Btrfs: remove some BUG_ONs() when walking backref tree
[linux-2.6-block.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
425d17a2 19#include <linux/vmalloc.h>
a542ad1b
JS
20#include "ctree.h"
21#include "disk-io.h"
22#include "backref.h"
8da6d581
JS
23#include "ulist.h"
24#include "transaction.h"
25#include "delayed-ref.h"
b916a59a 26#include "locking.h"
a542ad1b 27
976b1908
JS
28struct extent_inode_elem {
29 u64 inum;
30 u64 offset;
31 struct extent_inode_elem *next;
32};
33
34static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 struct btrfs_file_extent_item *fi,
36 u64 extent_item_pos,
37 struct extent_inode_elem **eie)
38{
39 u64 data_offset;
40 u64 data_len;
41 struct extent_inode_elem *e;
42
43 data_offset = btrfs_file_extent_offset(eb, fi);
44 data_len = btrfs_file_extent_num_bytes(eb, fi);
45
46 if (extent_item_pos < data_offset ||
47 extent_item_pos >= data_offset + data_len)
48 return 1;
49
50 e = kmalloc(sizeof(*e), GFP_NOFS);
51 if (!e)
52 return -ENOMEM;
53
54 e->next = *eie;
55 e->inum = key->objectid;
56 e->offset = key->offset + (extent_item_pos - data_offset);
57 *eie = e;
58
59 return 0;
60}
61
62static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
63 u64 extent_item_pos,
64 struct extent_inode_elem **eie)
65{
66 u64 disk_byte;
67 struct btrfs_key key;
68 struct btrfs_file_extent_item *fi;
69 int slot;
70 int nritems;
71 int extent_type;
72 int ret;
73
74 /*
75 * from the shared data ref, we only have the leaf but we need
76 * the key. thus, we must look into all items and see that we
77 * find one (some) with a reference to our extent item.
78 */
79 nritems = btrfs_header_nritems(eb);
80 for (slot = 0; slot < nritems; ++slot) {
81 btrfs_item_key_to_cpu(eb, &key, slot);
82 if (key.type != BTRFS_EXTENT_DATA_KEY)
83 continue;
84 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
85 extent_type = btrfs_file_extent_type(eb, fi);
86 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
87 continue;
88 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
89 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
90 if (disk_byte != wanted_disk_byte)
91 continue;
92
93 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
94 if (ret < 0)
95 return ret;
96 }
97
98 return 0;
99}
100
8da6d581
JS
101/*
102 * this structure records all encountered refs on the way up to the root
103 */
104struct __prelim_ref {
105 struct list_head list;
106 u64 root_id;
d5c88b73 107 struct btrfs_key key_for_search;
8da6d581
JS
108 int level;
109 int count;
3301958b 110 struct extent_inode_elem *inode_list;
8da6d581
JS
111 u64 parent;
112 u64 wanted_disk_byte;
113};
114
d5c88b73
JS
115/*
116 * the rules for all callers of this function are:
117 * - obtaining the parent is the goal
118 * - if you add a key, you must know that it is a correct key
119 * - if you cannot add the parent or a correct key, then we will look into the
120 * block later to set a correct key
121 *
122 * delayed refs
123 * ============
124 * backref type | shared | indirect | shared | indirect
125 * information | tree | tree | data | data
126 * --------------------+--------+----------+--------+----------
127 * parent logical | y | - | - | -
128 * key to resolve | - | y | y | y
129 * tree block logical | - | - | - | -
130 * root for resolving | y | y | y | y
131 *
132 * - column 1: we've the parent -> done
133 * - column 2, 3, 4: we use the key to find the parent
134 *
135 * on disk refs (inline or keyed)
136 * ==============================
137 * backref type | shared | indirect | shared | indirect
138 * information | tree | tree | data | data
139 * --------------------+--------+----------+--------+----------
140 * parent logical | y | - | y | -
141 * key to resolve | - | - | - | y
142 * tree block logical | y | y | y | y
143 * root for resolving | - | y | y | y
144 *
145 * - column 1, 3: we've the parent -> done
146 * - column 2: we take the first key from the block to find the parent
147 * (see __add_missing_keys)
148 * - column 4: we use the key to find the parent
149 *
150 * additional information that's available but not required to find the parent
151 * block might help in merging entries to gain some speed.
152 */
153
8da6d581 154static int __add_prelim_ref(struct list_head *head, u64 root_id,
d5c88b73
JS
155 struct btrfs_key *key, int level,
156 u64 parent, u64 wanted_disk_byte, int count)
8da6d581
JS
157{
158 struct __prelim_ref *ref;
159
160 /* in case we're adding delayed refs, we're holding the refs spinlock */
161 ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
162 if (!ref)
163 return -ENOMEM;
164
165 ref->root_id = root_id;
166 if (key)
d5c88b73 167 ref->key_for_search = *key;
8da6d581 168 else
d5c88b73 169 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 170
3301958b 171 ref->inode_list = NULL;
8da6d581
JS
172 ref->level = level;
173 ref->count = count;
174 ref->parent = parent;
175 ref->wanted_disk_byte = wanted_disk_byte;
176 list_add_tail(&ref->list, head);
177
178 return 0;
179}
180
181static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
976b1908 182 struct ulist *parents, int level,
69bca40d 183 struct btrfs_key *key_for_search, u64 time_seq,
3d7806ec 184 u64 wanted_disk_byte,
976b1908 185 const u64 *extent_item_pos)
8da6d581 186{
69bca40d
AB
187 int ret = 0;
188 int slot;
189 struct extent_buffer *eb;
190 struct btrfs_key key;
8da6d581 191 struct btrfs_file_extent_item *fi;
3301958b 192 struct extent_inode_elem *eie = NULL;
8da6d581
JS
193 u64 disk_byte;
194
69bca40d
AB
195 if (level != 0) {
196 eb = path->nodes[level];
197 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
198 if (ret < 0)
199 return ret;
8da6d581 200 return 0;
69bca40d 201 }
8da6d581
JS
202
203 /*
69bca40d
AB
204 * We normally enter this function with the path already pointing to
205 * the first item to check. But sometimes, we may enter it with
206 * slot==nritems. In that case, go to the next leaf before we continue.
8da6d581 207 */
69bca40d 208 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
3d7806ec 209 ret = btrfs_next_old_leaf(root, path, time_seq);
8da6d581 210
69bca40d 211 while (!ret) {
8da6d581 212 eb = path->nodes[0];
69bca40d
AB
213 slot = path->slots[0];
214
215 btrfs_item_key_to_cpu(eb, &key, slot);
216
217 if (key.objectid != key_for_search->objectid ||
218 key.type != BTRFS_EXTENT_DATA_KEY)
219 break;
220
221 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
222 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
223
224 if (disk_byte == wanted_disk_byte) {
225 eie = NULL;
226 if (extent_item_pos) {
227 ret = check_extent_in_eb(&key, eb, fi,
228 *extent_item_pos,
229 &eie);
230 if (ret < 0)
231 break;
232 }
233 if (!ret) {
234 ret = ulist_add(parents, eb->start,
995e01b7 235 (uintptr_t)eie, GFP_NOFS);
69bca40d
AB
236 if (ret < 0)
237 break;
238 if (!extent_item_pos) {
239 ret = btrfs_next_old_leaf(root, path,
240 time_seq);
241 continue;
242 }
243 }
8da6d581 244 }
69bca40d 245 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
246 }
247
69bca40d
AB
248 if (ret > 0)
249 ret = 0;
250 return ret;
8da6d581
JS
251}
252
253/*
254 * resolve an indirect backref in the form (root_id, key, level)
255 * to a logical address
256 */
257static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
7a3ae2f8 258 int search_commit_root,
8445f61c 259 u64 time_seq,
8da6d581 260 struct __prelim_ref *ref,
976b1908
JS
261 struct ulist *parents,
262 const u64 *extent_item_pos)
8da6d581
JS
263{
264 struct btrfs_path *path;
265 struct btrfs_root *root;
266 struct btrfs_key root_key;
8da6d581
JS
267 struct extent_buffer *eb;
268 int ret = 0;
269 int root_level;
270 int level = ref->level;
271
272 path = btrfs_alloc_path();
273 if (!path)
274 return -ENOMEM;
7a3ae2f8 275 path->search_commit_root = !!search_commit_root;
8da6d581
JS
276
277 root_key.objectid = ref->root_id;
278 root_key.type = BTRFS_ROOT_ITEM_KEY;
279 root_key.offset = (u64)-1;
280 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
281 if (IS_ERR(root)) {
282 ret = PTR_ERR(root);
283 goto out;
284 }
285
5b6602e7 286 root_level = btrfs_old_root_level(root, time_seq);
8da6d581
JS
287
288 if (root_level + 1 == level)
289 goto out;
290
291 path->lowest_level = level;
8445f61c 292 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
8da6d581
JS
293 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
294 "%d for key (%llu %u %llu)\n",
295 (unsigned long long)ref->root_id, level, ref->count, ret,
d5c88b73
JS
296 (unsigned long long)ref->key_for_search.objectid,
297 ref->key_for_search.type,
298 (unsigned long long)ref->key_for_search.offset);
8da6d581
JS
299 if (ret < 0)
300 goto out;
301
302 eb = path->nodes[level];
9345457f
JS
303 while (!eb) {
304 if (!level) {
305 WARN_ON(1);
306 ret = 1;
307 goto out;
308 }
309 level--;
310 eb = path->nodes[level];
8da6d581
JS
311 }
312
69bca40d
AB
313 ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
314 time_seq, ref->wanted_disk_byte,
315 extent_item_pos);
8da6d581
JS
316out:
317 btrfs_free_path(path);
318 return ret;
319}
320
321/*
322 * resolve all indirect backrefs from the list
323 */
324static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
8445f61c 325 int search_commit_root, u64 time_seq,
976b1908
JS
326 struct list_head *head,
327 const u64 *extent_item_pos)
8da6d581
JS
328{
329 int err;
330 int ret = 0;
331 struct __prelim_ref *ref;
332 struct __prelim_ref *ref_safe;
333 struct __prelim_ref *new_ref;
334 struct ulist *parents;
335 struct ulist_node *node;
cd1b413c 336 struct ulist_iterator uiter;
8da6d581
JS
337
338 parents = ulist_alloc(GFP_NOFS);
339 if (!parents)
340 return -ENOMEM;
341
342 /*
343 * _safe allows us to insert directly after the current item without
344 * iterating over the newly inserted items.
345 * we're also allowed to re-assign ref during iteration.
346 */
347 list_for_each_entry_safe(ref, ref_safe, head, list) {
348 if (ref->parent) /* already direct */
349 continue;
350 if (ref->count == 0)
351 continue;
7a3ae2f8 352 err = __resolve_indirect_ref(fs_info, search_commit_root,
8445f61c
JS
353 time_seq, ref, parents,
354 extent_item_pos);
ca60ebfa 355 if (err)
8da6d581 356 continue;
8da6d581
JS
357
358 /* we put the first parent into the ref at hand */
cd1b413c
JS
359 ULIST_ITER_INIT(&uiter);
360 node = ulist_next(parents, &uiter);
8da6d581 361 ref->parent = node ? node->val : 0;
995e01b7
JS
362 ref->inode_list = node ?
363 (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
8da6d581
JS
364
365 /* additional parents require new refs being added here */
cd1b413c 366 while ((node = ulist_next(parents, &uiter))) {
8da6d581
JS
367 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
368 if (!new_ref) {
369 ret = -ENOMEM;
370 break;
371 }
372 memcpy(new_ref, ref, sizeof(*ref));
373 new_ref->parent = node->val;
995e01b7
JS
374 new_ref->inode_list = (struct extent_inode_elem *)
375 (uintptr_t)node->aux;
8da6d581
JS
376 list_add(&new_ref->list, &ref->list);
377 }
378 ulist_reinit(parents);
379 }
380
381 ulist_free(parents);
382 return ret;
383}
384
d5c88b73
JS
385static inline int ref_for_same_block(struct __prelim_ref *ref1,
386 struct __prelim_ref *ref2)
387{
388 if (ref1->level != ref2->level)
389 return 0;
390 if (ref1->root_id != ref2->root_id)
391 return 0;
392 if (ref1->key_for_search.type != ref2->key_for_search.type)
393 return 0;
394 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
395 return 0;
396 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
397 return 0;
398 if (ref1->parent != ref2->parent)
399 return 0;
400
401 return 1;
402}
403
404/*
405 * read tree blocks and add keys where required.
406 */
407static int __add_missing_keys(struct btrfs_fs_info *fs_info,
408 struct list_head *head)
409{
410 struct list_head *pos;
411 struct extent_buffer *eb;
412
413 list_for_each(pos, head) {
414 struct __prelim_ref *ref;
415 ref = list_entry(pos, struct __prelim_ref, list);
416
417 if (ref->parent)
418 continue;
419 if (ref->key_for_search.type)
420 continue;
421 BUG_ON(!ref->wanted_disk_byte);
422 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
423 fs_info->tree_root->leafsize, 0);
424 BUG_ON(!eb);
425 btrfs_tree_read_lock(eb);
426 if (btrfs_header_level(eb) == 0)
427 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
428 else
429 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
430 btrfs_tree_read_unlock(eb);
431 free_extent_buffer(eb);
432 }
433 return 0;
434}
435
8da6d581
JS
436/*
437 * merge two lists of backrefs and adjust counts accordingly
438 *
439 * mode = 1: merge identical keys, if key is set
d5c88b73
JS
440 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
441 * additionally, we could even add a key range for the blocks we
442 * looked into to merge even more (-> replace unresolved refs by those
443 * having a parent).
8da6d581
JS
444 * mode = 2: merge identical parents
445 */
446static int __merge_refs(struct list_head *head, int mode)
447{
448 struct list_head *pos1;
449
450 list_for_each(pos1, head) {
451 struct list_head *n2;
452 struct list_head *pos2;
453 struct __prelim_ref *ref1;
454
455 ref1 = list_entry(pos1, struct __prelim_ref, list);
456
8da6d581
JS
457 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
458 pos2 = n2, n2 = pos2->next) {
459 struct __prelim_ref *ref2;
d5c88b73 460 struct __prelim_ref *xchg;
3ef5969c 461 struct extent_inode_elem *eie;
8da6d581
JS
462
463 ref2 = list_entry(pos2, struct __prelim_ref, list);
464
465 if (mode == 1) {
d5c88b73 466 if (!ref_for_same_block(ref1, ref2))
8da6d581 467 continue;
d5c88b73
JS
468 if (!ref1->parent && ref2->parent) {
469 xchg = ref1;
470 ref1 = ref2;
471 ref2 = xchg;
472 }
8da6d581
JS
473 } else {
474 if (ref1->parent != ref2->parent)
475 continue;
8da6d581 476 }
3ef5969c
AB
477
478 eie = ref1->inode_list;
479 while (eie && eie->next)
480 eie = eie->next;
481 if (eie)
482 eie->next = ref2->inode_list;
483 else
484 ref1->inode_list = ref2->inode_list;
485 ref1->count += ref2->count;
486
8da6d581
JS
487 list_del(&ref2->list);
488 kfree(ref2);
489 }
490
491 }
492 return 0;
493}
494
495/*
496 * add all currently queued delayed refs from this head whose seq nr is
497 * smaller or equal that seq to the list
498 */
499static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
8da6d581
JS
500 struct list_head *prefs)
501{
502 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
503 struct rb_node *n = &head->node.rb_node;
d5c88b73
JS
504 struct btrfs_key key;
505 struct btrfs_key op_key = {0};
8da6d581 506 int sgn;
b1375d64 507 int ret = 0;
8da6d581
JS
508
509 if (extent_op && extent_op->update_key)
d5c88b73 510 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
8da6d581
JS
511
512 while ((n = rb_prev(n))) {
513 struct btrfs_delayed_ref_node *node;
514 node = rb_entry(n, struct btrfs_delayed_ref_node,
515 rb_node);
516 if (node->bytenr != head->node.bytenr)
517 break;
518 WARN_ON(node->is_head);
519
520 if (node->seq > seq)
521 continue;
522
523 switch (node->action) {
524 case BTRFS_ADD_DELAYED_EXTENT:
525 case BTRFS_UPDATE_DELAYED_HEAD:
526 WARN_ON(1);
527 continue;
528 case BTRFS_ADD_DELAYED_REF:
529 sgn = 1;
530 break;
531 case BTRFS_DROP_DELAYED_REF:
532 sgn = -1;
533 break;
534 default:
535 BUG_ON(1);
536 }
537 switch (node->type) {
538 case BTRFS_TREE_BLOCK_REF_KEY: {
539 struct btrfs_delayed_tree_ref *ref;
540
541 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 542 ret = __add_prelim_ref(prefs, ref->root, &op_key,
8da6d581
JS
543 ref->level + 1, 0, node->bytenr,
544 node->ref_mod * sgn);
545 break;
546 }
547 case BTRFS_SHARED_BLOCK_REF_KEY: {
548 struct btrfs_delayed_tree_ref *ref;
549
550 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 551 ret = __add_prelim_ref(prefs, ref->root, NULL,
8da6d581
JS
552 ref->level + 1, ref->parent,
553 node->bytenr,
554 node->ref_mod * sgn);
555 break;
556 }
557 case BTRFS_EXTENT_DATA_REF_KEY: {
558 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
559 ref = btrfs_delayed_node_to_data_ref(node);
560
561 key.objectid = ref->objectid;
562 key.type = BTRFS_EXTENT_DATA_KEY;
563 key.offset = ref->offset;
564 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
565 node->bytenr,
566 node->ref_mod * sgn);
567 break;
568 }
569 case BTRFS_SHARED_DATA_REF_KEY: {
570 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
571
572 ref = btrfs_delayed_node_to_data_ref(node);
573
574 key.objectid = ref->objectid;
575 key.type = BTRFS_EXTENT_DATA_KEY;
576 key.offset = ref->offset;
577 ret = __add_prelim_ref(prefs, ref->root, &key, 0,
578 ref->parent, node->bytenr,
579 node->ref_mod * sgn);
580 break;
581 }
582 default:
583 WARN_ON(1);
584 }
1149ab6b
WS
585 if (ret)
586 return ret;
8da6d581
JS
587 }
588
589 return 0;
590}
591
592/*
593 * add all inline backrefs for bytenr to the list
594 */
595static int __add_inline_refs(struct btrfs_fs_info *fs_info,
596 struct btrfs_path *path, u64 bytenr,
d5c88b73 597 int *info_level, struct list_head *prefs)
8da6d581 598{
b1375d64 599 int ret = 0;
8da6d581
JS
600 int slot;
601 struct extent_buffer *leaf;
602 struct btrfs_key key;
603 unsigned long ptr;
604 unsigned long end;
605 struct btrfs_extent_item *ei;
606 u64 flags;
607 u64 item_size;
608
609 /*
610 * enumerate all inline refs
611 */
612 leaf = path->nodes[0];
dadcaf78 613 slot = path->slots[0];
8da6d581
JS
614
615 item_size = btrfs_item_size_nr(leaf, slot);
616 BUG_ON(item_size < sizeof(*ei));
617
618 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
619 flags = btrfs_extent_flags(leaf, ei);
620
621 ptr = (unsigned long)(ei + 1);
622 end = (unsigned long)ei + item_size;
623
624 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
625 struct btrfs_tree_block_info *info;
8da6d581
JS
626
627 info = (struct btrfs_tree_block_info *)ptr;
628 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
629 ptr += sizeof(struct btrfs_tree_block_info);
630 BUG_ON(ptr > end);
631 } else {
632 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
633 }
634
635 while (ptr < end) {
636 struct btrfs_extent_inline_ref *iref;
637 u64 offset;
638 int type;
639
640 iref = (struct btrfs_extent_inline_ref *)ptr;
641 type = btrfs_extent_inline_ref_type(leaf, iref);
642 offset = btrfs_extent_inline_ref_offset(leaf, iref);
643
644 switch (type) {
645 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 646 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581
JS
647 *info_level + 1, offset,
648 bytenr, 1);
649 break;
650 case BTRFS_SHARED_DATA_REF_KEY: {
651 struct btrfs_shared_data_ref *sdref;
652 int count;
653
654 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
655 count = btrfs_shared_data_ref_count(leaf, sdref);
656 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
657 bytenr, count);
658 break;
659 }
660 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
661 ret = __add_prelim_ref(prefs, offset, NULL,
662 *info_level + 1, 0,
663 bytenr, 1);
8da6d581
JS
664 break;
665 case BTRFS_EXTENT_DATA_REF_KEY: {
666 struct btrfs_extent_data_ref *dref;
667 int count;
668 u64 root;
669
670 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
671 count = btrfs_extent_data_ref_count(leaf, dref);
672 key.objectid = btrfs_extent_data_ref_objectid(leaf,
673 dref);
674 key.type = BTRFS_EXTENT_DATA_KEY;
675 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
676 root = btrfs_extent_data_ref_root(leaf, dref);
d5c88b73
JS
677 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
678 bytenr, count);
8da6d581
JS
679 break;
680 }
681 default:
682 WARN_ON(1);
683 }
1149ab6b
WS
684 if (ret)
685 return ret;
8da6d581
JS
686 ptr += btrfs_extent_inline_ref_size(type);
687 }
688
689 return 0;
690}
691
692/*
693 * add all non-inline backrefs for bytenr to the list
694 */
695static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
696 struct btrfs_path *path, u64 bytenr,
d5c88b73 697 int info_level, struct list_head *prefs)
8da6d581
JS
698{
699 struct btrfs_root *extent_root = fs_info->extent_root;
700 int ret;
701 int slot;
702 struct extent_buffer *leaf;
703 struct btrfs_key key;
704
705 while (1) {
706 ret = btrfs_next_item(extent_root, path);
707 if (ret < 0)
708 break;
709 if (ret) {
710 ret = 0;
711 break;
712 }
713
714 slot = path->slots[0];
715 leaf = path->nodes[0];
716 btrfs_item_key_to_cpu(leaf, &key, slot);
717
718 if (key.objectid != bytenr)
719 break;
720 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
721 continue;
722 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
723 break;
724
725 switch (key.type) {
726 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 727 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581
JS
728 info_level + 1, key.offset,
729 bytenr, 1);
730 break;
731 case BTRFS_SHARED_DATA_REF_KEY: {
732 struct btrfs_shared_data_ref *sdref;
733 int count;
734
735 sdref = btrfs_item_ptr(leaf, slot,
736 struct btrfs_shared_data_ref);
737 count = btrfs_shared_data_ref_count(leaf, sdref);
738 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
739 bytenr, count);
740 break;
741 }
742 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
743 ret = __add_prelim_ref(prefs, key.offset, NULL,
744 info_level + 1, 0,
745 bytenr, 1);
8da6d581
JS
746 break;
747 case BTRFS_EXTENT_DATA_REF_KEY: {
748 struct btrfs_extent_data_ref *dref;
749 int count;
750 u64 root;
751
752 dref = btrfs_item_ptr(leaf, slot,
753 struct btrfs_extent_data_ref);
754 count = btrfs_extent_data_ref_count(leaf, dref);
755 key.objectid = btrfs_extent_data_ref_objectid(leaf,
756 dref);
757 key.type = BTRFS_EXTENT_DATA_KEY;
758 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
759 root = btrfs_extent_data_ref_root(leaf, dref);
760 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
d5c88b73 761 bytenr, count);
8da6d581
JS
762 break;
763 }
764 default:
765 WARN_ON(1);
766 }
1149ab6b
WS
767 if (ret)
768 return ret;
769
8da6d581
JS
770 }
771
772 return ret;
773}
774
775/*
776 * this adds all existing backrefs (inline backrefs, backrefs and delayed
777 * refs) for the given bytenr to the refs list, merges duplicates and resolves
778 * indirect refs to their parent bytenr.
779 * When roots are found, they're added to the roots list
780 *
781 * FIXME some caching might speed things up
782 */
783static int find_parent_nodes(struct btrfs_trans_handle *trans,
784 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c
JS
785 u64 time_seq, struct ulist *refs,
786 struct ulist *roots, const u64 *extent_item_pos)
8da6d581
JS
787{
788 struct btrfs_key key;
789 struct btrfs_path *path;
8da6d581 790 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 791 struct btrfs_delayed_ref_head *head;
8da6d581
JS
792 int info_level = 0;
793 int ret;
7a3ae2f8 794 int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
8da6d581
JS
795 struct list_head prefs_delayed;
796 struct list_head prefs;
797 struct __prelim_ref *ref;
798
799 INIT_LIST_HEAD(&prefs);
800 INIT_LIST_HEAD(&prefs_delayed);
801
802 key.objectid = bytenr;
803 key.type = BTRFS_EXTENT_ITEM_KEY;
804 key.offset = (u64)-1;
805
806 path = btrfs_alloc_path();
807 if (!path)
808 return -ENOMEM;
7a3ae2f8 809 path->search_commit_root = !!search_commit_root;
8da6d581
JS
810
811 /*
812 * grab both a lock on the path and a lock on the delayed ref head.
813 * We need both to get a consistent picture of how the refs look
814 * at a specified point in time
815 */
816again:
d3b01064
LZ
817 head = NULL;
818
8da6d581
JS
819 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
820 if (ret < 0)
821 goto out;
822 BUG_ON(ret == 0);
823
7a3ae2f8
JS
824 if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
825 /*
826 * look if there are updates for this ref queued and lock the
827 * head
828 */
829 delayed_refs = &trans->transaction->delayed_refs;
830 spin_lock(&delayed_refs->lock);
831 head = btrfs_find_delayed_ref_head(trans, bytenr);
832 if (head) {
833 if (!mutex_trylock(&head->mutex)) {
834 atomic_inc(&head->node.refs);
835 spin_unlock(&delayed_refs->lock);
836
837 btrfs_release_path(path);
838
839 /*
840 * Mutex was contended, block until it's
841 * released and try again
842 */
843 mutex_lock(&head->mutex);
844 mutex_unlock(&head->mutex);
845 btrfs_put_delayed_ref(&head->node);
846 goto again;
847 }
097b8a7c 848 ret = __add_delayed_refs(head, time_seq,
8445f61c 849 &prefs_delayed);
155725c9 850 mutex_unlock(&head->mutex);
7a3ae2f8
JS
851 if (ret) {
852 spin_unlock(&delayed_refs->lock);
853 goto out;
854 }
d3b01064 855 }
7a3ae2f8 856 spin_unlock(&delayed_refs->lock);
8da6d581 857 }
8da6d581
JS
858
859 if (path->slots[0]) {
860 struct extent_buffer *leaf;
861 int slot;
862
dadcaf78 863 path->slots[0]--;
8da6d581 864 leaf = path->nodes[0];
dadcaf78 865 slot = path->slots[0];
8da6d581
JS
866 btrfs_item_key_to_cpu(leaf, &key, slot);
867 if (key.objectid == bytenr &&
868 key.type == BTRFS_EXTENT_ITEM_KEY) {
869 ret = __add_inline_refs(fs_info, path, bytenr,
d5c88b73 870 &info_level, &prefs);
8da6d581
JS
871 if (ret)
872 goto out;
d5c88b73 873 ret = __add_keyed_refs(fs_info, path, bytenr,
8da6d581
JS
874 info_level, &prefs);
875 if (ret)
876 goto out;
877 }
878 }
879 btrfs_release_path(path);
880
8da6d581
JS
881 list_splice_init(&prefs_delayed, &prefs);
882
d5c88b73
JS
883 ret = __add_missing_keys(fs_info, &prefs);
884 if (ret)
885 goto out;
886
8da6d581
JS
887 ret = __merge_refs(&prefs, 1);
888 if (ret)
889 goto out;
890
8445f61c
JS
891 ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
892 &prefs, extent_item_pos);
8da6d581
JS
893 if (ret)
894 goto out;
895
896 ret = __merge_refs(&prefs, 2);
897 if (ret)
898 goto out;
899
900 while (!list_empty(&prefs)) {
901 ref = list_first_entry(&prefs, struct __prelim_ref, list);
902 list_del(&ref->list);
6c1500f2 903 WARN_ON(ref->count < 0);
8da6d581
JS
904 if (ref->count && ref->root_id && ref->parent == 0) {
905 /* no parent == root of tree */
906 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
907 if (ret < 0)
908 goto out;
8da6d581
JS
909 }
910 if (ref->count && ref->parent) {
976b1908 911 struct extent_inode_elem *eie = NULL;
3301958b 912 if (extent_item_pos && !ref->inode_list) {
976b1908
JS
913 u32 bsz;
914 struct extent_buffer *eb;
915 bsz = btrfs_level_size(fs_info->extent_root,
916 info_level);
917 eb = read_tree_block(fs_info->extent_root,
918 ref->parent, bsz, 0);
919 BUG_ON(!eb);
920 ret = find_extent_in_eb(eb, bytenr,
921 *extent_item_pos, &eie);
3301958b 922 ref->inode_list = eie;
976b1908
JS
923 free_extent_buffer(eb);
924 }
3301958b 925 ret = ulist_add_merge(refs, ref->parent,
995e01b7 926 (uintptr_t)ref->inode_list,
34d73f54 927 (u64 *)&eie, GFP_NOFS);
f1723939
WS
928 if (ret < 0)
929 goto out;
3301958b
JS
930 if (!ret && extent_item_pos) {
931 /*
932 * we've recorded that parent, so we must extend
933 * its inode list here
934 */
935 BUG_ON(!eie);
936 while (eie->next)
937 eie = eie->next;
938 eie->next = ref->inode_list;
939 }
8da6d581
JS
940 }
941 kfree(ref);
942 }
943
944out:
8da6d581
JS
945 btrfs_free_path(path);
946 while (!list_empty(&prefs)) {
947 ref = list_first_entry(&prefs, struct __prelim_ref, list);
948 list_del(&ref->list);
949 kfree(ref);
950 }
951 while (!list_empty(&prefs_delayed)) {
952 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
953 list);
954 list_del(&ref->list);
955 kfree(ref);
956 }
957
958 return ret;
959}
960
976b1908
JS
961static void free_leaf_list(struct ulist *blocks)
962{
963 struct ulist_node *node = NULL;
964 struct extent_inode_elem *eie;
965 struct extent_inode_elem *eie_next;
966 struct ulist_iterator uiter;
967
968 ULIST_ITER_INIT(&uiter);
969 while ((node = ulist_next(blocks, &uiter))) {
970 if (!node->aux)
971 continue;
995e01b7 972 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
976b1908
JS
973 for (; eie; eie = eie_next) {
974 eie_next = eie->next;
975 kfree(eie);
976 }
977 node->aux = 0;
978 }
979
980 ulist_free(blocks);
981}
982
8da6d581
JS
983/*
984 * Finds all leafs with a reference to the specified combination of bytenr and
985 * offset. key_list_head will point to a list of corresponding keys (caller must
986 * free each list element). The leafs will be stored in the leafs ulist, which
987 * must be freed with ulist_free.
988 *
989 * returns 0 on success, <0 on error
990 */
991static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
992 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 993 u64 time_seq, struct ulist **leafs,
976b1908 994 const u64 *extent_item_pos)
8da6d581
JS
995{
996 struct ulist *tmp;
997 int ret;
998
999 tmp = ulist_alloc(GFP_NOFS);
1000 if (!tmp)
1001 return -ENOMEM;
1002 *leafs = ulist_alloc(GFP_NOFS);
1003 if (!*leafs) {
1004 ulist_free(tmp);
1005 return -ENOMEM;
1006 }
1007
097b8a7c 1008 ret = find_parent_nodes(trans, fs_info, bytenr,
8445f61c 1009 time_seq, *leafs, tmp, extent_item_pos);
8da6d581
JS
1010 ulist_free(tmp);
1011
1012 if (ret < 0 && ret != -ENOENT) {
976b1908 1013 free_leaf_list(*leafs);
8da6d581
JS
1014 return ret;
1015 }
1016
1017 return 0;
1018}
1019
1020/*
1021 * walk all backrefs for a given extent to find all roots that reference this
1022 * extent. Walking a backref means finding all extents that reference this
1023 * extent and in turn walk the backrefs of those, too. Naturally this is a
1024 * recursive process, but here it is implemented in an iterative fashion: We
1025 * find all referencing extents for the extent in question and put them on a
1026 * list. In turn, we find all referencing extents for those, further appending
1027 * to the list. The way we iterate the list allows adding more elements after
1028 * the current while iterating. The process stops when we reach the end of the
1029 * list. Found roots are added to the roots list.
1030 *
1031 * returns 0 on success, < 0 on error.
1032 */
1033int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1034 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1035 u64 time_seq, struct ulist **roots)
8da6d581
JS
1036{
1037 struct ulist *tmp;
1038 struct ulist_node *node = NULL;
cd1b413c 1039 struct ulist_iterator uiter;
8da6d581
JS
1040 int ret;
1041
1042 tmp = ulist_alloc(GFP_NOFS);
1043 if (!tmp)
1044 return -ENOMEM;
1045 *roots = ulist_alloc(GFP_NOFS);
1046 if (!*roots) {
1047 ulist_free(tmp);
1048 return -ENOMEM;
1049 }
1050
cd1b413c 1051 ULIST_ITER_INIT(&uiter);
8da6d581 1052 while (1) {
097b8a7c 1053 ret = find_parent_nodes(trans, fs_info, bytenr,
8445f61c 1054 time_seq, tmp, *roots, NULL);
8da6d581
JS
1055 if (ret < 0 && ret != -ENOENT) {
1056 ulist_free(tmp);
1057 ulist_free(*roots);
1058 return ret;
1059 }
cd1b413c 1060 node = ulist_next(tmp, &uiter);
8da6d581
JS
1061 if (!node)
1062 break;
1063 bytenr = node->val;
1064 }
1065
1066 ulist_free(tmp);
1067 return 0;
1068}
1069
1070
a542ad1b
JS
1071static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1072 struct btrfs_root *fs_root, struct btrfs_path *path,
1073 struct btrfs_key *found_key)
1074{
1075 int ret;
1076 struct btrfs_key key;
1077 struct extent_buffer *eb;
1078
1079 key.type = key_type;
1080 key.objectid = inum;
1081 key.offset = ioff;
1082
1083 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1084 if (ret < 0)
1085 return ret;
1086
1087 eb = path->nodes[0];
1088 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1089 ret = btrfs_next_leaf(fs_root, path);
1090 if (ret)
1091 return ret;
1092 eb = path->nodes[0];
1093 }
1094
1095 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1096 if (found_key->type != key.type || found_key->objectid != key.objectid)
1097 return 1;
1098
1099 return 0;
1100}
1101
1102/*
1103 * this makes the path point to (inum INODE_ITEM ioff)
1104 */
1105int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1106 struct btrfs_path *path)
1107{
1108 struct btrfs_key key;
1109 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1110 &key);
1111}
1112
1113static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1114 struct btrfs_path *path,
1115 struct btrfs_key *found_key)
1116{
1117 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1118 found_key);
1119}
1120
f186373f
MF
1121int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1122 u64 start_off, struct btrfs_path *path,
1123 struct btrfs_inode_extref **ret_extref,
1124 u64 *found_off)
1125{
1126 int ret, slot;
1127 struct btrfs_key key;
1128 struct btrfs_key found_key;
1129 struct btrfs_inode_extref *extref;
1130 struct extent_buffer *leaf;
1131 unsigned long ptr;
1132
1133 key.objectid = inode_objectid;
1134 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1135 key.offset = start_off;
1136
1137 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1138 if (ret < 0)
1139 return ret;
1140
1141 while (1) {
1142 leaf = path->nodes[0];
1143 slot = path->slots[0];
1144 if (slot >= btrfs_header_nritems(leaf)) {
1145 /*
1146 * If the item at offset is not found,
1147 * btrfs_search_slot will point us to the slot
1148 * where it should be inserted. In our case
1149 * that will be the slot directly before the
1150 * next INODE_REF_KEY_V2 item. In the case
1151 * that we're pointing to the last slot in a
1152 * leaf, we must move one leaf over.
1153 */
1154 ret = btrfs_next_leaf(root, path);
1155 if (ret) {
1156 if (ret >= 1)
1157 ret = -ENOENT;
1158 break;
1159 }
1160 continue;
1161 }
1162
1163 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1164
1165 /*
1166 * Check that we're still looking at an extended ref key for
1167 * this particular objectid. If we have different
1168 * objectid or type then there are no more to be found
1169 * in the tree and we can exit.
1170 */
1171 ret = -ENOENT;
1172 if (found_key.objectid != inode_objectid)
1173 break;
1174 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1175 break;
1176
1177 ret = 0;
1178 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1179 extref = (struct btrfs_inode_extref *)ptr;
1180 *ret_extref = extref;
1181 if (found_off)
1182 *found_off = found_key.offset;
1183 break;
1184 }
1185
1186 return ret;
1187}
1188
96b5bd77
JS
1189char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1190 u32 name_len, unsigned long name_off,
1191 struct extent_buffer *eb_in, u64 parent,
1192 char *dest, u32 size)
a542ad1b 1193{
a542ad1b
JS
1194 int slot;
1195 u64 next_inum;
1196 int ret;
661bec6b 1197 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1198 struct extent_buffer *eb = eb_in;
1199 struct btrfs_key found_key;
b916a59a 1200 int leave_spinning = path->leave_spinning;
d24bec3a 1201 struct btrfs_inode_ref *iref;
a542ad1b
JS
1202
1203 if (bytes_left >= 0)
1204 dest[bytes_left] = '\0';
1205
b916a59a 1206 path->leave_spinning = 1;
a542ad1b 1207 while (1) {
d24bec3a 1208 bytes_left -= name_len;
a542ad1b
JS
1209 if (bytes_left >= 0)
1210 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1211 name_off, name_len);
b916a59a
JS
1212 if (eb != eb_in) {
1213 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1214 free_extent_buffer(eb);
b916a59a 1215 }
a542ad1b 1216 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
8f24b496
JS
1217 if (ret > 0)
1218 ret = -ENOENT;
a542ad1b
JS
1219 if (ret)
1220 break;
d24bec3a 1221
a542ad1b
JS
1222 next_inum = found_key.offset;
1223
1224 /* regular exit ahead */
1225 if (parent == next_inum)
1226 break;
1227
1228 slot = path->slots[0];
1229 eb = path->nodes[0];
1230 /* make sure we can use eb after releasing the path */
b916a59a 1231 if (eb != eb_in) {
a542ad1b 1232 atomic_inc(&eb->refs);
b916a59a
JS
1233 btrfs_tree_read_lock(eb);
1234 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1235 }
a542ad1b 1236 btrfs_release_path(path);
a542ad1b 1237 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1238
1239 name_len = btrfs_inode_ref_name_len(eb, iref);
1240 name_off = (unsigned long)(iref + 1);
1241
a542ad1b
JS
1242 parent = next_inum;
1243 --bytes_left;
1244 if (bytes_left >= 0)
1245 dest[bytes_left] = '/';
1246 }
1247
1248 btrfs_release_path(path);
b916a59a 1249 path->leave_spinning = leave_spinning;
a542ad1b
JS
1250
1251 if (ret)
1252 return ERR_PTR(ret);
1253
1254 return dest + bytes_left;
1255}
1256
d24bec3a
MF
1257/*
1258 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
1259 * of the path are separated by '/' and the path is guaranteed to be
1260 * 0-terminated. the path is only given within the current file system.
1261 * Therefore, it never starts with a '/'. the caller is responsible to provide
1262 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1263 * the start point of the resulting string is returned. this pointer is within
1264 * dest, normally.
1265 * in case the path buffer would overflow, the pointer is decremented further
1266 * as if output was written to the buffer, though no more output is actually
1267 * generated. that way, the caller can determine how much space would be
1268 * required for the path to fit into the buffer. in that case, the returned
1269 * value will be smaller than dest. callers must check this!
1270 */
1271char *btrfs_iref_to_path(struct btrfs_root *fs_root,
1272 struct btrfs_path *path,
1273 struct btrfs_inode_ref *iref,
1274 struct extent_buffer *eb_in, u64 parent,
1275 char *dest, u32 size)
1276{
96b5bd77
JS
1277 return btrfs_ref_to_path(fs_root, path,
1278 btrfs_inode_ref_name_len(eb_in, iref),
1279 (unsigned long)(iref + 1),
1280 eb_in, parent, dest, size);
d24bec3a
MF
1281}
1282
a542ad1b
JS
1283/*
1284 * this makes the path point to (logical EXTENT_ITEM *)
1285 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1286 * tree blocks and <0 on error.
1287 */
1288int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1289 struct btrfs_path *path, struct btrfs_key *found_key,
1290 u64 *flags_ret)
a542ad1b
JS
1291{
1292 int ret;
1293 u64 flags;
1294 u32 item_size;
1295 struct extent_buffer *eb;
1296 struct btrfs_extent_item *ei;
1297 struct btrfs_key key;
1298
1299 key.type = BTRFS_EXTENT_ITEM_KEY;
1300 key.objectid = logical;
1301 key.offset = (u64)-1;
1302
1303 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1304 if (ret < 0)
1305 return ret;
1306 ret = btrfs_previous_item(fs_info->extent_root, path,
1307 0, BTRFS_EXTENT_ITEM_KEY);
1308 if (ret < 0)
1309 return ret;
1310
1311 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1312 if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1313 found_key->objectid > logical ||
4692cf58
JS
1314 found_key->objectid + found_key->offset <= logical) {
1315 pr_debug("logical %llu is not within any extent\n",
1316 (unsigned long long)logical);
a542ad1b 1317 return -ENOENT;
4692cf58 1318 }
a542ad1b
JS
1319
1320 eb = path->nodes[0];
1321 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1322 BUG_ON(item_size < sizeof(*ei));
1323
1324 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1325 flags = btrfs_extent_flags(eb, ei);
1326
4692cf58
JS
1327 pr_debug("logical %llu is at position %llu within the extent (%llu "
1328 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1329 (unsigned long long)logical,
1330 (unsigned long long)(logical - found_key->objectid),
1331 (unsigned long long)found_key->objectid,
1332 (unsigned long long)found_key->offset,
1333 (unsigned long long)flags, item_size);
69917e43
LB
1334
1335 WARN_ON(!flags_ret);
1336 if (flags_ret) {
1337 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1338 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1339 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1340 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1341 else
1342 BUG_ON(1);
1343 return 0;
1344 }
a542ad1b
JS
1345
1346 return -EIO;
1347}
1348
1349/*
1350 * helper function to iterate extent inline refs. ptr must point to a 0 value
1351 * for the first call and may be modified. it is used to track state.
1352 * if more refs exist, 0 is returned and the next call to
1353 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1354 * next ref. after the last ref was processed, 1 is returned.
1355 * returns <0 on error
1356 */
1357static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1358 struct btrfs_extent_item *ei, u32 item_size,
1359 struct btrfs_extent_inline_ref **out_eiref,
1360 int *out_type)
1361{
1362 unsigned long end;
1363 u64 flags;
1364 struct btrfs_tree_block_info *info;
1365
1366 if (!*ptr) {
1367 /* first call */
1368 flags = btrfs_extent_flags(eb, ei);
1369 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1370 info = (struct btrfs_tree_block_info *)(ei + 1);
1371 *out_eiref =
1372 (struct btrfs_extent_inline_ref *)(info + 1);
1373 } else {
1374 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1375 }
1376 *ptr = (unsigned long)*out_eiref;
1377 if ((void *)*ptr >= (void *)ei + item_size)
1378 return -ENOENT;
1379 }
1380
1381 end = (unsigned long)ei + item_size;
1382 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1383 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1384
1385 *ptr += btrfs_extent_inline_ref_size(*out_type);
1386 WARN_ON(*ptr > end);
1387 if (*ptr == end)
1388 return 1; /* last */
1389
1390 return 0;
1391}
1392
1393/*
1394 * reads the tree block backref for an extent. tree level and root are returned
1395 * through out_level and out_root. ptr must point to a 0 value for the first
1396 * call and may be modified (see __get_extent_inline_ref comment).
1397 * returns 0 if data was provided, 1 if there was no more data to provide or
1398 * <0 on error.
1399 */
1400int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1401 struct btrfs_extent_item *ei, u32 item_size,
1402 u64 *out_root, u8 *out_level)
1403{
1404 int ret;
1405 int type;
1406 struct btrfs_tree_block_info *info;
1407 struct btrfs_extent_inline_ref *eiref;
1408
1409 if (*ptr == (unsigned long)-1)
1410 return 1;
1411
1412 while (1) {
1413 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1414 &eiref, &type);
1415 if (ret < 0)
1416 return ret;
1417
1418 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1419 type == BTRFS_SHARED_BLOCK_REF_KEY)
1420 break;
1421
1422 if (ret == 1)
1423 return 1;
1424 }
1425
1426 /* we can treat both ref types equally here */
1427 info = (struct btrfs_tree_block_info *)(ei + 1);
1428 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1429 *out_level = btrfs_tree_block_level(eb, info);
1430
1431 if (ret == 1)
1432 *ptr = (unsigned long)-1;
1433
1434 return 0;
1435}
1436
976b1908
JS
1437static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1438 u64 root, u64 extent_item_objectid,
4692cf58 1439 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1440{
976b1908 1441 struct extent_inode_elem *eie;
4692cf58 1442 int ret = 0;
4692cf58 1443
976b1908 1444 for (eie = inode_list; eie; eie = eie->next) {
4692cf58 1445 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
976b1908
JS
1446 "root %llu\n", extent_item_objectid,
1447 eie->inum, eie->offset, root);
1448 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1449 if (ret) {
976b1908
JS
1450 pr_debug("stopping iteration for %llu due to ret=%d\n",
1451 extent_item_objectid, ret);
4692cf58
JS
1452 break;
1453 }
a542ad1b
JS
1454 }
1455
a542ad1b
JS
1456 return ret;
1457}
1458
1459/*
1460 * calls iterate() for every inode that references the extent identified by
4692cf58 1461 * the given parameters.
a542ad1b
JS
1462 * when the iterator function returns a non-zero value, iteration stops.
1463 */
1464int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1465 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1466 int search_commit_root,
a542ad1b
JS
1467 iterate_extent_inodes_t *iterate, void *ctx)
1468{
a542ad1b 1469 int ret;
a542ad1b
JS
1470 struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1471 struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
4692cf58 1472 struct btrfs_trans_handle *trans;
7a3ae2f8
JS
1473 struct ulist *refs = NULL;
1474 struct ulist *roots = NULL;
4692cf58
JS
1475 struct ulist_node *ref_node = NULL;
1476 struct ulist_node *root_node = NULL;
8445f61c 1477 struct seq_list tree_mod_seq_elem = {};
cd1b413c
JS
1478 struct ulist_iterator ref_uiter;
1479 struct ulist_iterator root_uiter;
a542ad1b 1480
4692cf58
JS
1481 pr_debug("resolving all inodes for extent %llu\n",
1482 extent_item_objectid);
a542ad1b 1483
7a3ae2f8
JS
1484 if (search_commit_root) {
1485 trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1486 } else {
1487 trans = btrfs_join_transaction(fs_info->extent_root);
1488 if (IS_ERR(trans))
1489 return PTR_ERR(trans);
8445f61c 1490 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8 1491 }
a542ad1b 1492
4692cf58 1493 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1494 tree_mod_seq_elem.seq, &refs,
8445f61c 1495 &extent_item_pos);
4692cf58
JS
1496 if (ret)
1497 goto out;
a542ad1b 1498
cd1b413c
JS
1499 ULIST_ITER_INIT(&ref_uiter);
1500 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
976b1908 1501 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
097b8a7c 1502 tree_mod_seq_elem.seq, &roots);
4692cf58
JS
1503 if (ret)
1504 break;
cd1b413c
JS
1505 ULIST_ITER_INIT(&root_uiter);
1506 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
976b1908 1507 pr_debug("root %llu references leaf %llu, data list "
34d73f54 1508 "%#llx\n", root_node->val, ref_node->val,
995e01b7
JS
1509 (long long)ref_node->aux);
1510 ret = iterate_leaf_refs((struct extent_inode_elem *)
1511 (uintptr_t)ref_node->aux,
1512 root_node->val,
1513 extent_item_objectid,
1514 iterate, ctx);
4692cf58 1515 }
976b1908 1516 ulist_free(roots);
a542ad1b
JS
1517 }
1518
976b1908 1519 free_leaf_list(refs);
4692cf58 1520out:
7a3ae2f8 1521 if (!search_commit_root) {
8445f61c 1522 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8
JS
1523 btrfs_end_transaction(trans, fs_info->extent_root);
1524 }
1525
a542ad1b
JS
1526 return ret;
1527}
1528
1529int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1530 struct btrfs_path *path,
1531 iterate_extent_inodes_t *iterate, void *ctx)
1532{
1533 int ret;
4692cf58 1534 u64 extent_item_pos;
69917e43 1535 u64 flags = 0;
a542ad1b 1536 struct btrfs_key found_key;
7a3ae2f8 1537 int search_commit_root = path->search_commit_root;
a542ad1b 1538
69917e43 1539 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 1540 btrfs_release_path(path);
a542ad1b
JS
1541 if (ret < 0)
1542 return ret;
69917e43 1543 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 1544 return -EINVAL;
a542ad1b 1545
4692cf58 1546 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1547 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1548 extent_item_pos, search_commit_root,
1549 iterate, ctx);
a542ad1b
JS
1550
1551 return ret;
1552}
1553
d24bec3a
MF
1554typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1555 struct extent_buffer *eb, void *ctx);
1556
1557static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1558 struct btrfs_path *path,
1559 iterate_irefs_t *iterate, void *ctx)
a542ad1b 1560{
aefc1eb1 1561 int ret = 0;
a542ad1b
JS
1562 int slot;
1563 u32 cur;
1564 u32 len;
1565 u32 name_len;
1566 u64 parent = 0;
1567 int found = 0;
1568 struct extent_buffer *eb;
1569 struct btrfs_item *item;
1570 struct btrfs_inode_ref *iref;
1571 struct btrfs_key found_key;
1572
aefc1eb1 1573 while (!ret) {
b916a59a 1574 path->leave_spinning = 1;
a542ad1b 1575 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
d24bec3a 1576 &found_key);
a542ad1b
JS
1577 if (ret < 0)
1578 break;
1579 if (ret) {
1580 ret = found ? 0 : -ENOENT;
1581 break;
1582 }
1583 ++found;
1584
1585 parent = found_key.offset;
1586 slot = path->slots[0];
1587 eb = path->nodes[0];
1588 /* make sure we can use eb after releasing the path */
1589 atomic_inc(&eb->refs);
b916a59a
JS
1590 btrfs_tree_read_lock(eb);
1591 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
1592 btrfs_release_path(path);
1593
1594 item = btrfs_item_nr(eb, slot);
1595 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1596
1597 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1598 name_len = btrfs_inode_ref_name_len(eb, iref);
1599 /* path must be released before calling iterate()! */
4692cf58
JS
1600 pr_debug("following ref at offset %u for inode %llu in "
1601 "tree %llu\n", cur,
1602 (unsigned long long)found_key.objectid,
1603 (unsigned long long)fs_root->objectid);
d24bec3a
MF
1604 ret = iterate(parent, name_len,
1605 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 1606 if (ret)
a542ad1b 1607 break;
a542ad1b
JS
1608 len = sizeof(*iref) + name_len;
1609 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1610 }
b916a59a 1611 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
1612 free_extent_buffer(eb);
1613 }
1614
1615 btrfs_release_path(path);
1616
1617 return ret;
1618}
1619
d24bec3a
MF
1620static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1621 struct btrfs_path *path,
1622 iterate_irefs_t *iterate, void *ctx)
1623{
1624 int ret;
1625 int slot;
1626 u64 offset = 0;
1627 u64 parent;
1628 int found = 0;
1629 struct extent_buffer *eb;
1630 struct btrfs_inode_extref *extref;
1631 struct extent_buffer *leaf;
1632 u32 item_size;
1633 u32 cur_offset;
1634 unsigned long ptr;
1635
1636 while (1) {
1637 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1638 &offset);
1639 if (ret < 0)
1640 break;
1641 if (ret) {
1642 ret = found ? 0 : -ENOENT;
1643 break;
1644 }
1645 ++found;
1646
1647 slot = path->slots[0];
1648 eb = path->nodes[0];
1649 /* make sure we can use eb after releasing the path */
1650 atomic_inc(&eb->refs);
1651
1652 btrfs_tree_read_lock(eb);
1653 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1654 btrfs_release_path(path);
1655
1656 leaf = path->nodes[0];
1657 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1658 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1659 cur_offset = 0;
1660
1661 while (cur_offset < item_size) {
1662 u32 name_len;
1663
1664 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1665 parent = btrfs_inode_extref_parent(eb, extref);
1666 name_len = btrfs_inode_extref_name_len(eb, extref);
1667 ret = iterate(parent, name_len,
1668 (unsigned long)&extref->name, eb, ctx);
1669 if (ret)
1670 break;
1671
1672 cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1673 cur_offset += sizeof(*extref);
1674 }
1675 btrfs_tree_read_unlock_blocking(eb);
1676 free_extent_buffer(eb);
1677
1678 offset++;
1679 }
1680
1681 btrfs_release_path(path);
1682
1683 return ret;
1684}
1685
1686static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1687 struct btrfs_path *path, iterate_irefs_t *iterate,
1688 void *ctx)
1689{
1690 int ret;
1691 int found_refs = 0;
1692
1693 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1694 if (!ret)
1695 ++found_refs;
1696 else if (ret != -ENOENT)
1697 return ret;
1698
1699 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1700 if (ret == -ENOENT && found_refs)
1701 return 0;
1702
1703 return ret;
1704}
1705
a542ad1b
JS
1706/*
1707 * returns 0 if the path could be dumped (probably truncated)
1708 * returns <0 in case of an error
1709 */
d24bec3a
MF
1710static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1711 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
1712{
1713 struct inode_fs_paths *ipath = ctx;
1714 char *fspath;
1715 char *fspath_min;
1716 int i = ipath->fspath->elem_cnt;
1717 const int s_ptr = sizeof(char *);
1718 u32 bytes_left;
1719
1720 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1721 ipath->fspath->bytes_left - s_ptr : 0;
1722
740c3d22 1723 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
1724 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1725 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
1726 if (IS_ERR(fspath))
1727 return PTR_ERR(fspath);
1728
1729 if (fspath > fspath_min) {
745c4d8e 1730 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
1731 ++ipath->fspath->elem_cnt;
1732 ipath->fspath->bytes_left = fspath - fspath_min;
1733 } else {
1734 ++ipath->fspath->elem_missed;
1735 ipath->fspath->bytes_missing += fspath_min - fspath;
1736 ipath->fspath->bytes_left = 0;
1737 }
1738
1739 return 0;
1740}
1741
1742/*
1743 * this dumps all file system paths to the inode into the ipath struct, provided
1744 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 1745 * from ipath->fspath->val[i].
a542ad1b 1746 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 1747 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
a542ad1b
JS
1748 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1749 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1750 * have been needed to return all paths.
1751 */
1752int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1753{
1754 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 1755 inode_to_path, ipath);
a542ad1b
JS
1756}
1757
a542ad1b
JS
1758struct btrfs_data_container *init_data_container(u32 total_bytes)
1759{
1760 struct btrfs_data_container *data;
1761 size_t alloc_bytes;
1762
1763 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
425d17a2 1764 data = vmalloc(alloc_bytes);
a542ad1b
JS
1765 if (!data)
1766 return ERR_PTR(-ENOMEM);
1767
1768 if (total_bytes >= sizeof(*data)) {
1769 data->bytes_left = total_bytes - sizeof(*data);
1770 data->bytes_missing = 0;
1771 } else {
1772 data->bytes_missing = sizeof(*data) - total_bytes;
1773 data->bytes_left = 0;
1774 }
1775
1776 data->elem_cnt = 0;
1777 data->elem_missed = 0;
1778
1779 return data;
1780}
1781
1782/*
1783 * allocates space to return multiple file system paths for an inode.
1784 * total_bytes to allocate are passed, note that space usable for actual path
1785 * information will be total_bytes - sizeof(struct inode_fs_paths).
1786 * the returned pointer must be freed with free_ipath() in the end.
1787 */
1788struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1789 struct btrfs_path *path)
1790{
1791 struct inode_fs_paths *ifp;
1792 struct btrfs_data_container *fspath;
1793
1794 fspath = init_data_container(total_bytes);
1795 if (IS_ERR(fspath))
1796 return (void *)fspath;
1797
1798 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1799 if (!ifp) {
1800 kfree(fspath);
1801 return ERR_PTR(-ENOMEM);
1802 }
1803
1804 ifp->btrfs_path = path;
1805 ifp->fspath = fspath;
1806 ifp->fs_root = fs_root;
1807
1808 return ifp;
1809}
1810
1811void free_ipath(struct inode_fs_paths *ipath)
1812{
4735fb28
JJ
1813 if (!ipath)
1814 return;
425d17a2 1815 vfree(ipath->fspath);
a542ad1b
JS
1816 kfree(ipath);
1817}