btrfs: remove roots ulist when checking data extent sharedness
[linux-block.git] / fs / btrfs / backref.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a542ad1b
JS
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
a542ad1b
JS
4 */
5
f54de068 6#include <linux/mm.h>
afce772e 7#include <linux/rbtree.h>
00142756 8#include <trace/events/btrfs.h>
a542ad1b
JS
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
8da6d581
JS
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
b916a59a 15#include "locking.h"
1b60d2ec 16#include "misc.h"
f3a84ccd 17#include "tree-mod-log.h"
a542ad1b 18
dc046b10
JB
19/* Just an arbitrary number so we can be sure this happened */
20#define BACKREF_FOUND_SHARED 6
21
976b1908
JS
22struct extent_inode_elem {
23 u64 inum;
24 u64 offset;
25 struct extent_inode_elem *next;
26};
27
73980bec
JM
28static int check_extent_in_eb(const struct btrfs_key *key,
29 const struct extent_buffer *eb,
30 const struct btrfs_file_extent_item *fi,
31 u64 extent_item_pos,
c995ab3c
ZB
32 struct extent_inode_elem **eie,
33 bool ignore_offset)
976b1908 34{
8ca15e05 35 u64 offset = 0;
976b1908
JS
36 struct extent_inode_elem *e;
37
c995ab3c
ZB
38 if (!ignore_offset &&
39 !btrfs_file_extent_compression(eb, fi) &&
8ca15e05
JB
40 !btrfs_file_extent_encryption(eb, fi) &&
41 !btrfs_file_extent_other_encoding(eb, fi)) {
42 u64 data_offset;
43 u64 data_len;
976b1908 44
8ca15e05
JB
45 data_offset = btrfs_file_extent_offset(eb, fi);
46 data_len = btrfs_file_extent_num_bytes(eb, fi);
47
48 if (extent_item_pos < data_offset ||
49 extent_item_pos >= data_offset + data_len)
50 return 1;
51 offset = extent_item_pos - data_offset;
52 }
976b1908
JS
53
54 e = kmalloc(sizeof(*e), GFP_NOFS);
55 if (!e)
56 return -ENOMEM;
57
58 e->next = *eie;
59 e->inum = key->objectid;
8ca15e05 60 e->offset = key->offset + offset;
976b1908
JS
61 *eie = e;
62
63 return 0;
64}
65
f05c4746
WS
66static void free_inode_elem_list(struct extent_inode_elem *eie)
67{
68 struct extent_inode_elem *eie_next;
69
70 for (; eie; eie = eie_next) {
71 eie_next = eie->next;
72 kfree(eie);
73 }
74}
75
73980bec
JM
76static int find_extent_in_eb(const struct extent_buffer *eb,
77 u64 wanted_disk_byte, u64 extent_item_pos,
c995ab3c
ZB
78 struct extent_inode_elem **eie,
79 bool ignore_offset)
976b1908
JS
80{
81 u64 disk_byte;
82 struct btrfs_key key;
83 struct btrfs_file_extent_item *fi;
84 int slot;
85 int nritems;
86 int extent_type;
87 int ret;
88
89 /*
90 * from the shared data ref, we only have the leaf but we need
91 * the key. thus, we must look into all items and see that we
92 * find one (some) with a reference to our extent item.
93 */
94 nritems = btrfs_header_nritems(eb);
95 for (slot = 0; slot < nritems; ++slot) {
96 btrfs_item_key_to_cpu(eb, &key, slot);
97 if (key.type != BTRFS_EXTENT_DATA_KEY)
98 continue;
99 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
100 extent_type = btrfs_file_extent_type(eb, fi);
101 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
102 continue;
103 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
104 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
105 if (disk_byte != wanted_disk_byte)
106 continue;
107
c995ab3c 108 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
976b1908
JS
109 if (ret < 0)
110 return ret;
111 }
112
113 return 0;
114}
115
86d5f994 116struct preftree {
ecf160b4 117 struct rb_root_cached root;
6c336b21 118 unsigned int count;
86d5f994
EN
119};
120
ecf160b4 121#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
86d5f994
EN
122
123struct preftrees {
124 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
125 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
126 struct preftree indirect_missing_keys;
127};
128
3ec4d323
EN
129/*
130 * Checks for a shared extent during backref search.
131 *
132 * The share_count tracks prelim_refs (direct and indirect) having a
133 * ref->count >0:
134 * - incremented when a ref->count transitions to >0
135 * - decremented when a ref->count transitions to <1
136 */
137struct share_check {
138 u64 root_objectid;
139 u64 inum;
140 int share_count;
4fc7b572 141 bool have_delayed_delete_refs;
3ec4d323
EN
142};
143
144static inline int extent_is_shared(struct share_check *sc)
145{
146 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
147}
148
b9e9a6cb
WS
149static struct kmem_cache *btrfs_prelim_ref_cache;
150
151int __init btrfs_prelim_ref_init(void)
152{
153 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
e0c476b1 154 sizeof(struct prelim_ref),
b9e9a6cb 155 0,
fba4b697 156 SLAB_MEM_SPREAD,
b9e9a6cb
WS
157 NULL);
158 if (!btrfs_prelim_ref_cache)
159 return -ENOMEM;
160 return 0;
161}
162
e67c718b 163void __cold btrfs_prelim_ref_exit(void)
b9e9a6cb 164{
5598e900 165 kmem_cache_destroy(btrfs_prelim_ref_cache);
b9e9a6cb
WS
166}
167
86d5f994
EN
168static void free_pref(struct prelim_ref *ref)
169{
170 kmem_cache_free(btrfs_prelim_ref_cache, ref);
171}
172
173/*
174 * Return 0 when both refs are for the same block (and can be merged).
175 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
176 * indicates a 'higher' block.
177 */
178static int prelim_ref_compare(struct prelim_ref *ref1,
179 struct prelim_ref *ref2)
180{
181 if (ref1->level < ref2->level)
182 return -1;
183 if (ref1->level > ref2->level)
184 return 1;
185 if (ref1->root_id < ref2->root_id)
186 return -1;
187 if (ref1->root_id > ref2->root_id)
188 return 1;
189 if (ref1->key_for_search.type < ref2->key_for_search.type)
190 return -1;
191 if (ref1->key_for_search.type > ref2->key_for_search.type)
192 return 1;
193 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
194 return -1;
195 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
196 return 1;
197 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
198 return -1;
199 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
200 return 1;
201 if (ref1->parent < ref2->parent)
202 return -1;
203 if (ref1->parent > ref2->parent)
204 return 1;
205
206 return 0;
207}
208
ccc8dc75
CIK
209static void update_share_count(struct share_check *sc, int oldcount,
210 int newcount)
3ec4d323
EN
211{
212 if ((!sc) || (oldcount == 0 && newcount < 1))
213 return;
214
215 if (oldcount > 0 && newcount < 1)
216 sc->share_count--;
217 else if (oldcount < 1 && newcount > 0)
218 sc->share_count++;
219}
220
86d5f994
EN
221/*
222 * Add @newref to the @root rbtree, merging identical refs.
223 *
3ec4d323 224 * Callers should assume that newref has been freed after calling.
86d5f994 225 */
00142756
JM
226static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
227 struct preftree *preftree,
3ec4d323
EN
228 struct prelim_ref *newref,
229 struct share_check *sc)
86d5f994 230{
ecf160b4 231 struct rb_root_cached *root;
86d5f994
EN
232 struct rb_node **p;
233 struct rb_node *parent = NULL;
234 struct prelim_ref *ref;
235 int result;
ecf160b4 236 bool leftmost = true;
86d5f994
EN
237
238 root = &preftree->root;
ecf160b4 239 p = &root->rb_root.rb_node;
86d5f994
EN
240
241 while (*p) {
242 parent = *p;
243 ref = rb_entry(parent, struct prelim_ref, rbnode);
244 result = prelim_ref_compare(ref, newref);
245 if (result < 0) {
246 p = &(*p)->rb_left;
247 } else if (result > 0) {
248 p = &(*p)->rb_right;
ecf160b4 249 leftmost = false;
86d5f994
EN
250 } else {
251 /* Identical refs, merge them and free @newref */
252 struct extent_inode_elem *eie = ref->inode_list;
253
254 while (eie && eie->next)
255 eie = eie->next;
256
257 if (!eie)
258 ref->inode_list = newref->inode_list;
259 else
260 eie->next = newref->inode_list;
00142756
JM
261 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
262 preftree->count);
3ec4d323
EN
263 /*
264 * A delayed ref can have newref->count < 0.
265 * The ref->count is updated to follow any
266 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
267 */
268 update_share_count(sc, ref->count,
269 ref->count + newref->count);
86d5f994
EN
270 ref->count += newref->count;
271 free_pref(newref);
272 return;
273 }
274 }
275
3ec4d323 276 update_share_count(sc, 0, newref->count);
6c336b21 277 preftree->count++;
00142756 278 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
86d5f994 279 rb_link_node(&newref->rbnode, parent, p);
ecf160b4 280 rb_insert_color_cached(&newref->rbnode, root, leftmost);
86d5f994
EN
281}
282
283/*
284 * Release the entire tree. We don't care about internal consistency so
285 * just free everything and then reset the tree root.
286 */
287static void prelim_release(struct preftree *preftree)
288{
289 struct prelim_ref *ref, *next_ref;
290
ecf160b4 291 rbtree_postorder_for_each_entry_safe(ref, next_ref,
92876eec
FM
292 &preftree->root.rb_root, rbnode) {
293 free_inode_elem_list(ref->inode_list);
86d5f994 294 free_pref(ref);
92876eec 295 }
86d5f994 296
ecf160b4 297 preftree->root = RB_ROOT_CACHED;
6c336b21 298 preftree->count = 0;
86d5f994
EN
299}
300
d5c88b73
JS
301/*
302 * the rules for all callers of this function are:
303 * - obtaining the parent is the goal
304 * - if you add a key, you must know that it is a correct key
305 * - if you cannot add the parent or a correct key, then we will look into the
306 * block later to set a correct key
307 *
308 * delayed refs
309 * ============
310 * backref type | shared | indirect | shared | indirect
311 * information | tree | tree | data | data
312 * --------------------+--------+----------+--------+----------
313 * parent logical | y | - | - | -
314 * key to resolve | - | y | y | y
315 * tree block logical | - | - | - | -
316 * root for resolving | y | y | y | y
317 *
318 * - column 1: we've the parent -> done
319 * - column 2, 3, 4: we use the key to find the parent
320 *
321 * on disk refs (inline or keyed)
322 * ==============================
323 * backref type | shared | indirect | shared | indirect
324 * information | tree | tree | data | data
325 * --------------------+--------+----------+--------+----------
326 * parent logical | y | - | y | -
327 * key to resolve | - | - | - | y
328 * tree block logical | y | y | y | y
329 * root for resolving | - | y | y | y
330 *
331 * - column 1, 3: we've the parent -> done
332 * - column 2: we take the first key from the block to find the parent
e0c476b1 333 * (see add_missing_keys)
d5c88b73
JS
334 * - column 4: we use the key to find the parent
335 *
336 * additional information that's available but not required to find the parent
337 * block might help in merging entries to gain some speed.
338 */
00142756
JM
339static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
340 struct preftree *preftree, u64 root_id,
e0c476b1 341 const struct btrfs_key *key, int level, u64 parent,
3ec4d323
EN
342 u64 wanted_disk_byte, int count,
343 struct share_check *sc, gfp_t gfp_mask)
8da6d581 344{
e0c476b1 345 struct prelim_ref *ref;
8da6d581 346
48ec4736
LB
347 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
348 return 0;
349
b9e9a6cb 350 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
351 if (!ref)
352 return -ENOMEM;
353
354 ref->root_id = root_id;
7ac8b88e 355 if (key)
d5c88b73 356 ref->key_for_search = *key;
7ac8b88e 357 else
d5c88b73 358 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 359
3301958b 360 ref->inode_list = NULL;
8da6d581
JS
361 ref->level = level;
362 ref->count = count;
363 ref->parent = parent;
364 ref->wanted_disk_byte = wanted_disk_byte;
3ec4d323
EN
365 prelim_ref_insert(fs_info, preftree, ref, sc);
366 return extent_is_shared(sc);
8da6d581
JS
367}
368
86d5f994 369/* direct refs use root == 0, key == NULL */
00142756
JM
370static int add_direct_ref(const struct btrfs_fs_info *fs_info,
371 struct preftrees *preftrees, int level, u64 parent,
3ec4d323
EN
372 u64 wanted_disk_byte, int count,
373 struct share_check *sc, gfp_t gfp_mask)
86d5f994 374{
00142756 375 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
3ec4d323 376 parent, wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
377}
378
379/* indirect refs use parent == 0 */
00142756
JM
380static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
381 struct preftrees *preftrees, u64 root_id,
86d5f994 382 const struct btrfs_key *key, int level,
3ec4d323
EN
383 u64 wanted_disk_byte, int count,
384 struct share_check *sc, gfp_t gfp_mask)
86d5f994
EN
385{
386 struct preftree *tree = &preftrees->indirect;
387
388 if (!key)
389 tree = &preftrees->indirect_missing_keys;
00142756 390 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
3ec4d323 391 wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
392}
393
ed58f2e6 394static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
395{
396 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
397 struct rb_node *parent = NULL;
398 struct prelim_ref *ref = NULL;
9c6c723f 399 struct prelim_ref target = {};
ed58f2e6 400 int result;
401
402 target.parent = bytenr;
403
404 while (*p) {
405 parent = *p;
406 ref = rb_entry(parent, struct prelim_ref, rbnode);
407 result = prelim_ref_compare(ref, &target);
408
409 if (result < 0)
410 p = &(*p)->rb_left;
411 else if (result > 0)
412 p = &(*p)->rb_right;
413 else
414 return 1;
415 }
416 return 0;
417}
418
8da6d581 419static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
ed58f2e6 420 struct ulist *parents,
421 struct preftrees *preftrees, struct prelim_ref *ref,
44853868 422 int level, u64 time_seq, const u64 *extent_item_pos,
b25b0b87 423 bool ignore_offset)
8da6d581 424{
69bca40d
AB
425 int ret = 0;
426 int slot;
427 struct extent_buffer *eb;
428 struct btrfs_key key;
7ef81ac8 429 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 430 struct btrfs_file_extent_item *fi;
ed8c4913 431 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 432 u64 disk_byte;
7ef81ac8
JB
433 u64 wanted_disk_byte = ref->wanted_disk_byte;
434 u64 count = 0;
7ac8b88e 435 u64 data_offset;
8da6d581 436
69bca40d
AB
437 if (level != 0) {
438 eb = path->nodes[level];
439 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
440 if (ret < 0)
441 return ret;
8da6d581 442 return 0;
69bca40d 443 }
8da6d581
JS
444
445 /*
ed58f2e6 446 * 1. We normally enter this function with the path already pointing to
447 * the first item to check. But sometimes, we may enter it with
448 * slot == nritems.
449 * 2. We are searching for normal backref but bytenr of this leaf
450 * matches shared data backref
cfc0eed0 451 * 3. The leaf owner is not equal to the root we are searching
452 *
ed58f2e6 453 * For these cases, go to the next leaf before we continue.
8da6d581 454 */
ed58f2e6 455 eb = path->nodes[0];
456 if (path->slots[0] >= btrfs_header_nritems(eb) ||
cfc0eed0 457 is_shared_data_backref(preftrees, eb->start) ||
458 ref->root_id != btrfs_header_owner(eb)) {
f3a84ccd 459 if (time_seq == BTRFS_SEQ_LAST)
21633fc6
QW
460 ret = btrfs_next_leaf(root, path);
461 else
462 ret = btrfs_next_old_leaf(root, path, time_seq);
463 }
8da6d581 464
b25b0b87 465 while (!ret && count < ref->count) {
8da6d581 466 eb = path->nodes[0];
69bca40d
AB
467 slot = path->slots[0];
468
469 btrfs_item_key_to_cpu(eb, &key, slot);
470
471 if (key.objectid != key_for_search->objectid ||
472 key.type != BTRFS_EXTENT_DATA_KEY)
473 break;
474
ed58f2e6 475 /*
476 * We are searching for normal backref but bytenr of this leaf
cfc0eed0 477 * matches shared data backref, OR
478 * the leaf owner is not equal to the root we are searching for
ed58f2e6 479 */
cfc0eed0 480 if (slot == 0 &&
481 (is_shared_data_backref(preftrees, eb->start) ||
482 ref->root_id != btrfs_header_owner(eb))) {
f3a84ccd 483 if (time_seq == BTRFS_SEQ_LAST)
ed58f2e6 484 ret = btrfs_next_leaf(root, path);
485 else
486 ret = btrfs_next_old_leaf(root, path, time_seq);
487 continue;
488 }
69bca40d
AB
489 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
490 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
7ac8b88e 491 data_offset = btrfs_file_extent_offset(eb, fi);
69bca40d
AB
492
493 if (disk_byte == wanted_disk_byte) {
494 eie = NULL;
ed8c4913 495 old = NULL;
7ac8b88e 496 if (ref->key_for_search.offset == key.offset - data_offset)
497 count++;
498 else
499 goto next;
69bca40d
AB
500 if (extent_item_pos) {
501 ret = check_extent_in_eb(&key, eb, fi,
502 *extent_item_pos,
c995ab3c 503 &eie, ignore_offset);
69bca40d
AB
504 if (ret < 0)
505 break;
506 }
ed8c4913
JB
507 if (ret > 0)
508 goto next;
4eb1f66d
TI
509 ret = ulist_add_merge_ptr(parents, eb->start,
510 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
511 if (ret < 0)
512 break;
513 if (!ret && extent_item_pos) {
514 while (old->next)
515 old = old->next;
516 old->next = eie;
69bca40d 517 }
f05c4746 518 eie = NULL;
8da6d581 519 }
ed8c4913 520next:
f3a84ccd 521 if (time_seq == BTRFS_SEQ_LAST)
21633fc6
QW
522 ret = btrfs_next_item(root, path);
523 else
524 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
525 }
526
69bca40d
AB
527 if (ret > 0)
528 ret = 0;
f05c4746
WS
529 else if (ret < 0)
530 free_inode_elem_list(eie);
69bca40d 531 return ret;
8da6d581
JS
532}
533
534/*
535 * resolve an indirect backref in the form (root_id, key, level)
536 * to a logical address
537 */
e0c476b1
JM
538static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
539 struct btrfs_path *path, u64 time_seq,
ed58f2e6 540 struct preftrees *preftrees,
e0c476b1 541 struct prelim_ref *ref, struct ulist *parents,
b25b0b87 542 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 543{
8da6d581 544 struct btrfs_root *root;
8da6d581
JS
545 struct extent_buffer *eb;
546 int ret = 0;
547 int root_level;
548 int level = ref->level;
7ac8b88e 549 struct btrfs_key search_key = ref->key_for_search;
8da6d581 550
49d11bea
JB
551 /*
552 * If we're search_commit_root we could possibly be holding locks on
553 * other tree nodes. This happens when qgroups does backref walks when
554 * adding new delayed refs. To deal with this we need to look in cache
555 * for the root, and if we don't find it then we need to search the
556 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
557 * here.
558 */
559 if (path->search_commit_root)
560 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
561 else
562 root = btrfs_get_fs_root(fs_info, ref->root_id, false);
8da6d581
JS
563 if (IS_ERR(root)) {
564 ret = PTR_ERR(root);
9326f76f
JB
565 goto out_free;
566 }
567
39dba873
JB
568 if (!path->search_commit_root &&
569 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
570 ret = -ENOENT;
571 goto out;
572 }
573
f5ee5c9a 574 if (btrfs_is_testing(fs_info)) {
d9ee522b
JB
575 ret = -ENOENT;
576 goto out;
577 }
578
9e351cc8
JB
579 if (path->search_commit_root)
580 root_level = btrfs_header_level(root->commit_root);
f3a84ccd 581 else if (time_seq == BTRFS_SEQ_LAST)
21633fc6 582 root_level = btrfs_header_level(root->node);
9e351cc8
JB
583 else
584 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 585
c75e8394 586 if (root_level + 1 == level)
8da6d581
JS
587 goto out;
588
7ac8b88e 589 /*
590 * We can often find data backrefs with an offset that is too large
591 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
592 * subtracting a file's offset with the data offset of its
593 * corresponding extent data item. This can happen for example in the
594 * clone ioctl.
595 *
596 * So if we detect such case we set the search key's offset to zero to
597 * make sure we will find the matching file extent item at
598 * add_all_parents(), otherwise we will miss it because the offset
599 * taken form the backref is much larger then the offset of the file
600 * extent item. This can make us scan a very large number of file
601 * extent items, but at least it will not make us miss any.
602 *
603 * This is an ugly workaround for a behaviour that should have never
604 * existed, but it does and a fix for the clone ioctl would touch a lot
605 * of places, cause backwards incompatibility and would not fix the
606 * problem for extents cloned with older kernels.
607 */
608 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
609 search_key.offset >= LLONG_MAX)
610 search_key.offset = 0;
8da6d581 611 path->lowest_level = level;
f3a84ccd 612 if (time_seq == BTRFS_SEQ_LAST)
7ac8b88e 613 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
21633fc6 614 else
7ac8b88e 615 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
538f72cd 616
ab8d0fc4
JM
617 btrfs_debug(fs_info,
618 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
c1c9ff7c
GU
619 ref->root_id, level, ref->count, ret,
620 ref->key_for_search.objectid, ref->key_for_search.type,
621 ref->key_for_search.offset);
8da6d581
JS
622 if (ret < 0)
623 goto out;
624
625 eb = path->nodes[level];
9345457f 626 while (!eb) {
fae7f21c 627 if (WARN_ON(!level)) {
9345457f
JS
628 ret = 1;
629 goto out;
630 }
631 level--;
632 eb = path->nodes[level];
8da6d581
JS
633 }
634
ed58f2e6 635 ret = add_all_parents(root, path, parents, preftrees, ref, level,
b25b0b87 636 time_seq, extent_item_pos, ignore_offset);
8da6d581 637out:
00246528 638 btrfs_put_root(root);
9326f76f 639out_free:
da61d31a
JB
640 path->lowest_level = 0;
641 btrfs_release_path(path);
8da6d581
JS
642 return ret;
643}
644
4dae077a
JM
645static struct extent_inode_elem *
646unode_aux_to_inode_list(struct ulist_node *node)
647{
648 if (!node)
649 return NULL;
650 return (struct extent_inode_elem *)(uintptr_t)node->aux;
651}
652
5614dc3a
FM
653static void free_leaf_list(struct ulist *ulist)
654{
655 struct ulist_node *node;
656 struct ulist_iterator uiter;
657
658 ULIST_ITER_INIT(&uiter);
659 while ((node = ulist_next(ulist, &uiter)))
660 free_inode_elem_list(unode_aux_to_inode_list(node));
661
662 ulist_free(ulist);
663}
664
8da6d581 665/*
52042d8e 666 * We maintain three separate rbtrees: one for direct refs, one for
86d5f994
EN
667 * indirect refs which have a key, and one for indirect refs which do not
668 * have a key. Each tree does merge on insertion.
669 *
670 * Once all of the references are located, we iterate over the tree of
671 * indirect refs with missing keys. An appropriate key is located and
672 * the ref is moved onto the tree for indirect refs. After all missing
673 * keys are thus located, we iterate over the indirect ref tree, resolve
674 * each reference, and then insert the resolved reference onto the
675 * direct tree (merging there too).
676 *
677 * New backrefs (i.e., for parent nodes) are added to the appropriate
678 * rbtree as they are encountered. The new backrefs are subsequently
679 * resolved as above.
8da6d581 680 */
e0c476b1
JM
681static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
682 struct btrfs_path *path, u64 time_seq,
86d5f994 683 struct preftrees *preftrees,
b25b0b87 684 const u64 *extent_item_pos,
c995ab3c 685 struct share_check *sc, bool ignore_offset)
8da6d581
JS
686{
687 int err;
688 int ret = 0;
8da6d581
JS
689 struct ulist *parents;
690 struct ulist_node *node;
cd1b413c 691 struct ulist_iterator uiter;
86d5f994 692 struct rb_node *rnode;
8da6d581
JS
693
694 parents = ulist_alloc(GFP_NOFS);
695 if (!parents)
696 return -ENOMEM;
697
698 /*
86d5f994
EN
699 * We could trade memory usage for performance here by iterating
700 * the tree, allocating new refs for each insertion, and then
701 * freeing the entire indirect tree when we're done. In some test
702 * cases, the tree can grow quite large (~200k objects).
8da6d581 703 */
ecf160b4 704 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
86d5f994
EN
705 struct prelim_ref *ref;
706
707 ref = rb_entry(rnode, struct prelim_ref, rbnode);
708 if (WARN(ref->parent,
709 "BUG: direct ref found in indirect tree")) {
710 ret = -EINVAL;
711 goto out;
712 }
713
ecf160b4 714 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
6c336b21 715 preftrees->indirect.count--;
86d5f994
EN
716
717 if (ref->count == 0) {
718 free_pref(ref);
8da6d581 719 continue;
86d5f994
EN
720 }
721
c9024219 722 if (sc && ref->root_id != sc->root_objectid) {
86d5f994 723 free_pref(ref);
dc046b10
JB
724 ret = BACKREF_FOUND_SHARED;
725 goto out;
726 }
ed58f2e6 727 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
728 ref, parents, extent_item_pos,
b25b0b87 729 ignore_offset);
95def2ed
WS
730 /*
731 * we can only tolerate ENOENT,otherwise,we should catch error
732 * and return directly.
733 */
734 if (err == -ENOENT) {
3ec4d323
EN
735 prelim_ref_insert(fs_info, &preftrees->direct, ref,
736 NULL);
8da6d581 737 continue;
95def2ed 738 } else if (err) {
86d5f994 739 free_pref(ref);
95def2ed
WS
740 ret = err;
741 goto out;
742 }
8da6d581
JS
743
744 /* we put the first parent into the ref at hand */
cd1b413c
JS
745 ULIST_ITER_INIT(&uiter);
746 node = ulist_next(parents, &uiter);
8da6d581 747 ref->parent = node ? node->val : 0;
4dae077a 748 ref->inode_list = unode_aux_to_inode_list(node);
8da6d581 749
86d5f994 750 /* Add a prelim_ref(s) for any other parent(s). */
cd1b413c 751 while ((node = ulist_next(parents, &uiter))) {
86d5f994
EN
752 struct prelim_ref *new_ref;
753
b9e9a6cb
WS
754 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
755 GFP_NOFS);
8da6d581 756 if (!new_ref) {
86d5f994 757 free_pref(ref);
8da6d581 758 ret = -ENOMEM;
e36902d4 759 goto out;
8da6d581
JS
760 }
761 memcpy(new_ref, ref, sizeof(*ref));
762 new_ref->parent = node->val;
4dae077a 763 new_ref->inode_list = unode_aux_to_inode_list(node);
3ec4d323
EN
764 prelim_ref_insert(fs_info, &preftrees->direct,
765 new_ref, NULL);
8da6d581 766 }
86d5f994 767
3ec4d323 768 /*
52042d8e 769 * Now it's a direct ref, put it in the direct tree. We must
3ec4d323
EN
770 * do this last because the ref could be merged/freed here.
771 */
772 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
86d5f994 773
8da6d581 774 ulist_reinit(parents);
9dd14fd6 775 cond_resched();
8da6d581 776 }
e36902d4 777out:
5614dc3a
FM
778 /*
779 * We may have inode lists attached to refs in the parents ulist, so we
780 * must free them before freeing the ulist and its refs.
781 */
782 free_leaf_list(parents);
8da6d581
JS
783 return ret;
784}
785
d5c88b73
JS
786/*
787 * read tree blocks and add keys where required.
788 */
e0c476b1 789static int add_missing_keys(struct btrfs_fs_info *fs_info,
38e3eebf 790 struct preftrees *preftrees, bool lock)
d5c88b73 791{
e0c476b1 792 struct prelim_ref *ref;
d5c88b73 793 struct extent_buffer *eb;
86d5f994
EN
794 struct preftree *tree = &preftrees->indirect_missing_keys;
795 struct rb_node *node;
d5c88b73 796
ecf160b4 797 while ((node = rb_first_cached(&tree->root))) {
86d5f994 798 ref = rb_entry(node, struct prelim_ref, rbnode);
ecf160b4 799 rb_erase_cached(node, &tree->root);
86d5f994
EN
800
801 BUG_ON(ref->parent); /* should not be a direct ref */
802 BUG_ON(ref->key_for_search.type);
d5c88b73 803 BUG_ON(!ref->wanted_disk_byte);
86d5f994 804
1b7ec85e
JB
805 eb = read_tree_block(fs_info, ref->wanted_disk_byte,
806 ref->root_id, 0, ref->level - 1, NULL);
64c043de 807 if (IS_ERR(eb)) {
86d5f994 808 free_pref(ref);
64c043de 809 return PTR_ERR(eb);
4eb150d6
QW
810 }
811 if (!extent_buffer_uptodate(eb)) {
86d5f994 812 free_pref(ref);
416bc658
JB
813 free_extent_buffer(eb);
814 return -EIO;
815 }
4eb150d6 816
38e3eebf
JB
817 if (lock)
818 btrfs_tree_read_lock(eb);
d5c88b73
JS
819 if (btrfs_header_level(eb) == 0)
820 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
821 else
822 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
38e3eebf
JB
823 if (lock)
824 btrfs_tree_read_unlock(eb);
d5c88b73 825 free_extent_buffer(eb);
3ec4d323 826 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
9dd14fd6 827 cond_resched();
d5c88b73
JS
828 }
829 return 0;
830}
831
8da6d581
JS
832/*
833 * add all currently queued delayed refs from this head whose seq nr is
834 * smaller or equal that seq to the list
835 */
00142756
JM
836static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
837 struct btrfs_delayed_ref_head *head, u64 seq,
b25b0b87 838 struct preftrees *preftrees, struct share_check *sc)
8da6d581 839{
c6fc2454 840 struct btrfs_delayed_ref_node *node;
d5c88b73 841 struct btrfs_key key;
0e0adbcf 842 struct rb_node *n;
01747e92 843 int count;
b1375d64 844 int ret = 0;
8da6d581 845
d7df2c79 846 spin_lock(&head->lock);
e3d03965 847 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
0e0adbcf
JB
848 node = rb_entry(n, struct btrfs_delayed_ref_node,
849 ref_node);
8da6d581
JS
850 if (node->seq > seq)
851 continue;
852
853 switch (node->action) {
854 case BTRFS_ADD_DELAYED_EXTENT:
855 case BTRFS_UPDATE_DELAYED_HEAD:
856 WARN_ON(1);
857 continue;
858 case BTRFS_ADD_DELAYED_REF:
01747e92 859 count = node->ref_mod;
8da6d581
JS
860 break;
861 case BTRFS_DROP_DELAYED_REF:
01747e92 862 count = node->ref_mod * -1;
8da6d581
JS
863 break;
864 default:
290342f6 865 BUG();
8da6d581
JS
866 }
867 switch (node->type) {
868 case BTRFS_TREE_BLOCK_REF_KEY: {
86d5f994 869 /* NORMAL INDIRECT METADATA backref */
8da6d581 870 struct btrfs_delayed_tree_ref *ref;
943553ef
FM
871 struct btrfs_key *key_ptr = NULL;
872
873 if (head->extent_op && head->extent_op->update_key) {
874 btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
875 key_ptr = &key;
876 }
8da6d581
JS
877
878 ref = btrfs_delayed_node_to_tree_ref(node);
00142756 879 ret = add_indirect_ref(fs_info, preftrees, ref->root,
943553ef 880 key_ptr, ref->level + 1,
01747e92
EN
881 node->bytenr, count, sc,
882 GFP_ATOMIC);
8da6d581
JS
883 break;
884 }
885 case BTRFS_SHARED_BLOCK_REF_KEY: {
86d5f994 886 /* SHARED DIRECT METADATA backref */
8da6d581
JS
887 struct btrfs_delayed_tree_ref *ref;
888
889 ref = btrfs_delayed_node_to_tree_ref(node);
86d5f994 890
01747e92
EN
891 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
892 ref->parent, node->bytenr, count,
3ec4d323 893 sc, GFP_ATOMIC);
8da6d581
JS
894 break;
895 }
896 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 897 /* NORMAL INDIRECT DATA backref */
8da6d581 898 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
899 ref = btrfs_delayed_node_to_data_ref(node);
900
901 key.objectid = ref->objectid;
902 key.type = BTRFS_EXTENT_DATA_KEY;
903 key.offset = ref->offset;
dc046b10
JB
904
905 /*
4fc7b572
FM
906 * If we have a share check context and a reference for
907 * another inode, we can't exit immediately. This is
908 * because even if this is a BTRFS_ADD_DELAYED_REF
909 * reference we may find next a BTRFS_DROP_DELAYED_REF
910 * which cancels out this ADD reference.
911 *
912 * If this is a DROP reference and there was no previous
913 * ADD reference, then we need to signal that when we
914 * process references from the extent tree (through
915 * add_inline_refs() and add_keyed_refs()), we should
916 * not exit early if we find a reference for another
917 * inode, because one of the delayed DROP references
918 * may cancel that reference in the extent tree.
dc046b10 919 */
4fc7b572
FM
920 if (sc && count < 0)
921 sc->have_delayed_delete_refs = true;
dc046b10 922
00142756 923 ret = add_indirect_ref(fs_info, preftrees, ref->root,
01747e92
EN
924 &key, 0, node->bytenr, count, sc,
925 GFP_ATOMIC);
8da6d581
JS
926 break;
927 }
928 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 929 /* SHARED DIRECT FULL backref */
8da6d581 930 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
931
932 ref = btrfs_delayed_node_to_data_ref(node);
86d5f994 933
01747e92
EN
934 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
935 node->bytenr, count, sc,
936 GFP_ATOMIC);
8da6d581
JS
937 break;
938 }
939 default:
940 WARN_ON(1);
941 }
3ec4d323
EN
942 /*
943 * We must ignore BACKREF_FOUND_SHARED until all delayed
944 * refs have been checked.
945 */
946 if (ret && (ret != BACKREF_FOUND_SHARED))
d7df2c79 947 break;
8da6d581 948 }
3ec4d323
EN
949 if (!ret)
950 ret = extent_is_shared(sc);
4fc7b572 951
d7df2c79
JB
952 spin_unlock(&head->lock);
953 return ret;
8da6d581
JS
954}
955
956/*
957 * add all inline backrefs for bytenr to the list
3ec4d323
EN
958 *
959 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 960 */
00142756
JM
961static int add_inline_refs(const struct btrfs_fs_info *fs_info,
962 struct btrfs_path *path, u64 bytenr,
86d5f994 963 int *info_level, struct preftrees *preftrees,
b25b0b87 964 struct share_check *sc)
8da6d581 965{
b1375d64 966 int ret = 0;
8da6d581
JS
967 int slot;
968 struct extent_buffer *leaf;
969 struct btrfs_key key;
261c84b6 970 struct btrfs_key found_key;
8da6d581
JS
971 unsigned long ptr;
972 unsigned long end;
973 struct btrfs_extent_item *ei;
974 u64 flags;
975 u64 item_size;
976
977 /*
978 * enumerate all inline refs
979 */
980 leaf = path->nodes[0];
dadcaf78 981 slot = path->slots[0];
8da6d581 982
3212fa14 983 item_size = btrfs_item_size(leaf, slot);
8da6d581
JS
984 BUG_ON(item_size < sizeof(*ei));
985
986 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
987 flags = btrfs_extent_flags(leaf, ei);
261c84b6 988 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
989
990 ptr = (unsigned long)(ei + 1);
991 end = (unsigned long)ei + item_size;
992
261c84b6
JB
993 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
994 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 995 struct btrfs_tree_block_info *info;
8da6d581
JS
996
997 info = (struct btrfs_tree_block_info *)ptr;
998 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
999 ptr += sizeof(struct btrfs_tree_block_info);
1000 BUG_ON(ptr > end);
261c84b6
JB
1001 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1002 *info_level = found_key.offset;
8da6d581
JS
1003 } else {
1004 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1005 }
1006
1007 while (ptr < end) {
1008 struct btrfs_extent_inline_ref *iref;
1009 u64 offset;
1010 int type;
1011
1012 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1013 type = btrfs_get_extent_inline_ref_type(leaf, iref,
1014 BTRFS_REF_TYPE_ANY);
1015 if (type == BTRFS_REF_TYPE_INVALID)
af431dcb 1016 return -EUCLEAN;
3de28d57 1017
8da6d581
JS
1018 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1019
1020 switch (type) {
1021 case BTRFS_SHARED_BLOCK_REF_KEY:
00142756
JM
1022 ret = add_direct_ref(fs_info, preftrees,
1023 *info_level + 1, offset,
3ec4d323 1024 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1025 break;
1026 case BTRFS_SHARED_DATA_REF_KEY: {
1027 struct btrfs_shared_data_ref *sdref;
1028 int count;
1029
1030 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1031 count = btrfs_shared_data_ref_count(leaf, sdref);
86d5f994 1032
00142756 1033 ret = add_direct_ref(fs_info, preftrees, 0, offset,
3ec4d323 1034 bytenr, count, sc, GFP_NOFS);
8da6d581
JS
1035 break;
1036 }
1037 case BTRFS_TREE_BLOCK_REF_KEY:
00142756
JM
1038 ret = add_indirect_ref(fs_info, preftrees, offset,
1039 NULL, *info_level + 1,
3ec4d323 1040 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1041 break;
1042 case BTRFS_EXTENT_DATA_REF_KEY: {
1043 struct btrfs_extent_data_ref *dref;
1044 int count;
1045 u64 root;
1046
1047 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1048 count = btrfs_extent_data_ref_count(leaf, dref);
1049 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1050 dref);
1051 key.type = BTRFS_EXTENT_DATA_KEY;
1052 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1053
a0a5472a 1054 if (sc && key.objectid != sc->inum &&
4fc7b572 1055 !sc->have_delayed_delete_refs) {
dc046b10
JB
1056 ret = BACKREF_FOUND_SHARED;
1057 break;
1058 }
1059
8da6d581 1060 root = btrfs_extent_data_ref_root(leaf, dref);
86d5f994 1061
00142756
JM
1062 ret = add_indirect_ref(fs_info, preftrees, root,
1063 &key, 0, bytenr, count,
3ec4d323 1064 sc, GFP_NOFS);
4fc7b572 1065
8da6d581
JS
1066 break;
1067 }
1068 default:
1069 WARN_ON(1);
1070 }
1149ab6b
WS
1071 if (ret)
1072 return ret;
8da6d581
JS
1073 ptr += btrfs_extent_inline_ref_size(type);
1074 }
1075
1076 return 0;
1077}
1078
1079/*
1080 * add all non-inline backrefs for bytenr to the list
3ec4d323
EN
1081 *
1082 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 1083 */
98cc4222 1084static int add_keyed_refs(struct btrfs_root *extent_root,
e0c476b1 1085 struct btrfs_path *path, u64 bytenr,
86d5f994 1086 int info_level, struct preftrees *preftrees,
3ec4d323 1087 struct share_check *sc)
8da6d581 1088{
98cc4222 1089 struct btrfs_fs_info *fs_info = extent_root->fs_info;
8da6d581
JS
1090 int ret;
1091 int slot;
1092 struct extent_buffer *leaf;
1093 struct btrfs_key key;
1094
1095 while (1) {
1096 ret = btrfs_next_item(extent_root, path);
1097 if (ret < 0)
1098 break;
1099 if (ret) {
1100 ret = 0;
1101 break;
1102 }
1103
1104 slot = path->slots[0];
1105 leaf = path->nodes[0];
1106 btrfs_item_key_to_cpu(leaf, &key, slot);
1107
1108 if (key.objectid != bytenr)
1109 break;
1110 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1111 continue;
1112 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1113 break;
1114
1115 switch (key.type) {
1116 case BTRFS_SHARED_BLOCK_REF_KEY:
86d5f994 1117 /* SHARED DIRECT METADATA backref */
00142756
JM
1118 ret = add_direct_ref(fs_info, preftrees,
1119 info_level + 1, key.offset,
3ec4d323 1120 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1121 break;
1122 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 1123 /* SHARED DIRECT FULL backref */
8da6d581
JS
1124 struct btrfs_shared_data_ref *sdref;
1125 int count;
1126
1127 sdref = btrfs_item_ptr(leaf, slot,
1128 struct btrfs_shared_data_ref);
1129 count = btrfs_shared_data_ref_count(leaf, sdref);
00142756
JM
1130 ret = add_direct_ref(fs_info, preftrees, 0,
1131 key.offset, bytenr, count,
3ec4d323 1132 sc, GFP_NOFS);
8da6d581
JS
1133 break;
1134 }
1135 case BTRFS_TREE_BLOCK_REF_KEY:
86d5f994 1136 /* NORMAL INDIRECT METADATA backref */
00142756
JM
1137 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1138 NULL, info_level + 1, bytenr,
3ec4d323 1139 1, NULL, GFP_NOFS);
8da6d581
JS
1140 break;
1141 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 1142 /* NORMAL INDIRECT DATA backref */
8da6d581
JS
1143 struct btrfs_extent_data_ref *dref;
1144 int count;
1145 u64 root;
1146
1147 dref = btrfs_item_ptr(leaf, slot,
1148 struct btrfs_extent_data_ref);
1149 count = btrfs_extent_data_ref_count(leaf, dref);
1150 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1151 dref);
1152 key.type = BTRFS_EXTENT_DATA_KEY;
1153 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1154
a0a5472a 1155 if (sc && key.objectid != sc->inum &&
4fc7b572 1156 !sc->have_delayed_delete_refs) {
dc046b10
JB
1157 ret = BACKREF_FOUND_SHARED;
1158 break;
1159 }
1160
8da6d581 1161 root = btrfs_extent_data_ref_root(leaf, dref);
00142756
JM
1162 ret = add_indirect_ref(fs_info, preftrees, root,
1163 &key, 0, bytenr, count,
3ec4d323 1164 sc, GFP_NOFS);
8da6d581
JS
1165 break;
1166 }
1167 default:
1168 WARN_ON(1);
1169 }
1149ab6b
WS
1170 if (ret)
1171 return ret;
1172
8da6d581
JS
1173 }
1174
1175 return ret;
1176}
1177
1178/*
1179 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1180 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1181 * indirect refs to their parent bytenr.
1182 * When roots are found, they're added to the roots list
1183 *
f3a84ccd
FM
1184 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1185 * behave much like trans == NULL case, the difference only lies in it will not
21633fc6
QW
1186 * commit root.
1187 * The special case is for qgroup to search roots in commit_transaction().
1188 *
3ec4d323
EN
1189 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1190 * shared extent is detected.
1191 *
1192 * Otherwise this returns 0 for success and <0 for an error.
1193 *
c995ab3c
ZB
1194 * If ignore_offset is set to false, only extent refs whose offsets match
1195 * extent_item_pos are returned. If true, every extent ref is returned
1196 * and extent_item_pos is ignored.
1197 *
8da6d581
JS
1198 * FIXME some caching might speed things up
1199 */
1200static int find_parent_nodes(struct btrfs_trans_handle *trans,
1201 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1202 u64 time_seq, struct ulist *refs,
dc046b10 1203 struct ulist *roots, const u64 *extent_item_pos,
c995ab3c 1204 struct share_check *sc, bool ignore_offset)
8da6d581 1205{
29cbcf40 1206 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
8da6d581
JS
1207 struct btrfs_key key;
1208 struct btrfs_path *path;
8da6d581 1209 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 1210 struct btrfs_delayed_ref_head *head;
8da6d581
JS
1211 int info_level = 0;
1212 int ret;
e0c476b1 1213 struct prelim_ref *ref;
86d5f994 1214 struct rb_node *node;
f05c4746 1215 struct extent_inode_elem *eie = NULL;
86d5f994
EN
1216 struct preftrees preftrees = {
1217 .direct = PREFTREE_INIT,
1218 .indirect = PREFTREE_INIT,
1219 .indirect_missing_keys = PREFTREE_INIT
1220 };
8da6d581
JS
1221
1222 key.objectid = bytenr;
8da6d581 1223 key.offset = (u64)-1;
261c84b6
JB
1224 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1225 key.type = BTRFS_METADATA_ITEM_KEY;
1226 else
1227 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
1228
1229 path = btrfs_alloc_path();
1230 if (!path)
1231 return -ENOMEM;
e84752d4 1232 if (!trans) {
da61d31a 1233 path->search_commit_root = 1;
e84752d4
WS
1234 path->skip_locking = 1;
1235 }
8da6d581 1236
f3a84ccd 1237 if (time_seq == BTRFS_SEQ_LAST)
21633fc6
QW
1238 path->skip_locking = 1;
1239
8da6d581 1240again:
d3b01064
LZ
1241 head = NULL;
1242
98cc4222 1243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8da6d581
JS
1244 if (ret < 0)
1245 goto out;
fcba0120
JB
1246 if (ret == 0) {
1247 /* This shouldn't happen, indicates a bug or fs corruption. */
1248 ASSERT(ret != 0);
1249 ret = -EUCLEAN;
1250 goto out;
1251 }
8da6d581 1252
21633fc6 1253 if (trans && likely(trans->type != __TRANS_DUMMY) &&
f3a84ccd 1254 time_seq != BTRFS_SEQ_LAST) {
7a3ae2f8 1255 /*
9665ebd5
JB
1256 * We have a specific time_seq we care about and trans which
1257 * means we have the path lock, we need to grab the ref head and
1258 * lock it so we have a consistent view of the refs at the given
1259 * time.
7a3ae2f8
JS
1260 */
1261 delayed_refs = &trans->transaction->delayed_refs;
1262 spin_lock(&delayed_refs->lock);
f72ad18e 1263 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7a3ae2f8
JS
1264 if (head) {
1265 if (!mutex_trylock(&head->mutex)) {
d278850e 1266 refcount_inc(&head->refs);
7a3ae2f8
JS
1267 spin_unlock(&delayed_refs->lock);
1268
1269 btrfs_release_path(path);
1270
1271 /*
1272 * Mutex was contended, block until it's
1273 * released and try again
1274 */
1275 mutex_lock(&head->mutex);
1276 mutex_unlock(&head->mutex);
d278850e 1277 btrfs_put_delayed_ref_head(head);
7a3ae2f8
JS
1278 goto again;
1279 }
d7df2c79 1280 spin_unlock(&delayed_refs->lock);
00142756 1281 ret = add_delayed_refs(fs_info, head, time_seq,
b25b0b87 1282 &preftrees, sc);
155725c9 1283 mutex_unlock(&head->mutex);
d7df2c79 1284 if (ret)
7a3ae2f8 1285 goto out;
d7df2c79
JB
1286 } else {
1287 spin_unlock(&delayed_refs->lock);
d3b01064 1288 }
8da6d581 1289 }
8da6d581
JS
1290
1291 if (path->slots[0]) {
1292 struct extent_buffer *leaf;
1293 int slot;
1294
dadcaf78 1295 path->slots[0]--;
8da6d581 1296 leaf = path->nodes[0];
dadcaf78 1297 slot = path->slots[0];
8da6d581
JS
1298 btrfs_item_key_to_cpu(leaf, &key, slot);
1299 if (key.objectid == bytenr &&
261c84b6
JB
1300 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1301 key.type == BTRFS_METADATA_ITEM_KEY)) {
00142756 1302 ret = add_inline_refs(fs_info, path, bytenr,
b25b0b87 1303 &info_level, &preftrees, sc);
8da6d581
JS
1304 if (ret)
1305 goto out;
98cc4222 1306 ret = add_keyed_refs(root, path, bytenr, info_level,
3ec4d323 1307 &preftrees, sc);
8da6d581
JS
1308 if (ret)
1309 goto out;
1310 }
1311 }
8da6d581 1312
86d5f994 1313 btrfs_release_path(path);
8da6d581 1314
38e3eebf 1315 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
d5c88b73
JS
1316 if (ret)
1317 goto out;
1318
ecf160b4 1319 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
8da6d581 1320
86d5f994 1321 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
b25b0b87 1322 extent_item_pos, sc, ignore_offset);
8da6d581
JS
1323 if (ret)
1324 goto out;
1325
ecf160b4 1326 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
8da6d581 1327
86d5f994
EN
1328 /*
1329 * This walks the tree of merged and resolved refs. Tree blocks are
1330 * read in as needed. Unique entries are added to the ulist, and
1331 * the list of found roots is updated.
1332 *
1333 * We release the entire tree in one go before returning.
1334 */
ecf160b4 1335 node = rb_first_cached(&preftrees.direct.root);
86d5f994
EN
1336 while (node) {
1337 ref = rb_entry(node, struct prelim_ref, rbnode);
1338 node = rb_next(&ref->rbnode);
c8195a7b
ZB
1339 /*
1340 * ref->count < 0 can happen here if there are delayed
1341 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1342 * prelim_ref_insert() relies on this when merging
1343 * identical refs to keep the overall count correct.
1344 * prelim_ref_insert() will merge only those refs
1345 * which compare identically. Any refs having
1346 * e.g. different offsets would not be merged,
1347 * and would retain their original ref->count < 0.
1348 */
98cfee21 1349 if (roots && ref->count && ref->root_id && ref->parent == 0) {
c9024219 1350 if (sc && ref->root_id != sc->root_objectid) {
dc046b10
JB
1351 ret = BACKREF_FOUND_SHARED;
1352 goto out;
1353 }
1354
8da6d581
JS
1355 /* no parent == root of tree */
1356 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1357 if (ret < 0)
1358 goto out;
8da6d581
JS
1359 }
1360 if (ref->count && ref->parent) {
8a56457f
JB
1361 if (extent_item_pos && !ref->inode_list &&
1362 ref->level == 0) {
976b1908 1363 struct extent_buffer *eb;
707e8a07 1364
581c1760 1365 eb = read_tree_block(fs_info, ref->parent, 0,
1b7ec85e 1366 0, ref->level, NULL);
64c043de
LB
1367 if (IS_ERR(eb)) {
1368 ret = PTR_ERR(eb);
1369 goto out;
4eb150d6
QW
1370 }
1371 if (!extent_buffer_uptodate(eb)) {
416bc658 1372 free_extent_buffer(eb);
c16c2e2e
WS
1373 ret = -EIO;
1374 goto out;
416bc658 1375 }
38e3eebf 1376
ac5887c8 1377 if (!path->skip_locking)
38e3eebf 1378 btrfs_tree_read_lock(eb);
976b1908 1379 ret = find_extent_in_eb(eb, bytenr,
c995ab3c 1380 *extent_item_pos, &eie, ignore_offset);
38e3eebf 1381 if (!path->skip_locking)
ac5887c8 1382 btrfs_tree_read_unlock(eb);
976b1908 1383 free_extent_buffer(eb);
f5929cd8
FDBM
1384 if (ret < 0)
1385 goto out;
1386 ref->inode_list = eie;
92876eec
FM
1387 /*
1388 * We transferred the list ownership to the ref,
1389 * so set to NULL to avoid a double free in case
1390 * an error happens after this.
1391 */
1392 eie = NULL;
976b1908 1393 }
4eb1f66d
TI
1394 ret = ulist_add_merge_ptr(refs, ref->parent,
1395 ref->inode_list,
1396 (void **)&eie, GFP_NOFS);
f1723939
WS
1397 if (ret < 0)
1398 goto out;
3301958b
JS
1399 if (!ret && extent_item_pos) {
1400 /*
9f05c09d
JB
1401 * We've recorded that parent, so we must extend
1402 * its inode list here.
1403 *
1404 * However if there was corruption we may not
1405 * have found an eie, return an error in this
1406 * case.
3301958b 1407 */
9f05c09d
JB
1408 ASSERT(eie);
1409 if (!eie) {
1410 ret = -EUCLEAN;
1411 goto out;
1412 }
3301958b
JS
1413 while (eie->next)
1414 eie = eie->next;
1415 eie->next = ref->inode_list;
1416 }
f05c4746 1417 eie = NULL;
92876eec
FM
1418 /*
1419 * We have transferred the inode list ownership from
1420 * this ref to the ref we added to the 'refs' ulist.
1421 * So set this ref's inode list to NULL to avoid
1422 * use-after-free when our caller uses it or double
1423 * frees in case an error happens before we return.
1424 */
1425 ref->inode_list = NULL;
8da6d581 1426 }
9dd14fd6 1427 cond_resched();
8da6d581
JS
1428 }
1429
1430out:
8da6d581 1431 btrfs_free_path(path);
86d5f994
EN
1432
1433 prelim_release(&preftrees.direct);
1434 prelim_release(&preftrees.indirect);
1435 prelim_release(&preftrees.indirect_missing_keys);
1436
f05c4746
WS
1437 if (ret < 0)
1438 free_inode_elem_list(eie);
8da6d581
JS
1439 return ret;
1440}
1441
1442/*
1443 * Finds all leafs with a reference to the specified combination of bytenr and
1444 * offset. key_list_head will point to a list of corresponding keys (caller must
1445 * free each list element). The leafs will be stored in the leafs ulist, which
1446 * must be freed with ulist_free.
1447 *
1448 * returns 0 on success, <0 on error
1449 */
19b546d7
QW
1450int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1451 struct btrfs_fs_info *fs_info, u64 bytenr,
1452 u64 time_seq, struct ulist **leafs,
1453 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 1454{
8da6d581
JS
1455 int ret;
1456
8da6d581 1457 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1458 if (!*leafs)
8da6d581 1459 return -ENOMEM;
8da6d581 1460
afce772e 1461 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1462 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
8da6d581 1463 if (ret < 0 && ret != -ENOENT) {
976b1908 1464 free_leaf_list(*leafs);
8da6d581
JS
1465 return ret;
1466 }
1467
1468 return 0;
1469}
1470
1471/*
1472 * walk all backrefs for a given extent to find all roots that reference this
1473 * extent. Walking a backref means finding all extents that reference this
1474 * extent and in turn walk the backrefs of those, too. Naturally this is a
1475 * recursive process, but here it is implemented in an iterative fashion: We
1476 * find all referencing extents for the extent in question and put them on a
1477 * list. In turn, we find all referencing extents for those, further appending
1478 * to the list. The way we iterate the list allows adding more elements after
1479 * the current while iterating. The process stops when we reach the end of the
1480 * list. Found roots are added to the roots list.
1481 *
1482 * returns 0 on success, < 0 on error.
1483 */
e0c476b1
JM
1484static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1485 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1486 u64 time_seq, struct ulist **roots,
1487 bool ignore_offset)
8da6d581
JS
1488{
1489 struct ulist *tmp;
1490 struct ulist_node *node = NULL;
cd1b413c 1491 struct ulist_iterator uiter;
8da6d581
JS
1492 int ret;
1493
1494 tmp = ulist_alloc(GFP_NOFS);
1495 if (!tmp)
1496 return -ENOMEM;
1497 *roots = ulist_alloc(GFP_NOFS);
1498 if (!*roots) {
1499 ulist_free(tmp);
1500 return -ENOMEM;
1501 }
1502
cd1b413c 1503 ULIST_ITER_INIT(&uiter);
8da6d581 1504 while (1) {
afce772e 1505 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1506 tmp, *roots, NULL, NULL, ignore_offset);
8da6d581
JS
1507 if (ret < 0 && ret != -ENOENT) {
1508 ulist_free(tmp);
1509 ulist_free(*roots);
580c079b 1510 *roots = NULL;
8da6d581
JS
1511 return ret;
1512 }
cd1b413c 1513 node = ulist_next(tmp, &uiter);
8da6d581
JS
1514 if (!node)
1515 break;
1516 bytenr = node->val;
bca1a290 1517 cond_resched();
8da6d581
JS
1518 }
1519
1520 ulist_free(tmp);
1521 return 0;
1522}
1523
9e351cc8
JB
1524int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1525 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c 1526 u64 time_seq, struct ulist **roots,
c7bcbb21 1527 bool skip_commit_root_sem)
9e351cc8
JB
1528{
1529 int ret;
1530
8949b9a1 1531 if (!trans && !skip_commit_root_sem)
9e351cc8 1532 down_read(&fs_info->commit_root_sem);
e0c476b1 1533 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
c7bcbb21 1534 time_seq, roots, false);
8949b9a1 1535 if (!trans && !skip_commit_root_sem)
9e351cc8
JB
1536 up_read(&fs_info->commit_root_sem);
1537 return ret;
1538}
1539
12a824dc
FM
1540/*
1541 * The caller has joined a transaction or is holding a read lock on the
1542 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1543 * snapshot field changing while updating or checking the cache.
1544 */
61dbb952 1545static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
12a824dc
FM
1546 struct btrfs_root *root,
1547 u64 bytenr, int level, bool *is_shared)
1548{
1549 struct btrfs_backref_shared_cache_entry *entry;
1550
61dbb952 1551 if (!ctx->use_path_cache)
63c84b46
FM
1552 return false;
1553
12a824dc
FM
1554 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1555 return false;
1556
1557 /*
1558 * Level -1 is used for the data extent, which is not reliable to cache
1559 * because its reference count can increase or decrease without us
1560 * realizing. We cache results only for extent buffers that lead from
1561 * the root node down to the leaf with the file extent item.
1562 */
1563 ASSERT(level >= 0);
1564
61dbb952 1565 entry = &ctx->path_cache_entries[level];
12a824dc
FM
1566
1567 /* Unused cache entry or being used for some other extent buffer. */
1568 if (entry->bytenr != bytenr)
1569 return false;
1570
1571 /*
1572 * We cached a false result, but the last snapshot generation of the
1573 * root changed, so we now have a snapshot. Don't trust the result.
1574 */
1575 if (!entry->is_shared &&
1576 entry->gen != btrfs_root_last_snapshot(&root->root_item))
1577 return false;
1578
1579 /*
1580 * If we cached a true result and the last generation used for dropping
1581 * a root changed, we can not trust the result, because the dropped root
1582 * could be a snapshot sharing this extent buffer.
1583 */
1584 if (entry->is_shared &&
1585 entry->gen != btrfs_get_last_root_drop_gen(root->fs_info))
1586 return false;
1587
1588 *is_shared = entry->is_shared;
96dbcc00
FM
1589 /*
1590 * If the node at this level is shared, than all nodes below are also
1591 * shared. Currently some of the nodes below may be marked as not shared
1592 * because we have just switched from one leaf to another, and switched
1593 * also other nodes above the leaf and below the current level, so mark
1594 * them as shared.
1595 */
1596 if (*is_shared) {
1597 for (int i = 0; i < level; i++) {
61dbb952
FM
1598 ctx->path_cache_entries[i].is_shared = true;
1599 ctx->path_cache_entries[i].gen = entry->gen;
96dbcc00
FM
1600 }
1601 }
12a824dc
FM
1602
1603 return true;
1604}
1605
1606/*
1607 * The caller has joined a transaction or is holding a read lock on the
1608 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1609 * snapshot field changing while updating or checking the cache.
1610 */
61dbb952 1611static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
12a824dc
FM
1612 struct btrfs_root *root,
1613 u64 bytenr, int level, bool is_shared)
1614{
1615 struct btrfs_backref_shared_cache_entry *entry;
1616 u64 gen;
1617
61dbb952 1618 if (!ctx->use_path_cache)
63c84b46
FM
1619 return;
1620
12a824dc
FM
1621 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1622 return;
1623
1624 /*
1625 * Level -1 is used for the data extent, which is not reliable to cache
1626 * because its reference count can increase or decrease without us
1627 * realizing. We cache results only for extent buffers that lead from
1628 * the root node down to the leaf with the file extent item.
1629 */
1630 ASSERT(level >= 0);
1631
1632 if (is_shared)
1633 gen = btrfs_get_last_root_drop_gen(root->fs_info);
1634 else
1635 gen = btrfs_root_last_snapshot(&root->root_item);
1636
61dbb952 1637 entry = &ctx->path_cache_entries[level];
12a824dc
FM
1638 entry->bytenr = bytenr;
1639 entry->is_shared = is_shared;
1640 entry->gen = gen;
1641
1642 /*
1643 * If we found an extent buffer is shared, set the cache result for all
1644 * extent buffers below it to true. As nodes in the path are COWed,
1645 * their sharedness is moved to their children, and if a leaf is COWed,
1646 * then the sharedness of a data extent becomes direct, the refcount of
1647 * data extent is increased in the extent item at the extent tree.
1648 */
1649 if (is_shared) {
1650 for (int i = 0; i < level; i++) {
61dbb952 1651 entry = &ctx->path_cache_entries[i];
12a824dc
FM
1652 entry->is_shared = is_shared;
1653 entry->gen = gen;
1654 }
1655 }
1656}
1657
84a7949d
FM
1658struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1659{
1660 struct btrfs_backref_share_check_ctx *ctx;
1661
1662 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1663 if (!ctx)
1664 return NULL;
1665
1666 ulist_init(&ctx->refs);
84a7949d
FM
1667
1668 return ctx;
1669}
1670
1671void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1672{
1673 if (!ctx)
1674 return;
1675
1676 ulist_release(&ctx->refs);
84a7949d
FM
1677 kfree(ctx);
1678}
1679
8eedadda
FM
1680/*
1681 * Check if a data extent is shared or not.
6e353e3b 1682 *
ceb707da 1683 * @inode: The inode whose extent we are checking.
b8f164e3
FM
1684 * @bytenr: Logical bytenr of the extent we are checking.
1685 * @extent_gen: Generation of the extent (file extent item) or 0 if it is
1686 * not known.
61dbb952 1687 * @ctx: A backref sharedness check context.
2c2ed5aa 1688 *
8eedadda 1689 * btrfs_is_data_extent_shared uses the backref walking code but will short
2c2ed5aa
MF
1690 * circuit as soon as it finds a root or inode that doesn't match the
1691 * one passed in. This provides a significant performance benefit for
1692 * callers (such as fiemap) which want to know whether the extent is
1693 * shared but do not need a ref count.
1694 *
03628cdb
FM
1695 * This attempts to attach to the running transaction in order to account for
1696 * delayed refs, but continues on even when no running transaction exists.
bb739cf0 1697 *
2c2ed5aa
MF
1698 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1699 */
ceb707da 1700int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
b8f164e3 1701 u64 extent_gen,
61dbb952 1702 struct btrfs_backref_share_check_ctx *ctx)
dc046b10 1703{
ceb707da 1704 struct btrfs_root *root = inode->root;
bb739cf0
EN
1705 struct btrfs_fs_info *fs_info = root->fs_info;
1706 struct btrfs_trans_handle *trans;
dc046b10
JB
1707 struct ulist_iterator uiter;
1708 struct ulist_node *node;
f3a84ccd 1709 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
dc046b10 1710 int ret = 0;
3ec4d323 1711 struct share_check shared = {
4fd786e6 1712 .root_objectid = root->root_key.objectid,
ceb707da 1713 .inum = btrfs_ino(inode),
3ec4d323 1714 .share_count = 0,
4fc7b572 1715 .have_delayed_delete_refs = false,
3ec4d323 1716 };
12a824dc 1717 int level;
dc046b10 1718
84a7949d 1719 ulist_init(&ctx->refs);
dc046b10 1720
a6d155d2 1721 trans = btrfs_join_transaction_nostart(root);
bb739cf0 1722 if (IS_ERR(trans)) {
03628cdb
FM
1723 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1724 ret = PTR_ERR(trans);
1725 goto out;
1726 }
bb739cf0 1727 trans = NULL;
dc046b10 1728 down_read(&fs_info->commit_root_sem);
bb739cf0
EN
1729 } else {
1730 btrfs_get_tree_mod_seq(fs_info, &elem);
1731 }
1732
12a824dc
FM
1733 /* -1 means we are in the bytenr of the data extent. */
1734 level = -1;
dc046b10 1735 ULIST_ITER_INIT(&uiter);
61dbb952 1736 ctx->use_path_cache = true;
dc046b10 1737 while (1) {
12a824dc
FM
1738 bool is_shared;
1739 bool cached;
1740
84a7949d 1741 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, &ctx->refs,
b6296858 1742 NULL, NULL, &shared, false);
dc046b10 1743 if (ret == BACKREF_FOUND_SHARED) {
2c2ed5aa 1744 /* this is the only condition under which we return 1 */
dc046b10 1745 ret = 1;
12a824dc 1746 if (level >= 0)
61dbb952 1747 store_backref_shared_cache(ctx, root, bytenr,
12a824dc 1748 level, true);
dc046b10
JB
1749 break;
1750 }
1751 if (ret < 0 && ret != -ENOENT)
1752 break;
2c2ed5aa 1753 ret = 0;
b8f164e3
FM
1754 /*
1755 * If our data extent is not shared through reflinks and it was
1756 * created in a generation after the last one used to create a
1757 * snapshot of the inode's root, then it can not be shared
1758 * indirectly through subtrees, as that can only happen with
1759 * snapshots. In this case bail out, no need to check for the
1760 * sharedness of extent buffers.
1761 */
1762 if (level == -1 &&
1763 extent_gen > btrfs_root_last_snapshot(&root->root_item))
1764 break;
1765
63c84b46
FM
1766 /*
1767 * If our data extent was not directly shared (without multiple
1768 * reference items), than it might have a single reference item
1769 * with a count > 1 for the same offset, which means there are 2
1770 * (or more) file extent items that point to the data extent -
1771 * this happens when a file extent item needs to be split and
1772 * then one item gets moved to another leaf due to a b+tree leaf
1773 * split when inserting some item. In this case the file extent
1774 * items may be located in different leaves and therefore some
1775 * of the leaves may be referenced through shared subtrees while
1776 * others are not. Since our extent buffer cache only works for
1777 * a single path (by far the most common case and simpler to
1778 * deal with), we can not use it if we have multiple leaves
1779 * (which implies multiple paths).
1780 */
84a7949d 1781 if (level == -1 && ctx->refs.nnodes > 1)
61dbb952 1782 ctx->use_path_cache = false;
63c84b46 1783
12a824dc 1784 if (level >= 0)
61dbb952 1785 store_backref_shared_cache(ctx, root, bytenr,
12a824dc 1786 level, false);
84a7949d 1787 node = ulist_next(&ctx->refs, &uiter);
dc046b10
JB
1788 if (!node)
1789 break;
1790 bytenr = node->val;
12a824dc 1791 level++;
61dbb952 1792 cached = lookup_backref_shared_cache(ctx, root, bytenr, level,
12a824dc
FM
1793 &is_shared);
1794 if (cached) {
1795 ret = (is_shared ? 1 : 0);
1796 break;
1797 }
18bf591b 1798 shared.share_count = 0;
4fc7b572 1799 shared.have_delayed_delete_refs = false;
dc046b10
JB
1800 cond_resched();
1801 }
bb739cf0
EN
1802
1803 if (trans) {
dc046b10 1804 btrfs_put_tree_mod_seq(fs_info, &elem);
bb739cf0
EN
1805 btrfs_end_transaction(trans);
1806 } else {
dc046b10 1807 up_read(&fs_info->commit_root_sem);
bb739cf0 1808 }
03628cdb 1809out:
84a7949d 1810 ulist_release(&ctx->refs);
dc046b10
JB
1811 return ret;
1812}
1813
f186373f
MF
1814int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1815 u64 start_off, struct btrfs_path *path,
1816 struct btrfs_inode_extref **ret_extref,
1817 u64 *found_off)
1818{
1819 int ret, slot;
1820 struct btrfs_key key;
1821 struct btrfs_key found_key;
1822 struct btrfs_inode_extref *extref;
73980bec 1823 const struct extent_buffer *leaf;
f186373f
MF
1824 unsigned long ptr;
1825
1826 key.objectid = inode_objectid;
962a298f 1827 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
1828 key.offset = start_off;
1829
1830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1831 if (ret < 0)
1832 return ret;
1833
1834 while (1) {
1835 leaf = path->nodes[0];
1836 slot = path->slots[0];
1837 if (slot >= btrfs_header_nritems(leaf)) {
1838 /*
1839 * If the item at offset is not found,
1840 * btrfs_search_slot will point us to the slot
1841 * where it should be inserted. In our case
1842 * that will be the slot directly before the
1843 * next INODE_REF_KEY_V2 item. In the case
1844 * that we're pointing to the last slot in a
1845 * leaf, we must move one leaf over.
1846 */
1847 ret = btrfs_next_leaf(root, path);
1848 if (ret) {
1849 if (ret >= 1)
1850 ret = -ENOENT;
1851 break;
1852 }
1853 continue;
1854 }
1855
1856 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1857
1858 /*
1859 * Check that we're still looking at an extended ref key for
1860 * this particular objectid. If we have different
1861 * objectid or type then there are no more to be found
1862 * in the tree and we can exit.
1863 */
1864 ret = -ENOENT;
1865 if (found_key.objectid != inode_objectid)
1866 break;
962a298f 1867 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
1868 break;
1869
1870 ret = 0;
1871 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1872 extref = (struct btrfs_inode_extref *)ptr;
1873 *ret_extref = extref;
1874 if (found_off)
1875 *found_off = found_key.offset;
1876 break;
1877 }
1878
1879 return ret;
1880}
1881
48a3b636
ES
1882/*
1883 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1884 * Elements of the path are separated by '/' and the path is guaranteed to be
1885 * 0-terminated. the path is only given within the current file system.
1886 * Therefore, it never starts with a '/'. the caller is responsible to provide
1887 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1888 * the start point of the resulting string is returned. this pointer is within
1889 * dest, normally.
1890 * in case the path buffer would overflow, the pointer is decremented further
1891 * as if output was written to the buffer, though no more output is actually
1892 * generated. that way, the caller can determine how much space would be
1893 * required for the path to fit into the buffer. in that case, the returned
1894 * value will be smaller than dest. callers must check this!
1895 */
96b5bd77
JS
1896char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1897 u32 name_len, unsigned long name_off,
1898 struct extent_buffer *eb_in, u64 parent,
1899 char *dest, u32 size)
a542ad1b 1900{
a542ad1b
JS
1901 int slot;
1902 u64 next_inum;
1903 int ret;
661bec6b 1904 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1905 struct extent_buffer *eb = eb_in;
1906 struct btrfs_key found_key;
d24bec3a 1907 struct btrfs_inode_ref *iref;
a542ad1b
JS
1908
1909 if (bytes_left >= 0)
1910 dest[bytes_left] = '\0';
1911
1912 while (1) {
d24bec3a 1913 bytes_left -= name_len;
a542ad1b
JS
1914 if (bytes_left >= 0)
1915 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1916 name_off, name_len);
b916a59a 1917 if (eb != eb_in) {
0c0fe3b0 1918 if (!path->skip_locking)
ac5887c8 1919 btrfs_tree_read_unlock(eb);
a542ad1b 1920 free_extent_buffer(eb);
b916a59a 1921 }
c234a24d
DS
1922 ret = btrfs_find_item(fs_root, path, parent, 0,
1923 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
1924 if (ret > 0)
1925 ret = -ENOENT;
a542ad1b
JS
1926 if (ret)
1927 break;
d24bec3a 1928
a542ad1b
JS
1929 next_inum = found_key.offset;
1930
1931 /* regular exit ahead */
1932 if (parent == next_inum)
1933 break;
1934
1935 slot = path->slots[0];
1936 eb = path->nodes[0];
1937 /* make sure we can use eb after releasing the path */
b916a59a 1938 if (eb != eb_in) {
0c0fe3b0
FM
1939 path->nodes[0] = NULL;
1940 path->locks[0] = 0;
b916a59a 1941 }
a542ad1b 1942 btrfs_release_path(path);
a542ad1b 1943 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1944
1945 name_len = btrfs_inode_ref_name_len(eb, iref);
1946 name_off = (unsigned long)(iref + 1);
1947
a542ad1b
JS
1948 parent = next_inum;
1949 --bytes_left;
1950 if (bytes_left >= 0)
1951 dest[bytes_left] = '/';
1952 }
1953
1954 btrfs_release_path(path);
1955
1956 if (ret)
1957 return ERR_PTR(ret);
1958
1959 return dest + bytes_left;
1960}
1961
1962/*
1963 * this makes the path point to (logical EXTENT_ITEM *)
1964 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1965 * tree blocks and <0 on error.
1966 */
1967int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1968 struct btrfs_path *path, struct btrfs_key *found_key,
1969 u64 *flags_ret)
a542ad1b 1970{
29cbcf40 1971 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
a542ad1b
JS
1972 int ret;
1973 u64 flags;
261c84b6 1974 u64 size = 0;
a542ad1b 1975 u32 item_size;
73980bec 1976 const struct extent_buffer *eb;
a542ad1b
JS
1977 struct btrfs_extent_item *ei;
1978 struct btrfs_key key;
1979
261c84b6
JB
1980 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1981 key.type = BTRFS_METADATA_ITEM_KEY;
1982 else
1983 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1984 key.objectid = logical;
1985 key.offset = (u64)-1;
1986
29cbcf40 1987 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
a542ad1b
JS
1988 if (ret < 0)
1989 return ret;
a542ad1b 1990
29cbcf40 1991 ret = btrfs_previous_extent_item(extent_root, path, 0);
850a8cdf
WS
1992 if (ret) {
1993 if (ret > 0)
1994 ret = -ENOENT;
1995 return ret;
580f0a67 1996 }
850a8cdf 1997 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 1998 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
da17066c 1999 size = fs_info->nodesize;
261c84b6
JB
2000 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2001 size = found_key->offset;
2002
580f0a67 2003 if (found_key->objectid > logical ||
261c84b6 2004 found_key->objectid + size <= logical) {
ab8d0fc4
JM
2005 btrfs_debug(fs_info,
2006 "logical %llu is not within any extent", logical);
a542ad1b 2007 return -ENOENT;
4692cf58 2008 }
a542ad1b
JS
2009
2010 eb = path->nodes[0];
3212fa14 2011 item_size = btrfs_item_size(eb, path->slots[0]);
a542ad1b
JS
2012 BUG_ON(item_size < sizeof(*ei));
2013
2014 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2015 flags = btrfs_extent_flags(eb, ei);
2016
ab8d0fc4
JM
2017 btrfs_debug(fs_info,
2018 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
c1c9ff7c
GU
2019 logical, logical - found_key->objectid, found_key->objectid,
2020 found_key->offset, flags, item_size);
69917e43
LB
2021
2022 WARN_ON(!flags_ret);
2023 if (flags_ret) {
2024 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2025 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2026 else if (flags & BTRFS_EXTENT_FLAG_DATA)
2027 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
2028 else
290342f6 2029 BUG();
69917e43
LB
2030 return 0;
2031 }
a542ad1b
JS
2032
2033 return -EIO;
2034}
2035
2036/*
2037 * helper function to iterate extent inline refs. ptr must point to a 0 value
2038 * for the first call and may be modified. it is used to track state.
2039 * if more refs exist, 0 is returned and the next call to
e0c476b1 2040 * get_extent_inline_ref must pass the modified ptr parameter to get the
a542ad1b
JS
2041 * next ref. after the last ref was processed, 1 is returned.
2042 * returns <0 on error
2043 */
e0c476b1
JM
2044static int get_extent_inline_ref(unsigned long *ptr,
2045 const struct extent_buffer *eb,
2046 const struct btrfs_key *key,
2047 const struct btrfs_extent_item *ei,
2048 u32 item_size,
2049 struct btrfs_extent_inline_ref **out_eiref,
2050 int *out_type)
a542ad1b
JS
2051{
2052 unsigned long end;
2053 u64 flags;
2054 struct btrfs_tree_block_info *info;
2055
2056 if (!*ptr) {
2057 /* first call */
2058 flags = btrfs_extent_flags(eb, ei);
2059 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
2060 if (key->type == BTRFS_METADATA_ITEM_KEY) {
2061 /* a skinny metadata extent */
2062 *out_eiref =
2063 (struct btrfs_extent_inline_ref *)(ei + 1);
2064 } else {
2065 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2066 info = (struct btrfs_tree_block_info *)(ei + 1);
2067 *out_eiref =
2068 (struct btrfs_extent_inline_ref *)(info + 1);
2069 }
a542ad1b
JS
2070 } else {
2071 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2072 }
2073 *ptr = (unsigned long)*out_eiref;
cd857dd6 2074 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
2075 return -ENOENT;
2076 }
2077
2078 end = (unsigned long)ei + item_size;
6eda71d0 2079 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
3de28d57
LB
2080 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2081 BTRFS_REF_TYPE_ANY);
2082 if (*out_type == BTRFS_REF_TYPE_INVALID)
af431dcb 2083 return -EUCLEAN;
a542ad1b
JS
2084
2085 *ptr += btrfs_extent_inline_ref_size(*out_type);
2086 WARN_ON(*ptr > end);
2087 if (*ptr == end)
2088 return 1; /* last */
2089
2090 return 0;
2091}
2092
2093/*
2094 * reads the tree block backref for an extent. tree level and root are returned
2095 * through out_level and out_root. ptr must point to a 0 value for the first
e0c476b1 2096 * call and may be modified (see get_extent_inline_ref comment).
a542ad1b
JS
2097 * returns 0 if data was provided, 1 if there was no more data to provide or
2098 * <0 on error.
2099 */
2100int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
2101 struct btrfs_key *key, struct btrfs_extent_item *ei,
2102 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
2103{
2104 int ret;
2105 int type;
a542ad1b
JS
2106 struct btrfs_extent_inline_ref *eiref;
2107
2108 if (*ptr == (unsigned long)-1)
2109 return 1;
2110
2111 while (1) {
e0c476b1 2112 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
6eda71d0 2113 &eiref, &type);
a542ad1b
JS
2114 if (ret < 0)
2115 return ret;
2116
2117 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2118 type == BTRFS_SHARED_BLOCK_REF_KEY)
2119 break;
2120
2121 if (ret == 1)
2122 return 1;
2123 }
2124
2125 /* we can treat both ref types equally here */
a542ad1b 2126 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
2127
2128 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2129 struct btrfs_tree_block_info *info;
2130
2131 info = (struct btrfs_tree_block_info *)(ei + 1);
2132 *out_level = btrfs_tree_block_level(eb, info);
2133 } else {
2134 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2135 *out_level = (u8)key->offset;
2136 }
a542ad1b
JS
2137
2138 if (ret == 1)
2139 *ptr = (unsigned long)-1;
2140
2141 return 0;
2142}
2143
ab8d0fc4
JM
2144static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2145 struct extent_inode_elem *inode_list,
2146 u64 root, u64 extent_item_objectid,
2147 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 2148{
976b1908 2149 struct extent_inode_elem *eie;
4692cf58 2150 int ret = 0;
4692cf58 2151
976b1908 2152 for (eie = inode_list; eie; eie = eie->next) {
ab8d0fc4
JM
2153 btrfs_debug(fs_info,
2154 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2155 extent_item_objectid, eie->inum,
2156 eie->offset, root);
976b1908 2157 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 2158 if (ret) {
ab8d0fc4
JM
2159 btrfs_debug(fs_info,
2160 "stopping iteration for %llu due to ret=%d",
2161 extent_item_objectid, ret);
4692cf58
JS
2162 break;
2163 }
a542ad1b
JS
2164 }
2165
a542ad1b
JS
2166 return ret;
2167}
2168
2169/*
2170 * calls iterate() for every inode that references the extent identified by
4692cf58 2171 * the given parameters.
a542ad1b
JS
2172 * when the iterator function returns a non-zero value, iteration stops.
2173 */
2174int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 2175 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 2176 int search_commit_root,
c995ab3c
ZB
2177 iterate_extent_inodes_t *iterate, void *ctx,
2178 bool ignore_offset)
a542ad1b 2179{
a542ad1b 2180 int ret;
da61d31a 2181 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
2182 struct ulist *refs = NULL;
2183 struct ulist *roots = NULL;
4692cf58
JS
2184 struct ulist_node *ref_node = NULL;
2185 struct ulist_node *root_node = NULL;
f3a84ccd 2186 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
cd1b413c
JS
2187 struct ulist_iterator ref_uiter;
2188 struct ulist_iterator root_uiter;
a542ad1b 2189
ab8d0fc4 2190 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
4692cf58 2191 extent_item_objectid);
a542ad1b 2192
da61d31a 2193 if (!search_commit_root) {
30a9da5d 2194 trans = btrfs_attach_transaction(fs_info->tree_root);
bfc61c36
FM
2195 if (IS_ERR(trans)) {
2196 if (PTR_ERR(trans) != -ENOENT &&
2197 PTR_ERR(trans) != -EROFS)
2198 return PTR_ERR(trans);
2199 trans = NULL;
2200 }
2201 }
2202
2203 if (trans)
f3a84ccd 2204 btrfs_get_tree_mod_seq(fs_info, &seq_elem);
bfc61c36 2205 else
9e351cc8 2206 down_read(&fs_info->commit_root_sem);
a542ad1b 2207
4692cf58 2208 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
f3a84ccd 2209 seq_elem.seq, &refs,
c995ab3c 2210 &extent_item_pos, ignore_offset);
4692cf58
JS
2211 if (ret)
2212 goto out;
a542ad1b 2213
cd1b413c
JS
2214 ULIST_ITER_INIT(&ref_uiter);
2215 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
e0c476b1 2216 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
f3a84ccd 2217 seq_elem.seq, &roots,
c995ab3c 2218 ignore_offset);
4692cf58
JS
2219 if (ret)
2220 break;
cd1b413c
JS
2221 ULIST_ITER_INIT(&root_uiter);
2222 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
ab8d0fc4
JM
2223 btrfs_debug(fs_info,
2224 "root %llu references leaf %llu, data list %#llx",
2225 root_node->val, ref_node->val,
2226 ref_node->aux);
2227 ret = iterate_leaf_refs(fs_info,
2228 (struct extent_inode_elem *)
995e01b7
JS
2229 (uintptr_t)ref_node->aux,
2230 root_node->val,
2231 extent_item_objectid,
2232 iterate, ctx);
4692cf58 2233 }
976b1908 2234 ulist_free(roots);
a542ad1b
JS
2235 }
2236
976b1908 2237 free_leaf_list(refs);
4692cf58 2238out:
bfc61c36 2239 if (trans) {
f3a84ccd 2240 btrfs_put_tree_mod_seq(fs_info, &seq_elem);
3a45bb20 2241 btrfs_end_transaction(trans);
9e351cc8
JB
2242 } else {
2243 up_read(&fs_info->commit_root_sem);
7a3ae2f8
JS
2244 }
2245
a542ad1b
JS
2246 return ret;
2247}
2248
e3059ec0
DS
2249static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
2250{
2251 struct btrfs_data_container *inodes = ctx;
2252 const size_t c = 3 * sizeof(u64);
2253
2254 if (inodes->bytes_left >= c) {
2255 inodes->bytes_left -= c;
2256 inodes->val[inodes->elem_cnt] = inum;
2257 inodes->val[inodes->elem_cnt + 1] = offset;
2258 inodes->val[inodes->elem_cnt + 2] = root;
2259 inodes->elem_cnt += 3;
2260 } else {
2261 inodes->bytes_missing += c - inodes->bytes_left;
2262 inodes->bytes_left = 0;
2263 inodes->elem_missed += 3;
2264 }
2265
2266 return 0;
2267}
2268
a542ad1b
JS
2269int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2270 struct btrfs_path *path,
e3059ec0 2271 void *ctx, bool ignore_offset)
a542ad1b
JS
2272{
2273 int ret;
4692cf58 2274 u64 extent_item_pos;
69917e43 2275 u64 flags = 0;
a542ad1b 2276 struct btrfs_key found_key;
7a3ae2f8 2277 int search_commit_root = path->search_commit_root;
a542ad1b 2278
69917e43 2279 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 2280 btrfs_release_path(path);
a542ad1b
JS
2281 if (ret < 0)
2282 return ret;
69917e43 2283 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 2284 return -EINVAL;
a542ad1b 2285
4692cf58 2286 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
2287 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2288 extent_item_pos, search_commit_root,
e3059ec0 2289 build_ino_list, ctx, ignore_offset);
a542ad1b
JS
2290
2291 return ret;
2292}
2293
ad6240f6 2294static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
875d1daa 2295 struct extent_buffer *eb, struct inode_fs_paths *ipath);
d24bec3a 2296
875d1daa 2297static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
a542ad1b 2298{
aefc1eb1 2299 int ret = 0;
a542ad1b
JS
2300 int slot;
2301 u32 cur;
2302 u32 len;
2303 u32 name_len;
2304 u64 parent = 0;
2305 int found = 0;
875d1daa
DS
2306 struct btrfs_root *fs_root = ipath->fs_root;
2307 struct btrfs_path *path = ipath->btrfs_path;
a542ad1b 2308 struct extent_buffer *eb;
a542ad1b
JS
2309 struct btrfs_inode_ref *iref;
2310 struct btrfs_key found_key;
2311
aefc1eb1 2312 while (!ret) {
c234a24d
DS
2313 ret = btrfs_find_item(fs_root, path, inum,
2314 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2315 &found_key);
2316
a542ad1b
JS
2317 if (ret < 0)
2318 break;
2319 if (ret) {
2320 ret = found ? 0 : -ENOENT;
2321 break;
2322 }
2323 ++found;
2324
2325 parent = found_key.offset;
2326 slot = path->slots[0];
3fe81ce2
FDBM
2327 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2328 if (!eb) {
2329 ret = -ENOMEM;
2330 break;
2331 }
a542ad1b
JS
2332 btrfs_release_path(path);
2333
a542ad1b
JS
2334 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2335
3212fa14 2336 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
a542ad1b
JS
2337 name_len = btrfs_inode_ref_name_len(eb, iref);
2338 /* path must be released before calling iterate()! */
ab8d0fc4
JM
2339 btrfs_debug(fs_root->fs_info,
2340 "following ref at offset %u for inode %llu in tree %llu",
4fd786e6
MT
2341 cur, found_key.objectid,
2342 fs_root->root_key.objectid);
ad6240f6 2343 ret = inode_to_path(parent, name_len,
875d1daa 2344 (unsigned long)(iref + 1), eb, ipath);
aefc1eb1 2345 if (ret)
a542ad1b 2346 break;
a542ad1b
JS
2347 len = sizeof(*iref) + name_len;
2348 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2349 }
2350 free_extent_buffer(eb);
2351 }
2352
2353 btrfs_release_path(path);
2354
2355 return ret;
2356}
2357
875d1daa 2358static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
d24bec3a
MF
2359{
2360 int ret;
2361 int slot;
2362 u64 offset = 0;
2363 u64 parent;
2364 int found = 0;
875d1daa
DS
2365 struct btrfs_root *fs_root = ipath->fs_root;
2366 struct btrfs_path *path = ipath->btrfs_path;
d24bec3a
MF
2367 struct extent_buffer *eb;
2368 struct btrfs_inode_extref *extref;
d24bec3a
MF
2369 u32 item_size;
2370 u32 cur_offset;
2371 unsigned long ptr;
2372
2373 while (1) {
2374 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2375 &offset);
2376 if (ret < 0)
2377 break;
2378 if (ret) {
2379 ret = found ? 0 : -ENOENT;
2380 break;
2381 }
2382 ++found;
2383
2384 slot = path->slots[0];
3fe81ce2
FDBM
2385 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2386 if (!eb) {
2387 ret = -ENOMEM;
2388 break;
2389 }
d24bec3a
MF
2390 btrfs_release_path(path);
2391
3212fa14 2392 item_size = btrfs_item_size(eb, slot);
2849a854 2393 ptr = btrfs_item_ptr_offset(eb, slot);
d24bec3a
MF
2394 cur_offset = 0;
2395
2396 while (cur_offset < item_size) {
2397 u32 name_len;
2398
2399 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2400 parent = btrfs_inode_extref_parent(eb, extref);
2401 name_len = btrfs_inode_extref_name_len(eb, extref);
ad6240f6 2402 ret = inode_to_path(parent, name_len,
875d1daa 2403 (unsigned long)&extref->name, eb, ipath);
d24bec3a
MF
2404 if (ret)
2405 break;
2406
2849a854 2407 cur_offset += btrfs_inode_extref_name_len(eb, extref);
d24bec3a
MF
2408 cur_offset += sizeof(*extref);
2409 }
d24bec3a
MF
2410 free_extent_buffer(eb);
2411
2412 offset++;
2413 }
2414
2415 btrfs_release_path(path);
2416
2417 return ret;
2418}
2419
a542ad1b
JS
2420/*
2421 * returns 0 if the path could be dumped (probably truncated)
2422 * returns <0 in case of an error
2423 */
d24bec3a 2424static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
875d1daa 2425 struct extent_buffer *eb, struct inode_fs_paths *ipath)
a542ad1b 2426{
a542ad1b
JS
2427 char *fspath;
2428 char *fspath_min;
2429 int i = ipath->fspath->elem_cnt;
2430 const int s_ptr = sizeof(char *);
2431 u32 bytes_left;
2432
2433 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2434 ipath->fspath->bytes_left - s_ptr : 0;
2435
740c3d22 2436 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
2437 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2438 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
2439 if (IS_ERR(fspath))
2440 return PTR_ERR(fspath);
2441
2442 if (fspath > fspath_min) {
745c4d8e 2443 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
2444 ++ipath->fspath->elem_cnt;
2445 ipath->fspath->bytes_left = fspath - fspath_min;
2446 } else {
2447 ++ipath->fspath->elem_missed;
2448 ipath->fspath->bytes_missing += fspath_min - fspath;
2449 ipath->fspath->bytes_left = 0;
2450 }
2451
2452 return 0;
2453}
2454
2455/*
2456 * this dumps all file system paths to the inode into the ipath struct, provided
2457 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 2458 * from ipath->fspath->val[i].
a542ad1b 2459 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 2460 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
01327610 2461 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
a542ad1b
JS
2462 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2463 * have been needed to return all paths.
2464 */
2465int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2466{
ad6240f6
DS
2467 int ret;
2468 int found_refs = 0;
2469
875d1daa 2470 ret = iterate_inode_refs(inum, ipath);
ad6240f6
DS
2471 if (!ret)
2472 ++found_refs;
2473 else if (ret != -ENOENT)
2474 return ret;
2475
875d1daa 2476 ret = iterate_inode_extrefs(inum, ipath);
ad6240f6
DS
2477 if (ret == -ENOENT && found_refs)
2478 return 0;
2479
2480 return ret;
a542ad1b
JS
2481}
2482
a542ad1b
JS
2483struct btrfs_data_container *init_data_container(u32 total_bytes)
2484{
2485 struct btrfs_data_container *data;
2486 size_t alloc_bytes;
2487
2488 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
f54de068 2489 data = kvmalloc(alloc_bytes, GFP_KERNEL);
a542ad1b
JS
2490 if (!data)
2491 return ERR_PTR(-ENOMEM);
2492
2493 if (total_bytes >= sizeof(*data)) {
2494 data->bytes_left = total_bytes - sizeof(*data);
2495 data->bytes_missing = 0;
2496 } else {
2497 data->bytes_missing = sizeof(*data) - total_bytes;
2498 data->bytes_left = 0;
2499 }
2500
2501 data->elem_cnt = 0;
2502 data->elem_missed = 0;
2503
2504 return data;
2505}
2506
2507/*
2508 * allocates space to return multiple file system paths for an inode.
2509 * total_bytes to allocate are passed, note that space usable for actual path
2510 * information will be total_bytes - sizeof(struct inode_fs_paths).
2511 * the returned pointer must be freed with free_ipath() in the end.
2512 */
2513struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2514 struct btrfs_path *path)
2515{
2516 struct inode_fs_paths *ifp;
2517 struct btrfs_data_container *fspath;
2518
2519 fspath = init_data_container(total_bytes);
2520 if (IS_ERR(fspath))
afc6961f 2521 return ERR_CAST(fspath);
a542ad1b 2522
f54de068 2523 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
a542ad1b 2524 if (!ifp) {
f54de068 2525 kvfree(fspath);
a542ad1b
JS
2526 return ERR_PTR(-ENOMEM);
2527 }
2528
2529 ifp->btrfs_path = path;
2530 ifp->fspath = fspath;
2531 ifp->fs_root = fs_root;
2532
2533 return ifp;
2534}
2535
2536void free_ipath(struct inode_fs_paths *ipath)
2537{
4735fb28
JJ
2538 if (!ipath)
2539 return;
f54de068 2540 kvfree(ipath->fspath);
a542ad1b
JS
2541 kfree(ipath);
2542}
a37f232b
QW
2543
2544struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2545 struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2546{
2547 struct btrfs_backref_iter *ret;
2548
2549 ret = kzalloc(sizeof(*ret), gfp_flag);
2550 if (!ret)
2551 return NULL;
2552
2553 ret->path = btrfs_alloc_path();
c15c2ec0 2554 if (!ret->path) {
a37f232b
QW
2555 kfree(ret);
2556 return NULL;
2557 }
2558
2559 /* Current backref iterator only supports iteration in commit root */
2560 ret->path->search_commit_root = 1;
2561 ret->path->skip_locking = 1;
2562 ret->fs_info = fs_info;
2563
2564 return ret;
2565}
2566
2567int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2568{
2569 struct btrfs_fs_info *fs_info = iter->fs_info;
29cbcf40 2570 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
a37f232b
QW
2571 struct btrfs_path *path = iter->path;
2572 struct btrfs_extent_item *ei;
2573 struct btrfs_key key;
2574 int ret;
2575
2576 key.objectid = bytenr;
2577 key.type = BTRFS_METADATA_ITEM_KEY;
2578 key.offset = (u64)-1;
2579 iter->bytenr = bytenr;
2580
29cbcf40 2581 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
a37f232b
QW
2582 if (ret < 0)
2583 return ret;
2584 if (ret == 0) {
2585 ret = -EUCLEAN;
2586 goto release;
2587 }
2588 if (path->slots[0] == 0) {
2589 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2590 ret = -EUCLEAN;
2591 goto release;
2592 }
2593 path->slots[0]--;
2594
2595 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2596 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2597 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2598 ret = -ENOENT;
2599 goto release;
2600 }
2601 memcpy(&iter->cur_key, &key, sizeof(key));
2602 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2603 path->slots[0]);
2604 iter->end_ptr = (u32)(iter->item_ptr +
3212fa14 2605 btrfs_item_size(path->nodes[0], path->slots[0]));
a37f232b
QW
2606 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2607 struct btrfs_extent_item);
2608
2609 /*
2610 * Only support iteration on tree backref yet.
2611 *
2612 * This is an extra precaution for non skinny-metadata, where
2613 * EXTENT_ITEM is also used for tree blocks, that we can only use
2614 * extent flags to determine if it's a tree block.
2615 */
2616 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2617 ret = -ENOTSUPP;
2618 goto release;
2619 }
2620 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2621
2622 /* If there is no inline backref, go search for keyed backref */
2623 if (iter->cur_ptr >= iter->end_ptr) {
29cbcf40 2624 ret = btrfs_next_item(extent_root, path);
a37f232b
QW
2625
2626 /* No inline nor keyed ref */
2627 if (ret > 0) {
2628 ret = -ENOENT;
2629 goto release;
2630 }
2631 if (ret < 0)
2632 goto release;
2633
2634 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2635 path->slots[0]);
2636 if (iter->cur_key.objectid != bytenr ||
2637 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2638 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2639 ret = -ENOENT;
2640 goto release;
2641 }
2642 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2643 path->slots[0]);
2644 iter->item_ptr = iter->cur_ptr;
3212fa14 2645 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
a37f232b
QW
2646 path->nodes[0], path->slots[0]));
2647 }
2648
2649 return 0;
2650release:
2651 btrfs_backref_iter_release(iter);
2652 return ret;
2653}
c39c2ddc
QW
2654
2655/*
2656 * Go to the next backref item of current bytenr, can be either inlined or
2657 * keyed.
2658 *
2659 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2660 *
2661 * Return 0 if we get next backref without problem.
2662 * Return >0 if there is no extra backref for this bytenr.
2663 * Return <0 if there is something wrong happened.
2664 */
2665int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2666{
2667 struct extent_buffer *eb = btrfs_backref_get_eb(iter);
29cbcf40 2668 struct btrfs_root *extent_root;
c39c2ddc
QW
2669 struct btrfs_path *path = iter->path;
2670 struct btrfs_extent_inline_ref *iref;
2671 int ret;
2672 u32 size;
2673
2674 if (btrfs_backref_iter_is_inline_ref(iter)) {
2675 /* We're still inside the inline refs */
2676 ASSERT(iter->cur_ptr < iter->end_ptr);
2677
2678 if (btrfs_backref_has_tree_block_info(iter)) {
2679 /* First tree block info */
2680 size = sizeof(struct btrfs_tree_block_info);
2681 } else {
2682 /* Use inline ref type to determine the size */
2683 int type;
2684
2685 iref = (struct btrfs_extent_inline_ref *)
2686 ((unsigned long)iter->cur_ptr);
2687 type = btrfs_extent_inline_ref_type(eb, iref);
2688
2689 size = btrfs_extent_inline_ref_size(type);
2690 }
2691 iter->cur_ptr += size;
2692 if (iter->cur_ptr < iter->end_ptr)
2693 return 0;
2694
2695 /* All inline items iterated, fall through */
2696 }
2697
2698 /* We're at keyed items, there is no inline item, go to the next one */
29cbcf40
JB
2699 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2700 ret = btrfs_next_item(extent_root, iter->path);
c39c2ddc
QW
2701 if (ret)
2702 return ret;
2703
2704 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2705 if (iter->cur_key.objectid != iter->bytenr ||
2706 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2707 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2708 return 1;
2709 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2710 path->slots[0]);
2711 iter->cur_ptr = iter->item_ptr;
3212fa14 2712 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
c39c2ddc
QW
2713 path->slots[0]);
2714 return 0;
2715}
584fb121
QW
2716
2717void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2718 struct btrfs_backref_cache *cache, int is_reloc)
2719{
2720 int i;
2721
2722 cache->rb_root = RB_ROOT;
2723 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2724 INIT_LIST_HEAD(&cache->pending[i]);
2725 INIT_LIST_HEAD(&cache->changed);
2726 INIT_LIST_HEAD(&cache->detached);
2727 INIT_LIST_HEAD(&cache->leaves);
2728 INIT_LIST_HEAD(&cache->pending_edge);
2729 INIT_LIST_HEAD(&cache->useless_node);
2730 cache->fs_info = fs_info;
2731 cache->is_reloc = is_reloc;
2732}
b1818dab
QW
2733
2734struct btrfs_backref_node *btrfs_backref_alloc_node(
2735 struct btrfs_backref_cache *cache, u64 bytenr, int level)
2736{
2737 struct btrfs_backref_node *node;
2738
2739 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2740 node = kzalloc(sizeof(*node), GFP_NOFS);
2741 if (!node)
2742 return node;
2743
2744 INIT_LIST_HEAD(&node->list);
2745 INIT_LIST_HEAD(&node->upper);
2746 INIT_LIST_HEAD(&node->lower);
2747 RB_CLEAR_NODE(&node->rb_node);
2748 cache->nr_nodes++;
2749 node->level = level;
2750 node->bytenr = bytenr;
2751
2752 return node;
2753}
47254d07
QW
2754
2755struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2756 struct btrfs_backref_cache *cache)
2757{
2758 struct btrfs_backref_edge *edge;
2759
2760 edge = kzalloc(sizeof(*edge), GFP_NOFS);
2761 if (edge)
2762 cache->nr_edges++;
2763 return edge;
2764}
023acb07
QW
2765
2766/*
2767 * Drop the backref node from cache, also cleaning up all its
2768 * upper edges and any uncached nodes in the path.
2769 *
2770 * This cleanup happens bottom up, thus the node should either
2771 * be the lowest node in the cache or a detached node.
2772 */
2773void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2774 struct btrfs_backref_node *node)
2775{
2776 struct btrfs_backref_node *upper;
2777 struct btrfs_backref_edge *edge;
2778
2779 if (!node)
2780 return;
2781
2782 BUG_ON(!node->lowest && !node->detached);
2783 while (!list_empty(&node->upper)) {
2784 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2785 list[LOWER]);
2786 upper = edge->node[UPPER];
2787 list_del(&edge->list[LOWER]);
2788 list_del(&edge->list[UPPER]);
2789 btrfs_backref_free_edge(cache, edge);
2790
023acb07
QW
2791 /*
2792 * Add the node to leaf node list if no other child block
2793 * cached.
2794 */
2795 if (list_empty(&upper->lower)) {
2796 list_add_tail(&upper->lower, &cache->leaves);
2797 upper->lowest = 1;
2798 }
2799 }
2800
2801 btrfs_backref_drop_node(cache, node);
2802}
13fe1bdb
QW
2803
2804/*
2805 * Release all nodes/edges from current cache
2806 */
2807void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2808{
2809 struct btrfs_backref_node *node;
2810 int i;
2811
2812 while (!list_empty(&cache->detached)) {
2813 node = list_entry(cache->detached.next,
2814 struct btrfs_backref_node, list);
2815 btrfs_backref_cleanup_node(cache, node);
2816 }
2817
2818 while (!list_empty(&cache->leaves)) {
2819 node = list_entry(cache->leaves.next,
2820 struct btrfs_backref_node, lower);
2821 btrfs_backref_cleanup_node(cache, node);
2822 }
2823
2824 cache->last_trans = 0;
2825
2826 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2827 ASSERT(list_empty(&cache->pending[i]));
2828 ASSERT(list_empty(&cache->pending_edge));
2829 ASSERT(list_empty(&cache->useless_node));
2830 ASSERT(list_empty(&cache->changed));
2831 ASSERT(list_empty(&cache->detached));
2832 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2833 ASSERT(!cache->nr_nodes);
2834 ASSERT(!cache->nr_edges);
2835}
1b60d2ec
QW
2836
2837/*
2838 * Handle direct tree backref
2839 *
2840 * Direct tree backref means, the backref item shows its parent bytenr
2841 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2842 *
2843 * @ref_key: The converted backref key.
2844 * For keyed backref, it's the item key.
2845 * For inlined backref, objectid is the bytenr,
2846 * type is btrfs_inline_ref_type, offset is
2847 * btrfs_inline_ref_offset.
2848 */
2849static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2850 struct btrfs_key *ref_key,
2851 struct btrfs_backref_node *cur)
2852{
2853 struct btrfs_backref_edge *edge;
2854 struct btrfs_backref_node *upper;
2855 struct rb_node *rb_node;
2856
2857 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2858
2859 /* Only reloc root uses backref pointing to itself */
2860 if (ref_key->objectid == ref_key->offset) {
2861 struct btrfs_root *root;
2862
2863 cur->is_reloc_root = 1;
2864 /* Only reloc backref cache cares about a specific root */
2865 if (cache->is_reloc) {
2866 root = find_reloc_root(cache->fs_info, cur->bytenr);
f78743fb 2867 if (!root)
1b60d2ec
QW
2868 return -ENOENT;
2869 cur->root = root;
2870 } else {
2871 /*
2872 * For generic purpose backref cache, reloc root node
2873 * is useless.
2874 */
2875 list_add(&cur->list, &cache->useless_node);
2876 }
2877 return 0;
2878 }
2879
2880 edge = btrfs_backref_alloc_edge(cache);
2881 if (!edge)
2882 return -ENOMEM;
2883
2884 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2885 if (!rb_node) {
2886 /* Parent node not yet cached */
2887 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2888 cur->level + 1);
2889 if (!upper) {
2890 btrfs_backref_free_edge(cache, edge);
2891 return -ENOMEM;
2892 }
2893
2894 /*
2895 * Backrefs for the upper level block isn't cached, add the
2896 * block to pending list
2897 */
2898 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2899 } else {
2900 /* Parent node already cached */
2901 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2902 ASSERT(upper->checked);
2903 INIT_LIST_HEAD(&edge->list[UPPER]);
2904 }
2905 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2906 return 0;
2907}
2908
2909/*
2910 * Handle indirect tree backref
2911 *
2912 * Indirect tree backref means, we only know which tree the node belongs to.
2913 * We still need to do a tree search to find out the parents. This is for
2914 * TREE_BLOCK_REF backref (keyed or inlined).
2915 *
2916 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
2917 * @tree_key: The first key of this tree block.
1a9fd417 2918 * @path: A clean (released) path, to avoid allocating path every time
1b60d2ec
QW
2919 * the function get called.
2920 */
2921static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2922 struct btrfs_path *path,
2923 struct btrfs_key *ref_key,
2924 struct btrfs_key *tree_key,
2925 struct btrfs_backref_node *cur)
2926{
2927 struct btrfs_fs_info *fs_info = cache->fs_info;
2928 struct btrfs_backref_node *upper;
2929 struct btrfs_backref_node *lower;
2930 struct btrfs_backref_edge *edge;
2931 struct extent_buffer *eb;
2932 struct btrfs_root *root;
1b60d2ec
QW
2933 struct rb_node *rb_node;
2934 int level;
2935 bool need_check = true;
2936 int ret;
2937
56e9357a 2938 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
1b60d2ec
QW
2939 if (IS_ERR(root))
2940 return PTR_ERR(root);
92a7cc42 2941 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
1b60d2ec
QW
2942 cur->cowonly = 1;
2943
2944 if (btrfs_root_level(&root->root_item) == cur->level) {
2945 /* Tree root */
2946 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
876de781
QW
2947 /*
2948 * For reloc backref cache, we may ignore reloc root. But for
2949 * general purpose backref cache, we can't rely on
2950 * btrfs_should_ignore_reloc_root() as it may conflict with
2951 * current running relocation and lead to missing root.
2952 *
2953 * For general purpose backref cache, reloc root detection is
2954 * completely relying on direct backref (key->offset is parent
2955 * bytenr), thus only do such check for reloc cache.
2956 */
2957 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
1b60d2ec
QW
2958 btrfs_put_root(root);
2959 list_add(&cur->list, &cache->useless_node);
2960 } else {
2961 cur->root = root;
2962 }
2963 return 0;
2964 }
2965
2966 level = cur->level + 1;
2967
2968 /* Search the tree to find parent blocks referring to the block */
2969 path->search_commit_root = 1;
2970 path->skip_locking = 1;
2971 path->lowest_level = level;
2972 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2973 path->lowest_level = 0;
2974 if (ret < 0) {
2975 btrfs_put_root(root);
2976 return ret;
2977 }
2978 if (ret > 0 && path->slots[level] > 0)
2979 path->slots[level]--;
2980
2981 eb = path->nodes[level];
2982 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2983 btrfs_err(fs_info,
2984"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2985 cur->bytenr, level - 1, root->root_key.objectid,
2986 tree_key->objectid, tree_key->type, tree_key->offset);
2987 btrfs_put_root(root);
2988 ret = -ENOENT;
2989 goto out;
2990 }
2991 lower = cur;
2992
2993 /* Add all nodes and edges in the path */
2994 for (; level < BTRFS_MAX_LEVEL; level++) {
2995 if (!path->nodes[level]) {
2996 ASSERT(btrfs_root_bytenr(&root->root_item) ==
2997 lower->bytenr);
876de781
QW
2998 /* Same as previous should_ignore_reloc_root() call */
2999 if (btrfs_should_ignore_reloc_root(root) &&
3000 cache->is_reloc) {
1b60d2ec
QW
3001 btrfs_put_root(root);
3002 list_add(&lower->list, &cache->useless_node);
3003 } else {
3004 lower->root = root;
3005 }
3006 break;
3007 }
3008
3009 edge = btrfs_backref_alloc_edge(cache);
3010 if (!edge) {
3011 btrfs_put_root(root);
3012 ret = -ENOMEM;
3013 goto out;
3014 }
3015
3016 eb = path->nodes[level];
3017 rb_node = rb_simple_search(&cache->rb_root, eb->start);
3018 if (!rb_node) {
3019 upper = btrfs_backref_alloc_node(cache, eb->start,
3020 lower->level + 1);
3021 if (!upper) {
3022 btrfs_put_root(root);
3023 btrfs_backref_free_edge(cache, edge);
3024 ret = -ENOMEM;
3025 goto out;
3026 }
3027 upper->owner = btrfs_header_owner(eb);
92a7cc42 3028 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
1b60d2ec
QW
3029 upper->cowonly = 1;
3030
3031 /*
3032 * If we know the block isn't shared we can avoid
3033 * checking its backrefs.
3034 */
3035 if (btrfs_block_can_be_shared(root, eb))
3036 upper->checked = 0;
3037 else
3038 upper->checked = 1;
3039
3040 /*
3041 * Add the block to pending list if we need to check its
3042 * backrefs, we only do this once while walking up a
3043 * tree as we will catch anything else later on.
3044 */
3045 if (!upper->checked && need_check) {
3046 need_check = false;
3047 list_add_tail(&edge->list[UPPER],
3048 &cache->pending_edge);
3049 } else {
3050 if (upper->checked)
3051 need_check = true;
3052 INIT_LIST_HEAD(&edge->list[UPPER]);
3053 }
3054 } else {
3055 upper = rb_entry(rb_node, struct btrfs_backref_node,
3056 rb_node);
3057 ASSERT(upper->checked);
3058 INIT_LIST_HEAD(&edge->list[UPPER]);
3059 if (!upper->owner)
3060 upper->owner = btrfs_header_owner(eb);
3061 }
3062 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3063
3064 if (rb_node) {
3065 btrfs_put_root(root);
3066 break;
3067 }
3068 lower = upper;
3069 upper = NULL;
3070 }
3071out:
3072 btrfs_release_path(path);
3073 return ret;
3074}
3075
3076/*
3077 * Add backref node @cur into @cache.
3078 *
3079 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3080 * links aren't yet bi-directional. Needs to finish such links.
fc997ed0 3081 * Use btrfs_backref_finish_upper_links() to finish such linkage.
1b60d2ec
QW
3082 *
3083 * @path: Released path for indirect tree backref lookup
3084 * @iter: Released backref iter for extent tree search
3085 * @node_key: The first key of the tree block
3086 */
3087int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
3088 struct btrfs_path *path,
3089 struct btrfs_backref_iter *iter,
3090 struct btrfs_key *node_key,
3091 struct btrfs_backref_node *cur)
3092{
3093 struct btrfs_fs_info *fs_info = cache->fs_info;
3094 struct btrfs_backref_edge *edge;
3095 struct btrfs_backref_node *exist;
3096 int ret;
3097
3098 ret = btrfs_backref_iter_start(iter, cur->bytenr);
3099 if (ret < 0)
3100 return ret;
3101 /*
3102 * We skip the first btrfs_tree_block_info, as we don't use the key
3103 * stored in it, but fetch it from the tree block
3104 */
3105 if (btrfs_backref_has_tree_block_info(iter)) {
3106 ret = btrfs_backref_iter_next(iter);
3107 if (ret < 0)
3108 goto out;
3109 /* No extra backref? This means the tree block is corrupted */
3110 if (ret > 0) {
3111 ret = -EUCLEAN;
3112 goto out;
3113 }
3114 }
3115 WARN_ON(cur->checked);
3116 if (!list_empty(&cur->upper)) {
3117 /*
3118 * The backref was added previously when processing backref of
3119 * type BTRFS_TREE_BLOCK_REF_KEY
3120 */
3121 ASSERT(list_is_singular(&cur->upper));
3122 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3123 list[LOWER]);
3124 ASSERT(list_empty(&edge->list[UPPER]));
3125 exist = edge->node[UPPER];
3126 /*
3127 * Add the upper level block to pending list if we need check
3128 * its backrefs
3129 */
3130 if (!exist->checked)
3131 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3132 } else {
3133 exist = NULL;
3134 }
3135
3136 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3137 struct extent_buffer *eb;
3138 struct btrfs_key key;
3139 int type;
3140
3141 cond_resched();
3142 eb = btrfs_backref_get_eb(iter);
3143
3144 key.objectid = iter->bytenr;
3145 if (btrfs_backref_iter_is_inline_ref(iter)) {
3146 struct btrfs_extent_inline_ref *iref;
3147
3148 /* Update key for inline backref */
3149 iref = (struct btrfs_extent_inline_ref *)
3150 ((unsigned long)iter->cur_ptr);
3151 type = btrfs_get_extent_inline_ref_type(eb, iref,
3152 BTRFS_REF_TYPE_BLOCK);
3153 if (type == BTRFS_REF_TYPE_INVALID) {
3154 ret = -EUCLEAN;
3155 goto out;
3156 }
3157 key.type = type;
3158 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3159 } else {
3160 key.type = iter->cur_key.type;
3161 key.offset = iter->cur_key.offset;
3162 }
3163
3164 /*
3165 * Parent node found and matches current inline ref, no need to
3166 * rebuild this node for this inline ref
3167 */
3168 if (exist &&
3169 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3170 exist->owner == key.offset) ||
3171 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3172 exist->bytenr == key.offset))) {
3173 exist = NULL;
3174 continue;
3175 }
3176
3177 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3178 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3179 ret = handle_direct_tree_backref(cache, &key, cur);
3180 if (ret < 0)
3181 goto out;
3182 continue;
3183 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3184 ret = -EINVAL;
3185 btrfs_print_v0_err(fs_info);
3186 btrfs_handle_fs_error(fs_info, ret, NULL);
3187 goto out;
3188 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
3189 continue;
3190 }
3191
3192 /*
3193 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
3194 * means the root objectid. We need to search the tree to get
3195 * its parent bytenr.
3196 */
3197 ret = handle_indirect_tree_backref(cache, path, &key, node_key,
3198 cur);
3199 if (ret < 0)
3200 goto out;
3201 }
3202 ret = 0;
3203 cur->checked = 1;
3204 WARN_ON(exist);
3205out:
3206 btrfs_backref_iter_release(iter);
3207 return ret;
3208}
fc997ed0
QW
3209
3210/*
3211 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3212 */
3213int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3214 struct btrfs_backref_node *start)
3215{
3216 struct list_head *useless_node = &cache->useless_node;
3217 struct btrfs_backref_edge *edge;
3218 struct rb_node *rb_node;
3219 LIST_HEAD(pending_edge);
3220
3221 ASSERT(start->checked);
3222
3223 /* Insert this node to cache if it's not COW-only */
3224 if (!start->cowonly) {
3225 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3226 &start->rb_node);
3227 if (rb_node)
3228 btrfs_backref_panic(cache->fs_info, start->bytenr,
3229 -EEXIST);
3230 list_add_tail(&start->lower, &cache->leaves);
3231 }
3232
3233 /*
3234 * Use breadth first search to iterate all related edges.
3235 *
3236 * The starting points are all the edges of this node
3237 */
3238 list_for_each_entry(edge, &start->upper, list[LOWER])
3239 list_add_tail(&edge->list[UPPER], &pending_edge);
3240
3241 while (!list_empty(&pending_edge)) {
3242 struct btrfs_backref_node *upper;
3243 struct btrfs_backref_node *lower;
fc997ed0
QW
3244
3245 edge = list_first_entry(&pending_edge,
3246 struct btrfs_backref_edge, list[UPPER]);
3247 list_del_init(&edge->list[UPPER]);
3248 upper = edge->node[UPPER];
3249 lower = edge->node[LOWER];
3250
3251 /* Parent is detached, no need to keep any edges */
3252 if (upper->detached) {
3253 list_del(&edge->list[LOWER]);
3254 btrfs_backref_free_edge(cache, edge);
3255
3256 /* Lower node is orphan, queue for cleanup */
3257 if (list_empty(&lower->upper))
3258 list_add(&lower->list, useless_node);
3259 continue;
3260 }
3261
3262 /*
3263 * All new nodes added in current build_backref_tree() haven't
3264 * been linked to the cache rb tree.
3265 * So if we have upper->rb_node populated, this means a cache
3266 * hit. We only need to link the edge, as @upper and all its
3267 * parents have already been linked.
3268 */
3269 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3270 if (upper->lowest) {
3271 list_del_init(&upper->lower);
3272 upper->lowest = 0;
3273 }
3274
3275 list_add_tail(&edge->list[UPPER], &upper->lower);
3276 continue;
3277 }
3278
3279 /* Sanity check, we shouldn't have any unchecked nodes */
3280 if (!upper->checked) {
3281 ASSERT(0);
3282 return -EUCLEAN;
3283 }
3284
3285 /* Sanity check, COW-only node has non-COW-only parent */
3286 if (start->cowonly != upper->cowonly) {
3287 ASSERT(0);
3288 return -EUCLEAN;
3289 }
3290
3291 /* Only cache non-COW-only (subvolume trees) tree blocks */
3292 if (!upper->cowonly) {
3293 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3294 &upper->rb_node);
3295 if (rb_node) {
3296 btrfs_backref_panic(cache->fs_info,
3297 upper->bytenr, -EEXIST);
3298 return -EUCLEAN;
3299 }
3300 }
3301
3302 list_add_tail(&edge->list[UPPER], &upper->lower);
3303
3304 /*
3305 * Also queue all the parent edges of this uncached node
3306 * to finish the upper linkage
3307 */
3308 list_for_each_entry(edge, &upper->upper, list[LOWER])
3309 list_add_tail(&edge->list[UPPER], &pending_edge);
3310 }
3311 return 0;
3312}
1b23ea18
QW
3313
3314void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3315 struct btrfs_backref_node *node)
3316{
3317 struct btrfs_backref_node *lower;
3318 struct btrfs_backref_node *upper;
3319 struct btrfs_backref_edge *edge;
3320
3321 while (!list_empty(&cache->useless_node)) {
3322 lower = list_first_entry(&cache->useless_node,
3323 struct btrfs_backref_node, list);
3324 list_del_init(&lower->list);
3325 }
3326 while (!list_empty(&cache->pending_edge)) {
3327 edge = list_first_entry(&cache->pending_edge,
3328 struct btrfs_backref_edge, list[UPPER]);
3329 list_del(&edge->list[UPPER]);
3330 list_del(&edge->list[LOWER]);
3331 lower = edge->node[LOWER];
3332 upper = edge->node[UPPER];
3333 btrfs_backref_free_edge(cache, edge);
3334
3335 /*
3336 * Lower is no longer linked to any upper backref nodes and
3337 * isn't in the cache, we can free it ourselves.
3338 */
3339 if (list_empty(&lower->upper) &&
3340 RB_EMPTY_NODE(&lower->rb_node))
3341 list_add(&lower->list, &cache->useless_node);
3342
3343 if (!RB_EMPTY_NODE(&upper->rb_node))
3344 continue;
3345
3346 /* Add this guy's upper edges to the list to process */
3347 list_for_each_entry(edge, &upper->upper, list[LOWER])
3348 list_add_tail(&edge->list[UPPER],
3349 &cache->pending_edge);
3350 if (list_empty(&upper->upper))
3351 list_add(&upper->list, &cache->useless_node);
3352 }
3353
3354 while (!list_empty(&cache->useless_node)) {
3355 lower = list_first_entry(&cache->useless_node,
3356 struct btrfs_backref_node, list);
3357 list_del_init(&lower->list);
3358 if (lower == node)
3359 node = NULL;
49ecc679 3360 btrfs_backref_drop_node(cache, lower);
1b23ea18
QW
3361 }
3362
3363 btrfs_backref_cleanup_node(cache, node);
3364 ASSERT(list_empty(&cache->useless_node) &&
3365 list_empty(&cache->pending_edge));
3366}