btrfs: backref, only collect file extent items matching backref offset
[linux-block.git] / fs / btrfs / backref.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a542ad1b
JS
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
a542ad1b
JS
4 */
5
f54de068 6#include <linux/mm.h>
afce772e 7#include <linux/rbtree.h>
00142756 8#include <trace/events/btrfs.h>
a542ad1b
JS
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
8da6d581
JS
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
b916a59a 15#include "locking.h"
a542ad1b 16
dc046b10
JB
17/* Just an arbitrary number so we can be sure this happened */
18#define BACKREF_FOUND_SHARED 6
19
976b1908
JS
20struct extent_inode_elem {
21 u64 inum;
22 u64 offset;
23 struct extent_inode_elem *next;
24};
25
73980bec
JM
26static int check_extent_in_eb(const struct btrfs_key *key,
27 const struct extent_buffer *eb,
28 const struct btrfs_file_extent_item *fi,
29 u64 extent_item_pos,
c995ab3c
ZB
30 struct extent_inode_elem **eie,
31 bool ignore_offset)
976b1908 32{
8ca15e05 33 u64 offset = 0;
976b1908
JS
34 struct extent_inode_elem *e;
35
c995ab3c
ZB
36 if (!ignore_offset &&
37 !btrfs_file_extent_compression(eb, fi) &&
8ca15e05
JB
38 !btrfs_file_extent_encryption(eb, fi) &&
39 !btrfs_file_extent_other_encoding(eb, fi)) {
40 u64 data_offset;
41 u64 data_len;
976b1908 42
8ca15e05
JB
43 data_offset = btrfs_file_extent_offset(eb, fi);
44 data_len = btrfs_file_extent_num_bytes(eb, fi);
45
46 if (extent_item_pos < data_offset ||
47 extent_item_pos >= data_offset + data_len)
48 return 1;
49 offset = extent_item_pos - data_offset;
50 }
976b1908
JS
51
52 e = kmalloc(sizeof(*e), GFP_NOFS);
53 if (!e)
54 return -ENOMEM;
55
56 e->next = *eie;
57 e->inum = key->objectid;
8ca15e05 58 e->offset = key->offset + offset;
976b1908
JS
59 *eie = e;
60
61 return 0;
62}
63
f05c4746
WS
64static void free_inode_elem_list(struct extent_inode_elem *eie)
65{
66 struct extent_inode_elem *eie_next;
67
68 for (; eie; eie = eie_next) {
69 eie_next = eie->next;
70 kfree(eie);
71 }
72}
73
73980bec
JM
74static int find_extent_in_eb(const struct extent_buffer *eb,
75 u64 wanted_disk_byte, u64 extent_item_pos,
c995ab3c
ZB
76 struct extent_inode_elem **eie,
77 bool ignore_offset)
976b1908
JS
78{
79 u64 disk_byte;
80 struct btrfs_key key;
81 struct btrfs_file_extent_item *fi;
82 int slot;
83 int nritems;
84 int extent_type;
85 int ret;
86
87 /*
88 * from the shared data ref, we only have the leaf but we need
89 * the key. thus, we must look into all items and see that we
90 * find one (some) with a reference to our extent item.
91 */
92 nritems = btrfs_header_nritems(eb);
93 for (slot = 0; slot < nritems; ++slot) {
94 btrfs_item_key_to_cpu(eb, &key, slot);
95 if (key.type != BTRFS_EXTENT_DATA_KEY)
96 continue;
97 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
98 extent_type = btrfs_file_extent_type(eb, fi);
99 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
100 continue;
101 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
102 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
103 if (disk_byte != wanted_disk_byte)
104 continue;
105
c995ab3c 106 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
976b1908
JS
107 if (ret < 0)
108 return ret;
109 }
110
111 return 0;
112}
113
86d5f994 114struct preftree {
ecf160b4 115 struct rb_root_cached root;
6c336b21 116 unsigned int count;
86d5f994
EN
117};
118
ecf160b4 119#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
86d5f994
EN
120
121struct preftrees {
122 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
123 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
124 struct preftree indirect_missing_keys;
125};
126
3ec4d323
EN
127/*
128 * Checks for a shared extent during backref search.
129 *
130 * The share_count tracks prelim_refs (direct and indirect) having a
131 * ref->count >0:
132 * - incremented when a ref->count transitions to >0
133 * - decremented when a ref->count transitions to <1
134 */
135struct share_check {
136 u64 root_objectid;
137 u64 inum;
138 int share_count;
139};
140
141static inline int extent_is_shared(struct share_check *sc)
142{
143 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
144}
145
b9e9a6cb
WS
146static struct kmem_cache *btrfs_prelim_ref_cache;
147
148int __init btrfs_prelim_ref_init(void)
149{
150 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
e0c476b1 151 sizeof(struct prelim_ref),
b9e9a6cb 152 0,
fba4b697 153 SLAB_MEM_SPREAD,
b9e9a6cb
WS
154 NULL);
155 if (!btrfs_prelim_ref_cache)
156 return -ENOMEM;
157 return 0;
158}
159
e67c718b 160void __cold btrfs_prelim_ref_exit(void)
b9e9a6cb 161{
5598e900 162 kmem_cache_destroy(btrfs_prelim_ref_cache);
b9e9a6cb
WS
163}
164
86d5f994
EN
165static void free_pref(struct prelim_ref *ref)
166{
167 kmem_cache_free(btrfs_prelim_ref_cache, ref);
168}
169
170/*
171 * Return 0 when both refs are for the same block (and can be merged).
172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
173 * indicates a 'higher' block.
174 */
175static int prelim_ref_compare(struct prelim_ref *ref1,
176 struct prelim_ref *ref2)
177{
178 if (ref1->level < ref2->level)
179 return -1;
180 if (ref1->level > ref2->level)
181 return 1;
182 if (ref1->root_id < ref2->root_id)
183 return -1;
184 if (ref1->root_id > ref2->root_id)
185 return 1;
186 if (ref1->key_for_search.type < ref2->key_for_search.type)
187 return -1;
188 if (ref1->key_for_search.type > ref2->key_for_search.type)
189 return 1;
190 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
191 return -1;
192 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
193 return 1;
194 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
195 return -1;
196 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
197 return 1;
198 if (ref1->parent < ref2->parent)
199 return -1;
200 if (ref1->parent > ref2->parent)
201 return 1;
202
203 return 0;
204}
205
ccc8dc75
CIK
206static void update_share_count(struct share_check *sc, int oldcount,
207 int newcount)
3ec4d323
EN
208{
209 if ((!sc) || (oldcount == 0 && newcount < 1))
210 return;
211
212 if (oldcount > 0 && newcount < 1)
213 sc->share_count--;
214 else if (oldcount < 1 && newcount > 0)
215 sc->share_count++;
216}
217
86d5f994
EN
218/*
219 * Add @newref to the @root rbtree, merging identical refs.
220 *
3ec4d323 221 * Callers should assume that newref has been freed after calling.
86d5f994 222 */
00142756
JM
223static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
224 struct preftree *preftree,
3ec4d323
EN
225 struct prelim_ref *newref,
226 struct share_check *sc)
86d5f994 227{
ecf160b4 228 struct rb_root_cached *root;
86d5f994
EN
229 struct rb_node **p;
230 struct rb_node *parent = NULL;
231 struct prelim_ref *ref;
232 int result;
ecf160b4 233 bool leftmost = true;
86d5f994
EN
234
235 root = &preftree->root;
ecf160b4 236 p = &root->rb_root.rb_node;
86d5f994
EN
237
238 while (*p) {
239 parent = *p;
240 ref = rb_entry(parent, struct prelim_ref, rbnode);
241 result = prelim_ref_compare(ref, newref);
242 if (result < 0) {
243 p = &(*p)->rb_left;
244 } else if (result > 0) {
245 p = &(*p)->rb_right;
ecf160b4 246 leftmost = false;
86d5f994
EN
247 } else {
248 /* Identical refs, merge them and free @newref */
249 struct extent_inode_elem *eie = ref->inode_list;
250
251 while (eie && eie->next)
252 eie = eie->next;
253
254 if (!eie)
255 ref->inode_list = newref->inode_list;
256 else
257 eie->next = newref->inode_list;
00142756
JM
258 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
259 preftree->count);
3ec4d323
EN
260 /*
261 * A delayed ref can have newref->count < 0.
262 * The ref->count is updated to follow any
263 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
264 */
265 update_share_count(sc, ref->count,
266 ref->count + newref->count);
86d5f994
EN
267 ref->count += newref->count;
268 free_pref(newref);
269 return;
270 }
271 }
272
3ec4d323 273 update_share_count(sc, 0, newref->count);
6c336b21 274 preftree->count++;
00142756 275 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
86d5f994 276 rb_link_node(&newref->rbnode, parent, p);
ecf160b4 277 rb_insert_color_cached(&newref->rbnode, root, leftmost);
86d5f994
EN
278}
279
280/*
281 * Release the entire tree. We don't care about internal consistency so
282 * just free everything and then reset the tree root.
283 */
284static void prelim_release(struct preftree *preftree)
285{
286 struct prelim_ref *ref, *next_ref;
287
ecf160b4
LB
288 rbtree_postorder_for_each_entry_safe(ref, next_ref,
289 &preftree->root.rb_root, rbnode)
86d5f994
EN
290 free_pref(ref);
291
ecf160b4 292 preftree->root = RB_ROOT_CACHED;
6c336b21 293 preftree->count = 0;
86d5f994
EN
294}
295
d5c88b73
JS
296/*
297 * the rules for all callers of this function are:
298 * - obtaining the parent is the goal
299 * - if you add a key, you must know that it is a correct key
300 * - if you cannot add the parent or a correct key, then we will look into the
301 * block later to set a correct key
302 *
303 * delayed refs
304 * ============
305 * backref type | shared | indirect | shared | indirect
306 * information | tree | tree | data | data
307 * --------------------+--------+----------+--------+----------
308 * parent logical | y | - | - | -
309 * key to resolve | - | y | y | y
310 * tree block logical | - | - | - | -
311 * root for resolving | y | y | y | y
312 *
313 * - column 1: we've the parent -> done
314 * - column 2, 3, 4: we use the key to find the parent
315 *
316 * on disk refs (inline or keyed)
317 * ==============================
318 * backref type | shared | indirect | shared | indirect
319 * information | tree | tree | data | data
320 * --------------------+--------+----------+--------+----------
321 * parent logical | y | - | y | -
322 * key to resolve | - | - | - | y
323 * tree block logical | y | y | y | y
324 * root for resolving | - | y | y | y
325 *
326 * - column 1, 3: we've the parent -> done
327 * - column 2: we take the first key from the block to find the parent
e0c476b1 328 * (see add_missing_keys)
d5c88b73
JS
329 * - column 4: we use the key to find the parent
330 *
331 * additional information that's available but not required to find the parent
332 * block might help in merging entries to gain some speed.
333 */
00142756
JM
334static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
335 struct preftree *preftree, u64 root_id,
e0c476b1 336 const struct btrfs_key *key, int level, u64 parent,
3ec4d323
EN
337 u64 wanted_disk_byte, int count,
338 struct share_check *sc, gfp_t gfp_mask)
8da6d581 339{
e0c476b1 340 struct prelim_ref *ref;
8da6d581 341
48ec4736
LB
342 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
343 return 0;
344
b9e9a6cb 345 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
346 if (!ref)
347 return -ENOMEM;
348
349 ref->root_id = root_id;
7ac8b88e 350 if (key)
d5c88b73 351 ref->key_for_search = *key;
7ac8b88e 352 else
d5c88b73 353 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 354
3301958b 355 ref->inode_list = NULL;
8da6d581
JS
356 ref->level = level;
357 ref->count = count;
358 ref->parent = parent;
359 ref->wanted_disk_byte = wanted_disk_byte;
3ec4d323
EN
360 prelim_ref_insert(fs_info, preftree, ref, sc);
361 return extent_is_shared(sc);
8da6d581
JS
362}
363
86d5f994 364/* direct refs use root == 0, key == NULL */
00142756
JM
365static int add_direct_ref(const struct btrfs_fs_info *fs_info,
366 struct preftrees *preftrees, int level, u64 parent,
3ec4d323
EN
367 u64 wanted_disk_byte, int count,
368 struct share_check *sc, gfp_t gfp_mask)
86d5f994 369{
00142756 370 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
3ec4d323 371 parent, wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
372}
373
374/* indirect refs use parent == 0 */
00142756
JM
375static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
376 struct preftrees *preftrees, u64 root_id,
86d5f994 377 const struct btrfs_key *key, int level,
3ec4d323
EN
378 u64 wanted_disk_byte, int count,
379 struct share_check *sc, gfp_t gfp_mask)
86d5f994
EN
380{
381 struct preftree *tree = &preftrees->indirect;
382
383 if (!key)
384 tree = &preftrees->indirect_missing_keys;
00142756 385 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
3ec4d323 386 wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
387}
388
8da6d581 389static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
e0c476b1 390 struct ulist *parents, struct prelim_ref *ref,
44853868 391 int level, u64 time_seq, const u64 *extent_item_pos,
c995ab3c 392 u64 total_refs, bool ignore_offset)
8da6d581 393{
69bca40d
AB
394 int ret = 0;
395 int slot;
396 struct extent_buffer *eb;
397 struct btrfs_key key;
7ef81ac8 398 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 399 struct btrfs_file_extent_item *fi;
ed8c4913 400 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 401 u64 disk_byte;
7ef81ac8
JB
402 u64 wanted_disk_byte = ref->wanted_disk_byte;
403 u64 count = 0;
7ac8b88e 404 u64 data_offset;
8da6d581 405
69bca40d
AB
406 if (level != 0) {
407 eb = path->nodes[level];
408 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
409 if (ret < 0)
410 return ret;
8da6d581 411 return 0;
69bca40d 412 }
8da6d581
JS
413
414 /*
69bca40d
AB
415 * We normally enter this function with the path already pointing to
416 * the first item to check. But sometimes, we may enter it with
417 * slot==nritems. In that case, go to the next leaf before we continue.
8da6d581 418 */
21633fc6 419 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
de47c9d3 420 if (time_seq == SEQ_LAST)
21633fc6
QW
421 ret = btrfs_next_leaf(root, path);
422 else
423 ret = btrfs_next_old_leaf(root, path, time_seq);
424 }
8da6d581 425
44853868 426 while (!ret && count < total_refs) {
8da6d581 427 eb = path->nodes[0];
69bca40d
AB
428 slot = path->slots[0];
429
430 btrfs_item_key_to_cpu(eb, &key, slot);
431
432 if (key.objectid != key_for_search->objectid ||
433 key.type != BTRFS_EXTENT_DATA_KEY)
434 break;
435
436 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
437 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
7ac8b88e 438 data_offset = btrfs_file_extent_offset(eb, fi);
69bca40d
AB
439
440 if (disk_byte == wanted_disk_byte) {
441 eie = NULL;
ed8c4913 442 old = NULL;
7ac8b88e 443 if (ref->key_for_search.offset == key.offset - data_offset)
444 count++;
445 else
446 goto next;
69bca40d
AB
447 if (extent_item_pos) {
448 ret = check_extent_in_eb(&key, eb, fi,
449 *extent_item_pos,
c995ab3c 450 &eie, ignore_offset);
69bca40d
AB
451 if (ret < 0)
452 break;
453 }
ed8c4913
JB
454 if (ret > 0)
455 goto next;
4eb1f66d
TI
456 ret = ulist_add_merge_ptr(parents, eb->start,
457 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
458 if (ret < 0)
459 break;
460 if (!ret && extent_item_pos) {
461 while (old->next)
462 old = old->next;
463 old->next = eie;
69bca40d 464 }
f05c4746 465 eie = NULL;
8da6d581 466 }
ed8c4913 467next:
de47c9d3 468 if (time_seq == SEQ_LAST)
21633fc6
QW
469 ret = btrfs_next_item(root, path);
470 else
471 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
472 }
473
69bca40d
AB
474 if (ret > 0)
475 ret = 0;
f05c4746
WS
476 else if (ret < 0)
477 free_inode_elem_list(eie);
69bca40d 478 return ret;
8da6d581
JS
479}
480
481/*
482 * resolve an indirect backref in the form (root_id, key, level)
483 * to a logical address
484 */
e0c476b1
JM
485static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
486 struct btrfs_path *path, u64 time_seq,
487 struct prelim_ref *ref, struct ulist *parents,
c995ab3c
ZB
488 const u64 *extent_item_pos, u64 total_refs,
489 bool ignore_offset)
8da6d581 490{
8da6d581
JS
491 struct btrfs_root *root;
492 struct btrfs_key root_key;
8da6d581
JS
493 struct extent_buffer *eb;
494 int ret = 0;
495 int root_level;
496 int level = ref->level;
538f72cd 497 int index;
7ac8b88e 498 struct btrfs_key search_key = ref->key_for_search;
8da6d581 499
8da6d581
JS
500 root_key.objectid = ref->root_id;
501 root_key.type = BTRFS_ROOT_ITEM_KEY;
502 root_key.offset = (u64)-1;
538f72cd
WS
503
504 index = srcu_read_lock(&fs_info->subvol_srcu);
505
2d9e9776 506 root = btrfs_get_fs_root(fs_info, &root_key, false);
8da6d581 507 if (IS_ERR(root)) {
538f72cd 508 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581 509 ret = PTR_ERR(root);
9326f76f
JB
510 goto out_free;
511 }
512
f5ee5c9a 513 if (btrfs_is_testing(fs_info)) {
d9ee522b
JB
514 srcu_read_unlock(&fs_info->subvol_srcu, index);
515 ret = -ENOENT;
516 goto out;
517 }
518
9e351cc8
JB
519 if (path->search_commit_root)
520 root_level = btrfs_header_level(root->commit_root);
de47c9d3 521 else if (time_seq == SEQ_LAST)
21633fc6 522 root_level = btrfs_header_level(root->node);
9e351cc8
JB
523 else
524 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 525
538f72cd
WS
526 if (root_level + 1 == level) {
527 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581 528 goto out;
538f72cd 529 }
8da6d581 530
7ac8b88e 531 /*
532 * We can often find data backrefs with an offset that is too large
533 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
534 * subtracting a file's offset with the data offset of its
535 * corresponding extent data item. This can happen for example in the
536 * clone ioctl.
537 *
538 * So if we detect such case we set the search key's offset to zero to
539 * make sure we will find the matching file extent item at
540 * add_all_parents(), otherwise we will miss it because the offset
541 * taken form the backref is much larger then the offset of the file
542 * extent item. This can make us scan a very large number of file
543 * extent items, but at least it will not make us miss any.
544 *
545 * This is an ugly workaround for a behaviour that should have never
546 * existed, but it does and a fix for the clone ioctl would touch a lot
547 * of places, cause backwards incompatibility and would not fix the
548 * problem for extents cloned with older kernels.
549 */
550 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
551 search_key.offset >= LLONG_MAX)
552 search_key.offset = 0;
8da6d581 553 path->lowest_level = level;
de47c9d3 554 if (time_seq == SEQ_LAST)
7ac8b88e 555 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
21633fc6 556 else
7ac8b88e 557 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
538f72cd
WS
558
559 /* root node has been locked, we can release @subvol_srcu safely here */
560 srcu_read_unlock(&fs_info->subvol_srcu, index);
561
ab8d0fc4
JM
562 btrfs_debug(fs_info,
563 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
c1c9ff7c
GU
564 ref->root_id, level, ref->count, ret,
565 ref->key_for_search.objectid, ref->key_for_search.type,
566 ref->key_for_search.offset);
8da6d581
JS
567 if (ret < 0)
568 goto out;
569
570 eb = path->nodes[level];
9345457f 571 while (!eb) {
fae7f21c 572 if (WARN_ON(!level)) {
9345457f
JS
573 ret = 1;
574 goto out;
575 }
576 level--;
577 eb = path->nodes[level];
8da6d581
JS
578 }
579
7ef81ac8 580 ret = add_all_parents(root, path, parents, ref, level, time_seq,
c995ab3c 581 extent_item_pos, total_refs, ignore_offset);
8da6d581 582out:
00246528 583 btrfs_put_root(root);
9326f76f 584out_free:
da61d31a
JB
585 path->lowest_level = 0;
586 btrfs_release_path(path);
8da6d581
JS
587 return ret;
588}
589
4dae077a
JM
590static struct extent_inode_elem *
591unode_aux_to_inode_list(struct ulist_node *node)
592{
593 if (!node)
594 return NULL;
595 return (struct extent_inode_elem *)(uintptr_t)node->aux;
596}
597
8da6d581 598/*
52042d8e 599 * We maintain three separate rbtrees: one for direct refs, one for
86d5f994
EN
600 * indirect refs which have a key, and one for indirect refs which do not
601 * have a key. Each tree does merge on insertion.
602 *
603 * Once all of the references are located, we iterate over the tree of
604 * indirect refs with missing keys. An appropriate key is located and
605 * the ref is moved onto the tree for indirect refs. After all missing
606 * keys are thus located, we iterate over the indirect ref tree, resolve
607 * each reference, and then insert the resolved reference onto the
608 * direct tree (merging there too).
609 *
610 * New backrefs (i.e., for parent nodes) are added to the appropriate
611 * rbtree as they are encountered. The new backrefs are subsequently
612 * resolved as above.
8da6d581 613 */
e0c476b1
JM
614static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
615 struct btrfs_path *path, u64 time_seq,
86d5f994 616 struct preftrees *preftrees,
e0c476b1 617 const u64 *extent_item_pos, u64 total_refs,
c995ab3c 618 struct share_check *sc, bool ignore_offset)
8da6d581
JS
619{
620 int err;
621 int ret = 0;
8da6d581
JS
622 struct ulist *parents;
623 struct ulist_node *node;
cd1b413c 624 struct ulist_iterator uiter;
86d5f994 625 struct rb_node *rnode;
8da6d581
JS
626
627 parents = ulist_alloc(GFP_NOFS);
628 if (!parents)
629 return -ENOMEM;
630
631 /*
86d5f994
EN
632 * We could trade memory usage for performance here by iterating
633 * the tree, allocating new refs for each insertion, and then
634 * freeing the entire indirect tree when we're done. In some test
635 * cases, the tree can grow quite large (~200k objects).
8da6d581 636 */
ecf160b4 637 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
86d5f994
EN
638 struct prelim_ref *ref;
639
640 ref = rb_entry(rnode, struct prelim_ref, rbnode);
641 if (WARN(ref->parent,
642 "BUG: direct ref found in indirect tree")) {
643 ret = -EINVAL;
644 goto out;
645 }
646
ecf160b4 647 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
6c336b21 648 preftrees->indirect.count--;
86d5f994
EN
649
650 if (ref->count == 0) {
651 free_pref(ref);
8da6d581 652 continue;
86d5f994
EN
653 }
654
3ec4d323
EN
655 if (sc && sc->root_objectid &&
656 ref->root_id != sc->root_objectid) {
86d5f994 657 free_pref(ref);
dc046b10
JB
658 ret = BACKREF_FOUND_SHARED;
659 goto out;
660 }
e0c476b1
JM
661 err = resolve_indirect_ref(fs_info, path, time_seq, ref,
662 parents, extent_item_pos,
c995ab3c 663 total_refs, ignore_offset);
95def2ed
WS
664 /*
665 * we can only tolerate ENOENT,otherwise,we should catch error
666 * and return directly.
667 */
668 if (err == -ENOENT) {
3ec4d323
EN
669 prelim_ref_insert(fs_info, &preftrees->direct, ref,
670 NULL);
8da6d581 671 continue;
95def2ed 672 } else if (err) {
86d5f994 673 free_pref(ref);
95def2ed
WS
674 ret = err;
675 goto out;
676 }
8da6d581
JS
677
678 /* we put the first parent into the ref at hand */
cd1b413c
JS
679 ULIST_ITER_INIT(&uiter);
680 node = ulist_next(parents, &uiter);
8da6d581 681 ref->parent = node ? node->val : 0;
4dae077a 682 ref->inode_list = unode_aux_to_inode_list(node);
8da6d581 683
86d5f994 684 /* Add a prelim_ref(s) for any other parent(s). */
cd1b413c 685 while ((node = ulist_next(parents, &uiter))) {
86d5f994
EN
686 struct prelim_ref *new_ref;
687
b9e9a6cb
WS
688 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
689 GFP_NOFS);
8da6d581 690 if (!new_ref) {
86d5f994 691 free_pref(ref);
8da6d581 692 ret = -ENOMEM;
e36902d4 693 goto out;
8da6d581
JS
694 }
695 memcpy(new_ref, ref, sizeof(*ref));
696 new_ref->parent = node->val;
4dae077a 697 new_ref->inode_list = unode_aux_to_inode_list(node);
3ec4d323
EN
698 prelim_ref_insert(fs_info, &preftrees->direct,
699 new_ref, NULL);
8da6d581 700 }
86d5f994 701
3ec4d323 702 /*
52042d8e 703 * Now it's a direct ref, put it in the direct tree. We must
3ec4d323
EN
704 * do this last because the ref could be merged/freed here.
705 */
706 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
86d5f994 707
8da6d581 708 ulist_reinit(parents);
9dd14fd6 709 cond_resched();
8da6d581 710 }
e36902d4 711out:
8da6d581
JS
712 ulist_free(parents);
713 return ret;
714}
715
d5c88b73
JS
716/*
717 * read tree blocks and add keys where required.
718 */
e0c476b1 719static int add_missing_keys(struct btrfs_fs_info *fs_info,
38e3eebf 720 struct preftrees *preftrees, bool lock)
d5c88b73 721{
e0c476b1 722 struct prelim_ref *ref;
d5c88b73 723 struct extent_buffer *eb;
86d5f994
EN
724 struct preftree *tree = &preftrees->indirect_missing_keys;
725 struct rb_node *node;
d5c88b73 726
ecf160b4 727 while ((node = rb_first_cached(&tree->root))) {
86d5f994 728 ref = rb_entry(node, struct prelim_ref, rbnode);
ecf160b4 729 rb_erase_cached(node, &tree->root);
86d5f994
EN
730
731 BUG_ON(ref->parent); /* should not be a direct ref */
732 BUG_ON(ref->key_for_search.type);
d5c88b73 733 BUG_ON(!ref->wanted_disk_byte);
86d5f994 734
581c1760
QW
735 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
736 ref->level - 1, NULL);
64c043de 737 if (IS_ERR(eb)) {
86d5f994 738 free_pref(ref);
64c043de
LB
739 return PTR_ERR(eb);
740 } else if (!extent_buffer_uptodate(eb)) {
86d5f994 741 free_pref(ref);
416bc658
JB
742 free_extent_buffer(eb);
743 return -EIO;
744 }
38e3eebf
JB
745 if (lock)
746 btrfs_tree_read_lock(eb);
d5c88b73
JS
747 if (btrfs_header_level(eb) == 0)
748 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
749 else
750 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
38e3eebf
JB
751 if (lock)
752 btrfs_tree_read_unlock(eb);
d5c88b73 753 free_extent_buffer(eb);
3ec4d323 754 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
9dd14fd6 755 cond_resched();
d5c88b73
JS
756 }
757 return 0;
758}
759
8da6d581
JS
760/*
761 * add all currently queued delayed refs from this head whose seq nr is
762 * smaller or equal that seq to the list
763 */
00142756
JM
764static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
765 struct btrfs_delayed_ref_head *head, u64 seq,
86d5f994 766 struct preftrees *preftrees, u64 *total_refs,
3ec4d323 767 struct share_check *sc)
8da6d581 768{
c6fc2454 769 struct btrfs_delayed_ref_node *node;
8da6d581 770 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
d5c88b73 771 struct btrfs_key key;
86d5f994 772 struct btrfs_key tmp_op_key;
0e0adbcf 773 struct rb_node *n;
01747e92 774 int count;
b1375d64 775 int ret = 0;
8da6d581 776
a6dbceaf 777 if (extent_op && extent_op->update_key)
86d5f994 778 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
8da6d581 779
d7df2c79 780 spin_lock(&head->lock);
e3d03965 781 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
0e0adbcf
JB
782 node = rb_entry(n, struct btrfs_delayed_ref_node,
783 ref_node);
8da6d581
JS
784 if (node->seq > seq)
785 continue;
786
787 switch (node->action) {
788 case BTRFS_ADD_DELAYED_EXTENT:
789 case BTRFS_UPDATE_DELAYED_HEAD:
790 WARN_ON(1);
791 continue;
792 case BTRFS_ADD_DELAYED_REF:
01747e92 793 count = node->ref_mod;
8da6d581
JS
794 break;
795 case BTRFS_DROP_DELAYED_REF:
01747e92 796 count = node->ref_mod * -1;
8da6d581
JS
797 break;
798 default:
290342f6 799 BUG();
8da6d581 800 }
01747e92 801 *total_refs += count;
8da6d581
JS
802 switch (node->type) {
803 case BTRFS_TREE_BLOCK_REF_KEY: {
86d5f994 804 /* NORMAL INDIRECT METADATA backref */
8da6d581
JS
805 struct btrfs_delayed_tree_ref *ref;
806
807 ref = btrfs_delayed_node_to_tree_ref(node);
00142756
JM
808 ret = add_indirect_ref(fs_info, preftrees, ref->root,
809 &tmp_op_key, ref->level + 1,
01747e92
EN
810 node->bytenr, count, sc,
811 GFP_ATOMIC);
8da6d581
JS
812 break;
813 }
814 case BTRFS_SHARED_BLOCK_REF_KEY: {
86d5f994 815 /* SHARED DIRECT METADATA backref */
8da6d581
JS
816 struct btrfs_delayed_tree_ref *ref;
817
818 ref = btrfs_delayed_node_to_tree_ref(node);
86d5f994 819
01747e92
EN
820 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
821 ref->parent, node->bytenr, count,
3ec4d323 822 sc, GFP_ATOMIC);
8da6d581
JS
823 break;
824 }
825 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 826 /* NORMAL INDIRECT DATA backref */
8da6d581 827 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
828 ref = btrfs_delayed_node_to_data_ref(node);
829
830 key.objectid = ref->objectid;
831 key.type = BTRFS_EXTENT_DATA_KEY;
832 key.offset = ref->offset;
dc046b10
JB
833
834 /*
835 * Found a inum that doesn't match our known inum, we
836 * know it's shared.
837 */
3ec4d323 838 if (sc && sc->inum && ref->objectid != sc->inum) {
dc046b10 839 ret = BACKREF_FOUND_SHARED;
3ec4d323 840 goto out;
dc046b10
JB
841 }
842
00142756 843 ret = add_indirect_ref(fs_info, preftrees, ref->root,
01747e92
EN
844 &key, 0, node->bytenr, count, sc,
845 GFP_ATOMIC);
8da6d581
JS
846 break;
847 }
848 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 849 /* SHARED DIRECT FULL backref */
8da6d581 850 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
851
852 ref = btrfs_delayed_node_to_data_ref(node);
86d5f994 853
01747e92
EN
854 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
855 node->bytenr, count, sc,
856 GFP_ATOMIC);
8da6d581
JS
857 break;
858 }
859 default:
860 WARN_ON(1);
861 }
3ec4d323
EN
862 /*
863 * We must ignore BACKREF_FOUND_SHARED until all delayed
864 * refs have been checked.
865 */
866 if (ret && (ret != BACKREF_FOUND_SHARED))
d7df2c79 867 break;
8da6d581 868 }
3ec4d323
EN
869 if (!ret)
870 ret = extent_is_shared(sc);
871out:
d7df2c79
JB
872 spin_unlock(&head->lock);
873 return ret;
8da6d581
JS
874}
875
876/*
877 * add all inline backrefs for bytenr to the list
3ec4d323
EN
878 *
879 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 880 */
00142756
JM
881static int add_inline_refs(const struct btrfs_fs_info *fs_info,
882 struct btrfs_path *path, u64 bytenr,
86d5f994 883 int *info_level, struct preftrees *preftrees,
3ec4d323 884 u64 *total_refs, struct share_check *sc)
8da6d581 885{
b1375d64 886 int ret = 0;
8da6d581
JS
887 int slot;
888 struct extent_buffer *leaf;
889 struct btrfs_key key;
261c84b6 890 struct btrfs_key found_key;
8da6d581
JS
891 unsigned long ptr;
892 unsigned long end;
893 struct btrfs_extent_item *ei;
894 u64 flags;
895 u64 item_size;
896
897 /*
898 * enumerate all inline refs
899 */
900 leaf = path->nodes[0];
dadcaf78 901 slot = path->slots[0];
8da6d581
JS
902
903 item_size = btrfs_item_size_nr(leaf, slot);
904 BUG_ON(item_size < sizeof(*ei));
905
906 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
907 flags = btrfs_extent_flags(leaf, ei);
44853868 908 *total_refs += btrfs_extent_refs(leaf, ei);
261c84b6 909 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
910
911 ptr = (unsigned long)(ei + 1);
912 end = (unsigned long)ei + item_size;
913
261c84b6
JB
914 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
915 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 916 struct btrfs_tree_block_info *info;
8da6d581
JS
917
918 info = (struct btrfs_tree_block_info *)ptr;
919 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
920 ptr += sizeof(struct btrfs_tree_block_info);
921 BUG_ON(ptr > end);
261c84b6
JB
922 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
923 *info_level = found_key.offset;
8da6d581
JS
924 } else {
925 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
926 }
927
928 while (ptr < end) {
929 struct btrfs_extent_inline_ref *iref;
930 u64 offset;
931 int type;
932
933 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
934 type = btrfs_get_extent_inline_ref_type(leaf, iref,
935 BTRFS_REF_TYPE_ANY);
936 if (type == BTRFS_REF_TYPE_INVALID)
af431dcb 937 return -EUCLEAN;
3de28d57 938
8da6d581
JS
939 offset = btrfs_extent_inline_ref_offset(leaf, iref);
940
941 switch (type) {
942 case BTRFS_SHARED_BLOCK_REF_KEY:
00142756
JM
943 ret = add_direct_ref(fs_info, preftrees,
944 *info_level + 1, offset,
3ec4d323 945 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
946 break;
947 case BTRFS_SHARED_DATA_REF_KEY: {
948 struct btrfs_shared_data_ref *sdref;
949 int count;
950
951 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
952 count = btrfs_shared_data_ref_count(leaf, sdref);
86d5f994 953
00142756 954 ret = add_direct_ref(fs_info, preftrees, 0, offset,
3ec4d323 955 bytenr, count, sc, GFP_NOFS);
8da6d581
JS
956 break;
957 }
958 case BTRFS_TREE_BLOCK_REF_KEY:
00142756
JM
959 ret = add_indirect_ref(fs_info, preftrees, offset,
960 NULL, *info_level + 1,
3ec4d323 961 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
962 break;
963 case BTRFS_EXTENT_DATA_REF_KEY: {
964 struct btrfs_extent_data_ref *dref;
965 int count;
966 u64 root;
967
968 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
969 count = btrfs_extent_data_ref_count(leaf, dref);
970 key.objectid = btrfs_extent_data_ref_objectid(leaf,
971 dref);
972 key.type = BTRFS_EXTENT_DATA_KEY;
973 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 974
3ec4d323 975 if (sc && sc->inum && key.objectid != sc->inum) {
dc046b10
JB
976 ret = BACKREF_FOUND_SHARED;
977 break;
978 }
979
8da6d581 980 root = btrfs_extent_data_ref_root(leaf, dref);
86d5f994 981
00142756
JM
982 ret = add_indirect_ref(fs_info, preftrees, root,
983 &key, 0, bytenr, count,
3ec4d323 984 sc, GFP_NOFS);
8da6d581
JS
985 break;
986 }
987 default:
988 WARN_ON(1);
989 }
1149ab6b
WS
990 if (ret)
991 return ret;
8da6d581
JS
992 ptr += btrfs_extent_inline_ref_size(type);
993 }
994
995 return 0;
996}
997
998/*
999 * add all non-inline backrefs for bytenr to the list
3ec4d323
EN
1000 *
1001 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 1002 */
e0c476b1
JM
1003static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1004 struct btrfs_path *path, u64 bytenr,
86d5f994 1005 int info_level, struct preftrees *preftrees,
3ec4d323 1006 struct share_check *sc)
8da6d581
JS
1007{
1008 struct btrfs_root *extent_root = fs_info->extent_root;
1009 int ret;
1010 int slot;
1011 struct extent_buffer *leaf;
1012 struct btrfs_key key;
1013
1014 while (1) {
1015 ret = btrfs_next_item(extent_root, path);
1016 if (ret < 0)
1017 break;
1018 if (ret) {
1019 ret = 0;
1020 break;
1021 }
1022
1023 slot = path->slots[0];
1024 leaf = path->nodes[0];
1025 btrfs_item_key_to_cpu(leaf, &key, slot);
1026
1027 if (key.objectid != bytenr)
1028 break;
1029 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1030 continue;
1031 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1032 break;
1033
1034 switch (key.type) {
1035 case BTRFS_SHARED_BLOCK_REF_KEY:
86d5f994 1036 /* SHARED DIRECT METADATA backref */
00142756
JM
1037 ret = add_direct_ref(fs_info, preftrees,
1038 info_level + 1, key.offset,
3ec4d323 1039 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1040 break;
1041 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 1042 /* SHARED DIRECT FULL backref */
8da6d581
JS
1043 struct btrfs_shared_data_ref *sdref;
1044 int count;
1045
1046 sdref = btrfs_item_ptr(leaf, slot,
1047 struct btrfs_shared_data_ref);
1048 count = btrfs_shared_data_ref_count(leaf, sdref);
00142756
JM
1049 ret = add_direct_ref(fs_info, preftrees, 0,
1050 key.offset, bytenr, count,
3ec4d323 1051 sc, GFP_NOFS);
8da6d581
JS
1052 break;
1053 }
1054 case BTRFS_TREE_BLOCK_REF_KEY:
86d5f994 1055 /* NORMAL INDIRECT METADATA backref */
00142756
JM
1056 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1057 NULL, info_level + 1, bytenr,
3ec4d323 1058 1, NULL, GFP_NOFS);
8da6d581
JS
1059 break;
1060 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 1061 /* NORMAL INDIRECT DATA backref */
8da6d581
JS
1062 struct btrfs_extent_data_ref *dref;
1063 int count;
1064 u64 root;
1065
1066 dref = btrfs_item_ptr(leaf, slot,
1067 struct btrfs_extent_data_ref);
1068 count = btrfs_extent_data_ref_count(leaf, dref);
1069 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1070 dref);
1071 key.type = BTRFS_EXTENT_DATA_KEY;
1072 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1073
3ec4d323 1074 if (sc && sc->inum && key.objectid != sc->inum) {
dc046b10
JB
1075 ret = BACKREF_FOUND_SHARED;
1076 break;
1077 }
1078
8da6d581 1079 root = btrfs_extent_data_ref_root(leaf, dref);
00142756
JM
1080 ret = add_indirect_ref(fs_info, preftrees, root,
1081 &key, 0, bytenr, count,
3ec4d323 1082 sc, GFP_NOFS);
8da6d581
JS
1083 break;
1084 }
1085 default:
1086 WARN_ON(1);
1087 }
1149ab6b
WS
1088 if (ret)
1089 return ret;
1090
8da6d581
JS
1091 }
1092
1093 return ret;
1094}
1095
1096/*
1097 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1098 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1099 * indirect refs to their parent bytenr.
1100 * When roots are found, they're added to the roots list
1101 *
de47c9d3 1102 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
21633fc6
QW
1103 * much like trans == NULL case, the difference only lies in it will not
1104 * commit root.
1105 * The special case is for qgroup to search roots in commit_transaction().
1106 *
3ec4d323
EN
1107 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1108 * shared extent is detected.
1109 *
1110 * Otherwise this returns 0 for success and <0 for an error.
1111 *
c995ab3c
ZB
1112 * If ignore_offset is set to false, only extent refs whose offsets match
1113 * extent_item_pos are returned. If true, every extent ref is returned
1114 * and extent_item_pos is ignored.
1115 *
8da6d581
JS
1116 * FIXME some caching might speed things up
1117 */
1118static int find_parent_nodes(struct btrfs_trans_handle *trans,
1119 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1120 u64 time_seq, struct ulist *refs,
dc046b10 1121 struct ulist *roots, const u64 *extent_item_pos,
c995ab3c 1122 struct share_check *sc, bool ignore_offset)
8da6d581
JS
1123{
1124 struct btrfs_key key;
1125 struct btrfs_path *path;
8da6d581 1126 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 1127 struct btrfs_delayed_ref_head *head;
8da6d581
JS
1128 int info_level = 0;
1129 int ret;
e0c476b1 1130 struct prelim_ref *ref;
86d5f994 1131 struct rb_node *node;
f05c4746 1132 struct extent_inode_elem *eie = NULL;
86d5f994 1133 /* total of both direct AND indirect refs! */
44853868 1134 u64 total_refs = 0;
86d5f994
EN
1135 struct preftrees preftrees = {
1136 .direct = PREFTREE_INIT,
1137 .indirect = PREFTREE_INIT,
1138 .indirect_missing_keys = PREFTREE_INIT
1139 };
8da6d581
JS
1140
1141 key.objectid = bytenr;
8da6d581 1142 key.offset = (u64)-1;
261c84b6
JB
1143 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1144 key.type = BTRFS_METADATA_ITEM_KEY;
1145 else
1146 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
1147
1148 path = btrfs_alloc_path();
1149 if (!path)
1150 return -ENOMEM;
e84752d4 1151 if (!trans) {
da61d31a 1152 path->search_commit_root = 1;
e84752d4
WS
1153 path->skip_locking = 1;
1154 }
8da6d581 1155
de47c9d3 1156 if (time_seq == SEQ_LAST)
21633fc6
QW
1157 path->skip_locking = 1;
1158
8da6d581
JS
1159 /*
1160 * grab both a lock on the path and a lock on the delayed ref head.
1161 * We need both to get a consistent picture of how the refs look
1162 * at a specified point in time
1163 */
1164again:
d3b01064
LZ
1165 head = NULL;
1166
8da6d581
JS
1167 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1168 if (ret < 0)
1169 goto out;
1170 BUG_ON(ret == 0);
1171
faa2dbf0 1172#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
21633fc6 1173 if (trans && likely(trans->type != __TRANS_DUMMY) &&
de47c9d3 1174 time_seq != SEQ_LAST) {
faa2dbf0 1175#else
de47c9d3 1176 if (trans && time_seq != SEQ_LAST) {
faa2dbf0 1177#endif
7a3ae2f8
JS
1178 /*
1179 * look if there are updates for this ref queued and lock the
1180 * head
1181 */
1182 delayed_refs = &trans->transaction->delayed_refs;
1183 spin_lock(&delayed_refs->lock);
f72ad18e 1184 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7a3ae2f8
JS
1185 if (head) {
1186 if (!mutex_trylock(&head->mutex)) {
d278850e 1187 refcount_inc(&head->refs);
7a3ae2f8
JS
1188 spin_unlock(&delayed_refs->lock);
1189
1190 btrfs_release_path(path);
1191
1192 /*
1193 * Mutex was contended, block until it's
1194 * released and try again
1195 */
1196 mutex_lock(&head->mutex);
1197 mutex_unlock(&head->mutex);
d278850e 1198 btrfs_put_delayed_ref_head(head);
7a3ae2f8
JS
1199 goto again;
1200 }
d7df2c79 1201 spin_unlock(&delayed_refs->lock);
00142756 1202 ret = add_delayed_refs(fs_info, head, time_seq,
3ec4d323 1203 &preftrees, &total_refs, sc);
155725c9 1204 mutex_unlock(&head->mutex);
d7df2c79 1205 if (ret)
7a3ae2f8 1206 goto out;
d7df2c79
JB
1207 } else {
1208 spin_unlock(&delayed_refs->lock);
d3b01064 1209 }
8da6d581 1210 }
8da6d581
JS
1211
1212 if (path->slots[0]) {
1213 struct extent_buffer *leaf;
1214 int slot;
1215
dadcaf78 1216 path->slots[0]--;
8da6d581 1217 leaf = path->nodes[0];
dadcaf78 1218 slot = path->slots[0];
8da6d581
JS
1219 btrfs_item_key_to_cpu(leaf, &key, slot);
1220 if (key.objectid == bytenr &&
261c84b6
JB
1221 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1222 key.type == BTRFS_METADATA_ITEM_KEY)) {
00142756
JM
1223 ret = add_inline_refs(fs_info, path, bytenr,
1224 &info_level, &preftrees,
3ec4d323 1225 &total_refs, sc);
8da6d581
JS
1226 if (ret)
1227 goto out;
e0c476b1 1228 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
3ec4d323 1229 &preftrees, sc);
8da6d581
JS
1230 if (ret)
1231 goto out;
1232 }
1233 }
8da6d581 1234
86d5f994 1235 btrfs_release_path(path);
8da6d581 1236
38e3eebf 1237 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
d5c88b73
JS
1238 if (ret)
1239 goto out;
1240
ecf160b4 1241 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
8da6d581 1242
86d5f994 1243 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
c995ab3c 1244 extent_item_pos, total_refs, sc, ignore_offset);
8da6d581
JS
1245 if (ret)
1246 goto out;
1247
ecf160b4 1248 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
8da6d581 1249
86d5f994
EN
1250 /*
1251 * This walks the tree of merged and resolved refs. Tree blocks are
1252 * read in as needed. Unique entries are added to the ulist, and
1253 * the list of found roots is updated.
1254 *
1255 * We release the entire tree in one go before returning.
1256 */
ecf160b4 1257 node = rb_first_cached(&preftrees.direct.root);
86d5f994
EN
1258 while (node) {
1259 ref = rb_entry(node, struct prelim_ref, rbnode);
1260 node = rb_next(&ref->rbnode);
c8195a7b
ZB
1261 /*
1262 * ref->count < 0 can happen here if there are delayed
1263 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1264 * prelim_ref_insert() relies on this when merging
1265 * identical refs to keep the overall count correct.
1266 * prelim_ref_insert() will merge only those refs
1267 * which compare identically. Any refs having
1268 * e.g. different offsets would not be merged,
1269 * and would retain their original ref->count < 0.
1270 */
98cfee21 1271 if (roots && ref->count && ref->root_id && ref->parent == 0) {
3ec4d323
EN
1272 if (sc && sc->root_objectid &&
1273 ref->root_id != sc->root_objectid) {
dc046b10
JB
1274 ret = BACKREF_FOUND_SHARED;
1275 goto out;
1276 }
1277
8da6d581
JS
1278 /* no parent == root of tree */
1279 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1280 if (ret < 0)
1281 goto out;
8da6d581
JS
1282 }
1283 if (ref->count && ref->parent) {
8a56457f
JB
1284 if (extent_item_pos && !ref->inode_list &&
1285 ref->level == 0) {
976b1908 1286 struct extent_buffer *eb;
707e8a07 1287
581c1760
QW
1288 eb = read_tree_block(fs_info, ref->parent, 0,
1289 ref->level, NULL);
64c043de
LB
1290 if (IS_ERR(eb)) {
1291 ret = PTR_ERR(eb);
1292 goto out;
1293 } else if (!extent_buffer_uptodate(eb)) {
416bc658 1294 free_extent_buffer(eb);
c16c2e2e
WS
1295 ret = -EIO;
1296 goto out;
416bc658 1297 }
38e3eebf
JB
1298
1299 if (!path->skip_locking) {
1300 btrfs_tree_read_lock(eb);
1301 btrfs_set_lock_blocking_read(eb);
1302 }
976b1908 1303 ret = find_extent_in_eb(eb, bytenr,
c995ab3c 1304 *extent_item_pos, &eie, ignore_offset);
38e3eebf
JB
1305 if (!path->skip_locking)
1306 btrfs_tree_read_unlock_blocking(eb);
976b1908 1307 free_extent_buffer(eb);
f5929cd8
FDBM
1308 if (ret < 0)
1309 goto out;
1310 ref->inode_list = eie;
976b1908 1311 }
4eb1f66d
TI
1312 ret = ulist_add_merge_ptr(refs, ref->parent,
1313 ref->inode_list,
1314 (void **)&eie, GFP_NOFS);
f1723939
WS
1315 if (ret < 0)
1316 goto out;
3301958b
JS
1317 if (!ret && extent_item_pos) {
1318 /*
1319 * we've recorded that parent, so we must extend
1320 * its inode list here
1321 */
1322 BUG_ON(!eie);
1323 while (eie->next)
1324 eie = eie->next;
1325 eie->next = ref->inode_list;
1326 }
f05c4746 1327 eie = NULL;
8da6d581 1328 }
9dd14fd6 1329 cond_resched();
8da6d581
JS
1330 }
1331
1332out:
8da6d581 1333 btrfs_free_path(path);
86d5f994
EN
1334
1335 prelim_release(&preftrees.direct);
1336 prelim_release(&preftrees.indirect);
1337 prelim_release(&preftrees.indirect_missing_keys);
1338
f05c4746
WS
1339 if (ret < 0)
1340 free_inode_elem_list(eie);
8da6d581
JS
1341 return ret;
1342}
1343
976b1908
JS
1344static void free_leaf_list(struct ulist *blocks)
1345{
1346 struct ulist_node *node = NULL;
1347 struct extent_inode_elem *eie;
976b1908
JS
1348 struct ulist_iterator uiter;
1349
1350 ULIST_ITER_INIT(&uiter);
1351 while ((node = ulist_next(blocks, &uiter))) {
1352 if (!node->aux)
1353 continue;
4dae077a 1354 eie = unode_aux_to_inode_list(node);
f05c4746 1355 free_inode_elem_list(eie);
976b1908
JS
1356 node->aux = 0;
1357 }
1358
1359 ulist_free(blocks);
1360}
1361
8da6d581
JS
1362/*
1363 * Finds all leafs with a reference to the specified combination of bytenr and
1364 * offset. key_list_head will point to a list of corresponding keys (caller must
1365 * free each list element). The leafs will be stored in the leafs ulist, which
1366 * must be freed with ulist_free.
1367 *
1368 * returns 0 on success, <0 on error
1369 */
1370static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1371 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1372 u64 time_seq, struct ulist **leafs,
c995ab3c 1373 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 1374{
8da6d581
JS
1375 int ret;
1376
8da6d581 1377 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1378 if (!*leafs)
8da6d581 1379 return -ENOMEM;
8da6d581 1380
afce772e 1381 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1382 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
8da6d581 1383 if (ret < 0 && ret != -ENOENT) {
976b1908 1384 free_leaf_list(*leafs);
8da6d581
JS
1385 return ret;
1386 }
1387
1388 return 0;
1389}
1390
1391/*
1392 * walk all backrefs for a given extent to find all roots that reference this
1393 * extent. Walking a backref means finding all extents that reference this
1394 * extent and in turn walk the backrefs of those, too. Naturally this is a
1395 * recursive process, but here it is implemented in an iterative fashion: We
1396 * find all referencing extents for the extent in question and put them on a
1397 * list. In turn, we find all referencing extents for those, further appending
1398 * to the list. The way we iterate the list allows adding more elements after
1399 * the current while iterating. The process stops when we reach the end of the
1400 * list. Found roots are added to the roots list.
1401 *
1402 * returns 0 on success, < 0 on error.
1403 */
e0c476b1
JM
1404static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1405 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1406 u64 time_seq, struct ulist **roots,
1407 bool ignore_offset)
8da6d581
JS
1408{
1409 struct ulist *tmp;
1410 struct ulist_node *node = NULL;
cd1b413c 1411 struct ulist_iterator uiter;
8da6d581
JS
1412 int ret;
1413
1414 tmp = ulist_alloc(GFP_NOFS);
1415 if (!tmp)
1416 return -ENOMEM;
1417 *roots = ulist_alloc(GFP_NOFS);
1418 if (!*roots) {
1419 ulist_free(tmp);
1420 return -ENOMEM;
1421 }
1422
cd1b413c 1423 ULIST_ITER_INIT(&uiter);
8da6d581 1424 while (1) {
afce772e 1425 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1426 tmp, *roots, NULL, NULL, ignore_offset);
8da6d581
JS
1427 if (ret < 0 && ret != -ENOENT) {
1428 ulist_free(tmp);
1429 ulist_free(*roots);
1430 return ret;
1431 }
cd1b413c 1432 node = ulist_next(tmp, &uiter);
8da6d581
JS
1433 if (!node)
1434 break;
1435 bytenr = node->val;
bca1a290 1436 cond_resched();
8da6d581
JS
1437 }
1438
1439 ulist_free(tmp);
1440 return 0;
1441}
1442
9e351cc8
JB
1443int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1444 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1445 u64 time_seq, struct ulist **roots,
1446 bool ignore_offset)
9e351cc8
JB
1447{
1448 int ret;
1449
1450 if (!trans)
1451 down_read(&fs_info->commit_root_sem);
e0c476b1 1452 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
c995ab3c 1453 time_seq, roots, ignore_offset);
9e351cc8
JB
1454 if (!trans)
1455 up_read(&fs_info->commit_root_sem);
1456 return ret;
1457}
1458
2c2ed5aa
MF
1459/**
1460 * btrfs_check_shared - tell us whether an extent is shared
1461 *
2c2ed5aa
MF
1462 * btrfs_check_shared uses the backref walking code but will short
1463 * circuit as soon as it finds a root or inode that doesn't match the
1464 * one passed in. This provides a significant performance benefit for
1465 * callers (such as fiemap) which want to know whether the extent is
1466 * shared but do not need a ref count.
1467 *
03628cdb
FM
1468 * This attempts to attach to the running transaction in order to account for
1469 * delayed refs, but continues on even when no running transaction exists.
bb739cf0 1470 *
2c2ed5aa
MF
1471 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1472 */
5911c8fe
DS
1473int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1474 struct ulist *roots, struct ulist *tmp)
dc046b10 1475{
bb739cf0
EN
1476 struct btrfs_fs_info *fs_info = root->fs_info;
1477 struct btrfs_trans_handle *trans;
dc046b10
JB
1478 struct ulist_iterator uiter;
1479 struct ulist_node *node;
3284da7b 1480 struct seq_list elem = SEQ_LIST_INIT(elem);
dc046b10 1481 int ret = 0;
3ec4d323 1482 struct share_check shared = {
4fd786e6 1483 .root_objectid = root->root_key.objectid,
3ec4d323
EN
1484 .inum = inum,
1485 .share_count = 0,
1486 };
dc046b10 1487
5911c8fe
DS
1488 ulist_init(roots);
1489 ulist_init(tmp);
dc046b10 1490
a6d155d2 1491 trans = btrfs_join_transaction_nostart(root);
bb739cf0 1492 if (IS_ERR(trans)) {
03628cdb
FM
1493 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1494 ret = PTR_ERR(trans);
1495 goto out;
1496 }
bb739cf0 1497 trans = NULL;
dc046b10 1498 down_read(&fs_info->commit_root_sem);
bb739cf0
EN
1499 } else {
1500 btrfs_get_tree_mod_seq(fs_info, &elem);
1501 }
1502
dc046b10
JB
1503 ULIST_ITER_INIT(&uiter);
1504 while (1) {
1505 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
c995ab3c 1506 roots, NULL, &shared, false);
dc046b10 1507 if (ret == BACKREF_FOUND_SHARED) {
2c2ed5aa 1508 /* this is the only condition under which we return 1 */
dc046b10
JB
1509 ret = 1;
1510 break;
1511 }
1512 if (ret < 0 && ret != -ENOENT)
1513 break;
2c2ed5aa 1514 ret = 0;
dc046b10
JB
1515 node = ulist_next(tmp, &uiter);
1516 if (!node)
1517 break;
1518 bytenr = node->val;
18bf591b 1519 shared.share_count = 0;
dc046b10
JB
1520 cond_resched();
1521 }
bb739cf0
EN
1522
1523 if (trans) {
dc046b10 1524 btrfs_put_tree_mod_seq(fs_info, &elem);
bb739cf0
EN
1525 btrfs_end_transaction(trans);
1526 } else {
dc046b10 1527 up_read(&fs_info->commit_root_sem);
bb739cf0 1528 }
03628cdb 1529out:
5911c8fe
DS
1530 ulist_release(roots);
1531 ulist_release(tmp);
dc046b10
JB
1532 return ret;
1533}
1534
f186373f
MF
1535int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1536 u64 start_off, struct btrfs_path *path,
1537 struct btrfs_inode_extref **ret_extref,
1538 u64 *found_off)
1539{
1540 int ret, slot;
1541 struct btrfs_key key;
1542 struct btrfs_key found_key;
1543 struct btrfs_inode_extref *extref;
73980bec 1544 const struct extent_buffer *leaf;
f186373f
MF
1545 unsigned long ptr;
1546
1547 key.objectid = inode_objectid;
962a298f 1548 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
1549 key.offset = start_off;
1550
1551 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1552 if (ret < 0)
1553 return ret;
1554
1555 while (1) {
1556 leaf = path->nodes[0];
1557 slot = path->slots[0];
1558 if (slot >= btrfs_header_nritems(leaf)) {
1559 /*
1560 * If the item at offset is not found,
1561 * btrfs_search_slot will point us to the slot
1562 * where it should be inserted. In our case
1563 * that will be the slot directly before the
1564 * next INODE_REF_KEY_V2 item. In the case
1565 * that we're pointing to the last slot in a
1566 * leaf, we must move one leaf over.
1567 */
1568 ret = btrfs_next_leaf(root, path);
1569 if (ret) {
1570 if (ret >= 1)
1571 ret = -ENOENT;
1572 break;
1573 }
1574 continue;
1575 }
1576
1577 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1578
1579 /*
1580 * Check that we're still looking at an extended ref key for
1581 * this particular objectid. If we have different
1582 * objectid or type then there are no more to be found
1583 * in the tree and we can exit.
1584 */
1585 ret = -ENOENT;
1586 if (found_key.objectid != inode_objectid)
1587 break;
962a298f 1588 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
1589 break;
1590
1591 ret = 0;
1592 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1593 extref = (struct btrfs_inode_extref *)ptr;
1594 *ret_extref = extref;
1595 if (found_off)
1596 *found_off = found_key.offset;
1597 break;
1598 }
1599
1600 return ret;
1601}
1602
48a3b636
ES
1603/*
1604 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1605 * Elements of the path are separated by '/' and the path is guaranteed to be
1606 * 0-terminated. the path is only given within the current file system.
1607 * Therefore, it never starts with a '/'. the caller is responsible to provide
1608 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1609 * the start point of the resulting string is returned. this pointer is within
1610 * dest, normally.
1611 * in case the path buffer would overflow, the pointer is decremented further
1612 * as if output was written to the buffer, though no more output is actually
1613 * generated. that way, the caller can determine how much space would be
1614 * required for the path to fit into the buffer. in that case, the returned
1615 * value will be smaller than dest. callers must check this!
1616 */
96b5bd77
JS
1617char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1618 u32 name_len, unsigned long name_off,
1619 struct extent_buffer *eb_in, u64 parent,
1620 char *dest, u32 size)
a542ad1b 1621{
a542ad1b
JS
1622 int slot;
1623 u64 next_inum;
1624 int ret;
661bec6b 1625 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1626 struct extent_buffer *eb = eb_in;
1627 struct btrfs_key found_key;
b916a59a 1628 int leave_spinning = path->leave_spinning;
d24bec3a 1629 struct btrfs_inode_ref *iref;
a542ad1b
JS
1630
1631 if (bytes_left >= 0)
1632 dest[bytes_left] = '\0';
1633
b916a59a 1634 path->leave_spinning = 1;
a542ad1b 1635 while (1) {
d24bec3a 1636 bytes_left -= name_len;
a542ad1b
JS
1637 if (bytes_left >= 0)
1638 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1639 name_off, name_len);
b916a59a 1640 if (eb != eb_in) {
0c0fe3b0
FM
1641 if (!path->skip_locking)
1642 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1643 free_extent_buffer(eb);
b916a59a 1644 }
c234a24d
DS
1645 ret = btrfs_find_item(fs_root, path, parent, 0,
1646 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
1647 if (ret > 0)
1648 ret = -ENOENT;
a542ad1b
JS
1649 if (ret)
1650 break;
d24bec3a 1651
a542ad1b
JS
1652 next_inum = found_key.offset;
1653
1654 /* regular exit ahead */
1655 if (parent == next_inum)
1656 break;
1657
1658 slot = path->slots[0];
1659 eb = path->nodes[0];
1660 /* make sure we can use eb after releasing the path */
b916a59a 1661 if (eb != eb_in) {
0c0fe3b0 1662 if (!path->skip_locking)
300aa896 1663 btrfs_set_lock_blocking_read(eb);
0c0fe3b0
FM
1664 path->nodes[0] = NULL;
1665 path->locks[0] = 0;
b916a59a 1666 }
a542ad1b 1667 btrfs_release_path(path);
a542ad1b 1668 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1669
1670 name_len = btrfs_inode_ref_name_len(eb, iref);
1671 name_off = (unsigned long)(iref + 1);
1672
a542ad1b
JS
1673 parent = next_inum;
1674 --bytes_left;
1675 if (bytes_left >= 0)
1676 dest[bytes_left] = '/';
1677 }
1678
1679 btrfs_release_path(path);
b916a59a 1680 path->leave_spinning = leave_spinning;
a542ad1b
JS
1681
1682 if (ret)
1683 return ERR_PTR(ret);
1684
1685 return dest + bytes_left;
1686}
1687
1688/*
1689 * this makes the path point to (logical EXTENT_ITEM *)
1690 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1691 * tree blocks and <0 on error.
1692 */
1693int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1694 struct btrfs_path *path, struct btrfs_key *found_key,
1695 u64 *flags_ret)
a542ad1b
JS
1696{
1697 int ret;
1698 u64 flags;
261c84b6 1699 u64 size = 0;
a542ad1b 1700 u32 item_size;
73980bec 1701 const struct extent_buffer *eb;
a542ad1b
JS
1702 struct btrfs_extent_item *ei;
1703 struct btrfs_key key;
1704
261c84b6
JB
1705 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1706 key.type = BTRFS_METADATA_ITEM_KEY;
1707 else
1708 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1709 key.objectid = logical;
1710 key.offset = (u64)-1;
1711
1712 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1713 if (ret < 0)
1714 return ret;
a542ad1b 1715
850a8cdf
WS
1716 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1717 if (ret) {
1718 if (ret > 0)
1719 ret = -ENOENT;
1720 return ret;
580f0a67 1721 }
850a8cdf 1722 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 1723 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
da17066c 1724 size = fs_info->nodesize;
261c84b6
JB
1725 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1726 size = found_key->offset;
1727
580f0a67 1728 if (found_key->objectid > logical ||
261c84b6 1729 found_key->objectid + size <= logical) {
ab8d0fc4
JM
1730 btrfs_debug(fs_info,
1731 "logical %llu is not within any extent", logical);
a542ad1b 1732 return -ENOENT;
4692cf58 1733 }
a542ad1b
JS
1734
1735 eb = path->nodes[0];
1736 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1737 BUG_ON(item_size < sizeof(*ei));
1738
1739 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1740 flags = btrfs_extent_flags(eb, ei);
1741
ab8d0fc4
JM
1742 btrfs_debug(fs_info,
1743 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
c1c9ff7c
GU
1744 logical, logical - found_key->objectid, found_key->objectid,
1745 found_key->offset, flags, item_size);
69917e43
LB
1746
1747 WARN_ON(!flags_ret);
1748 if (flags_ret) {
1749 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1750 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1751 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1752 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1753 else
290342f6 1754 BUG();
69917e43
LB
1755 return 0;
1756 }
a542ad1b
JS
1757
1758 return -EIO;
1759}
1760
1761/*
1762 * helper function to iterate extent inline refs. ptr must point to a 0 value
1763 * for the first call and may be modified. it is used to track state.
1764 * if more refs exist, 0 is returned and the next call to
e0c476b1 1765 * get_extent_inline_ref must pass the modified ptr parameter to get the
a542ad1b
JS
1766 * next ref. after the last ref was processed, 1 is returned.
1767 * returns <0 on error
1768 */
e0c476b1
JM
1769static int get_extent_inline_ref(unsigned long *ptr,
1770 const struct extent_buffer *eb,
1771 const struct btrfs_key *key,
1772 const struct btrfs_extent_item *ei,
1773 u32 item_size,
1774 struct btrfs_extent_inline_ref **out_eiref,
1775 int *out_type)
a542ad1b
JS
1776{
1777 unsigned long end;
1778 u64 flags;
1779 struct btrfs_tree_block_info *info;
1780
1781 if (!*ptr) {
1782 /* first call */
1783 flags = btrfs_extent_flags(eb, ei);
1784 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
1785 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1786 /* a skinny metadata extent */
1787 *out_eiref =
1788 (struct btrfs_extent_inline_ref *)(ei + 1);
1789 } else {
1790 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1791 info = (struct btrfs_tree_block_info *)(ei + 1);
1792 *out_eiref =
1793 (struct btrfs_extent_inline_ref *)(info + 1);
1794 }
a542ad1b
JS
1795 } else {
1796 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1797 }
1798 *ptr = (unsigned long)*out_eiref;
cd857dd6 1799 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
1800 return -ENOENT;
1801 }
1802
1803 end = (unsigned long)ei + item_size;
6eda71d0 1804 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
3de28d57
LB
1805 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1806 BTRFS_REF_TYPE_ANY);
1807 if (*out_type == BTRFS_REF_TYPE_INVALID)
af431dcb 1808 return -EUCLEAN;
a542ad1b
JS
1809
1810 *ptr += btrfs_extent_inline_ref_size(*out_type);
1811 WARN_ON(*ptr > end);
1812 if (*ptr == end)
1813 return 1; /* last */
1814
1815 return 0;
1816}
1817
1818/*
1819 * reads the tree block backref for an extent. tree level and root are returned
1820 * through out_level and out_root. ptr must point to a 0 value for the first
e0c476b1 1821 * call and may be modified (see get_extent_inline_ref comment).
a542ad1b
JS
1822 * returns 0 if data was provided, 1 if there was no more data to provide or
1823 * <0 on error.
1824 */
1825int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
1826 struct btrfs_key *key, struct btrfs_extent_item *ei,
1827 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
1828{
1829 int ret;
1830 int type;
a542ad1b
JS
1831 struct btrfs_extent_inline_ref *eiref;
1832
1833 if (*ptr == (unsigned long)-1)
1834 return 1;
1835
1836 while (1) {
e0c476b1 1837 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
6eda71d0 1838 &eiref, &type);
a542ad1b
JS
1839 if (ret < 0)
1840 return ret;
1841
1842 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1843 type == BTRFS_SHARED_BLOCK_REF_KEY)
1844 break;
1845
1846 if (ret == 1)
1847 return 1;
1848 }
1849
1850 /* we can treat both ref types equally here */
a542ad1b 1851 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
1852
1853 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1854 struct btrfs_tree_block_info *info;
1855
1856 info = (struct btrfs_tree_block_info *)(ei + 1);
1857 *out_level = btrfs_tree_block_level(eb, info);
1858 } else {
1859 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1860 *out_level = (u8)key->offset;
1861 }
a542ad1b
JS
1862
1863 if (ret == 1)
1864 *ptr = (unsigned long)-1;
1865
1866 return 0;
1867}
1868
ab8d0fc4
JM
1869static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1870 struct extent_inode_elem *inode_list,
1871 u64 root, u64 extent_item_objectid,
1872 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1873{
976b1908 1874 struct extent_inode_elem *eie;
4692cf58 1875 int ret = 0;
4692cf58 1876
976b1908 1877 for (eie = inode_list; eie; eie = eie->next) {
ab8d0fc4
JM
1878 btrfs_debug(fs_info,
1879 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1880 extent_item_objectid, eie->inum,
1881 eie->offset, root);
976b1908 1882 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1883 if (ret) {
ab8d0fc4
JM
1884 btrfs_debug(fs_info,
1885 "stopping iteration for %llu due to ret=%d",
1886 extent_item_objectid, ret);
4692cf58
JS
1887 break;
1888 }
a542ad1b
JS
1889 }
1890
a542ad1b
JS
1891 return ret;
1892}
1893
1894/*
1895 * calls iterate() for every inode that references the extent identified by
4692cf58 1896 * the given parameters.
a542ad1b
JS
1897 * when the iterator function returns a non-zero value, iteration stops.
1898 */
1899int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1900 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1901 int search_commit_root,
c995ab3c
ZB
1902 iterate_extent_inodes_t *iterate, void *ctx,
1903 bool ignore_offset)
a542ad1b 1904{
a542ad1b 1905 int ret;
da61d31a 1906 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1907 struct ulist *refs = NULL;
1908 struct ulist *roots = NULL;
4692cf58
JS
1909 struct ulist_node *ref_node = NULL;
1910 struct ulist_node *root_node = NULL;
3284da7b 1911 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
cd1b413c
JS
1912 struct ulist_iterator ref_uiter;
1913 struct ulist_iterator root_uiter;
a542ad1b 1914
ab8d0fc4 1915 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
4692cf58 1916 extent_item_objectid);
a542ad1b 1917
da61d31a 1918 if (!search_commit_root) {
bfc61c36
FM
1919 trans = btrfs_attach_transaction(fs_info->extent_root);
1920 if (IS_ERR(trans)) {
1921 if (PTR_ERR(trans) != -ENOENT &&
1922 PTR_ERR(trans) != -EROFS)
1923 return PTR_ERR(trans);
1924 trans = NULL;
1925 }
1926 }
1927
1928 if (trans)
8445f61c 1929 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
bfc61c36 1930 else
9e351cc8 1931 down_read(&fs_info->commit_root_sem);
a542ad1b 1932
4692cf58 1933 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1934 tree_mod_seq_elem.seq, &refs,
c995ab3c 1935 &extent_item_pos, ignore_offset);
4692cf58
JS
1936 if (ret)
1937 goto out;
a542ad1b 1938
cd1b413c
JS
1939 ULIST_ITER_INIT(&ref_uiter);
1940 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
e0c476b1 1941 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
c995ab3c
ZB
1942 tree_mod_seq_elem.seq, &roots,
1943 ignore_offset);
4692cf58
JS
1944 if (ret)
1945 break;
cd1b413c
JS
1946 ULIST_ITER_INIT(&root_uiter);
1947 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
ab8d0fc4
JM
1948 btrfs_debug(fs_info,
1949 "root %llu references leaf %llu, data list %#llx",
1950 root_node->val, ref_node->val,
1951 ref_node->aux);
1952 ret = iterate_leaf_refs(fs_info,
1953 (struct extent_inode_elem *)
995e01b7
JS
1954 (uintptr_t)ref_node->aux,
1955 root_node->val,
1956 extent_item_objectid,
1957 iterate, ctx);
4692cf58 1958 }
976b1908 1959 ulist_free(roots);
a542ad1b
JS
1960 }
1961
976b1908 1962 free_leaf_list(refs);
4692cf58 1963out:
bfc61c36 1964 if (trans) {
8445f61c 1965 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
3a45bb20 1966 btrfs_end_transaction(trans);
9e351cc8
JB
1967 } else {
1968 up_read(&fs_info->commit_root_sem);
7a3ae2f8
JS
1969 }
1970
a542ad1b
JS
1971 return ret;
1972}
1973
1974int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1975 struct btrfs_path *path,
c995ab3c
ZB
1976 iterate_extent_inodes_t *iterate, void *ctx,
1977 bool ignore_offset)
a542ad1b
JS
1978{
1979 int ret;
4692cf58 1980 u64 extent_item_pos;
69917e43 1981 u64 flags = 0;
a542ad1b 1982 struct btrfs_key found_key;
7a3ae2f8 1983 int search_commit_root = path->search_commit_root;
a542ad1b 1984
69917e43 1985 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 1986 btrfs_release_path(path);
a542ad1b
JS
1987 if (ret < 0)
1988 return ret;
69917e43 1989 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 1990 return -EINVAL;
a542ad1b 1991
4692cf58 1992 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1993 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1994 extent_item_pos, search_commit_root,
c995ab3c 1995 iterate, ctx, ignore_offset);
a542ad1b
JS
1996
1997 return ret;
1998}
1999
d24bec3a
MF
2000typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2001 struct extent_buffer *eb, void *ctx);
2002
2003static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2004 struct btrfs_path *path,
2005 iterate_irefs_t *iterate, void *ctx)
a542ad1b 2006{
aefc1eb1 2007 int ret = 0;
a542ad1b
JS
2008 int slot;
2009 u32 cur;
2010 u32 len;
2011 u32 name_len;
2012 u64 parent = 0;
2013 int found = 0;
2014 struct extent_buffer *eb;
2015 struct btrfs_item *item;
2016 struct btrfs_inode_ref *iref;
2017 struct btrfs_key found_key;
2018
aefc1eb1 2019 while (!ret) {
c234a24d
DS
2020 ret = btrfs_find_item(fs_root, path, inum,
2021 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2022 &found_key);
2023
a542ad1b
JS
2024 if (ret < 0)
2025 break;
2026 if (ret) {
2027 ret = found ? 0 : -ENOENT;
2028 break;
2029 }
2030 ++found;
2031
2032 parent = found_key.offset;
2033 slot = path->slots[0];
3fe81ce2
FDBM
2034 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2035 if (!eb) {
2036 ret = -ENOMEM;
2037 break;
2038 }
a542ad1b
JS
2039 btrfs_release_path(path);
2040
dd3cc16b 2041 item = btrfs_item_nr(slot);
a542ad1b
JS
2042 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2043
2044 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2045 name_len = btrfs_inode_ref_name_len(eb, iref);
2046 /* path must be released before calling iterate()! */
ab8d0fc4
JM
2047 btrfs_debug(fs_root->fs_info,
2048 "following ref at offset %u for inode %llu in tree %llu",
4fd786e6
MT
2049 cur, found_key.objectid,
2050 fs_root->root_key.objectid);
d24bec3a
MF
2051 ret = iterate(parent, name_len,
2052 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 2053 if (ret)
a542ad1b 2054 break;
a542ad1b
JS
2055 len = sizeof(*iref) + name_len;
2056 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2057 }
2058 free_extent_buffer(eb);
2059 }
2060
2061 btrfs_release_path(path);
2062
2063 return ret;
2064}
2065
d24bec3a
MF
2066static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2067 struct btrfs_path *path,
2068 iterate_irefs_t *iterate, void *ctx)
2069{
2070 int ret;
2071 int slot;
2072 u64 offset = 0;
2073 u64 parent;
2074 int found = 0;
2075 struct extent_buffer *eb;
2076 struct btrfs_inode_extref *extref;
d24bec3a
MF
2077 u32 item_size;
2078 u32 cur_offset;
2079 unsigned long ptr;
2080
2081 while (1) {
2082 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2083 &offset);
2084 if (ret < 0)
2085 break;
2086 if (ret) {
2087 ret = found ? 0 : -ENOENT;
2088 break;
2089 }
2090 ++found;
2091
2092 slot = path->slots[0];
3fe81ce2
FDBM
2093 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2094 if (!eb) {
2095 ret = -ENOMEM;
2096 break;
2097 }
d24bec3a
MF
2098 btrfs_release_path(path);
2099
2849a854
CM
2100 item_size = btrfs_item_size_nr(eb, slot);
2101 ptr = btrfs_item_ptr_offset(eb, slot);
d24bec3a
MF
2102 cur_offset = 0;
2103
2104 while (cur_offset < item_size) {
2105 u32 name_len;
2106
2107 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2108 parent = btrfs_inode_extref_parent(eb, extref);
2109 name_len = btrfs_inode_extref_name_len(eb, extref);
2110 ret = iterate(parent, name_len,
2111 (unsigned long)&extref->name, eb, ctx);
2112 if (ret)
2113 break;
2114
2849a854 2115 cur_offset += btrfs_inode_extref_name_len(eb, extref);
d24bec3a
MF
2116 cur_offset += sizeof(*extref);
2117 }
d24bec3a
MF
2118 free_extent_buffer(eb);
2119
2120 offset++;
2121 }
2122
2123 btrfs_release_path(path);
2124
2125 return ret;
2126}
2127
2128static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2129 struct btrfs_path *path, iterate_irefs_t *iterate,
2130 void *ctx)
2131{
2132 int ret;
2133 int found_refs = 0;
2134
2135 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2136 if (!ret)
2137 ++found_refs;
2138 else if (ret != -ENOENT)
2139 return ret;
2140
2141 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2142 if (ret == -ENOENT && found_refs)
2143 return 0;
2144
2145 return ret;
2146}
2147
a542ad1b
JS
2148/*
2149 * returns 0 if the path could be dumped (probably truncated)
2150 * returns <0 in case of an error
2151 */
d24bec3a
MF
2152static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2153 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
2154{
2155 struct inode_fs_paths *ipath = ctx;
2156 char *fspath;
2157 char *fspath_min;
2158 int i = ipath->fspath->elem_cnt;
2159 const int s_ptr = sizeof(char *);
2160 u32 bytes_left;
2161
2162 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2163 ipath->fspath->bytes_left - s_ptr : 0;
2164
740c3d22 2165 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
2166 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2167 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
2168 if (IS_ERR(fspath))
2169 return PTR_ERR(fspath);
2170
2171 if (fspath > fspath_min) {
745c4d8e 2172 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
2173 ++ipath->fspath->elem_cnt;
2174 ipath->fspath->bytes_left = fspath - fspath_min;
2175 } else {
2176 ++ipath->fspath->elem_missed;
2177 ipath->fspath->bytes_missing += fspath_min - fspath;
2178 ipath->fspath->bytes_left = 0;
2179 }
2180
2181 return 0;
2182}
2183
2184/*
2185 * this dumps all file system paths to the inode into the ipath struct, provided
2186 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 2187 * from ipath->fspath->val[i].
a542ad1b 2188 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 2189 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
01327610 2190 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
a542ad1b
JS
2191 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2192 * have been needed to return all paths.
2193 */
2194int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2195{
2196 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 2197 inode_to_path, ipath);
a542ad1b
JS
2198}
2199
a542ad1b
JS
2200struct btrfs_data_container *init_data_container(u32 total_bytes)
2201{
2202 struct btrfs_data_container *data;
2203 size_t alloc_bytes;
2204
2205 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
f54de068 2206 data = kvmalloc(alloc_bytes, GFP_KERNEL);
a542ad1b
JS
2207 if (!data)
2208 return ERR_PTR(-ENOMEM);
2209
2210 if (total_bytes >= sizeof(*data)) {
2211 data->bytes_left = total_bytes - sizeof(*data);
2212 data->bytes_missing = 0;
2213 } else {
2214 data->bytes_missing = sizeof(*data) - total_bytes;
2215 data->bytes_left = 0;
2216 }
2217
2218 data->elem_cnt = 0;
2219 data->elem_missed = 0;
2220
2221 return data;
2222}
2223
2224/*
2225 * allocates space to return multiple file system paths for an inode.
2226 * total_bytes to allocate are passed, note that space usable for actual path
2227 * information will be total_bytes - sizeof(struct inode_fs_paths).
2228 * the returned pointer must be freed with free_ipath() in the end.
2229 */
2230struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2231 struct btrfs_path *path)
2232{
2233 struct inode_fs_paths *ifp;
2234 struct btrfs_data_container *fspath;
2235
2236 fspath = init_data_container(total_bytes);
2237 if (IS_ERR(fspath))
afc6961f 2238 return ERR_CAST(fspath);
a542ad1b 2239
f54de068 2240 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
a542ad1b 2241 if (!ifp) {
f54de068 2242 kvfree(fspath);
a542ad1b
JS
2243 return ERR_PTR(-ENOMEM);
2244 }
2245
2246 ifp->btrfs_path = path;
2247 ifp->fspath = fspath;
2248 ifp->fs_root = fs_root;
2249
2250 return ifp;
2251}
2252
2253void free_ipath(struct inode_fs_paths *ipath)
2254{
4735fb28
JJ
2255 if (!ipath)
2256 return;
f54de068 2257 kvfree(ipath->fspath);
a542ad1b
JS
2258 kfree(ipath);
2259}