btrfs: convert printk(KERN_* to use pr_* calls
[linux-2.6-block.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
425d17a2 19#include <linux/vmalloc.h>
afce772e 20#include <linux/rbtree.h>
a542ad1b
JS
21#include "ctree.h"
22#include "disk-io.h"
23#include "backref.h"
8da6d581
JS
24#include "ulist.h"
25#include "transaction.h"
26#include "delayed-ref.h"
b916a59a 27#include "locking.h"
a542ad1b 28
dc046b10
JB
29/* Just an arbitrary number so we can be sure this happened */
30#define BACKREF_FOUND_SHARED 6
31
976b1908
JS
32struct extent_inode_elem {
33 u64 inum;
34 u64 offset;
35 struct extent_inode_elem *next;
36};
37
afce772e
LF
38/*
39 * ref_root is used as the root of the ref tree that hold a collection
40 * of unique references.
41 */
42struct ref_root {
43 struct rb_root rb_root;
44
45 /*
46 * The unique_refs represents the number of ref_nodes with a positive
47 * count stored in the tree. Even if a ref_node (the count is greater
48 * than one) is added, the unique_refs will only increase by one.
49 */
50 unsigned int unique_refs;
51};
52
53/* ref_node is used to store a unique reference to the ref tree. */
54struct ref_node {
55 struct rb_node rb_node;
56
57 /* For NORMAL_REF, otherwise all these fields should be set to 0 */
58 u64 root_id;
59 u64 object_id;
60 u64 offset;
61
62 /* For SHARED_REF, otherwise parent field should be set to 0 */
63 u64 parent;
64
65 /* Ref to the ref_mod of btrfs_delayed_ref_node */
66 int ref_mod;
67};
68
69/* Dynamically allocate and initialize a ref_root */
70static struct ref_root *ref_root_alloc(void)
71{
72 struct ref_root *ref_tree;
73
74 ref_tree = kmalloc(sizeof(*ref_tree), GFP_NOFS);
75 if (!ref_tree)
76 return NULL;
77
78 ref_tree->rb_root = RB_ROOT;
79 ref_tree->unique_refs = 0;
80
81 return ref_tree;
82}
83
84/* Free all nodes in the ref tree, and reinit ref_root */
85static void ref_root_fini(struct ref_root *ref_tree)
86{
87 struct ref_node *node;
88 struct rb_node *next;
89
90 while ((next = rb_first(&ref_tree->rb_root)) != NULL) {
91 node = rb_entry(next, struct ref_node, rb_node);
92 rb_erase(next, &ref_tree->rb_root);
93 kfree(node);
94 }
95
96 ref_tree->rb_root = RB_ROOT;
97 ref_tree->unique_refs = 0;
98}
99
100static void ref_root_free(struct ref_root *ref_tree)
101{
102 if (!ref_tree)
103 return;
104
105 ref_root_fini(ref_tree);
106 kfree(ref_tree);
107}
108
109/*
110 * Compare ref_node with (root_id, object_id, offset, parent)
111 *
112 * The function compares two ref_node a and b. It returns an integer less
113 * than, equal to, or greater than zero , respectively, to be less than, to
114 * equal, or be greater than b.
115 */
116static int ref_node_cmp(struct ref_node *a, struct ref_node *b)
117{
118 if (a->root_id < b->root_id)
119 return -1;
120 else if (a->root_id > b->root_id)
121 return 1;
122
123 if (a->object_id < b->object_id)
124 return -1;
125 else if (a->object_id > b->object_id)
126 return 1;
127
128 if (a->offset < b->offset)
129 return -1;
130 else if (a->offset > b->offset)
131 return 1;
132
133 if (a->parent < b->parent)
134 return -1;
135 else if (a->parent > b->parent)
136 return 1;
137
138 return 0;
139}
140
141/*
142 * Search ref_node with (root_id, object_id, offset, parent) in the tree
143 *
144 * if found, the pointer of the ref_node will be returned;
145 * if not found, NULL will be returned and pos will point to the rb_node for
146 * insert, pos_parent will point to pos'parent for insert;
147*/
148static struct ref_node *__ref_tree_search(struct ref_root *ref_tree,
149 struct rb_node ***pos,
150 struct rb_node **pos_parent,
151 u64 root_id, u64 object_id,
152 u64 offset, u64 parent)
153{
154 struct ref_node *cur = NULL;
155 struct ref_node entry;
156 int ret;
157
158 entry.root_id = root_id;
159 entry.object_id = object_id;
160 entry.offset = offset;
161 entry.parent = parent;
162
163 *pos = &ref_tree->rb_root.rb_node;
164
165 while (**pos) {
166 *pos_parent = **pos;
167 cur = rb_entry(*pos_parent, struct ref_node, rb_node);
168
169 ret = ref_node_cmp(cur, &entry);
170 if (ret > 0)
171 *pos = &(**pos)->rb_left;
172 else if (ret < 0)
173 *pos = &(**pos)->rb_right;
174 else
175 return cur;
176 }
177
178 return NULL;
179}
180
181/*
182 * Insert a ref_node to the ref tree
183 * @pos used for specifiy the position to insert
184 * @pos_parent for specifiy pos's parent
185 *
186 * success, return 0;
187 * ref_node already exists, return -EEXIST;
188*/
189static int ref_tree_insert(struct ref_root *ref_tree, struct rb_node **pos,
190 struct rb_node *pos_parent, struct ref_node *ins)
191{
192 struct rb_node **p = NULL;
193 struct rb_node *parent = NULL;
194 struct ref_node *cur = NULL;
195
196 if (!pos) {
197 cur = __ref_tree_search(ref_tree, &p, &parent, ins->root_id,
198 ins->object_id, ins->offset,
199 ins->parent);
200 if (cur)
201 return -EEXIST;
202 } else {
203 p = pos;
204 parent = pos_parent;
205 }
206
207 rb_link_node(&ins->rb_node, parent, p);
208 rb_insert_color(&ins->rb_node, &ref_tree->rb_root);
209
210 return 0;
211}
212
213/* Erase and free ref_node, caller should update ref_root->unique_refs */
214static void ref_tree_remove(struct ref_root *ref_tree, struct ref_node *node)
215{
216 rb_erase(&node->rb_node, &ref_tree->rb_root);
217 kfree(node);
218}
219
220/*
221 * Update ref_root->unique_refs
222 *
223 * Call __ref_tree_search
224 * 1. if ref_node doesn't exist, ref_tree_insert this node, and update
225 * ref_root->unique_refs:
226 * if ref_node->ref_mod > 0, ref_root->unique_refs++;
227 * if ref_node->ref_mod < 0, do noting;
228 *
229 * 2. if ref_node is found, then get origin ref_node->ref_mod, and update
230 * ref_node->ref_mod.
231 * if ref_node->ref_mod is equal to 0,then call ref_tree_remove
232 *
233 * according to origin_mod and new_mod, update ref_root->items
234 * +----------------+--------------+-------------+
235 * | |new_count <= 0|new_count > 0|
236 * +----------------+--------------+-------------+
237 * |origin_count < 0| 0 | 1 |
238 * +----------------+--------------+-------------+
239 * |origin_count > 0| -1 | 0 |
240 * +----------------+--------------+-------------+
241 *
242 * In case of allocation failure, -ENOMEM is returned and the ref_tree stays
243 * unaltered.
244 * Success, return 0
245 */
246static int ref_tree_add(struct ref_root *ref_tree, u64 root_id, u64 object_id,
247 u64 offset, u64 parent, int count)
248{
249 struct ref_node *node = NULL;
250 struct rb_node **pos = NULL;
251 struct rb_node *pos_parent = NULL;
252 int origin_count;
253 int ret;
254
255 if (!count)
256 return 0;
257
258 node = __ref_tree_search(ref_tree, &pos, &pos_parent, root_id,
259 object_id, offset, parent);
260 if (node == NULL) {
261 node = kmalloc(sizeof(*node), GFP_NOFS);
262 if (!node)
263 return -ENOMEM;
264
265 node->root_id = root_id;
266 node->object_id = object_id;
267 node->offset = offset;
268 node->parent = parent;
269 node->ref_mod = count;
270
271 ret = ref_tree_insert(ref_tree, pos, pos_parent, node);
272 ASSERT(!ret);
273 if (ret) {
274 kfree(node);
275 return ret;
276 }
277
278 ref_tree->unique_refs += node->ref_mod > 0 ? 1 : 0;
279
280 return 0;
281 }
282
283 origin_count = node->ref_mod;
284 node->ref_mod += count;
285
286 if (node->ref_mod > 0)
287 ref_tree->unique_refs += origin_count > 0 ? 0 : 1;
288 else if (node->ref_mod <= 0)
289 ref_tree->unique_refs += origin_count > 0 ? -1 : 0;
290
291 if (!node->ref_mod)
292 ref_tree_remove(ref_tree, node);
293
294 return 0;
295}
296
976b1908
JS
297static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
298 struct btrfs_file_extent_item *fi,
299 u64 extent_item_pos,
300 struct extent_inode_elem **eie)
301{
8ca15e05 302 u64 offset = 0;
976b1908
JS
303 struct extent_inode_elem *e;
304
8ca15e05
JB
305 if (!btrfs_file_extent_compression(eb, fi) &&
306 !btrfs_file_extent_encryption(eb, fi) &&
307 !btrfs_file_extent_other_encoding(eb, fi)) {
308 u64 data_offset;
309 u64 data_len;
976b1908 310
8ca15e05
JB
311 data_offset = btrfs_file_extent_offset(eb, fi);
312 data_len = btrfs_file_extent_num_bytes(eb, fi);
313
314 if (extent_item_pos < data_offset ||
315 extent_item_pos >= data_offset + data_len)
316 return 1;
317 offset = extent_item_pos - data_offset;
318 }
976b1908
JS
319
320 e = kmalloc(sizeof(*e), GFP_NOFS);
321 if (!e)
322 return -ENOMEM;
323
324 e->next = *eie;
325 e->inum = key->objectid;
8ca15e05 326 e->offset = key->offset + offset;
976b1908
JS
327 *eie = e;
328
329 return 0;
330}
331
f05c4746
WS
332static void free_inode_elem_list(struct extent_inode_elem *eie)
333{
334 struct extent_inode_elem *eie_next;
335
336 for (; eie; eie = eie_next) {
337 eie_next = eie->next;
338 kfree(eie);
339 }
340}
341
976b1908
JS
342static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
343 u64 extent_item_pos,
344 struct extent_inode_elem **eie)
345{
346 u64 disk_byte;
347 struct btrfs_key key;
348 struct btrfs_file_extent_item *fi;
349 int slot;
350 int nritems;
351 int extent_type;
352 int ret;
353
354 /*
355 * from the shared data ref, we only have the leaf but we need
356 * the key. thus, we must look into all items and see that we
357 * find one (some) with a reference to our extent item.
358 */
359 nritems = btrfs_header_nritems(eb);
360 for (slot = 0; slot < nritems; ++slot) {
361 btrfs_item_key_to_cpu(eb, &key, slot);
362 if (key.type != BTRFS_EXTENT_DATA_KEY)
363 continue;
364 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
365 extent_type = btrfs_file_extent_type(eb, fi);
366 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
367 continue;
368 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
369 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
370 if (disk_byte != wanted_disk_byte)
371 continue;
372
373 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
374 if (ret < 0)
375 return ret;
376 }
377
378 return 0;
379}
380
8da6d581
JS
381/*
382 * this structure records all encountered refs on the way up to the root
383 */
384struct __prelim_ref {
385 struct list_head list;
386 u64 root_id;
d5c88b73 387 struct btrfs_key key_for_search;
8da6d581
JS
388 int level;
389 int count;
3301958b 390 struct extent_inode_elem *inode_list;
8da6d581
JS
391 u64 parent;
392 u64 wanted_disk_byte;
393};
394
b9e9a6cb
WS
395static struct kmem_cache *btrfs_prelim_ref_cache;
396
397int __init btrfs_prelim_ref_init(void)
398{
399 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
400 sizeof(struct __prelim_ref),
401 0,
fba4b697 402 SLAB_MEM_SPREAD,
b9e9a6cb
WS
403 NULL);
404 if (!btrfs_prelim_ref_cache)
405 return -ENOMEM;
406 return 0;
407}
408
409void btrfs_prelim_ref_exit(void)
410{
5598e900 411 kmem_cache_destroy(btrfs_prelim_ref_cache);
b9e9a6cb
WS
412}
413
d5c88b73
JS
414/*
415 * the rules for all callers of this function are:
416 * - obtaining the parent is the goal
417 * - if you add a key, you must know that it is a correct key
418 * - if you cannot add the parent or a correct key, then we will look into the
419 * block later to set a correct key
420 *
421 * delayed refs
422 * ============
423 * backref type | shared | indirect | shared | indirect
424 * information | tree | tree | data | data
425 * --------------------+--------+----------+--------+----------
426 * parent logical | y | - | - | -
427 * key to resolve | - | y | y | y
428 * tree block logical | - | - | - | -
429 * root for resolving | y | y | y | y
430 *
431 * - column 1: we've the parent -> done
432 * - column 2, 3, 4: we use the key to find the parent
433 *
434 * on disk refs (inline or keyed)
435 * ==============================
436 * backref type | shared | indirect | shared | indirect
437 * information | tree | tree | data | data
438 * --------------------+--------+----------+--------+----------
439 * parent logical | y | - | y | -
440 * key to resolve | - | - | - | y
441 * tree block logical | y | y | y | y
442 * root for resolving | - | y | y | y
443 *
444 * - column 1, 3: we've the parent -> done
445 * - column 2: we take the first key from the block to find the parent
446 * (see __add_missing_keys)
447 * - column 4: we use the key to find the parent
448 *
449 * additional information that's available but not required to find the parent
450 * block might help in merging entries to gain some speed.
451 */
452
8da6d581 453static int __add_prelim_ref(struct list_head *head, u64 root_id,
d5c88b73 454 struct btrfs_key *key, int level,
742916b8
WS
455 u64 parent, u64 wanted_disk_byte, int count,
456 gfp_t gfp_mask)
8da6d581
JS
457{
458 struct __prelim_ref *ref;
459
48ec4736
LB
460 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
461 return 0;
462
b9e9a6cb 463 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
464 if (!ref)
465 return -ENOMEM;
466
467 ref->root_id = root_id;
d6589101 468 if (key) {
d5c88b73 469 ref->key_for_search = *key;
d6589101
FM
470 /*
471 * We can often find data backrefs with an offset that is too
472 * large (>= LLONG_MAX, maximum allowed file offset) due to
473 * underflows when subtracting a file's offset with the data
474 * offset of its corresponding extent data item. This can
475 * happen for example in the clone ioctl.
476 * So if we detect such case we set the search key's offset to
477 * zero to make sure we will find the matching file extent item
478 * at add_all_parents(), otherwise we will miss it because the
479 * offset taken form the backref is much larger then the offset
480 * of the file extent item. This can make us scan a very large
481 * number of file extent items, but at least it will not make
482 * us miss any.
483 * This is an ugly workaround for a behaviour that should have
484 * never existed, but it does and a fix for the clone ioctl
485 * would touch a lot of places, cause backwards incompatibility
486 * and would not fix the problem for extents cloned with older
487 * kernels.
488 */
489 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
490 ref->key_for_search.offset >= LLONG_MAX)
491 ref->key_for_search.offset = 0;
492 } else {
d5c88b73 493 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
d6589101 494 }
8da6d581 495
3301958b 496 ref->inode_list = NULL;
8da6d581
JS
497 ref->level = level;
498 ref->count = count;
499 ref->parent = parent;
500 ref->wanted_disk_byte = wanted_disk_byte;
501 list_add_tail(&ref->list, head);
502
503 return 0;
504}
505
506static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
7ef81ac8 507 struct ulist *parents, struct __prelim_ref *ref,
44853868
JB
508 int level, u64 time_seq, const u64 *extent_item_pos,
509 u64 total_refs)
8da6d581 510{
69bca40d
AB
511 int ret = 0;
512 int slot;
513 struct extent_buffer *eb;
514 struct btrfs_key key;
7ef81ac8 515 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 516 struct btrfs_file_extent_item *fi;
ed8c4913 517 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 518 u64 disk_byte;
7ef81ac8
JB
519 u64 wanted_disk_byte = ref->wanted_disk_byte;
520 u64 count = 0;
8da6d581 521
69bca40d
AB
522 if (level != 0) {
523 eb = path->nodes[level];
524 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
525 if (ret < 0)
526 return ret;
8da6d581 527 return 0;
69bca40d 528 }
8da6d581
JS
529
530 /*
69bca40d
AB
531 * We normally enter this function with the path already pointing to
532 * the first item to check. But sometimes, we may enter it with
533 * slot==nritems. In that case, go to the next leaf before we continue.
8da6d581 534 */
21633fc6
QW
535 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
536 if (time_seq == (u64)-1)
537 ret = btrfs_next_leaf(root, path);
538 else
539 ret = btrfs_next_old_leaf(root, path, time_seq);
540 }
8da6d581 541
44853868 542 while (!ret && count < total_refs) {
8da6d581 543 eb = path->nodes[0];
69bca40d
AB
544 slot = path->slots[0];
545
546 btrfs_item_key_to_cpu(eb, &key, slot);
547
548 if (key.objectid != key_for_search->objectid ||
549 key.type != BTRFS_EXTENT_DATA_KEY)
550 break;
551
552 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
553 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
554
555 if (disk_byte == wanted_disk_byte) {
556 eie = NULL;
ed8c4913 557 old = NULL;
7ef81ac8 558 count++;
69bca40d
AB
559 if (extent_item_pos) {
560 ret = check_extent_in_eb(&key, eb, fi,
561 *extent_item_pos,
562 &eie);
563 if (ret < 0)
564 break;
565 }
ed8c4913
JB
566 if (ret > 0)
567 goto next;
4eb1f66d
TI
568 ret = ulist_add_merge_ptr(parents, eb->start,
569 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
570 if (ret < 0)
571 break;
572 if (!ret && extent_item_pos) {
573 while (old->next)
574 old = old->next;
575 old->next = eie;
69bca40d 576 }
f05c4746 577 eie = NULL;
8da6d581 578 }
ed8c4913 579next:
21633fc6
QW
580 if (time_seq == (u64)-1)
581 ret = btrfs_next_item(root, path);
582 else
583 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
584 }
585
69bca40d
AB
586 if (ret > 0)
587 ret = 0;
f05c4746
WS
588 else if (ret < 0)
589 free_inode_elem_list(eie);
69bca40d 590 return ret;
8da6d581
JS
591}
592
593/*
594 * resolve an indirect backref in the form (root_id, key, level)
595 * to a logical address
596 */
597static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
da61d31a
JB
598 struct btrfs_path *path, u64 time_seq,
599 struct __prelim_ref *ref,
600 struct ulist *parents,
44853868 601 const u64 *extent_item_pos, u64 total_refs)
8da6d581 602{
8da6d581
JS
603 struct btrfs_root *root;
604 struct btrfs_key root_key;
8da6d581
JS
605 struct extent_buffer *eb;
606 int ret = 0;
607 int root_level;
608 int level = ref->level;
538f72cd 609 int index;
8da6d581 610
8da6d581
JS
611 root_key.objectid = ref->root_id;
612 root_key.type = BTRFS_ROOT_ITEM_KEY;
613 root_key.offset = (u64)-1;
538f72cd
WS
614
615 index = srcu_read_lock(&fs_info->subvol_srcu);
616
2d9e9776 617 root = btrfs_get_fs_root(fs_info, &root_key, false);
8da6d581 618 if (IS_ERR(root)) {
538f72cd 619 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581
JS
620 ret = PTR_ERR(root);
621 goto out;
622 }
623
f5ee5c9a 624 if (btrfs_is_testing(fs_info)) {
d9ee522b
JB
625 srcu_read_unlock(&fs_info->subvol_srcu, index);
626 ret = -ENOENT;
627 goto out;
628 }
629
9e351cc8
JB
630 if (path->search_commit_root)
631 root_level = btrfs_header_level(root->commit_root);
21633fc6
QW
632 else if (time_seq == (u64)-1)
633 root_level = btrfs_header_level(root->node);
9e351cc8
JB
634 else
635 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 636
538f72cd
WS
637 if (root_level + 1 == level) {
638 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581 639 goto out;
538f72cd 640 }
8da6d581
JS
641
642 path->lowest_level = level;
21633fc6
QW
643 if (time_seq == (u64)-1)
644 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
645 0, 0);
646 else
647 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
648 time_seq);
538f72cd
WS
649
650 /* root node has been locked, we can release @subvol_srcu safely here */
651 srcu_read_unlock(&fs_info->subvol_srcu, index);
652
5d163e0e 653 pr_debug("search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)\n",
c1c9ff7c
GU
654 ref->root_id, level, ref->count, ret,
655 ref->key_for_search.objectid, ref->key_for_search.type,
656 ref->key_for_search.offset);
8da6d581
JS
657 if (ret < 0)
658 goto out;
659
660 eb = path->nodes[level];
9345457f 661 while (!eb) {
fae7f21c 662 if (WARN_ON(!level)) {
9345457f
JS
663 ret = 1;
664 goto out;
665 }
666 level--;
667 eb = path->nodes[level];
8da6d581
JS
668 }
669
7ef81ac8 670 ret = add_all_parents(root, path, parents, ref, level, time_seq,
44853868 671 extent_item_pos, total_refs);
8da6d581 672out:
da61d31a
JB
673 path->lowest_level = 0;
674 btrfs_release_path(path);
8da6d581
JS
675 return ret;
676}
677
678/*
679 * resolve all indirect backrefs from the list
680 */
681static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
da61d31a 682 struct btrfs_path *path, u64 time_seq,
976b1908 683 struct list_head *head,
dc046b10
JB
684 const u64 *extent_item_pos, u64 total_refs,
685 u64 root_objectid)
8da6d581
JS
686{
687 int err;
688 int ret = 0;
689 struct __prelim_ref *ref;
690 struct __prelim_ref *ref_safe;
691 struct __prelim_ref *new_ref;
692 struct ulist *parents;
693 struct ulist_node *node;
cd1b413c 694 struct ulist_iterator uiter;
8da6d581
JS
695
696 parents = ulist_alloc(GFP_NOFS);
697 if (!parents)
698 return -ENOMEM;
699
700 /*
701 * _safe allows us to insert directly after the current item without
702 * iterating over the newly inserted items.
703 * we're also allowed to re-assign ref during iteration.
704 */
705 list_for_each_entry_safe(ref, ref_safe, head, list) {
706 if (ref->parent) /* already direct */
707 continue;
708 if (ref->count == 0)
709 continue;
dc046b10
JB
710 if (root_objectid && ref->root_id != root_objectid) {
711 ret = BACKREF_FOUND_SHARED;
712 goto out;
713 }
da61d31a 714 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
44853868
JB
715 parents, extent_item_pos,
716 total_refs);
95def2ed
WS
717 /*
718 * we can only tolerate ENOENT,otherwise,we should catch error
719 * and return directly.
720 */
721 if (err == -ENOENT) {
8da6d581 722 continue;
95def2ed
WS
723 } else if (err) {
724 ret = err;
725 goto out;
726 }
8da6d581
JS
727
728 /* we put the first parent into the ref at hand */
cd1b413c
JS
729 ULIST_ITER_INIT(&uiter);
730 node = ulist_next(parents, &uiter);
8da6d581 731 ref->parent = node ? node->val : 0;
995e01b7 732 ref->inode_list = node ?
35a3621b 733 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
8da6d581
JS
734
735 /* additional parents require new refs being added here */
cd1b413c 736 while ((node = ulist_next(parents, &uiter))) {
b9e9a6cb
WS
737 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
738 GFP_NOFS);
8da6d581
JS
739 if (!new_ref) {
740 ret = -ENOMEM;
e36902d4 741 goto out;
8da6d581
JS
742 }
743 memcpy(new_ref, ref, sizeof(*ref));
744 new_ref->parent = node->val;
995e01b7
JS
745 new_ref->inode_list = (struct extent_inode_elem *)
746 (uintptr_t)node->aux;
8da6d581
JS
747 list_add(&new_ref->list, &ref->list);
748 }
749 ulist_reinit(parents);
750 }
e36902d4 751out:
8da6d581
JS
752 ulist_free(parents);
753 return ret;
754}
755
d5c88b73
JS
756static inline int ref_for_same_block(struct __prelim_ref *ref1,
757 struct __prelim_ref *ref2)
758{
759 if (ref1->level != ref2->level)
760 return 0;
761 if (ref1->root_id != ref2->root_id)
762 return 0;
763 if (ref1->key_for_search.type != ref2->key_for_search.type)
764 return 0;
765 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
766 return 0;
767 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
768 return 0;
769 if (ref1->parent != ref2->parent)
770 return 0;
771
772 return 1;
773}
774
775/*
776 * read tree blocks and add keys where required.
777 */
778static int __add_missing_keys(struct btrfs_fs_info *fs_info,
779 struct list_head *head)
780{
a7ca4225 781 struct __prelim_ref *ref;
d5c88b73
JS
782 struct extent_buffer *eb;
783
a7ca4225 784 list_for_each_entry(ref, head, list) {
d5c88b73
JS
785 if (ref->parent)
786 continue;
787 if (ref->key_for_search.type)
788 continue;
789 BUG_ON(!ref->wanted_disk_byte);
790 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
ce86cd59 791 0);
64c043de
LB
792 if (IS_ERR(eb)) {
793 return PTR_ERR(eb);
794 } else if (!extent_buffer_uptodate(eb)) {
416bc658
JB
795 free_extent_buffer(eb);
796 return -EIO;
797 }
d5c88b73
JS
798 btrfs_tree_read_lock(eb);
799 if (btrfs_header_level(eb) == 0)
800 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
801 else
802 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
803 btrfs_tree_read_unlock(eb);
804 free_extent_buffer(eb);
805 }
806 return 0;
807}
808
8da6d581 809/*
00db646d 810 * merge backrefs and adjust counts accordingly
8da6d581
JS
811 *
812 * mode = 1: merge identical keys, if key is set
d5c88b73
JS
813 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
814 * additionally, we could even add a key range for the blocks we
815 * looked into to merge even more (-> replace unresolved refs by those
816 * having a parent).
8da6d581
JS
817 * mode = 2: merge identical parents
818 */
692206b1 819static void __merge_refs(struct list_head *head, int mode)
8da6d581 820{
8e217858 821 struct __prelim_ref *pos1;
8da6d581 822
8e217858
GT
823 list_for_each_entry(pos1, head, list) {
824 struct __prelim_ref *pos2 = pos1, *tmp;
8da6d581 825
8e217858 826 list_for_each_entry_safe_continue(pos2, tmp, head, list) {
8f682f69 827 struct __prelim_ref *ref1 = pos1, *ref2 = pos2;
3ef5969c 828 struct extent_inode_elem *eie;
8da6d581 829
00db646d
QW
830 if (!ref_for_same_block(ref1, ref2))
831 continue;
8da6d581 832 if (mode == 1) {
8f682f69
DJ
833 if (!ref1->parent && ref2->parent)
834 swap(ref1, ref2);
8da6d581
JS
835 } else {
836 if (ref1->parent != ref2->parent)
837 continue;
8da6d581 838 }
3ef5969c
AB
839
840 eie = ref1->inode_list;
841 while (eie && eie->next)
842 eie = eie->next;
843 if (eie)
844 eie->next = ref2->inode_list;
845 else
846 ref1->inode_list = ref2->inode_list;
847 ref1->count += ref2->count;
848
8da6d581 849 list_del(&ref2->list);
b9e9a6cb 850 kmem_cache_free(btrfs_prelim_ref_cache, ref2);
d8422ba3 851 cond_resched();
8da6d581
JS
852 }
853
854 }
8da6d581
JS
855}
856
857/*
858 * add all currently queued delayed refs from this head whose seq nr is
859 * smaller or equal that seq to the list
860 */
861static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
dc046b10
JB
862 struct list_head *prefs, u64 *total_refs,
863 u64 inum)
8da6d581 864{
c6fc2454 865 struct btrfs_delayed_ref_node *node;
8da6d581 866 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
d5c88b73
JS
867 struct btrfs_key key;
868 struct btrfs_key op_key = {0};
8da6d581 869 int sgn;
b1375d64 870 int ret = 0;
8da6d581
JS
871
872 if (extent_op && extent_op->update_key)
d5c88b73 873 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
8da6d581 874
d7df2c79 875 spin_lock(&head->lock);
c6fc2454 876 list_for_each_entry(node, &head->ref_list, list) {
8da6d581
JS
877 if (node->seq > seq)
878 continue;
879
880 switch (node->action) {
881 case BTRFS_ADD_DELAYED_EXTENT:
882 case BTRFS_UPDATE_DELAYED_HEAD:
883 WARN_ON(1);
884 continue;
885 case BTRFS_ADD_DELAYED_REF:
886 sgn = 1;
887 break;
888 case BTRFS_DROP_DELAYED_REF:
889 sgn = -1;
890 break;
891 default:
892 BUG_ON(1);
893 }
44853868 894 *total_refs += (node->ref_mod * sgn);
8da6d581
JS
895 switch (node->type) {
896 case BTRFS_TREE_BLOCK_REF_KEY: {
897 struct btrfs_delayed_tree_ref *ref;
898
899 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 900 ret = __add_prelim_ref(prefs, ref->root, &op_key,
8da6d581 901 ref->level + 1, 0, node->bytenr,
742916b8 902 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
903 break;
904 }
905 case BTRFS_SHARED_BLOCK_REF_KEY: {
906 struct btrfs_delayed_tree_ref *ref;
907
908 ref = btrfs_delayed_node_to_tree_ref(node);
acdf898d 909 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581
JS
910 ref->level + 1, ref->parent,
911 node->bytenr,
742916b8 912 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
913 break;
914 }
915 case BTRFS_EXTENT_DATA_REF_KEY: {
916 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
917 ref = btrfs_delayed_node_to_data_ref(node);
918
919 key.objectid = ref->objectid;
920 key.type = BTRFS_EXTENT_DATA_KEY;
921 key.offset = ref->offset;
dc046b10
JB
922
923 /*
924 * Found a inum that doesn't match our known inum, we
925 * know it's shared.
926 */
927 if (inum && ref->objectid != inum) {
928 ret = BACKREF_FOUND_SHARED;
929 break;
930 }
931
8da6d581
JS
932 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
933 node->bytenr,
742916b8 934 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
935 break;
936 }
937 case BTRFS_SHARED_DATA_REF_KEY: {
938 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
939
940 ref = btrfs_delayed_node_to_data_ref(node);
acdf898d 941 ret = __add_prelim_ref(prefs, 0, NULL, 0,
8da6d581 942 ref->parent, node->bytenr,
742916b8 943 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
944 break;
945 }
946 default:
947 WARN_ON(1);
948 }
1149ab6b 949 if (ret)
d7df2c79 950 break;
8da6d581 951 }
d7df2c79
JB
952 spin_unlock(&head->lock);
953 return ret;
8da6d581
JS
954}
955
956/*
957 * add all inline backrefs for bytenr to the list
958 */
959static int __add_inline_refs(struct btrfs_fs_info *fs_info,
960 struct btrfs_path *path, u64 bytenr,
44853868 961 int *info_level, struct list_head *prefs,
afce772e 962 struct ref_root *ref_tree,
dc046b10 963 u64 *total_refs, u64 inum)
8da6d581 964{
b1375d64 965 int ret = 0;
8da6d581
JS
966 int slot;
967 struct extent_buffer *leaf;
968 struct btrfs_key key;
261c84b6 969 struct btrfs_key found_key;
8da6d581
JS
970 unsigned long ptr;
971 unsigned long end;
972 struct btrfs_extent_item *ei;
973 u64 flags;
974 u64 item_size;
975
976 /*
977 * enumerate all inline refs
978 */
979 leaf = path->nodes[0];
dadcaf78 980 slot = path->slots[0];
8da6d581
JS
981
982 item_size = btrfs_item_size_nr(leaf, slot);
983 BUG_ON(item_size < sizeof(*ei));
984
985 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
986 flags = btrfs_extent_flags(leaf, ei);
44853868 987 *total_refs += btrfs_extent_refs(leaf, ei);
261c84b6 988 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
989
990 ptr = (unsigned long)(ei + 1);
991 end = (unsigned long)ei + item_size;
992
261c84b6
JB
993 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
994 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 995 struct btrfs_tree_block_info *info;
8da6d581
JS
996
997 info = (struct btrfs_tree_block_info *)ptr;
998 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
999 ptr += sizeof(struct btrfs_tree_block_info);
1000 BUG_ON(ptr > end);
261c84b6
JB
1001 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1002 *info_level = found_key.offset;
8da6d581
JS
1003 } else {
1004 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1005 }
1006
1007 while (ptr < end) {
1008 struct btrfs_extent_inline_ref *iref;
1009 u64 offset;
1010 int type;
1011
1012 iref = (struct btrfs_extent_inline_ref *)ptr;
1013 type = btrfs_extent_inline_ref_type(leaf, iref);
1014 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1015
1016 switch (type) {
1017 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 1018 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581 1019 *info_level + 1, offset,
742916b8 1020 bytenr, 1, GFP_NOFS);
8da6d581
JS
1021 break;
1022 case BTRFS_SHARED_DATA_REF_KEY: {
1023 struct btrfs_shared_data_ref *sdref;
1024 int count;
1025
1026 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1027 count = btrfs_shared_data_ref_count(leaf, sdref);
1028 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
742916b8 1029 bytenr, count, GFP_NOFS);
afce772e
LF
1030 if (ref_tree) {
1031 if (!ret)
1032 ret = ref_tree_add(ref_tree, 0, 0, 0,
1033 bytenr, count);
1034 if (!ret && ref_tree->unique_refs > 1)
1035 ret = BACKREF_FOUND_SHARED;
1036 }
8da6d581
JS
1037 break;
1038 }
1039 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
1040 ret = __add_prelim_ref(prefs, offset, NULL,
1041 *info_level + 1, 0,
742916b8 1042 bytenr, 1, GFP_NOFS);
8da6d581
JS
1043 break;
1044 case BTRFS_EXTENT_DATA_REF_KEY: {
1045 struct btrfs_extent_data_ref *dref;
1046 int count;
1047 u64 root;
1048
1049 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1050 count = btrfs_extent_data_ref_count(leaf, dref);
1051 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1052 dref);
1053 key.type = BTRFS_EXTENT_DATA_KEY;
1054 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10
JB
1055
1056 if (inum && key.objectid != inum) {
1057 ret = BACKREF_FOUND_SHARED;
1058 break;
1059 }
1060
8da6d581 1061 root = btrfs_extent_data_ref_root(leaf, dref);
d5c88b73 1062 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742916b8 1063 bytenr, count, GFP_NOFS);
afce772e
LF
1064 if (ref_tree) {
1065 if (!ret)
1066 ret = ref_tree_add(ref_tree, root,
1067 key.objectid,
1068 key.offset, 0,
1069 count);
1070 if (!ret && ref_tree->unique_refs > 1)
1071 ret = BACKREF_FOUND_SHARED;
1072 }
8da6d581
JS
1073 break;
1074 }
1075 default:
1076 WARN_ON(1);
1077 }
1149ab6b
WS
1078 if (ret)
1079 return ret;
8da6d581
JS
1080 ptr += btrfs_extent_inline_ref_size(type);
1081 }
1082
1083 return 0;
1084}
1085
1086/*
1087 * add all non-inline backrefs for bytenr to the list
1088 */
1089static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
1090 struct btrfs_path *path, u64 bytenr,
afce772e
LF
1091 int info_level, struct list_head *prefs,
1092 struct ref_root *ref_tree, u64 inum)
8da6d581
JS
1093{
1094 struct btrfs_root *extent_root = fs_info->extent_root;
1095 int ret;
1096 int slot;
1097 struct extent_buffer *leaf;
1098 struct btrfs_key key;
1099
1100 while (1) {
1101 ret = btrfs_next_item(extent_root, path);
1102 if (ret < 0)
1103 break;
1104 if (ret) {
1105 ret = 0;
1106 break;
1107 }
1108
1109 slot = path->slots[0];
1110 leaf = path->nodes[0];
1111 btrfs_item_key_to_cpu(leaf, &key, slot);
1112
1113 if (key.objectid != bytenr)
1114 break;
1115 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1116 continue;
1117 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1118 break;
1119
1120 switch (key.type) {
1121 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 1122 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581 1123 info_level + 1, key.offset,
742916b8 1124 bytenr, 1, GFP_NOFS);
8da6d581
JS
1125 break;
1126 case BTRFS_SHARED_DATA_REF_KEY: {
1127 struct btrfs_shared_data_ref *sdref;
1128 int count;
1129
1130 sdref = btrfs_item_ptr(leaf, slot,
1131 struct btrfs_shared_data_ref);
1132 count = btrfs_shared_data_ref_count(leaf, sdref);
1133 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
742916b8 1134 bytenr, count, GFP_NOFS);
afce772e
LF
1135 if (ref_tree) {
1136 if (!ret)
1137 ret = ref_tree_add(ref_tree, 0, 0, 0,
1138 bytenr, count);
1139 if (!ret && ref_tree->unique_refs > 1)
1140 ret = BACKREF_FOUND_SHARED;
1141 }
8da6d581
JS
1142 break;
1143 }
1144 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
1145 ret = __add_prelim_ref(prefs, key.offset, NULL,
1146 info_level + 1, 0,
742916b8 1147 bytenr, 1, GFP_NOFS);
8da6d581
JS
1148 break;
1149 case BTRFS_EXTENT_DATA_REF_KEY: {
1150 struct btrfs_extent_data_ref *dref;
1151 int count;
1152 u64 root;
1153
1154 dref = btrfs_item_ptr(leaf, slot,
1155 struct btrfs_extent_data_ref);
1156 count = btrfs_extent_data_ref_count(leaf, dref);
1157 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1158 dref);
1159 key.type = BTRFS_EXTENT_DATA_KEY;
1160 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10
JB
1161
1162 if (inum && key.objectid != inum) {
1163 ret = BACKREF_FOUND_SHARED;
1164 break;
1165 }
1166
8da6d581
JS
1167 root = btrfs_extent_data_ref_root(leaf, dref);
1168 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742916b8 1169 bytenr, count, GFP_NOFS);
afce772e
LF
1170 if (ref_tree) {
1171 if (!ret)
1172 ret = ref_tree_add(ref_tree, root,
1173 key.objectid,
1174 key.offset, 0,
1175 count);
1176 if (!ret && ref_tree->unique_refs > 1)
1177 ret = BACKREF_FOUND_SHARED;
1178 }
8da6d581
JS
1179 break;
1180 }
1181 default:
1182 WARN_ON(1);
1183 }
1149ab6b
WS
1184 if (ret)
1185 return ret;
1186
8da6d581
JS
1187 }
1188
1189 return ret;
1190}
1191
1192/*
1193 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1194 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1195 * indirect refs to their parent bytenr.
1196 * When roots are found, they're added to the roots list
1197 *
2c2ed5aa
MF
1198 * NOTE: This can return values > 0
1199 *
21633fc6
QW
1200 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
1201 * much like trans == NULL case, the difference only lies in it will not
1202 * commit root.
1203 * The special case is for qgroup to search roots in commit_transaction().
1204 *
afce772e
LF
1205 * If check_shared is set to 1, any extent has more than one ref item, will
1206 * be returned BACKREF_FOUND_SHARED immediately.
1207 *
8da6d581
JS
1208 * FIXME some caching might speed things up
1209 */
1210static int find_parent_nodes(struct btrfs_trans_handle *trans,
1211 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1212 u64 time_seq, struct ulist *refs,
dc046b10 1213 struct ulist *roots, const u64 *extent_item_pos,
afce772e 1214 u64 root_objectid, u64 inum, int check_shared)
8da6d581
JS
1215{
1216 struct btrfs_key key;
1217 struct btrfs_path *path;
8da6d581 1218 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 1219 struct btrfs_delayed_ref_head *head;
8da6d581
JS
1220 int info_level = 0;
1221 int ret;
1222 struct list_head prefs_delayed;
1223 struct list_head prefs;
1224 struct __prelim_ref *ref;
f05c4746 1225 struct extent_inode_elem *eie = NULL;
afce772e 1226 struct ref_root *ref_tree = NULL;
44853868 1227 u64 total_refs = 0;
8da6d581
JS
1228
1229 INIT_LIST_HEAD(&prefs);
1230 INIT_LIST_HEAD(&prefs_delayed);
1231
1232 key.objectid = bytenr;
8da6d581 1233 key.offset = (u64)-1;
261c84b6
JB
1234 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1235 key.type = BTRFS_METADATA_ITEM_KEY;
1236 else
1237 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
1238
1239 path = btrfs_alloc_path();
1240 if (!path)
1241 return -ENOMEM;
e84752d4 1242 if (!trans) {
da61d31a 1243 path->search_commit_root = 1;
e84752d4
WS
1244 path->skip_locking = 1;
1245 }
8da6d581 1246
21633fc6
QW
1247 if (time_seq == (u64)-1)
1248 path->skip_locking = 1;
1249
8da6d581
JS
1250 /*
1251 * grab both a lock on the path and a lock on the delayed ref head.
1252 * We need both to get a consistent picture of how the refs look
1253 * at a specified point in time
1254 */
1255again:
d3b01064
LZ
1256 head = NULL;
1257
afce772e
LF
1258 if (check_shared) {
1259 if (!ref_tree) {
1260 ref_tree = ref_root_alloc();
1261 if (!ref_tree) {
1262 ret = -ENOMEM;
1263 goto out;
1264 }
1265 } else {
1266 ref_root_fini(ref_tree);
1267 }
1268 }
1269
8da6d581
JS
1270 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1271 if (ret < 0)
1272 goto out;
1273 BUG_ON(ret == 0);
1274
faa2dbf0 1275#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
21633fc6
QW
1276 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1277 time_seq != (u64)-1) {
faa2dbf0 1278#else
21633fc6 1279 if (trans && time_seq != (u64)-1) {
faa2dbf0 1280#endif
7a3ae2f8
JS
1281 /*
1282 * look if there are updates for this ref queued and lock the
1283 * head
1284 */
1285 delayed_refs = &trans->transaction->delayed_refs;
1286 spin_lock(&delayed_refs->lock);
1287 head = btrfs_find_delayed_ref_head(trans, bytenr);
1288 if (head) {
1289 if (!mutex_trylock(&head->mutex)) {
1290 atomic_inc(&head->node.refs);
1291 spin_unlock(&delayed_refs->lock);
1292
1293 btrfs_release_path(path);
1294
1295 /*
1296 * Mutex was contended, block until it's
1297 * released and try again
1298 */
1299 mutex_lock(&head->mutex);
1300 mutex_unlock(&head->mutex);
1301 btrfs_put_delayed_ref(&head->node);
1302 goto again;
1303 }
d7df2c79 1304 spin_unlock(&delayed_refs->lock);
097b8a7c 1305 ret = __add_delayed_refs(head, time_seq,
dc046b10
JB
1306 &prefs_delayed, &total_refs,
1307 inum);
155725c9 1308 mutex_unlock(&head->mutex);
d7df2c79 1309 if (ret)
7a3ae2f8 1310 goto out;
d7df2c79
JB
1311 } else {
1312 spin_unlock(&delayed_refs->lock);
d3b01064 1313 }
afce772e
LF
1314
1315 if (check_shared && !list_empty(&prefs_delayed)) {
1316 /*
1317 * Add all delay_ref to the ref_tree and check if there
1318 * are multiple ref items added.
1319 */
1320 list_for_each_entry(ref, &prefs_delayed, list) {
1321 if (ref->key_for_search.type) {
1322 ret = ref_tree_add(ref_tree,
1323 ref->root_id,
1324 ref->key_for_search.objectid,
1325 ref->key_for_search.offset,
1326 0, ref->count);
1327 if (ret)
1328 goto out;
1329 } else {
1330 ret = ref_tree_add(ref_tree, 0, 0, 0,
1331 ref->parent, ref->count);
1332 if (ret)
1333 goto out;
1334 }
1335
1336 }
1337
1338 if (ref_tree->unique_refs > 1) {
1339 ret = BACKREF_FOUND_SHARED;
1340 goto out;
1341 }
1342
1343 }
8da6d581 1344 }
8da6d581
JS
1345
1346 if (path->slots[0]) {
1347 struct extent_buffer *leaf;
1348 int slot;
1349
dadcaf78 1350 path->slots[0]--;
8da6d581 1351 leaf = path->nodes[0];
dadcaf78 1352 slot = path->slots[0];
8da6d581
JS
1353 btrfs_item_key_to_cpu(leaf, &key, slot);
1354 if (key.objectid == bytenr &&
261c84b6
JB
1355 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1356 key.type == BTRFS_METADATA_ITEM_KEY)) {
8da6d581 1357 ret = __add_inline_refs(fs_info, path, bytenr,
44853868 1358 &info_level, &prefs,
afce772e
LF
1359 ref_tree, &total_refs,
1360 inum);
8da6d581
JS
1361 if (ret)
1362 goto out;
d5c88b73 1363 ret = __add_keyed_refs(fs_info, path, bytenr,
afce772e
LF
1364 info_level, &prefs,
1365 ref_tree, inum);
8da6d581
JS
1366 if (ret)
1367 goto out;
1368 }
1369 }
1370 btrfs_release_path(path);
1371
8da6d581
JS
1372 list_splice_init(&prefs_delayed, &prefs);
1373
d5c88b73
JS
1374 ret = __add_missing_keys(fs_info, &prefs);
1375 if (ret)
1376 goto out;
1377
692206b1 1378 __merge_refs(&prefs, 1);
8da6d581 1379
da61d31a 1380 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
dc046b10
JB
1381 extent_item_pos, total_refs,
1382 root_objectid);
8da6d581
JS
1383 if (ret)
1384 goto out;
1385
692206b1 1386 __merge_refs(&prefs, 2);
8da6d581
JS
1387
1388 while (!list_empty(&prefs)) {
1389 ref = list_first_entry(&prefs, struct __prelim_ref, list);
6c1500f2 1390 WARN_ON(ref->count < 0);
98cfee21 1391 if (roots && ref->count && ref->root_id && ref->parent == 0) {
dc046b10
JB
1392 if (root_objectid && ref->root_id != root_objectid) {
1393 ret = BACKREF_FOUND_SHARED;
1394 goto out;
1395 }
1396
8da6d581
JS
1397 /* no parent == root of tree */
1398 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1399 if (ret < 0)
1400 goto out;
8da6d581
JS
1401 }
1402 if (ref->count && ref->parent) {
8a56457f
JB
1403 if (extent_item_pos && !ref->inode_list &&
1404 ref->level == 0) {
976b1908 1405 struct extent_buffer *eb;
707e8a07 1406
976b1908 1407 eb = read_tree_block(fs_info->extent_root,
ce86cd59 1408 ref->parent, 0);
64c043de
LB
1409 if (IS_ERR(eb)) {
1410 ret = PTR_ERR(eb);
1411 goto out;
1412 } else if (!extent_buffer_uptodate(eb)) {
416bc658 1413 free_extent_buffer(eb);
c16c2e2e
WS
1414 ret = -EIO;
1415 goto out;
416bc658 1416 }
6f7ff6d7
FM
1417 btrfs_tree_read_lock(eb);
1418 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
976b1908
JS
1419 ret = find_extent_in_eb(eb, bytenr,
1420 *extent_item_pos, &eie);
6f7ff6d7 1421 btrfs_tree_read_unlock_blocking(eb);
976b1908 1422 free_extent_buffer(eb);
f5929cd8
FDBM
1423 if (ret < 0)
1424 goto out;
1425 ref->inode_list = eie;
976b1908 1426 }
4eb1f66d
TI
1427 ret = ulist_add_merge_ptr(refs, ref->parent,
1428 ref->inode_list,
1429 (void **)&eie, GFP_NOFS);
f1723939
WS
1430 if (ret < 0)
1431 goto out;
3301958b
JS
1432 if (!ret && extent_item_pos) {
1433 /*
1434 * we've recorded that parent, so we must extend
1435 * its inode list here
1436 */
1437 BUG_ON(!eie);
1438 while (eie->next)
1439 eie = eie->next;
1440 eie->next = ref->inode_list;
1441 }
f05c4746 1442 eie = NULL;
8da6d581 1443 }
a4fdb61e 1444 list_del(&ref->list);
b9e9a6cb 1445 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
1446 }
1447
1448out:
8da6d581 1449 btrfs_free_path(path);
afce772e 1450 ref_root_free(ref_tree);
8da6d581
JS
1451 while (!list_empty(&prefs)) {
1452 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1453 list_del(&ref->list);
b9e9a6cb 1454 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
1455 }
1456 while (!list_empty(&prefs_delayed)) {
1457 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1458 list);
1459 list_del(&ref->list);
b9e9a6cb 1460 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581 1461 }
f05c4746
WS
1462 if (ret < 0)
1463 free_inode_elem_list(eie);
8da6d581
JS
1464 return ret;
1465}
1466
976b1908
JS
1467static void free_leaf_list(struct ulist *blocks)
1468{
1469 struct ulist_node *node = NULL;
1470 struct extent_inode_elem *eie;
976b1908
JS
1471 struct ulist_iterator uiter;
1472
1473 ULIST_ITER_INIT(&uiter);
1474 while ((node = ulist_next(blocks, &uiter))) {
1475 if (!node->aux)
1476 continue;
995e01b7 1477 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
f05c4746 1478 free_inode_elem_list(eie);
976b1908
JS
1479 node->aux = 0;
1480 }
1481
1482 ulist_free(blocks);
1483}
1484
8da6d581
JS
1485/*
1486 * Finds all leafs with a reference to the specified combination of bytenr and
1487 * offset. key_list_head will point to a list of corresponding keys (caller must
1488 * free each list element). The leafs will be stored in the leafs ulist, which
1489 * must be freed with ulist_free.
1490 *
1491 * returns 0 on success, <0 on error
1492 */
1493static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1494 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1495 u64 time_seq, struct ulist **leafs,
976b1908 1496 const u64 *extent_item_pos)
8da6d581 1497{
8da6d581
JS
1498 int ret;
1499
8da6d581 1500 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1501 if (!*leafs)
8da6d581 1502 return -ENOMEM;
8da6d581 1503
afce772e
LF
1504 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1505 *leafs, NULL, extent_item_pos, 0, 0, 0);
8da6d581 1506 if (ret < 0 && ret != -ENOENT) {
976b1908 1507 free_leaf_list(*leafs);
8da6d581
JS
1508 return ret;
1509 }
1510
1511 return 0;
1512}
1513
1514/*
1515 * walk all backrefs for a given extent to find all roots that reference this
1516 * extent. Walking a backref means finding all extents that reference this
1517 * extent and in turn walk the backrefs of those, too. Naturally this is a
1518 * recursive process, but here it is implemented in an iterative fashion: We
1519 * find all referencing extents for the extent in question and put them on a
1520 * list. In turn, we find all referencing extents for those, further appending
1521 * to the list. The way we iterate the list allows adding more elements after
1522 * the current while iterating. The process stops when we reach the end of the
1523 * list. Found roots are added to the roots list.
1524 *
1525 * returns 0 on success, < 0 on error.
1526 */
9e351cc8
JB
1527static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1528 struct btrfs_fs_info *fs_info, u64 bytenr,
1529 u64 time_seq, struct ulist **roots)
8da6d581
JS
1530{
1531 struct ulist *tmp;
1532 struct ulist_node *node = NULL;
cd1b413c 1533 struct ulist_iterator uiter;
8da6d581
JS
1534 int ret;
1535
1536 tmp = ulist_alloc(GFP_NOFS);
1537 if (!tmp)
1538 return -ENOMEM;
1539 *roots = ulist_alloc(GFP_NOFS);
1540 if (!*roots) {
1541 ulist_free(tmp);
1542 return -ENOMEM;
1543 }
1544
cd1b413c 1545 ULIST_ITER_INIT(&uiter);
8da6d581 1546 while (1) {
afce772e
LF
1547 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1548 tmp, *roots, NULL, 0, 0, 0);
8da6d581
JS
1549 if (ret < 0 && ret != -ENOENT) {
1550 ulist_free(tmp);
1551 ulist_free(*roots);
1552 return ret;
1553 }
cd1b413c 1554 node = ulist_next(tmp, &uiter);
8da6d581
JS
1555 if (!node)
1556 break;
1557 bytenr = node->val;
bca1a290 1558 cond_resched();
8da6d581
JS
1559 }
1560
1561 ulist_free(tmp);
1562 return 0;
1563}
1564
9e351cc8
JB
1565int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1566 struct btrfs_fs_info *fs_info, u64 bytenr,
1567 u64 time_seq, struct ulist **roots)
1568{
1569 int ret;
1570
1571 if (!trans)
1572 down_read(&fs_info->commit_root_sem);
1573 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1574 if (!trans)
1575 up_read(&fs_info->commit_root_sem);
1576 return ret;
1577}
1578
2c2ed5aa
MF
1579/**
1580 * btrfs_check_shared - tell us whether an extent is shared
1581 *
1582 * @trans: optional trans handle
1583 *
1584 * btrfs_check_shared uses the backref walking code but will short
1585 * circuit as soon as it finds a root or inode that doesn't match the
1586 * one passed in. This provides a significant performance benefit for
1587 * callers (such as fiemap) which want to know whether the extent is
1588 * shared but do not need a ref count.
1589 *
1590 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1591 */
dc046b10
JB
1592int btrfs_check_shared(struct btrfs_trans_handle *trans,
1593 struct btrfs_fs_info *fs_info, u64 root_objectid,
1594 u64 inum, u64 bytenr)
1595{
1596 struct ulist *tmp = NULL;
1597 struct ulist *roots = NULL;
1598 struct ulist_iterator uiter;
1599 struct ulist_node *node;
3284da7b 1600 struct seq_list elem = SEQ_LIST_INIT(elem);
dc046b10
JB
1601 int ret = 0;
1602
1603 tmp = ulist_alloc(GFP_NOFS);
1604 roots = ulist_alloc(GFP_NOFS);
1605 if (!tmp || !roots) {
1606 ulist_free(tmp);
1607 ulist_free(roots);
1608 return -ENOMEM;
1609 }
1610
1611 if (trans)
1612 btrfs_get_tree_mod_seq(fs_info, &elem);
1613 else
1614 down_read(&fs_info->commit_root_sem);
1615 ULIST_ITER_INIT(&uiter);
1616 while (1) {
1617 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
afce772e 1618 roots, NULL, root_objectid, inum, 1);
dc046b10 1619 if (ret == BACKREF_FOUND_SHARED) {
2c2ed5aa 1620 /* this is the only condition under which we return 1 */
dc046b10
JB
1621 ret = 1;
1622 break;
1623 }
1624 if (ret < 0 && ret != -ENOENT)
1625 break;
2c2ed5aa 1626 ret = 0;
dc046b10
JB
1627 node = ulist_next(tmp, &uiter);
1628 if (!node)
1629 break;
1630 bytenr = node->val;
1631 cond_resched();
1632 }
1633 if (trans)
1634 btrfs_put_tree_mod_seq(fs_info, &elem);
1635 else
1636 up_read(&fs_info->commit_root_sem);
1637 ulist_free(tmp);
1638 ulist_free(roots);
1639 return ret;
1640}
1641
f186373f
MF
1642int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1643 u64 start_off, struct btrfs_path *path,
1644 struct btrfs_inode_extref **ret_extref,
1645 u64 *found_off)
1646{
1647 int ret, slot;
1648 struct btrfs_key key;
1649 struct btrfs_key found_key;
1650 struct btrfs_inode_extref *extref;
1651 struct extent_buffer *leaf;
1652 unsigned long ptr;
1653
1654 key.objectid = inode_objectid;
962a298f 1655 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
1656 key.offset = start_off;
1657
1658 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1659 if (ret < 0)
1660 return ret;
1661
1662 while (1) {
1663 leaf = path->nodes[0];
1664 slot = path->slots[0];
1665 if (slot >= btrfs_header_nritems(leaf)) {
1666 /*
1667 * If the item at offset is not found,
1668 * btrfs_search_slot will point us to the slot
1669 * where it should be inserted. In our case
1670 * that will be the slot directly before the
1671 * next INODE_REF_KEY_V2 item. In the case
1672 * that we're pointing to the last slot in a
1673 * leaf, we must move one leaf over.
1674 */
1675 ret = btrfs_next_leaf(root, path);
1676 if (ret) {
1677 if (ret >= 1)
1678 ret = -ENOENT;
1679 break;
1680 }
1681 continue;
1682 }
1683
1684 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1685
1686 /*
1687 * Check that we're still looking at an extended ref key for
1688 * this particular objectid. If we have different
1689 * objectid or type then there are no more to be found
1690 * in the tree and we can exit.
1691 */
1692 ret = -ENOENT;
1693 if (found_key.objectid != inode_objectid)
1694 break;
962a298f 1695 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
1696 break;
1697
1698 ret = 0;
1699 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1700 extref = (struct btrfs_inode_extref *)ptr;
1701 *ret_extref = extref;
1702 if (found_off)
1703 *found_off = found_key.offset;
1704 break;
1705 }
1706
1707 return ret;
1708}
1709
48a3b636
ES
1710/*
1711 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1712 * Elements of the path are separated by '/' and the path is guaranteed to be
1713 * 0-terminated. the path is only given within the current file system.
1714 * Therefore, it never starts with a '/'. the caller is responsible to provide
1715 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1716 * the start point of the resulting string is returned. this pointer is within
1717 * dest, normally.
1718 * in case the path buffer would overflow, the pointer is decremented further
1719 * as if output was written to the buffer, though no more output is actually
1720 * generated. that way, the caller can determine how much space would be
1721 * required for the path to fit into the buffer. in that case, the returned
1722 * value will be smaller than dest. callers must check this!
1723 */
96b5bd77
JS
1724char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1725 u32 name_len, unsigned long name_off,
1726 struct extent_buffer *eb_in, u64 parent,
1727 char *dest, u32 size)
a542ad1b 1728{
a542ad1b
JS
1729 int slot;
1730 u64 next_inum;
1731 int ret;
661bec6b 1732 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1733 struct extent_buffer *eb = eb_in;
1734 struct btrfs_key found_key;
b916a59a 1735 int leave_spinning = path->leave_spinning;
d24bec3a 1736 struct btrfs_inode_ref *iref;
a542ad1b
JS
1737
1738 if (bytes_left >= 0)
1739 dest[bytes_left] = '\0';
1740
b916a59a 1741 path->leave_spinning = 1;
a542ad1b 1742 while (1) {
d24bec3a 1743 bytes_left -= name_len;
a542ad1b
JS
1744 if (bytes_left >= 0)
1745 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1746 name_off, name_len);
b916a59a 1747 if (eb != eb_in) {
0c0fe3b0
FM
1748 if (!path->skip_locking)
1749 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1750 free_extent_buffer(eb);
b916a59a 1751 }
c234a24d
DS
1752 ret = btrfs_find_item(fs_root, path, parent, 0,
1753 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
1754 if (ret > 0)
1755 ret = -ENOENT;
a542ad1b
JS
1756 if (ret)
1757 break;
d24bec3a 1758
a542ad1b
JS
1759 next_inum = found_key.offset;
1760
1761 /* regular exit ahead */
1762 if (parent == next_inum)
1763 break;
1764
1765 slot = path->slots[0];
1766 eb = path->nodes[0];
1767 /* make sure we can use eb after releasing the path */
b916a59a 1768 if (eb != eb_in) {
0c0fe3b0
FM
1769 if (!path->skip_locking)
1770 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1771 path->nodes[0] = NULL;
1772 path->locks[0] = 0;
b916a59a 1773 }
a542ad1b 1774 btrfs_release_path(path);
a542ad1b 1775 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1776
1777 name_len = btrfs_inode_ref_name_len(eb, iref);
1778 name_off = (unsigned long)(iref + 1);
1779
a542ad1b
JS
1780 parent = next_inum;
1781 --bytes_left;
1782 if (bytes_left >= 0)
1783 dest[bytes_left] = '/';
1784 }
1785
1786 btrfs_release_path(path);
b916a59a 1787 path->leave_spinning = leave_spinning;
a542ad1b
JS
1788
1789 if (ret)
1790 return ERR_PTR(ret);
1791
1792 return dest + bytes_left;
1793}
1794
1795/*
1796 * this makes the path point to (logical EXTENT_ITEM *)
1797 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1798 * tree blocks and <0 on error.
1799 */
1800int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1801 struct btrfs_path *path, struct btrfs_key *found_key,
1802 u64 *flags_ret)
a542ad1b
JS
1803{
1804 int ret;
1805 u64 flags;
261c84b6 1806 u64 size = 0;
a542ad1b
JS
1807 u32 item_size;
1808 struct extent_buffer *eb;
1809 struct btrfs_extent_item *ei;
1810 struct btrfs_key key;
1811
261c84b6
JB
1812 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1813 key.type = BTRFS_METADATA_ITEM_KEY;
1814 else
1815 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1816 key.objectid = logical;
1817 key.offset = (u64)-1;
1818
1819 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1820 if (ret < 0)
1821 return ret;
a542ad1b 1822
850a8cdf
WS
1823 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1824 if (ret) {
1825 if (ret > 0)
1826 ret = -ENOENT;
1827 return ret;
580f0a67 1828 }
850a8cdf 1829 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 1830 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
707e8a07 1831 size = fs_info->extent_root->nodesize;
261c84b6
JB
1832 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1833 size = found_key->offset;
1834
580f0a67 1835 if (found_key->objectid > logical ||
261c84b6 1836 found_key->objectid + size <= logical) {
c1c9ff7c 1837 pr_debug("logical %llu is not within any extent\n", logical);
a542ad1b 1838 return -ENOENT;
4692cf58 1839 }
a542ad1b
JS
1840
1841 eb = path->nodes[0];
1842 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1843 BUG_ON(item_size < sizeof(*ei));
1844
1845 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1846 flags = btrfs_extent_flags(eb, ei);
1847
5d163e0e 1848 pr_debug("logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u\n",
c1c9ff7c
GU
1849 logical, logical - found_key->objectid, found_key->objectid,
1850 found_key->offset, flags, item_size);
69917e43
LB
1851
1852 WARN_ON(!flags_ret);
1853 if (flags_ret) {
1854 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1855 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1856 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1857 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1858 else
1859 BUG_ON(1);
1860 return 0;
1861 }
a542ad1b
JS
1862
1863 return -EIO;
1864}
1865
1866/*
1867 * helper function to iterate extent inline refs. ptr must point to a 0 value
1868 * for the first call and may be modified. it is used to track state.
1869 * if more refs exist, 0 is returned and the next call to
1870 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1871 * next ref. after the last ref was processed, 1 is returned.
1872 * returns <0 on error
1873 */
1874static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
1875 struct btrfs_key *key,
1876 struct btrfs_extent_item *ei, u32 item_size,
1877 struct btrfs_extent_inline_ref **out_eiref,
1878 int *out_type)
a542ad1b
JS
1879{
1880 unsigned long end;
1881 u64 flags;
1882 struct btrfs_tree_block_info *info;
1883
1884 if (!*ptr) {
1885 /* first call */
1886 flags = btrfs_extent_flags(eb, ei);
1887 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
1888 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1889 /* a skinny metadata extent */
1890 *out_eiref =
1891 (struct btrfs_extent_inline_ref *)(ei + 1);
1892 } else {
1893 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1894 info = (struct btrfs_tree_block_info *)(ei + 1);
1895 *out_eiref =
1896 (struct btrfs_extent_inline_ref *)(info + 1);
1897 }
a542ad1b
JS
1898 } else {
1899 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1900 }
1901 *ptr = (unsigned long)*out_eiref;
cd857dd6 1902 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
1903 return -ENOENT;
1904 }
1905
1906 end = (unsigned long)ei + item_size;
6eda71d0 1907 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
a542ad1b
JS
1908 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1909
1910 *ptr += btrfs_extent_inline_ref_size(*out_type);
1911 WARN_ON(*ptr > end);
1912 if (*ptr == end)
1913 return 1; /* last */
1914
1915 return 0;
1916}
1917
1918/*
1919 * reads the tree block backref for an extent. tree level and root are returned
1920 * through out_level and out_root. ptr must point to a 0 value for the first
1921 * call and may be modified (see __get_extent_inline_ref comment).
1922 * returns 0 if data was provided, 1 if there was no more data to provide or
1923 * <0 on error.
1924 */
1925int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
1926 struct btrfs_key *key, struct btrfs_extent_item *ei,
1927 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
1928{
1929 int ret;
1930 int type;
a542ad1b
JS
1931 struct btrfs_extent_inline_ref *eiref;
1932
1933 if (*ptr == (unsigned long)-1)
1934 return 1;
1935
1936 while (1) {
6eda71d0
LB
1937 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1938 &eiref, &type);
a542ad1b
JS
1939 if (ret < 0)
1940 return ret;
1941
1942 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1943 type == BTRFS_SHARED_BLOCK_REF_KEY)
1944 break;
1945
1946 if (ret == 1)
1947 return 1;
1948 }
1949
1950 /* we can treat both ref types equally here */
a542ad1b 1951 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
1952
1953 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1954 struct btrfs_tree_block_info *info;
1955
1956 info = (struct btrfs_tree_block_info *)(ei + 1);
1957 *out_level = btrfs_tree_block_level(eb, info);
1958 } else {
1959 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1960 *out_level = (u8)key->offset;
1961 }
a542ad1b
JS
1962
1963 if (ret == 1)
1964 *ptr = (unsigned long)-1;
1965
1966 return 0;
1967}
1968
976b1908
JS
1969static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1970 u64 root, u64 extent_item_objectid,
4692cf58 1971 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1972{
976b1908 1973 struct extent_inode_elem *eie;
4692cf58 1974 int ret = 0;
4692cf58 1975
976b1908 1976 for (eie = inode_list; eie; eie = eie->next) {
5d163e0e 1977 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu\n", extent_item_objectid,
976b1908
JS
1978 eie->inum, eie->offset, root);
1979 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1980 if (ret) {
976b1908
JS
1981 pr_debug("stopping iteration for %llu due to ret=%d\n",
1982 extent_item_objectid, ret);
4692cf58
JS
1983 break;
1984 }
a542ad1b
JS
1985 }
1986
a542ad1b
JS
1987 return ret;
1988}
1989
1990/*
1991 * calls iterate() for every inode that references the extent identified by
4692cf58 1992 * the given parameters.
a542ad1b
JS
1993 * when the iterator function returns a non-zero value, iteration stops.
1994 */
1995int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1996 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1997 int search_commit_root,
a542ad1b
JS
1998 iterate_extent_inodes_t *iterate, void *ctx)
1999{
a542ad1b 2000 int ret;
da61d31a 2001 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
2002 struct ulist *refs = NULL;
2003 struct ulist *roots = NULL;
4692cf58
JS
2004 struct ulist_node *ref_node = NULL;
2005 struct ulist_node *root_node = NULL;
3284da7b 2006 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
cd1b413c
JS
2007 struct ulist_iterator ref_uiter;
2008 struct ulist_iterator root_uiter;
a542ad1b 2009
4692cf58
JS
2010 pr_debug("resolving all inodes for extent %llu\n",
2011 extent_item_objectid);
a542ad1b 2012
da61d31a 2013 if (!search_commit_root) {
7a3ae2f8
JS
2014 trans = btrfs_join_transaction(fs_info->extent_root);
2015 if (IS_ERR(trans))
2016 return PTR_ERR(trans);
8445f61c 2017 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
9e351cc8
JB
2018 } else {
2019 down_read(&fs_info->commit_root_sem);
7a3ae2f8 2020 }
a542ad1b 2021
4692cf58 2022 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 2023 tree_mod_seq_elem.seq, &refs,
8445f61c 2024 &extent_item_pos);
4692cf58
JS
2025 if (ret)
2026 goto out;
a542ad1b 2027
cd1b413c
JS
2028 ULIST_ITER_INIT(&ref_uiter);
2029 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
9e351cc8
JB
2030 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
2031 tree_mod_seq_elem.seq, &roots);
4692cf58
JS
2032 if (ret)
2033 break;
cd1b413c
JS
2034 ULIST_ITER_INIT(&root_uiter);
2035 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
5d163e0e 2036 pr_debug("root %llu references leaf %llu, data list %#llx\n", root_node->val, ref_node->val,
c1c9ff7c 2037 ref_node->aux);
995e01b7
JS
2038 ret = iterate_leaf_refs((struct extent_inode_elem *)
2039 (uintptr_t)ref_node->aux,
2040 root_node->val,
2041 extent_item_objectid,
2042 iterate, ctx);
4692cf58 2043 }
976b1908 2044 ulist_free(roots);
a542ad1b
JS
2045 }
2046
976b1908 2047 free_leaf_list(refs);
4692cf58 2048out:
7a3ae2f8 2049 if (!search_commit_root) {
8445f61c 2050 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8 2051 btrfs_end_transaction(trans, fs_info->extent_root);
9e351cc8
JB
2052 } else {
2053 up_read(&fs_info->commit_root_sem);
7a3ae2f8
JS
2054 }
2055
a542ad1b
JS
2056 return ret;
2057}
2058
2059int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2060 struct btrfs_path *path,
2061 iterate_extent_inodes_t *iterate, void *ctx)
2062{
2063 int ret;
4692cf58 2064 u64 extent_item_pos;
69917e43 2065 u64 flags = 0;
a542ad1b 2066 struct btrfs_key found_key;
7a3ae2f8 2067 int search_commit_root = path->search_commit_root;
a542ad1b 2068
69917e43 2069 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 2070 btrfs_release_path(path);
a542ad1b
JS
2071 if (ret < 0)
2072 return ret;
69917e43 2073 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 2074 return -EINVAL;
a542ad1b 2075
4692cf58 2076 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
2077 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2078 extent_item_pos, search_commit_root,
2079 iterate, ctx);
a542ad1b
JS
2080
2081 return ret;
2082}
2083
d24bec3a
MF
2084typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2085 struct extent_buffer *eb, void *ctx);
2086
2087static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2088 struct btrfs_path *path,
2089 iterate_irefs_t *iterate, void *ctx)
a542ad1b 2090{
aefc1eb1 2091 int ret = 0;
a542ad1b
JS
2092 int slot;
2093 u32 cur;
2094 u32 len;
2095 u32 name_len;
2096 u64 parent = 0;
2097 int found = 0;
2098 struct extent_buffer *eb;
2099 struct btrfs_item *item;
2100 struct btrfs_inode_ref *iref;
2101 struct btrfs_key found_key;
2102
aefc1eb1 2103 while (!ret) {
c234a24d
DS
2104 ret = btrfs_find_item(fs_root, path, inum,
2105 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2106 &found_key);
2107
a542ad1b
JS
2108 if (ret < 0)
2109 break;
2110 if (ret) {
2111 ret = found ? 0 : -ENOENT;
2112 break;
2113 }
2114 ++found;
2115
2116 parent = found_key.offset;
2117 slot = path->slots[0];
3fe81ce2
FDBM
2118 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2119 if (!eb) {
2120 ret = -ENOMEM;
2121 break;
2122 }
2123 extent_buffer_get(eb);
b916a59a
JS
2124 btrfs_tree_read_lock(eb);
2125 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
2126 btrfs_release_path(path);
2127
dd3cc16b 2128 item = btrfs_item_nr(slot);
a542ad1b
JS
2129 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2130
2131 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2132 name_len = btrfs_inode_ref_name_len(eb, iref);
2133 /* path must be released before calling iterate()! */
5d163e0e 2134 pr_debug("following ref at offset %u for inode %llu in tree %llu\n", cur, found_key.objectid,
c1c9ff7c 2135 fs_root->objectid);
d24bec3a
MF
2136 ret = iterate(parent, name_len,
2137 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 2138 if (ret)
a542ad1b 2139 break;
a542ad1b
JS
2140 len = sizeof(*iref) + name_len;
2141 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2142 }
b916a59a 2143 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
2144 free_extent_buffer(eb);
2145 }
2146
2147 btrfs_release_path(path);
2148
2149 return ret;
2150}
2151
d24bec3a
MF
2152static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2153 struct btrfs_path *path,
2154 iterate_irefs_t *iterate, void *ctx)
2155{
2156 int ret;
2157 int slot;
2158 u64 offset = 0;
2159 u64 parent;
2160 int found = 0;
2161 struct extent_buffer *eb;
2162 struct btrfs_inode_extref *extref;
d24bec3a
MF
2163 u32 item_size;
2164 u32 cur_offset;
2165 unsigned long ptr;
2166
2167 while (1) {
2168 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2169 &offset);
2170 if (ret < 0)
2171 break;
2172 if (ret) {
2173 ret = found ? 0 : -ENOENT;
2174 break;
2175 }
2176 ++found;
2177
2178 slot = path->slots[0];
3fe81ce2
FDBM
2179 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2180 if (!eb) {
2181 ret = -ENOMEM;
2182 break;
2183 }
2184 extent_buffer_get(eb);
d24bec3a
MF
2185
2186 btrfs_tree_read_lock(eb);
2187 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2188 btrfs_release_path(path);
2189
2849a854
CM
2190 item_size = btrfs_item_size_nr(eb, slot);
2191 ptr = btrfs_item_ptr_offset(eb, slot);
d24bec3a
MF
2192 cur_offset = 0;
2193
2194 while (cur_offset < item_size) {
2195 u32 name_len;
2196
2197 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2198 parent = btrfs_inode_extref_parent(eb, extref);
2199 name_len = btrfs_inode_extref_name_len(eb, extref);
2200 ret = iterate(parent, name_len,
2201 (unsigned long)&extref->name, eb, ctx);
2202 if (ret)
2203 break;
2204
2849a854 2205 cur_offset += btrfs_inode_extref_name_len(eb, extref);
d24bec3a
MF
2206 cur_offset += sizeof(*extref);
2207 }
2208 btrfs_tree_read_unlock_blocking(eb);
2209 free_extent_buffer(eb);
2210
2211 offset++;
2212 }
2213
2214 btrfs_release_path(path);
2215
2216 return ret;
2217}
2218
2219static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2220 struct btrfs_path *path, iterate_irefs_t *iterate,
2221 void *ctx)
2222{
2223 int ret;
2224 int found_refs = 0;
2225
2226 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2227 if (!ret)
2228 ++found_refs;
2229 else if (ret != -ENOENT)
2230 return ret;
2231
2232 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2233 if (ret == -ENOENT && found_refs)
2234 return 0;
2235
2236 return ret;
2237}
2238
a542ad1b
JS
2239/*
2240 * returns 0 if the path could be dumped (probably truncated)
2241 * returns <0 in case of an error
2242 */
d24bec3a
MF
2243static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2244 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
2245{
2246 struct inode_fs_paths *ipath = ctx;
2247 char *fspath;
2248 char *fspath_min;
2249 int i = ipath->fspath->elem_cnt;
2250 const int s_ptr = sizeof(char *);
2251 u32 bytes_left;
2252
2253 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2254 ipath->fspath->bytes_left - s_ptr : 0;
2255
740c3d22 2256 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
2257 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2258 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
2259 if (IS_ERR(fspath))
2260 return PTR_ERR(fspath);
2261
2262 if (fspath > fspath_min) {
745c4d8e 2263 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
2264 ++ipath->fspath->elem_cnt;
2265 ipath->fspath->bytes_left = fspath - fspath_min;
2266 } else {
2267 ++ipath->fspath->elem_missed;
2268 ipath->fspath->bytes_missing += fspath_min - fspath;
2269 ipath->fspath->bytes_left = 0;
2270 }
2271
2272 return 0;
2273}
2274
2275/*
2276 * this dumps all file system paths to the inode into the ipath struct, provided
2277 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 2278 * from ipath->fspath->val[i].
a542ad1b 2279 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 2280 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
01327610 2281 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
a542ad1b
JS
2282 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2283 * have been needed to return all paths.
2284 */
2285int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2286{
2287 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 2288 inode_to_path, ipath);
a542ad1b
JS
2289}
2290
a542ad1b
JS
2291struct btrfs_data_container *init_data_container(u32 total_bytes)
2292{
2293 struct btrfs_data_container *data;
2294 size_t alloc_bytes;
2295
2296 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
425d17a2 2297 data = vmalloc(alloc_bytes);
a542ad1b
JS
2298 if (!data)
2299 return ERR_PTR(-ENOMEM);
2300
2301 if (total_bytes >= sizeof(*data)) {
2302 data->bytes_left = total_bytes - sizeof(*data);
2303 data->bytes_missing = 0;
2304 } else {
2305 data->bytes_missing = sizeof(*data) - total_bytes;
2306 data->bytes_left = 0;
2307 }
2308
2309 data->elem_cnt = 0;
2310 data->elem_missed = 0;
2311
2312 return data;
2313}
2314
2315/*
2316 * allocates space to return multiple file system paths for an inode.
2317 * total_bytes to allocate are passed, note that space usable for actual path
2318 * information will be total_bytes - sizeof(struct inode_fs_paths).
2319 * the returned pointer must be freed with free_ipath() in the end.
2320 */
2321struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2322 struct btrfs_path *path)
2323{
2324 struct inode_fs_paths *ifp;
2325 struct btrfs_data_container *fspath;
2326
2327 fspath = init_data_container(total_bytes);
2328 if (IS_ERR(fspath))
2329 return (void *)fspath;
2330
2331 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
2332 if (!ifp) {
72928f24 2333 vfree(fspath);
a542ad1b
JS
2334 return ERR_PTR(-ENOMEM);
2335 }
2336
2337 ifp->btrfs_path = path;
2338 ifp->fspath = fspath;
2339 ifp->fs_root = fs_root;
2340
2341 return ifp;
2342}
2343
2344void free_ipath(struct inode_fs_paths *ipath)
2345{
4735fb28
JJ
2346 if (!ipath)
2347 return;
425d17a2 2348 vfree(ipath->fspath);
a542ad1b
JS
2349 kfree(ipath);
2350}