btrfs: backref, only search backref entries from leaves of the same root
[linux-block.git] / fs / btrfs / backref.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a542ad1b
JS
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
a542ad1b
JS
4 */
5
f54de068 6#include <linux/mm.h>
afce772e 7#include <linux/rbtree.h>
00142756 8#include <trace/events/btrfs.h>
a542ad1b
JS
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
8da6d581
JS
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
b916a59a 15#include "locking.h"
a542ad1b 16
dc046b10
JB
17/* Just an arbitrary number so we can be sure this happened */
18#define BACKREF_FOUND_SHARED 6
19
976b1908
JS
20struct extent_inode_elem {
21 u64 inum;
22 u64 offset;
23 struct extent_inode_elem *next;
24};
25
73980bec
JM
26static int check_extent_in_eb(const struct btrfs_key *key,
27 const struct extent_buffer *eb,
28 const struct btrfs_file_extent_item *fi,
29 u64 extent_item_pos,
c995ab3c
ZB
30 struct extent_inode_elem **eie,
31 bool ignore_offset)
976b1908 32{
8ca15e05 33 u64 offset = 0;
976b1908
JS
34 struct extent_inode_elem *e;
35
c995ab3c
ZB
36 if (!ignore_offset &&
37 !btrfs_file_extent_compression(eb, fi) &&
8ca15e05
JB
38 !btrfs_file_extent_encryption(eb, fi) &&
39 !btrfs_file_extent_other_encoding(eb, fi)) {
40 u64 data_offset;
41 u64 data_len;
976b1908 42
8ca15e05
JB
43 data_offset = btrfs_file_extent_offset(eb, fi);
44 data_len = btrfs_file_extent_num_bytes(eb, fi);
45
46 if (extent_item_pos < data_offset ||
47 extent_item_pos >= data_offset + data_len)
48 return 1;
49 offset = extent_item_pos - data_offset;
50 }
976b1908
JS
51
52 e = kmalloc(sizeof(*e), GFP_NOFS);
53 if (!e)
54 return -ENOMEM;
55
56 e->next = *eie;
57 e->inum = key->objectid;
8ca15e05 58 e->offset = key->offset + offset;
976b1908
JS
59 *eie = e;
60
61 return 0;
62}
63
f05c4746
WS
64static void free_inode_elem_list(struct extent_inode_elem *eie)
65{
66 struct extent_inode_elem *eie_next;
67
68 for (; eie; eie = eie_next) {
69 eie_next = eie->next;
70 kfree(eie);
71 }
72}
73
73980bec
JM
74static int find_extent_in_eb(const struct extent_buffer *eb,
75 u64 wanted_disk_byte, u64 extent_item_pos,
c995ab3c
ZB
76 struct extent_inode_elem **eie,
77 bool ignore_offset)
976b1908
JS
78{
79 u64 disk_byte;
80 struct btrfs_key key;
81 struct btrfs_file_extent_item *fi;
82 int slot;
83 int nritems;
84 int extent_type;
85 int ret;
86
87 /*
88 * from the shared data ref, we only have the leaf but we need
89 * the key. thus, we must look into all items and see that we
90 * find one (some) with a reference to our extent item.
91 */
92 nritems = btrfs_header_nritems(eb);
93 for (slot = 0; slot < nritems; ++slot) {
94 btrfs_item_key_to_cpu(eb, &key, slot);
95 if (key.type != BTRFS_EXTENT_DATA_KEY)
96 continue;
97 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
98 extent_type = btrfs_file_extent_type(eb, fi);
99 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
100 continue;
101 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
102 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
103 if (disk_byte != wanted_disk_byte)
104 continue;
105
c995ab3c 106 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
976b1908
JS
107 if (ret < 0)
108 return ret;
109 }
110
111 return 0;
112}
113
86d5f994 114struct preftree {
ecf160b4 115 struct rb_root_cached root;
6c336b21 116 unsigned int count;
86d5f994
EN
117};
118
ecf160b4 119#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
86d5f994
EN
120
121struct preftrees {
122 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
123 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
124 struct preftree indirect_missing_keys;
125};
126
3ec4d323
EN
127/*
128 * Checks for a shared extent during backref search.
129 *
130 * The share_count tracks prelim_refs (direct and indirect) having a
131 * ref->count >0:
132 * - incremented when a ref->count transitions to >0
133 * - decremented when a ref->count transitions to <1
134 */
135struct share_check {
136 u64 root_objectid;
137 u64 inum;
138 int share_count;
139};
140
141static inline int extent_is_shared(struct share_check *sc)
142{
143 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
144}
145
b9e9a6cb
WS
146static struct kmem_cache *btrfs_prelim_ref_cache;
147
148int __init btrfs_prelim_ref_init(void)
149{
150 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
e0c476b1 151 sizeof(struct prelim_ref),
b9e9a6cb 152 0,
fba4b697 153 SLAB_MEM_SPREAD,
b9e9a6cb
WS
154 NULL);
155 if (!btrfs_prelim_ref_cache)
156 return -ENOMEM;
157 return 0;
158}
159
e67c718b 160void __cold btrfs_prelim_ref_exit(void)
b9e9a6cb 161{
5598e900 162 kmem_cache_destroy(btrfs_prelim_ref_cache);
b9e9a6cb
WS
163}
164
86d5f994
EN
165static void free_pref(struct prelim_ref *ref)
166{
167 kmem_cache_free(btrfs_prelim_ref_cache, ref);
168}
169
170/*
171 * Return 0 when both refs are for the same block (and can be merged).
172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
173 * indicates a 'higher' block.
174 */
175static int prelim_ref_compare(struct prelim_ref *ref1,
176 struct prelim_ref *ref2)
177{
178 if (ref1->level < ref2->level)
179 return -1;
180 if (ref1->level > ref2->level)
181 return 1;
182 if (ref1->root_id < ref2->root_id)
183 return -1;
184 if (ref1->root_id > ref2->root_id)
185 return 1;
186 if (ref1->key_for_search.type < ref2->key_for_search.type)
187 return -1;
188 if (ref1->key_for_search.type > ref2->key_for_search.type)
189 return 1;
190 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
191 return -1;
192 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
193 return 1;
194 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
195 return -1;
196 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
197 return 1;
198 if (ref1->parent < ref2->parent)
199 return -1;
200 if (ref1->parent > ref2->parent)
201 return 1;
202
203 return 0;
204}
205
ccc8dc75
CIK
206static void update_share_count(struct share_check *sc, int oldcount,
207 int newcount)
3ec4d323
EN
208{
209 if ((!sc) || (oldcount == 0 && newcount < 1))
210 return;
211
212 if (oldcount > 0 && newcount < 1)
213 sc->share_count--;
214 else if (oldcount < 1 && newcount > 0)
215 sc->share_count++;
216}
217
86d5f994
EN
218/*
219 * Add @newref to the @root rbtree, merging identical refs.
220 *
3ec4d323 221 * Callers should assume that newref has been freed after calling.
86d5f994 222 */
00142756
JM
223static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
224 struct preftree *preftree,
3ec4d323
EN
225 struct prelim_ref *newref,
226 struct share_check *sc)
86d5f994 227{
ecf160b4 228 struct rb_root_cached *root;
86d5f994
EN
229 struct rb_node **p;
230 struct rb_node *parent = NULL;
231 struct prelim_ref *ref;
232 int result;
ecf160b4 233 bool leftmost = true;
86d5f994
EN
234
235 root = &preftree->root;
ecf160b4 236 p = &root->rb_root.rb_node;
86d5f994
EN
237
238 while (*p) {
239 parent = *p;
240 ref = rb_entry(parent, struct prelim_ref, rbnode);
241 result = prelim_ref_compare(ref, newref);
242 if (result < 0) {
243 p = &(*p)->rb_left;
244 } else if (result > 0) {
245 p = &(*p)->rb_right;
ecf160b4 246 leftmost = false;
86d5f994
EN
247 } else {
248 /* Identical refs, merge them and free @newref */
249 struct extent_inode_elem *eie = ref->inode_list;
250
251 while (eie && eie->next)
252 eie = eie->next;
253
254 if (!eie)
255 ref->inode_list = newref->inode_list;
256 else
257 eie->next = newref->inode_list;
00142756
JM
258 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
259 preftree->count);
3ec4d323
EN
260 /*
261 * A delayed ref can have newref->count < 0.
262 * The ref->count is updated to follow any
263 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
264 */
265 update_share_count(sc, ref->count,
266 ref->count + newref->count);
86d5f994
EN
267 ref->count += newref->count;
268 free_pref(newref);
269 return;
270 }
271 }
272
3ec4d323 273 update_share_count(sc, 0, newref->count);
6c336b21 274 preftree->count++;
00142756 275 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
86d5f994 276 rb_link_node(&newref->rbnode, parent, p);
ecf160b4 277 rb_insert_color_cached(&newref->rbnode, root, leftmost);
86d5f994
EN
278}
279
280/*
281 * Release the entire tree. We don't care about internal consistency so
282 * just free everything and then reset the tree root.
283 */
284static void prelim_release(struct preftree *preftree)
285{
286 struct prelim_ref *ref, *next_ref;
287
ecf160b4
LB
288 rbtree_postorder_for_each_entry_safe(ref, next_ref,
289 &preftree->root.rb_root, rbnode)
86d5f994
EN
290 free_pref(ref);
291
ecf160b4 292 preftree->root = RB_ROOT_CACHED;
6c336b21 293 preftree->count = 0;
86d5f994
EN
294}
295
d5c88b73
JS
296/*
297 * the rules for all callers of this function are:
298 * - obtaining the parent is the goal
299 * - if you add a key, you must know that it is a correct key
300 * - if you cannot add the parent or a correct key, then we will look into the
301 * block later to set a correct key
302 *
303 * delayed refs
304 * ============
305 * backref type | shared | indirect | shared | indirect
306 * information | tree | tree | data | data
307 * --------------------+--------+----------+--------+----------
308 * parent logical | y | - | - | -
309 * key to resolve | - | y | y | y
310 * tree block logical | - | - | - | -
311 * root for resolving | y | y | y | y
312 *
313 * - column 1: we've the parent -> done
314 * - column 2, 3, 4: we use the key to find the parent
315 *
316 * on disk refs (inline or keyed)
317 * ==============================
318 * backref type | shared | indirect | shared | indirect
319 * information | tree | tree | data | data
320 * --------------------+--------+----------+--------+----------
321 * parent logical | y | - | y | -
322 * key to resolve | - | - | - | y
323 * tree block logical | y | y | y | y
324 * root for resolving | - | y | y | y
325 *
326 * - column 1, 3: we've the parent -> done
327 * - column 2: we take the first key from the block to find the parent
e0c476b1 328 * (see add_missing_keys)
d5c88b73
JS
329 * - column 4: we use the key to find the parent
330 *
331 * additional information that's available but not required to find the parent
332 * block might help in merging entries to gain some speed.
333 */
00142756
JM
334static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
335 struct preftree *preftree, u64 root_id,
e0c476b1 336 const struct btrfs_key *key, int level, u64 parent,
3ec4d323
EN
337 u64 wanted_disk_byte, int count,
338 struct share_check *sc, gfp_t gfp_mask)
8da6d581 339{
e0c476b1 340 struct prelim_ref *ref;
8da6d581 341
48ec4736
LB
342 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
343 return 0;
344
b9e9a6cb 345 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
346 if (!ref)
347 return -ENOMEM;
348
349 ref->root_id = root_id;
7ac8b88e 350 if (key)
d5c88b73 351 ref->key_for_search = *key;
7ac8b88e 352 else
d5c88b73 353 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 354
3301958b 355 ref->inode_list = NULL;
8da6d581
JS
356 ref->level = level;
357 ref->count = count;
358 ref->parent = parent;
359 ref->wanted_disk_byte = wanted_disk_byte;
3ec4d323
EN
360 prelim_ref_insert(fs_info, preftree, ref, sc);
361 return extent_is_shared(sc);
8da6d581
JS
362}
363
86d5f994 364/* direct refs use root == 0, key == NULL */
00142756
JM
365static int add_direct_ref(const struct btrfs_fs_info *fs_info,
366 struct preftrees *preftrees, int level, u64 parent,
3ec4d323
EN
367 u64 wanted_disk_byte, int count,
368 struct share_check *sc, gfp_t gfp_mask)
86d5f994 369{
00142756 370 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
3ec4d323 371 parent, wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
372}
373
374/* indirect refs use parent == 0 */
00142756
JM
375static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
376 struct preftrees *preftrees, u64 root_id,
86d5f994 377 const struct btrfs_key *key, int level,
3ec4d323
EN
378 u64 wanted_disk_byte, int count,
379 struct share_check *sc, gfp_t gfp_mask)
86d5f994
EN
380{
381 struct preftree *tree = &preftrees->indirect;
382
383 if (!key)
384 tree = &preftrees->indirect_missing_keys;
00142756 385 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
3ec4d323 386 wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
387}
388
ed58f2e6 389static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
390{
391 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
392 struct rb_node *parent = NULL;
393 struct prelim_ref *ref = NULL;
394 struct prelim_ref target = {0};
395 int result;
396
397 target.parent = bytenr;
398
399 while (*p) {
400 parent = *p;
401 ref = rb_entry(parent, struct prelim_ref, rbnode);
402 result = prelim_ref_compare(ref, &target);
403
404 if (result < 0)
405 p = &(*p)->rb_left;
406 else if (result > 0)
407 p = &(*p)->rb_right;
408 else
409 return 1;
410 }
411 return 0;
412}
413
8da6d581 414static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
ed58f2e6 415 struct ulist *parents,
416 struct preftrees *preftrees, struct prelim_ref *ref,
44853868 417 int level, u64 time_seq, const u64 *extent_item_pos,
c995ab3c 418 u64 total_refs, bool ignore_offset)
8da6d581 419{
69bca40d
AB
420 int ret = 0;
421 int slot;
422 struct extent_buffer *eb;
423 struct btrfs_key key;
7ef81ac8 424 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 425 struct btrfs_file_extent_item *fi;
ed8c4913 426 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 427 u64 disk_byte;
7ef81ac8
JB
428 u64 wanted_disk_byte = ref->wanted_disk_byte;
429 u64 count = 0;
7ac8b88e 430 u64 data_offset;
8da6d581 431
69bca40d
AB
432 if (level != 0) {
433 eb = path->nodes[level];
434 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
435 if (ret < 0)
436 return ret;
8da6d581 437 return 0;
69bca40d 438 }
8da6d581
JS
439
440 /*
ed58f2e6 441 * 1. We normally enter this function with the path already pointing to
442 * the first item to check. But sometimes, we may enter it with
443 * slot == nritems.
444 * 2. We are searching for normal backref but bytenr of this leaf
445 * matches shared data backref
cfc0eed0 446 * 3. The leaf owner is not equal to the root we are searching
447 *
ed58f2e6 448 * For these cases, go to the next leaf before we continue.
8da6d581 449 */
ed58f2e6 450 eb = path->nodes[0];
451 if (path->slots[0] >= btrfs_header_nritems(eb) ||
cfc0eed0 452 is_shared_data_backref(preftrees, eb->start) ||
453 ref->root_id != btrfs_header_owner(eb)) {
de47c9d3 454 if (time_seq == SEQ_LAST)
21633fc6
QW
455 ret = btrfs_next_leaf(root, path);
456 else
457 ret = btrfs_next_old_leaf(root, path, time_seq);
458 }
8da6d581 459
44853868 460 while (!ret && count < total_refs) {
8da6d581 461 eb = path->nodes[0];
69bca40d
AB
462 slot = path->slots[0];
463
464 btrfs_item_key_to_cpu(eb, &key, slot);
465
466 if (key.objectid != key_for_search->objectid ||
467 key.type != BTRFS_EXTENT_DATA_KEY)
468 break;
469
ed58f2e6 470 /*
471 * We are searching for normal backref but bytenr of this leaf
cfc0eed0 472 * matches shared data backref, OR
473 * the leaf owner is not equal to the root we are searching for
ed58f2e6 474 */
cfc0eed0 475 if (slot == 0 &&
476 (is_shared_data_backref(preftrees, eb->start) ||
477 ref->root_id != btrfs_header_owner(eb))) {
ed58f2e6 478 if (time_seq == SEQ_LAST)
479 ret = btrfs_next_leaf(root, path);
480 else
481 ret = btrfs_next_old_leaf(root, path, time_seq);
482 continue;
483 }
69bca40d
AB
484 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
485 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
7ac8b88e 486 data_offset = btrfs_file_extent_offset(eb, fi);
69bca40d
AB
487
488 if (disk_byte == wanted_disk_byte) {
489 eie = NULL;
ed8c4913 490 old = NULL;
7ac8b88e 491 if (ref->key_for_search.offset == key.offset - data_offset)
492 count++;
493 else
494 goto next;
69bca40d
AB
495 if (extent_item_pos) {
496 ret = check_extent_in_eb(&key, eb, fi,
497 *extent_item_pos,
c995ab3c 498 &eie, ignore_offset);
69bca40d
AB
499 if (ret < 0)
500 break;
501 }
ed8c4913
JB
502 if (ret > 0)
503 goto next;
4eb1f66d
TI
504 ret = ulist_add_merge_ptr(parents, eb->start,
505 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
506 if (ret < 0)
507 break;
508 if (!ret && extent_item_pos) {
509 while (old->next)
510 old = old->next;
511 old->next = eie;
69bca40d 512 }
f05c4746 513 eie = NULL;
8da6d581 514 }
ed8c4913 515next:
de47c9d3 516 if (time_seq == SEQ_LAST)
21633fc6
QW
517 ret = btrfs_next_item(root, path);
518 else
519 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
520 }
521
69bca40d
AB
522 if (ret > 0)
523 ret = 0;
f05c4746
WS
524 else if (ret < 0)
525 free_inode_elem_list(eie);
69bca40d 526 return ret;
8da6d581
JS
527}
528
529/*
530 * resolve an indirect backref in the form (root_id, key, level)
531 * to a logical address
532 */
e0c476b1
JM
533static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
534 struct btrfs_path *path, u64 time_seq,
ed58f2e6 535 struct preftrees *preftrees,
e0c476b1 536 struct prelim_ref *ref, struct ulist *parents,
c995ab3c
ZB
537 const u64 *extent_item_pos, u64 total_refs,
538 bool ignore_offset)
8da6d581 539{
8da6d581
JS
540 struct btrfs_root *root;
541 struct btrfs_key root_key;
8da6d581
JS
542 struct extent_buffer *eb;
543 int ret = 0;
544 int root_level;
545 int level = ref->level;
538f72cd 546 int index;
7ac8b88e 547 struct btrfs_key search_key = ref->key_for_search;
8da6d581 548
8da6d581
JS
549 root_key.objectid = ref->root_id;
550 root_key.type = BTRFS_ROOT_ITEM_KEY;
551 root_key.offset = (u64)-1;
538f72cd
WS
552
553 index = srcu_read_lock(&fs_info->subvol_srcu);
554
2d9e9776 555 root = btrfs_get_fs_root(fs_info, &root_key, false);
8da6d581 556 if (IS_ERR(root)) {
538f72cd 557 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581 558 ret = PTR_ERR(root);
9326f76f
JB
559 goto out_free;
560 }
561
f5ee5c9a 562 if (btrfs_is_testing(fs_info)) {
d9ee522b
JB
563 srcu_read_unlock(&fs_info->subvol_srcu, index);
564 ret = -ENOENT;
565 goto out;
566 }
567
9e351cc8
JB
568 if (path->search_commit_root)
569 root_level = btrfs_header_level(root->commit_root);
de47c9d3 570 else if (time_seq == SEQ_LAST)
21633fc6 571 root_level = btrfs_header_level(root->node);
9e351cc8
JB
572 else
573 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 574
538f72cd
WS
575 if (root_level + 1 == level) {
576 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581 577 goto out;
538f72cd 578 }
8da6d581 579
7ac8b88e 580 /*
581 * We can often find data backrefs with an offset that is too large
582 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
583 * subtracting a file's offset with the data offset of its
584 * corresponding extent data item. This can happen for example in the
585 * clone ioctl.
586 *
587 * So if we detect such case we set the search key's offset to zero to
588 * make sure we will find the matching file extent item at
589 * add_all_parents(), otherwise we will miss it because the offset
590 * taken form the backref is much larger then the offset of the file
591 * extent item. This can make us scan a very large number of file
592 * extent items, but at least it will not make us miss any.
593 *
594 * This is an ugly workaround for a behaviour that should have never
595 * existed, but it does and a fix for the clone ioctl would touch a lot
596 * of places, cause backwards incompatibility and would not fix the
597 * problem for extents cloned with older kernels.
598 */
599 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
600 search_key.offset >= LLONG_MAX)
601 search_key.offset = 0;
8da6d581 602 path->lowest_level = level;
de47c9d3 603 if (time_seq == SEQ_LAST)
7ac8b88e 604 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
21633fc6 605 else
7ac8b88e 606 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
538f72cd
WS
607
608 /* root node has been locked, we can release @subvol_srcu safely here */
609 srcu_read_unlock(&fs_info->subvol_srcu, index);
610
ab8d0fc4
JM
611 btrfs_debug(fs_info,
612 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
c1c9ff7c
GU
613 ref->root_id, level, ref->count, ret,
614 ref->key_for_search.objectid, ref->key_for_search.type,
615 ref->key_for_search.offset);
8da6d581
JS
616 if (ret < 0)
617 goto out;
618
619 eb = path->nodes[level];
9345457f 620 while (!eb) {
fae7f21c 621 if (WARN_ON(!level)) {
9345457f
JS
622 ret = 1;
623 goto out;
624 }
625 level--;
626 eb = path->nodes[level];
8da6d581
JS
627 }
628
ed58f2e6 629 ret = add_all_parents(root, path, parents, preftrees, ref, level,
630 time_seq, extent_item_pos, total_refs, ignore_offset);
8da6d581 631out:
00246528 632 btrfs_put_root(root);
9326f76f 633out_free:
da61d31a
JB
634 path->lowest_level = 0;
635 btrfs_release_path(path);
8da6d581
JS
636 return ret;
637}
638
4dae077a
JM
639static struct extent_inode_elem *
640unode_aux_to_inode_list(struct ulist_node *node)
641{
642 if (!node)
643 return NULL;
644 return (struct extent_inode_elem *)(uintptr_t)node->aux;
645}
646
8da6d581 647/*
52042d8e 648 * We maintain three separate rbtrees: one for direct refs, one for
86d5f994
EN
649 * indirect refs which have a key, and one for indirect refs which do not
650 * have a key. Each tree does merge on insertion.
651 *
652 * Once all of the references are located, we iterate over the tree of
653 * indirect refs with missing keys. An appropriate key is located and
654 * the ref is moved onto the tree for indirect refs. After all missing
655 * keys are thus located, we iterate over the indirect ref tree, resolve
656 * each reference, and then insert the resolved reference onto the
657 * direct tree (merging there too).
658 *
659 * New backrefs (i.e., for parent nodes) are added to the appropriate
660 * rbtree as they are encountered. The new backrefs are subsequently
661 * resolved as above.
8da6d581 662 */
e0c476b1
JM
663static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
664 struct btrfs_path *path, u64 time_seq,
86d5f994 665 struct preftrees *preftrees,
e0c476b1 666 const u64 *extent_item_pos, u64 total_refs,
c995ab3c 667 struct share_check *sc, bool ignore_offset)
8da6d581
JS
668{
669 int err;
670 int ret = 0;
8da6d581
JS
671 struct ulist *parents;
672 struct ulist_node *node;
cd1b413c 673 struct ulist_iterator uiter;
86d5f994 674 struct rb_node *rnode;
8da6d581
JS
675
676 parents = ulist_alloc(GFP_NOFS);
677 if (!parents)
678 return -ENOMEM;
679
680 /*
86d5f994
EN
681 * We could trade memory usage for performance here by iterating
682 * the tree, allocating new refs for each insertion, and then
683 * freeing the entire indirect tree when we're done. In some test
684 * cases, the tree can grow quite large (~200k objects).
8da6d581 685 */
ecf160b4 686 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
86d5f994
EN
687 struct prelim_ref *ref;
688
689 ref = rb_entry(rnode, struct prelim_ref, rbnode);
690 if (WARN(ref->parent,
691 "BUG: direct ref found in indirect tree")) {
692 ret = -EINVAL;
693 goto out;
694 }
695
ecf160b4 696 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
6c336b21 697 preftrees->indirect.count--;
86d5f994
EN
698
699 if (ref->count == 0) {
700 free_pref(ref);
8da6d581 701 continue;
86d5f994
EN
702 }
703
3ec4d323
EN
704 if (sc && sc->root_objectid &&
705 ref->root_id != sc->root_objectid) {
86d5f994 706 free_pref(ref);
dc046b10
JB
707 ret = BACKREF_FOUND_SHARED;
708 goto out;
709 }
ed58f2e6 710 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
711 ref, parents, extent_item_pos,
c995ab3c 712 total_refs, ignore_offset);
95def2ed
WS
713 /*
714 * we can only tolerate ENOENT,otherwise,we should catch error
715 * and return directly.
716 */
717 if (err == -ENOENT) {
3ec4d323
EN
718 prelim_ref_insert(fs_info, &preftrees->direct, ref,
719 NULL);
8da6d581 720 continue;
95def2ed 721 } else if (err) {
86d5f994 722 free_pref(ref);
95def2ed
WS
723 ret = err;
724 goto out;
725 }
8da6d581
JS
726
727 /* we put the first parent into the ref at hand */
cd1b413c
JS
728 ULIST_ITER_INIT(&uiter);
729 node = ulist_next(parents, &uiter);
8da6d581 730 ref->parent = node ? node->val : 0;
4dae077a 731 ref->inode_list = unode_aux_to_inode_list(node);
8da6d581 732
86d5f994 733 /* Add a prelim_ref(s) for any other parent(s). */
cd1b413c 734 while ((node = ulist_next(parents, &uiter))) {
86d5f994
EN
735 struct prelim_ref *new_ref;
736
b9e9a6cb
WS
737 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
738 GFP_NOFS);
8da6d581 739 if (!new_ref) {
86d5f994 740 free_pref(ref);
8da6d581 741 ret = -ENOMEM;
e36902d4 742 goto out;
8da6d581
JS
743 }
744 memcpy(new_ref, ref, sizeof(*ref));
745 new_ref->parent = node->val;
4dae077a 746 new_ref->inode_list = unode_aux_to_inode_list(node);
3ec4d323
EN
747 prelim_ref_insert(fs_info, &preftrees->direct,
748 new_ref, NULL);
8da6d581 749 }
86d5f994 750
3ec4d323 751 /*
52042d8e 752 * Now it's a direct ref, put it in the direct tree. We must
3ec4d323
EN
753 * do this last because the ref could be merged/freed here.
754 */
755 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
86d5f994 756
8da6d581 757 ulist_reinit(parents);
9dd14fd6 758 cond_resched();
8da6d581 759 }
e36902d4 760out:
8da6d581
JS
761 ulist_free(parents);
762 return ret;
763}
764
d5c88b73
JS
765/*
766 * read tree blocks and add keys where required.
767 */
e0c476b1 768static int add_missing_keys(struct btrfs_fs_info *fs_info,
38e3eebf 769 struct preftrees *preftrees, bool lock)
d5c88b73 770{
e0c476b1 771 struct prelim_ref *ref;
d5c88b73 772 struct extent_buffer *eb;
86d5f994
EN
773 struct preftree *tree = &preftrees->indirect_missing_keys;
774 struct rb_node *node;
d5c88b73 775
ecf160b4 776 while ((node = rb_first_cached(&tree->root))) {
86d5f994 777 ref = rb_entry(node, struct prelim_ref, rbnode);
ecf160b4 778 rb_erase_cached(node, &tree->root);
86d5f994
EN
779
780 BUG_ON(ref->parent); /* should not be a direct ref */
781 BUG_ON(ref->key_for_search.type);
d5c88b73 782 BUG_ON(!ref->wanted_disk_byte);
86d5f994 783
581c1760
QW
784 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
785 ref->level - 1, NULL);
64c043de 786 if (IS_ERR(eb)) {
86d5f994 787 free_pref(ref);
64c043de
LB
788 return PTR_ERR(eb);
789 } else if (!extent_buffer_uptodate(eb)) {
86d5f994 790 free_pref(ref);
416bc658
JB
791 free_extent_buffer(eb);
792 return -EIO;
793 }
38e3eebf
JB
794 if (lock)
795 btrfs_tree_read_lock(eb);
d5c88b73
JS
796 if (btrfs_header_level(eb) == 0)
797 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
798 else
799 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
38e3eebf
JB
800 if (lock)
801 btrfs_tree_read_unlock(eb);
d5c88b73 802 free_extent_buffer(eb);
3ec4d323 803 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
9dd14fd6 804 cond_resched();
d5c88b73
JS
805 }
806 return 0;
807}
808
8da6d581
JS
809/*
810 * add all currently queued delayed refs from this head whose seq nr is
811 * smaller or equal that seq to the list
812 */
00142756
JM
813static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
814 struct btrfs_delayed_ref_head *head, u64 seq,
86d5f994 815 struct preftrees *preftrees, u64 *total_refs,
3ec4d323 816 struct share_check *sc)
8da6d581 817{
c6fc2454 818 struct btrfs_delayed_ref_node *node;
8da6d581 819 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
d5c88b73 820 struct btrfs_key key;
86d5f994 821 struct btrfs_key tmp_op_key;
0e0adbcf 822 struct rb_node *n;
01747e92 823 int count;
b1375d64 824 int ret = 0;
8da6d581 825
a6dbceaf 826 if (extent_op && extent_op->update_key)
86d5f994 827 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
8da6d581 828
d7df2c79 829 spin_lock(&head->lock);
e3d03965 830 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
0e0adbcf
JB
831 node = rb_entry(n, struct btrfs_delayed_ref_node,
832 ref_node);
8da6d581
JS
833 if (node->seq > seq)
834 continue;
835
836 switch (node->action) {
837 case BTRFS_ADD_DELAYED_EXTENT:
838 case BTRFS_UPDATE_DELAYED_HEAD:
839 WARN_ON(1);
840 continue;
841 case BTRFS_ADD_DELAYED_REF:
01747e92 842 count = node->ref_mod;
8da6d581
JS
843 break;
844 case BTRFS_DROP_DELAYED_REF:
01747e92 845 count = node->ref_mod * -1;
8da6d581
JS
846 break;
847 default:
290342f6 848 BUG();
8da6d581 849 }
01747e92 850 *total_refs += count;
8da6d581
JS
851 switch (node->type) {
852 case BTRFS_TREE_BLOCK_REF_KEY: {
86d5f994 853 /* NORMAL INDIRECT METADATA backref */
8da6d581
JS
854 struct btrfs_delayed_tree_ref *ref;
855
856 ref = btrfs_delayed_node_to_tree_ref(node);
00142756
JM
857 ret = add_indirect_ref(fs_info, preftrees, ref->root,
858 &tmp_op_key, ref->level + 1,
01747e92
EN
859 node->bytenr, count, sc,
860 GFP_ATOMIC);
8da6d581
JS
861 break;
862 }
863 case BTRFS_SHARED_BLOCK_REF_KEY: {
86d5f994 864 /* SHARED DIRECT METADATA backref */
8da6d581
JS
865 struct btrfs_delayed_tree_ref *ref;
866
867 ref = btrfs_delayed_node_to_tree_ref(node);
86d5f994 868
01747e92
EN
869 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
870 ref->parent, node->bytenr, count,
3ec4d323 871 sc, GFP_ATOMIC);
8da6d581
JS
872 break;
873 }
874 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 875 /* NORMAL INDIRECT DATA backref */
8da6d581 876 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
877 ref = btrfs_delayed_node_to_data_ref(node);
878
879 key.objectid = ref->objectid;
880 key.type = BTRFS_EXTENT_DATA_KEY;
881 key.offset = ref->offset;
dc046b10
JB
882
883 /*
884 * Found a inum that doesn't match our known inum, we
885 * know it's shared.
886 */
3ec4d323 887 if (sc && sc->inum && ref->objectid != sc->inum) {
dc046b10 888 ret = BACKREF_FOUND_SHARED;
3ec4d323 889 goto out;
dc046b10
JB
890 }
891
00142756 892 ret = add_indirect_ref(fs_info, preftrees, ref->root,
01747e92
EN
893 &key, 0, node->bytenr, count, sc,
894 GFP_ATOMIC);
8da6d581
JS
895 break;
896 }
897 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 898 /* SHARED DIRECT FULL backref */
8da6d581 899 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
900
901 ref = btrfs_delayed_node_to_data_ref(node);
86d5f994 902
01747e92
EN
903 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
904 node->bytenr, count, sc,
905 GFP_ATOMIC);
8da6d581
JS
906 break;
907 }
908 default:
909 WARN_ON(1);
910 }
3ec4d323
EN
911 /*
912 * We must ignore BACKREF_FOUND_SHARED until all delayed
913 * refs have been checked.
914 */
915 if (ret && (ret != BACKREF_FOUND_SHARED))
d7df2c79 916 break;
8da6d581 917 }
3ec4d323
EN
918 if (!ret)
919 ret = extent_is_shared(sc);
920out:
d7df2c79
JB
921 spin_unlock(&head->lock);
922 return ret;
8da6d581
JS
923}
924
925/*
926 * add all inline backrefs for bytenr to the list
3ec4d323
EN
927 *
928 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 929 */
00142756
JM
930static int add_inline_refs(const struct btrfs_fs_info *fs_info,
931 struct btrfs_path *path, u64 bytenr,
86d5f994 932 int *info_level, struct preftrees *preftrees,
3ec4d323 933 u64 *total_refs, struct share_check *sc)
8da6d581 934{
b1375d64 935 int ret = 0;
8da6d581
JS
936 int slot;
937 struct extent_buffer *leaf;
938 struct btrfs_key key;
261c84b6 939 struct btrfs_key found_key;
8da6d581
JS
940 unsigned long ptr;
941 unsigned long end;
942 struct btrfs_extent_item *ei;
943 u64 flags;
944 u64 item_size;
945
946 /*
947 * enumerate all inline refs
948 */
949 leaf = path->nodes[0];
dadcaf78 950 slot = path->slots[0];
8da6d581
JS
951
952 item_size = btrfs_item_size_nr(leaf, slot);
953 BUG_ON(item_size < sizeof(*ei));
954
955 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
956 flags = btrfs_extent_flags(leaf, ei);
44853868 957 *total_refs += btrfs_extent_refs(leaf, ei);
261c84b6 958 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
959
960 ptr = (unsigned long)(ei + 1);
961 end = (unsigned long)ei + item_size;
962
261c84b6
JB
963 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
964 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 965 struct btrfs_tree_block_info *info;
8da6d581
JS
966
967 info = (struct btrfs_tree_block_info *)ptr;
968 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
969 ptr += sizeof(struct btrfs_tree_block_info);
970 BUG_ON(ptr > end);
261c84b6
JB
971 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
972 *info_level = found_key.offset;
8da6d581
JS
973 } else {
974 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
975 }
976
977 while (ptr < end) {
978 struct btrfs_extent_inline_ref *iref;
979 u64 offset;
980 int type;
981
982 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
983 type = btrfs_get_extent_inline_ref_type(leaf, iref,
984 BTRFS_REF_TYPE_ANY);
985 if (type == BTRFS_REF_TYPE_INVALID)
af431dcb 986 return -EUCLEAN;
3de28d57 987
8da6d581
JS
988 offset = btrfs_extent_inline_ref_offset(leaf, iref);
989
990 switch (type) {
991 case BTRFS_SHARED_BLOCK_REF_KEY:
00142756
JM
992 ret = add_direct_ref(fs_info, preftrees,
993 *info_level + 1, offset,
3ec4d323 994 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
995 break;
996 case BTRFS_SHARED_DATA_REF_KEY: {
997 struct btrfs_shared_data_ref *sdref;
998 int count;
999
1000 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1001 count = btrfs_shared_data_ref_count(leaf, sdref);
86d5f994 1002
00142756 1003 ret = add_direct_ref(fs_info, preftrees, 0, offset,
3ec4d323 1004 bytenr, count, sc, GFP_NOFS);
8da6d581
JS
1005 break;
1006 }
1007 case BTRFS_TREE_BLOCK_REF_KEY:
00142756
JM
1008 ret = add_indirect_ref(fs_info, preftrees, offset,
1009 NULL, *info_level + 1,
3ec4d323 1010 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1011 break;
1012 case BTRFS_EXTENT_DATA_REF_KEY: {
1013 struct btrfs_extent_data_ref *dref;
1014 int count;
1015 u64 root;
1016
1017 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1018 count = btrfs_extent_data_ref_count(leaf, dref);
1019 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1020 dref);
1021 key.type = BTRFS_EXTENT_DATA_KEY;
1022 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1023
3ec4d323 1024 if (sc && sc->inum && key.objectid != sc->inum) {
dc046b10
JB
1025 ret = BACKREF_FOUND_SHARED;
1026 break;
1027 }
1028
8da6d581 1029 root = btrfs_extent_data_ref_root(leaf, dref);
86d5f994 1030
00142756
JM
1031 ret = add_indirect_ref(fs_info, preftrees, root,
1032 &key, 0, bytenr, count,
3ec4d323 1033 sc, GFP_NOFS);
8da6d581
JS
1034 break;
1035 }
1036 default:
1037 WARN_ON(1);
1038 }
1149ab6b
WS
1039 if (ret)
1040 return ret;
8da6d581
JS
1041 ptr += btrfs_extent_inline_ref_size(type);
1042 }
1043
1044 return 0;
1045}
1046
1047/*
1048 * add all non-inline backrefs for bytenr to the list
3ec4d323
EN
1049 *
1050 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 1051 */
e0c476b1
JM
1052static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1053 struct btrfs_path *path, u64 bytenr,
86d5f994 1054 int info_level, struct preftrees *preftrees,
3ec4d323 1055 struct share_check *sc)
8da6d581
JS
1056{
1057 struct btrfs_root *extent_root = fs_info->extent_root;
1058 int ret;
1059 int slot;
1060 struct extent_buffer *leaf;
1061 struct btrfs_key key;
1062
1063 while (1) {
1064 ret = btrfs_next_item(extent_root, path);
1065 if (ret < 0)
1066 break;
1067 if (ret) {
1068 ret = 0;
1069 break;
1070 }
1071
1072 slot = path->slots[0];
1073 leaf = path->nodes[0];
1074 btrfs_item_key_to_cpu(leaf, &key, slot);
1075
1076 if (key.objectid != bytenr)
1077 break;
1078 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1079 continue;
1080 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1081 break;
1082
1083 switch (key.type) {
1084 case BTRFS_SHARED_BLOCK_REF_KEY:
86d5f994 1085 /* SHARED DIRECT METADATA backref */
00142756
JM
1086 ret = add_direct_ref(fs_info, preftrees,
1087 info_level + 1, key.offset,
3ec4d323 1088 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1089 break;
1090 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 1091 /* SHARED DIRECT FULL backref */
8da6d581
JS
1092 struct btrfs_shared_data_ref *sdref;
1093 int count;
1094
1095 sdref = btrfs_item_ptr(leaf, slot,
1096 struct btrfs_shared_data_ref);
1097 count = btrfs_shared_data_ref_count(leaf, sdref);
00142756
JM
1098 ret = add_direct_ref(fs_info, preftrees, 0,
1099 key.offset, bytenr, count,
3ec4d323 1100 sc, GFP_NOFS);
8da6d581
JS
1101 break;
1102 }
1103 case BTRFS_TREE_BLOCK_REF_KEY:
86d5f994 1104 /* NORMAL INDIRECT METADATA backref */
00142756
JM
1105 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1106 NULL, info_level + 1, bytenr,
3ec4d323 1107 1, NULL, GFP_NOFS);
8da6d581
JS
1108 break;
1109 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 1110 /* NORMAL INDIRECT DATA backref */
8da6d581
JS
1111 struct btrfs_extent_data_ref *dref;
1112 int count;
1113 u64 root;
1114
1115 dref = btrfs_item_ptr(leaf, slot,
1116 struct btrfs_extent_data_ref);
1117 count = btrfs_extent_data_ref_count(leaf, dref);
1118 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1119 dref);
1120 key.type = BTRFS_EXTENT_DATA_KEY;
1121 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1122
3ec4d323 1123 if (sc && sc->inum && key.objectid != sc->inum) {
dc046b10
JB
1124 ret = BACKREF_FOUND_SHARED;
1125 break;
1126 }
1127
8da6d581 1128 root = btrfs_extent_data_ref_root(leaf, dref);
00142756
JM
1129 ret = add_indirect_ref(fs_info, preftrees, root,
1130 &key, 0, bytenr, count,
3ec4d323 1131 sc, GFP_NOFS);
8da6d581
JS
1132 break;
1133 }
1134 default:
1135 WARN_ON(1);
1136 }
1149ab6b
WS
1137 if (ret)
1138 return ret;
1139
8da6d581
JS
1140 }
1141
1142 return ret;
1143}
1144
1145/*
1146 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1147 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1148 * indirect refs to their parent bytenr.
1149 * When roots are found, they're added to the roots list
1150 *
de47c9d3 1151 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
21633fc6
QW
1152 * much like trans == NULL case, the difference only lies in it will not
1153 * commit root.
1154 * The special case is for qgroup to search roots in commit_transaction().
1155 *
3ec4d323
EN
1156 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1157 * shared extent is detected.
1158 *
1159 * Otherwise this returns 0 for success and <0 for an error.
1160 *
c995ab3c
ZB
1161 * If ignore_offset is set to false, only extent refs whose offsets match
1162 * extent_item_pos are returned. If true, every extent ref is returned
1163 * and extent_item_pos is ignored.
1164 *
8da6d581
JS
1165 * FIXME some caching might speed things up
1166 */
1167static int find_parent_nodes(struct btrfs_trans_handle *trans,
1168 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1169 u64 time_seq, struct ulist *refs,
dc046b10 1170 struct ulist *roots, const u64 *extent_item_pos,
c995ab3c 1171 struct share_check *sc, bool ignore_offset)
8da6d581
JS
1172{
1173 struct btrfs_key key;
1174 struct btrfs_path *path;
8da6d581 1175 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 1176 struct btrfs_delayed_ref_head *head;
8da6d581
JS
1177 int info_level = 0;
1178 int ret;
e0c476b1 1179 struct prelim_ref *ref;
86d5f994 1180 struct rb_node *node;
f05c4746 1181 struct extent_inode_elem *eie = NULL;
86d5f994 1182 /* total of both direct AND indirect refs! */
44853868 1183 u64 total_refs = 0;
86d5f994
EN
1184 struct preftrees preftrees = {
1185 .direct = PREFTREE_INIT,
1186 .indirect = PREFTREE_INIT,
1187 .indirect_missing_keys = PREFTREE_INIT
1188 };
8da6d581
JS
1189
1190 key.objectid = bytenr;
8da6d581 1191 key.offset = (u64)-1;
261c84b6
JB
1192 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1193 key.type = BTRFS_METADATA_ITEM_KEY;
1194 else
1195 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
1196
1197 path = btrfs_alloc_path();
1198 if (!path)
1199 return -ENOMEM;
e84752d4 1200 if (!trans) {
da61d31a 1201 path->search_commit_root = 1;
e84752d4
WS
1202 path->skip_locking = 1;
1203 }
8da6d581 1204
de47c9d3 1205 if (time_seq == SEQ_LAST)
21633fc6
QW
1206 path->skip_locking = 1;
1207
8da6d581
JS
1208 /*
1209 * grab both a lock on the path and a lock on the delayed ref head.
1210 * We need both to get a consistent picture of how the refs look
1211 * at a specified point in time
1212 */
1213again:
d3b01064
LZ
1214 head = NULL;
1215
8da6d581
JS
1216 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1217 if (ret < 0)
1218 goto out;
1219 BUG_ON(ret == 0);
1220
faa2dbf0 1221#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
21633fc6 1222 if (trans && likely(trans->type != __TRANS_DUMMY) &&
de47c9d3 1223 time_seq != SEQ_LAST) {
faa2dbf0 1224#else
de47c9d3 1225 if (trans && time_seq != SEQ_LAST) {
faa2dbf0 1226#endif
7a3ae2f8
JS
1227 /*
1228 * look if there are updates for this ref queued and lock the
1229 * head
1230 */
1231 delayed_refs = &trans->transaction->delayed_refs;
1232 spin_lock(&delayed_refs->lock);
f72ad18e 1233 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7a3ae2f8
JS
1234 if (head) {
1235 if (!mutex_trylock(&head->mutex)) {
d278850e 1236 refcount_inc(&head->refs);
7a3ae2f8
JS
1237 spin_unlock(&delayed_refs->lock);
1238
1239 btrfs_release_path(path);
1240
1241 /*
1242 * Mutex was contended, block until it's
1243 * released and try again
1244 */
1245 mutex_lock(&head->mutex);
1246 mutex_unlock(&head->mutex);
d278850e 1247 btrfs_put_delayed_ref_head(head);
7a3ae2f8
JS
1248 goto again;
1249 }
d7df2c79 1250 spin_unlock(&delayed_refs->lock);
00142756 1251 ret = add_delayed_refs(fs_info, head, time_seq,
3ec4d323 1252 &preftrees, &total_refs, sc);
155725c9 1253 mutex_unlock(&head->mutex);
d7df2c79 1254 if (ret)
7a3ae2f8 1255 goto out;
d7df2c79
JB
1256 } else {
1257 spin_unlock(&delayed_refs->lock);
d3b01064 1258 }
8da6d581 1259 }
8da6d581
JS
1260
1261 if (path->slots[0]) {
1262 struct extent_buffer *leaf;
1263 int slot;
1264
dadcaf78 1265 path->slots[0]--;
8da6d581 1266 leaf = path->nodes[0];
dadcaf78 1267 slot = path->slots[0];
8da6d581
JS
1268 btrfs_item_key_to_cpu(leaf, &key, slot);
1269 if (key.objectid == bytenr &&
261c84b6
JB
1270 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1271 key.type == BTRFS_METADATA_ITEM_KEY)) {
00142756
JM
1272 ret = add_inline_refs(fs_info, path, bytenr,
1273 &info_level, &preftrees,
3ec4d323 1274 &total_refs, sc);
8da6d581
JS
1275 if (ret)
1276 goto out;
e0c476b1 1277 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
3ec4d323 1278 &preftrees, sc);
8da6d581
JS
1279 if (ret)
1280 goto out;
1281 }
1282 }
8da6d581 1283
86d5f994 1284 btrfs_release_path(path);
8da6d581 1285
38e3eebf 1286 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
d5c88b73
JS
1287 if (ret)
1288 goto out;
1289
ecf160b4 1290 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
8da6d581 1291
86d5f994 1292 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
c995ab3c 1293 extent_item_pos, total_refs, sc, ignore_offset);
8da6d581
JS
1294 if (ret)
1295 goto out;
1296
ecf160b4 1297 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
8da6d581 1298
86d5f994
EN
1299 /*
1300 * This walks the tree of merged and resolved refs. Tree blocks are
1301 * read in as needed. Unique entries are added to the ulist, and
1302 * the list of found roots is updated.
1303 *
1304 * We release the entire tree in one go before returning.
1305 */
ecf160b4 1306 node = rb_first_cached(&preftrees.direct.root);
86d5f994
EN
1307 while (node) {
1308 ref = rb_entry(node, struct prelim_ref, rbnode);
1309 node = rb_next(&ref->rbnode);
c8195a7b
ZB
1310 /*
1311 * ref->count < 0 can happen here if there are delayed
1312 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1313 * prelim_ref_insert() relies on this when merging
1314 * identical refs to keep the overall count correct.
1315 * prelim_ref_insert() will merge only those refs
1316 * which compare identically. Any refs having
1317 * e.g. different offsets would not be merged,
1318 * and would retain their original ref->count < 0.
1319 */
98cfee21 1320 if (roots && ref->count && ref->root_id && ref->parent == 0) {
3ec4d323
EN
1321 if (sc && sc->root_objectid &&
1322 ref->root_id != sc->root_objectid) {
dc046b10
JB
1323 ret = BACKREF_FOUND_SHARED;
1324 goto out;
1325 }
1326
8da6d581
JS
1327 /* no parent == root of tree */
1328 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1329 if (ret < 0)
1330 goto out;
8da6d581
JS
1331 }
1332 if (ref->count && ref->parent) {
8a56457f
JB
1333 if (extent_item_pos && !ref->inode_list &&
1334 ref->level == 0) {
976b1908 1335 struct extent_buffer *eb;
707e8a07 1336
581c1760
QW
1337 eb = read_tree_block(fs_info, ref->parent, 0,
1338 ref->level, NULL);
64c043de
LB
1339 if (IS_ERR(eb)) {
1340 ret = PTR_ERR(eb);
1341 goto out;
1342 } else if (!extent_buffer_uptodate(eb)) {
416bc658 1343 free_extent_buffer(eb);
c16c2e2e
WS
1344 ret = -EIO;
1345 goto out;
416bc658 1346 }
38e3eebf
JB
1347
1348 if (!path->skip_locking) {
1349 btrfs_tree_read_lock(eb);
1350 btrfs_set_lock_blocking_read(eb);
1351 }
976b1908 1352 ret = find_extent_in_eb(eb, bytenr,
c995ab3c 1353 *extent_item_pos, &eie, ignore_offset);
38e3eebf
JB
1354 if (!path->skip_locking)
1355 btrfs_tree_read_unlock_blocking(eb);
976b1908 1356 free_extent_buffer(eb);
f5929cd8
FDBM
1357 if (ret < 0)
1358 goto out;
1359 ref->inode_list = eie;
976b1908 1360 }
4eb1f66d
TI
1361 ret = ulist_add_merge_ptr(refs, ref->parent,
1362 ref->inode_list,
1363 (void **)&eie, GFP_NOFS);
f1723939
WS
1364 if (ret < 0)
1365 goto out;
3301958b
JS
1366 if (!ret && extent_item_pos) {
1367 /*
1368 * we've recorded that parent, so we must extend
1369 * its inode list here
1370 */
1371 BUG_ON(!eie);
1372 while (eie->next)
1373 eie = eie->next;
1374 eie->next = ref->inode_list;
1375 }
f05c4746 1376 eie = NULL;
8da6d581 1377 }
9dd14fd6 1378 cond_resched();
8da6d581
JS
1379 }
1380
1381out:
8da6d581 1382 btrfs_free_path(path);
86d5f994
EN
1383
1384 prelim_release(&preftrees.direct);
1385 prelim_release(&preftrees.indirect);
1386 prelim_release(&preftrees.indirect_missing_keys);
1387
f05c4746
WS
1388 if (ret < 0)
1389 free_inode_elem_list(eie);
8da6d581
JS
1390 return ret;
1391}
1392
976b1908
JS
1393static void free_leaf_list(struct ulist *blocks)
1394{
1395 struct ulist_node *node = NULL;
1396 struct extent_inode_elem *eie;
976b1908
JS
1397 struct ulist_iterator uiter;
1398
1399 ULIST_ITER_INIT(&uiter);
1400 while ((node = ulist_next(blocks, &uiter))) {
1401 if (!node->aux)
1402 continue;
4dae077a 1403 eie = unode_aux_to_inode_list(node);
f05c4746 1404 free_inode_elem_list(eie);
976b1908
JS
1405 node->aux = 0;
1406 }
1407
1408 ulist_free(blocks);
1409}
1410
8da6d581
JS
1411/*
1412 * Finds all leafs with a reference to the specified combination of bytenr and
1413 * offset. key_list_head will point to a list of corresponding keys (caller must
1414 * free each list element). The leafs will be stored in the leafs ulist, which
1415 * must be freed with ulist_free.
1416 *
1417 * returns 0 on success, <0 on error
1418 */
1419static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1420 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1421 u64 time_seq, struct ulist **leafs,
c995ab3c 1422 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 1423{
8da6d581
JS
1424 int ret;
1425
8da6d581 1426 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1427 if (!*leafs)
8da6d581 1428 return -ENOMEM;
8da6d581 1429
afce772e 1430 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1431 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
8da6d581 1432 if (ret < 0 && ret != -ENOENT) {
976b1908 1433 free_leaf_list(*leafs);
8da6d581
JS
1434 return ret;
1435 }
1436
1437 return 0;
1438}
1439
1440/*
1441 * walk all backrefs for a given extent to find all roots that reference this
1442 * extent. Walking a backref means finding all extents that reference this
1443 * extent and in turn walk the backrefs of those, too. Naturally this is a
1444 * recursive process, but here it is implemented in an iterative fashion: We
1445 * find all referencing extents for the extent in question and put them on a
1446 * list. In turn, we find all referencing extents for those, further appending
1447 * to the list. The way we iterate the list allows adding more elements after
1448 * the current while iterating. The process stops when we reach the end of the
1449 * list. Found roots are added to the roots list.
1450 *
1451 * returns 0 on success, < 0 on error.
1452 */
e0c476b1
JM
1453static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1454 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1455 u64 time_seq, struct ulist **roots,
1456 bool ignore_offset)
8da6d581
JS
1457{
1458 struct ulist *tmp;
1459 struct ulist_node *node = NULL;
cd1b413c 1460 struct ulist_iterator uiter;
8da6d581
JS
1461 int ret;
1462
1463 tmp = ulist_alloc(GFP_NOFS);
1464 if (!tmp)
1465 return -ENOMEM;
1466 *roots = ulist_alloc(GFP_NOFS);
1467 if (!*roots) {
1468 ulist_free(tmp);
1469 return -ENOMEM;
1470 }
1471
cd1b413c 1472 ULIST_ITER_INIT(&uiter);
8da6d581 1473 while (1) {
afce772e 1474 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1475 tmp, *roots, NULL, NULL, ignore_offset);
8da6d581
JS
1476 if (ret < 0 && ret != -ENOENT) {
1477 ulist_free(tmp);
1478 ulist_free(*roots);
1479 return ret;
1480 }
cd1b413c 1481 node = ulist_next(tmp, &uiter);
8da6d581
JS
1482 if (!node)
1483 break;
1484 bytenr = node->val;
bca1a290 1485 cond_resched();
8da6d581
JS
1486 }
1487
1488 ulist_free(tmp);
1489 return 0;
1490}
1491
9e351cc8
JB
1492int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1493 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1494 u64 time_seq, struct ulist **roots,
1495 bool ignore_offset)
9e351cc8
JB
1496{
1497 int ret;
1498
1499 if (!trans)
1500 down_read(&fs_info->commit_root_sem);
e0c476b1 1501 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
c995ab3c 1502 time_seq, roots, ignore_offset);
9e351cc8
JB
1503 if (!trans)
1504 up_read(&fs_info->commit_root_sem);
1505 return ret;
1506}
1507
2c2ed5aa
MF
1508/**
1509 * btrfs_check_shared - tell us whether an extent is shared
1510 *
2c2ed5aa
MF
1511 * btrfs_check_shared uses the backref walking code but will short
1512 * circuit as soon as it finds a root or inode that doesn't match the
1513 * one passed in. This provides a significant performance benefit for
1514 * callers (such as fiemap) which want to know whether the extent is
1515 * shared but do not need a ref count.
1516 *
03628cdb
FM
1517 * This attempts to attach to the running transaction in order to account for
1518 * delayed refs, but continues on even when no running transaction exists.
bb739cf0 1519 *
2c2ed5aa
MF
1520 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1521 */
5911c8fe
DS
1522int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1523 struct ulist *roots, struct ulist *tmp)
dc046b10 1524{
bb739cf0
EN
1525 struct btrfs_fs_info *fs_info = root->fs_info;
1526 struct btrfs_trans_handle *trans;
dc046b10
JB
1527 struct ulist_iterator uiter;
1528 struct ulist_node *node;
3284da7b 1529 struct seq_list elem = SEQ_LIST_INIT(elem);
dc046b10 1530 int ret = 0;
3ec4d323 1531 struct share_check shared = {
4fd786e6 1532 .root_objectid = root->root_key.objectid,
3ec4d323
EN
1533 .inum = inum,
1534 .share_count = 0,
1535 };
dc046b10 1536
5911c8fe
DS
1537 ulist_init(roots);
1538 ulist_init(tmp);
dc046b10 1539
a6d155d2 1540 trans = btrfs_join_transaction_nostart(root);
bb739cf0 1541 if (IS_ERR(trans)) {
03628cdb
FM
1542 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1543 ret = PTR_ERR(trans);
1544 goto out;
1545 }
bb739cf0 1546 trans = NULL;
dc046b10 1547 down_read(&fs_info->commit_root_sem);
bb739cf0
EN
1548 } else {
1549 btrfs_get_tree_mod_seq(fs_info, &elem);
1550 }
1551
dc046b10
JB
1552 ULIST_ITER_INIT(&uiter);
1553 while (1) {
1554 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
c995ab3c 1555 roots, NULL, &shared, false);
dc046b10 1556 if (ret == BACKREF_FOUND_SHARED) {
2c2ed5aa 1557 /* this is the only condition under which we return 1 */
dc046b10
JB
1558 ret = 1;
1559 break;
1560 }
1561 if (ret < 0 && ret != -ENOENT)
1562 break;
2c2ed5aa 1563 ret = 0;
dc046b10
JB
1564 node = ulist_next(tmp, &uiter);
1565 if (!node)
1566 break;
1567 bytenr = node->val;
18bf591b 1568 shared.share_count = 0;
dc046b10
JB
1569 cond_resched();
1570 }
bb739cf0
EN
1571
1572 if (trans) {
dc046b10 1573 btrfs_put_tree_mod_seq(fs_info, &elem);
bb739cf0
EN
1574 btrfs_end_transaction(trans);
1575 } else {
dc046b10 1576 up_read(&fs_info->commit_root_sem);
bb739cf0 1577 }
03628cdb 1578out:
5911c8fe
DS
1579 ulist_release(roots);
1580 ulist_release(tmp);
dc046b10
JB
1581 return ret;
1582}
1583
f186373f
MF
1584int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1585 u64 start_off, struct btrfs_path *path,
1586 struct btrfs_inode_extref **ret_extref,
1587 u64 *found_off)
1588{
1589 int ret, slot;
1590 struct btrfs_key key;
1591 struct btrfs_key found_key;
1592 struct btrfs_inode_extref *extref;
73980bec 1593 const struct extent_buffer *leaf;
f186373f
MF
1594 unsigned long ptr;
1595
1596 key.objectid = inode_objectid;
962a298f 1597 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
1598 key.offset = start_off;
1599
1600 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1601 if (ret < 0)
1602 return ret;
1603
1604 while (1) {
1605 leaf = path->nodes[0];
1606 slot = path->slots[0];
1607 if (slot >= btrfs_header_nritems(leaf)) {
1608 /*
1609 * If the item at offset is not found,
1610 * btrfs_search_slot will point us to the slot
1611 * where it should be inserted. In our case
1612 * that will be the slot directly before the
1613 * next INODE_REF_KEY_V2 item. In the case
1614 * that we're pointing to the last slot in a
1615 * leaf, we must move one leaf over.
1616 */
1617 ret = btrfs_next_leaf(root, path);
1618 if (ret) {
1619 if (ret >= 1)
1620 ret = -ENOENT;
1621 break;
1622 }
1623 continue;
1624 }
1625
1626 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1627
1628 /*
1629 * Check that we're still looking at an extended ref key for
1630 * this particular objectid. If we have different
1631 * objectid or type then there are no more to be found
1632 * in the tree and we can exit.
1633 */
1634 ret = -ENOENT;
1635 if (found_key.objectid != inode_objectid)
1636 break;
962a298f 1637 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
1638 break;
1639
1640 ret = 0;
1641 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1642 extref = (struct btrfs_inode_extref *)ptr;
1643 *ret_extref = extref;
1644 if (found_off)
1645 *found_off = found_key.offset;
1646 break;
1647 }
1648
1649 return ret;
1650}
1651
48a3b636
ES
1652/*
1653 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1654 * Elements of the path are separated by '/' and the path is guaranteed to be
1655 * 0-terminated. the path is only given within the current file system.
1656 * Therefore, it never starts with a '/'. the caller is responsible to provide
1657 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1658 * the start point of the resulting string is returned. this pointer is within
1659 * dest, normally.
1660 * in case the path buffer would overflow, the pointer is decremented further
1661 * as if output was written to the buffer, though no more output is actually
1662 * generated. that way, the caller can determine how much space would be
1663 * required for the path to fit into the buffer. in that case, the returned
1664 * value will be smaller than dest. callers must check this!
1665 */
96b5bd77
JS
1666char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1667 u32 name_len, unsigned long name_off,
1668 struct extent_buffer *eb_in, u64 parent,
1669 char *dest, u32 size)
a542ad1b 1670{
a542ad1b
JS
1671 int slot;
1672 u64 next_inum;
1673 int ret;
661bec6b 1674 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1675 struct extent_buffer *eb = eb_in;
1676 struct btrfs_key found_key;
b916a59a 1677 int leave_spinning = path->leave_spinning;
d24bec3a 1678 struct btrfs_inode_ref *iref;
a542ad1b
JS
1679
1680 if (bytes_left >= 0)
1681 dest[bytes_left] = '\0';
1682
b916a59a 1683 path->leave_spinning = 1;
a542ad1b 1684 while (1) {
d24bec3a 1685 bytes_left -= name_len;
a542ad1b
JS
1686 if (bytes_left >= 0)
1687 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1688 name_off, name_len);
b916a59a 1689 if (eb != eb_in) {
0c0fe3b0
FM
1690 if (!path->skip_locking)
1691 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1692 free_extent_buffer(eb);
b916a59a 1693 }
c234a24d
DS
1694 ret = btrfs_find_item(fs_root, path, parent, 0,
1695 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
1696 if (ret > 0)
1697 ret = -ENOENT;
a542ad1b
JS
1698 if (ret)
1699 break;
d24bec3a 1700
a542ad1b
JS
1701 next_inum = found_key.offset;
1702
1703 /* regular exit ahead */
1704 if (parent == next_inum)
1705 break;
1706
1707 slot = path->slots[0];
1708 eb = path->nodes[0];
1709 /* make sure we can use eb after releasing the path */
b916a59a 1710 if (eb != eb_in) {
0c0fe3b0 1711 if (!path->skip_locking)
300aa896 1712 btrfs_set_lock_blocking_read(eb);
0c0fe3b0
FM
1713 path->nodes[0] = NULL;
1714 path->locks[0] = 0;
b916a59a 1715 }
a542ad1b 1716 btrfs_release_path(path);
a542ad1b 1717 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1718
1719 name_len = btrfs_inode_ref_name_len(eb, iref);
1720 name_off = (unsigned long)(iref + 1);
1721
a542ad1b
JS
1722 parent = next_inum;
1723 --bytes_left;
1724 if (bytes_left >= 0)
1725 dest[bytes_left] = '/';
1726 }
1727
1728 btrfs_release_path(path);
b916a59a 1729 path->leave_spinning = leave_spinning;
a542ad1b
JS
1730
1731 if (ret)
1732 return ERR_PTR(ret);
1733
1734 return dest + bytes_left;
1735}
1736
1737/*
1738 * this makes the path point to (logical EXTENT_ITEM *)
1739 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1740 * tree blocks and <0 on error.
1741 */
1742int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1743 struct btrfs_path *path, struct btrfs_key *found_key,
1744 u64 *flags_ret)
a542ad1b
JS
1745{
1746 int ret;
1747 u64 flags;
261c84b6 1748 u64 size = 0;
a542ad1b 1749 u32 item_size;
73980bec 1750 const struct extent_buffer *eb;
a542ad1b
JS
1751 struct btrfs_extent_item *ei;
1752 struct btrfs_key key;
1753
261c84b6
JB
1754 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1755 key.type = BTRFS_METADATA_ITEM_KEY;
1756 else
1757 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1758 key.objectid = logical;
1759 key.offset = (u64)-1;
1760
1761 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1762 if (ret < 0)
1763 return ret;
a542ad1b 1764
850a8cdf
WS
1765 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1766 if (ret) {
1767 if (ret > 0)
1768 ret = -ENOENT;
1769 return ret;
580f0a67 1770 }
850a8cdf 1771 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 1772 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
da17066c 1773 size = fs_info->nodesize;
261c84b6
JB
1774 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1775 size = found_key->offset;
1776
580f0a67 1777 if (found_key->objectid > logical ||
261c84b6 1778 found_key->objectid + size <= logical) {
ab8d0fc4
JM
1779 btrfs_debug(fs_info,
1780 "logical %llu is not within any extent", logical);
a542ad1b 1781 return -ENOENT;
4692cf58 1782 }
a542ad1b
JS
1783
1784 eb = path->nodes[0];
1785 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1786 BUG_ON(item_size < sizeof(*ei));
1787
1788 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1789 flags = btrfs_extent_flags(eb, ei);
1790
ab8d0fc4
JM
1791 btrfs_debug(fs_info,
1792 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
c1c9ff7c
GU
1793 logical, logical - found_key->objectid, found_key->objectid,
1794 found_key->offset, flags, item_size);
69917e43
LB
1795
1796 WARN_ON(!flags_ret);
1797 if (flags_ret) {
1798 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1799 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1800 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1801 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1802 else
290342f6 1803 BUG();
69917e43
LB
1804 return 0;
1805 }
a542ad1b
JS
1806
1807 return -EIO;
1808}
1809
1810/*
1811 * helper function to iterate extent inline refs. ptr must point to a 0 value
1812 * for the first call and may be modified. it is used to track state.
1813 * if more refs exist, 0 is returned and the next call to
e0c476b1 1814 * get_extent_inline_ref must pass the modified ptr parameter to get the
a542ad1b
JS
1815 * next ref. after the last ref was processed, 1 is returned.
1816 * returns <0 on error
1817 */
e0c476b1
JM
1818static int get_extent_inline_ref(unsigned long *ptr,
1819 const struct extent_buffer *eb,
1820 const struct btrfs_key *key,
1821 const struct btrfs_extent_item *ei,
1822 u32 item_size,
1823 struct btrfs_extent_inline_ref **out_eiref,
1824 int *out_type)
a542ad1b
JS
1825{
1826 unsigned long end;
1827 u64 flags;
1828 struct btrfs_tree_block_info *info;
1829
1830 if (!*ptr) {
1831 /* first call */
1832 flags = btrfs_extent_flags(eb, ei);
1833 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
1834 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1835 /* a skinny metadata extent */
1836 *out_eiref =
1837 (struct btrfs_extent_inline_ref *)(ei + 1);
1838 } else {
1839 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1840 info = (struct btrfs_tree_block_info *)(ei + 1);
1841 *out_eiref =
1842 (struct btrfs_extent_inline_ref *)(info + 1);
1843 }
a542ad1b
JS
1844 } else {
1845 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1846 }
1847 *ptr = (unsigned long)*out_eiref;
cd857dd6 1848 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
1849 return -ENOENT;
1850 }
1851
1852 end = (unsigned long)ei + item_size;
6eda71d0 1853 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
3de28d57
LB
1854 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1855 BTRFS_REF_TYPE_ANY);
1856 if (*out_type == BTRFS_REF_TYPE_INVALID)
af431dcb 1857 return -EUCLEAN;
a542ad1b
JS
1858
1859 *ptr += btrfs_extent_inline_ref_size(*out_type);
1860 WARN_ON(*ptr > end);
1861 if (*ptr == end)
1862 return 1; /* last */
1863
1864 return 0;
1865}
1866
1867/*
1868 * reads the tree block backref for an extent. tree level and root are returned
1869 * through out_level and out_root. ptr must point to a 0 value for the first
e0c476b1 1870 * call and may be modified (see get_extent_inline_ref comment).
a542ad1b
JS
1871 * returns 0 if data was provided, 1 if there was no more data to provide or
1872 * <0 on error.
1873 */
1874int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
1875 struct btrfs_key *key, struct btrfs_extent_item *ei,
1876 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
1877{
1878 int ret;
1879 int type;
a542ad1b
JS
1880 struct btrfs_extent_inline_ref *eiref;
1881
1882 if (*ptr == (unsigned long)-1)
1883 return 1;
1884
1885 while (1) {
e0c476b1 1886 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
6eda71d0 1887 &eiref, &type);
a542ad1b
JS
1888 if (ret < 0)
1889 return ret;
1890
1891 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1892 type == BTRFS_SHARED_BLOCK_REF_KEY)
1893 break;
1894
1895 if (ret == 1)
1896 return 1;
1897 }
1898
1899 /* we can treat both ref types equally here */
a542ad1b 1900 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
1901
1902 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1903 struct btrfs_tree_block_info *info;
1904
1905 info = (struct btrfs_tree_block_info *)(ei + 1);
1906 *out_level = btrfs_tree_block_level(eb, info);
1907 } else {
1908 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1909 *out_level = (u8)key->offset;
1910 }
a542ad1b
JS
1911
1912 if (ret == 1)
1913 *ptr = (unsigned long)-1;
1914
1915 return 0;
1916}
1917
ab8d0fc4
JM
1918static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1919 struct extent_inode_elem *inode_list,
1920 u64 root, u64 extent_item_objectid,
1921 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1922{
976b1908 1923 struct extent_inode_elem *eie;
4692cf58 1924 int ret = 0;
4692cf58 1925
976b1908 1926 for (eie = inode_list; eie; eie = eie->next) {
ab8d0fc4
JM
1927 btrfs_debug(fs_info,
1928 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1929 extent_item_objectid, eie->inum,
1930 eie->offset, root);
976b1908 1931 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1932 if (ret) {
ab8d0fc4
JM
1933 btrfs_debug(fs_info,
1934 "stopping iteration for %llu due to ret=%d",
1935 extent_item_objectid, ret);
4692cf58
JS
1936 break;
1937 }
a542ad1b
JS
1938 }
1939
a542ad1b
JS
1940 return ret;
1941}
1942
1943/*
1944 * calls iterate() for every inode that references the extent identified by
4692cf58 1945 * the given parameters.
a542ad1b
JS
1946 * when the iterator function returns a non-zero value, iteration stops.
1947 */
1948int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1949 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1950 int search_commit_root,
c995ab3c
ZB
1951 iterate_extent_inodes_t *iterate, void *ctx,
1952 bool ignore_offset)
a542ad1b 1953{
a542ad1b 1954 int ret;
da61d31a 1955 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1956 struct ulist *refs = NULL;
1957 struct ulist *roots = NULL;
4692cf58
JS
1958 struct ulist_node *ref_node = NULL;
1959 struct ulist_node *root_node = NULL;
3284da7b 1960 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
cd1b413c
JS
1961 struct ulist_iterator ref_uiter;
1962 struct ulist_iterator root_uiter;
a542ad1b 1963
ab8d0fc4 1964 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
4692cf58 1965 extent_item_objectid);
a542ad1b 1966
da61d31a 1967 if (!search_commit_root) {
bfc61c36
FM
1968 trans = btrfs_attach_transaction(fs_info->extent_root);
1969 if (IS_ERR(trans)) {
1970 if (PTR_ERR(trans) != -ENOENT &&
1971 PTR_ERR(trans) != -EROFS)
1972 return PTR_ERR(trans);
1973 trans = NULL;
1974 }
1975 }
1976
1977 if (trans)
8445f61c 1978 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
bfc61c36 1979 else
9e351cc8 1980 down_read(&fs_info->commit_root_sem);
a542ad1b 1981
4692cf58 1982 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1983 tree_mod_seq_elem.seq, &refs,
c995ab3c 1984 &extent_item_pos, ignore_offset);
4692cf58
JS
1985 if (ret)
1986 goto out;
a542ad1b 1987
cd1b413c
JS
1988 ULIST_ITER_INIT(&ref_uiter);
1989 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
e0c476b1 1990 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
c995ab3c
ZB
1991 tree_mod_seq_elem.seq, &roots,
1992 ignore_offset);
4692cf58
JS
1993 if (ret)
1994 break;
cd1b413c
JS
1995 ULIST_ITER_INIT(&root_uiter);
1996 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
ab8d0fc4
JM
1997 btrfs_debug(fs_info,
1998 "root %llu references leaf %llu, data list %#llx",
1999 root_node->val, ref_node->val,
2000 ref_node->aux);
2001 ret = iterate_leaf_refs(fs_info,
2002 (struct extent_inode_elem *)
995e01b7
JS
2003 (uintptr_t)ref_node->aux,
2004 root_node->val,
2005 extent_item_objectid,
2006 iterate, ctx);
4692cf58 2007 }
976b1908 2008 ulist_free(roots);
a542ad1b
JS
2009 }
2010
976b1908 2011 free_leaf_list(refs);
4692cf58 2012out:
bfc61c36 2013 if (trans) {
8445f61c 2014 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
3a45bb20 2015 btrfs_end_transaction(trans);
9e351cc8
JB
2016 } else {
2017 up_read(&fs_info->commit_root_sem);
7a3ae2f8
JS
2018 }
2019
a542ad1b
JS
2020 return ret;
2021}
2022
2023int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2024 struct btrfs_path *path,
c995ab3c
ZB
2025 iterate_extent_inodes_t *iterate, void *ctx,
2026 bool ignore_offset)
a542ad1b
JS
2027{
2028 int ret;
4692cf58 2029 u64 extent_item_pos;
69917e43 2030 u64 flags = 0;
a542ad1b 2031 struct btrfs_key found_key;
7a3ae2f8 2032 int search_commit_root = path->search_commit_root;
a542ad1b 2033
69917e43 2034 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 2035 btrfs_release_path(path);
a542ad1b
JS
2036 if (ret < 0)
2037 return ret;
69917e43 2038 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 2039 return -EINVAL;
a542ad1b 2040
4692cf58 2041 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
2042 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2043 extent_item_pos, search_commit_root,
c995ab3c 2044 iterate, ctx, ignore_offset);
a542ad1b
JS
2045
2046 return ret;
2047}
2048
d24bec3a
MF
2049typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2050 struct extent_buffer *eb, void *ctx);
2051
2052static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2053 struct btrfs_path *path,
2054 iterate_irefs_t *iterate, void *ctx)
a542ad1b 2055{
aefc1eb1 2056 int ret = 0;
a542ad1b
JS
2057 int slot;
2058 u32 cur;
2059 u32 len;
2060 u32 name_len;
2061 u64 parent = 0;
2062 int found = 0;
2063 struct extent_buffer *eb;
2064 struct btrfs_item *item;
2065 struct btrfs_inode_ref *iref;
2066 struct btrfs_key found_key;
2067
aefc1eb1 2068 while (!ret) {
c234a24d
DS
2069 ret = btrfs_find_item(fs_root, path, inum,
2070 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2071 &found_key);
2072
a542ad1b
JS
2073 if (ret < 0)
2074 break;
2075 if (ret) {
2076 ret = found ? 0 : -ENOENT;
2077 break;
2078 }
2079 ++found;
2080
2081 parent = found_key.offset;
2082 slot = path->slots[0];
3fe81ce2
FDBM
2083 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2084 if (!eb) {
2085 ret = -ENOMEM;
2086 break;
2087 }
a542ad1b
JS
2088 btrfs_release_path(path);
2089
dd3cc16b 2090 item = btrfs_item_nr(slot);
a542ad1b
JS
2091 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2092
2093 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2094 name_len = btrfs_inode_ref_name_len(eb, iref);
2095 /* path must be released before calling iterate()! */
ab8d0fc4
JM
2096 btrfs_debug(fs_root->fs_info,
2097 "following ref at offset %u for inode %llu in tree %llu",
4fd786e6
MT
2098 cur, found_key.objectid,
2099 fs_root->root_key.objectid);
d24bec3a
MF
2100 ret = iterate(parent, name_len,
2101 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 2102 if (ret)
a542ad1b 2103 break;
a542ad1b
JS
2104 len = sizeof(*iref) + name_len;
2105 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2106 }
2107 free_extent_buffer(eb);
2108 }
2109
2110 btrfs_release_path(path);
2111
2112 return ret;
2113}
2114
d24bec3a
MF
2115static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2116 struct btrfs_path *path,
2117 iterate_irefs_t *iterate, void *ctx)
2118{
2119 int ret;
2120 int slot;
2121 u64 offset = 0;
2122 u64 parent;
2123 int found = 0;
2124 struct extent_buffer *eb;
2125 struct btrfs_inode_extref *extref;
d24bec3a
MF
2126 u32 item_size;
2127 u32 cur_offset;
2128 unsigned long ptr;
2129
2130 while (1) {
2131 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2132 &offset);
2133 if (ret < 0)
2134 break;
2135 if (ret) {
2136 ret = found ? 0 : -ENOENT;
2137 break;
2138 }
2139 ++found;
2140
2141 slot = path->slots[0];
3fe81ce2
FDBM
2142 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2143 if (!eb) {
2144 ret = -ENOMEM;
2145 break;
2146 }
d24bec3a
MF
2147 btrfs_release_path(path);
2148
2849a854
CM
2149 item_size = btrfs_item_size_nr(eb, slot);
2150 ptr = btrfs_item_ptr_offset(eb, slot);
d24bec3a
MF
2151 cur_offset = 0;
2152
2153 while (cur_offset < item_size) {
2154 u32 name_len;
2155
2156 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2157 parent = btrfs_inode_extref_parent(eb, extref);
2158 name_len = btrfs_inode_extref_name_len(eb, extref);
2159 ret = iterate(parent, name_len,
2160 (unsigned long)&extref->name, eb, ctx);
2161 if (ret)
2162 break;
2163
2849a854 2164 cur_offset += btrfs_inode_extref_name_len(eb, extref);
d24bec3a
MF
2165 cur_offset += sizeof(*extref);
2166 }
d24bec3a
MF
2167 free_extent_buffer(eb);
2168
2169 offset++;
2170 }
2171
2172 btrfs_release_path(path);
2173
2174 return ret;
2175}
2176
2177static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2178 struct btrfs_path *path, iterate_irefs_t *iterate,
2179 void *ctx)
2180{
2181 int ret;
2182 int found_refs = 0;
2183
2184 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2185 if (!ret)
2186 ++found_refs;
2187 else if (ret != -ENOENT)
2188 return ret;
2189
2190 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2191 if (ret == -ENOENT && found_refs)
2192 return 0;
2193
2194 return ret;
2195}
2196
a542ad1b
JS
2197/*
2198 * returns 0 if the path could be dumped (probably truncated)
2199 * returns <0 in case of an error
2200 */
d24bec3a
MF
2201static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2202 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
2203{
2204 struct inode_fs_paths *ipath = ctx;
2205 char *fspath;
2206 char *fspath_min;
2207 int i = ipath->fspath->elem_cnt;
2208 const int s_ptr = sizeof(char *);
2209 u32 bytes_left;
2210
2211 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2212 ipath->fspath->bytes_left - s_ptr : 0;
2213
740c3d22 2214 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
2215 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2216 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
2217 if (IS_ERR(fspath))
2218 return PTR_ERR(fspath);
2219
2220 if (fspath > fspath_min) {
745c4d8e 2221 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
2222 ++ipath->fspath->elem_cnt;
2223 ipath->fspath->bytes_left = fspath - fspath_min;
2224 } else {
2225 ++ipath->fspath->elem_missed;
2226 ipath->fspath->bytes_missing += fspath_min - fspath;
2227 ipath->fspath->bytes_left = 0;
2228 }
2229
2230 return 0;
2231}
2232
2233/*
2234 * this dumps all file system paths to the inode into the ipath struct, provided
2235 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 2236 * from ipath->fspath->val[i].
a542ad1b 2237 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 2238 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
01327610 2239 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
a542ad1b
JS
2240 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2241 * have been needed to return all paths.
2242 */
2243int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2244{
2245 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 2246 inode_to_path, ipath);
a542ad1b
JS
2247}
2248
a542ad1b
JS
2249struct btrfs_data_container *init_data_container(u32 total_bytes)
2250{
2251 struct btrfs_data_container *data;
2252 size_t alloc_bytes;
2253
2254 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
f54de068 2255 data = kvmalloc(alloc_bytes, GFP_KERNEL);
a542ad1b
JS
2256 if (!data)
2257 return ERR_PTR(-ENOMEM);
2258
2259 if (total_bytes >= sizeof(*data)) {
2260 data->bytes_left = total_bytes - sizeof(*data);
2261 data->bytes_missing = 0;
2262 } else {
2263 data->bytes_missing = sizeof(*data) - total_bytes;
2264 data->bytes_left = 0;
2265 }
2266
2267 data->elem_cnt = 0;
2268 data->elem_missed = 0;
2269
2270 return data;
2271}
2272
2273/*
2274 * allocates space to return multiple file system paths for an inode.
2275 * total_bytes to allocate are passed, note that space usable for actual path
2276 * information will be total_bytes - sizeof(struct inode_fs_paths).
2277 * the returned pointer must be freed with free_ipath() in the end.
2278 */
2279struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2280 struct btrfs_path *path)
2281{
2282 struct inode_fs_paths *ifp;
2283 struct btrfs_data_container *fspath;
2284
2285 fspath = init_data_container(total_bytes);
2286 if (IS_ERR(fspath))
afc6961f 2287 return ERR_CAST(fspath);
a542ad1b 2288
f54de068 2289 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
a542ad1b 2290 if (!ifp) {
f54de068 2291 kvfree(fspath);
a542ad1b
JS
2292 return ERR_PTR(-ENOMEM);
2293 }
2294
2295 ifp->btrfs_path = path;
2296 ifp->fspath = fspath;
2297 ifp->fs_root = fs_root;
2298
2299 return ifp;
2300}
2301
2302void free_ipath(struct inode_fs_paths *ipath)
2303{
4735fb28
JJ
2304 if (!ipath)
2305 return;
f54de068 2306 kvfree(ipath->fspath);
a542ad1b
JS
2307 kfree(ipath);
2308}