btrfs: fix processing of delayed data refs during backref walking
[linux-block.git] / fs / btrfs / backref.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a542ad1b
JS
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
a542ad1b
JS
4 */
5
f54de068 6#include <linux/mm.h>
afce772e 7#include <linux/rbtree.h>
00142756 8#include <trace/events/btrfs.h>
a542ad1b
JS
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
8da6d581
JS
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
b916a59a 15#include "locking.h"
1b60d2ec 16#include "misc.h"
f3a84ccd 17#include "tree-mod-log.h"
a542ad1b 18
dc046b10
JB
19/* Just an arbitrary number so we can be sure this happened */
20#define BACKREF_FOUND_SHARED 6
21
976b1908
JS
22struct extent_inode_elem {
23 u64 inum;
24 u64 offset;
25 struct extent_inode_elem *next;
26};
27
73980bec
JM
28static int check_extent_in_eb(const struct btrfs_key *key,
29 const struct extent_buffer *eb,
30 const struct btrfs_file_extent_item *fi,
31 u64 extent_item_pos,
c995ab3c
ZB
32 struct extent_inode_elem **eie,
33 bool ignore_offset)
976b1908 34{
8ca15e05 35 u64 offset = 0;
976b1908
JS
36 struct extent_inode_elem *e;
37
c995ab3c
ZB
38 if (!ignore_offset &&
39 !btrfs_file_extent_compression(eb, fi) &&
8ca15e05
JB
40 !btrfs_file_extent_encryption(eb, fi) &&
41 !btrfs_file_extent_other_encoding(eb, fi)) {
42 u64 data_offset;
43 u64 data_len;
976b1908 44
8ca15e05
JB
45 data_offset = btrfs_file_extent_offset(eb, fi);
46 data_len = btrfs_file_extent_num_bytes(eb, fi);
47
48 if (extent_item_pos < data_offset ||
49 extent_item_pos >= data_offset + data_len)
50 return 1;
51 offset = extent_item_pos - data_offset;
52 }
976b1908
JS
53
54 e = kmalloc(sizeof(*e), GFP_NOFS);
55 if (!e)
56 return -ENOMEM;
57
58 e->next = *eie;
59 e->inum = key->objectid;
8ca15e05 60 e->offset = key->offset + offset;
976b1908
JS
61 *eie = e;
62
63 return 0;
64}
65
f05c4746
WS
66static void free_inode_elem_list(struct extent_inode_elem *eie)
67{
68 struct extent_inode_elem *eie_next;
69
70 for (; eie; eie = eie_next) {
71 eie_next = eie->next;
72 kfree(eie);
73 }
74}
75
73980bec
JM
76static int find_extent_in_eb(const struct extent_buffer *eb,
77 u64 wanted_disk_byte, u64 extent_item_pos,
c995ab3c
ZB
78 struct extent_inode_elem **eie,
79 bool ignore_offset)
976b1908
JS
80{
81 u64 disk_byte;
82 struct btrfs_key key;
83 struct btrfs_file_extent_item *fi;
84 int slot;
85 int nritems;
86 int extent_type;
87 int ret;
88
89 /*
90 * from the shared data ref, we only have the leaf but we need
91 * the key. thus, we must look into all items and see that we
92 * find one (some) with a reference to our extent item.
93 */
94 nritems = btrfs_header_nritems(eb);
95 for (slot = 0; slot < nritems; ++slot) {
96 btrfs_item_key_to_cpu(eb, &key, slot);
97 if (key.type != BTRFS_EXTENT_DATA_KEY)
98 continue;
99 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
100 extent_type = btrfs_file_extent_type(eb, fi);
101 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
102 continue;
103 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
104 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
105 if (disk_byte != wanted_disk_byte)
106 continue;
107
c995ab3c 108 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
976b1908
JS
109 if (ret < 0)
110 return ret;
111 }
112
113 return 0;
114}
115
86d5f994 116struct preftree {
ecf160b4 117 struct rb_root_cached root;
6c336b21 118 unsigned int count;
86d5f994
EN
119};
120
ecf160b4 121#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
86d5f994
EN
122
123struct preftrees {
124 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
125 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
126 struct preftree indirect_missing_keys;
127};
128
3ec4d323
EN
129/*
130 * Checks for a shared extent during backref search.
131 *
132 * The share_count tracks prelim_refs (direct and indirect) having a
133 * ref->count >0:
134 * - incremented when a ref->count transitions to >0
135 * - decremented when a ref->count transitions to <1
136 */
137struct share_check {
138 u64 root_objectid;
139 u64 inum;
140 int share_count;
4fc7b572 141 bool have_delayed_delete_refs;
3ec4d323
EN
142};
143
144static inline int extent_is_shared(struct share_check *sc)
145{
146 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
147}
148
b9e9a6cb
WS
149static struct kmem_cache *btrfs_prelim_ref_cache;
150
151int __init btrfs_prelim_ref_init(void)
152{
153 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
e0c476b1 154 sizeof(struct prelim_ref),
b9e9a6cb 155 0,
fba4b697 156 SLAB_MEM_SPREAD,
b9e9a6cb
WS
157 NULL);
158 if (!btrfs_prelim_ref_cache)
159 return -ENOMEM;
160 return 0;
161}
162
e67c718b 163void __cold btrfs_prelim_ref_exit(void)
b9e9a6cb 164{
5598e900 165 kmem_cache_destroy(btrfs_prelim_ref_cache);
b9e9a6cb
WS
166}
167
86d5f994
EN
168static void free_pref(struct prelim_ref *ref)
169{
170 kmem_cache_free(btrfs_prelim_ref_cache, ref);
171}
172
173/*
174 * Return 0 when both refs are for the same block (and can be merged).
175 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
176 * indicates a 'higher' block.
177 */
178static int prelim_ref_compare(struct prelim_ref *ref1,
179 struct prelim_ref *ref2)
180{
181 if (ref1->level < ref2->level)
182 return -1;
183 if (ref1->level > ref2->level)
184 return 1;
185 if (ref1->root_id < ref2->root_id)
186 return -1;
187 if (ref1->root_id > ref2->root_id)
188 return 1;
189 if (ref1->key_for_search.type < ref2->key_for_search.type)
190 return -1;
191 if (ref1->key_for_search.type > ref2->key_for_search.type)
192 return 1;
193 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
194 return -1;
195 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
196 return 1;
197 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
198 return -1;
199 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
200 return 1;
201 if (ref1->parent < ref2->parent)
202 return -1;
203 if (ref1->parent > ref2->parent)
204 return 1;
205
206 return 0;
207}
208
ccc8dc75
CIK
209static void update_share_count(struct share_check *sc, int oldcount,
210 int newcount)
3ec4d323
EN
211{
212 if ((!sc) || (oldcount == 0 && newcount < 1))
213 return;
214
215 if (oldcount > 0 && newcount < 1)
216 sc->share_count--;
217 else if (oldcount < 1 && newcount > 0)
218 sc->share_count++;
219}
220
86d5f994
EN
221/*
222 * Add @newref to the @root rbtree, merging identical refs.
223 *
3ec4d323 224 * Callers should assume that newref has been freed after calling.
86d5f994 225 */
00142756
JM
226static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
227 struct preftree *preftree,
3ec4d323
EN
228 struct prelim_ref *newref,
229 struct share_check *sc)
86d5f994 230{
ecf160b4 231 struct rb_root_cached *root;
86d5f994
EN
232 struct rb_node **p;
233 struct rb_node *parent = NULL;
234 struct prelim_ref *ref;
235 int result;
ecf160b4 236 bool leftmost = true;
86d5f994
EN
237
238 root = &preftree->root;
ecf160b4 239 p = &root->rb_root.rb_node;
86d5f994
EN
240
241 while (*p) {
242 parent = *p;
243 ref = rb_entry(parent, struct prelim_ref, rbnode);
244 result = prelim_ref_compare(ref, newref);
245 if (result < 0) {
246 p = &(*p)->rb_left;
247 } else if (result > 0) {
248 p = &(*p)->rb_right;
ecf160b4 249 leftmost = false;
86d5f994
EN
250 } else {
251 /* Identical refs, merge them and free @newref */
252 struct extent_inode_elem *eie = ref->inode_list;
253
254 while (eie && eie->next)
255 eie = eie->next;
256
257 if (!eie)
258 ref->inode_list = newref->inode_list;
259 else
260 eie->next = newref->inode_list;
00142756
JM
261 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
262 preftree->count);
3ec4d323
EN
263 /*
264 * A delayed ref can have newref->count < 0.
265 * The ref->count is updated to follow any
266 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
267 */
268 update_share_count(sc, ref->count,
269 ref->count + newref->count);
86d5f994
EN
270 ref->count += newref->count;
271 free_pref(newref);
272 return;
273 }
274 }
275
3ec4d323 276 update_share_count(sc, 0, newref->count);
6c336b21 277 preftree->count++;
00142756 278 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
86d5f994 279 rb_link_node(&newref->rbnode, parent, p);
ecf160b4 280 rb_insert_color_cached(&newref->rbnode, root, leftmost);
86d5f994
EN
281}
282
283/*
284 * Release the entire tree. We don't care about internal consistency so
285 * just free everything and then reset the tree root.
286 */
287static void prelim_release(struct preftree *preftree)
288{
289 struct prelim_ref *ref, *next_ref;
290
ecf160b4
LB
291 rbtree_postorder_for_each_entry_safe(ref, next_ref,
292 &preftree->root.rb_root, rbnode)
86d5f994
EN
293 free_pref(ref);
294
ecf160b4 295 preftree->root = RB_ROOT_CACHED;
6c336b21 296 preftree->count = 0;
86d5f994
EN
297}
298
d5c88b73
JS
299/*
300 * the rules for all callers of this function are:
301 * - obtaining the parent is the goal
302 * - if you add a key, you must know that it is a correct key
303 * - if you cannot add the parent or a correct key, then we will look into the
304 * block later to set a correct key
305 *
306 * delayed refs
307 * ============
308 * backref type | shared | indirect | shared | indirect
309 * information | tree | tree | data | data
310 * --------------------+--------+----------+--------+----------
311 * parent logical | y | - | - | -
312 * key to resolve | - | y | y | y
313 * tree block logical | - | - | - | -
314 * root for resolving | y | y | y | y
315 *
316 * - column 1: we've the parent -> done
317 * - column 2, 3, 4: we use the key to find the parent
318 *
319 * on disk refs (inline or keyed)
320 * ==============================
321 * backref type | shared | indirect | shared | indirect
322 * information | tree | tree | data | data
323 * --------------------+--------+----------+--------+----------
324 * parent logical | y | - | y | -
325 * key to resolve | - | - | - | y
326 * tree block logical | y | y | y | y
327 * root for resolving | - | y | y | y
328 *
329 * - column 1, 3: we've the parent -> done
330 * - column 2: we take the first key from the block to find the parent
e0c476b1 331 * (see add_missing_keys)
d5c88b73
JS
332 * - column 4: we use the key to find the parent
333 *
334 * additional information that's available but not required to find the parent
335 * block might help in merging entries to gain some speed.
336 */
00142756
JM
337static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
338 struct preftree *preftree, u64 root_id,
e0c476b1 339 const struct btrfs_key *key, int level, u64 parent,
3ec4d323
EN
340 u64 wanted_disk_byte, int count,
341 struct share_check *sc, gfp_t gfp_mask)
8da6d581 342{
e0c476b1 343 struct prelim_ref *ref;
8da6d581 344
48ec4736
LB
345 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
346 return 0;
347
b9e9a6cb 348 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
349 if (!ref)
350 return -ENOMEM;
351
352 ref->root_id = root_id;
7ac8b88e 353 if (key)
d5c88b73 354 ref->key_for_search = *key;
7ac8b88e 355 else
d5c88b73 356 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 357
3301958b 358 ref->inode_list = NULL;
8da6d581
JS
359 ref->level = level;
360 ref->count = count;
361 ref->parent = parent;
362 ref->wanted_disk_byte = wanted_disk_byte;
3ec4d323
EN
363 prelim_ref_insert(fs_info, preftree, ref, sc);
364 return extent_is_shared(sc);
8da6d581
JS
365}
366
86d5f994 367/* direct refs use root == 0, key == NULL */
00142756
JM
368static int add_direct_ref(const struct btrfs_fs_info *fs_info,
369 struct preftrees *preftrees, int level, u64 parent,
3ec4d323
EN
370 u64 wanted_disk_byte, int count,
371 struct share_check *sc, gfp_t gfp_mask)
86d5f994 372{
00142756 373 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
3ec4d323 374 parent, wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
375}
376
377/* indirect refs use parent == 0 */
00142756
JM
378static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
379 struct preftrees *preftrees, u64 root_id,
86d5f994 380 const struct btrfs_key *key, int level,
3ec4d323
EN
381 u64 wanted_disk_byte, int count,
382 struct share_check *sc, gfp_t gfp_mask)
86d5f994
EN
383{
384 struct preftree *tree = &preftrees->indirect;
385
386 if (!key)
387 tree = &preftrees->indirect_missing_keys;
00142756 388 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
3ec4d323 389 wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
390}
391
ed58f2e6 392static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
393{
394 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
395 struct rb_node *parent = NULL;
396 struct prelim_ref *ref = NULL;
9c6c723f 397 struct prelim_ref target = {};
ed58f2e6 398 int result;
399
400 target.parent = bytenr;
401
402 while (*p) {
403 parent = *p;
404 ref = rb_entry(parent, struct prelim_ref, rbnode);
405 result = prelim_ref_compare(ref, &target);
406
407 if (result < 0)
408 p = &(*p)->rb_left;
409 else if (result > 0)
410 p = &(*p)->rb_right;
411 else
412 return 1;
413 }
414 return 0;
415}
416
8da6d581 417static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
ed58f2e6 418 struct ulist *parents,
419 struct preftrees *preftrees, struct prelim_ref *ref,
44853868 420 int level, u64 time_seq, const u64 *extent_item_pos,
b25b0b87 421 bool ignore_offset)
8da6d581 422{
69bca40d
AB
423 int ret = 0;
424 int slot;
425 struct extent_buffer *eb;
426 struct btrfs_key key;
7ef81ac8 427 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 428 struct btrfs_file_extent_item *fi;
ed8c4913 429 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 430 u64 disk_byte;
7ef81ac8
JB
431 u64 wanted_disk_byte = ref->wanted_disk_byte;
432 u64 count = 0;
7ac8b88e 433 u64 data_offset;
8da6d581 434
69bca40d
AB
435 if (level != 0) {
436 eb = path->nodes[level];
437 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
438 if (ret < 0)
439 return ret;
8da6d581 440 return 0;
69bca40d 441 }
8da6d581
JS
442
443 /*
ed58f2e6 444 * 1. We normally enter this function with the path already pointing to
445 * the first item to check. But sometimes, we may enter it with
446 * slot == nritems.
447 * 2. We are searching for normal backref but bytenr of this leaf
448 * matches shared data backref
cfc0eed0 449 * 3. The leaf owner is not equal to the root we are searching
450 *
ed58f2e6 451 * For these cases, go to the next leaf before we continue.
8da6d581 452 */
ed58f2e6 453 eb = path->nodes[0];
454 if (path->slots[0] >= btrfs_header_nritems(eb) ||
cfc0eed0 455 is_shared_data_backref(preftrees, eb->start) ||
456 ref->root_id != btrfs_header_owner(eb)) {
f3a84ccd 457 if (time_seq == BTRFS_SEQ_LAST)
21633fc6
QW
458 ret = btrfs_next_leaf(root, path);
459 else
460 ret = btrfs_next_old_leaf(root, path, time_seq);
461 }
8da6d581 462
b25b0b87 463 while (!ret && count < ref->count) {
8da6d581 464 eb = path->nodes[0];
69bca40d
AB
465 slot = path->slots[0];
466
467 btrfs_item_key_to_cpu(eb, &key, slot);
468
469 if (key.objectid != key_for_search->objectid ||
470 key.type != BTRFS_EXTENT_DATA_KEY)
471 break;
472
ed58f2e6 473 /*
474 * We are searching for normal backref but bytenr of this leaf
cfc0eed0 475 * matches shared data backref, OR
476 * the leaf owner is not equal to the root we are searching for
ed58f2e6 477 */
cfc0eed0 478 if (slot == 0 &&
479 (is_shared_data_backref(preftrees, eb->start) ||
480 ref->root_id != btrfs_header_owner(eb))) {
f3a84ccd 481 if (time_seq == BTRFS_SEQ_LAST)
ed58f2e6 482 ret = btrfs_next_leaf(root, path);
483 else
484 ret = btrfs_next_old_leaf(root, path, time_seq);
485 continue;
486 }
69bca40d
AB
487 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
488 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
7ac8b88e 489 data_offset = btrfs_file_extent_offset(eb, fi);
69bca40d
AB
490
491 if (disk_byte == wanted_disk_byte) {
492 eie = NULL;
ed8c4913 493 old = NULL;
7ac8b88e 494 if (ref->key_for_search.offset == key.offset - data_offset)
495 count++;
496 else
497 goto next;
69bca40d
AB
498 if (extent_item_pos) {
499 ret = check_extent_in_eb(&key, eb, fi,
500 *extent_item_pos,
c995ab3c 501 &eie, ignore_offset);
69bca40d
AB
502 if (ret < 0)
503 break;
504 }
ed8c4913
JB
505 if (ret > 0)
506 goto next;
4eb1f66d
TI
507 ret = ulist_add_merge_ptr(parents, eb->start,
508 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
509 if (ret < 0)
510 break;
511 if (!ret && extent_item_pos) {
512 while (old->next)
513 old = old->next;
514 old->next = eie;
69bca40d 515 }
f05c4746 516 eie = NULL;
8da6d581 517 }
ed8c4913 518next:
f3a84ccd 519 if (time_seq == BTRFS_SEQ_LAST)
21633fc6
QW
520 ret = btrfs_next_item(root, path);
521 else
522 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
523 }
524
69bca40d
AB
525 if (ret > 0)
526 ret = 0;
f05c4746
WS
527 else if (ret < 0)
528 free_inode_elem_list(eie);
69bca40d 529 return ret;
8da6d581
JS
530}
531
532/*
533 * resolve an indirect backref in the form (root_id, key, level)
534 * to a logical address
535 */
e0c476b1
JM
536static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
537 struct btrfs_path *path, u64 time_seq,
ed58f2e6 538 struct preftrees *preftrees,
e0c476b1 539 struct prelim_ref *ref, struct ulist *parents,
b25b0b87 540 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 541{
8da6d581 542 struct btrfs_root *root;
8da6d581
JS
543 struct extent_buffer *eb;
544 int ret = 0;
545 int root_level;
546 int level = ref->level;
7ac8b88e 547 struct btrfs_key search_key = ref->key_for_search;
8da6d581 548
49d11bea
JB
549 /*
550 * If we're search_commit_root we could possibly be holding locks on
551 * other tree nodes. This happens when qgroups does backref walks when
552 * adding new delayed refs. To deal with this we need to look in cache
553 * for the root, and if we don't find it then we need to search the
554 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
555 * here.
556 */
557 if (path->search_commit_root)
558 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
559 else
560 root = btrfs_get_fs_root(fs_info, ref->root_id, false);
8da6d581
JS
561 if (IS_ERR(root)) {
562 ret = PTR_ERR(root);
9326f76f
JB
563 goto out_free;
564 }
565
39dba873
JB
566 if (!path->search_commit_root &&
567 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
568 ret = -ENOENT;
569 goto out;
570 }
571
f5ee5c9a 572 if (btrfs_is_testing(fs_info)) {
d9ee522b
JB
573 ret = -ENOENT;
574 goto out;
575 }
576
9e351cc8
JB
577 if (path->search_commit_root)
578 root_level = btrfs_header_level(root->commit_root);
f3a84ccd 579 else if (time_seq == BTRFS_SEQ_LAST)
21633fc6 580 root_level = btrfs_header_level(root->node);
9e351cc8
JB
581 else
582 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 583
c75e8394 584 if (root_level + 1 == level)
8da6d581
JS
585 goto out;
586
7ac8b88e 587 /*
588 * We can often find data backrefs with an offset that is too large
589 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
590 * subtracting a file's offset with the data offset of its
591 * corresponding extent data item. This can happen for example in the
592 * clone ioctl.
593 *
594 * So if we detect such case we set the search key's offset to zero to
595 * make sure we will find the matching file extent item at
596 * add_all_parents(), otherwise we will miss it because the offset
597 * taken form the backref is much larger then the offset of the file
598 * extent item. This can make us scan a very large number of file
599 * extent items, but at least it will not make us miss any.
600 *
601 * This is an ugly workaround for a behaviour that should have never
602 * existed, but it does and a fix for the clone ioctl would touch a lot
603 * of places, cause backwards incompatibility and would not fix the
604 * problem for extents cloned with older kernels.
605 */
606 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
607 search_key.offset >= LLONG_MAX)
608 search_key.offset = 0;
8da6d581 609 path->lowest_level = level;
f3a84ccd 610 if (time_seq == BTRFS_SEQ_LAST)
7ac8b88e 611 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
21633fc6 612 else
7ac8b88e 613 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
538f72cd 614
ab8d0fc4
JM
615 btrfs_debug(fs_info,
616 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
c1c9ff7c
GU
617 ref->root_id, level, ref->count, ret,
618 ref->key_for_search.objectid, ref->key_for_search.type,
619 ref->key_for_search.offset);
8da6d581
JS
620 if (ret < 0)
621 goto out;
622
623 eb = path->nodes[level];
9345457f 624 while (!eb) {
fae7f21c 625 if (WARN_ON(!level)) {
9345457f
JS
626 ret = 1;
627 goto out;
628 }
629 level--;
630 eb = path->nodes[level];
8da6d581
JS
631 }
632
ed58f2e6 633 ret = add_all_parents(root, path, parents, preftrees, ref, level,
b25b0b87 634 time_seq, extent_item_pos, ignore_offset);
8da6d581 635out:
00246528 636 btrfs_put_root(root);
9326f76f 637out_free:
da61d31a
JB
638 path->lowest_level = 0;
639 btrfs_release_path(path);
8da6d581
JS
640 return ret;
641}
642
4dae077a
JM
643static struct extent_inode_elem *
644unode_aux_to_inode_list(struct ulist_node *node)
645{
646 if (!node)
647 return NULL;
648 return (struct extent_inode_elem *)(uintptr_t)node->aux;
649}
650
8da6d581 651/*
52042d8e 652 * We maintain three separate rbtrees: one for direct refs, one for
86d5f994
EN
653 * indirect refs which have a key, and one for indirect refs which do not
654 * have a key. Each tree does merge on insertion.
655 *
656 * Once all of the references are located, we iterate over the tree of
657 * indirect refs with missing keys. An appropriate key is located and
658 * the ref is moved onto the tree for indirect refs. After all missing
659 * keys are thus located, we iterate over the indirect ref tree, resolve
660 * each reference, and then insert the resolved reference onto the
661 * direct tree (merging there too).
662 *
663 * New backrefs (i.e., for parent nodes) are added to the appropriate
664 * rbtree as they are encountered. The new backrefs are subsequently
665 * resolved as above.
8da6d581 666 */
e0c476b1
JM
667static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
668 struct btrfs_path *path, u64 time_seq,
86d5f994 669 struct preftrees *preftrees,
b25b0b87 670 const u64 *extent_item_pos,
c995ab3c 671 struct share_check *sc, bool ignore_offset)
8da6d581
JS
672{
673 int err;
674 int ret = 0;
8da6d581
JS
675 struct ulist *parents;
676 struct ulist_node *node;
cd1b413c 677 struct ulist_iterator uiter;
86d5f994 678 struct rb_node *rnode;
8da6d581
JS
679
680 parents = ulist_alloc(GFP_NOFS);
681 if (!parents)
682 return -ENOMEM;
683
684 /*
86d5f994
EN
685 * We could trade memory usage for performance here by iterating
686 * the tree, allocating new refs for each insertion, and then
687 * freeing the entire indirect tree when we're done. In some test
688 * cases, the tree can grow quite large (~200k objects).
8da6d581 689 */
ecf160b4 690 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
86d5f994
EN
691 struct prelim_ref *ref;
692
693 ref = rb_entry(rnode, struct prelim_ref, rbnode);
694 if (WARN(ref->parent,
695 "BUG: direct ref found in indirect tree")) {
696 ret = -EINVAL;
697 goto out;
698 }
699
ecf160b4 700 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
6c336b21 701 preftrees->indirect.count--;
86d5f994
EN
702
703 if (ref->count == 0) {
704 free_pref(ref);
8da6d581 705 continue;
86d5f994
EN
706 }
707
3ec4d323
EN
708 if (sc && sc->root_objectid &&
709 ref->root_id != sc->root_objectid) {
86d5f994 710 free_pref(ref);
dc046b10
JB
711 ret = BACKREF_FOUND_SHARED;
712 goto out;
713 }
ed58f2e6 714 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
715 ref, parents, extent_item_pos,
b25b0b87 716 ignore_offset);
95def2ed
WS
717 /*
718 * we can only tolerate ENOENT,otherwise,we should catch error
719 * and return directly.
720 */
721 if (err == -ENOENT) {
3ec4d323
EN
722 prelim_ref_insert(fs_info, &preftrees->direct, ref,
723 NULL);
8da6d581 724 continue;
95def2ed 725 } else if (err) {
86d5f994 726 free_pref(ref);
95def2ed
WS
727 ret = err;
728 goto out;
729 }
8da6d581
JS
730
731 /* we put the first parent into the ref at hand */
cd1b413c
JS
732 ULIST_ITER_INIT(&uiter);
733 node = ulist_next(parents, &uiter);
8da6d581 734 ref->parent = node ? node->val : 0;
4dae077a 735 ref->inode_list = unode_aux_to_inode_list(node);
8da6d581 736
86d5f994 737 /* Add a prelim_ref(s) for any other parent(s). */
cd1b413c 738 while ((node = ulist_next(parents, &uiter))) {
86d5f994
EN
739 struct prelim_ref *new_ref;
740
b9e9a6cb
WS
741 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
742 GFP_NOFS);
8da6d581 743 if (!new_ref) {
86d5f994 744 free_pref(ref);
8da6d581 745 ret = -ENOMEM;
e36902d4 746 goto out;
8da6d581
JS
747 }
748 memcpy(new_ref, ref, sizeof(*ref));
749 new_ref->parent = node->val;
4dae077a 750 new_ref->inode_list = unode_aux_to_inode_list(node);
3ec4d323
EN
751 prelim_ref_insert(fs_info, &preftrees->direct,
752 new_ref, NULL);
8da6d581 753 }
86d5f994 754
3ec4d323 755 /*
52042d8e 756 * Now it's a direct ref, put it in the direct tree. We must
3ec4d323
EN
757 * do this last because the ref could be merged/freed here.
758 */
759 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
86d5f994 760
8da6d581 761 ulist_reinit(parents);
9dd14fd6 762 cond_resched();
8da6d581 763 }
e36902d4 764out:
8da6d581
JS
765 ulist_free(parents);
766 return ret;
767}
768
d5c88b73
JS
769/*
770 * read tree blocks and add keys where required.
771 */
e0c476b1 772static int add_missing_keys(struct btrfs_fs_info *fs_info,
38e3eebf 773 struct preftrees *preftrees, bool lock)
d5c88b73 774{
e0c476b1 775 struct prelim_ref *ref;
d5c88b73 776 struct extent_buffer *eb;
86d5f994
EN
777 struct preftree *tree = &preftrees->indirect_missing_keys;
778 struct rb_node *node;
d5c88b73 779
ecf160b4 780 while ((node = rb_first_cached(&tree->root))) {
86d5f994 781 ref = rb_entry(node, struct prelim_ref, rbnode);
ecf160b4 782 rb_erase_cached(node, &tree->root);
86d5f994
EN
783
784 BUG_ON(ref->parent); /* should not be a direct ref */
785 BUG_ON(ref->key_for_search.type);
d5c88b73 786 BUG_ON(!ref->wanted_disk_byte);
86d5f994 787
1b7ec85e
JB
788 eb = read_tree_block(fs_info, ref->wanted_disk_byte,
789 ref->root_id, 0, ref->level - 1, NULL);
64c043de 790 if (IS_ERR(eb)) {
86d5f994 791 free_pref(ref);
64c043de 792 return PTR_ERR(eb);
4eb150d6
QW
793 }
794 if (!extent_buffer_uptodate(eb)) {
86d5f994 795 free_pref(ref);
416bc658
JB
796 free_extent_buffer(eb);
797 return -EIO;
798 }
4eb150d6 799
38e3eebf
JB
800 if (lock)
801 btrfs_tree_read_lock(eb);
d5c88b73
JS
802 if (btrfs_header_level(eb) == 0)
803 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
804 else
805 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
38e3eebf
JB
806 if (lock)
807 btrfs_tree_read_unlock(eb);
d5c88b73 808 free_extent_buffer(eb);
3ec4d323 809 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
9dd14fd6 810 cond_resched();
d5c88b73
JS
811 }
812 return 0;
813}
814
8da6d581
JS
815/*
816 * add all currently queued delayed refs from this head whose seq nr is
817 * smaller or equal that seq to the list
818 */
00142756
JM
819static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
820 struct btrfs_delayed_ref_head *head, u64 seq,
b25b0b87 821 struct preftrees *preftrees, struct share_check *sc)
8da6d581 822{
c6fc2454 823 struct btrfs_delayed_ref_node *node;
8da6d581 824 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
d5c88b73 825 struct btrfs_key key;
86d5f994 826 struct btrfs_key tmp_op_key;
0e0adbcf 827 struct rb_node *n;
01747e92 828 int count;
b1375d64 829 int ret = 0;
8da6d581 830
a6dbceaf 831 if (extent_op && extent_op->update_key)
86d5f994 832 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
8da6d581 833
d7df2c79 834 spin_lock(&head->lock);
e3d03965 835 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
0e0adbcf
JB
836 node = rb_entry(n, struct btrfs_delayed_ref_node,
837 ref_node);
8da6d581
JS
838 if (node->seq > seq)
839 continue;
840
841 switch (node->action) {
842 case BTRFS_ADD_DELAYED_EXTENT:
843 case BTRFS_UPDATE_DELAYED_HEAD:
844 WARN_ON(1);
845 continue;
846 case BTRFS_ADD_DELAYED_REF:
01747e92 847 count = node->ref_mod;
8da6d581
JS
848 break;
849 case BTRFS_DROP_DELAYED_REF:
01747e92 850 count = node->ref_mod * -1;
8da6d581
JS
851 break;
852 default:
290342f6 853 BUG();
8da6d581
JS
854 }
855 switch (node->type) {
856 case BTRFS_TREE_BLOCK_REF_KEY: {
86d5f994 857 /* NORMAL INDIRECT METADATA backref */
8da6d581
JS
858 struct btrfs_delayed_tree_ref *ref;
859
860 ref = btrfs_delayed_node_to_tree_ref(node);
00142756
JM
861 ret = add_indirect_ref(fs_info, preftrees, ref->root,
862 &tmp_op_key, ref->level + 1,
01747e92
EN
863 node->bytenr, count, sc,
864 GFP_ATOMIC);
8da6d581
JS
865 break;
866 }
867 case BTRFS_SHARED_BLOCK_REF_KEY: {
86d5f994 868 /* SHARED DIRECT METADATA backref */
8da6d581
JS
869 struct btrfs_delayed_tree_ref *ref;
870
871 ref = btrfs_delayed_node_to_tree_ref(node);
86d5f994 872
01747e92
EN
873 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
874 ref->parent, node->bytenr, count,
3ec4d323 875 sc, GFP_ATOMIC);
8da6d581
JS
876 break;
877 }
878 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 879 /* NORMAL INDIRECT DATA backref */
8da6d581 880 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
881 ref = btrfs_delayed_node_to_data_ref(node);
882
883 key.objectid = ref->objectid;
884 key.type = BTRFS_EXTENT_DATA_KEY;
885 key.offset = ref->offset;
dc046b10
JB
886
887 /*
4fc7b572
FM
888 * If we have a share check context and a reference for
889 * another inode, we can't exit immediately. This is
890 * because even if this is a BTRFS_ADD_DELAYED_REF
891 * reference we may find next a BTRFS_DROP_DELAYED_REF
892 * which cancels out this ADD reference.
893 *
894 * If this is a DROP reference and there was no previous
895 * ADD reference, then we need to signal that when we
896 * process references from the extent tree (through
897 * add_inline_refs() and add_keyed_refs()), we should
898 * not exit early if we find a reference for another
899 * inode, because one of the delayed DROP references
900 * may cancel that reference in the extent tree.
dc046b10 901 */
4fc7b572
FM
902 if (sc && count < 0)
903 sc->have_delayed_delete_refs = true;
dc046b10 904
00142756 905 ret = add_indirect_ref(fs_info, preftrees, ref->root,
01747e92
EN
906 &key, 0, node->bytenr, count, sc,
907 GFP_ATOMIC);
8da6d581
JS
908 break;
909 }
910 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 911 /* SHARED DIRECT FULL backref */
8da6d581 912 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
913
914 ref = btrfs_delayed_node_to_data_ref(node);
86d5f994 915
01747e92
EN
916 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
917 node->bytenr, count, sc,
918 GFP_ATOMIC);
8da6d581
JS
919 break;
920 }
921 default:
922 WARN_ON(1);
923 }
3ec4d323
EN
924 /*
925 * We must ignore BACKREF_FOUND_SHARED until all delayed
926 * refs have been checked.
927 */
928 if (ret && (ret != BACKREF_FOUND_SHARED))
d7df2c79 929 break;
8da6d581 930 }
3ec4d323
EN
931 if (!ret)
932 ret = extent_is_shared(sc);
4fc7b572 933
d7df2c79
JB
934 spin_unlock(&head->lock);
935 return ret;
8da6d581
JS
936}
937
938/*
939 * add all inline backrefs for bytenr to the list
3ec4d323
EN
940 *
941 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 942 */
00142756
JM
943static int add_inline_refs(const struct btrfs_fs_info *fs_info,
944 struct btrfs_path *path, u64 bytenr,
86d5f994 945 int *info_level, struct preftrees *preftrees,
b25b0b87 946 struct share_check *sc)
8da6d581 947{
b1375d64 948 int ret = 0;
8da6d581
JS
949 int slot;
950 struct extent_buffer *leaf;
951 struct btrfs_key key;
261c84b6 952 struct btrfs_key found_key;
8da6d581
JS
953 unsigned long ptr;
954 unsigned long end;
955 struct btrfs_extent_item *ei;
956 u64 flags;
957 u64 item_size;
958
959 /*
960 * enumerate all inline refs
961 */
962 leaf = path->nodes[0];
dadcaf78 963 slot = path->slots[0];
8da6d581 964
3212fa14 965 item_size = btrfs_item_size(leaf, slot);
8da6d581
JS
966 BUG_ON(item_size < sizeof(*ei));
967
968 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
969 flags = btrfs_extent_flags(leaf, ei);
261c84b6 970 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
971
972 ptr = (unsigned long)(ei + 1);
973 end = (unsigned long)ei + item_size;
974
261c84b6
JB
975 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
976 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 977 struct btrfs_tree_block_info *info;
8da6d581
JS
978
979 info = (struct btrfs_tree_block_info *)ptr;
980 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
981 ptr += sizeof(struct btrfs_tree_block_info);
982 BUG_ON(ptr > end);
261c84b6
JB
983 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
984 *info_level = found_key.offset;
8da6d581
JS
985 } else {
986 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
987 }
988
989 while (ptr < end) {
990 struct btrfs_extent_inline_ref *iref;
991 u64 offset;
992 int type;
993
994 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
995 type = btrfs_get_extent_inline_ref_type(leaf, iref,
996 BTRFS_REF_TYPE_ANY);
997 if (type == BTRFS_REF_TYPE_INVALID)
af431dcb 998 return -EUCLEAN;
3de28d57 999
8da6d581
JS
1000 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1001
1002 switch (type) {
1003 case BTRFS_SHARED_BLOCK_REF_KEY:
00142756
JM
1004 ret = add_direct_ref(fs_info, preftrees,
1005 *info_level + 1, offset,
3ec4d323 1006 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1007 break;
1008 case BTRFS_SHARED_DATA_REF_KEY: {
1009 struct btrfs_shared_data_ref *sdref;
1010 int count;
1011
1012 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1013 count = btrfs_shared_data_ref_count(leaf, sdref);
86d5f994 1014
00142756 1015 ret = add_direct_ref(fs_info, preftrees, 0, offset,
3ec4d323 1016 bytenr, count, sc, GFP_NOFS);
8da6d581
JS
1017 break;
1018 }
1019 case BTRFS_TREE_BLOCK_REF_KEY:
00142756
JM
1020 ret = add_indirect_ref(fs_info, preftrees, offset,
1021 NULL, *info_level + 1,
3ec4d323 1022 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1023 break;
1024 case BTRFS_EXTENT_DATA_REF_KEY: {
1025 struct btrfs_extent_data_ref *dref;
1026 int count;
1027 u64 root;
1028
1029 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1030 count = btrfs_extent_data_ref_count(leaf, dref);
1031 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1032 dref);
1033 key.type = BTRFS_EXTENT_DATA_KEY;
1034 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1035
4fc7b572
FM
1036 if (sc && sc->inum && key.objectid != sc->inum &&
1037 !sc->have_delayed_delete_refs) {
dc046b10
JB
1038 ret = BACKREF_FOUND_SHARED;
1039 break;
1040 }
1041
8da6d581 1042 root = btrfs_extent_data_ref_root(leaf, dref);
86d5f994 1043
00142756
JM
1044 ret = add_indirect_ref(fs_info, preftrees, root,
1045 &key, 0, bytenr, count,
3ec4d323 1046 sc, GFP_NOFS);
4fc7b572 1047
8da6d581
JS
1048 break;
1049 }
1050 default:
1051 WARN_ON(1);
1052 }
1149ab6b
WS
1053 if (ret)
1054 return ret;
8da6d581
JS
1055 ptr += btrfs_extent_inline_ref_size(type);
1056 }
1057
1058 return 0;
1059}
1060
1061/*
1062 * add all non-inline backrefs for bytenr to the list
3ec4d323
EN
1063 *
1064 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 1065 */
98cc4222 1066static int add_keyed_refs(struct btrfs_root *extent_root,
e0c476b1 1067 struct btrfs_path *path, u64 bytenr,
86d5f994 1068 int info_level, struct preftrees *preftrees,
3ec4d323 1069 struct share_check *sc)
8da6d581 1070{
98cc4222 1071 struct btrfs_fs_info *fs_info = extent_root->fs_info;
8da6d581
JS
1072 int ret;
1073 int slot;
1074 struct extent_buffer *leaf;
1075 struct btrfs_key key;
1076
1077 while (1) {
1078 ret = btrfs_next_item(extent_root, path);
1079 if (ret < 0)
1080 break;
1081 if (ret) {
1082 ret = 0;
1083 break;
1084 }
1085
1086 slot = path->slots[0];
1087 leaf = path->nodes[0];
1088 btrfs_item_key_to_cpu(leaf, &key, slot);
1089
1090 if (key.objectid != bytenr)
1091 break;
1092 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1093 continue;
1094 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1095 break;
1096
1097 switch (key.type) {
1098 case BTRFS_SHARED_BLOCK_REF_KEY:
86d5f994 1099 /* SHARED DIRECT METADATA backref */
00142756
JM
1100 ret = add_direct_ref(fs_info, preftrees,
1101 info_level + 1, key.offset,
3ec4d323 1102 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1103 break;
1104 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 1105 /* SHARED DIRECT FULL backref */
8da6d581
JS
1106 struct btrfs_shared_data_ref *sdref;
1107 int count;
1108
1109 sdref = btrfs_item_ptr(leaf, slot,
1110 struct btrfs_shared_data_ref);
1111 count = btrfs_shared_data_ref_count(leaf, sdref);
00142756
JM
1112 ret = add_direct_ref(fs_info, preftrees, 0,
1113 key.offset, bytenr, count,
3ec4d323 1114 sc, GFP_NOFS);
8da6d581
JS
1115 break;
1116 }
1117 case BTRFS_TREE_BLOCK_REF_KEY:
86d5f994 1118 /* NORMAL INDIRECT METADATA backref */
00142756
JM
1119 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1120 NULL, info_level + 1, bytenr,
3ec4d323 1121 1, NULL, GFP_NOFS);
8da6d581
JS
1122 break;
1123 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 1124 /* NORMAL INDIRECT DATA backref */
8da6d581
JS
1125 struct btrfs_extent_data_ref *dref;
1126 int count;
1127 u64 root;
1128
1129 dref = btrfs_item_ptr(leaf, slot,
1130 struct btrfs_extent_data_ref);
1131 count = btrfs_extent_data_ref_count(leaf, dref);
1132 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1133 dref);
1134 key.type = BTRFS_EXTENT_DATA_KEY;
1135 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1136
4fc7b572
FM
1137 if (sc && sc->inum && key.objectid != sc->inum &&
1138 !sc->have_delayed_delete_refs) {
dc046b10
JB
1139 ret = BACKREF_FOUND_SHARED;
1140 break;
1141 }
1142
8da6d581 1143 root = btrfs_extent_data_ref_root(leaf, dref);
00142756
JM
1144 ret = add_indirect_ref(fs_info, preftrees, root,
1145 &key, 0, bytenr, count,
3ec4d323 1146 sc, GFP_NOFS);
8da6d581
JS
1147 break;
1148 }
1149 default:
1150 WARN_ON(1);
1151 }
1149ab6b
WS
1152 if (ret)
1153 return ret;
1154
8da6d581
JS
1155 }
1156
1157 return ret;
1158}
1159
1160/*
1161 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1162 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1163 * indirect refs to their parent bytenr.
1164 * When roots are found, they're added to the roots list
1165 *
f3a84ccd
FM
1166 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1167 * behave much like trans == NULL case, the difference only lies in it will not
21633fc6
QW
1168 * commit root.
1169 * The special case is for qgroup to search roots in commit_transaction().
1170 *
3ec4d323
EN
1171 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1172 * shared extent is detected.
1173 *
1174 * Otherwise this returns 0 for success and <0 for an error.
1175 *
c995ab3c
ZB
1176 * If ignore_offset is set to false, only extent refs whose offsets match
1177 * extent_item_pos are returned. If true, every extent ref is returned
1178 * and extent_item_pos is ignored.
1179 *
8da6d581
JS
1180 * FIXME some caching might speed things up
1181 */
1182static int find_parent_nodes(struct btrfs_trans_handle *trans,
1183 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1184 u64 time_seq, struct ulist *refs,
dc046b10 1185 struct ulist *roots, const u64 *extent_item_pos,
c995ab3c 1186 struct share_check *sc, bool ignore_offset)
8da6d581 1187{
29cbcf40 1188 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
8da6d581
JS
1189 struct btrfs_key key;
1190 struct btrfs_path *path;
8da6d581 1191 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 1192 struct btrfs_delayed_ref_head *head;
8da6d581
JS
1193 int info_level = 0;
1194 int ret;
e0c476b1 1195 struct prelim_ref *ref;
86d5f994 1196 struct rb_node *node;
f05c4746 1197 struct extent_inode_elem *eie = NULL;
86d5f994
EN
1198 struct preftrees preftrees = {
1199 .direct = PREFTREE_INIT,
1200 .indirect = PREFTREE_INIT,
1201 .indirect_missing_keys = PREFTREE_INIT
1202 };
8da6d581
JS
1203
1204 key.objectid = bytenr;
8da6d581 1205 key.offset = (u64)-1;
261c84b6
JB
1206 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1207 key.type = BTRFS_METADATA_ITEM_KEY;
1208 else
1209 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
1210
1211 path = btrfs_alloc_path();
1212 if (!path)
1213 return -ENOMEM;
e84752d4 1214 if (!trans) {
da61d31a 1215 path->search_commit_root = 1;
e84752d4
WS
1216 path->skip_locking = 1;
1217 }
8da6d581 1218
f3a84ccd 1219 if (time_seq == BTRFS_SEQ_LAST)
21633fc6
QW
1220 path->skip_locking = 1;
1221
8da6d581 1222again:
d3b01064
LZ
1223 head = NULL;
1224
98cc4222 1225 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8da6d581
JS
1226 if (ret < 0)
1227 goto out;
fcba0120
JB
1228 if (ret == 0) {
1229 /* This shouldn't happen, indicates a bug or fs corruption. */
1230 ASSERT(ret != 0);
1231 ret = -EUCLEAN;
1232 goto out;
1233 }
8da6d581 1234
21633fc6 1235 if (trans && likely(trans->type != __TRANS_DUMMY) &&
f3a84ccd 1236 time_seq != BTRFS_SEQ_LAST) {
7a3ae2f8 1237 /*
9665ebd5
JB
1238 * We have a specific time_seq we care about and trans which
1239 * means we have the path lock, we need to grab the ref head and
1240 * lock it so we have a consistent view of the refs at the given
1241 * time.
7a3ae2f8
JS
1242 */
1243 delayed_refs = &trans->transaction->delayed_refs;
1244 spin_lock(&delayed_refs->lock);
f72ad18e 1245 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7a3ae2f8
JS
1246 if (head) {
1247 if (!mutex_trylock(&head->mutex)) {
d278850e 1248 refcount_inc(&head->refs);
7a3ae2f8
JS
1249 spin_unlock(&delayed_refs->lock);
1250
1251 btrfs_release_path(path);
1252
1253 /*
1254 * Mutex was contended, block until it's
1255 * released and try again
1256 */
1257 mutex_lock(&head->mutex);
1258 mutex_unlock(&head->mutex);
d278850e 1259 btrfs_put_delayed_ref_head(head);
7a3ae2f8
JS
1260 goto again;
1261 }
d7df2c79 1262 spin_unlock(&delayed_refs->lock);
00142756 1263 ret = add_delayed_refs(fs_info, head, time_seq,
b25b0b87 1264 &preftrees, sc);
155725c9 1265 mutex_unlock(&head->mutex);
d7df2c79 1266 if (ret)
7a3ae2f8 1267 goto out;
d7df2c79
JB
1268 } else {
1269 spin_unlock(&delayed_refs->lock);
d3b01064 1270 }
8da6d581 1271 }
8da6d581
JS
1272
1273 if (path->slots[0]) {
1274 struct extent_buffer *leaf;
1275 int slot;
1276
dadcaf78 1277 path->slots[0]--;
8da6d581 1278 leaf = path->nodes[0];
dadcaf78 1279 slot = path->slots[0];
8da6d581
JS
1280 btrfs_item_key_to_cpu(leaf, &key, slot);
1281 if (key.objectid == bytenr &&
261c84b6
JB
1282 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1283 key.type == BTRFS_METADATA_ITEM_KEY)) {
00142756 1284 ret = add_inline_refs(fs_info, path, bytenr,
b25b0b87 1285 &info_level, &preftrees, sc);
8da6d581
JS
1286 if (ret)
1287 goto out;
98cc4222 1288 ret = add_keyed_refs(root, path, bytenr, info_level,
3ec4d323 1289 &preftrees, sc);
8da6d581
JS
1290 if (ret)
1291 goto out;
1292 }
1293 }
8da6d581 1294
86d5f994 1295 btrfs_release_path(path);
8da6d581 1296
38e3eebf 1297 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
d5c88b73
JS
1298 if (ret)
1299 goto out;
1300
ecf160b4 1301 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
8da6d581 1302
86d5f994 1303 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
b25b0b87 1304 extent_item_pos, sc, ignore_offset);
8da6d581
JS
1305 if (ret)
1306 goto out;
1307
ecf160b4 1308 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
8da6d581 1309
86d5f994
EN
1310 /*
1311 * This walks the tree of merged and resolved refs. Tree blocks are
1312 * read in as needed. Unique entries are added to the ulist, and
1313 * the list of found roots is updated.
1314 *
1315 * We release the entire tree in one go before returning.
1316 */
ecf160b4 1317 node = rb_first_cached(&preftrees.direct.root);
86d5f994
EN
1318 while (node) {
1319 ref = rb_entry(node, struct prelim_ref, rbnode);
1320 node = rb_next(&ref->rbnode);
c8195a7b
ZB
1321 /*
1322 * ref->count < 0 can happen here if there are delayed
1323 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1324 * prelim_ref_insert() relies on this when merging
1325 * identical refs to keep the overall count correct.
1326 * prelim_ref_insert() will merge only those refs
1327 * which compare identically. Any refs having
1328 * e.g. different offsets would not be merged,
1329 * and would retain their original ref->count < 0.
1330 */
98cfee21 1331 if (roots && ref->count && ref->root_id && ref->parent == 0) {
3ec4d323
EN
1332 if (sc && sc->root_objectid &&
1333 ref->root_id != sc->root_objectid) {
dc046b10
JB
1334 ret = BACKREF_FOUND_SHARED;
1335 goto out;
1336 }
1337
8da6d581
JS
1338 /* no parent == root of tree */
1339 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1340 if (ret < 0)
1341 goto out;
8da6d581
JS
1342 }
1343 if (ref->count && ref->parent) {
8a56457f
JB
1344 if (extent_item_pos && !ref->inode_list &&
1345 ref->level == 0) {
976b1908 1346 struct extent_buffer *eb;
707e8a07 1347
581c1760 1348 eb = read_tree_block(fs_info, ref->parent, 0,
1b7ec85e 1349 0, ref->level, NULL);
64c043de
LB
1350 if (IS_ERR(eb)) {
1351 ret = PTR_ERR(eb);
1352 goto out;
4eb150d6
QW
1353 }
1354 if (!extent_buffer_uptodate(eb)) {
416bc658 1355 free_extent_buffer(eb);
c16c2e2e
WS
1356 ret = -EIO;
1357 goto out;
416bc658 1358 }
38e3eebf 1359
ac5887c8 1360 if (!path->skip_locking)
38e3eebf 1361 btrfs_tree_read_lock(eb);
976b1908 1362 ret = find_extent_in_eb(eb, bytenr,
c995ab3c 1363 *extent_item_pos, &eie, ignore_offset);
38e3eebf 1364 if (!path->skip_locking)
ac5887c8 1365 btrfs_tree_read_unlock(eb);
976b1908 1366 free_extent_buffer(eb);
f5929cd8
FDBM
1367 if (ret < 0)
1368 goto out;
1369 ref->inode_list = eie;
976b1908 1370 }
4eb1f66d
TI
1371 ret = ulist_add_merge_ptr(refs, ref->parent,
1372 ref->inode_list,
1373 (void **)&eie, GFP_NOFS);
f1723939
WS
1374 if (ret < 0)
1375 goto out;
3301958b
JS
1376 if (!ret && extent_item_pos) {
1377 /*
9f05c09d
JB
1378 * We've recorded that parent, so we must extend
1379 * its inode list here.
1380 *
1381 * However if there was corruption we may not
1382 * have found an eie, return an error in this
1383 * case.
3301958b 1384 */
9f05c09d
JB
1385 ASSERT(eie);
1386 if (!eie) {
1387 ret = -EUCLEAN;
1388 goto out;
1389 }
3301958b
JS
1390 while (eie->next)
1391 eie = eie->next;
1392 eie->next = ref->inode_list;
1393 }
f05c4746 1394 eie = NULL;
8da6d581 1395 }
9dd14fd6 1396 cond_resched();
8da6d581
JS
1397 }
1398
1399out:
8da6d581 1400 btrfs_free_path(path);
86d5f994
EN
1401
1402 prelim_release(&preftrees.direct);
1403 prelim_release(&preftrees.indirect);
1404 prelim_release(&preftrees.indirect_missing_keys);
1405
f05c4746
WS
1406 if (ret < 0)
1407 free_inode_elem_list(eie);
8da6d581
JS
1408 return ret;
1409}
1410
976b1908
JS
1411static void free_leaf_list(struct ulist *blocks)
1412{
1413 struct ulist_node *node = NULL;
1414 struct extent_inode_elem *eie;
976b1908
JS
1415 struct ulist_iterator uiter;
1416
1417 ULIST_ITER_INIT(&uiter);
1418 while ((node = ulist_next(blocks, &uiter))) {
1419 if (!node->aux)
1420 continue;
4dae077a 1421 eie = unode_aux_to_inode_list(node);
f05c4746 1422 free_inode_elem_list(eie);
976b1908
JS
1423 node->aux = 0;
1424 }
1425
1426 ulist_free(blocks);
1427}
1428
8da6d581
JS
1429/*
1430 * Finds all leafs with a reference to the specified combination of bytenr and
1431 * offset. key_list_head will point to a list of corresponding keys (caller must
1432 * free each list element). The leafs will be stored in the leafs ulist, which
1433 * must be freed with ulist_free.
1434 *
1435 * returns 0 on success, <0 on error
1436 */
19b546d7
QW
1437int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1438 struct btrfs_fs_info *fs_info, u64 bytenr,
1439 u64 time_seq, struct ulist **leafs,
1440 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 1441{
8da6d581
JS
1442 int ret;
1443
8da6d581 1444 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1445 if (!*leafs)
8da6d581 1446 return -ENOMEM;
8da6d581 1447
afce772e 1448 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1449 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
8da6d581 1450 if (ret < 0 && ret != -ENOENT) {
976b1908 1451 free_leaf_list(*leafs);
8da6d581
JS
1452 return ret;
1453 }
1454
1455 return 0;
1456}
1457
1458/*
1459 * walk all backrefs for a given extent to find all roots that reference this
1460 * extent. Walking a backref means finding all extents that reference this
1461 * extent and in turn walk the backrefs of those, too. Naturally this is a
1462 * recursive process, but here it is implemented in an iterative fashion: We
1463 * find all referencing extents for the extent in question and put them on a
1464 * list. In turn, we find all referencing extents for those, further appending
1465 * to the list. The way we iterate the list allows adding more elements after
1466 * the current while iterating. The process stops when we reach the end of the
1467 * list. Found roots are added to the roots list.
1468 *
1469 * returns 0 on success, < 0 on error.
1470 */
e0c476b1
JM
1471static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1472 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1473 u64 time_seq, struct ulist **roots,
1474 bool ignore_offset)
8da6d581
JS
1475{
1476 struct ulist *tmp;
1477 struct ulist_node *node = NULL;
cd1b413c 1478 struct ulist_iterator uiter;
8da6d581
JS
1479 int ret;
1480
1481 tmp = ulist_alloc(GFP_NOFS);
1482 if (!tmp)
1483 return -ENOMEM;
1484 *roots = ulist_alloc(GFP_NOFS);
1485 if (!*roots) {
1486 ulist_free(tmp);
1487 return -ENOMEM;
1488 }
1489
cd1b413c 1490 ULIST_ITER_INIT(&uiter);
8da6d581 1491 while (1) {
afce772e 1492 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1493 tmp, *roots, NULL, NULL, ignore_offset);
8da6d581
JS
1494 if (ret < 0 && ret != -ENOENT) {
1495 ulist_free(tmp);
1496 ulist_free(*roots);
580c079b 1497 *roots = NULL;
8da6d581
JS
1498 return ret;
1499 }
cd1b413c 1500 node = ulist_next(tmp, &uiter);
8da6d581
JS
1501 if (!node)
1502 break;
1503 bytenr = node->val;
bca1a290 1504 cond_resched();
8da6d581
JS
1505 }
1506
1507 ulist_free(tmp);
1508 return 0;
1509}
1510
9e351cc8
JB
1511int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1512 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c 1513 u64 time_seq, struct ulist **roots,
c7bcbb21 1514 bool skip_commit_root_sem)
9e351cc8
JB
1515{
1516 int ret;
1517
8949b9a1 1518 if (!trans && !skip_commit_root_sem)
9e351cc8 1519 down_read(&fs_info->commit_root_sem);
e0c476b1 1520 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
c7bcbb21 1521 time_seq, roots, false);
8949b9a1 1522 if (!trans && !skip_commit_root_sem)
9e351cc8
JB
1523 up_read(&fs_info->commit_root_sem);
1524 return ret;
1525}
1526
12a824dc
FM
1527/*
1528 * The caller has joined a transaction or is holding a read lock on the
1529 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1530 * snapshot field changing while updating or checking the cache.
1531 */
1532static bool lookup_backref_shared_cache(struct btrfs_backref_shared_cache *cache,
1533 struct btrfs_root *root,
1534 u64 bytenr, int level, bool *is_shared)
1535{
1536 struct btrfs_backref_shared_cache_entry *entry;
1537
1538 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1539 return false;
1540
1541 /*
1542 * Level -1 is used for the data extent, which is not reliable to cache
1543 * because its reference count can increase or decrease without us
1544 * realizing. We cache results only for extent buffers that lead from
1545 * the root node down to the leaf with the file extent item.
1546 */
1547 ASSERT(level >= 0);
1548
1549 entry = &cache->entries[level];
1550
1551 /* Unused cache entry or being used for some other extent buffer. */
1552 if (entry->bytenr != bytenr)
1553 return false;
1554
1555 /*
1556 * We cached a false result, but the last snapshot generation of the
1557 * root changed, so we now have a snapshot. Don't trust the result.
1558 */
1559 if (!entry->is_shared &&
1560 entry->gen != btrfs_root_last_snapshot(&root->root_item))
1561 return false;
1562
1563 /*
1564 * If we cached a true result and the last generation used for dropping
1565 * a root changed, we can not trust the result, because the dropped root
1566 * could be a snapshot sharing this extent buffer.
1567 */
1568 if (entry->is_shared &&
1569 entry->gen != btrfs_get_last_root_drop_gen(root->fs_info))
1570 return false;
1571
1572 *is_shared = entry->is_shared;
96dbcc00
FM
1573 /*
1574 * If the node at this level is shared, than all nodes below are also
1575 * shared. Currently some of the nodes below may be marked as not shared
1576 * because we have just switched from one leaf to another, and switched
1577 * also other nodes above the leaf and below the current level, so mark
1578 * them as shared.
1579 */
1580 if (*is_shared) {
1581 for (int i = 0; i < level; i++) {
1582 cache->entries[i].is_shared = true;
1583 cache->entries[i].gen = entry->gen;
1584 }
1585 }
12a824dc
FM
1586
1587 return true;
1588}
1589
1590/*
1591 * The caller has joined a transaction or is holding a read lock on the
1592 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1593 * snapshot field changing while updating or checking the cache.
1594 */
1595static void store_backref_shared_cache(struct btrfs_backref_shared_cache *cache,
1596 struct btrfs_root *root,
1597 u64 bytenr, int level, bool is_shared)
1598{
1599 struct btrfs_backref_shared_cache_entry *entry;
1600 u64 gen;
1601
1602 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1603 return;
1604
1605 /*
1606 * Level -1 is used for the data extent, which is not reliable to cache
1607 * because its reference count can increase or decrease without us
1608 * realizing. We cache results only for extent buffers that lead from
1609 * the root node down to the leaf with the file extent item.
1610 */
1611 ASSERT(level >= 0);
1612
1613 if (is_shared)
1614 gen = btrfs_get_last_root_drop_gen(root->fs_info);
1615 else
1616 gen = btrfs_root_last_snapshot(&root->root_item);
1617
1618 entry = &cache->entries[level];
1619 entry->bytenr = bytenr;
1620 entry->is_shared = is_shared;
1621 entry->gen = gen;
1622
1623 /*
1624 * If we found an extent buffer is shared, set the cache result for all
1625 * extent buffers below it to true. As nodes in the path are COWed,
1626 * their sharedness is moved to their children, and if a leaf is COWed,
1627 * then the sharedness of a data extent becomes direct, the refcount of
1628 * data extent is increased in the extent item at the extent tree.
1629 */
1630 if (is_shared) {
1631 for (int i = 0; i < level; i++) {
1632 entry = &cache->entries[i];
1633 entry->is_shared = is_shared;
1634 entry->gen = gen;
1635 }
1636 }
1637}
1638
8eedadda
FM
1639/*
1640 * Check if a data extent is shared or not.
6e353e3b 1641 *
b8f164e3
FM
1642 * @root: The root the inode belongs to.
1643 * @inum: Number of the inode whose extent we are checking.
1644 * @bytenr: Logical bytenr of the extent we are checking.
1645 * @extent_gen: Generation of the extent (file extent item) or 0 if it is
1646 * not known.
1647 * @roots: List of roots this extent is shared among.
1648 * @tmp: Temporary list used for iteration.
1649 * @cache: A backref lookup result cache.
2c2ed5aa 1650 *
8eedadda 1651 * btrfs_is_data_extent_shared uses the backref walking code but will short
2c2ed5aa
MF
1652 * circuit as soon as it finds a root or inode that doesn't match the
1653 * one passed in. This provides a significant performance benefit for
1654 * callers (such as fiemap) which want to know whether the extent is
1655 * shared but do not need a ref count.
1656 *
03628cdb
FM
1657 * This attempts to attach to the running transaction in order to account for
1658 * delayed refs, but continues on even when no running transaction exists.
bb739cf0 1659 *
2c2ed5aa
MF
1660 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1661 */
8eedadda 1662int btrfs_is_data_extent_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
b8f164e3 1663 u64 extent_gen,
12a824dc
FM
1664 struct ulist *roots, struct ulist *tmp,
1665 struct btrfs_backref_shared_cache *cache)
dc046b10 1666{
bb739cf0
EN
1667 struct btrfs_fs_info *fs_info = root->fs_info;
1668 struct btrfs_trans_handle *trans;
dc046b10
JB
1669 struct ulist_iterator uiter;
1670 struct ulist_node *node;
f3a84ccd 1671 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
dc046b10 1672 int ret = 0;
3ec4d323 1673 struct share_check shared = {
4fd786e6 1674 .root_objectid = root->root_key.objectid,
3ec4d323
EN
1675 .inum = inum,
1676 .share_count = 0,
4fc7b572 1677 .have_delayed_delete_refs = false,
3ec4d323 1678 };
12a824dc 1679 int level;
dc046b10 1680
5911c8fe
DS
1681 ulist_init(roots);
1682 ulist_init(tmp);
dc046b10 1683
a6d155d2 1684 trans = btrfs_join_transaction_nostart(root);
bb739cf0 1685 if (IS_ERR(trans)) {
03628cdb
FM
1686 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1687 ret = PTR_ERR(trans);
1688 goto out;
1689 }
bb739cf0 1690 trans = NULL;
dc046b10 1691 down_read(&fs_info->commit_root_sem);
bb739cf0
EN
1692 } else {
1693 btrfs_get_tree_mod_seq(fs_info, &elem);
1694 }
1695
12a824dc
FM
1696 /* -1 means we are in the bytenr of the data extent. */
1697 level = -1;
dc046b10
JB
1698 ULIST_ITER_INIT(&uiter);
1699 while (1) {
12a824dc
FM
1700 bool is_shared;
1701 bool cached;
1702
dc046b10 1703 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
c995ab3c 1704 roots, NULL, &shared, false);
dc046b10 1705 if (ret == BACKREF_FOUND_SHARED) {
2c2ed5aa 1706 /* this is the only condition under which we return 1 */
dc046b10 1707 ret = 1;
12a824dc
FM
1708 if (level >= 0)
1709 store_backref_shared_cache(cache, root, bytenr,
1710 level, true);
dc046b10
JB
1711 break;
1712 }
1713 if (ret < 0 && ret != -ENOENT)
1714 break;
2c2ed5aa 1715 ret = 0;
b8f164e3
FM
1716 /*
1717 * If our data extent is not shared through reflinks and it was
1718 * created in a generation after the last one used to create a
1719 * snapshot of the inode's root, then it can not be shared
1720 * indirectly through subtrees, as that can only happen with
1721 * snapshots. In this case bail out, no need to check for the
1722 * sharedness of extent buffers.
1723 */
1724 if (level == -1 &&
1725 extent_gen > btrfs_root_last_snapshot(&root->root_item))
1726 break;
1727
12a824dc
FM
1728 if (level >= 0)
1729 store_backref_shared_cache(cache, root, bytenr,
1730 level, false);
dc046b10
JB
1731 node = ulist_next(tmp, &uiter);
1732 if (!node)
1733 break;
1734 bytenr = node->val;
12a824dc
FM
1735 level++;
1736 cached = lookup_backref_shared_cache(cache, root, bytenr, level,
1737 &is_shared);
1738 if (cached) {
1739 ret = (is_shared ? 1 : 0);
1740 break;
1741 }
18bf591b 1742 shared.share_count = 0;
4fc7b572 1743 shared.have_delayed_delete_refs = false;
dc046b10
JB
1744 cond_resched();
1745 }
bb739cf0
EN
1746
1747 if (trans) {
dc046b10 1748 btrfs_put_tree_mod_seq(fs_info, &elem);
bb739cf0
EN
1749 btrfs_end_transaction(trans);
1750 } else {
dc046b10 1751 up_read(&fs_info->commit_root_sem);
bb739cf0 1752 }
03628cdb 1753out:
5911c8fe
DS
1754 ulist_release(roots);
1755 ulist_release(tmp);
dc046b10
JB
1756 return ret;
1757}
1758
f186373f
MF
1759int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1760 u64 start_off, struct btrfs_path *path,
1761 struct btrfs_inode_extref **ret_extref,
1762 u64 *found_off)
1763{
1764 int ret, slot;
1765 struct btrfs_key key;
1766 struct btrfs_key found_key;
1767 struct btrfs_inode_extref *extref;
73980bec 1768 const struct extent_buffer *leaf;
f186373f
MF
1769 unsigned long ptr;
1770
1771 key.objectid = inode_objectid;
962a298f 1772 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
1773 key.offset = start_off;
1774
1775 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1776 if (ret < 0)
1777 return ret;
1778
1779 while (1) {
1780 leaf = path->nodes[0];
1781 slot = path->slots[0];
1782 if (slot >= btrfs_header_nritems(leaf)) {
1783 /*
1784 * If the item at offset is not found,
1785 * btrfs_search_slot will point us to the slot
1786 * where it should be inserted. In our case
1787 * that will be the slot directly before the
1788 * next INODE_REF_KEY_V2 item. In the case
1789 * that we're pointing to the last slot in a
1790 * leaf, we must move one leaf over.
1791 */
1792 ret = btrfs_next_leaf(root, path);
1793 if (ret) {
1794 if (ret >= 1)
1795 ret = -ENOENT;
1796 break;
1797 }
1798 continue;
1799 }
1800
1801 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1802
1803 /*
1804 * Check that we're still looking at an extended ref key for
1805 * this particular objectid. If we have different
1806 * objectid or type then there are no more to be found
1807 * in the tree and we can exit.
1808 */
1809 ret = -ENOENT;
1810 if (found_key.objectid != inode_objectid)
1811 break;
962a298f 1812 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
1813 break;
1814
1815 ret = 0;
1816 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1817 extref = (struct btrfs_inode_extref *)ptr;
1818 *ret_extref = extref;
1819 if (found_off)
1820 *found_off = found_key.offset;
1821 break;
1822 }
1823
1824 return ret;
1825}
1826
48a3b636
ES
1827/*
1828 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1829 * Elements of the path are separated by '/' and the path is guaranteed to be
1830 * 0-terminated. the path is only given within the current file system.
1831 * Therefore, it never starts with a '/'. the caller is responsible to provide
1832 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1833 * the start point of the resulting string is returned. this pointer is within
1834 * dest, normally.
1835 * in case the path buffer would overflow, the pointer is decremented further
1836 * as if output was written to the buffer, though no more output is actually
1837 * generated. that way, the caller can determine how much space would be
1838 * required for the path to fit into the buffer. in that case, the returned
1839 * value will be smaller than dest. callers must check this!
1840 */
96b5bd77
JS
1841char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1842 u32 name_len, unsigned long name_off,
1843 struct extent_buffer *eb_in, u64 parent,
1844 char *dest, u32 size)
a542ad1b 1845{
a542ad1b
JS
1846 int slot;
1847 u64 next_inum;
1848 int ret;
661bec6b 1849 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1850 struct extent_buffer *eb = eb_in;
1851 struct btrfs_key found_key;
d24bec3a 1852 struct btrfs_inode_ref *iref;
a542ad1b
JS
1853
1854 if (bytes_left >= 0)
1855 dest[bytes_left] = '\0';
1856
1857 while (1) {
d24bec3a 1858 bytes_left -= name_len;
a542ad1b
JS
1859 if (bytes_left >= 0)
1860 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1861 name_off, name_len);
b916a59a 1862 if (eb != eb_in) {
0c0fe3b0 1863 if (!path->skip_locking)
ac5887c8 1864 btrfs_tree_read_unlock(eb);
a542ad1b 1865 free_extent_buffer(eb);
b916a59a 1866 }
c234a24d
DS
1867 ret = btrfs_find_item(fs_root, path, parent, 0,
1868 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
1869 if (ret > 0)
1870 ret = -ENOENT;
a542ad1b
JS
1871 if (ret)
1872 break;
d24bec3a 1873
a542ad1b
JS
1874 next_inum = found_key.offset;
1875
1876 /* regular exit ahead */
1877 if (parent == next_inum)
1878 break;
1879
1880 slot = path->slots[0];
1881 eb = path->nodes[0];
1882 /* make sure we can use eb after releasing the path */
b916a59a 1883 if (eb != eb_in) {
0c0fe3b0
FM
1884 path->nodes[0] = NULL;
1885 path->locks[0] = 0;
b916a59a 1886 }
a542ad1b 1887 btrfs_release_path(path);
a542ad1b 1888 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1889
1890 name_len = btrfs_inode_ref_name_len(eb, iref);
1891 name_off = (unsigned long)(iref + 1);
1892
a542ad1b
JS
1893 parent = next_inum;
1894 --bytes_left;
1895 if (bytes_left >= 0)
1896 dest[bytes_left] = '/';
1897 }
1898
1899 btrfs_release_path(path);
1900
1901 if (ret)
1902 return ERR_PTR(ret);
1903
1904 return dest + bytes_left;
1905}
1906
1907/*
1908 * this makes the path point to (logical EXTENT_ITEM *)
1909 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1910 * tree blocks and <0 on error.
1911 */
1912int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1913 struct btrfs_path *path, struct btrfs_key *found_key,
1914 u64 *flags_ret)
a542ad1b 1915{
29cbcf40 1916 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
a542ad1b
JS
1917 int ret;
1918 u64 flags;
261c84b6 1919 u64 size = 0;
a542ad1b 1920 u32 item_size;
73980bec 1921 const struct extent_buffer *eb;
a542ad1b
JS
1922 struct btrfs_extent_item *ei;
1923 struct btrfs_key key;
1924
261c84b6
JB
1925 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1926 key.type = BTRFS_METADATA_ITEM_KEY;
1927 else
1928 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1929 key.objectid = logical;
1930 key.offset = (u64)-1;
1931
29cbcf40 1932 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
a542ad1b
JS
1933 if (ret < 0)
1934 return ret;
a542ad1b 1935
29cbcf40 1936 ret = btrfs_previous_extent_item(extent_root, path, 0);
850a8cdf
WS
1937 if (ret) {
1938 if (ret > 0)
1939 ret = -ENOENT;
1940 return ret;
580f0a67 1941 }
850a8cdf 1942 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 1943 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
da17066c 1944 size = fs_info->nodesize;
261c84b6
JB
1945 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1946 size = found_key->offset;
1947
580f0a67 1948 if (found_key->objectid > logical ||
261c84b6 1949 found_key->objectid + size <= logical) {
ab8d0fc4
JM
1950 btrfs_debug(fs_info,
1951 "logical %llu is not within any extent", logical);
a542ad1b 1952 return -ENOENT;
4692cf58 1953 }
a542ad1b
JS
1954
1955 eb = path->nodes[0];
3212fa14 1956 item_size = btrfs_item_size(eb, path->slots[0]);
a542ad1b
JS
1957 BUG_ON(item_size < sizeof(*ei));
1958
1959 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1960 flags = btrfs_extent_flags(eb, ei);
1961
ab8d0fc4
JM
1962 btrfs_debug(fs_info,
1963 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
c1c9ff7c
GU
1964 logical, logical - found_key->objectid, found_key->objectid,
1965 found_key->offset, flags, item_size);
69917e43
LB
1966
1967 WARN_ON(!flags_ret);
1968 if (flags_ret) {
1969 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1970 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1971 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1972 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1973 else
290342f6 1974 BUG();
69917e43
LB
1975 return 0;
1976 }
a542ad1b
JS
1977
1978 return -EIO;
1979}
1980
1981/*
1982 * helper function to iterate extent inline refs. ptr must point to a 0 value
1983 * for the first call and may be modified. it is used to track state.
1984 * if more refs exist, 0 is returned and the next call to
e0c476b1 1985 * get_extent_inline_ref must pass the modified ptr parameter to get the
a542ad1b
JS
1986 * next ref. after the last ref was processed, 1 is returned.
1987 * returns <0 on error
1988 */
e0c476b1
JM
1989static int get_extent_inline_ref(unsigned long *ptr,
1990 const struct extent_buffer *eb,
1991 const struct btrfs_key *key,
1992 const struct btrfs_extent_item *ei,
1993 u32 item_size,
1994 struct btrfs_extent_inline_ref **out_eiref,
1995 int *out_type)
a542ad1b
JS
1996{
1997 unsigned long end;
1998 u64 flags;
1999 struct btrfs_tree_block_info *info;
2000
2001 if (!*ptr) {
2002 /* first call */
2003 flags = btrfs_extent_flags(eb, ei);
2004 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
2005 if (key->type == BTRFS_METADATA_ITEM_KEY) {
2006 /* a skinny metadata extent */
2007 *out_eiref =
2008 (struct btrfs_extent_inline_ref *)(ei + 1);
2009 } else {
2010 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2011 info = (struct btrfs_tree_block_info *)(ei + 1);
2012 *out_eiref =
2013 (struct btrfs_extent_inline_ref *)(info + 1);
2014 }
a542ad1b
JS
2015 } else {
2016 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2017 }
2018 *ptr = (unsigned long)*out_eiref;
cd857dd6 2019 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
2020 return -ENOENT;
2021 }
2022
2023 end = (unsigned long)ei + item_size;
6eda71d0 2024 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
3de28d57
LB
2025 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2026 BTRFS_REF_TYPE_ANY);
2027 if (*out_type == BTRFS_REF_TYPE_INVALID)
af431dcb 2028 return -EUCLEAN;
a542ad1b
JS
2029
2030 *ptr += btrfs_extent_inline_ref_size(*out_type);
2031 WARN_ON(*ptr > end);
2032 if (*ptr == end)
2033 return 1; /* last */
2034
2035 return 0;
2036}
2037
2038/*
2039 * reads the tree block backref for an extent. tree level and root are returned
2040 * through out_level and out_root. ptr must point to a 0 value for the first
e0c476b1 2041 * call and may be modified (see get_extent_inline_ref comment).
a542ad1b
JS
2042 * returns 0 if data was provided, 1 if there was no more data to provide or
2043 * <0 on error.
2044 */
2045int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
2046 struct btrfs_key *key, struct btrfs_extent_item *ei,
2047 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
2048{
2049 int ret;
2050 int type;
a542ad1b
JS
2051 struct btrfs_extent_inline_ref *eiref;
2052
2053 if (*ptr == (unsigned long)-1)
2054 return 1;
2055
2056 while (1) {
e0c476b1 2057 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
6eda71d0 2058 &eiref, &type);
a542ad1b
JS
2059 if (ret < 0)
2060 return ret;
2061
2062 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2063 type == BTRFS_SHARED_BLOCK_REF_KEY)
2064 break;
2065
2066 if (ret == 1)
2067 return 1;
2068 }
2069
2070 /* we can treat both ref types equally here */
a542ad1b 2071 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
2072
2073 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2074 struct btrfs_tree_block_info *info;
2075
2076 info = (struct btrfs_tree_block_info *)(ei + 1);
2077 *out_level = btrfs_tree_block_level(eb, info);
2078 } else {
2079 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2080 *out_level = (u8)key->offset;
2081 }
a542ad1b
JS
2082
2083 if (ret == 1)
2084 *ptr = (unsigned long)-1;
2085
2086 return 0;
2087}
2088
ab8d0fc4
JM
2089static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2090 struct extent_inode_elem *inode_list,
2091 u64 root, u64 extent_item_objectid,
2092 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 2093{
976b1908 2094 struct extent_inode_elem *eie;
4692cf58 2095 int ret = 0;
4692cf58 2096
976b1908 2097 for (eie = inode_list; eie; eie = eie->next) {
ab8d0fc4
JM
2098 btrfs_debug(fs_info,
2099 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2100 extent_item_objectid, eie->inum,
2101 eie->offset, root);
976b1908 2102 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 2103 if (ret) {
ab8d0fc4
JM
2104 btrfs_debug(fs_info,
2105 "stopping iteration for %llu due to ret=%d",
2106 extent_item_objectid, ret);
4692cf58
JS
2107 break;
2108 }
a542ad1b
JS
2109 }
2110
a542ad1b
JS
2111 return ret;
2112}
2113
2114/*
2115 * calls iterate() for every inode that references the extent identified by
4692cf58 2116 * the given parameters.
a542ad1b
JS
2117 * when the iterator function returns a non-zero value, iteration stops.
2118 */
2119int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 2120 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 2121 int search_commit_root,
c995ab3c
ZB
2122 iterate_extent_inodes_t *iterate, void *ctx,
2123 bool ignore_offset)
a542ad1b 2124{
a542ad1b 2125 int ret;
da61d31a 2126 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
2127 struct ulist *refs = NULL;
2128 struct ulist *roots = NULL;
4692cf58
JS
2129 struct ulist_node *ref_node = NULL;
2130 struct ulist_node *root_node = NULL;
f3a84ccd 2131 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
cd1b413c
JS
2132 struct ulist_iterator ref_uiter;
2133 struct ulist_iterator root_uiter;
a542ad1b 2134
ab8d0fc4 2135 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
4692cf58 2136 extent_item_objectid);
a542ad1b 2137
da61d31a 2138 if (!search_commit_root) {
30a9da5d 2139 trans = btrfs_attach_transaction(fs_info->tree_root);
bfc61c36
FM
2140 if (IS_ERR(trans)) {
2141 if (PTR_ERR(trans) != -ENOENT &&
2142 PTR_ERR(trans) != -EROFS)
2143 return PTR_ERR(trans);
2144 trans = NULL;
2145 }
2146 }
2147
2148 if (trans)
f3a84ccd 2149 btrfs_get_tree_mod_seq(fs_info, &seq_elem);
bfc61c36 2150 else
9e351cc8 2151 down_read(&fs_info->commit_root_sem);
a542ad1b 2152
4692cf58 2153 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
f3a84ccd 2154 seq_elem.seq, &refs,
c995ab3c 2155 &extent_item_pos, ignore_offset);
4692cf58
JS
2156 if (ret)
2157 goto out;
a542ad1b 2158
cd1b413c
JS
2159 ULIST_ITER_INIT(&ref_uiter);
2160 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
e0c476b1 2161 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
f3a84ccd 2162 seq_elem.seq, &roots,
c995ab3c 2163 ignore_offset);
4692cf58
JS
2164 if (ret)
2165 break;
cd1b413c
JS
2166 ULIST_ITER_INIT(&root_uiter);
2167 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
ab8d0fc4
JM
2168 btrfs_debug(fs_info,
2169 "root %llu references leaf %llu, data list %#llx",
2170 root_node->val, ref_node->val,
2171 ref_node->aux);
2172 ret = iterate_leaf_refs(fs_info,
2173 (struct extent_inode_elem *)
995e01b7
JS
2174 (uintptr_t)ref_node->aux,
2175 root_node->val,
2176 extent_item_objectid,
2177 iterate, ctx);
4692cf58 2178 }
976b1908 2179 ulist_free(roots);
a542ad1b
JS
2180 }
2181
976b1908 2182 free_leaf_list(refs);
4692cf58 2183out:
bfc61c36 2184 if (trans) {
f3a84ccd 2185 btrfs_put_tree_mod_seq(fs_info, &seq_elem);
3a45bb20 2186 btrfs_end_transaction(trans);
9e351cc8
JB
2187 } else {
2188 up_read(&fs_info->commit_root_sem);
7a3ae2f8
JS
2189 }
2190
a542ad1b
JS
2191 return ret;
2192}
2193
e3059ec0
DS
2194static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
2195{
2196 struct btrfs_data_container *inodes = ctx;
2197 const size_t c = 3 * sizeof(u64);
2198
2199 if (inodes->bytes_left >= c) {
2200 inodes->bytes_left -= c;
2201 inodes->val[inodes->elem_cnt] = inum;
2202 inodes->val[inodes->elem_cnt + 1] = offset;
2203 inodes->val[inodes->elem_cnt + 2] = root;
2204 inodes->elem_cnt += 3;
2205 } else {
2206 inodes->bytes_missing += c - inodes->bytes_left;
2207 inodes->bytes_left = 0;
2208 inodes->elem_missed += 3;
2209 }
2210
2211 return 0;
2212}
2213
a542ad1b
JS
2214int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2215 struct btrfs_path *path,
e3059ec0 2216 void *ctx, bool ignore_offset)
a542ad1b
JS
2217{
2218 int ret;
4692cf58 2219 u64 extent_item_pos;
69917e43 2220 u64 flags = 0;
a542ad1b 2221 struct btrfs_key found_key;
7a3ae2f8 2222 int search_commit_root = path->search_commit_root;
a542ad1b 2223
69917e43 2224 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 2225 btrfs_release_path(path);
a542ad1b
JS
2226 if (ret < 0)
2227 return ret;
69917e43 2228 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 2229 return -EINVAL;
a542ad1b 2230
4692cf58 2231 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
2232 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2233 extent_item_pos, search_commit_root,
e3059ec0 2234 build_ino_list, ctx, ignore_offset);
a542ad1b
JS
2235
2236 return ret;
2237}
2238
ad6240f6 2239static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
875d1daa 2240 struct extent_buffer *eb, struct inode_fs_paths *ipath);
d24bec3a 2241
875d1daa 2242static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
a542ad1b 2243{
aefc1eb1 2244 int ret = 0;
a542ad1b
JS
2245 int slot;
2246 u32 cur;
2247 u32 len;
2248 u32 name_len;
2249 u64 parent = 0;
2250 int found = 0;
875d1daa
DS
2251 struct btrfs_root *fs_root = ipath->fs_root;
2252 struct btrfs_path *path = ipath->btrfs_path;
a542ad1b 2253 struct extent_buffer *eb;
a542ad1b
JS
2254 struct btrfs_inode_ref *iref;
2255 struct btrfs_key found_key;
2256
aefc1eb1 2257 while (!ret) {
c234a24d
DS
2258 ret = btrfs_find_item(fs_root, path, inum,
2259 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2260 &found_key);
2261
a542ad1b
JS
2262 if (ret < 0)
2263 break;
2264 if (ret) {
2265 ret = found ? 0 : -ENOENT;
2266 break;
2267 }
2268 ++found;
2269
2270 parent = found_key.offset;
2271 slot = path->slots[0];
3fe81ce2
FDBM
2272 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2273 if (!eb) {
2274 ret = -ENOMEM;
2275 break;
2276 }
a542ad1b
JS
2277 btrfs_release_path(path);
2278
a542ad1b
JS
2279 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2280
3212fa14 2281 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
a542ad1b
JS
2282 name_len = btrfs_inode_ref_name_len(eb, iref);
2283 /* path must be released before calling iterate()! */
ab8d0fc4
JM
2284 btrfs_debug(fs_root->fs_info,
2285 "following ref at offset %u for inode %llu in tree %llu",
4fd786e6
MT
2286 cur, found_key.objectid,
2287 fs_root->root_key.objectid);
ad6240f6 2288 ret = inode_to_path(parent, name_len,
875d1daa 2289 (unsigned long)(iref + 1), eb, ipath);
aefc1eb1 2290 if (ret)
a542ad1b 2291 break;
a542ad1b
JS
2292 len = sizeof(*iref) + name_len;
2293 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2294 }
2295 free_extent_buffer(eb);
2296 }
2297
2298 btrfs_release_path(path);
2299
2300 return ret;
2301}
2302
875d1daa 2303static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
d24bec3a
MF
2304{
2305 int ret;
2306 int slot;
2307 u64 offset = 0;
2308 u64 parent;
2309 int found = 0;
875d1daa
DS
2310 struct btrfs_root *fs_root = ipath->fs_root;
2311 struct btrfs_path *path = ipath->btrfs_path;
d24bec3a
MF
2312 struct extent_buffer *eb;
2313 struct btrfs_inode_extref *extref;
d24bec3a
MF
2314 u32 item_size;
2315 u32 cur_offset;
2316 unsigned long ptr;
2317
2318 while (1) {
2319 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2320 &offset);
2321 if (ret < 0)
2322 break;
2323 if (ret) {
2324 ret = found ? 0 : -ENOENT;
2325 break;
2326 }
2327 ++found;
2328
2329 slot = path->slots[0];
3fe81ce2
FDBM
2330 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2331 if (!eb) {
2332 ret = -ENOMEM;
2333 break;
2334 }
d24bec3a
MF
2335 btrfs_release_path(path);
2336
3212fa14 2337 item_size = btrfs_item_size(eb, slot);
2849a854 2338 ptr = btrfs_item_ptr_offset(eb, slot);
d24bec3a
MF
2339 cur_offset = 0;
2340
2341 while (cur_offset < item_size) {
2342 u32 name_len;
2343
2344 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2345 parent = btrfs_inode_extref_parent(eb, extref);
2346 name_len = btrfs_inode_extref_name_len(eb, extref);
ad6240f6 2347 ret = inode_to_path(parent, name_len,
875d1daa 2348 (unsigned long)&extref->name, eb, ipath);
d24bec3a
MF
2349 if (ret)
2350 break;
2351
2849a854 2352 cur_offset += btrfs_inode_extref_name_len(eb, extref);
d24bec3a
MF
2353 cur_offset += sizeof(*extref);
2354 }
d24bec3a
MF
2355 free_extent_buffer(eb);
2356
2357 offset++;
2358 }
2359
2360 btrfs_release_path(path);
2361
2362 return ret;
2363}
2364
a542ad1b
JS
2365/*
2366 * returns 0 if the path could be dumped (probably truncated)
2367 * returns <0 in case of an error
2368 */
d24bec3a 2369static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
875d1daa 2370 struct extent_buffer *eb, struct inode_fs_paths *ipath)
a542ad1b 2371{
a542ad1b
JS
2372 char *fspath;
2373 char *fspath_min;
2374 int i = ipath->fspath->elem_cnt;
2375 const int s_ptr = sizeof(char *);
2376 u32 bytes_left;
2377
2378 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2379 ipath->fspath->bytes_left - s_ptr : 0;
2380
740c3d22 2381 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
2382 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2383 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
2384 if (IS_ERR(fspath))
2385 return PTR_ERR(fspath);
2386
2387 if (fspath > fspath_min) {
745c4d8e 2388 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
2389 ++ipath->fspath->elem_cnt;
2390 ipath->fspath->bytes_left = fspath - fspath_min;
2391 } else {
2392 ++ipath->fspath->elem_missed;
2393 ipath->fspath->bytes_missing += fspath_min - fspath;
2394 ipath->fspath->bytes_left = 0;
2395 }
2396
2397 return 0;
2398}
2399
2400/*
2401 * this dumps all file system paths to the inode into the ipath struct, provided
2402 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 2403 * from ipath->fspath->val[i].
a542ad1b 2404 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 2405 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
01327610 2406 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
a542ad1b
JS
2407 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2408 * have been needed to return all paths.
2409 */
2410int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2411{
ad6240f6
DS
2412 int ret;
2413 int found_refs = 0;
2414
875d1daa 2415 ret = iterate_inode_refs(inum, ipath);
ad6240f6
DS
2416 if (!ret)
2417 ++found_refs;
2418 else if (ret != -ENOENT)
2419 return ret;
2420
875d1daa 2421 ret = iterate_inode_extrefs(inum, ipath);
ad6240f6
DS
2422 if (ret == -ENOENT && found_refs)
2423 return 0;
2424
2425 return ret;
a542ad1b
JS
2426}
2427
a542ad1b
JS
2428struct btrfs_data_container *init_data_container(u32 total_bytes)
2429{
2430 struct btrfs_data_container *data;
2431 size_t alloc_bytes;
2432
2433 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
f54de068 2434 data = kvmalloc(alloc_bytes, GFP_KERNEL);
a542ad1b
JS
2435 if (!data)
2436 return ERR_PTR(-ENOMEM);
2437
2438 if (total_bytes >= sizeof(*data)) {
2439 data->bytes_left = total_bytes - sizeof(*data);
2440 data->bytes_missing = 0;
2441 } else {
2442 data->bytes_missing = sizeof(*data) - total_bytes;
2443 data->bytes_left = 0;
2444 }
2445
2446 data->elem_cnt = 0;
2447 data->elem_missed = 0;
2448
2449 return data;
2450}
2451
2452/*
2453 * allocates space to return multiple file system paths for an inode.
2454 * total_bytes to allocate are passed, note that space usable for actual path
2455 * information will be total_bytes - sizeof(struct inode_fs_paths).
2456 * the returned pointer must be freed with free_ipath() in the end.
2457 */
2458struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2459 struct btrfs_path *path)
2460{
2461 struct inode_fs_paths *ifp;
2462 struct btrfs_data_container *fspath;
2463
2464 fspath = init_data_container(total_bytes);
2465 if (IS_ERR(fspath))
afc6961f 2466 return ERR_CAST(fspath);
a542ad1b 2467
f54de068 2468 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
a542ad1b 2469 if (!ifp) {
f54de068 2470 kvfree(fspath);
a542ad1b
JS
2471 return ERR_PTR(-ENOMEM);
2472 }
2473
2474 ifp->btrfs_path = path;
2475 ifp->fspath = fspath;
2476 ifp->fs_root = fs_root;
2477
2478 return ifp;
2479}
2480
2481void free_ipath(struct inode_fs_paths *ipath)
2482{
4735fb28
JJ
2483 if (!ipath)
2484 return;
f54de068 2485 kvfree(ipath->fspath);
a542ad1b
JS
2486 kfree(ipath);
2487}
a37f232b
QW
2488
2489struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2490 struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2491{
2492 struct btrfs_backref_iter *ret;
2493
2494 ret = kzalloc(sizeof(*ret), gfp_flag);
2495 if (!ret)
2496 return NULL;
2497
2498 ret->path = btrfs_alloc_path();
c15c2ec0 2499 if (!ret->path) {
a37f232b
QW
2500 kfree(ret);
2501 return NULL;
2502 }
2503
2504 /* Current backref iterator only supports iteration in commit root */
2505 ret->path->search_commit_root = 1;
2506 ret->path->skip_locking = 1;
2507 ret->fs_info = fs_info;
2508
2509 return ret;
2510}
2511
2512int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2513{
2514 struct btrfs_fs_info *fs_info = iter->fs_info;
29cbcf40 2515 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
a37f232b
QW
2516 struct btrfs_path *path = iter->path;
2517 struct btrfs_extent_item *ei;
2518 struct btrfs_key key;
2519 int ret;
2520
2521 key.objectid = bytenr;
2522 key.type = BTRFS_METADATA_ITEM_KEY;
2523 key.offset = (u64)-1;
2524 iter->bytenr = bytenr;
2525
29cbcf40 2526 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
a37f232b
QW
2527 if (ret < 0)
2528 return ret;
2529 if (ret == 0) {
2530 ret = -EUCLEAN;
2531 goto release;
2532 }
2533 if (path->slots[0] == 0) {
2534 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2535 ret = -EUCLEAN;
2536 goto release;
2537 }
2538 path->slots[0]--;
2539
2540 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2541 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2542 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2543 ret = -ENOENT;
2544 goto release;
2545 }
2546 memcpy(&iter->cur_key, &key, sizeof(key));
2547 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2548 path->slots[0]);
2549 iter->end_ptr = (u32)(iter->item_ptr +
3212fa14 2550 btrfs_item_size(path->nodes[0], path->slots[0]));
a37f232b
QW
2551 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2552 struct btrfs_extent_item);
2553
2554 /*
2555 * Only support iteration on tree backref yet.
2556 *
2557 * This is an extra precaution for non skinny-metadata, where
2558 * EXTENT_ITEM is also used for tree blocks, that we can only use
2559 * extent flags to determine if it's a tree block.
2560 */
2561 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2562 ret = -ENOTSUPP;
2563 goto release;
2564 }
2565 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2566
2567 /* If there is no inline backref, go search for keyed backref */
2568 if (iter->cur_ptr >= iter->end_ptr) {
29cbcf40 2569 ret = btrfs_next_item(extent_root, path);
a37f232b
QW
2570
2571 /* No inline nor keyed ref */
2572 if (ret > 0) {
2573 ret = -ENOENT;
2574 goto release;
2575 }
2576 if (ret < 0)
2577 goto release;
2578
2579 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2580 path->slots[0]);
2581 if (iter->cur_key.objectid != bytenr ||
2582 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2583 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2584 ret = -ENOENT;
2585 goto release;
2586 }
2587 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2588 path->slots[0]);
2589 iter->item_ptr = iter->cur_ptr;
3212fa14 2590 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
a37f232b
QW
2591 path->nodes[0], path->slots[0]));
2592 }
2593
2594 return 0;
2595release:
2596 btrfs_backref_iter_release(iter);
2597 return ret;
2598}
c39c2ddc
QW
2599
2600/*
2601 * Go to the next backref item of current bytenr, can be either inlined or
2602 * keyed.
2603 *
2604 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2605 *
2606 * Return 0 if we get next backref without problem.
2607 * Return >0 if there is no extra backref for this bytenr.
2608 * Return <0 if there is something wrong happened.
2609 */
2610int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2611{
2612 struct extent_buffer *eb = btrfs_backref_get_eb(iter);
29cbcf40 2613 struct btrfs_root *extent_root;
c39c2ddc
QW
2614 struct btrfs_path *path = iter->path;
2615 struct btrfs_extent_inline_ref *iref;
2616 int ret;
2617 u32 size;
2618
2619 if (btrfs_backref_iter_is_inline_ref(iter)) {
2620 /* We're still inside the inline refs */
2621 ASSERT(iter->cur_ptr < iter->end_ptr);
2622
2623 if (btrfs_backref_has_tree_block_info(iter)) {
2624 /* First tree block info */
2625 size = sizeof(struct btrfs_tree_block_info);
2626 } else {
2627 /* Use inline ref type to determine the size */
2628 int type;
2629
2630 iref = (struct btrfs_extent_inline_ref *)
2631 ((unsigned long)iter->cur_ptr);
2632 type = btrfs_extent_inline_ref_type(eb, iref);
2633
2634 size = btrfs_extent_inline_ref_size(type);
2635 }
2636 iter->cur_ptr += size;
2637 if (iter->cur_ptr < iter->end_ptr)
2638 return 0;
2639
2640 /* All inline items iterated, fall through */
2641 }
2642
2643 /* We're at keyed items, there is no inline item, go to the next one */
29cbcf40
JB
2644 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2645 ret = btrfs_next_item(extent_root, iter->path);
c39c2ddc
QW
2646 if (ret)
2647 return ret;
2648
2649 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2650 if (iter->cur_key.objectid != iter->bytenr ||
2651 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2652 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2653 return 1;
2654 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2655 path->slots[0]);
2656 iter->cur_ptr = iter->item_ptr;
3212fa14 2657 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
c39c2ddc
QW
2658 path->slots[0]);
2659 return 0;
2660}
584fb121
QW
2661
2662void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2663 struct btrfs_backref_cache *cache, int is_reloc)
2664{
2665 int i;
2666
2667 cache->rb_root = RB_ROOT;
2668 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2669 INIT_LIST_HEAD(&cache->pending[i]);
2670 INIT_LIST_HEAD(&cache->changed);
2671 INIT_LIST_HEAD(&cache->detached);
2672 INIT_LIST_HEAD(&cache->leaves);
2673 INIT_LIST_HEAD(&cache->pending_edge);
2674 INIT_LIST_HEAD(&cache->useless_node);
2675 cache->fs_info = fs_info;
2676 cache->is_reloc = is_reloc;
2677}
b1818dab
QW
2678
2679struct btrfs_backref_node *btrfs_backref_alloc_node(
2680 struct btrfs_backref_cache *cache, u64 bytenr, int level)
2681{
2682 struct btrfs_backref_node *node;
2683
2684 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2685 node = kzalloc(sizeof(*node), GFP_NOFS);
2686 if (!node)
2687 return node;
2688
2689 INIT_LIST_HEAD(&node->list);
2690 INIT_LIST_HEAD(&node->upper);
2691 INIT_LIST_HEAD(&node->lower);
2692 RB_CLEAR_NODE(&node->rb_node);
2693 cache->nr_nodes++;
2694 node->level = level;
2695 node->bytenr = bytenr;
2696
2697 return node;
2698}
47254d07
QW
2699
2700struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2701 struct btrfs_backref_cache *cache)
2702{
2703 struct btrfs_backref_edge *edge;
2704
2705 edge = kzalloc(sizeof(*edge), GFP_NOFS);
2706 if (edge)
2707 cache->nr_edges++;
2708 return edge;
2709}
023acb07
QW
2710
2711/*
2712 * Drop the backref node from cache, also cleaning up all its
2713 * upper edges and any uncached nodes in the path.
2714 *
2715 * This cleanup happens bottom up, thus the node should either
2716 * be the lowest node in the cache or a detached node.
2717 */
2718void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2719 struct btrfs_backref_node *node)
2720{
2721 struct btrfs_backref_node *upper;
2722 struct btrfs_backref_edge *edge;
2723
2724 if (!node)
2725 return;
2726
2727 BUG_ON(!node->lowest && !node->detached);
2728 while (!list_empty(&node->upper)) {
2729 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2730 list[LOWER]);
2731 upper = edge->node[UPPER];
2732 list_del(&edge->list[LOWER]);
2733 list_del(&edge->list[UPPER]);
2734 btrfs_backref_free_edge(cache, edge);
2735
023acb07
QW
2736 /*
2737 * Add the node to leaf node list if no other child block
2738 * cached.
2739 */
2740 if (list_empty(&upper->lower)) {
2741 list_add_tail(&upper->lower, &cache->leaves);
2742 upper->lowest = 1;
2743 }
2744 }
2745
2746 btrfs_backref_drop_node(cache, node);
2747}
13fe1bdb
QW
2748
2749/*
2750 * Release all nodes/edges from current cache
2751 */
2752void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2753{
2754 struct btrfs_backref_node *node;
2755 int i;
2756
2757 while (!list_empty(&cache->detached)) {
2758 node = list_entry(cache->detached.next,
2759 struct btrfs_backref_node, list);
2760 btrfs_backref_cleanup_node(cache, node);
2761 }
2762
2763 while (!list_empty(&cache->leaves)) {
2764 node = list_entry(cache->leaves.next,
2765 struct btrfs_backref_node, lower);
2766 btrfs_backref_cleanup_node(cache, node);
2767 }
2768
2769 cache->last_trans = 0;
2770
2771 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2772 ASSERT(list_empty(&cache->pending[i]));
2773 ASSERT(list_empty(&cache->pending_edge));
2774 ASSERT(list_empty(&cache->useless_node));
2775 ASSERT(list_empty(&cache->changed));
2776 ASSERT(list_empty(&cache->detached));
2777 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2778 ASSERT(!cache->nr_nodes);
2779 ASSERT(!cache->nr_edges);
2780}
1b60d2ec
QW
2781
2782/*
2783 * Handle direct tree backref
2784 *
2785 * Direct tree backref means, the backref item shows its parent bytenr
2786 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2787 *
2788 * @ref_key: The converted backref key.
2789 * For keyed backref, it's the item key.
2790 * For inlined backref, objectid is the bytenr,
2791 * type is btrfs_inline_ref_type, offset is
2792 * btrfs_inline_ref_offset.
2793 */
2794static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2795 struct btrfs_key *ref_key,
2796 struct btrfs_backref_node *cur)
2797{
2798 struct btrfs_backref_edge *edge;
2799 struct btrfs_backref_node *upper;
2800 struct rb_node *rb_node;
2801
2802 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2803
2804 /* Only reloc root uses backref pointing to itself */
2805 if (ref_key->objectid == ref_key->offset) {
2806 struct btrfs_root *root;
2807
2808 cur->is_reloc_root = 1;
2809 /* Only reloc backref cache cares about a specific root */
2810 if (cache->is_reloc) {
2811 root = find_reloc_root(cache->fs_info, cur->bytenr);
f78743fb 2812 if (!root)
1b60d2ec
QW
2813 return -ENOENT;
2814 cur->root = root;
2815 } else {
2816 /*
2817 * For generic purpose backref cache, reloc root node
2818 * is useless.
2819 */
2820 list_add(&cur->list, &cache->useless_node);
2821 }
2822 return 0;
2823 }
2824
2825 edge = btrfs_backref_alloc_edge(cache);
2826 if (!edge)
2827 return -ENOMEM;
2828
2829 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2830 if (!rb_node) {
2831 /* Parent node not yet cached */
2832 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2833 cur->level + 1);
2834 if (!upper) {
2835 btrfs_backref_free_edge(cache, edge);
2836 return -ENOMEM;
2837 }
2838
2839 /*
2840 * Backrefs for the upper level block isn't cached, add the
2841 * block to pending list
2842 */
2843 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2844 } else {
2845 /* Parent node already cached */
2846 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2847 ASSERT(upper->checked);
2848 INIT_LIST_HEAD(&edge->list[UPPER]);
2849 }
2850 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2851 return 0;
2852}
2853
2854/*
2855 * Handle indirect tree backref
2856 *
2857 * Indirect tree backref means, we only know which tree the node belongs to.
2858 * We still need to do a tree search to find out the parents. This is for
2859 * TREE_BLOCK_REF backref (keyed or inlined).
2860 *
2861 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
2862 * @tree_key: The first key of this tree block.
1a9fd417 2863 * @path: A clean (released) path, to avoid allocating path every time
1b60d2ec
QW
2864 * the function get called.
2865 */
2866static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2867 struct btrfs_path *path,
2868 struct btrfs_key *ref_key,
2869 struct btrfs_key *tree_key,
2870 struct btrfs_backref_node *cur)
2871{
2872 struct btrfs_fs_info *fs_info = cache->fs_info;
2873 struct btrfs_backref_node *upper;
2874 struct btrfs_backref_node *lower;
2875 struct btrfs_backref_edge *edge;
2876 struct extent_buffer *eb;
2877 struct btrfs_root *root;
1b60d2ec
QW
2878 struct rb_node *rb_node;
2879 int level;
2880 bool need_check = true;
2881 int ret;
2882
56e9357a 2883 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
1b60d2ec
QW
2884 if (IS_ERR(root))
2885 return PTR_ERR(root);
92a7cc42 2886 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
1b60d2ec
QW
2887 cur->cowonly = 1;
2888
2889 if (btrfs_root_level(&root->root_item) == cur->level) {
2890 /* Tree root */
2891 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
876de781
QW
2892 /*
2893 * For reloc backref cache, we may ignore reloc root. But for
2894 * general purpose backref cache, we can't rely on
2895 * btrfs_should_ignore_reloc_root() as it may conflict with
2896 * current running relocation and lead to missing root.
2897 *
2898 * For general purpose backref cache, reloc root detection is
2899 * completely relying on direct backref (key->offset is parent
2900 * bytenr), thus only do such check for reloc cache.
2901 */
2902 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
1b60d2ec
QW
2903 btrfs_put_root(root);
2904 list_add(&cur->list, &cache->useless_node);
2905 } else {
2906 cur->root = root;
2907 }
2908 return 0;
2909 }
2910
2911 level = cur->level + 1;
2912
2913 /* Search the tree to find parent blocks referring to the block */
2914 path->search_commit_root = 1;
2915 path->skip_locking = 1;
2916 path->lowest_level = level;
2917 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2918 path->lowest_level = 0;
2919 if (ret < 0) {
2920 btrfs_put_root(root);
2921 return ret;
2922 }
2923 if (ret > 0 && path->slots[level] > 0)
2924 path->slots[level]--;
2925
2926 eb = path->nodes[level];
2927 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2928 btrfs_err(fs_info,
2929"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2930 cur->bytenr, level - 1, root->root_key.objectid,
2931 tree_key->objectid, tree_key->type, tree_key->offset);
2932 btrfs_put_root(root);
2933 ret = -ENOENT;
2934 goto out;
2935 }
2936 lower = cur;
2937
2938 /* Add all nodes and edges in the path */
2939 for (; level < BTRFS_MAX_LEVEL; level++) {
2940 if (!path->nodes[level]) {
2941 ASSERT(btrfs_root_bytenr(&root->root_item) ==
2942 lower->bytenr);
876de781
QW
2943 /* Same as previous should_ignore_reloc_root() call */
2944 if (btrfs_should_ignore_reloc_root(root) &&
2945 cache->is_reloc) {
1b60d2ec
QW
2946 btrfs_put_root(root);
2947 list_add(&lower->list, &cache->useless_node);
2948 } else {
2949 lower->root = root;
2950 }
2951 break;
2952 }
2953
2954 edge = btrfs_backref_alloc_edge(cache);
2955 if (!edge) {
2956 btrfs_put_root(root);
2957 ret = -ENOMEM;
2958 goto out;
2959 }
2960
2961 eb = path->nodes[level];
2962 rb_node = rb_simple_search(&cache->rb_root, eb->start);
2963 if (!rb_node) {
2964 upper = btrfs_backref_alloc_node(cache, eb->start,
2965 lower->level + 1);
2966 if (!upper) {
2967 btrfs_put_root(root);
2968 btrfs_backref_free_edge(cache, edge);
2969 ret = -ENOMEM;
2970 goto out;
2971 }
2972 upper->owner = btrfs_header_owner(eb);
92a7cc42 2973 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
1b60d2ec
QW
2974 upper->cowonly = 1;
2975
2976 /*
2977 * If we know the block isn't shared we can avoid
2978 * checking its backrefs.
2979 */
2980 if (btrfs_block_can_be_shared(root, eb))
2981 upper->checked = 0;
2982 else
2983 upper->checked = 1;
2984
2985 /*
2986 * Add the block to pending list if we need to check its
2987 * backrefs, we only do this once while walking up a
2988 * tree as we will catch anything else later on.
2989 */
2990 if (!upper->checked && need_check) {
2991 need_check = false;
2992 list_add_tail(&edge->list[UPPER],
2993 &cache->pending_edge);
2994 } else {
2995 if (upper->checked)
2996 need_check = true;
2997 INIT_LIST_HEAD(&edge->list[UPPER]);
2998 }
2999 } else {
3000 upper = rb_entry(rb_node, struct btrfs_backref_node,
3001 rb_node);
3002 ASSERT(upper->checked);
3003 INIT_LIST_HEAD(&edge->list[UPPER]);
3004 if (!upper->owner)
3005 upper->owner = btrfs_header_owner(eb);
3006 }
3007 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3008
3009 if (rb_node) {
3010 btrfs_put_root(root);
3011 break;
3012 }
3013 lower = upper;
3014 upper = NULL;
3015 }
3016out:
3017 btrfs_release_path(path);
3018 return ret;
3019}
3020
3021/*
3022 * Add backref node @cur into @cache.
3023 *
3024 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3025 * links aren't yet bi-directional. Needs to finish such links.
fc997ed0 3026 * Use btrfs_backref_finish_upper_links() to finish such linkage.
1b60d2ec
QW
3027 *
3028 * @path: Released path for indirect tree backref lookup
3029 * @iter: Released backref iter for extent tree search
3030 * @node_key: The first key of the tree block
3031 */
3032int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
3033 struct btrfs_path *path,
3034 struct btrfs_backref_iter *iter,
3035 struct btrfs_key *node_key,
3036 struct btrfs_backref_node *cur)
3037{
3038 struct btrfs_fs_info *fs_info = cache->fs_info;
3039 struct btrfs_backref_edge *edge;
3040 struct btrfs_backref_node *exist;
3041 int ret;
3042
3043 ret = btrfs_backref_iter_start(iter, cur->bytenr);
3044 if (ret < 0)
3045 return ret;
3046 /*
3047 * We skip the first btrfs_tree_block_info, as we don't use the key
3048 * stored in it, but fetch it from the tree block
3049 */
3050 if (btrfs_backref_has_tree_block_info(iter)) {
3051 ret = btrfs_backref_iter_next(iter);
3052 if (ret < 0)
3053 goto out;
3054 /* No extra backref? This means the tree block is corrupted */
3055 if (ret > 0) {
3056 ret = -EUCLEAN;
3057 goto out;
3058 }
3059 }
3060 WARN_ON(cur->checked);
3061 if (!list_empty(&cur->upper)) {
3062 /*
3063 * The backref was added previously when processing backref of
3064 * type BTRFS_TREE_BLOCK_REF_KEY
3065 */
3066 ASSERT(list_is_singular(&cur->upper));
3067 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3068 list[LOWER]);
3069 ASSERT(list_empty(&edge->list[UPPER]));
3070 exist = edge->node[UPPER];
3071 /*
3072 * Add the upper level block to pending list if we need check
3073 * its backrefs
3074 */
3075 if (!exist->checked)
3076 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3077 } else {
3078 exist = NULL;
3079 }
3080
3081 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3082 struct extent_buffer *eb;
3083 struct btrfs_key key;
3084 int type;
3085
3086 cond_resched();
3087 eb = btrfs_backref_get_eb(iter);
3088
3089 key.objectid = iter->bytenr;
3090 if (btrfs_backref_iter_is_inline_ref(iter)) {
3091 struct btrfs_extent_inline_ref *iref;
3092
3093 /* Update key for inline backref */
3094 iref = (struct btrfs_extent_inline_ref *)
3095 ((unsigned long)iter->cur_ptr);
3096 type = btrfs_get_extent_inline_ref_type(eb, iref,
3097 BTRFS_REF_TYPE_BLOCK);
3098 if (type == BTRFS_REF_TYPE_INVALID) {
3099 ret = -EUCLEAN;
3100 goto out;
3101 }
3102 key.type = type;
3103 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3104 } else {
3105 key.type = iter->cur_key.type;
3106 key.offset = iter->cur_key.offset;
3107 }
3108
3109 /*
3110 * Parent node found and matches current inline ref, no need to
3111 * rebuild this node for this inline ref
3112 */
3113 if (exist &&
3114 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3115 exist->owner == key.offset) ||
3116 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3117 exist->bytenr == key.offset))) {
3118 exist = NULL;
3119 continue;
3120 }
3121
3122 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3123 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3124 ret = handle_direct_tree_backref(cache, &key, cur);
3125 if (ret < 0)
3126 goto out;
3127 continue;
3128 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3129 ret = -EINVAL;
3130 btrfs_print_v0_err(fs_info);
3131 btrfs_handle_fs_error(fs_info, ret, NULL);
3132 goto out;
3133 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
3134 continue;
3135 }
3136
3137 /*
3138 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
3139 * means the root objectid. We need to search the tree to get
3140 * its parent bytenr.
3141 */
3142 ret = handle_indirect_tree_backref(cache, path, &key, node_key,
3143 cur);
3144 if (ret < 0)
3145 goto out;
3146 }
3147 ret = 0;
3148 cur->checked = 1;
3149 WARN_ON(exist);
3150out:
3151 btrfs_backref_iter_release(iter);
3152 return ret;
3153}
fc997ed0
QW
3154
3155/*
3156 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3157 */
3158int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3159 struct btrfs_backref_node *start)
3160{
3161 struct list_head *useless_node = &cache->useless_node;
3162 struct btrfs_backref_edge *edge;
3163 struct rb_node *rb_node;
3164 LIST_HEAD(pending_edge);
3165
3166 ASSERT(start->checked);
3167
3168 /* Insert this node to cache if it's not COW-only */
3169 if (!start->cowonly) {
3170 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3171 &start->rb_node);
3172 if (rb_node)
3173 btrfs_backref_panic(cache->fs_info, start->bytenr,
3174 -EEXIST);
3175 list_add_tail(&start->lower, &cache->leaves);
3176 }
3177
3178 /*
3179 * Use breadth first search to iterate all related edges.
3180 *
3181 * The starting points are all the edges of this node
3182 */
3183 list_for_each_entry(edge, &start->upper, list[LOWER])
3184 list_add_tail(&edge->list[UPPER], &pending_edge);
3185
3186 while (!list_empty(&pending_edge)) {
3187 struct btrfs_backref_node *upper;
3188 struct btrfs_backref_node *lower;
fc997ed0
QW
3189
3190 edge = list_first_entry(&pending_edge,
3191 struct btrfs_backref_edge, list[UPPER]);
3192 list_del_init(&edge->list[UPPER]);
3193 upper = edge->node[UPPER];
3194 lower = edge->node[LOWER];
3195
3196 /* Parent is detached, no need to keep any edges */
3197 if (upper->detached) {
3198 list_del(&edge->list[LOWER]);
3199 btrfs_backref_free_edge(cache, edge);
3200
3201 /* Lower node is orphan, queue for cleanup */
3202 if (list_empty(&lower->upper))
3203 list_add(&lower->list, useless_node);
3204 continue;
3205 }
3206
3207 /*
3208 * All new nodes added in current build_backref_tree() haven't
3209 * been linked to the cache rb tree.
3210 * So if we have upper->rb_node populated, this means a cache
3211 * hit. We only need to link the edge, as @upper and all its
3212 * parents have already been linked.
3213 */
3214 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3215 if (upper->lowest) {
3216 list_del_init(&upper->lower);
3217 upper->lowest = 0;
3218 }
3219
3220 list_add_tail(&edge->list[UPPER], &upper->lower);
3221 continue;
3222 }
3223
3224 /* Sanity check, we shouldn't have any unchecked nodes */
3225 if (!upper->checked) {
3226 ASSERT(0);
3227 return -EUCLEAN;
3228 }
3229
3230 /* Sanity check, COW-only node has non-COW-only parent */
3231 if (start->cowonly != upper->cowonly) {
3232 ASSERT(0);
3233 return -EUCLEAN;
3234 }
3235
3236 /* Only cache non-COW-only (subvolume trees) tree blocks */
3237 if (!upper->cowonly) {
3238 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3239 &upper->rb_node);
3240 if (rb_node) {
3241 btrfs_backref_panic(cache->fs_info,
3242 upper->bytenr, -EEXIST);
3243 return -EUCLEAN;
3244 }
3245 }
3246
3247 list_add_tail(&edge->list[UPPER], &upper->lower);
3248
3249 /*
3250 * Also queue all the parent edges of this uncached node
3251 * to finish the upper linkage
3252 */
3253 list_for_each_entry(edge, &upper->upper, list[LOWER])
3254 list_add_tail(&edge->list[UPPER], &pending_edge);
3255 }
3256 return 0;
3257}
1b23ea18
QW
3258
3259void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3260 struct btrfs_backref_node *node)
3261{
3262 struct btrfs_backref_node *lower;
3263 struct btrfs_backref_node *upper;
3264 struct btrfs_backref_edge *edge;
3265
3266 while (!list_empty(&cache->useless_node)) {
3267 lower = list_first_entry(&cache->useless_node,
3268 struct btrfs_backref_node, list);
3269 list_del_init(&lower->list);
3270 }
3271 while (!list_empty(&cache->pending_edge)) {
3272 edge = list_first_entry(&cache->pending_edge,
3273 struct btrfs_backref_edge, list[UPPER]);
3274 list_del(&edge->list[UPPER]);
3275 list_del(&edge->list[LOWER]);
3276 lower = edge->node[LOWER];
3277 upper = edge->node[UPPER];
3278 btrfs_backref_free_edge(cache, edge);
3279
3280 /*
3281 * Lower is no longer linked to any upper backref nodes and
3282 * isn't in the cache, we can free it ourselves.
3283 */
3284 if (list_empty(&lower->upper) &&
3285 RB_EMPTY_NODE(&lower->rb_node))
3286 list_add(&lower->list, &cache->useless_node);
3287
3288 if (!RB_EMPTY_NODE(&upper->rb_node))
3289 continue;
3290
3291 /* Add this guy's upper edges to the list to process */
3292 list_for_each_entry(edge, &upper->upper, list[LOWER])
3293 list_add_tail(&edge->list[UPPER],
3294 &cache->pending_edge);
3295 if (list_empty(&upper->upper))
3296 list_add(&upper->list, &cache->useless_node);
3297 }
3298
3299 while (!list_empty(&cache->useless_node)) {
3300 lower = list_first_entry(&cache->useless_node,
3301 struct btrfs_backref_node, list);
3302 list_del_init(&lower->list);
3303 if (lower == node)
3304 node = NULL;
49ecc679 3305 btrfs_backref_drop_node(cache, lower);
1b23ea18
QW
3306 }
3307
3308 btrfs_backref_cleanup_node(cache, node);
3309 ASSERT(list_empty(&cache->useless_node) &&
3310 list_empty(&cache->pending_edge));
3311}