info->commit_root_sem);
bb739cf0
EN
1699 } else {
1700 btrfs_get_tree_mod_seq(fs_info, &elem);
1701 }
1702
12a824dc
FM
1703 /* -1 means we are in the bytenr of the data extent. */
1704 level = -1;
dc046b10 1705 ULIST_ITER_INIT(&uiter);
63c84b46 1706 cache->use_cache = true;
dc046b10 1707 while (1) {
12a824dc
FM
1708 bool is_shared;
1709 bool cached;
1710
dc046b10 1711 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
c995ab3c 1712 roots, NULL, &shared, false);
dc046b10 1713 if (ret == BACKREF_FOUND_SHARED) {
2c2ed5aa 1714 /* this is the only condition under which we return 1 */
dc046b10 1715 ret = 1;
12a824dc
FM
1716 if (level >= 0)
1717 store_backref_shared_cache(cache, root, bytenr,
1718 level, true);
dc046b10
JB
1719 break;
1720 }
1721 if (ret < 0 && ret != -ENOENT)
1722 break;
2c2ed5aa 1723 ret = 0;
b8f164e3
FM
1724 /*
1725 * If our data extent is not shared through reflinks and it was
1726 * created in a generation after the last one used to create a
1727 * snapshot of the inode's root, then it can not be shared
1728 * indirectly through subtrees, as that can only happen with
1729 * snapshots. In this case bail out, no need to check for the
1730 * sharedness of extent buffers.
1731 */
1732 if (level == -1 &&
1733 extent_gen > btrfs_root_last_snapshot(&root->root_item))
1734 break;
1735
63c84b46
FM
1736 /*
1737 * If our data extent was not directly shared (without multiple
1738 * reference items), than it might have a single reference item
1739 * with a count > 1 for the same offset, which means there are 2
1740 * (or more) file extent items that point to the data extent -
1741 * this happens when a file extent item needs to be split and
1742 * then one item gets moved to another leaf due to a b+tree leaf
1743 * split when inserting some item. In this case the file extent
1744 * items may be located in different leaves and therefore some
1745 * of the leaves may be referenced through shared subtrees while
1746 * others are not. Since our extent buffer cache only works for
1747 * a single path (by far the most common case and simpler to
1748 * deal with), we can not use it if we have multiple leaves
1749 * (which implies multiple paths).
1750 */
1751 if (level == -1 && tmp->nnodes > 1)
1752 cache->use_cache = false;
1753
12a824dc
FM
1754 if (level >= 0)
1755 store_backref_shared_cache(cache, root, bytenr,
1756 level, false);
dc046b10
JB
1757 node = ulist_next(tmp, &uiter);
1758 if (!node)
1759 break;
1760 bytenr = node->val;
12a824dc
FM
1761 level++;
1762 cached = lookup_backref_shared_cache(cache, root, bytenr, level,
1763 &is_shared);
1764 if (cached) {
1765 ret = (is_shared ? 1 : 0);
1766 break;
1767 }
18bf591b 1768 shared.share_count = 0;
4fc7b572 1769 shared.have_delayed_delete_refs = false;
dc046b10
JB
1770 cond_resched();
1771 }
bb739cf0
EN
1772
1773 if (trans) {
dc046b10 1774 btrfs_put_tree_mod_seq(fs_info, &elem);
bb739cf0
EN
1775 btrfs_end_transaction(trans);
1776 } else {
dc046b10 1777 up_read(&fs_info->commit_root_sem);
bb739cf0 1778 }
03628cdb 1779out:
5911c8fe
DS
1780 ulist_release(roots);
1781 ulist_release(tmp);
dc046b10
JB
1782 return ret;
1783}
1784
f186373f
MF
1785int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1786 u64 start_off, struct btrfs_path *path,
1787 struct btrfs_inode_extref **ret_extref,
1788 u64 *found_off)
1789{
1790 int ret, slot;
1791 struct btrfs_key key;
1792 struct btrfs_key found_key;
1793 struct btrfs_inode_extref *extref;
73980bec 1794 const struct extent_buffer *leaf;
f186373f
MF
1795 unsigned long ptr;
1796
1797 key.objectid = inode_objectid;
962a298f 1798 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
1799 key.offset = start_off;
1800
1801 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1802 if (ret < 0)
1803 return ret;
1804
1805 while (1) {
1806 leaf = path->nodes[0];
1807 slot = path->slots[0];
1808 if (slot >= btrfs_header_nritems(leaf)) {
1809 /*
1810 * If the item at offset is not found,
1811 * btrfs_search_slot will point us to the slot
1812 * where it should be inserted. In our case
1813 * that will be the slot directly before the
1814 * next INODE_REF_KEY_V2 item. In the case
1815 * that we're pointing to the last slot in a
1816 * leaf, we must move one leaf over.
1817 */
1818 ret = btrfs_next_leaf(root, path);
1819 if (ret) {
1820 if (ret >= 1)
1821 ret = -ENOENT;
1822 break;
1823 }
1824 continue;
1825 }
1826
1827 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1828
1829 /*
1830 * Check that we're still looking at an extended ref key for
1831 * this particular objectid. If we have different
1832 * objectid or type then there are no more to be found
1833 * in the tree and we can exit.
1834 */
1835 ret = -ENOENT;
1836 if (found_key.objectid != inode_objectid)
1837 break;
962a298f 1838 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
1839 break;
1840
1841 ret = 0;
1842 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1843 extref = (struct btrfs_inode_extref *)ptr;
1844 *ret_extref = extref;
1845 if (found_off)
1846 *found_off = found_key.offset;
1847 break;
1848 }
1849
1850 return ret;
1851}
1852
48a3b636
ES
1853/*
1854 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1855 * Elements of the path are separated by '/' and the path is guaranteed to be
1856 * 0-terminated. the path is only given within the current file system.
1857 * Therefore, it never starts with a '/'. the caller is responsible to provide
1858 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1859 * the start point of the resulting string is returned. this pointer is within
1860 * dest, normally.
1861 * in case the path buffer would overflow, the pointer is decremented further
1862 * as if output was written to the buffer, though no more output is actually
1863 * generated. that way, the caller can determine how much space would be
1864 * required for the path to fit into the buffer. in that case, the returned
1865 * value will be smaller than dest. callers must check this!
1866 */
96b5bd77
JS
1867char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1868 u32 name_len, unsigned long name_off,
1869 struct extent_buffer *eb_in, u64 parent,
1870 char *dest, u32 size)
a542ad1b 1871{
a542ad1b
JS
1872 int slot;
1873 u64 next_inum;
1874 int ret;
661bec6b 1875 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1876 struct extent_buffer *eb = eb_in;
1877 struct btrfs_key found_key;
d24bec3a 1878 struct btrfs_inode_ref *iref;
a542ad1b
JS
1879
1880 if (bytes_left >= 0)
1881 dest[bytes_left] = '\0';
1882
1883 while (1) {
d24bec3a 1884 bytes_left -= name_len;
a542ad1b
JS
1885 if (bytes_left >= 0)
1886 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1887 name_off, name_len);
b916a59a 1888 if (eb != eb_in) {
0c0fe3b0 1889 if (!path->skip_locking)
ac5887c8 1890 btrfs_tree_read_unlock(eb);
a542ad1b 1891 free_extent_buffer(eb);
b916a59a 1892 }
c234a24d
DS
1893 ret = btrfs_find_item(fs_root, path, parent, 0,
1894 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
1895 if (ret > 0)
1896 ret = -ENOENT;
a542ad1b
JS
1897 if (ret)
1898 break;
d24bec3a 1899
a542ad1b
JS
1900 next_inum = found_key.offset;
1901
1902 /* regular exit ahead */
1903 if (parent == next_inum)
1904 break;
1905
1906 slot = path->slots[0];
1907 eb = path->nodes[0];
1908 /* make sure we can use eb after releasing the path */
b916a59a 1909 if (eb != eb_in) {
0c0fe3b0
FM
1910 path->nodes[0] = NULL;
1911 path->locks[0] = 0;
b916a59a 1912 }
a542ad1b 1913 btrfs_release_path(path);
a542ad1b 1914 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1915
1916 name_len = btrfs_inode_ref_name_len(eb, iref);
1917 name_off = (unsigned long)(iref + 1);
1918
a542ad1b
JS
1919 parent = next_inum;
1920 --bytes_left;
1921 if (bytes_left >= 0)
1922 dest[bytes_left] = '/';
1923 }
1924
1925 btrfs_release_path(path);
1926
1927 if (ret)
1928 return ERR_PTR(ret);
1929
1930 return dest + bytes_left;
1931}
1932
1933/*
1934 * this makes the path point to (logical EXTENT_ITEM *)
1935 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1936 * tree blocks and <0 on error.
1937 */
1938int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1939 struct btrfs_path *path, struct btrfs_key *found_key,
1940 u64 *flags_ret)
a542ad1b 1941{
29cbcf40 1942 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
a542ad1b
JS
1943 int ret;
1944 u64 flags;
261c84b6 1945 u64 size = 0;
a542ad1b 1946 u32 item_size;
73980bec 1947 const struct extent_buffer *eb;
a542ad1b
JS
1948 struct btrfs_extent_item *ei;
1949 struct btrfs_key key;
1950
261c84b6
JB
1951 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1952 key.type = BTRFS_METADATA_ITEM_KEY;
1953 else
1954 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1955 key.objectid = logical;
1956 key.offset = (u64)-1;
1957
29cbcf40 1958 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
a542ad1b
JS
1959 if (ret < 0)
1960 return ret;
a542ad1b 1961
29cbcf40 1962 ret = btrfs_previous_extent_item(extent_root, path, 0);
850a8cdf
WS
1963 if (ret) {
1964 if (ret > 0)
1965 ret = -ENOENT;
1966 return ret;
580f0a67 1967 }
850a8cdf 1968 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 1969 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
da17066c 1970 size = fs_info->nodesize;
261c84b6
JB
1971 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1972 size = found_key->offset;
1973
580f0a67 1974 if (found_key->objectid > logical ||
261c84b6 1975 found_key->objectid + size <= logical) {
ab8d0fc4
JM
1976 btrfs_debug(fs_info,
1977 "logical %llu is not within any extent", logical);
a542ad1b 1978 return -ENOENT;
4692cf58 1979 }
a542ad1b
JS
1980
1981 eb = path->nodes[0];
3212fa14 1982 item_size = btrfs_item_size(eb, path->slots[0]);
a542ad1b
JS
1983 BUG_ON(item_size < sizeof(*ei));
1984
1985 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1986 flags = btrfs_extent_flags(eb, ei);
1987
ab8d0fc4
JM
1988 btrfs_debug(fs_info,
1989 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
c1c9ff7c
GU
1990 logical, logical - found_key->objectid, found_key->objectid,
1991 found_key->offset, flags, item_size);
69917e43
LB
1992
1993 WARN_ON(!flags_ret);
1994 if (flags_ret) {
1995 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1996 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1997 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1998 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1999 else
290342f6 2000 BUG();
69917e43
LB
2001 return 0;
2002 }
a542ad1b
JS
2003
2004 return -EIO;
2005}
2006
2007/*
2008 * helper function to iterate extent inline refs. ptr must point to a 0 value
2009 * for the first call and may be modified. it is used to track state.
2010 * if more refs exist, 0 is returned and the next call to
e0c476b1 2011 * get_extent_inline_ref must pass the modified ptr parameter to get the
a542ad1b
JS
2012 * next ref. after the last ref was processed, 1 is returned.
2013 * returns <0 on error
2014 */
e0c476b1
JM
2015static int get_extent_inline_ref(unsigned long *ptr,
2016 const struct extent_buffer *eb,
2017 const struct btrfs_key *key,
2018 const struct btrfs_extent_item *ei,
2019 u32 item_size,
2020 struct btrfs_extent_inline_ref **out_eiref,
2021 int *out_type)
a542ad1b
JS
2022{
2023 unsigned long end;
2024 u64 flags;
2025 struct btrfs_tree_block_info *info;
2026
2027 if (!*ptr) {
2028 /* first call */
2029 flags = btrfs_extent_flags(eb, ei);
2030 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
2031 if (key->type == BTRFS_METADATA_ITEM_KEY) {
2032 /* a skinny metadata extent */
2033 *out_eiref =
2034 (struct btrfs_extent_inline_ref *)(ei + 1);
2035 } else {
2036 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2037 info = (struct btrfs_tree_block_info *)(ei + 1);
2038 *out_eiref =
2039 (struct btrfs_extent_inline_ref *)(info + 1);
2040 }
a542ad1b
JS
2041 } else {
2042 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2043 }
2044 *ptr = (unsigned long)*out_eiref;
cd857dd6 2045 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
2046 return -ENOENT;
2047 }
2048
2049 end = (unsigned long)ei + item_size;
6eda71d0 2050 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
3de28d57
LB
2051 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2052 BTRFS_REF_TYPE_ANY);
2053 if (*out_type == BTRFS_REF_TYPE_INVALID)
af431dcb 2054 return -EUCLEAN;
a542ad1b
JS
2055
2056 *ptr += btrfs_extent_inline_ref_size(*out_type);
2057 WARN_ON(*ptr > end);
2058 if (*ptr == end)
2059 return 1; /* last */
2060
2061 return 0;
2062}
2063
2064/*
2065 * reads the tree block backref for an extent. tree level and root are returned
2066 * through out_level and out_root. ptr must point to a 0 value for the first
e0c476b1 2067 * call and may be modified (see get_extent_inline_ref comment).
a542ad1b
JS
2068 * returns 0 if data was provided, 1 if there was no more data to provide or
2069 * <0 on error.
2070 */
2071int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
2072 struct btrfs_key *key, struct btrfs_extent_item *ei,
2073 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
2074{
2075 int ret;
2076 int type;
a542ad1b
JS
2077 struct btrfs_extent_inline_ref *eiref;
2078
2079 if (*ptr == (unsigned long)-1)
2080 return 1;
2081
2082 while (1) {
e0c476b1 2083 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
6eda71d0 2084 &eiref, &type);
a542ad1b
JS
2085 if (ret < 0)
2086 return ret;
2087
2088 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2089 type == BTRFS_SHARED_BLOCK_REF_KEY)
2090 break;
2091
2092 if (ret == 1)
2093 return 1;
2094 }
2095
2096 /* we can treat both ref types equally here */
a542ad1b 2097 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
2098
2099 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2100 struct btrfs_tree_block_info *info;
2101
2102 info = (struct btrfs_tree_block_info *)(ei + 1);
2103 *out_level = btrfs_tree_block_level(eb, info);
2104 } else {
2105 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2106 *out_level = (u8)key->offset;
2107 }
a542ad1b
JS
2108
2109 if (ret == 1)
2110 *ptr = (unsigned long)-1;
2111
2112 return 0;
2113}
2114
ab8d0fc4
JM
2115static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2116 struct extent_inode_elem *inode_list,
2117 u64 root, u64 extent_item_objectid,
2118 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 2119{
976b1908 2120 struct extent_inode_elem *eie;
4692cf58 2121 int ret = 0;
4692cf58 2122
976b1908 2123 for (eie = inode_list; eie; eie = eie->next) {
ab8d0fc4
JM
2124 btrfs_debug(fs_info,
2125 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2126 extent_item_objectid, eie->inum,
2127 eie->offset, root);
976b1908 2128 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 2129 if (ret) {
ab8d0fc4
JM
2130 btrfs_debug(fs_info,
2131 "stopping iteration for %llu due to ret=%d",
2132 extent_item_objectid, ret);
4692cf58
JS
2133 break;
2134 }
a542ad1b
JS
2135 }
2136
a542ad1b
JS
2137 return ret;
2138}
2139
2140/*
2141 * calls iterate() for every inode that references the extent identified by
4692cf58 2142 * the given parameters.
a542ad1b
JS
2143 * when the iterator function returns a non-zero value, iteration stops.
2144 */
2145int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 2146 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 2147 int search_commit_root,
c995ab3c
ZB
2148 iterate_extent_inodes_t *iterate, void *ctx,
2149 bool ignore_offset)
a542ad1b 2150{
a542ad1b 2151 int ret;
da61d31a 2152 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
2153 struct ulist *refs = NULL;
2154 struct ulist *roots = NULL;
4692cf58
JS
2155 struct ulist_node *ref_node = NULL;
2156 struct ulist_node *root_node = NULL;
f3a84ccd 2157 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
cd1b413c
JS
2158 struct ulist_iterator ref_uiter;
2159 struct ulist_iterator root_uiter;
a542ad1b 2160
ab8d0fc4 2161 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
4692cf58 2162 extent_item_objectid);
a542ad1b 2163
da61d31a 2164 if (!search_commit_root) {
30a9da5d 2165 trans = btrfs_attach_transaction(fs_info->tree_root);
bfc61c36
FM
2166 if (IS_ERR(trans)) {
2167 if (PTR_ERR(trans) != -ENOENT &&
2168 PTR_ERR(trans) != -EROFS)
2169 return PTR_ERR(trans);
2170 trans = NULL;
2171 }
2172 }
2173
2174 if (trans)
f3a84ccd 2175 btrfs_get_tree_mod_seq(fs_info, &seq_elem);
bfc61c36 2176 else
9e351cc8 2177 down_read(&fs_info->commit_root_sem);
a542ad1b 2178
4692cf58 2179 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
f3a84ccd 2180 seq_elem.seq, &refs,
c995ab3c 2181 &extent_item_pos, ignore_offset);
4692cf58
JS
2182 if (ret)
2183 goto out;
a542ad1b 2184
cd1b413c
JS
2185 ULIST_ITER_INIT(&ref_uiter);
2186 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
e0c476b1 2187 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
f3a84ccd 2188 seq_elem.seq, &roots,
c995ab3c 2189 ignore_offset);
4692cf58
JS
2190 if (ret)
2191 break;
cd1b413c
JS
2192 ULIST_ITER_INIT(&root_uiter);
2193 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
ab8d0fc4
JM
2194 btrfs_debug(fs_info,
2195 "root %llu references leaf %llu, data list %#llx",
2196 root_node->val, ref_node->val,
2197 ref_node->aux);
2198 ret = iterate_leaf_refs(fs_info,
2199 (struct extent_inode_elem *)
995e01b7
JS
2200 (uintptr_t)ref_node->aux,
2201 root_node->val,
2202 extent_item_objectid,
2203 iterate, ctx);
4692cf58 2204 }
976b1908 2205 ulist_free(roots);
a542ad1b
JS
2206 }
2207
976b1908 2208 free_leaf_list(refs);
4692cf58 2209out:
bfc61c36 2210 if (trans) {
f3a84ccd 2211 btrfs_put_tree_mod_seq(fs_info, &seq_elem);
3a45bb20 2212 btrfs_end_transaction(trans);
9e351cc8
JB
2213 } else {
2214 up_read(&fs_info->commit_root_sem);
7a3ae2f8
JS
2215 }
2216
a542ad1b
JS
2217 return ret;
2218}
2219
e3059ec0
DS
2220static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
2221{
2222 struct btrfs_data_container *inodes = ctx;
2223 const size_t c = 3 * sizeof(u64);
2224
2225 if (inodes->bytes_left >= c) {
2226 inodes->bytes_left -= c;
2227 inodes->val[inodes->elem_cnt] = inum;
2228 inodes->val[inodes->elem_cnt + 1] = offset;
2229 inodes->val[inodes->elem_cnt + 2] = root;
2230 inodes->elem_cnt += 3;
2231 } else {
2232 inodes->bytes_missing += c - inodes->bytes_left;
2233 inodes->bytes_left = 0;
2234 inodes->elem_missed += 3;
2235 }
2236
2237 return 0;
2238}
2239
a542ad1b
JS
2240int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2241 struct btrfs_path *path,
e3059ec0 2242 void *ctx, bool ignore_offset)
a542ad1b
JS
2243{
2244 int ret;
4692cf58 2245 u64 extent_item_pos;
69917e43 2246 u64 flags = 0;
a542ad1b 2247 struct btrfs_key found_key;
7a3ae2f8 2248 int search_commit_root = path->search_commit_root;
a542ad1b 2249
69917e43 2250 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 2251 btrfs_release_path(path);
a542ad1b
JS
2252 if (ret < 0)
2253 return ret;
69917e43 2254 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 2255 return -EINVAL;
a542ad1b 2256
4692cf58 2257 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
2258 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2259 extent_item_pos, search_commit_root,
e3059ec0 2260 build_ino_list, ctx, ignore_offset);
a542ad1b
JS
2261
2262 return ret;
2263}
2264
ad6240f6 2265static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
875d1daa 2266 struct extent_buffer *eb, struct inode_fs_paths *ipath);
d24bec3a 2267
875d1daa 2268static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
a542ad1b 2269{
aefc1eb1 2270 int ret = 0;
a542ad1b
JS
2271 int slot;
2272 u32 cur;
2273 u32 len;
2274 u32 name_len;
2275 u64 parent = 0;
2276 int found = 0;
875d1daa
DS
2277 struct btrfs_root *fs_root = ipath->fs_root;
2278 struct btrfs_path *path = ipath->btrfs_path;
a542ad1b 2279 struct extent_buffer *eb;
a542ad1b
JS
2280 struct btrfs_inode_ref *iref;
2281 struct btrfs_key found_key;
2282
aefc1eb1 2283 while (!ret) {
c234a24d
DS
2284 ret = btrfs_find_item(fs_root, path, inum,
2285 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2286 &found_key);
2287
a542ad1b
JS
2288 if (ret < 0)
2289 break;
2290 if (ret) {
2291 ret = found ? 0 : -ENOENT;
2292 break;
2293 }
2294 ++found;
2295
2296 parent = found_key.offset;
2297 slot = path->slots[0];
3fe81ce2
FDBM
2298 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2299 if (!eb) {
2300 ret = -ENOMEM;
2301 break;
2302 }
a542ad1b
JS
2303 btrfs_release_path(path);
2304
a542ad1b
JS
2305 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2306
3212fa14 2307 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
a542ad1b
JS
2308 name_len = btrfs_inode_ref_name_len(eb, iref);
2309 /* path must be released before calling iterate()! */
ab8d0fc4
JM
2310 btrfs_debug(fs_root->fs_info,
2311 "following ref at offset %u for inode %llu in tree %llu",
4fd786e6
MT
2312 cur, found_key.objectid,
2313 fs_root->root_key.objectid);
ad6240f6 2314 ret = inode_to_path(parent, name_len,
875d1daa 2315 (unsigned long)(iref + 1), eb, ipath);
aefc1eb1 2316 if (ret)
a542ad1b 2317 break;
a542ad1b
JS
2318 len = sizeof(*iref) + name_len;
2319 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2320 }
2321 free_extent_buffer(eb);
2322 }
2323
2324 btrfs_release_path(path);
2325
2326 return ret;
2327}
2328
875d1daa 2329static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
d24bec3a
MF
2330{
2331 int ret;
2332 int slot;
2333 u64 offset = 0;
2334 u64 parent;
2335 int found = 0;
875d1daa
DS
2336 struct btrfs_root *fs_root = ipath->fs_root;
2337 struct btrfs_path *path = ipath->btrfs_path;
d24bec3a
MF
2338 struct extent_buffer *eb;
2339 struct btrfs_inode_extref *extref;
d24bec3a
MF
2340 u32 item_size;
2341 u32 cur_offset;
2342 unsigned long ptr;
2343
2344 while (1) {
2345 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2346 &offset);
2347 if (ret < 0)
2348 break;
2349 if (ret) {
2350 ret = found ? 0 : -ENOENT;
2351 break;
2352 }
2353 ++found;
2354
2355 slot = path->slots[0];
3fe81ce2
FDBM
2356 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2357 if (!eb) {
2358 ret = -ENOMEM;
2359 break;
2360 }
d24bec3a
MF
2361 btrfs_release_path(path);
2362
3212fa14 2363 item_size = btrfs_item_size(eb, slot);
2849a854 2364 ptr = btrfs_item_ptr_offset(eb, slot);
d24bec3a
MF
2365 cur_offset = 0;
2366
2367 while (cur_offset < item_size) {
2368 u32 name_len;
2369
2370 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2371 parent = btrfs_inode_extref_parent(eb, extref);
2372 name_len = btrfs_inode_extref_name_len(eb, extref);
ad6240f6 2373 ret = inode_to_path(parent, name_len,
875d1daa 2374 (unsigned long)&extref->name, eb, ipath);
d24bec3a
MF
2375 if (ret)
2376 break;
2377
2849a854 2378 cur_offset += btrfs_inode_extref_name_len(eb, extref);
d24bec3a
MF
2379 cur_offset += sizeof(*extref);
2380 }
d24bec3a
MF
2381 free_extent_buffer(eb);
2382
2383 offset++;
2384 }
2385
2386 btrfs_release_path(path);
2387
2388 return ret;
2389}
2390
a542ad1b
JS
2391/*
2392 * returns 0 if the path could be dumped (probably truncated)
2393 * returns <0 in case of an error
2394 */
d24bec3a 2395static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
875d1daa 2396 struct extent_buffer *eb, struct inode_fs_paths *ipath)
a542ad1b 2397{
a542ad1b
JS
2398 char *fspath;
2399 char *fspath_min;
2400 int i = ipath->fspath->elem_cnt;
2401 const int s_ptr = sizeof(char *);
2402 u32 bytes_left;
2403
2404 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2405 ipath->fspath->bytes_left - s_ptr : 0;
2406
740c3d22 2407 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
2408 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2409 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
2410 if (IS_ERR(fspath))
2411 return PTR_ERR(fspath);
2412
2413 if (fspath > fspath_min) {
745c4d8e 2414 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
2415 ++ipath->fspath->elem_cnt;
2416 ipath->fspath->bytes_left = fspath - fspath_min;
2417 } else {
2418 ++ipath->fspath->elem_missed;
2419 ipath->fspath->bytes_missing += fspath_min - fspath;
2420 ipath->fspath->bytes_left = 0;
2421 }
2422
2423 return 0;
2424}
2425
2426/*
2427 * this dumps all file system paths to the inode into the ipath struct, provided
2428 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 2429 * from ipath->fspath->val[i].
a542ad1b 2430 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 2431 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
01327610 2432 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
a542ad1b
JS
2433 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2434 * have been needed to return all paths.
2435 */
2436int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2437{
ad6240f6
DS
2438 int ret;
2439 int found_refs = 0;
2440
875d1daa 2441 ret = iterate_inode_refs(inum, ipath);
ad6240f6
DS
2442 if (!ret)
2443 ++found_refs;
2444 else if (ret != -ENOENT)
2445 return ret;
2446
875d1daa 2447 ret = iterate_inode_extrefs(inum, ipath);
ad6240f6
DS
2448 if (ret == -ENOENT && found_refs)
2449 return 0;
2450
2451 return ret;
a542ad1b
JS
2452}
2453
a542ad1b
JS
2454struct btrfs_data_container *init_data_container(u32 total_bytes)
2455{
2456 struct btrfs_data_container *data;
2457 size_t alloc_bytes;
2458
2459 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
f54de068 2460 data = kvmalloc(alloc_bytes, GFP_KERNEL);
a542ad1b
JS
2461 if (!data)
2462 return ERR_PTR(-ENOMEM);
2463
2464 if (total_bytes >= sizeof(*data)) {
2465 data->bytes_left = total_bytes - sizeof(*data);
2466 data->bytes_missing = 0;
2467 } else {
2468 data->bytes_missing = sizeof(*data) - total_bytes;
2469 data->bytes_left = 0;
2470 }
2471
2472 data->elem_cnt = 0;
2473 data->elem_missed = 0;
2474
2475 return data;
2476}
2477
2478/*
2479 * allocates space to return multiple file system paths for an inode.
2480 * total_bytes to allocate are passed, note that space usable for actual path
2481 * information will be total_bytes - sizeof(struct inode_fs_paths).
2482 * the returned pointer must be freed with free_ipath() in the end.
2483 */
2484struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2485 struct btrfs_path *path)
2486{
2487 struct inode_fs_paths *ifp;
2488 struct btrfs_data_container *fspath;
2489
2490 fspath = init_data_container(total_bytes);
2491 if (IS_ERR(fspath))
afc6961f 2492 return ERR_CAST(fspath);
a542ad1b 2493
f54de068 2494 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
a542ad1b 2495 if (!ifp) {
f54de068 2496 kvfree(fspath);
a542ad1b
JS
2497 return ERR_PTR(-ENOMEM);
2498 }
2499
2500 ifp->btrfs_path = path;
2501 ifp->fspath = fspath;
2502 ifp->fs_root = fs_root;
2503
2504 return ifp;
2505}
2506
2507void free_ipath(struct inode_fs_paths *ipath)
2508{
4735fb28
JJ
2509 if (!ipath)
2510 return;
f54de068 2511 kvfree(ipath->fspath);
a542ad1b
JS
2512 kfree(ipath);
2513}
a37f232b
QW
2514
2515struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2516 struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2517{
2518 struct btrfs_backref_iter *ret;
2519
2520 ret = kzalloc(sizeof(*ret), gfp_flag);
2521 if (!ret)
2522 return NULL;
2523
2524 ret->path = btrfs_alloc_path();
c15c2ec0 2525 if (!ret->path) {
a37f232b
QW
2526 kfree(ret);
2527 return NULL;
2528 }
2529
2530 /* Current backref iterator only supports iteration in commit root */
2531 ret->path->search_commit_root = 1;
2532 ret->path->skip_locking = 1;
2533 ret->fs_info = fs_info;
2534
2535 return ret;
2536}
2537
2538int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2539{
2540 struct btrfs_fs_info *fs_info = iter->fs_info;
29cbcf40 2541 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
a37f232b
QW
2542 struct btrfs_path *path = iter->path;
2543 struct btrfs_extent_item *ei;
2544 struct btrfs_key key;
2545 int ret;
2546
2547 key.objectid = bytenr;
2548 key.type = BTRFS_METADATA_ITEM_KEY;
2549 key.offset = (u64)-1;
2550 iter->bytenr = bytenr;
2551
29cbcf40 2552 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
a37f232b
QW
2553 if (ret < 0)
2554 return ret;
2555 if (ret == 0) {
2556 ret = -EUCLEAN;
2557 goto release;
2558 }
2559 if (path->slots[0] == 0) {
2560 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2561 ret = -EUCLEAN;
2562 goto release;
2563 }
2564 path->slots[0]--;
2565
2566 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2567 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2568 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2569 ret = -ENOENT;
2570 goto release;
2571 }
2572 memcpy(&iter->cur_key, &key, sizeof(key));
2573 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2574 path->slots[0]);
2575 iter->end_ptr = (u32)(iter->item_ptr +
3212fa14 2576 btrfs_item_size(path->nodes[0], path->slots[0]));
a37f232b
QW
2577 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2578 struct btrfs_extent_item);
2579
2580 /*
2581 * Only support iteration on tree backref yet.
2582 *
2583 * This is an extra precaution for non skinny-metadata, where
2584 * EXTENT_ITEM is also used for tree blocks, that we can only use
2585 * extent flags to determine if it's a tree block.
2586 */
2587 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2588 ret = -ENOTSUPP;
2589 goto release;
2590 }
2591 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2592
2593 /* If there is no inline backref, go search for keyed backref */
2594 if (iter->cur_ptr >= iter->end_ptr) {
29cbcf40 2595 ret = btrfs_next_item(extent_root, path);
a37f232b
QW
2596
2597 /* No inline nor keyed ref */
2598 if (ret > 0) {
2599 ret = -ENOENT;
2600 goto release;
2601 }
2602 if (ret < 0)
2603 goto release;
2604
2605 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2606 path->slots[0]);
2607 if (iter->cur_key.objectid != bytenr ||
2608 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2609 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2610 ret = -ENOENT;
2611 goto release;
2612 }
2613 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2614 path->slots[0]);
2615 iter->item_ptr = iter->cur_ptr;
3212fa14 2616 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
a37f232b
QW
2617 path->nodes[0], path->slots[0]));
2618 }
2619
2620 return 0;
2621release:
2622 btrfs_backref_iter_release(iter);
2623 return ret;
2624}
c39c2ddc
QW
2625
2626/*
2627 * Go to the next backref item of current bytenr, can be either inlined or
2628 * keyed.
2629 *
2630 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2631 *
2632 * Return 0 if we get next backref without problem.
2633 * Return >0 if there is no extra backref for this bytenr.
2634 * Return <0 if there is something wrong happened.
2635 */
2636int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2637{
2638 struct extent_buffer *eb = btrfs_backref_get_eb(iter);
29cbcf40 2639 struct btrfs_root *extent_root;
c39c2ddc
QW
2640 struct btrfs_path *path = iter->path;
2641 struct btrfs_extent_inline_ref *iref;
2642 int ret;
2643 u32 size;
2644
2645 if (btrfs_backref_iter_is_inline_ref(iter)) {
2646 /* We're still inside the inline refs */
2647 ASSERT(iter->cur_ptr < iter->end_ptr);
2648
2649 if (btrfs_backref_has_tree_block_info(iter)) {
2650 /* First tree block info */
2651 size = sizeof(struct btrfs_tree_block_info);
2652 } else {
2653 /* Use inline ref type to determine the size */
2654 int type;
2655
2656 iref = (struct btrfs_extent_inline_ref *)
2657 ((unsigned long)iter->cur_ptr);
2658 type = btrfs_extent_inline_ref_type(eb, iref);
2659
2660 size = btrfs_extent_inline_ref_size(type);
2661 }
2662 iter->cur_ptr += size;
2663 if (iter->cur_ptr < iter->end_ptr)
2664 return 0;
2665
2666 /* All inline items iterated, fall through */
2667 }
2668
2669 /* We're at keyed items, there is no inline item, go to the next one */
29cbcf40
JB
2670 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2671 ret = btrfs_next_item(extent_root, iter->path);
c39c2ddc
QW
2672 if (ret)
2673 return ret;
2674
2675 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2676 if (iter->cur_key.objectid != iter->bytenr ||
2677 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2678 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2679 return 1;
2680 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2681 path->slots[0]);
2682 iter->cur_ptr = iter->item_ptr;
3212fa14 2683 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
c39c2ddc
QW
2684 path->slots[0]);
2685 return 0;
2686}
584fb121
QW
2687
2688void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2689 struct btrfs_backref_cache *cache, int is_reloc)
2690{
2691 int i;
2692
2693 cache->rb_root = RB_ROOT;
2694 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2695 INIT_LIST_HEAD(&cache->pending[i]);
2696 INIT_LIST_HEAD(&cache->changed);
2697 INIT_LIST_HEAD(&cache->detached);
2698 INIT_LIST_HEAD(&cache->leaves);
2699 INIT_LIST_HEAD(&cache->pending_edge);
2700 INIT_LIST_HEAD(&cache->useless_node);
2701 cache->fs_info = fs_info;
2702 cache->is_reloc = is_reloc;
2703}
b1818dab
QW
2704
2705struct btrfs_backref_node *btrfs_backref_alloc_node(
2706 struct btrfs_backref_cache *cache, u64 bytenr, int level)
2707{
2708 struct btrfs_backref_node *node;
2709
2710 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2711 node = kzalloc(sizeof(*node), GFP_NOFS);
2712 if (!node)
2713 return node;
2714
2715 INIT_LIST_HEAD(&node->list);
2716 INIT_LIST_HEAD(&node->upper);
2717 INIT_LIST_HEAD(&node->lower);
2718 RB_CLEAR_NODE(&node->rb_node);
2719 cache->nr_nodes++;
2720 node->level = level;
2721 node->bytenr = bytenr;
2722
2723 return node;
2724}
47254d07
QW
2725
2726struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2727 struct btrfs_backref_cache *cache)
2728{
2729 struct btrfs_backref_edge *edge;
2730
2731 edge = kzalloc(sizeof(*edge), GFP_NOFS);
2732 if (edge)
2733 cache->nr_edges++;
2734 return edge;
2735}
023acb07
QW
2736
2737/*
2738 * Drop the backref node from cache, also cleaning up all its
2739 * upper edges and any uncached nodes in the path.
2740 *
2741 * This cleanup happens bottom up, thus the node should either
2742 * be the lowest node in the cache or a detached node.
2743 */
2744void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2745 struct btrfs_backref_node *node)
2746{
2747 struct btrfs_backref_node *upper;
2748 struct btrfs_backref_edge *edge;
2749
2750 if (!node)
2751 return;
2752
2753 BUG_ON(!node->lowest && !node->detached);
2754 while (!list_empty(&node->upper)) {
2755 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2756 list[LOWER]);
2757 upper = edge->node[UPPER];
2758 list_del(&edge->list[LOWER]);
2759 list_del(&edge->list[UPPER]);
2760 btrfs_backref_free_edge(cache, edge);
2761
023acb07
QW
2762 /*
2763 * Add the node to leaf node list if no other child block
2764 * cached.
2765 */
2766 if (list_empty(&upper->lower)) {
2767 list_add_tail(&upper->lower, &cache->leaves);
2768 upper->lowest = 1;
2769 }
2770 }
2771
2772 btrfs_backref_drop_node(cache, node);
2773}
13fe1bdb
QW
2774
2775/*
2776 * Release all nodes/edges from current cache
2777 */
2778void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2779{
2780 struct btrfs_backref_node *node;
2781 int i;
2782
2783 while (!list_empty(&cache->detached)) {
2784 node = list_entry(cache->detached.next,
2785 struct btrfs_backref_node, list);
2786 btrfs_backref_cleanup_node(cache, node);
2787 }
2788
2789 while (!list_empty(&cache->leaves)) {
2790 node = list_entry(cache->leaves.next,
2791 struct btrfs_backref_node, lower);
2792 btrfs_backref_cleanup_node(cache, node);
2793 }
2794
2795 cache->last_trans = 0;
2796
2797 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2798 ASSERT(list_empty(&cache->pending[i]));
2799 ASSERT(list_empty(&cache->pending_edge));
2800 ASSERT(list_empty(&cache->useless_node));
2801 ASSERT(list_empty(&cache->changed));
2802 ASSERT(list_empty(&cache->detached));
2803 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2804 ASSERT(!cache->nr_nodes);
2805 ASSERT(!cache->nr_edges);
2806}
1b60d2ec
QW
2807
2808/*
2809 * Handle direct tree backref
2810 *
2811 * Direct tree backref means, the backref item shows its parent bytenr
2812 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2813 *
2814 * @ref_key: The converted backref key.
2815 * For keyed backref, it's the item key.
2816 * For inlined backref, objectid is the bytenr,
2817 * type is btrfs_inline_ref_type, offset is
2818 * btrfs_inline_ref_offset.
2819 */
2820static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2821 struct btrfs_key *ref_key,
2822 struct btrfs_backref_node *cur)
2823{
2824 struct btrfs_backref_edge *edge;
2825 struct btrfs_backref_node *upper;
2826 struct rb_node *rb_node;
2827
2828 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2829
2830 /* Only reloc root uses backref pointing to itself */
2831 if (ref_key->objectid == ref_key->offset) {
2832 struct btrfs_root *root;
2833
2834 cur->is_reloc_root = 1;
2835 /* Only reloc backref cache cares about a specific root */
2836 if (cache->is_reloc) {
2837 root = find_reloc_root(cache->fs_info, cur->bytenr);
f78743fb 2838 if (!root)
1b60d2ec
QW
2839 return -ENOENT;
2840 cur->root = root;
2841 } else {
2842 /*
2843 * For generic purpose backref cache, reloc root node
2844 * is useless.
2845 */
2846 list_add(&cur->list, &cache->useless_node);
2847 }
2848 return 0;
2849 }
2850
2851 edge = btrfs_backref_alloc_edge(cache);
2852 if (!edge)
2853 return -ENOMEM;
2854
2855 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2856 if (!rb_node) {
2857 /* Parent node not yet cached */
2858 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2859 cur->level + 1);
2860 if (!upper) {
2861 btrfs_backref_free_edge(cache, edge);
2862 return -ENOMEM;
2863 }
2864
2865 /*
2866 * Backrefs for the upper level block isn't cached, add the
2867 * block to pending list
2868 */
2869 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2870 } else {
2871 /* Parent node already cached */
2872 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2873 ASSERT(upper->checked);
2874 INIT_LIST_HEAD(&edge->list[UPPER]);
2875 }
2876 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2877 return 0;
2878}
2879
2880/*
2881 * Handle indirect tree backref
2882 *
2883 * Indirect tree backref means, we only know which tree the node belongs to.
2884 * We still need to do a tree search to find out the parents. This is for
2885 * TREE_BLOCK_REF backref (keyed or inlined).
2886 *
2887 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
2888 * @tree_key: The first key of this tree block.
1a9fd417 2889 * @path: A clean (released) path, to avoid allocating path every time
1b60d2ec
QW
2890 * the function get called.
2891 */
2892static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2893 struct btrfs_path *path,
2894 struct btrfs_key *ref_key,
2895 struct btrfs_key *tree_key,
2896 struct btrfs_backref_node *cur)
2897{
2898 struct btrfs_fs_info *fs_info = cache->fs_info;
2899 struct btrfs_backref_node *upper;
2900 struct btrfs_backref_node *lower;
2901 struct btrfs_backref_edge *edge;
2902 struct extent_buffer *eb;
2903 struct btrfs_root *root;
1b60d2ec
QW
2904 struct rb_node *rb_node;
2905 int level;
2906 bool need_check = true;
2907 int ret;
2908
56e9357a 2909 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
1b60d2ec
QW
2910 if (IS_ERR(root))
2911 return PTR_ERR(root);
92a7cc42 2912 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
1b60d2ec
QW
2913 cur->cowonly = 1;
2914
2915 if (btrfs_root_level(&root->root_item) == cur->level) {
2916 /* Tree root */
2917 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
876de781
QW
2918 /*
2919 * For reloc backref cache, we may ignore reloc root. But for
2920 * general purpose backref cache, we can't rely on
2921 * btrfs_should_ignore_reloc_root() as it may conflict with
2922 * current running relocation and lead to missing root.
2923 *
2924 * For general purpose backref cache, reloc root detection is
2925 * completely relying on direct backref (key->offset is parent
2926 * bytenr), thus only do such check for reloc cache.
2927 */
2928 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
1b60d2ec
QW
2929 btrfs_put_root(root);
2930 list_add(&cur->list, &cache->useless_node);
2931 } else {
2932 cur->root = root;
2933 }
2934 return 0;
2935 }
2936
2937 level = cur->level + 1;
2938
2939 /* Search the tree to find parent blocks referring to the block */
2940 path->search_commit_root = 1;
2941 path->skip_locking = 1;
2942 path->lowest_level = level;
2943 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2944 path->lowest_level = 0;
2945 if (ret < 0) {
2946 btrfs_put_root(root);
2947 return ret;
2948 }
2949 if (ret > 0 && path->slots[level] > 0)
2950 path->slots[level]--;
2951
2952 eb = path->nodes[level];
2953 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2954 btrfs_err(fs_info,
2955"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2956 cur->bytenr, level - 1, root->root_key.objectid,
2957 tree_key->objectid, tree_key->type, tree_key->offset);
2958 btrfs_put_root(root);
2959 ret = -ENOENT;
2960 goto out;
2961 }
2962 lower = cur;
2963
2964 /* Add all nodes and edges in the path */
2965 for (; level < BTRFS_MAX_LEVEL; level++) {
2966 if (!path->nodes[level]) {
2967 ASSERT(btrfs_root_bytenr(&root->root_item) ==
2968 lower->bytenr);
876de781
QW
2969 /* Same as previous should_ignore_reloc_root() call */
2970 if (btrfs_should_ignore_reloc_root(root) &&
2971 cache->is_reloc) {
1b60d2ec
QW
2972 btrfs_put_root(root);
2973 list_add(&lower->list, &cache->useless_node);
2974 } else {
2975 lower->root = root;
2976 }
2977 break;
2978 }
2979
2980 edge = btrfs_backref_alloc_edge(cache);
2981 if (!edge) {
2982 btrfs_put_root(root);
2983 ret = -ENOMEM;
2984 goto out;
2985 }
2986
2987 eb = path->nodes[level];
2988 rb_node = rb_simple_search(&cache->rb_root, eb->start);
2989 if (!rb_node) {
2990 upper = btrfs_backref_alloc_node(cache, eb->start,
2991 lower->level + 1);
2992 if (!upper) {
2993 btrfs_put_root(root);
2994 btrfs_backref_free_edge(cache, edge);
2995 ret = -ENOMEM;
2996 goto out;
2997 }
2998 upper->owner = btrfs_header_owner(eb);
92a7cc42 2999 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
1b60d2ec
QW
3000 upper->cowonly = 1;
3001
3002 /*
3003 * If we know the block isn't shared we can avoid
3004 * checking its backrefs.
3005 */
3006 if (btrfs_block_can_be_shared(root, eb))
3007 upper->checked = 0;
3008 else
3009 upper->checked = 1;
3010
3011 /*
3012 * Add the block to pending list if we need to check its
3013 * backrefs, we only do this once while walking up a
3014 * tree as we will catch anything else later on.
3015 */
3016 if (!upper->checked && need_check) {
3017 need_check = false;
3018 list_add_tail(&edge->list[UPPER],
3019 &cache->pending_edge);
3020 } else {
3021 if (upper->checked)
3022 need_check = true;
3023 INIT_LIST_HEAD(&edge->list[UPPER]);
3024 }
3025 } else {
3026 upper = rb_entry(rb_node, struct btrfs_backref_node,
3027 rb_node);
3028 ASSERT(upper->checked);
3029 INIT_LIST_HEAD(&edge->list[UPPER]);
3030 if (!upper->owner)
3031 upper->owner = btrfs_header_owner(eb);
3032 }
3033 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3034
3035 if (rb_node) {
3036 btrfs_put_root(root);
3037 break;
3038 }
3039 lower = upper;
3040 upper = NULL;
3041 }
3042out:
3043 btrfs_release_path(path);
3044 return ret;
3045}
3046
3047/*
3048 * Add backref node @cur into @cache.
3049 *
3050 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3051 * links aren't yet bi-directional. Needs to finish such links.
fc997ed0 3052 * Use btrfs_backref_finish_upper_links() to finish such linkage.
1b60d2ec
QW
3053 *
3054 * @path: Released path for indirect tree backref lookup
3055 * @iter: Released backref iter for extent tree search
3056 * @node_key: The first key of the tree block
3057 */
3058int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
3059 struct btrfs_path *path,
3060 struct btrfs_backref_iter *iter,
3061 struct btrfs_key *node_key,
3062 struct btrfs_backref_node *cur)
3063{
3064 struct btrfs_fs_info *fs_info = cache->fs_info;
3065 struct btrfs_backref_edge *edge;
3066 struct btrfs_backref_node *exist;
3067 int ret;
3068
3069 ret = btrfs_backref_iter_start(iter, cur->bytenr);
3070 if (ret < 0)
3071 return ret;
3072 /*
3073 * We skip the first btrfs_tree_block_info, as we don't use the key
3074 * stored in it, but fetch it from the tree block
3075 */
3076 if (btrfs_backref_has_tree_block_info(iter)) {
3077 ret = btrfs_backref_iter_next(iter);
3078 if (ret < 0)
3079 goto out;
3080 /* No extra backref? This means the tree block is corrupted */
3081 if (ret > 0) {
3082 ret = -EUCLEAN;
3083 goto out;
3084 }
3085 }
3086 WARN_ON(cur->checked);
3087 if (!list_empty(&cur->upper)) {
3088 /*
3089 * The backref was added previously when processing backref of
3090 * type BTRFS_TREE_BLOCK_REF_KEY
3091 */
3092 ASSERT(list_is_singular(&cur->upper));
3093 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3094 list[LOWER]);
3095 ASSERT(list_empty(&edge->list[UPPER]));
3096 exist = edge->node[UPPER];
3097 /*
3098 * Add the upper level block to pending list if we need check
3099 * its backrefs
3100 */
3101 if (!exist->checked)
3102 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3103 } else {
3104 exist = NULL;
3105 }
3106
3107 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3108 struct extent_buffer *eb;
3109 struct btrfs_key key;
3110 int type;
3111
3112 cond_resched();
3113 eb = btrfs_backref_get_eb(iter);
3114
3115 key.objectid = iter->bytenr;
3116 if (btrfs_backref_iter_is_inline_ref(iter)) {
3117 struct btrfs_extent_inline_ref *iref;
3118
3119 /* Update key for inline backref */
3120 iref = (struct btrfs_extent_inline_ref *)
3121 ((unsigned long)iter->cur_ptr);
3122 type = btrfs_get_extent_inline_ref_type(eb, iref,
3123 BTRFS_REF_TYPE_BLOCK);
3124 if (type == BTRFS_REF_TYPE_INVALID) {
3125 ret = -EUCLEAN;
3126 goto out;
3127 }
3128 key.type = type;
3129 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3130 } else {
3131 key.type = iter->cur_key.type;
3132 key.offset = iter->cur_key.offset;
3133 }
3134
3135 /*
3136 * Parent node found and matches current inline ref, no need to
3137 * rebuild this node for this inline ref
3138 */
3139 if (exist &&
3140 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3141 exist->owner == key.offset) ||
3142 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3143 exist->bytenr == key.offset))) {
3144 exist = NULL;
3145 continue;
3146 }
3147
3148 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3149 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3150 ret = handle_direct_tree_backref(cache, &key, cur);
3151 if (ret < 0)
3152 goto out;
3153 continue;
3154 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3155 ret = -EINVAL;
3156 btrfs_print_v0_err(fs_info);
3157 btrfs_handle_fs_error(fs_info, ret, NULL);
3158 goto out;
3159 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
3160 continue;
3161 }
3162
3163 /*
3164 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
3165 * means the root objectid. We need to search the tree to get
3166 * its parent bytenr.
3167 */
3168 ret = handle_indirect_tree_backref(cache, path, &key, node_key,
3169 cur);
3170 if (ret < 0)
3171 goto out;
3172 }
3173 ret = 0;
3174 cur->checked = 1;
3175 WARN_ON(exist);
3176out:
3177 btrfs_backref_iter_release(iter);
3178 return ret;
3179}
fc997ed0
QW
3180
3181/*
3182 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3183 */
3184int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3185 struct btrfs_backref_node *start)
3186{
3187 struct list_head *useless_node = &cache->useless_node;
3188 struct btrfs_backref_edge *edge;
3189 struct rb_node *rb_node;
3190 LIST_HEAD(pending_edge);
3191
3192 ASSERT(start->checked);
3193
3194 /* Insert this node to cache if it's not COW-only */
3195 if (!start->cowonly) {
3196 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3197 &start->rb_node);
3198 if (rb_node)
3199 btrfs_backref_panic(cache->fs_info, start->bytenr,
3200 -EEXIST);
3201 list_add_tail(&start->lower, &cache->leaves);
3202 }
3203
3204 /*
3205 * Use breadth first search to iterate all related edges.
3206 *
3207 * The starting points are all the edges of this node
3208 */
3209 list_for_each_entry(edge, &start->upper, list[LOWER])
3210 list_add_tail(&edge->list[UPPER], &pending_edge);
3211
3212 while (!list_empty(&pending_edge)) {
3213 struct btrfs_backref_node *upper;
3214 struct btrfs_backref_node *lower;
fc997ed0
QW
3215
3216 edge = list_first_entry(&pending_edge,
3217 struct btrfs_backref_edge, list[UPPER]);
3218 list_del_init(&edge->list[UPPER]);
3219 upper = edge->node[UPPER];
3220 lower = edge->node[LOWER];
3221
3222 /* Parent is detached, no need to keep any edges */
3223 if (upper->detached) {
3224 list_del(&edge->list[LOWER]);
3225 btrfs_backref_free_edge(cache, edge);
3226
3227 /* Lower node is orphan, queue for cleanup */
3228 if (list_empty(&lower->upper))
3229 list_add(&lower->list, useless_node);
3230 continue;
3231 }
3232
3233 /*
3234 * All new nodes added in current build_backref_tree() haven't
3235 * been linked to the cache rb tree.
3236 * So if we have upper->rb_node populated, this means a cache
3237 * hit. We only need to link the edge, as @upper and all its
3238 * parents have already been linked.
3239 */
3240 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3241 if (upper->lowest) {
3242 list_del_init(&upper->lower);
3243 upper->lowest = 0;
3244 }
3245
3246 list_add_tail(&edge->list[UPPER], &upper->lower);
3247 continue;
3248 }
3249
3250 /* Sanity check, we shouldn't have any unchecked nodes */
3251 if (!upper->checked) {
3252 ASSERT(0);
3253 return -EUCLEAN;
3254 }
3255
3256 /* Sanity check, COW-only node has non-COW-only parent */
3257 if (start->cowonly != upper->cowonly) {
3258 ASSERT(0);
3259 return -EUCLEAN;
3260 }
3261
3262 /* Only cache non-COW-only (subvolume trees) tree blocks */
3263 if (!upper->cowonly) {
3264 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3265 &upper->rb_node);
3266 if (rb_node) {
3267 btrfs_backref_panic(cache->fs_info,
3268 upper->bytenr, -EEXIST);
3269 return -EUCLEAN;
3270 }
3271 }
3272
3273 list_add_tail(&edge->list[UPPER], &upper->lower);
3274
3275 /*
3276 * Also queue all the parent edges of this uncached node
3277 * to finish the upper linkage
3278 */
3279 list_for_each_entry(edge, &upper->upper, list[LOWER])
3280 list_add_tail(&edge->list[UPPER], &pending_edge);
3281 }
3282 return 0;
3283}
1b23ea18
QW
3284
3285void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3286 struct btrfs_backref_node *node)
3287{
3288 struct btrfs_backref_node *lower;
3289 struct btrfs_backref_node *upper;
3290 struct btrfs_backref_edge *edge;
3291
3292 while (!list_empty(&cache->useless_node)) {
3293 lower = list_first_entry(&cache->useless_node,
3294 struct btrfs_backref_node, list);
3295 list_del_init(&lower->list);
3296 }
3297 while (!list_empty(&cache->pending_edge)) {
3298 edge = list_first_entry(&cache->pending_edge,
3299 struct btrfs_backref_edge, list[UPPER]);
3300 list_del(&edge->list[UPPER]);
3301 list_del(&edge->list[LOWER]);
3302 lower = edge->node[LOWER];
3303 upper = edge->node[UPPER];
3304 btrfs_backref_free_edge(cache, edge);
3305
3306 /*
3307 * Lower is no longer linked to any upper backref nodes and
3308 * isn't in the cache, we can free it ourselves.
3309 */
3310 if (list_empty(&lower->upper) &&
3311 RB_EMPTY_NODE(&lower->rb_node))
3312 list_add(&lower->list, &cache->useless_node);
3313
3314 if (!RB_EMPTY_NODE(&upper->rb_node))
3315 continue;
3316
3317 /* Add this guy's upper edges to the list to process */
3318 list_for_each_entry(edge, &upper->upper, list[LOWER])
3319 list_add_tail(&edge->list[UPPER],
3320 &cache->pending_edge);
3321 if (list_empty(&upper->upper))
3322 list_add(&upper->list, &cache->useless_node);
3323 }
3324
3325 while (!list_empty(&cache->useless_node)) {
3326 lower = list_first_entry(&cache->useless_node,
3327 struct btrfs_backref_node, list);
3328 list_del_init(&lower->list);
3329 if (lower == node)
3330 node = NULL;
49ecc679 3331 btrfs_backref_drop_node(cache, lower);
1b23ea18
QW
3332 }
3333
3334 btrfs_backref_cleanup_node(cache, node);
3335 ASSERT(list_empty(&cache->useless_node) &&
3336 list_empty(&cache->pending_edge));
3337}