btrfs: fix build warning
[linux-block.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
425d17a2 19#include <linux/vmalloc.h>
a542ad1b
JS
20#include "ctree.h"
21#include "disk-io.h"
22#include "backref.h"
8da6d581
JS
23#include "ulist.h"
24#include "transaction.h"
25#include "delayed-ref.h"
b916a59a 26#include "locking.h"
a542ad1b 27
dc046b10
JB
28/* Just an arbitrary number so we can be sure this happened */
29#define BACKREF_FOUND_SHARED 6
30
976b1908
JS
31struct extent_inode_elem {
32 u64 inum;
33 u64 offset;
34 struct extent_inode_elem *next;
35};
36
37static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
38 struct btrfs_file_extent_item *fi,
39 u64 extent_item_pos,
40 struct extent_inode_elem **eie)
41{
8ca15e05 42 u64 offset = 0;
976b1908
JS
43 struct extent_inode_elem *e;
44
8ca15e05
JB
45 if (!btrfs_file_extent_compression(eb, fi) &&
46 !btrfs_file_extent_encryption(eb, fi) &&
47 !btrfs_file_extent_other_encoding(eb, fi)) {
48 u64 data_offset;
49 u64 data_len;
976b1908 50
8ca15e05
JB
51 data_offset = btrfs_file_extent_offset(eb, fi);
52 data_len = btrfs_file_extent_num_bytes(eb, fi);
53
54 if (extent_item_pos < data_offset ||
55 extent_item_pos >= data_offset + data_len)
56 return 1;
57 offset = extent_item_pos - data_offset;
58 }
976b1908
JS
59
60 e = kmalloc(sizeof(*e), GFP_NOFS);
61 if (!e)
62 return -ENOMEM;
63
64 e->next = *eie;
65 e->inum = key->objectid;
8ca15e05 66 e->offset = key->offset + offset;
976b1908
JS
67 *eie = e;
68
69 return 0;
70}
71
f05c4746
WS
72static void free_inode_elem_list(struct extent_inode_elem *eie)
73{
74 struct extent_inode_elem *eie_next;
75
76 for (; eie; eie = eie_next) {
77 eie_next = eie->next;
78 kfree(eie);
79 }
80}
81
976b1908
JS
82static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
83 u64 extent_item_pos,
84 struct extent_inode_elem **eie)
85{
86 u64 disk_byte;
87 struct btrfs_key key;
88 struct btrfs_file_extent_item *fi;
89 int slot;
90 int nritems;
91 int extent_type;
92 int ret;
93
94 /*
95 * from the shared data ref, we only have the leaf but we need
96 * the key. thus, we must look into all items and see that we
97 * find one (some) with a reference to our extent item.
98 */
99 nritems = btrfs_header_nritems(eb);
100 for (slot = 0; slot < nritems; ++slot) {
101 btrfs_item_key_to_cpu(eb, &key, slot);
102 if (key.type != BTRFS_EXTENT_DATA_KEY)
103 continue;
104 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
105 extent_type = btrfs_file_extent_type(eb, fi);
106 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
107 continue;
108 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
109 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
110 if (disk_byte != wanted_disk_byte)
111 continue;
112
113 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
114 if (ret < 0)
115 return ret;
116 }
117
118 return 0;
119}
120
8da6d581
JS
121/*
122 * this structure records all encountered refs on the way up to the root
123 */
124struct __prelim_ref {
125 struct list_head list;
126 u64 root_id;
d5c88b73 127 struct btrfs_key key_for_search;
8da6d581
JS
128 int level;
129 int count;
3301958b 130 struct extent_inode_elem *inode_list;
8da6d581
JS
131 u64 parent;
132 u64 wanted_disk_byte;
133};
134
b9e9a6cb
WS
135static struct kmem_cache *btrfs_prelim_ref_cache;
136
137int __init btrfs_prelim_ref_init(void)
138{
139 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
140 sizeof(struct __prelim_ref),
141 0,
142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
143 NULL);
144 if (!btrfs_prelim_ref_cache)
145 return -ENOMEM;
146 return 0;
147}
148
149void btrfs_prelim_ref_exit(void)
150{
151 if (btrfs_prelim_ref_cache)
152 kmem_cache_destroy(btrfs_prelim_ref_cache);
153}
154
d5c88b73
JS
155/*
156 * the rules for all callers of this function are:
157 * - obtaining the parent is the goal
158 * - if you add a key, you must know that it is a correct key
159 * - if you cannot add the parent or a correct key, then we will look into the
160 * block later to set a correct key
161 *
162 * delayed refs
163 * ============
164 * backref type | shared | indirect | shared | indirect
165 * information | tree | tree | data | data
166 * --------------------+--------+----------+--------+----------
167 * parent logical | y | - | - | -
168 * key to resolve | - | y | y | y
169 * tree block logical | - | - | - | -
170 * root for resolving | y | y | y | y
171 *
172 * - column 1: we've the parent -> done
173 * - column 2, 3, 4: we use the key to find the parent
174 *
175 * on disk refs (inline or keyed)
176 * ==============================
177 * backref type | shared | indirect | shared | indirect
178 * information | tree | tree | data | data
179 * --------------------+--------+----------+--------+----------
180 * parent logical | y | - | y | -
181 * key to resolve | - | - | - | y
182 * tree block logical | y | y | y | y
183 * root for resolving | - | y | y | y
184 *
185 * - column 1, 3: we've the parent -> done
186 * - column 2: we take the first key from the block to find the parent
187 * (see __add_missing_keys)
188 * - column 4: we use the key to find the parent
189 *
190 * additional information that's available but not required to find the parent
191 * block might help in merging entries to gain some speed.
192 */
193
8da6d581 194static int __add_prelim_ref(struct list_head *head, u64 root_id,
d5c88b73 195 struct btrfs_key *key, int level,
742916b8
WS
196 u64 parent, u64 wanted_disk_byte, int count,
197 gfp_t gfp_mask)
8da6d581
JS
198{
199 struct __prelim_ref *ref;
200
48ec4736
LB
201 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
202 return 0;
203
b9e9a6cb 204 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
205 if (!ref)
206 return -ENOMEM;
207
208 ref->root_id = root_id;
d6589101 209 if (key) {
d5c88b73 210 ref->key_for_search = *key;
d6589101
FM
211 /*
212 * We can often find data backrefs with an offset that is too
213 * large (>= LLONG_MAX, maximum allowed file offset) due to
214 * underflows when subtracting a file's offset with the data
215 * offset of its corresponding extent data item. This can
216 * happen for example in the clone ioctl.
217 * So if we detect such case we set the search key's offset to
218 * zero to make sure we will find the matching file extent item
219 * at add_all_parents(), otherwise we will miss it because the
220 * offset taken form the backref is much larger then the offset
221 * of the file extent item. This can make us scan a very large
222 * number of file extent items, but at least it will not make
223 * us miss any.
224 * This is an ugly workaround for a behaviour that should have
225 * never existed, but it does and a fix for the clone ioctl
226 * would touch a lot of places, cause backwards incompatibility
227 * and would not fix the problem for extents cloned with older
228 * kernels.
229 */
230 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
231 ref->key_for_search.offset >= LLONG_MAX)
232 ref->key_for_search.offset = 0;
233 } else {
d5c88b73 234 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
d6589101 235 }
8da6d581 236
3301958b 237 ref->inode_list = NULL;
8da6d581
JS
238 ref->level = level;
239 ref->count = count;
240 ref->parent = parent;
241 ref->wanted_disk_byte = wanted_disk_byte;
242 list_add_tail(&ref->list, head);
243
244 return 0;
245}
246
247static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
7ef81ac8 248 struct ulist *parents, struct __prelim_ref *ref,
44853868
JB
249 int level, u64 time_seq, const u64 *extent_item_pos,
250 u64 total_refs)
8da6d581 251{
69bca40d
AB
252 int ret = 0;
253 int slot;
254 struct extent_buffer *eb;
255 struct btrfs_key key;
7ef81ac8 256 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 257 struct btrfs_file_extent_item *fi;
ed8c4913 258 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 259 u64 disk_byte;
7ef81ac8
JB
260 u64 wanted_disk_byte = ref->wanted_disk_byte;
261 u64 count = 0;
8da6d581 262
69bca40d
AB
263 if (level != 0) {
264 eb = path->nodes[level];
265 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
266 if (ret < 0)
267 return ret;
8da6d581 268 return 0;
69bca40d 269 }
8da6d581
JS
270
271 /*
69bca40d
AB
272 * We normally enter this function with the path already pointing to
273 * the first item to check. But sometimes, we may enter it with
274 * slot==nritems. In that case, go to the next leaf before we continue.
8da6d581 275 */
21633fc6
QW
276 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
277 if (time_seq == (u64)-1)
278 ret = btrfs_next_leaf(root, path);
279 else
280 ret = btrfs_next_old_leaf(root, path, time_seq);
281 }
8da6d581 282
44853868 283 while (!ret && count < total_refs) {
8da6d581 284 eb = path->nodes[0];
69bca40d
AB
285 slot = path->slots[0];
286
287 btrfs_item_key_to_cpu(eb, &key, slot);
288
289 if (key.objectid != key_for_search->objectid ||
290 key.type != BTRFS_EXTENT_DATA_KEY)
291 break;
292
293 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
294 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
295
296 if (disk_byte == wanted_disk_byte) {
297 eie = NULL;
ed8c4913 298 old = NULL;
7ef81ac8 299 count++;
69bca40d
AB
300 if (extent_item_pos) {
301 ret = check_extent_in_eb(&key, eb, fi,
302 *extent_item_pos,
303 &eie);
304 if (ret < 0)
305 break;
306 }
ed8c4913
JB
307 if (ret > 0)
308 goto next;
4eb1f66d
TI
309 ret = ulist_add_merge_ptr(parents, eb->start,
310 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
311 if (ret < 0)
312 break;
313 if (!ret && extent_item_pos) {
314 while (old->next)
315 old = old->next;
316 old->next = eie;
69bca40d 317 }
f05c4746 318 eie = NULL;
8da6d581 319 }
ed8c4913 320next:
21633fc6
QW
321 if (time_seq == (u64)-1)
322 ret = btrfs_next_item(root, path);
323 else
324 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
325 }
326
69bca40d
AB
327 if (ret > 0)
328 ret = 0;
f05c4746
WS
329 else if (ret < 0)
330 free_inode_elem_list(eie);
69bca40d 331 return ret;
8da6d581
JS
332}
333
334/*
335 * resolve an indirect backref in the form (root_id, key, level)
336 * to a logical address
337 */
338static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
da61d31a
JB
339 struct btrfs_path *path, u64 time_seq,
340 struct __prelim_ref *ref,
341 struct ulist *parents,
44853868 342 const u64 *extent_item_pos, u64 total_refs)
8da6d581 343{
8da6d581
JS
344 struct btrfs_root *root;
345 struct btrfs_key root_key;
8da6d581
JS
346 struct extent_buffer *eb;
347 int ret = 0;
348 int root_level;
349 int level = ref->level;
538f72cd 350 int index;
8da6d581 351
8da6d581
JS
352 root_key.objectid = ref->root_id;
353 root_key.type = BTRFS_ROOT_ITEM_KEY;
354 root_key.offset = (u64)-1;
538f72cd
WS
355
356 index = srcu_read_lock(&fs_info->subvol_srcu);
357
2d9e9776 358 root = btrfs_get_fs_root(fs_info, &root_key, false);
8da6d581 359 if (IS_ERR(root)) {
538f72cd 360 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581
JS
361 ret = PTR_ERR(root);
362 goto out;
363 }
364
d9ee522b
JB
365 if (btrfs_test_is_dummy_root(root)) {
366 srcu_read_unlock(&fs_info->subvol_srcu, index);
367 ret = -ENOENT;
368 goto out;
369 }
370
9e351cc8
JB
371 if (path->search_commit_root)
372 root_level = btrfs_header_level(root->commit_root);
21633fc6
QW
373 else if (time_seq == (u64)-1)
374 root_level = btrfs_header_level(root->node);
9e351cc8
JB
375 else
376 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 377
538f72cd
WS
378 if (root_level + 1 == level) {
379 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581 380 goto out;
538f72cd 381 }
8da6d581
JS
382
383 path->lowest_level = level;
21633fc6
QW
384 if (time_seq == (u64)-1)
385 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
386 0, 0);
387 else
388 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
389 time_seq);
538f72cd
WS
390
391 /* root node has been locked, we can release @subvol_srcu safely here */
392 srcu_read_unlock(&fs_info->subvol_srcu, index);
393
8da6d581
JS
394 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
395 "%d for key (%llu %u %llu)\n",
c1c9ff7c
GU
396 ref->root_id, level, ref->count, ret,
397 ref->key_for_search.objectid, ref->key_for_search.type,
398 ref->key_for_search.offset);
8da6d581
JS
399 if (ret < 0)
400 goto out;
401
402 eb = path->nodes[level];
9345457f 403 while (!eb) {
fae7f21c 404 if (WARN_ON(!level)) {
9345457f
JS
405 ret = 1;
406 goto out;
407 }
408 level--;
409 eb = path->nodes[level];
8da6d581
JS
410 }
411
7ef81ac8 412 ret = add_all_parents(root, path, parents, ref, level, time_seq,
44853868 413 extent_item_pos, total_refs);
8da6d581 414out:
da61d31a
JB
415 path->lowest_level = 0;
416 btrfs_release_path(path);
8da6d581
JS
417 return ret;
418}
419
420/*
421 * resolve all indirect backrefs from the list
422 */
423static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
da61d31a 424 struct btrfs_path *path, u64 time_seq,
976b1908 425 struct list_head *head,
dc046b10
JB
426 const u64 *extent_item_pos, u64 total_refs,
427 u64 root_objectid)
8da6d581
JS
428{
429 int err;
430 int ret = 0;
431 struct __prelim_ref *ref;
432 struct __prelim_ref *ref_safe;
433 struct __prelim_ref *new_ref;
434 struct ulist *parents;
435 struct ulist_node *node;
cd1b413c 436 struct ulist_iterator uiter;
8da6d581
JS
437
438 parents = ulist_alloc(GFP_NOFS);
439 if (!parents)
440 return -ENOMEM;
441
442 /*
443 * _safe allows us to insert directly after the current item without
444 * iterating over the newly inserted items.
445 * we're also allowed to re-assign ref during iteration.
446 */
447 list_for_each_entry_safe(ref, ref_safe, head, list) {
448 if (ref->parent) /* already direct */
449 continue;
450 if (ref->count == 0)
451 continue;
dc046b10
JB
452 if (root_objectid && ref->root_id != root_objectid) {
453 ret = BACKREF_FOUND_SHARED;
454 goto out;
455 }
da61d31a 456 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
44853868
JB
457 parents, extent_item_pos,
458 total_refs);
95def2ed
WS
459 /*
460 * we can only tolerate ENOENT,otherwise,we should catch error
461 * and return directly.
462 */
463 if (err == -ENOENT) {
8da6d581 464 continue;
95def2ed
WS
465 } else if (err) {
466 ret = err;
467 goto out;
468 }
8da6d581
JS
469
470 /* we put the first parent into the ref at hand */
cd1b413c
JS
471 ULIST_ITER_INIT(&uiter);
472 node = ulist_next(parents, &uiter);
8da6d581 473 ref->parent = node ? node->val : 0;
995e01b7 474 ref->inode_list = node ?
35a3621b 475 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
8da6d581
JS
476
477 /* additional parents require new refs being added here */
cd1b413c 478 while ((node = ulist_next(parents, &uiter))) {
b9e9a6cb
WS
479 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
480 GFP_NOFS);
8da6d581
JS
481 if (!new_ref) {
482 ret = -ENOMEM;
e36902d4 483 goto out;
8da6d581
JS
484 }
485 memcpy(new_ref, ref, sizeof(*ref));
486 new_ref->parent = node->val;
995e01b7
JS
487 new_ref->inode_list = (struct extent_inode_elem *)
488 (uintptr_t)node->aux;
8da6d581
JS
489 list_add(&new_ref->list, &ref->list);
490 }
491 ulist_reinit(parents);
492 }
e36902d4 493out:
8da6d581
JS
494 ulist_free(parents);
495 return ret;
496}
497
d5c88b73
JS
498static inline int ref_for_same_block(struct __prelim_ref *ref1,
499 struct __prelim_ref *ref2)
500{
501 if (ref1->level != ref2->level)
502 return 0;
503 if (ref1->root_id != ref2->root_id)
504 return 0;
505 if (ref1->key_for_search.type != ref2->key_for_search.type)
506 return 0;
507 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
508 return 0;
509 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
510 return 0;
511 if (ref1->parent != ref2->parent)
512 return 0;
513
514 return 1;
515}
516
517/*
518 * read tree blocks and add keys where required.
519 */
520static int __add_missing_keys(struct btrfs_fs_info *fs_info,
521 struct list_head *head)
522{
a7ca4225 523 struct __prelim_ref *ref;
d5c88b73
JS
524 struct extent_buffer *eb;
525
a7ca4225 526 list_for_each_entry(ref, head, list) {
d5c88b73
JS
527 if (ref->parent)
528 continue;
529 if (ref->key_for_search.type)
530 continue;
531 BUG_ON(!ref->wanted_disk_byte);
532 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
ce86cd59 533 0);
64c043de
LB
534 if (IS_ERR(eb)) {
535 return PTR_ERR(eb);
536 } else if (!extent_buffer_uptodate(eb)) {
416bc658
JB
537 free_extent_buffer(eb);
538 return -EIO;
539 }
d5c88b73
JS
540 btrfs_tree_read_lock(eb);
541 if (btrfs_header_level(eb) == 0)
542 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
543 else
544 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
545 btrfs_tree_read_unlock(eb);
546 free_extent_buffer(eb);
547 }
548 return 0;
549}
550
8da6d581 551/*
00db646d 552 * merge backrefs and adjust counts accordingly
8da6d581
JS
553 *
554 * mode = 1: merge identical keys, if key is set
d5c88b73
JS
555 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
556 * additionally, we could even add a key range for the blocks we
557 * looked into to merge even more (-> replace unresolved refs by those
558 * having a parent).
8da6d581
JS
559 * mode = 2: merge identical parents
560 */
692206b1 561static void __merge_refs(struct list_head *head, int mode)
8da6d581 562{
8e217858 563 struct __prelim_ref *pos1;
8da6d581 564
8e217858
GT
565 list_for_each_entry(pos1, head, list) {
566 struct __prelim_ref *pos2 = pos1, *tmp;
8da6d581 567
8e217858 568 list_for_each_entry_safe_continue(pos2, tmp, head, list) {
8f682f69 569 struct __prelim_ref *ref1 = pos1, *ref2 = pos2;
3ef5969c 570 struct extent_inode_elem *eie;
8da6d581 571
00db646d
QW
572 if (!ref_for_same_block(ref1, ref2))
573 continue;
8da6d581 574 if (mode == 1) {
8f682f69
DJ
575 if (!ref1->parent && ref2->parent)
576 swap(ref1, ref2);
8da6d581
JS
577 } else {
578 if (ref1->parent != ref2->parent)
579 continue;
8da6d581 580 }
3ef5969c
AB
581
582 eie = ref1->inode_list;
583 while (eie && eie->next)
584 eie = eie->next;
585 if (eie)
586 eie->next = ref2->inode_list;
587 else
588 ref1->inode_list = ref2->inode_list;
589 ref1->count += ref2->count;
590
8da6d581 591 list_del(&ref2->list);
b9e9a6cb 592 kmem_cache_free(btrfs_prelim_ref_cache, ref2);
8da6d581
JS
593 }
594
595 }
8da6d581
JS
596}
597
598/*
599 * add all currently queued delayed refs from this head whose seq nr is
600 * smaller or equal that seq to the list
601 */
602static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
dc046b10
JB
603 struct list_head *prefs, u64 *total_refs,
604 u64 inum)
8da6d581 605{
c6fc2454 606 struct btrfs_delayed_ref_node *node;
8da6d581 607 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
d5c88b73
JS
608 struct btrfs_key key;
609 struct btrfs_key op_key = {0};
8da6d581 610 int sgn;
b1375d64 611 int ret = 0;
8da6d581
JS
612
613 if (extent_op && extent_op->update_key)
d5c88b73 614 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
8da6d581 615
d7df2c79 616 spin_lock(&head->lock);
c6fc2454 617 list_for_each_entry(node, &head->ref_list, list) {
8da6d581
JS
618 if (node->seq > seq)
619 continue;
620
621 switch (node->action) {
622 case BTRFS_ADD_DELAYED_EXTENT:
623 case BTRFS_UPDATE_DELAYED_HEAD:
624 WARN_ON(1);
625 continue;
626 case BTRFS_ADD_DELAYED_REF:
627 sgn = 1;
628 break;
629 case BTRFS_DROP_DELAYED_REF:
630 sgn = -1;
631 break;
632 default:
633 BUG_ON(1);
634 }
44853868 635 *total_refs += (node->ref_mod * sgn);
8da6d581
JS
636 switch (node->type) {
637 case BTRFS_TREE_BLOCK_REF_KEY: {
638 struct btrfs_delayed_tree_ref *ref;
639
640 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 641 ret = __add_prelim_ref(prefs, ref->root, &op_key,
8da6d581 642 ref->level + 1, 0, node->bytenr,
742916b8 643 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
644 break;
645 }
646 case BTRFS_SHARED_BLOCK_REF_KEY: {
647 struct btrfs_delayed_tree_ref *ref;
648
649 ref = btrfs_delayed_node_to_tree_ref(node);
acdf898d 650 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581
JS
651 ref->level + 1, ref->parent,
652 node->bytenr,
742916b8 653 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
654 break;
655 }
656 case BTRFS_EXTENT_DATA_REF_KEY: {
657 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
658 ref = btrfs_delayed_node_to_data_ref(node);
659
660 key.objectid = ref->objectid;
661 key.type = BTRFS_EXTENT_DATA_KEY;
662 key.offset = ref->offset;
dc046b10
JB
663
664 /*
665 * Found a inum that doesn't match our known inum, we
666 * know it's shared.
667 */
668 if (inum && ref->objectid != inum) {
669 ret = BACKREF_FOUND_SHARED;
670 break;
671 }
672
8da6d581
JS
673 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
674 node->bytenr,
742916b8 675 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
676 break;
677 }
678 case BTRFS_SHARED_DATA_REF_KEY: {
679 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
680
681 ref = btrfs_delayed_node_to_data_ref(node);
acdf898d 682 ret = __add_prelim_ref(prefs, 0, NULL, 0,
8da6d581 683 ref->parent, node->bytenr,
742916b8 684 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
685 break;
686 }
687 default:
688 WARN_ON(1);
689 }
1149ab6b 690 if (ret)
d7df2c79 691 break;
8da6d581 692 }
d7df2c79
JB
693 spin_unlock(&head->lock);
694 return ret;
8da6d581
JS
695}
696
697/*
698 * add all inline backrefs for bytenr to the list
699 */
700static int __add_inline_refs(struct btrfs_fs_info *fs_info,
701 struct btrfs_path *path, u64 bytenr,
44853868 702 int *info_level, struct list_head *prefs,
dc046b10 703 u64 *total_refs, u64 inum)
8da6d581 704{
b1375d64 705 int ret = 0;
8da6d581
JS
706 int slot;
707 struct extent_buffer *leaf;
708 struct btrfs_key key;
261c84b6 709 struct btrfs_key found_key;
8da6d581
JS
710 unsigned long ptr;
711 unsigned long end;
712 struct btrfs_extent_item *ei;
713 u64 flags;
714 u64 item_size;
715
716 /*
717 * enumerate all inline refs
718 */
719 leaf = path->nodes[0];
dadcaf78 720 slot = path->slots[0];
8da6d581
JS
721
722 item_size = btrfs_item_size_nr(leaf, slot);
723 BUG_ON(item_size < sizeof(*ei));
724
725 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
726 flags = btrfs_extent_flags(leaf, ei);
44853868 727 *total_refs += btrfs_extent_refs(leaf, ei);
261c84b6 728 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
729
730 ptr = (unsigned long)(ei + 1);
731 end = (unsigned long)ei + item_size;
732
261c84b6
JB
733 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
734 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 735 struct btrfs_tree_block_info *info;
8da6d581
JS
736
737 info = (struct btrfs_tree_block_info *)ptr;
738 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
739 ptr += sizeof(struct btrfs_tree_block_info);
740 BUG_ON(ptr > end);
261c84b6
JB
741 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
742 *info_level = found_key.offset;
8da6d581
JS
743 } else {
744 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
745 }
746
747 while (ptr < end) {
748 struct btrfs_extent_inline_ref *iref;
749 u64 offset;
750 int type;
751
752 iref = (struct btrfs_extent_inline_ref *)ptr;
753 type = btrfs_extent_inline_ref_type(leaf, iref);
754 offset = btrfs_extent_inline_ref_offset(leaf, iref);
755
756 switch (type) {
757 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 758 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581 759 *info_level + 1, offset,
742916b8 760 bytenr, 1, GFP_NOFS);
8da6d581
JS
761 break;
762 case BTRFS_SHARED_DATA_REF_KEY: {
763 struct btrfs_shared_data_ref *sdref;
764 int count;
765
766 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
767 count = btrfs_shared_data_ref_count(leaf, sdref);
768 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
742916b8 769 bytenr, count, GFP_NOFS);
8da6d581
JS
770 break;
771 }
772 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
773 ret = __add_prelim_ref(prefs, offset, NULL,
774 *info_level + 1, 0,
742916b8 775 bytenr, 1, GFP_NOFS);
8da6d581
JS
776 break;
777 case BTRFS_EXTENT_DATA_REF_KEY: {
778 struct btrfs_extent_data_ref *dref;
779 int count;
780 u64 root;
781
782 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
783 count = btrfs_extent_data_ref_count(leaf, dref);
784 key.objectid = btrfs_extent_data_ref_objectid(leaf,
785 dref);
786 key.type = BTRFS_EXTENT_DATA_KEY;
787 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10
JB
788
789 if (inum && key.objectid != inum) {
790 ret = BACKREF_FOUND_SHARED;
791 break;
792 }
793
8da6d581 794 root = btrfs_extent_data_ref_root(leaf, dref);
d5c88b73 795 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742916b8 796 bytenr, count, GFP_NOFS);
8da6d581
JS
797 break;
798 }
799 default:
800 WARN_ON(1);
801 }
1149ab6b
WS
802 if (ret)
803 return ret;
8da6d581
JS
804 ptr += btrfs_extent_inline_ref_size(type);
805 }
806
807 return 0;
808}
809
810/*
811 * add all non-inline backrefs for bytenr to the list
812 */
813static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
814 struct btrfs_path *path, u64 bytenr,
dc046b10 815 int info_level, struct list_head *prefs, u64 inum)
8da6d581
JS
816{
817 struct btrfs_root *extent_root = fs_info->extent_root;
818 int ret;
819 int slot;
820 struct extent_buffer *leaf;
821 struct btrfs_key key;
822
823 while (1) {
824 ret = btrfs_next_item(extent_root, path);
825 if (ret < 0)
826 break;
827 if (ret) {
828 ret = 0;
829 break;
830 }
831
832 slot = path->slots[0];
833 leaf = path->nodes[0];
834 btrfs_item_key_to_cpu(leaf, &key, slot);
835
836 if (key.objectid != bytenr)
837 break;
838 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
839 continue;
840 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
841 break;
842
843 switch (key.type) {
844 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 845 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581 846 info_level + 1, key.offset,
742916b8 847 bytenr, 1, GFP_NOFS);
8da6d581
JS
848 break;
849 case BTRFS_SHARED_DATA_REF_KEY: {
850 struct btrfs_shared_data_ref *sdref;
851 int count;
852
853 sdref = btrfs_item_ptr(leaf, slot,
854 struct btrfs_shared_data_ref);
855 count = btrfs_shared_data_ref_count(leaf, sdref);
856 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
742916b8 857 bytenr, count, GFP_NOFS);
8da6d581
JS
858 break;
859 }
860 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
861 ret = __add_prelim_ref(prefs, key.offset, NULL,
862 info_level + 1, 0,
742916b8 863 bytenr, 1, GFP_NOFS);
8da6d581
JS
864 break;
865 case BTRFS_EXTENT_DATA_REF_KEY: {
866 struct btrfs_extent_data_ref *dref;
867 int count;
868 u64 root;
869
870 dref = btrfs_item_ptr(leaf, slot,
871 struct btrfs_extent_data_ref);
872 count = btrfs_extent_data_ref_count(leaf, dref);
873 key.objectid = btrfs_extent_data_ref_objectid(leaf,
874 dref);
875 key.type = BTRFS_EXTENT_DATA_KEY;
876 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10
JB
877
878 if (inum && key.objectid != inum) {
879 ret = BACKREF_FOUND_SHARED;
880 break;
881 }
882
8da6d581
JS
883 root = btrfs_extent_data_ref_root(leaf, dref);
884 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742916b8 885 bytenr, count, GFP_NOFS);
8da6d581
JS
886 break;
887 }
888 default:
889 WARN_ON(1);
890 }
1149ab6b
WS
891 if (ret)
892 return ret;
893
8da6d581
JS
894 }
895
896 return ret;
897}
898
899/*
900 * this adds all existing backrefs (inline backrefs, backrefs and delayed
901 * refs) for the given bytenr to the refs list, merges duplicates and resolves
902 * indirect refs to their parent bytenr.
903 * When roots are found, they're added to the roots list
904 *
2c2ed5aa
MF
905 * NOTE: This can return values > 0
906 *
21633fc6
QW
907 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
908 * much like trans == NULL case, the difference only lies in it will not
909 * commit root.
910 * The special case is for qgroup to search roots in commit_transaction().
911 *
8da6d581
JS
912 * FIXME some caching might speed things up
913 */
914static int find_parent_nodes(struct btrfs_trans_handle *trans,
915 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 916 u64 time_seq, struct ulist *refs,
dc046b10
JB
917 struct ulist *roots, const u64 *extent_item_pos,
918 u64 root_objectid, u64 inum)
8da6d581
JS
919{
920 struct btrfs_key key;
921 struct btrfs_path *path;
8da6d581 922 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 923 struct btrfs_delayed_ref_head *head;
8da6d581
JS
924 int info_level = 0;
925 int ret;
926 struct list_head prefs_delayed;
927 struct list_head prefs;
928 struct __prelim_ref *ref;
f05c4746 929 struct extent_inode_elem *eie = NULL;
44853868 930 u64 total_refs = 0;
8da6d581
JS
931
932 INIT_LIST_HEAD(&prefs);
933 INIT_LIST_HEAD(&prefs_delayed);
934
935 key.objectid = bytenr;
8da6d581 936 key.offset = (u64)-1;
261c84b6
JB
937 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
938 key.type = BTRFS_METADATA_ITEM_KEY;
939 else
940 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
941
942 path = btrfs_alloc_path();
943 if (!path)
944 return -ENOMEM;
e84752d4 945 if (!trans) {
da61d31a 946 path->search_commit_root = 1;
e84752d4
WS
947 path->skip_locking = 1;
948 }
8da6d581 949
21633fc6
QW
950 if (time_seq == (u64)-1)
951 path->skip_locking = 1;
952
8da6d581
JS
953 /*
954 * grab both a lock on the path and a lock on the delayed ref head.
955 * We need both to get a consistent picture of how the refs look
956 * at a specified point in time
957 */
958again:
d3b01064
LZ
959 head = NULL;
960
8da6d581
JS
961 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
962 if (ret < 0)
963 goto out;
964 BUG_ON(ret == 0);
965
faa2dbf0 966#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
21633fc6
QW
967 if (trans && likely(trans->type != __TRANS_DUMMY) &&
968 time_seq != (u64)-1) {
faa2dbf0 969#else
21633fc6 970 if (trans && time_seq != (u64)-1) {
faa2dbf0 971#endif
7a3ae2f8
JS
972 /*
973 * look if there are updates for this ref queued and lock the
974 * head
975 */
976 delayed_refs = &trans->transaction->delayed_refs;
977 spin_lock(&delayed_refs->lock);
978 head = btrfs_find_delayed_ref_head(trans, bytenr);
979 if (head) {
980 if (!mutex_trylock(&head->mutex)) {
981 atomic_inc(&head->node.refs);
982 spin_unlock(&delayed_refs->lock);
983
984 btrfs_release_path(path);
985
986 /*
987 * Mutex was contended, block until it's
988 * released and try again
989 */
990 mutex_lock(&head->mutex);
991 mutex_unlock(&head->mutex);
992 btrfs_put_delayed_ref(&head->node);
993 goto again;
994 }
d7df2c79 995 spin_unlock(&delayed_refs->lock);
097b8a7c 996 ret = __add_delayed_refs(head, time_seq,
dc046b10
JB
997 &prefs_delayed, &total_refs,
998 inum);
155725c9 999 mutex_unlock(&head->mutex);
d7df2c79 1000 if (ret)
7a3ae2f8 1001 goto out;
d7df2c79
JB
1002 } else {
1003 spin_unlock(&delayed_refs->lock);
d3b01064 1004 }
8da6d581 1005 }
8da6d581
JS
1006
1007 if (path->slots[0]) {
1008 struct extent_buffer *leaf;
1009 int slot;
1010
dadcaf78 1011 path->slots[0]--;
8da6d581 1012 leaf = path->nodes[0];
dadcaf78 1013 slot = path->slots[0];
8da6d581
JS
1014 btrfs_item_key_to_cpu(leaf, &key, slot);
1015 if (key.objectid == bytenr &&
261c84b6
JB
1016 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1017 key.type == BTRFS_METADATA_ITEM_KEY)) {
8da6d581 1018 ret = __add_inline_refs(fs_info, path, bytenr,
44853868 1019 &info_level, &prefs,
dc046b10 1020 &total_refs, inum);
8da6d581
JS
1021 if (ret)
1022 goto out;
d5c88b73 1023 ret = __add_keyed_refs(fs_info, path, bytenr,
dc046b10 1024 info_level, &prefs, inum);
8da6d581
JS
1025 if (ret)
1026 goto out;
1027 }
1028 }
1029 btrfs_release_path(path);
1030
8da6d581
JS
1031 list_splice_init(&prefs_delayed, &prefs);
1032
d5c88b73
JS
1033 ret = __add_missing_keys(fs_info, &prefs);
1034 if (ret)
1035 goto out;
1036
692206b1 1037 __merge_refs(&prefs, 1);
8da6d581 1038
da61d31a 1039 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
dc046b10
JB
1040 extent_item_pos, total_refs,
1041 root_objectid);
8da6d581
JS
1042 if (ret)
1043 goto out;
1044
692206b1 1045 __merge_refs(&prefs, 2);
8da6d581
JS
1046
1047 while (!list_empty(&prefs)) {
1048 ref = list_first_entry(&prefs, struct __prelim_ref, list);
6c1500f2 1049 WARN_ON(ref->count < 0);
98cfee21 1050 if (roots && ref->count && ref->root_id && ref->parent == 0) {
dc046b10
JB
1051 if (root_objectid && ref->root_id != root_objectid) {
1052 ret = BACKREF_FOUND_SHARED;
1053 goto out;
1054 }
1055
8da6d581
JS
1056 /* no parent == root of tree */
1057 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1058 if (ret < 0)
1059 goto out;
8da6d581
JS
1060 }
1061 if (ref->count && ref->parent) {
8a56457f
JB
1062 if (extent_item_pos && !ref->inode_list &&
1063 ref->level == 0) {
976b1908 1064 struct extent_buffer *eb;
707e8a07 1065
976b1908 1066 eb = read_tree_block(fs_info->extent_root,
ce86cd59 1067 ref->parent, 0);
64c043de
LB
1068 if (IS_ERR(eb)) {
1069 ret = PTR_ERR(eb);
1070 goto out;
1071 } else if (!extent_buffer_uptodate(eb)) {
416bc658 1072 free_extent_buffer(eb);
c16c2e2e
WS
1073 ret = -EIO;
1074 goto out;
416bc658 1075 }
6f7ff6d7
FM
1076 btrfs_tree_read_lock(eb);
1077 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
976b1908
JS
1078 ret = find_extent_in_eb(eb, bytenr,
1079 *extent_item_pos, &eie);
6f7ff6d7 1080 btrfs_tree_read_unlock_blocking(eb);
976b1908 1081 free_extent_buffer(eb);
f5929cd8
FDBM
1082 if (ret < 0)
1083 goto out;
1084 ref->inode_list = eie;
976b1908 1085 }
4eb1f66d
TI
1086 ret = ulist_add_merge_ptr(refs, ref->parent,
1087 ref->inode_list,
1088 (void **)&eie, GFP_NOFS);
f1723939
WS
1089 if (ret < 0)
1090 goto out;
3301958b
JS
1091 if (!ret && extent_item_pos) {
1092 /*
1093 * we've recorded that parent, so we must extend
1094 * its inode list here
1095 */
1096 BUG_ON(!eie);
1097 while (eie->next)
1098 eie = eie->next;
1099 eie->next = ref->inode_list;
1100 }
f05c4746 1101 eie = NULL;
8da6d581 1102 }
a4fdb61e 1103 list_del(&ref->list);
b9e9a6cb 1104 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
1105 }
1106
1107out:
8da6d581
JS
1108 btrfs_free_path(path);
1109 while (!list_empty(&prefs)) {
1110 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1111 list_del(&ref->list);
b9e9a6cb 1112 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
1113 }
1114 while (!list_empty(&prefs_delayed)) {
1115 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1116 list);
1117 list_del(&ref->list);
b9e9a6cb 1118 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581 1119 }
f05c4746
WS
1120 if (ret < 0)
1121 free_inode_elem_list(eie);
8da6d581
JS
1122 return ret;
1123}
1124
976b1908
JS
1125static void free_leaf_list(struct ulist *blocks)
1126{
1127 struct ulist_node *node = NULL;
1128 struct extent_inode_elem *eie;
976b1908
JS
1129 struct ulist_iterator uiter;
1130
1131 ULIST_ITER_INIT(&uiter);
1132 while ((node = ulist_next(blocks, &uiter))) {
1133 if (!node->aux)
1134 continue;
995e01b7 1135 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
f05c4746 1136 free_inode_elem_list(eie);
976b1908
JS
1137 node->aux = 0;
1138 }
1139
1140 ulist_free(blocks);
1141}
1142
8da6d581
JS
1143/*
1144 * Finds all leafs with a reference to the specified combination of bytenr and
1145 * offset. key_list_head will point to a list of corresponding keys (caller must
1146 * free each list element). The leafs will be stored in the leafs ulist, which
1147 * must be freed with ulist_free.
1148 *
1149 * returns 0 on success, <0 on error
1150 */
1151static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1152 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1153 u64 time_seq, struct ulist **leafs,
976b1908 1154 const u64 *extent_item_pos)
8da6d581 1155{
8da6d581
JS
1156 int ret;
1157
8da6d581 1158 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1159 if (!*leafs)
8da6d581 1160 return -ENOMEM;
8da6d581 1161
097b8a7c 1162 ret = find_parent_nodes(trans, fs_info, bytenr,
dc046b10 1163 time_seq, *leafs, NULL, extent_item_pos, 0, 0);
8da6d581 1164 if (ret < 0 && ret != -ENOENT) {
976b1908 1165 free_leaf_list(*leafs);
8da6d581
JS
1166 return ret;
1167 }
1168
1169 return 0;
1170}
1171
1172/*
1173 * walk all backrefs for a given extent to find all roots that reference this
1174 * extent. Walking a backref means finding all extents that reference this
1175 * extent and in turn walk the backrefs of those, too. Naturally this is a
1176 * recursive process, but here it is implemented in an iterative fashion: We
1177 * find all referencing extents for the extent in question and put them on a
1178 * list. In turn, we find all referencing extents for those, further appending
1179 * to the list. The way we iterate the list allows adding more elements after
1180 * the current while iterating. The process stops when we reach the end of the
1181 * list. Found roots are added to the roots list.
1182 *
1183 * returns 0 on success, < 0 on error.
1184 */
9e351cc8
JB
1185static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1186 struct btrfs_fs_info *fs_info, u64 bytenr,
1187 u64 time_seq, struct ulist **roots)
8da6d581
JS
1188{
1189 struct ulist *tmp;
1190 struct ulist_node *node = NULL;
cd1b413c 1191 struct ulist_iterator uiter;
8da6d581
JS
1192 int ret;
1193
1194 tmp = ulist_alloc(GFP_NOFS);
1195 if (!tmp)
1196 return -ENOMEM;
1197 *roots = ulist_alloc(GFP_NOFS);
1198 if (!*roots) {
1199 ulist_free(tmp);
1200 return -ENOMEM;
1201 }
1202
cd1b413c 1203 ULIST_ITER_INIT(&uiter);
8da6d581 1204 while (1) {
097b8a7c 1205 ret = find_parent_nodes(trans, fs_info, bytenr,
dc046b10 1206 time_seq, tmp, *roots, NULL, 0, 0);
8da6d581
JS
1207 if (ret < 0 && ret != -ENOENT) {
1208 ulist_free(tmp);
1209 ulist_free(*roots);
1210 return ret;
1211 }
cd1b413c 1212 node = ulist_next(tmp, &uiter);
8da6d581
JS
1213 if (!node)
1214 break;
1215 bytenr = node->val;
bca1a290 1216 cond_resched();
8da6d581
JS
1217 }
1218
1219 ulist_free(tmp);
1220 return 0;
1221}
1222
9e351cc8
JB
1223int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1224 struct btrfs_fs_info *fs_info, u64 bytenr,
1225 u64 time_seq, struct ulist **roots)
1226{
1227 int ret;
1228
1229 if (!trans)
1230 down_read(&fs_info->commit_root_sem);
1231 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1232 if (!trans)
1233 up_read(&fs_info->commit_root_sem);
1234 return ret;
1235}
1236
2c2ed5aa
MF
1237/**
1238 * btrfs_check_shared - tell us whether an extent is shared
1239 *
1240 * @trans: optional trans handle
1241 *
1242 * btrfs_check_shared uses the backref walking code but will short
1243 * circuit as soon as it finds a root or inode that doesn't match the
1244 * one passed in. This provides a significant performance benefit for
1245 * callers (such as fiemap) which want to know whether the extent is
1246 * shared but do not need a ref count.
1247 *
1248 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1249 */
dc046b10
JB
1250int btrfs_check_shared(struct btrfs_trans_handle *trans,
1251 struct btrfs_fs_info *fs_info, u64 root_objectid,
1252 u64 inum, u64 bytenr)
1253{
1254 struct ulist *tmp = NULL;
1255 struct ulist *roots = NULL;
1256 struct ulist_iterator uiter;
1257 struct ulist_node *node;
3284da7b 1258 struct seq_list elem = SEQ_LIST_INIT(elem);
dc046b10
JB
1259 int ret = 0;
1260
1261 tmp = ulist_alloc(GFP_NOFS);
1262 roots = ulist_alloc(GFP_NOFS);
1263 if (!tmp || !roots) {
1264 ulist_free(tmp);
1265 ulist_free(roots);
1266 return -ENOMEM;
1267 }
1268
1269 if (trans)
1270 btrfs_get_tree_mod_seq(fs_info, &elem);
1271 else
1272 down_read(&fs_info->commit_root_sem);
1273 ULIST_ITER_INIT(&uiter);
1274 while (1) {
1275 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1276 roots, NULL, root_objectid, inum);
1277 if (ret == BACKREF_FOUND_SHARED) {
2c2ed5aa 1278 /* this is the only condition under which we return 1 */
dc046b10
JB
1279 ret = 1;
1280 break;
1281 }
1282 if (ret < 0 && ret != -ENOENT)
1283 break;
2c2ed5aa 1284 ret = 0;
dc046b10
JB
1285 node = ulist_next(tmp, &uiter);
1286 if (!node)
1287 break;
1288 bytenr = node->val;
1289 cond_resched();
1290 }
1291 if (trans)
1292 btrfs_put_tree_mod_seq(fs_info, &elem);
1293 else
1294 up_read(&fs_info->commit_root_sem);
1295 ulist_free(tmp);
1296 ulist_free(roots);
1297 return ret;
1298}
1299
f186373f
MF
1300int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1301 u64 start_off, struct btrfs_path *path,
1302 struct btrfs_inode_extref **ret_extref,
1303 u64 *found_off)
1304{
1305 int ret, slot;
1306 struct btrfs_key key;
1307 struct btrfs_key found_key;
1308 struct btrfs_inode_extref *extref;
1309 struct extent_buffer *leaf;
1310 unsigned long ptr;
1311
1312 key.objectid = inode_objectid;
962a298f 1313 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
1314 key.offset = start_off;
1315
1316 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1317 if (ret < 0)
1318 return ret;
1319
1320 while (1) {
1321 leaf = path->nodes[0];
1322 slot = path->slots[0];
1323 if (slot >= btrfs_header_nritems(leaf)) {
1324 /*
1325 * If the item at offset is not found,
1326 * btrfs_search_slot will point us to the slot
1327 * where it should be inserted. In our case
1328 * that will be the slot directly before the
1329 * next INODE_REF_KEY_V2 item. In the case
1330 * that we're pointing to the last slot in a
1331 * leaf, we must move one leaf over.
1332 */
1333 ret = btrfs_next_leaf(root, path);
1334 if (ret) {
1335 if (ret >= 1)
1336 ret = -ENOENT;
1337 break;
1338 }
1339 continue;
1340 }
1341
1342 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1343
1344 /*
1345 * Check that we're still looking at an extended ref key for
1346 * this particular objectid. If we have different
1347 * objectid or type then there are no more to be found
1348 * in the tree and we can exit.
1349 */
1350 ret = -ENOENT;
1351 if (found_key.objectid != inode_objectid)
1352 break;
962a298f 1353 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
1354 break;
1355
1356 ret = 0;
1357 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1358 extref = (struct btrfs_inode_extref *)ptr;
1359 *ret_extref = extref;
1360 if (found_off)
1361 *found_off = found_key.offset;
1362 break;
1363 }
1364
1365 return ret;
1366}
1367
48a3b636
ES
1368/*
1369 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1370 * Elements of the path are separated by '/' and the path is guaranteed to be
1371 * 0-terminated. the path is only given within the current file system.
1372 * Therefore, it never starts with a '/'. the caller is responsible to provide
1373 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1374 * the start point of the resulting string is returned. this pointer is within
1375 * dest, normally.
1376 * in case the path buffer would overflow, the pointer is decremented further
1377 * as if output was written to the buffer, though no more output is actually
1378 * generated. that way, the caller can determine how much space would be
1379 * required for the path to fit into the buffer. in that case, the returned
1380 * value will be smaller than dest. callers must check this!
1381 */
96b5bd77
JS
1382char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1383 u32 name_len, unsigned long name_off,
1384 struct extent_buffer *eb_in, u64 parent,
1385 char *dest, u32 size)
a542ad1b 1386{
a542ad1b
JS
1387 int slot;
1388 u64 next_inum;
1389 int ret;
661bec6b 1390 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1391 struct extent_buffer *eb = eb_in;
1392 struct btrfs_key found_key;
b916a59a 1393 int leave_spinning = path->leave_spinning;
d24bec3a 1394 struct btrfs_inode_ref *iref;
a542ad1b
JS
1395
1396 if (bytes_left >= 0)
1397 dest[bytes_left] = '\0';
1398
b916a59a 1399 path->leave_spinning = 1;
a542ad1b 1400 while (1) {
d24bec3a 1401 bytes_left -= name_len;
a542ad1b
JS
1402 if (bytes_left >= 0)
1403 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1404 name_off, name_len);
b916a59a
JS
1405 if (eb != eb_in) {
1406 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1407 free_extent_buffer(eb);
b916a59a 1408 }
c234a24d
DS
1409 ret = btrfs_find_item(fs_root, path, parent, 0,
1410 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
1411 if (ret > 0)
1412 ret = -ENOENT;
a542ad1b
JS
1413 if (ret)
1414 break;
d24bec3a 1415
a542ad1b
JS
1416 next_inum = found_key.offset;
1417
1418 /* regular exit ahead */
1419 if (parent == next_inum)
1420 break;
1421
1422 slot = path->slots[0];
1423 eb = path->nodes[0];
1424 /* make sure we can use eb after releasing the path */
b916a59a 1425 if (eb != eb_in) {
a542ad1b 1426 atomic_inc(&eb->refs);
b916a59a
JS
1427 btrfs_tree_read_lock(eb);
1428 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1429 }
a542ad1b 1430 btrfs_release_path(path);
a542ad1b 1431 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1432
1433 name_len = btrfs_inode_ref_name_len(eb, iref);
1434 name_off = (unsigned long)(iref + 1);
1435
a542ad1b
JS
1436 parent = next_inum;
1437 --bytes_left;
1438 if (bytes_left >= 0)
1439 dest[bytes_left] = '/';
1440 }
1441
1442 btrfs_release_path(path);
b916a59a 1443 path->leave_spinning = leave_spinning;
a542ad1b
JS
1444
1445 if (ret)
1446 return ERR_PTR(ret);
1447
1448 return dest + bytes_left;
1449}
1450
1451/*
1452 * this makes the path point to (logical EXTENT_ITEM *)
1453 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1454 * tree blocks and <0 on error.
1455 */
1456int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1457 struct btrfs_path *path, struct btrfs_key *found_key,
1458 u64 *flags_ret)
a542ad1b
JS
1459{
1460 int ret;
1461 u64 flags;
261c84b6 1462 u64 size = 0;
a542ad1b
JS
1463 u32 item_size;
1464 struct extent_buffer *eb;
1465 struct btrfs_extent_item *ei;
1466 struct btrfs_key key;
1467
261c84b6
JB
1468 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1469 key.type = BTRFS_METADATA_ITEM_KEY;
1470 else
1471 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1472 key.objectid = logical;
1473 key.offset = (u64)-1;
1474
1475 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1476 if (ret < 0)
1477 return ret;
a542ad1b 1478
850a8cdf
WS
1479 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1480 if (ret) {
1481 if (ret > 0)
1482 ret = -ENOENT;
1483 return ret;
580f0a67 1484 }
850a8cdf 1485 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 1486 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
707e8a07 1487 size = fs_info->extent_root->nodesize;
261c84b6
JB
1488 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1489 size = found_key->offset;
1490
580f0a67 1491 if (found_key->objectid > logical ||
261c84b6 1492 found_key->objectid + size <= logical) {
c1c9ff7c 1493 pr_debug("logical %llu is not within any extent\n", logical);
a542ad1b 1494 return -ENOENT;
4692cf58 1495 }
a542ad1b
JS
1496
1497 eb = path->nodes[0];
1498 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1499 BUG_ON(item_size < sizeof(*ei));
1500
1501 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1502 flags = btrfs_extent_flags(eb, ei);
1503
4692cf58
JS
1504 pr_debug("logical %llu is at position %llu within the extent (%llu "
1505 "EXTENT_ITEM %llu) flags %#llx size %u\n",
c1c9ff7c
GU
1506 logical, logical - found_key->objectid, found_key->objectid,
1507 found_key->offset, flags, item_size);
69917e43
LB
1508
1509 WARN_ON(!flags_ret);
1510 if (flags_ret) {
1511 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1512 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1513 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1514 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1515 else
1516 BUG_ON(1);
1517 return 0;
1518 }
a542ad1b
JS
1519
1520 return -EIO;
1521}
1522
1523/*
1524 * helper function to iterate extent inline refs. ptr must point to a 0 value
1525 * for the first call and may be modified. it is used to track state.
1526 * if more refs exist, 0 is returned and the next call to
1527 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1528 * next ref. after the last ref was processed, 1 is returned.
1529 * returns <0 on error
1530 */
1531static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
1532 struct btrfs_key *key,
1533 struct btrfs_extent_item *ei, u32 item_size,
1534 struct btrfs_extent_inline_ref **out_eiref,
1535 int *out_type)
a542ad1b
JS
1536{
1537 unsigned long end;
1538 u64 flags;
1539 struct btrfs_tree_block_info *info;
1540
1541 if (!*ptr) {
1542 /* first call */
1543 flags = btrfs_extent_flags(eb, ei);
1544 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
1545 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1546 /* a skinny metadata extent */
1547 *out_eiref =
1548 (struct btrfs_extent_inline_ref *)(ei + 1);
1549 } else {
1550 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1551 info = (struct btrfs_tree_block_info *)(ei + 1);
1552 *out_eiref =
1553 (struct btrfs_extent_inline_ref *)(info + 1);
1554 }
a542ad1b
JS
1555 } else {
1556 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1557 }
1558 *ptr = (unsigned long)*out_eiref;
cd857dd6 1559 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
1560 return -ENOENT;
1561 }
1562
1563 end = (unsigned long)ei + item_size;
6eda71d0 1564 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
a542ad1b
JS
1565 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1566
1567 *ptr += btrfs_extent_inline_ref_size(*out_type);
1568 WARN_ON(*ptr > end);
1569 if (*ptr == end)
1570 return 1; /* last */
1571
1572 return 0;
1573}
1574
1575/*
1576 * reads the tree block backref for an extent. tree level and root are returned
1577 * through out_level and out_root. ptr must point to a 0 value for the first
1578 * call and may be modified (see __get_extent_inline_ref comment).
1579 * returns 0 if data was provided, 1 if there was no more data to provide or
1580 * <0 on error.
1581 */
1582int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
1583 struct btrfs_key *key, struct btrfs_extent_item *ei,
1584 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
1585{
1586 int ret;
1587 int type;
a542ad1b
JS
1588 struct btrfs_extent_inline_ref *eiref;
1589
1590 if (*ptr == (unsigned long)-1)
1591 return 1;
1592
1593 while (1) {
6eda71d0
LB
1594 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1595 &eiref, &type);
a542ad1b
JS
1596 if (ret < 0)
1597 return ret;
1598
1599 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1600 type == BTRFS_SHARED_BLOCK_REF_KEY)
1601 break;
1602
1603 if (ret == 1)
1604 return 1;
1605 }
1606
1607 /* we can treat both ref types equally here */
a542ad1b 1608 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
1609
1610 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1611 struct btrfs_tree_block_info *info;
1612
1613 info = (struct btrfs_tree_block_info *)(ei + 1);
1614 *out_level = btrfs_tree_block_level(eb, info);
1615 } else {
1616 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1617 *out_level = (u8)key->offset;
1618 }
a542ad1b
JS
1619
1620 if (ret == 1)
1621 *ptr = (unsigned long)-1;
1622
1623 return 0;
1624}
1625
976b1908
JS
1626static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1627 u64 root, u64 extent_item_objectid,
4692cf58 1628 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1629{
976b1908 1630 struct extent_inode_elem *eie;
4692cf58 1631 int ret = 0;
4692cf58 1632
976b1908 1633 for (eie = inode_list; eie; eie = eie->next) {
4692cf58 1634 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
976b1908
JS
1635 "root %llu\n", extent_item_objectid,
1636 eie->inum, eie->offset, root);
1637 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1638 if (ret) {
976b1908
JS
1639 pr_debug("stopping iteration for %llu due to ret=%d\n",
1640 extent_item_objectid, ret);
4692cf58
JS
1641 break;
1642 }
a542ad1b
JS
1643 }
1644
a542ad1b
JS
1645 return ret;
1646}
1647
1648/*
1649 * calls iterate() for every inode that references the extent identified by
4692cf58 1650 * the given parameters.
a542ad1b
JS
1651 * when the iterator function returns a non-zero value, iteration stops.
1652 */
1653int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1654 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1655 int search_commit_root,
a542ad1b
JS
1656 iterate_extent_inodes_t *iterate, void *ctx)
1657{
a542ad1b 1658 int ret;
da61d31a 1659 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1660 struct ulist *refs = NULL;
1661 struct ulist *roots = NULL;
4692cf58
JS
1662 struct ulist_node *ref_node = NULL;
1663 struct ulist_node *root_node = NULL;
3284da7b 1664 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
cd1b413c
JS
1665 struct ulist_iterator ref_uiter;
1666 struct ulist_iterator root_uiter;
a542ad1b 1667
4692cf58
JS
1668 pr_debug("resolving all inodes for extent %llu\n",
1669 extent_item_objectid);
a542ad1b 1670
da61d31a 1671 if (!search_commit_root) {
7a3ae2f8
JS
1672 trans = btrfs_join_transaction(fs_info->extent_root);
1673 if (IS_ERR(trans))
1674 return PTR_ERR(trans);
8445f61c 1675 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
9e351cc8
JB
1676 } else {
1677 down_read(&fs_info->commit_root_sem);
7a3ae2f8 1678 }
a542ad1b 1679
4692cf58 1680 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1681 tree_mod_seq_elem.seq, &refs,
8445f61c 1682 &extent_item_pos);
4692cf58
JS
1683 if (ret)
1684 goto out;
a542ad1b 1685
cd1b413c
JS
1686 ULIST_ITER_INIT(&ref_uiter);
1687 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
9e351cc8
JB
1688 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1689 tree_mod_seq_elem.seq, &roots);
4692cf58
JS
1690 if (ret)
1691 break;
cd1b413c
JS
1692 ULIST_ITER_INIT(&root_uiter);
1693 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
976b1908 1694 pr_debug("root %llu references leaf %llu, data list "
34d73f54 1695 "%#llx\n", root_node->val, ref_node->val,
c1c9ff7c 1696 ref_node->aux);
995e01b7
JS
1697 ret = iterate_leaf_refs((struct extent_inode_elem *)
1698 (uintptr_t)ref_node->aux,
1699 root_node->val,
1700 extent_item_objectid,
1701 iterate, ctx);
4692cf58 1702 }
976b1908 1703 ulist_free(roots);
a542ad1b
JS
1704 }
1705
976b1908 1706 free_leaf_list(refs);
4692cf58 1707out:
7a3ae2f8 1708 if (!search_commit_root) {
8445f61c 1709 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8 1710 btrfs_end_transaction(trans, fs_info->extent_root);
9e351cc8
JB
1711 } else {
1712 up_read(&fs_info->commit_root_sem);
7a3ae2f8
JS
1713 }
1714
a542ad1b
JS
1715 return ret;
1716}
1717
1718int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1719 struct btrfs_path *path,
1720 iterate_extent_inodes_t *iterate, void *ctx)
1721{
1722 int ret;
4692cf58 1723 u64 extent_item_pos;
69917e43 1724 u64 flags = 0;
a542ad1b 1725 struct btrfs_key found_key;
7a3ae2f8 1726 int search_commit_root = path->search_commit_root;
a542ad1b 1727
69917e43 1728 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 1729 btrfs_release_path(path);
a542ad1b
JS
1730 if (ret < 0)
1731 return ret;
69917e43 1732 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 1733 return -EINVAL;
a542ad1b 1734
4692cf58 1735 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1736 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1737 extent_item_pos, search_commit_root,
1738 iterate, ctx);
a542ad1b
JS
1739
1740 return ret;
1741}
1742
d24bec3a
MF
1743typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1744 struct extent_buffer *eb, void *ctx);
1745
1746static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1747 struct btrfs_path *path,
1748 iterate_irefs_t *iterate, void *ctx)
a542ad1b 1749{
aefc1eb1 1750 int ret = 0;
a542ad1b
JS
1751 int slot;
1752 u32 cur;
1753 u32 len;
1754 u32 name_len;
1755 u64 parent = 0;
1756 int found = 0;
1757 struct extent_buffer *eb;
1758 struct btrfs_item *item;
1759 struct btrfs_inode_ref *iref;
1760 struct btrfs_key found_key;
1761
aefc1eb1 1762 while (!ret) {
c234a24d
DS
1763 ret = btrfs_find_item(fs_root, path, inum,
1764 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
1765 &found_key);
1766
a542ad1b
JS
1767 if (ret < 0)
1768 break;
1769 if (ret) {
1770 ret = found ? 0 : -ENOENT;
1771 break;
1772 }
1773 ++found;
1774
1775 parent = found_key.offset;
1776 slot = path->slots[0];
3fe81ce2
FDBM
1777 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1778 if (!eb) {
1779 ret = -ENOMEM;
1780 break;
1781 }
1782 extent_buffer_get(eb);
b916a59a
JS
1783 btrfs_tree_read_lock(eb);
1784 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
1785 btrfs_release_path(path);
1786
dd3cc16b 1787 item = btrfs_item_nr(slot);
a542ad1b
JS
1788 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1789
1790 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1791 name_len = btrfs_inode_ref_name_len(eb, iref);
1792 /* path must be released before calling iterate()! */
4692cf58 1793 pr_debug("following ref at offset %u for inode %llu in "
c1c9ff7c
GU
1794 "tree %llu\n", cur, found_key.objectid,
1795 fs_root->objectid);
d24bec3a
MF
1796 ret = iterate(parent, name_len,
1797 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 1798 if (ret)
a542ad1b 1799 break;
a542ad1b
JS
1800 len = sizeof(*iref) + name_len;
1801 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1802 }
b916a59a 1803 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
1804 free_extent_buffer(eb);
1805 }
1806
1807 btrfs_release_path(path);
1808
1809 return ret;
1810}
1811
d24bec3a
MF
1812static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1813 struct btrfs_path *path,
1814 iterate_irefs_t *iterate, void *ctx)
1815{
1816 int ret;
1817 int slot;
1818 u64 offset = 0;
1819 u64 parent;
1820 int found = 0;
1821 struct extent_buffer *eb;
1822 struct btrfs_inode_extref *extref;
d24bec3a
MF
1823 u32 item_size;
1824 u32 cur_offset;
1825 unsigned long ptr;
1826
1827 while (1) {
1828 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1829 &offset);
1830 if (ret < 0)
1831 break;
1832 if (ret) {
1833 ret = found ? 0 : -ENOENT;
1834 break;
1835 }
1836 ++found;
1837
1838 slot = path->slots[0];
3fe81ce2
FDBM
1839 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1840 if (!eb) {
1841 ret = -ENOMEM;
1842 break;
1843 }
1844 extent_buffer_get(eb);
d24bec3a
MF
1845
1846 btrfs_tree_read_lock(eb);
1847 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1848 btrfs_release_path(path);
1849
2849a854
CM
1850 item_size = btrfs_item_size_nr(eb, slot);
1851 ptr = btrfs_item_ptr_offset(eb, slot);
d24bec3a
MF
1852 cur_offset = 0;
1853
1854 while (cur_offset < item_size) {
1855 u32 name_len;
1856
1857 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1858 parent = btrfs_inode_extref_parent(eb, extref);
1859 name_len = btrfs_inode_extref_name_len(eb, extref);
1860 ret = iterate(parent, name_len,
1861 (unsigned long)&extref->name, eb, ctx);
1862 if (ret)
1863 break;
1864
2849a854 1865 cur_offset += btrfs_inode_extref_name_len(eb, extref);
d24bec3a
MF
1866 cur_offset += sizeof(*extref);
1867 }
1868 btrfs_tree_read_unlock_blocking(eb);
1869 free_extent_buffer(eb);
1870
1871 offset++;
1872 }
1873
1874 btrfs_release_path(path);
1875
1876 return ret;
1877}
1878
1879static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1880 struct btrfs_path *path, iterate_irefs_t *iterate,
1881 void *ctx)
1882{
1883 int ret;
1884 int found_refs = 0;
1885
1886 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1887 if (!ret)
1888 ++found_refs;
1889 else if (ret != -ENOENT)
1890 return ret;
1891
1892 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1893 if (ret == -ENOENT && found_refs)
1894 return 0;
1895
1896 return ret;
1897}
1898
a542ad1b
JS
1899/*
1900 * returns 0 if the path could be dumped (probably truncated)
1901 * returns <0 in case of an error
1902 */
d24bec3a
MF
1903static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1904 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
1905{
1906 struct inode_fs_paths *ipath = ctx;
1907 char *fspath;
1908 char *fspath_min;
1909 int i = ipath->fspath->elem_cnt;
1910 const int s_ptr = sizeof(char *);
1911 u32 bytes_left;
1912
1913 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1914 ipath->fspath->bytes_left - s_ptr : 0;
1915
740c3d22 1916 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
1917 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1918 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
1919 if (IS_ERR(fspath))
1920 return PTR_ERR(fspath);
1921
1922 if (fspath > fspath_min) {
745c4d8e 1923 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
1924 ++ipath->fspath->elem_cnt;
1925 ipath->fspath->bytes_left = fspath - fspath_min;
1926 } else {
1927 ++ipath->fspath->elem_missed;
1928 ipath->fspath->bytes_missing += fspath_min - fspath;
1929 ipath->fspath->bytes_left = 0;
1930 }
1931
1932 return 0;
1933}
1934
1935/*
1936 * this dumps all file system paths to the inode into the ipath struct, provided
1937 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 1938 * from ipath->fspath->val[i].
a542ad1b 1939 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 1940 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
a542ad1b
JS
1941 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1942 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1943 * have been needed to return all paths.
1944 */
1945int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1946{
1947 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 1948 inode_to_path, ipath);
a542ad1b
JS
1949}
1950
a542ad1b
JS
1951struct btrfs_data_container *init_data_container(u32 total_bytes)
1952{
1953 struct btrfs_data_container *data;
1954 size_t alloc_bytes;
1955
1956 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
425d17a2 1957 data = vmalloc(alloc_bytes);
a542ad1b
JS
1958 if (!data)
1959 return ERR_PTR(-ENOMEM);
1960
1961 if (total_bytes >= sizeof(*data)) {
1962 data->bytes_left = total_bytes - sizeof(*data);
1963 data->bytes_missing = 0;
1964 } else {
1965 data->bytes_missing = sizeof(*data) - total_bytes;
1966 data->bytes_left = 0;
1967 }
1968
1969 data->elem_cnt = 0;
1970 data->elem_missed = 0;
1971
1972 return data;
1973}
1974
1975/*
1976 * allocates space to return multiple file system paths for an inode.
1977 * total_bytes to allocate are passed, note that space usable for actual path
1978 * information will be total_bytes - sizeof(struct inode_fs_paths).
1979 * the returned pointer must be freed with free_ipath() in the end.
1980 */
1981struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1982 struct btrfs_path *path)
1983{
1984 struct inode_fs_paths *ifp;
1985 struct btrfs_data_container *fspath;
1986
1987 fspath = init_data_container(total_bytes);
1988 if (IS_ERR(fspath))
1989 return (void *)fspath;
1990
1991 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1992 if (!ifp) {
1993 kfree(fspath);
1994 return ERR_PTR(-ENOMEM);
1995 }
1996
1997 ifp->btrfs_path = path;
1998 ifp->fspath = fspath;
1999 ifp->fs_root = fs_root;
2000
2001 return ifp;
2002}
2003
2004void free_ipath(struct inode_fs_paths *ipath)
2005{
4735fb28
JJ
2006 if (!ipath)
2007 return;
425d17a2 2008 vfree(ipath->fspath);
a542ad1b
JS
2009 kfree(ipath);
2010}