Merge tag 'i2c-for-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[linux-block.git] / fs / btrfs / backref.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a542ad1b
JS
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
a542ad1b
JS
4 */
5
f54de068 6#include <linux/mm.h>
afce772e 7#include <linux/rbtree.h>
00142756 8#include <trace/events/btrfs.h>
a542ad1b
JS
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
8da6d581
JS
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
b916a59a 15#include "locking.h"
1b60d2ec 16#include "misc.h"
f3a84ccd 17#include "tree-mod-log.h"
c7f13d42 18#include "fs.h"
07e81dc9 19#include "accessors.h"
a0231804 20#include "extent-tree.h"
67707479 21#include "relocation.h"
27137fac 22#include "tree-checker.h"
a542ad1b 23
877c1476
FM
24/* Just arbitrary numbers so we can be sure one of these happened. */
25#define BACKREF_FOUND_SHARED 6
26#define BACKREF_FOUND_NOT_SHARED 7
dc046b10 27
976b1908
JS
28struct extent_inode_elem {
29 u64 inum;
30 u64 offset;
c7499a64 31 u64 num_bytes;
976b1908
JS
32 struct extent_inode_elem *next;
33};
34
88ffb665
FM
35static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36 const struct btrfs_key *key,
73980bec
JM
37 const struct extent_buffer *eb,
38 const struct btrfs_file_extent_item *fi,
6ce6ba53 39 struct extent_inode_elem **eie)
976b1908 40{
c7499a64 41 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
88ffb665 42 u64 offset = key->offset;
976b1908 43 struct extent_inode_elem *e;
88ffb665
FM
44 const u64 *root_ids;
45 int root_count;
46 bool cached;
976b1908 47
6ce6ba53 48 if (!btrfs_file_extent_compression(eb, fi) &&
8ca15e05
JB
49 !btrfs_file_extent_encryption(eb, fi) &&
50 !btrfs_file_extent_other_encoding(eb, fi)) {
51 u64 data_offset;
976b1908 52
8ca15e05 53 data_offset = btrfs_file_extent_offset(eb, fi);
8ca15e05 54
88ffb665
FM
55 if (ctx->extent_item_pos < data_offset ||
56 ctx->extent_item_pos >= data_offset + data_len)
8ca15e05 57 return 1;
88ffb665 58 offset += ctx->extent_item_pos - data_offset;
8ca15e05 59 }
976b1908 60
88ffb665
FM
61 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
62 goto add_inode_elem;
63
64 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
65 &root_count);
66 if (!cached)
67 goto add_inode_elem;
68
69 for (int i = 0; i < root_count; i++) {
70 int ret;
71
72 ret = ctx->indirect_ref_iterator(key->objectid, offset,
73 data_len, root_ids[i],
74 ctx->user_ctx);
75 if (ret)
76 return ret;
77 }
78
79add_inode_elem:
976b1908
JS
80 e = kmalloc(sizeof(*e), GFP_NOFS);
81 if (!e)
82 return -ENOMEM;
83
84 e->next = *eie;
85 e->inum = key->objectid;
88ffb665 86 e->offset = offset;
c7499a64 87 e->num_bytes = data_len;
976b1908
JS
88 *eie = e;
89
90 return 0;
91}
92
f05c4746
WS
93static void free_inode_elem_list(struct extent_inode_elem *eie)
94{
95 struct extent_inode_elem *eie_next;
96
97 for (; eie; eie = eie_next) {
98 eie_next = eie->next;
99 kfree(eie);
100 }
101}
102
88ffb665
FM
103static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
104 const struct extent_buffer *eb,
6ce6ba53 105 struct extent_inode_elem **eie)
976b1908
JS
106{
107 u64 disk_byte;
108 struct btrfs_key key;
109 struct btrfs_file_extent_item *fi;
110 int slot;
111 int nritems;
112 int extent_type;
113 int ret;
114
115 /*
116 * from the shared data ref, we only have the leaf but we need
117 * the key. thus, we must look into all items and see that we
118 * find one (some) with a reference to our extent item.
119 */
120 nritems = btrfs_header_nritems(eb);
121 for (slot = 0; slot < nritems; ++slot) {
122 btrfs_item_key_to_cpu(eb, &key, slot);
123 if (key.type != BTRFS_EXTENT_DATA_KEY)
124 continue;
125 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
126 extent_type = btrfs_file_extent_type(eb, fi);
127 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
128 continue;
129 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
130 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
88ffb665 131 if (disk_byte != ctx->bytenr)
976b1908
JS
132 continue;
133
88ffb665
FM
134 ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
135 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
976b1908
JS
136 return ret;
137 }
138
139 return 0;
140}
141
86d5f994 142struct preftree {
ecf160b4 143 struct rb_root_cached root;
6c336b21 144 unsigned int count;
86d5f994
EN
145};
146
ecf160b4 147#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
86d5f994
EN
148
149struct preftrees {
150 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
151 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
152 struct preftree indirect_missing_keys;
153};
154
3ec4d323
EN
155/*
156 * Checks for a shared extent during backref search.
157 *
158 * The share_count tracks prelim_refs (direct and indirect) having a
159 * ref->count >0:
160 * - incremented when a ref->count transitions to >0
161 * - decremented when a ref->count transitions to <1
162 */
163struct share_check {
877c1476
FM
164 struct btrfs_backref_share_check_ctx *ctx;
165 struct btrfs_root *root;
3ec4d323 166 u64 inum;
73e339e6 167 u64 data_bytenr;
6976201f 168 u64 data_extent_gen;
73e339e6
FM
169 /*
170 * Counts number of inodes that refer to an extent (different inodes in
171 * the same root or different roots) that we could find. The sharedness
172 * check typically stops once this counter gets greater than 1, so it
173 * may not reflect the total number of inodes.
174 */
3ec4d323 175 int share_count;
73e339e6
FM
176 /*
177 * The number of times we found our inode refers to the data extent we
178 * are determining the sharedness. In other words, how many file extent
179 * items we could find for our inode that point to our target data
180 * extent. The value we get here after finishing the extent sharedness
181 * check may be smaller than reality, but if it ends up being greater
182 * than 1, then we know for sure the inode has multiple file extent
183 * items that point to our inode, and we can safely assume it's useful
184 * to cache the sharedness check result.
185 */
186 int self_ref_count;
4fc7b572 187 bool have_delayed_delete_refs;
3ec4d323
EN
188};
189
190static inline int extent_is_shared(struct share_check *sc)
191{
192 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
193}
194
b9e9a6cb
WS
195static struct kmem_cache *btrfs_prelim_ref_cache;
196
197int __init btrfs_prelim_ref_init(void)
198{
199 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
e0c476b1 200 sizeof(struct prelim_ref),
b9e9a6cb 201 0,
fba4b697 202 SLAB_MEM_SPREAD,
b9e9a6cb
WS
203 NULL);
204 if (!btrfs_prelim_ref_cache)
205 return -ENOMEM;
206 return 0;
207}
208
e67c718b 209void __cold btrfs_prelim_ref_exit(void)
b9e9a6cb 210{
5598e900 211 kmem_cache_destroy(btrfs_prelim_ref_cache);
b9e9a6cb
WS
212}
213
86d5f994
EN
214static void free_pref(struct prelim_ref *ref)
215{
216 kmem_cache_free(btrfs_prelim_ref_cache, ref);
217}
218
219/*
220 * Return 0 when both refs are for the same block (and can be merged).
221 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
222 * indicates a 'higher' block.
223 */
224static int prelim_ref_compare(struct prelim_ref *ref1,
225 struct prelim_ref *ref2)
226{
227 if (ref1->level < ref2->level)
228 return -1;
229 if (ref1->level > ref2->level)
230 return 1;
231 if (ref1->root_id < ref2->root_id)
232 return -1;
233 if (ref1->root_id > ref2->root_id)
234 return 1;
235 if (ref1->key_for_search.type < ref2->key_for_search.type)
236 return -1;
237 if (ref1->key_for_search.type > ref2->key_for_search.type)
238 return 1;
239 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
240 return -1;
241 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
242 return 1;
243 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
244 return -1;
245 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
246 return 1;
247 if (ref1->parent < ref2->parent)
248 return -1;
249 if (ref1->parent > ref2->parent)
250 return 1;
251
252 return 0;
253}
254
ccc8dc75 255static void update_share_count(struct share_check *sc, int oldcount,
73e339e6 256 int newcount, struct prelim_ref *newref)
3ec4d323
EN
257{
258 if ((!sc) || (oldcount == 0 && newcount < 1))
259 return;
260
261 if (oldcount > 0 && newcount < 1)
262 sc->share_count--;
263 else if (oldcount < 1 && newcount > 0)
264 sc->share_count++;
73e339e6 265
877c1476 266 if (newref->root_id == sc->root->root_key.objectid &&
73e339e6
FM
267 newref->wanted_disk_byte == sc->data_bytenr &&
268 newref->key_for_search.objectid == sc->inum)
269 sc->self_ref_count += newref->count;
3ec4d323
EN
270}
271
86d5f994
EN
272/*
273 * Add @newref to the @root rbtree, merging identical refs.
274 *
3ec4d323 275 * Callers should assume that newref has been freed after calling.
86d5f994 276 */
00142756
JM
277static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
278 struct preftree *preftree,
3ec4d323
EN
279 struct prelim_ref *newref,
280 struct share_check *sc)
86d5f994 281{
ecf160b4 282 struct rb_root_cached *root;
86d5f994
EN
283 struct rb_node **p;
284 struct rb_node *parent = NULL;
285 struct prelim_ref *ref;
286 int result;
ecf160b4 287 bool leftmost = true;
86d5f994
EN
288
289 root = &preftree->root;
ecf160b4 290 p = &root->rb_root.rb_node;
86d5f994
EN
291
292 while (*p) {
293 parent = *p;
294 ref = rb_entry(parent, struct prelim_ref, rbnode);
295 result = prelim_ref_compare(ref, newref);
296 if (result < 0) {
297 p = &(*p)->rb_left;
298 } else if (result > 0) {
299 p = &(*p)->rb_right;
ecf160b4 300 leftmost = false;
86d5f994
EN
301 } else {
302 /* Identical refs, merge them and free @newref */
303 struct extent_inode_elem *eie = ref->inode_list;
304
305 while (eie && eie->next)
306 eie = eie->next;
307
308 if (!eie)
309 ref->inode_list = newref->inode_list;
310 else
311 eie->next = newref->inode_list;
00142756
JM
312 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
313 preftree->count);
3ec4d323
EN
314 /*
315 * A delayed ref can have newref->count < 0.
316 * The ref->count is updated to follow any
317 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
318 */
319 update_share_count(sc, ref->count,
73e339e6 320 ref->count + newref->count, newref);
86d5f994
EN
321 ref->count += newref->count;
322 free_pref(newref);
323 return;
324 }
325 }
326
73e339e6 327 update_share_count(sc, 0, newref->count, newref);
6c336b21 328 preftree->count++;
00142756 329 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
86d5f994 330 rb_link_node(&newref->rbnode, parent, p);
ecf160b4 331 rb_insert_color_cached(&newref->rbnode, root, leftmost);
86d5f994
EN
332}
333
334/*
335 * Release the entire tree. We don't care about internal consistency so
336 * just free everything and then reset the tree root.
337 */
338static void prelim_release(struct preftree *preftree)
339{
340 struct prelim_ref *ref, *next_ref;
341
ecf160b4 342 rbtree_postorder_for_each_entry_safe(ref, next_ref,
92876eec
FM
343 &preftree->root.rb_root, rbnode) {
344 free_inode_elem_list(ref->inode_list);
86d5f994 345 free_pref(ref);
92876eec 346 }
86d5f994 347
ecf160b4 348 preftree->root = RB_ROOT_CACHED;
6c336b21 349 preftree->count = 0;
86d5f994
EN
350}
351
d5c88b73
JS
352/*
353 * the rules for all callers of this function are:
354 * - obtaining the parent is the goal
355 * - if you add a key, you must know that it is a correct key
356 * - if you cannot add the parent or a correct key, then we will look into the
357 * block later to set a correct key
358 *
359 * delayed refs
360 * ============
361 * backref type | shared | indirect | shared | indirect
362 * information | tree | tree | data | data
363 * --------------------+--------+----------+--------+----------
364 * parent logical | y | - | - | -
365 * key to resolve | - | y | y | y
366 * tree block logical | - | - | - | -
367 * root for resolving | y | y | y | y
368 *
369 * - column 1: we've the parent -> done
370 * - column 2, 3, 4: we use the key to find the parent
371 *
372 * on disk refs (inline or keyed)
373 * ==============================
374 * backref type | shared | indirect | shared | indirect
375 * information | tree | tree | data | data
376 * --------------------+--------+----------+--------+----------
377 * parent logical | y | - | y | -
378 * key to resolve | - | - | - | y
379 * tree block logical | y | y | y | y
380 * root for resolving | - | y | y | y
381 *
382 * - column 1, 3: we've the parent -> done
383 * - column 2: we take the first key from the block to find the parent
e0c476b1 384 * (see add_missing_keys)
d5c88b73
JS
385 * - column 4: we use the key to find the parent
386 *
387 * additional information that's available but not required to find the parent
388 * block might help in merging entries to gain some speed.
389 */
00142756
JM
390static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
391 struct preftree *preftree, u64 root_id,
e0c476b1 392 const struct btrfs_key *key, int level, u64 parent,
3ec4d323
EN
393 u64 wanted_disk_byte, int count,
394 struct share_check *sc, gfp_t gfp_mask)
8da6d581 395{
e0c476b1 396 struct prelim_ref *ref;
8da6d581 397
48ec4736
LB
398 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
399 return 0;
400
b9e9a6cb 401 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
402 if (!ref)
403 return -ENOMEM;
404
405 ref->root_id = root_id;
7ac8b88e 406 if (key)
d5c88b73 407 ref->key_for_search = *key;
7ac8b88e 408 else
d5c88b73 409 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 410
3301958b 411 ref->inode_list = NULL;
8da6d581
JS
412 ref->level = level;
413 ref->count = count;
414 ref->parent = parent;
415 ref->wanted_disk_byte = wanted_disk_byte;
3ec4d323
EN
416 prelim_ref_insert(fs_info, preftree, ref, sc);
417 return extent_is_shared(sc);
8da6d581
JS
418}
419
86d5f994 420/* direct refs use root == 0, key == NULL */
00142756
JM
421static int add_direct_ref(const struct btrfs_fs_info *fs_info,
422 struct preftrees *preftrees, int level, u64 parent,
3ec4d323
EN
423 u64 wanted_disk_byte, int count,
424 struct share_check *sc, gfp_t gfp_mask)
86d5f994 425{
00142756 426 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
3ec4d323 427 parent, wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
428}
429
430/* indirect refs use parent == 0 */
00142756
JM
431static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
432 struct preftrees *preftrees, u64 root_id,
86d5f994 433 const struct btrfs_key *key, int level,
3ec4d323
EN
434 u64 wanted_disk_byte, int count,
435 struct share_check *sc, gfp_t gfp_mask)
86d5f994
EN
436{
437 struct preftree *tree = &preftrees->indirect;
438
439 if (!key)
440 tree = &preftrees->indirect_missing_keys;
00142756 441 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
3ec4d323 442 wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
443}
444
ed58f2e6 445static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
446{
447 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
448 struct rb_node *parent = NULL;
449 struct prelim_ref *ref = NULL;
9c6c723f 450 struct prelim_ref target = {};
ed58f2e6 451 int result;
452
453 target.parent = bytenr;
454
455 while (*p) {
456 parent = *p;
457 ref = rb_entry(parent, struct prelim_ref, rbnode);
458 result = prelim_ref_compare(ref, &target);
459
460 if (result < 0)
461 p = &(*p)->rb_left;
462 else if (result > 0)
463 p = &(*p)->rb_right;
464 else
465 return 1;
466 }
467 return 0;
468}
469
a2c8d27e
FM
470static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
471 struct btrfs_root *root, struct btrfs_path *path,
ed58f2e6 472 struct ulist *parents,
473 struct preftrees *preftrees, struct prelim_ref *ref,
a2c8d27e 474 int level)
8da6d581 475{
69bca40d
AB
476 int ret = 0;
477 int slot;
478 struct extent_buffer *eb;
479 struct btrfs_key key;
7ef81ac8 480 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 481 struct btrfs_file_extent_item *fi;
ed8c4913 482 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 483 u64 disk_byte;
7ef81ac8
JB
484 u64 wanted_disk_byte = ref->wanted_disk_byte;
485 u64 count = 0;
7ac8b88e 486 u64 data_offset;
560840af 487 u8 type;
8da6d581 488
69bca40d
AB
489 if (level != 0) {
490 eb = path->nodes[level];
491 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
492 if (ret < 0)
493 return ret;
8da6d581 494 return 0;
69bca40d 495 }
8da6d581
JS
496
497 /*
ed58f2e6 498 * 1. We normally enter this function with the path already pointing to
499 * the first item to check. But sometimes, we may enter it with
500 * slot == nritems.
501 * 2. We are searching for normal backref but bytenr of this leaf
502 * matches shared data backref
cfc0eed0 503 * 3. The leaf owner is not equal to the root we are searching
504 *
ed58f2e6 505 * For these cases, go to the next leaf before we continue.
8da6d581 506 */
ed58f2e6 507 eb = path->nodes[0];
508 if (path->slots[0] >= btrfs_header_nritems(eb) ||
cfc0eed0 509 is_shared_data_backref(preftrees, eb->start) ||
510 ref->root_id != btrfs_header_owner(eb)) {
a2c8d27e 511 if (ctx->time_seq == BTRFS_SEQ_LAST)
21633fc6
QW
512 ret = btrfs_next_leaf(root, path);
513 else
a2c8d27e 514 ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
21633fc6 515 }
8da6d581 516
b25b0b87 517 while (!ret && count < ref->count) {
8da6d581 518 eb = path->nodes[0];
69bca40d
AB
519 slot = path->slots[0];
520
521 btrfs_item_key_to_cpu(eb, &key, slot);
522
523 if (key.objectid != key_for_search->objectid ||
524 key.type != BTRFS_EXTENT_DATA_KEY)
525 break;
526
ed58f2e6 527 /*
528 * We are searching for normal backref but bytenr of this leaf
cfc0eed0 529 * matches shared data backref, OR
530 * the leaf owner is not equal to the root we are searching for
ed58f2e6 531 */
cfc0eed0 532 if (slot == 0 &&
533 (is_shared_data_backref(preftrees, eb->start) ||
534 ref->root_id != btrfs_header_owner(eb))) {
a2c8d27e 535 if (ctx->time_seq == BTRFS_SEQ_LAST)
ed58f2e6 536 ret = btrfs_next_leaf(root, path);
537 else
a2c8d27e 538 ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
ed58f2e6 539 continue;
540 }
69bca40d 541 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
560840af
BB
542 type = btrfs_file_extent_type(eb, fi);
543 if (type == BTRFS_FILE_EXTENT_INLINE)
544 goto next;
69bca40d 545 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
7ac8b88e 546 data_offset = btrfs_file_extent_offset(eb, fi);
69bca40d
AB
547
548 if (disk_byte == wanted_disk_byte) {
549 eie = NULL;
ed8c4913 550 old = NULL;
7ac8b88e 551 if (ref->key_for_search.offset == key.offset - data_offset)
552 count++;
553 else
554 goto next;
a2c8d27e 555 if (!ctx->ignore_extent_item_pos) {
88ffb665
FM
556 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
557 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
558 ret < 0)
69bca40d
AB
559 break;
560 }
ed8c4913
JB
561 if (ret > 0)
562 goto next;
4eb1f66d
TI
563 ret = ulist_add_merge_ptr(parents, eb->start,
564 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
565 if (ret < 0)
566 break;
a2c8d27e 567 if (!ret && !ctx->ignore_extent_item_pos) {
ed8c4913
JB
568 while (old->next)
569 old = old->next;
570 old->next = eie;
69bca40d 571 }
f05c4746 572 eie = NULL;
8da6d581 573 }
ed8c4913 574next:
a2c8d27e 575 if (ctx->time_seq == BTRFS_SEQ_LAST)
21633fc6
QW
576 ret = btrfs_next_item(root, path);
577 else
a2c8d27e 578 ret = btrfs_next_old_item(root, path, ctx->time_seq);
8da6d581
JS
579 }
580
88ffb665 581 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
f05c4746 582 free_inode_elem_list(eie);
88ffb665
FM
583 else if (ret > 0)
584 ret = 0;
585
69bca40d 586 return ret;
8da6d581
JS
587}
588
589/*
590 * resolve an indirect backref in the form (root_id, key, level)
591 * to a logical address
592 */
a2c8d27e
FM
593static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
594 struct btrfs_path *path,
ed58f2e6 595 struct preftrees *preftrees,
a2c8d27e 596 struct prelim_ref *ref, struct ulist *parents)
8da6d581 597{
8da6d581 598 struct btrfs_root *root;
8da6d581
JS
599 struct extent_buffer *eb;
600 int ret = 0;
601 int root_level;
602 int level = ref->level;
7ac8b88e 603 struct btrfs_key search_key = ref->key_for_search;
8da6d581 604
49d11bea
JB
605 /*
606 * If we're search_commit_root we could possibly be holding locks on
607 * other tree nodes. This happens when qgroups does backref walks when
608 * adding new delayed refs. To deal with this we need to look in cache
609 * for the root, and if we don't find it then we need to search the
610 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
611 * here.
612 */
613 if (path->search_commit_root)
a2c8d27e 614 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
49d11bea 615 else
a2c8d27e 616 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
8da6d581
JS
617 if (IS_ERR(root)) {
618 ret = PTR_ERR(root);
9326f76f
JB
619 goto out_free;
620 }
621
39dba873
JB
622 if (!path->search_commit_root &&
623 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
624 ret = -ENOENT;
625 goto out;
626 }
627
a2c8d27e 628 if (btrfs_is_testing(ctx->fs_info)) {
d9ee522b
JB
629 ret = -ENOENT;
630 goto out;
631 }
632
9e351cc8
JB
633 if (path->search_commit_root)
634 root_level = btrfs_header_level(root->commit_root);
a2c8d27e 635 else if (ctx->time_seq == BTRFS_SEQ_LAST)
21633fc6 636 root_level = btrfs_header_level(root->node);
9e351cc8 637 else
a2c8d27e 638 root_level = btrfs_old_root_level(root, ctx->time_seq);
8da6d581 639
c75e8394 640 if (root_level + 1 == level)
8da6d581
JS
641 goto out;
642
7ac8b88e 643 /*
644 * We can often find data backrefs with an offset that is too large
645 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
646 * subtracting a file's offset with the data offset of its
647 * corresponding extent data item. This can happen for example in the
648 * clone ioctl.
649 *
650 * So if we detect such case we set the search key's offset to zero to
651 * make sure we will find the matching file extent item at
652 * add_all_parents(), otherwise we will miss it because the offset
653 * taken form the backref is much larger then the offset of the file
654 * extent item. This can make us scan a very large number of file
655 * extent items, but at least it will not make us miss any.
656 *
657 * This is an ugly workaround for a behaviour that should have never
658 * existed, but it does and a fix for the clone ioctl would touch a lot
659 * of places, cause backwards incompatibility and would not fix the
660 * problem for extents cloned with older kernels.
661 */
662 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
663 search_key.offset >= LLONG_MAX)
664 search_key.offset = 0;
8da6d581 665 path->lowest_level = level;
a2c8d27e 666 if (ctx->time_seq == BTRFS_SEQ_LAST)
7ac8b88e 667 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
21633fc6 668 else
a2c8d27e 669 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
538f72cd 670
a2c8d27e 671 btrfs_debug(ctx->fs_info,
ab8d0fc4 672 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
c1c9ff7c
GU
673 ref->root_id, level, ref->count, ret,
674 ref->key_for_search.objectid, ref->key_for_search.type,
675 ref->key_for_search.offset);
8da6d581
JS
676 if (ret < 0)
677 goto out;
678
679 eb = path->nodes[level];
9345457f 680 while (!eb) {
fae7f21c 681 if (WARN_ON(!level)) {
9345457f
JS
682 ret = 1;
683 goto out;
684 }
685 level--;
686 eb = path->nodes[level];
8da6d581
JS
687 }
688
a2c8d27e 689 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
8da6d581 690out:
00246528 691 btrfs_put_root(root);
9326f76f 692out_free:
da61d31a
JB
693 path->lowest_level = 0;
694 btrfs_release_path(path);
8da6d581
JS
695 return ret;
696}
697
4dae077a
JM
698static struct extent_inode_elem *
699unode_aux_to_inode_list(struct ulist_node *node)
700{
701 if (!node)
702 return NULL;
703 return (struct extent_inode_elem *)(uintptr_t)node->aux;
704}
705
5614dc3a
FM
706static void free_leaf_list(struct ulist *ulist)
707{
708 struct ulist_node *node;
709 struct ulist_iterator uiter;
710
711 ULIST_ITER_INIT(&uiter);
712 while ((node = ulist_next(ulist, &uiter)))
713 free_inode_elem_list(unode_aux_to_inode_list(node));
714
715 ulist_free(ulist);
716}
717
8da6d581 718/*
52042d8e 719 * We maintain three separate rbtrees: one for direct refs, one for
86d5f994
EN
720 * indirect refs which have a key, and one for indirect refs which do not
721 * have a key. Each tree does merge on insertion.
722 *
723 * Once all of the references are located, we iterate over the tree of
724 * indirect refs with missing keys. An appropriate key is located and
725 * the ref is moved onto the tree for indirect refs. After all missing
726 * keys are thus located, we iterate over the indirect ref tree, resolve
727 * each reference, and then insert the resolved reference onto the
728 * direct tree (merging there too).
729 *
730 * New backrefs (i.e., for parent nodes) are added to the appropriate
731 * rbtree as they are encountered. The new backrefs are subsequently
732 * resolved as above.
8da6d581 733 */
a2c8d27e
FM
734static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
735 struct btrfs_path *path,
86d5f994 736 struct preftrees *preftrees,
6ce6ba53 737 struct share_check *sc)
8da6d581
JS
738{
739 int err;
740 int ret = 0;
8da6d581
JS
741 struct ulist *parents;
742 struct ulist_node *node;
cd1b413c 743 struct ulist_iterator uiter;
86d5f994 744 struct rb_node *rnode;
8da6d581
JS
745
746 parents = ulist_alloc(GFP_NOFS);
747 if (!parents)
748 return -ENOMEM;
749
750 /*
86d5f994
EN
751 * We could trade memory usage for performance here by iterating
752 * the tree, allocating new refs for each insertion, and then
753 * freeing the entire indirect tree when we're done. In some test
754 * cases, the tree can grow quite large (~200k objects).
8da6d581 755 */
ecf160b4 756 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
86d5f994
EN
757 struct prelim_ref *ref;
758
759 ref = rb_entry(rnode, struct prelim_ref, rbnode);
760 if (WARN(ref->parent,
761 "BUG: direct ref found in indirect tree")) {
762 ret = -EINVAL;
763 goto out;
764 }
765
ecf160b4 766 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
6c336b21 767 preftrees->indirect.count--;
86d5f994
EN
768
769 if (ref->count == 0) {
770 free_pref(ref);
8da6d581 771 continue;
86d5f994
EN
772 }
773
877c1476 774 if (sc && ref->root_id != sc->root->root_key.objectid) {
86d5f994 775 free_pref(ref);
dc046b10
JB
776 ret = BACKREF_FOUND_SHARED;
777 goto out;
778 }
a2c8d27e 779 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
95def2ed
WS
780 /*
781 * we can only tolerate ENOENT,otherwise,we should catch error
782 * and return directly.
783 */
784 if (err == -ENOENT) {
a2c8d27e 785 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
3ec4d323 786 NULL);
8da6d581 787 continue;
95def2ed 788 } else if (err) {
86d5f994 789 free_pref(ref);
95def2ed
WS
790 ret = err;
791 goto out;
792 }
8da6d581
JS
793
794 /* we put the first parent into the ref at hand */
cd1b413c
JS
795 ULIST_ITER_INIT(&uiter);
796 node = ulist_next(parents, &uiter);
8da6d581 797 ref->parent = node ? node->val : 0;
4dae077a 798 ref->inode_list = unode_aux_to_inode_list(node);
8da6d581 799
86d5f994 800 /* Add a prelim_ref(s) for any other parent(s). */
cd1b413c 801 while ((node = ulist_next(parents, &uiter))) {
86d5f994
EN
802 struct prelim_ref *new_ref;
803
b9e9a6cb
WS
804 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
805 GFP_NOFS);
8da6d581 806 if (!new_ref) {
86d5f994 807 free_pref(ref);
8da6d581 808 ret = -ENOMEM;
e36902d4 809 goto out;
8da6d581
JS
810 }
811 memcpy(new_ref, ref, sizeof(*ref));
812 new_ref->parent = node->val;
4dae077a 813 new_ref->inode_list = unode_aux_to_inode_list(node);
a2c8d27e 814 prelim_ref_insert(ctx->fs_info, &preftrees->direct,
3ec4d323 815 new_ref, NULL);
8da6d581 816 }
86d5f994 817
3ec4d323 818 /*
52042d8e 819 * Now it's a direct ref, put it in the direct tree. We must
3ec4d323
EN
820 * do this last because the ref could be merged/freed here.
821 */
a2c8d27e 822 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
86d5f994 823
8da6d581 824 ulist_reinit(parents);
9dd14fd6 825 cond_resched();
8da6d581 826 }
e36902d4 827out:
5614dc3a
FM
828 /*
829 * We may have inode lists attached to refs in the parents ulist, so we
830 * must free them before freeing the ulist and its refs.
831 */
832 free_leaf_list(parents);
8da6d581
JS
833 return ret;
834}
835
d5c88b73
JS
836/*
837 * read tree blocks and add keys where required.
838 */
e0c476b1 839static int add_missing_keys(struct btrfs_fs_info *fs_info,
38e3eebf 840 struct preftrees *preftrees, bool lock)
d5c88b73 841{
e0c476b1 842 struct prelim_ref *ref;
d5c88b73 843 struct extent_buffer *eb;
86d5f994
EN
844 struct preftree *tree = &preftrees->indirect_missing_keys;
845 struct rb_node *node;
d5c88b73 846
ecf160b4 847 while ((node = rb_first_cached(&tree->root))) {
789d6a3a
QW
848 struct btrfs_tree_parent_check check = { 0 };
849
86d5f994 850 ref = rb_entry(node, struct prelim_ref, rbnode);
ecf160b4 851 rb_erase_cached(node, &tree->root);
86d5f994
EN
852
853 BUG_ON(ref->parent); /* should not be a direct ref */
854 BUG_ON(ref->key_for_search.type);
d5c88b73 855 BUG_ON(!ref->wanted_disk_byte);
86d5f994 856
789d6a3a
QW
857 check.level = ref->level - 1;
858 check.owner_root = ref->root_id;
859
860 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
64c043de 861 if (IS_ERR(eb)) {
86d5f994 862 free_pref(ref);
64c043de 863 return PTR_ERR(eb);
4eb150d6
QW
864 }
865 if (!extent_buffer_uptodate(eb)) {
86d5f994 866 free_pref(ref);
416bc658
JB
867 free_extent_buffer(eb);
868 return -EIO;
869 }
4eb150d6 870
38e3eebf
JB
871 if (lock)
872 btrfs_tree_read_lock(eb);
d5c88b73
JS
873 if (btrfs_header_level(eb) == 0)
874 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
875 else
876 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
38e3eebf
JB
877 if (lock)
878 btrfs_tree_read_unlock(eb);
d5c88b73 879 free_extent_buffer(eb);
3ec4d323 880 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
9dd14fd6 881 cond_resched();
d5c88b73
JS
882 }
883 return 0;
884}
885
8da6d581
JS
886/*
887 * add all currently queued delayed refs from this head whose seq nr is
888 * smaller or equal that seq to the list
889 */
00142756
JM
890static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
891 struct btrfs_delayed_ref_head *head, u64 seq,
b25b0b87 892 struct preftrees *preftrees, struct share_check *sc)
8da6d581 893{
c6fc2454 894 struct btrfs_delayed_ref_node *node;
d5c88b73 895 struct btrfs_key key;
0e0adbcf 896 struct rb_node *n;
01747e92 897 int count;
b1375d64 898 int ret = 0;
8da6d581 899
d7df2c79 900 spin_lock(&head->lock);
e3d03965 901 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
0e0adbcf
JB
902 node = rb_entry(n, struct btrfs_delayed_ref_node,
903 ref_node);
8da6d581
JS
904 if (node->seq > seq)
905 continue;
906
907 switch (node->action) {
908 case BTRFS_ADD_DELAYED_EXTENT:
909 case BTRFS_UPDATE_DELAYED_HEAD:
910 WARN_ON(1);
911 continue;
912 case BTRFS_ADD_DELAYED_REF:
01747e92 913 count = node->ref_mod;
8da6d581
JS
914 break;
915 case BTRFS_DROP_DELAYED_REF:
01747e92 916 count = node->ref_mod * -1;
8da6d581
JS
917 break;
918 default:
290342f6 919 BUG();
8da6d581
JS
920 }
921 switch (node->type) {
922 case BTRFS_TREE_BLOCK_REF_KEY: {
86d5f994 923 /* NORMAL INDIRECT METADATA backref */
8da6d581 924 struct btrfs_delayed_tree_ref *ref;
943553ef
FM
925 struct btrfs_key *key_ptr = NULL;
926
927 if (head->extent_op && head->extent_op->update_key) {
928 btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
929 key_ptr = &key;
930 }
8da6d581
JS
931
932 ref = btrfs_delayed_node_to_tree_ref(node);
00142756 933 ret = add_indirect_ref(fs_info, preftrees, ref->root,
943553ef 934 key_ptr, ref->level + 1,
01747e92
EN
935 node->bytenr, count, sc,
936 GFP_ATOMIC);
8da6d581
JS
937 break;
938 }
939 case BTRFS_SHARED_BLOCK_REF_KEY: {
86d5f994 940 /* SHARED DIRECT METADATA backref */
8da6d581
JS
941 struct btrfs_delayed_tree_ref *ref;
942
943 ref = btrfs_delayed_node_to_tree_ref(node);
86d5f994 944
01747e92
EN
945 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
946 ref->parent, node->bytenr, count,
3ec4d323 947 sc, GFP_ATOMIC);
8da6d581
JS
948 break;
949 }
950 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 951 /* NORMAL INDIRECT DATA backref */
8da6d581 952 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
953 ref = btrfs_delayed_node_to_data_ref(node);
954
955 key.objectid = ref->objectid;
956 key.type = BTRFS_EXTENT_DATA_KEY;
957 key.offset = ref->offset;
dc046b10
JB
958
959 /*
4fc7b572
FM
960 * If we have a share check context and a reference for
961 * another inode, we can't exit immediately. This is
962 * because even if this is a BTRFS_ADD_DELAYED_REF
963 * reference we may find next a BTRFS_DROP_DELAYED_REF
964 * which cancels out this ADD reference.
965 *
966 * If this is a DROP reference and there was no previous
967 * ADD reference, then we need to signal that when we
968 * process references from the extent tree (through
969 * add_inline_refs() and add_keyed_refs()), we should
970 * not exit early if we find a reference for another
971 * inode, because one of the delayed DROP references
972 * may cancel that reference in the extent tree.
dc046b10 973 */
4fc7b572
FM
974 if (sc && count < 0)
975 sc->have_delayed_delete_refs = true;
dc046b10 976
00142756 977 ret = add_indirect_ref(fs_info, preftrees, ref->root,
01747e92
EN
978 &key, 0, node->bytenr, count, sc,
979 GFP_ATOMIC);
8da6d581
JS
980 break;
981 }
982 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 983 /* SHARED DIRECT FULL backref */
8da6d581 984 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
985
986 ref = btrfs_delayed_node_to_data_ref(node);
86d5f994 987
01747e92
EN
988 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
989 node->bytenr, count, sc,
990 GFP_ATOMIC);
8da6d581
JS
991 break;
992 }
993 default:
994 WARN_ON(1);
995 }
3ec4d323
EN
996 /*
997 * We must ignore BACKREF_FOUND_SHARED until all delayed
998 * refs have been checked.
999 */
1000 if (ret && (ret != BACKREF_FOUND_SHARED))
d7df2c79 1001 break;
8da6d581 1002 }
3ec4d323
EN
1003 if (!ret)
1004 ret = extent_is_shared(sc);
4fc7b572 1005
d7df2c79
JB
1006 spin_unlock(&head->lock);
1007 return ret;
8da6d581
JS
1008}
1009
1010/*
1011 * add all inline backrefs for bytenr to the list
3ec4d323
EN
1012 *
1013 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 1014 */
f73853c7
FM
1015static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1016 struct btrfs_path *path,
86d5f994 1017 int *info_level, struct preftrees *preftrees,
b25b0b87 1018 struct share_check *sc)
8da6d581 1019{
b1375d64 1020 int ret = 0;
8da6d581
JS
1021 int slot;
1022 struct extent_buffer *leaf;
1023 struct btrfs_key key;
261c84b6 1024 struct btrfs_key found_key;
8da6d581
JS
1025 unsigned long ptr;
1026 unsigned long end;
1027 struct btrfs_extent_item *ei;
1028 u64 flags;
1029 u64 item_size;
1030
1031 /*
1032 * enumerate all inline refs
1033 */
1034 leaf = path->nodes[0];
dadcaf78 1035 slot = path->slots[0];
8da6d581 1036
3212fa14 1037 item_size = btrfs_item_size(leaf, slot);
8da6d581
JS
1038 BUG_ON(item_size < sizeof(*ei));
1039
1040 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
f73853c7
FM
1041
1042 if (ctx->check_extent_item) {
1043 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1044 if (ret)
1045 return ret;
1046 }
1047
8da6d581 1048 flags = btrfs_extent_flags(leaf, ei);
261c84b6 1049 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
1050
1051 ptr = (unsigned long)(ei + 1);
1052 end = (unsigned long)ei + item_size;
1053
261c84b6
JB
1054 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1055 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 1056 struct btrfs_tree_block_info *info;
8da6d581
JS
1057
1058 info = (struct btrfs_tree_block_info *)ptr;
1059 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
1060 ptr += sizeof(struct btrfs_tree_block_info);
1061 BUG_ON(ptr > end);
261c84b6
JB
1062 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1063 *info_level = found_key.offset;
8da6d581
JS
1064 } else {
1065 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1066 }
1067
1068 while (ptr < end) {
1069 struct btrfs_extent_inline_ref *iref;
1070 u64 offset;
1071 int type;
1072
1073 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1074 type = btrfs_get_extent_inline_ref_type(leaf, iref,
1075 BTRFS_REF_TYPE_ANY);
1076 if (type == BTRFS_REF_TYPE_INVALID)
af431dcb 1077 return -EUCLEAN;
3de28d57 1078
8da6d581
JS
1079 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1080
1081 switch (type) {
1082 case BTRFS_SHARED_BLOCK_REF_KEY:
f73853c7 1083 ret = add_direct_ref(ctx->fs_info, preftrees,
00142756 1084 *info_level + 1, offset,
f73853c7 1085 ctx->bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1086 break;
1087 case BTRFS_SHARED_DATA_REF_KEY: {
1088 struct btrfs_shared_data_ref *sdref;
1089 int count;
1090
1091 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1092 count = btrfs_shared_data_ref_count(leaf, sdref);
86d5f994 1093
f73853c7
FM
1094 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1095 ctx->bytenr, count, sc, GFP_NOFS);
8da6d581
JS
1096 break;
1097 }
1098 case BTRFS_TREE_BLOCK_REF_KEY:
f73853c7 1099 ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
00142756 1100 NULL, *info_level + 1,
f73853c7 1101 ctx->bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1102 break;
1103 case BTRFS_EXTENT_DATA_REF_KEY: {
1104 struct btrfs_extent_data_ref *dref;
1105 int count;
1106 u64 root;
1107
1108 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1109 count = btrfs_extent_data_ref_count(leaf, dref);
1110 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1111 dref);
1112 key.type = BTRFS_EXTENT_DATA_KEY;
1113 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1114
a0a5472a 1115 if (sc && key.objectid != sc->inum &&
4fc7b572 1116 !sc->have_delayed_delete_refs) {
dc046b10
JB
1117 ret = BACKREF_FOUND_SHARED;
1118 break;
1119 }
1120
8da6d581 1121 root = btrfs_extent_data_ref_root(leaf, dref);
86d5f994 1122
adf02418
FM
1123 if (!ctx->skip_data_ref ||
1124 !ctx->skip_data_ref(root, key.objectid, key.offset,
1125 ctx->user_ctx))
1126 ret = add_indirect_ref(ctx->fs_info, preftrees,
1127 root, &key, 0, ctx->bytenr,
1128 count, sc, GFP_NOFS);
8da6d581
JS
1129 break;
1130 }
1131 default:
1132 WARN_ON(1);
1133 }
1149ab6b
WS
1134 if (ret)
1135 return ret;
8da6d581
JS
1136 ptr += btrfs_extent_inline_ref_size(type);
1137 }
1138
1139 return 0;
1140}
1141
1142/*
1143 * add all non-inline backrefs for bytenr to the list
3ec4d323
EN
1144 *
1145 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 1146 */
adf02418
FM
1147static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1148 struct btrfs_root *extent_root,
1149 struct btrfs_path *path,
86d5f994 1150 int info_level, struct preftrees *preftrees,
3ec4d323 1151 struct share_check *sc)
8da6d581 1152{
98cc4222 1153 struct btrfs_fs_info *fs_info = extent_root->fs_info;
8da6d581
JS
1154 int ret;
1155 int slot;
1156 struct extent_buffer *leaf;
1157 struct btrfs_key key;
1158
1159 while (1) {
1160 ret = btrfs_next_item(extent_root, path);
1161 if (ret < 0)
1162 break;
1163 if (ret) {
1164 ret = 0;
1165 break;
1166 }
1167
1168 slot = path->slots[0];
1169 leaf = path->nodes[0];
1170 btrfs_item_key_to_cpu(leaf, &key, slot);
1171
adf02418 1172 if (key.objectid != ctx->bytenr)
8da6d581
JS
1173 break;
1174 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1175 continue;
1176 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1177 break;
1178
1179 switch (key.type) {
1180 case BTRFS_SHARED_BLOCK_REF_KEY:
86d5f994 1181 /* SHARED DIRECT METADATA backref */
00142756
JM
1182 ret = add_direct_ref(fs_info, preftrees,
1183 info_level + 1, key.offset,
adf02418 1184 ctx->bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1185 break;
1186 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 1187 /* SHARED DIRECT FULL backref */
8da6d581
JS
1188 struct btrfs_shared_data_ref *sdref;
1189 int count;
1190
1191 sdref = btrfs_item_ptr(leaf, slot,
1192 struct btrfs_shared_data_ref);
1193 count = btrfs_shared_data_ref_count(leaf, sdref);
00142756 1194 ret = add_direct_ref(fs_info, preftrees, 0,
adf02418 1195 key.offset, ctx->bytenr, count,
3ec4d323 1196 sc, GFP_NOFS);
8da6d581
JS
1197 break;
1198 }
1199 case BTRFS_TREE_BLOCK_REF_KEY:
86d5f994 1200 /* NORMAL INDIRECT METADATA backref */
00142756 1201 ret = add_indirect_ref(fs_info, preftrees, key.offset,
adf02418 1202 NULL, info_level + 1, ctx->bytenr,
3ec4d323 1203 1, NULL, GFP_NOFS);
8da6d581
JS
1204 break;
1205 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 1206 /* NORMAL INDIRECT DATA backref */
8da6d581
JS
1207 struct btrfs_extent_data_ref *dref;
1208 int count;
1209 u64 root;
1210
1211 dref = btrfs_item_ptr(leaf, slot,
1212 struct btrfs_extent_data_ref);
1213 count = btrfs_extent_data_ref_count(leaf, dref);
1214 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1215 dref);
1216 key.type = BTRFS_EXTENT_DATA_KEY;
1217 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1218
a0a5472a 1219 if (sc && key.objectid != sc->inum &&
4fc7b572 1220 !sc->have_delayed_delete_refs) {
dc046b10
JB
1221 ret = BACKREF_FOUND_SHARED;
1222 break;
1223 }
1224
8da6d581 1225 root = btrfs_extent_data_ref_root(leaf, dref);
adf02418
FM
1226
1227 if (!ctx->skip_data_ref ||
1228 !ctx->skip_data_ref(root, key.objectid, key.offset,
1229 ctx->user_ctx))
1230 ret = add_indirect_ref(fs_info, preftrees, root,
1231 &key, 0, ctx->bytenr,
1232 count, sc, GFP_NOFS);
8da6d581
JS
1233 break;
1234 }
1235 default:
1236 WARN_ON(1);
1237 }
1149ab6b
WS
1238 if (ret)
1239 return ret;
1240
8da6d581
JS
1241 }
1242
1243 return ret;
1244}
1245
583f4ac5
FM
1246/*
1247 * The caller has joined a transaction or is holding a read lock on the
1248 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1249 * snapshot field changing while updating or checking the cache.
1250 */
1251static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1252 struct btrfs_root *root,
1253 u64 bytenr, int level, bool *is_shared)
1254{
4e4488d4 1255 const struct btrfs_fs_info *fs_info = root->fs_info;
583f4ac5
FM
1256 struct btrfs_backref_shared_cache_entry *entry;
1257
4e4488d4
FM
1258 if (!current->journal_info)
1259 lockdep_assert_held(&fs_info->commit_root_sem);
1260
583f4ac5
FM
1261 if (!ctx->use_path_cache)
1262 return false;
1263
1264 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1265 return false;
1266
1267 /*
1268 * Level -1 is used for the data extent, which is not reliable to cache
1269 * because its reference count can increase or decrease without us
1270 * realizing. We cache results only for extent buffers that lead from
1271 * the root node down to the leaf with the file extent item.
1272 */
1273 ASSERT(level >= 0);
1274
1275 entry = &ctx->path_cache_entries[level];
1276
1277 /* Unused cache entry or being used for some other extent buffer. */
1278 if (entry->bytenr != bytenr)
1279 return false;
1280
1281 /*
1282 * We cached a false result, but the last snapshot generation of the
1283 * root changed, so we now have a snapshot. Don't trust the result.
1284 */
1285 if (!entry->is_shared &&
1286 entry->gen != btrfs_root_last_snapshot(&root->root_item))
1287 return false;
1288
1289 /*
1290 * If we cached a true result and the last generation used for dropping
1291 * a root changed, we can not trust the result, because the dropped root
1292 * could be a snapshot sharing this extent buffer.
1293 */
1294 if (entry->is_shared &&
4e4488d4 1295 entry->gen != btrfs_get_last_root_drop_gen(fs_info))
583f4ac5
FM
1296 return false;
1297
1298 *is_shared = entry->is_shared;
1299 /*
1300 * If the node at this level is shared, than all nodes below are also
1301 * shared. Currently some of the nodes below may be marked as not shared
1302 * because we have just switched from one leaf to another, and switched
1303 * also other nodes above the leaf and below the current level, so mark
1304 * them as shared.
1305 */
1306 if (*is_shared) {
1307 for (int i = 0; i < level; i++) {
1308 ctx->path_cache_entries[i].is_shared = true;
1309 ctx->path_cache_entries[i].gen = entry->gen;
1310 }
1311 }
1312
1313 return true;
1314}
1315
1316/*
1317 * The caller has joined a transaction or is holding a read lock on the
1318 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1319 * snapshot field changing while updating or checking the cache.
1320 */
1321static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1322 struct btrfs_root *root,
1323 u64 bytenr, int level, bool is_shared)
1324{
4e4488d4 1325 const struct btrfs_fs_info *fs_info = root->fs_info;
583f4ac5
FM
1326 struct btrfs_backref_shared_cache_entry *entry;
1327 u64 gen;
1328
4e4488d4
FM
1329 if (!current->journal_info)
1330 lockdep_assert_held(&fs_info->commit_root_sem);
1331
583f4ac5
FM
1332 if (!ctx->use_path_cache)
1333 return;
1334
1335 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1336 return;
1337
1338 /*
1339 * Level -1 is used for the data extent, which is not reliable to cache
1340 * because its reference count can increase or decrease without us
1341 * realizing. We cache results only for extent buffers that lead from
1342 * the root node down to the leaf with the file extent item.
1343 */
1344 ASSERT(level >= 0);
1345
1346 if (is_shared)
4e4488d4 1347 gen = btrfs_get_last_root_drop_gen(fs_info);
583f4ac5
FM
1348 else
1349 gen = btrfs_root_last_snapshot(&root->root_item);
1350
1351 entry = &ctx->path_cache_entries[level];
1352 entry->bytenr = bytenr;
1353 entry->is_shared = is_shared;
1354 entry->gen = gen;
1355
1356 /*
1357 * If we found an extent buffer is shared, set the cache result for all
1358 * extent buffers below it to true. As nodes in the path are COWed,
1359 * their sharedness is moved to their children, and if a leaf is COWed,
1360 * then the sharedness of a data extent becomes direct, the refcount of
1361 * data extent is increased in the extent item at the extent tree.
1362 */
1363 if (is_shared) {
1364 for (int i = 0; i < level; i++) {
1365 entry = &ctx->path_cache_entries[i];
1366 entry->is_shared = is_shared;
1367 entry->gen = gen;
1368 }
1369 }
1370}
1371
8da6d581
JS
1372/*
1373 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1374 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1375 * indirect refs to their parent bytenr.
1376 * When roots are found, they're added to the roots list
1377 *
a2c8d27e
FM
1378 * @ctx: Backref walking context object, must be not NULL.
1379 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1380 * shared extent is detected.
3ec4d323
EN
1381 *
1382 * Otherwise this returns 0 for success and <0 for an error.
1383 *
8da6d581
JS
1384 * FIXME some caching might speed things up
1385 */
a2c8d27e 1386static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
6ce6ba53 1387 struct share_check *sc)
8da6d581 1388{
a2c8d27e 1389 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
8da6d581
JS
1390 struct btrfs_key key;
1391 struct btrfs_path *path;
8da6d581 1392 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 1393 struct btrfs_delayed_ref_head *head;
8da6d581
JS
1394 int info_level = 0;
1395 int ret;
e0c476b1 1396 struct prelim_ref *ref;
86d5f994 1397 struct rb_node *node;
f05c4746 1398 struct extent_inode_elem *eie = NULL;
86d5f994
EN
1399 struct preftrees preftrees = {
1400 .direct = PREFTREE_INIT,
1401 .indirect = PREFTREE_INIT,
1402 .indirect_missing_keys = PREFTREE_INIT
1403 };
8da6d581 1404
56f5c199
FM
1405 /* Roots ulist is not needed when using a sharedness check context. */
1406 if (sc)
a2c8d27e 1407 ASSERT(ctx->roots == NULL);
56f5c199 1408
a2c8d27e 1409 key.objectid = ctx->bytenr;
8da6d581 1410 key.offset = (u64)-1;
a2c8d27e 1411 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
261c84b6
JB
1412 key.type = BTRFS_METADATA_ITEM_KEY;
1413 else
1414 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
1415
1416 path = btrfs_alloc_path();
1417 if (!path)
1418 return -ENOMEM;
a2c8d27e 1419 if (!ctx->trans) {
da61d31a 1420 path->search_commit_root = 1;
e84752d4
WS
1421 path->skip_locking = 1;
1422 }
8da6d581 1423
a2c8d27e 1424 if (ctx->time_seq == BTRFS_SEQ_LAST)
21633fc6
QW
1425 path->skip_locking = 1;
1426
8da6d581 1427again:
d3b01064
LZ
1428 head = NULL;
1429
98cc4222 1430 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8da6d581
JS
1431 if (ret < 0)
1432 goto out;
fcba0120
JB
1433 if (ret == 0) {
1434 /* This shouldn't happen, indicates a bug or fs corruption. */
1435 ASSERT(ret != 0);
1436 ret = -EUCLEAN;
1437 goto out;
1438 }
8da6d581 1439
a2c8d27e
FM
1440 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1441 ctx->time_seq != BTRFS_SEQ_LAST) {
7a3ae2f8 1442 /*
9665ebd5
JB
1443 * We have a specific time_seq we care about and trans which
1444 * means we have the path lock, we need to grab the ref head and
1445 * lock it so we have a consistent view of the refs at the given
1446 * time.
7a3ae2f8 1447 */
a2c8d27e 1448 delayed_refs = &ctx->trans->transaction->delayed_refs;
7a3ae2f8 1449 spin_lock(&delayed_refs->lock);
a2c8d27e 1450 head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr);
7a3ae2f8
JS
1451 if (head) {
1452 if (!mutex_trylock(&head->mutex)) {
d278850e 1453 refcount_inc(&head->refs);
7a3ae2f8
JS
1454 spin_unlock(&delayed_refs->lock);
1455
1456 btrfs_release_path(path);
1457
1458 /*
1459 * Mutex was contended, block until it's
1460 * released and try again
1461 */
1462 mutex_lock(&head->mutex);
1463 mutex_unlock(&head->mutex);
d278850e 1464 btrfs_put_delayed_ref_head(head);
7a3ae2f8
JS
1465 goto again;
1466 }
d7df2c79 1467 spin_unlock(&delayed_refs->lock);
a2c8d27e 1468 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
b25b0b87 1469 &preftrees, sc);
155725c9 1470 mutex_unlock(&head->mutex);
d7df2c79 1471 if (ret)
7a3ae2f8 1472 goto out;
d7df2c79
JB
1473 } else {
1474 spin_unlock(&delayed_refs->lock);
d3b01064 1475 }
8da6d581 1476 }
8da6d581
JS
1477
1478 if (path->slots[0]) {
1479 struct extent_buffer *leaf;
1480 int slot;
1481
dadcaf78 1482 path->slots[0]--;
8da6d581 1483 leaf = path->nodes[0];
dadcaf78 1484 slot = path->slots[0];
8da6d581 1485 btrfs_item_key_to_cpu(leaf, &key, slot);
a2c8d27e 1486 if (key.objectid == ctx->bytenr &&
261c84b6
JB
1487 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1488 key.type == BTRFS_METADATA_ITEM_KEY)) {
f73853c7
FM
1489 ret = add_inline_refs(ctx, path, &info_level,
1490 &preftrees, sc);
8da6d581
JS
1491 if (ret)
1492 goto out;
adf02418 1493 ret = add_keyed_refs(ctx, root, path, info_level,
3ec4d323 1494 &preftrees, sc);
8da6d581
JS
1495 if (ret)
1496 goto out;
1497 }
1498 }
8da6d581 1499
56f5c199
FM
1500 /*
1501 * If we have a share context and we reached here, it means the extent
1502 * is not directly shared (no multiple reference items for it),
1503 * otherwise we would have exited earlier with a return value of
1504 * BACKREF_FOUND_SHARED after processing delayed references or while
1505 * processing inline or keyed references from the extent tree.
1506 * The extent may however be indirectly shared through shared subtrees
1507 * as a result from creating snapshots, so we determine below what is
1508 * its parent node, in case we are dealing with a metadata extent, or
1509 * what's the leaf (or leaves), from a fs tree, that has a file extent
1510 * item pointing to it in case we are dealing with a data extent.
1511 */
1512 ASSERT(extent_is_shared(sc) == 0);
1513
877c1476
FM
1514 /*
1515 * If we are here for a data extent and we have a share_check structure
1516 * it means the data extent is not directly shared (does not have
1517 * multiple reference items), so we have to check if a path in the fs
1518 * tree (going from the root node down to the leaf that has the file
1519 * extent item pointing to the data extent) is shared, that is, if any
1520 * of the extent buffers in the path is referenced by other trees.
1521 */
a2c8d27e 1522 if (sc && ctx->bytenr == sc->data_bytenr) {
6976201f
FM
1523 /*
1524 * If our data extent is from a generation more recent than the
1525 * last generation used to snapshot the root, then we know that
1526 * it can not be shared through subtrees, so we can skip
1527 * resolving indirect references, there's no point in
1528 * determining the extent buffers for the path from the fs tree
1529 * root node down to the leaf that has the file extent item that
1530 * points to the data extent.
1531 */
1532 if (sc->data_extent_gen >
1533 btrfs_root_last_snapshot(&sc->root->root_item)) {
1534 ret = BACKREF_FOUND_NOT_SHARED;
1535 goto out;
1536 }
1537
877c1476
FM
1538 /*
1539 * If we are only determining if a data extent is shared or not
1540 * and the corresponding file extent item is located in the same
1541 * leaf as the previous file extent item, we can skip resolving
1542 * indirect references for a data extent, since the fs tree path
1543 * is the same (same leaf, so same path). We skip as long as the
1544 * cached result for the leaf is valid and only if there's only
1545 * one file extent item pointing to the data extent, because in
1546 * the case of multiple file extent items, they may be located
1547 * in different leaves and therefore we have multiple paths.
1548 */
1549 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1550 sc->self_ref_count == 1) {
1551 bool cached;
1552 bool is_shared;
1553
1554 cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1555 sc->ctx->curr_leaf_bytenr,
1556 0, &is_shared);
1557 if (cached) {
1558 if (is_shared)
1559 ret = BACKREF_FOUND_SHARED;
1560 else
1561 ret = BACKREF_FOUND_NOT_SHARED;
1562 goto out;
1563 }
1564 }
1565 }
1566
86d5f994 1567 btrfs_release_path(path);
8da6d581 1568
a2c8d27e 1569 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0);
d5c88b73
JS
1570 if (ret)
1571 goto out;
1572
ecf160b4 1573 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
8da6d581 1574
a2c8d27e 1575 ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
8da6d581
JS
1576 if (ret)
1577 goto out;
1578
ecf160b4 1579 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
8da6d581 1580
86d5f994
EN
1581 /*
1582 * This walks the tree of merged and resolved refs. Tree blocks are
1583 * read in as needed. Unique entries are added to the ulist, and
1584 * the list of found roots is updated.
1585 *
1586 * We release the entire tree in one go before returning.
1587 */
ecf160b4 1588 node = rb_first_cached(&preftrees.direct.root);
86d5f994
EN
1589 while (node) {
1590 ref = rb_entry(node, struct prelim_ref, rbnode);
1591 node = rb_next(&ref->rbnode);
c8195a7b
ZB
1592 /*
1593 * ref->count < 0 can happen here if there are delayed
1594 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1595 * prelim_ref_insert() relies on this when merging
1596 * identical refs to keep the overall count correct.
1597 * prelim_ref_insert() will merge only those refs
1598 * which compare identically. Any refs having
1599 * e.g. different offsets would not be merged,
1600 * and would retain their original ref->count < 0.
1601 */
a2c8d27e 1602 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
8da6d581 1603 /* no parent == root of tree */
a2c8d27e 1604 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1605 if (ret < 0)
1606 goto out;
8da6d581
JS
1607 }
1608 if (ref->count && ref->parent) {
a2c8d27e
FM
1609 if (!ctx->ignore_extent_item_pos && !ref->inode_list &&
1610 ref->level == 0) {
789d6a3a 1611 struct btrfs_tree_parent_check check = { 0 };
976b1908 1612 struct extent_buffer *eb;
707e8a07 1613
789d6a3a
QW
1614 check.level = ref->level;
1615
1616 eb = read_tree_block(ctx->fs_info, ref->parent,
1617 &check);
64c043de
LB
1618 if (IS_ERR(eb)) {
1619 ret = PTR_ERR(eb);
1620 goto out;
4eb150d6
QW
1621 }
1622 if (!extent_buffer_uptodate(eb)) {
416bc658 1623 free_extent_buffer(eb);
c16c2e2e
WS
1624 ret = -EIO;
1625 goto out;
416bc658 1626 }
38e3eebf 1627
ac5887c8 1628 if (!path->skip_locking)
38e3eebf 1629 btrfs_tree_read_lock(eb);
88ffb665 1630 ret = find_extent_in_eb(ctx, eb, &eie);
38e3eebf 1631 if (!path->skip_locking)
ac5887c8 1632 btrfs_tree_read_unlock(eb);
976b1908 1633 free_extent_buffer(eb);
88ffb665
FM
1634 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1635 ret < 0)
f5929cd8
FDBM
1636 goto out;
1637 ref->inode_list = eie;
92876eec
FM
1638 /*
1639 * We transferred the list ownership to the ref,
1640 * so set to NULL to avoid a double free in case
1641 * an error happens after this.
1642 */
1643 eie = NULL;
976b1908 1644 }
a2c8d27e 1645 ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
4eb1f66d
TI
1646 ref->inode_list,
1647 (void **)&eie, GFP_NOFS);
f1723939
WS
1648 if (ret < 0)
1649 goto out;
a2c8d27e 1650 if (!ret && !ctx->ignore_extent_item_pos) {
3301958b 1651 /*
9f05c09d
JB
1652 * We've recorded that parent, so we must extend
1653 * its inode list here.
1654 *
1655 * However if there was corruption we may not
1656 * have found an eie, return an error in this
1657 * case.
3301958b 1658 */
9f05c09d
JB
1659 ASSERT(eie);
1660 if (!eie) {
1661 ret = -EUCLEAN;
1662 goto out;
1663 }
3301958b
JS
1664 while (eie->next)
1665 eie = eie->next;
1666 eie->next = ref->inode_list;
1667 }
f05c4746 1668 eie = NULL;
92876eec
FM
1669 /*
1670 * We have transferred the inode list ownership from
1671 * this ref to the ref we added to the 'refs' ulist.
1672 * So set this ref's inode list to NULL to avoid
1673 * use-after-free when our caller uses it or double
1674 * frees in case an error happens before we return.
1675 */
1676 ref->inode_list = NULL;
8da6d581 1677 }
9dd14fd6 1678 cond_resched();
8da6d581
JS
1679 }
1680
1681out:
8da6d581 1682 btrfs_free_path(path);
86d5f994
EN
1683
1684 prelim_release(&preftrees.direct);
1685 prelim_release(&preftrees.indirect);
1686 prelim_release(&preftrees.indirect_missing_keys);
1687
88ffb665 1688 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
f05c4746 1689 free_inode_elem_list(eie);
8da6d581
JS
1690 return ret;
1691}
1692
1693/*
a2c8d27e
FM
1694 * Finds all leaves with a reference to the specified combination of
1695 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1696 * added to the ulist at @ctx->refs, and that ulist is allocated by this
1697 * function. The caller should free the ulist with free_leaf_list() if
1698 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1699 * enough.
8da6d581 1700 *
a2c8d27e 1701 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
8da6d581 1702 */
a2c8d27e 1703int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
8da6d581 1704{
8da6d581
JS
1705 int ret;
1706
a2c8d27e
FM
1707 ASSERT(ctx->refs == NULL);
1708
1709 ctx->refs = ulist_alloc(GFP_NOFS);
1710 if (!ctx->refs)
8da6d581 1711 return -ENOMEM;
8da6d581 1712
a2c8d27e 1713 ret = find_parent_nodes(ctx, NULL);
88ffb665
FM
1714 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1715 (ret < 0 && ret != -ENOENT)) {
a2c8d27e
FM
1716 free_leaf_list(ctx->refs);
1717 ctx->refs = NULL;
8da6d581
JS
1718 return ret;
1719 }
1720
1721 return 0;
1722}
1723
1724/*
a2c8d27e 1725 * Walk all backrefs for a given extent to find all roots that reference this
8da6d581
JS
1726 * extent. Walking a backref means finding all extents that reference this
1727 * extent and in turn walk the backrefs of those, too. Naturally this is a
1728 * recursive process, but here it is implemented in an iterative fashion: We
1729 * find all referencing extents for the extent in question and put them on a
1730 * list. In turn, we find all referencing extents for those, further appending
1731 * to the list. The way we iterate the list allows adding more elements after
1732 * the current while iterating. The process stops when we reach the end of the
a2c8d27e
FM
1733 * list.
1734 *
1baea6f1
FM
1735 * Found roots are added to @ctx->roots, which is allocated by this function if
1736 * it points to NULL, in which case the caller is responsible for freeing it
1737 * after it's not needed anymore.
1738 * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1739 * ulist to do temporary work, and frees it before returning.
8da6d581 1740 *
1baea6f1 1741 * Returns 0 on success, < 0 on error.
8da6d581 1742 */
a2c8d27e 1743static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
8da6d581 1744{
a2c8d27e
FM
1745 const u64 orig_bytenr = ctx->bytenr;
1746 const bool orig_ignore_extent_item_pos = ctx->ignore_extent_item_pos;
1baea6f1 1747 bool roots_ulist_allocated = false;
cd1b413c 1748 struct ulist_iterator uiter;
a2c8d27e
FM
1749 int ret = 0;
1750
1751 ASSERT(ctx->refs == NULL);
8da6d581 1752
a2c8d27e
FM
1753 ctx->refs = ulist_alloc(GFP_NOFS);
1754 if (!ctx->refs)
8da6d581 1755 return -ENOMEM;
a2c8d27e 1756
a2c8d27e 1757 if (!ctx->roots) {
1baea6f1
FM
1758 ctx->roots = ulist_alloc(GFP_NOFS);
1759 if (!ctx->roots) {
1760 ulist_free(ctx->refs);
1761 ctx->refs = NULL;
1762 return -ENOMEM;
1763 }
1764 roots_ulist_allocated = true;
8da6d581
JS
1765 }
1766
a2c8d27e
FM
1767 ctx->ignore_extent_item_pos = true;
1768
cd1b413c 1769 ULIST_ITER_INIT(&uiter);
8da6d581 1770 while (1) {
a2c8d27e
FM
1771 struct ulist_node *node;
1772
1773 ret = find_parent_nodes(ctx, NULL);
8da6d581 1774 if (ret < 0 && ret != -ENOENT) {
1baea6f1
FM
1775 if (roots_ulist_allocated) {
1776 ulist_free(ctx->roots);
1777 ctx->roots = NULL;
1778 }
a2c8d27e 1779 break;
8da6d581 1780 }
a2c8d27e
FM
1781 ret = 0;
1782 node = ulist_next(ctx->refs, &uiter);
8da6d581
JS
1783 if (!node)
1784 break;
a2c8d27e 1785 ctx->bytenr = node->val;
bca1a290 1786 cond_resched();
8da6d581
JS
1787 }
1788
a2c8d27e
FM
1789 ulist_free(ctx->refs);
1790 ctx->refs = NULL;
1791 ctx->bytenr = orig_bytenr;
1792 ctx->ignore_extent_item_pos = orig_ignore_extent_item_pos;
1793
1794 return ret;
8da6d581
JS
1795}
1796
a2c8d27e 1797int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
c7bcbb21 1798 bool skip_commit_root_sem)
9e351cc8
JB
1799{
1800 int ret;
1801
a2c8d27e
FM
1802 if (!ctx->trans && !skip_commit_root_sem)
1803 down_read(&ctx->fs_info->commit_root_sem);
1804 ret = btrfs_find_all_roots_safe(ctx);
1805 if (!ctx->trans && !skip_commit_root_sem)
1806 up_read(&ctx->fs_info->commit_root_sem);
9e351cc8
JB
1807 return ret;
1808}
1809
84a7949d
FM
1810struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1811{
1812 struct btrfs_backref_share_check_ctx *ctx;
1813
1814 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1815 if (!ctx)
1816 return NULL;
1817
1818 ulist_init(&ctx->refs);
84a7949d
FM
1819
1820 return ctx;
1821}
1822
1823void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1824{
1825 if (!ctx)
1826 return;
1827
1828 ulist_release(&ctx->refs);
84a7949d
FM
1829 kfree(ctx);
1830}
1831
8eedadda
FM
1832/*
1833 * Check if a data extent is shared or not.
6e353e3b 1834 *
ceb707da 1835 * @inode: The inode whose extent we are checking.
b8f164e3
FM
1836 * @bytenr: Logical bytenr of the extent we are checking.
1837 * @extent_gen: Generation of the extent (file extent item) or 0 if it is
1838 * not known.
61dbb952 1839 * @ctx: A backref sharedness check context.
2c2ed5aa 1840 *
8eedadda 1841 * btrfs_is_data_extent_shared uses the backref walking code but will short
2c2ed5aa
MF
1842 * circuit as soon as it finds a root or inode that doesn't match the
1843 * one passed in. This provides a significant performance benefit for
1844 * callers (such as fiemap) which want to know whether the extent is
1845 * shared but do not need a ref count.
1846 *
03628cdb
FM
1847 * This attempts to attach to the running transaction in order to account for
1848 * delayed refs, but continues on even when no running transaction exists.
bb739cf0 1849 *
2c2ed5aa
MF
1850 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1851 */
ceb707da 1852int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
b8f164e3 1853 u64 extent_gen,
61dbb952 1854 struct btrfs_backref_share_check_ctx *ctx)
dc046b10 1855{
a2c8d27e 1856 struct btrfs_backref_walk_ctx walk_ctx = { 0 };
ceb707da 1857 struct btrfs_root *root = inode->root;
bb739cf0
EN
1858 struct btrfs_fs_info *fs_info = root->fs_info;
1859 struct btrfs_trans_handle *trans;
dc046b10
JB
1860 struct ulist_iterator uiter;
1861 struct ulist_node *node;
f3a84ccd 1862 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
dc046b10 1863 int ret = 0;
3ec4d323 1864 struct share_check shared = {
877c1476
FM
1865 .ctx = ctx,
1866 .root = root,
ceb707da 1867 .inum = btrfs_ino(inode),
73e339e6 1868 .data_bytenr = bytenr,
6976201f 1869 .data_extent_gen = extent_gen,
3ec4d323 1870 .share_count = 0,
73e339e6 1871 .self_ref_count = 0,
4fc7b572 1872 .have_delayed_delete_refs = false,
3ec4d323 1873 };
12a824dc 1874 int level;
e2fd8306
FM
1875 bool leaf_cached;
1876 bool leaf_is_shared;
dc046b10 1877
73e339e6
FM
1878 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1879 if (ctx->prev_extents_cache[i].bytenr == bytenr)
1880 return ctx->prev_extents_cache[i].is_shared;
1881 }
1882
84a7949d 1883 ulist_init(&ctx->refs);
dc046b10 1884
a6d155d2 1885 trans = btrfs_join_transaction_nostart(root);
bb739cf0 1886 if (IS_ERR(trans)) {
03628cdb
FM
1887 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1888 ret = PTR_ERR(trans);
1889 goto out;
1890 }
bb739cf0 1891 trans = NULL;
dc046b10 1892 down_read(&fs_info->commit_root_sem);
bb739cf0
EN
1893 } else {
1894 btrfs_get_tree_mod_seq(fs_info, &elem);
a2c8d27e 1895 walk_ctx.time_seq = elem.seq;
bb739cf0
EN
1896 }
1897
e2fd8306
FM
1898 ctx->use_path_cache = true;
1899
1900 /*
1901 * We may have previously determined that the current leaf is shared.
1902 * If it is, then we have a data extent that is shared due to a shared
1903 * subtree (caused by snapshotting) and we don't need to check for data
1904 * backrefs. If the leaf is not shared, then we must do backref walking
1905 * to determine if the data extent is shared through reflinks.
1906 */
1907 leaf_cached = lookup_backref_shared_cache(ctx, root,
1908 ctx->curr_leaf_bytenr, 0,
1909 &leaf_is_shared);
1910 if (leaf_cached && leaf_is_shared) {
1911 ret = 1;
1912 goto out_trans;
1913 }
1914
a2c8d27e
FM
1915 walk_ctx.ignore_extent_item_pos = true;
1916 walk_ctx.trans = trans;
1917 walk_ctx.fs_info = fs_info;
1918 walk_ctx.refs = &ctx->refs;
1919
12a824dc
FM
1920 /* -1 means we are in the bytenr of the data extent. */
1921 level = -1;
dc046b10
JB
1922 ULIST_ITER_INIT(&uiter);
1923 while (1) {
2280d425 1924 const unsigned long prev_ref_count = ctx->refs.nnodes;
12a824dc 1925
a2c8d27e
FM
1926 walk_ctx.bytenr = bytenr;
1927 ret = find_parent_nodes(&walk_ctx, &shared);
877c1476
FM
1928 if (ret == BACKREF_FOUND_SHARED ||
1929 ret == BACKREF_FOUND_NOT_SHARED) {
1930 /* If shared must return 1, otherwise return 0. */
1931 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
12a824dc 1932 if (level >= 0)
61dbb952 1933 store_backref_shared_cache(ctx, root, bytenr,
877c1476 1934 level, ret == 1);
dc046b10
JB
1935 break;
1936 }
1937 if (ret < 0 && ret != -ENOENT)
1938 break;
2c2ed5aa 1939 ret = 0;
b8f164e3 1940
63c84b46 1941 /*
2280d425
FM
1942 * More than one extent buffer (bytenr) may have been added to
1943 * the ctx->refs ulist, in which case we have to check multiple
1944 * tree paths in case the first one is not shared, so we can not
1945 * use the path cache which is made for a single path. Multiple
1946 * extent buffers at the current level happen when:
1947 *
1948 * 1) level -1, the data extent: If our data extent was not
1949 * directly shared (without multiple reference items), then
1950 * it might have a single reference item with a count > 1 for
1951 * the same offset, which means there are 2 (or more) file
1952 * extent items that point to the data extent - this happens
1953 * when a file extent item needs to be split and then one
1954 * item gets moved to another leaf due to a b+tree leaf split
1955 * when inserting some item. In this case the file extent
1956 * items may be located in different leaves and therefore
1957 * some of the leaves may be referenced through shared
1958 * subtrees while others are not. Since our extent buffer
1959 * cache only works for a single path (by far the most common
1960 * case and simpler to deal with), we can not use it if we
1961 * have multiple leaves (which implies multiple paths).
1962 *
1963 * 2) level >= 0, a tree node/leaf: We can have a mix of direct
1964 * and indirect references on a b+tree node/leaf, so we have
1965 * to check multiple paths, and the extent buffer (the
1966 * current bytenr) may be shared or not. One example is
1967 * during relocation as we may get a shared tree block ref
1968 * (direct ref) and a non-shared tree block ref (indirect
1969 * ref) for the same node/leaf.
63c84b46 1970 */
2280d425 1971 if ((ctx->refs.nnodes - prev_ref_count) > 1)
61dbb952 1972 ctx->use_path_cache = false;
63c84b46 1973
12a824dc 1974 if (level >= 0)
61dbb952 1975 store_backref_shared_cache(ctx, root, bytenr,
12a824dc 1976 level, false);
84a7949d 1977 node = ulist_next(&ctx->refs, &uiter);
dc046b10
JB
1978 if (!node)
1979 break;
1980 bytenr = node->val;
2280d425
FM
1981 if (ctx->use_path_cache) {
1982 bool is_shared;
1983 bool cached;
1984
1985 level++;
1986 cached = lookup_backref_shared_cache(ctx, root, bytenr,
1987 level, &is_shared);
1988 if (cached) {
1989 ret = (is_shared ? 1 : 0);
1990 break;
1991 }
12a824dc 1992 }
18bf591b 1993 shared.share_count = 0;
4fc7b572 1994 shared.have_delayed_delete_refs = false;
dc046b10
JB
1995 cond_resched();
1996 }
bb739cf0 1997
2280d425
FM
1998 /*
1999 * If the path cache is disabled, then it means at some tree level we
2000 * got multiple parents due to a mix of direct and indirect backrefs or
2001 * multiple leaves with file extent items pointing to the same data
2002 * extent. We have to invalidate the cache and cache only the sharedness
2003 * result for the levels where we got only one node/reference.
2004 */
2005 if (!ctx->use_path_cache) {
2006 int i = 0;
2007
2008 level--;
2009 if (ret >= 0 && level >= 0) {
2010 bytenr = ctx->path_cache_entries[level].bytenr;
2011 ctx->use_path_cache = true;
2012 store_backref_shared_cache(ctx, root, bytenr, level, ret);
2013 i = level + 1;
2014 }
2015
2016 for ( ; i < BTRFS_MAX_LEVEL; i++)
2017 ctx->path_cache_entries[i].bytenr = 0;
2018 }
2019
73e339e6
FM
2020 /*
2021 * Cache the sharedness result for the data extent if we know our inode
2022 * has more than 1 file extent item that refers to the data extent.
2023 */
2024 if (ret >= 0 && shared.self_ref_count > 1) {
2025 int slot = ctx->prev_extents_cache_slot;
2026
2027 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2028 ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2029
2030 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2031 ctx->prev_extents_cache_slot = slot;
2032 }
2033
e2fd8306 2034out_trans:
bb739cf0 2035 if (trans) {
dc046b10 2036 btrfs_put_tree_mod_seq(fs_info, &elem);
bb739cf0
EN
2037 btrfs_end_transaction(trans);
2038 } else {
dc046b10 2039 up_read(&fs_info->commit_root_sem);
bb739cf0 2040 }
03628cdb 2041out:
84a7949d 2042 ulist_release(&ctx->refs);
877c1476
FM
2043 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2044
dc046b10
JB
2045 return ret;
2046}
2047
f186373f
MF
2048int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2049 u64 start_off, struct btrfs_path *path,
2050 struct btrfs_inode_extref **ret_extref,
2051 u64 *found_off)
2052{
2053 int ret, slot;
2054 struct btrfs_key key;
2055 struct btrfs_key found_key;
2056 struct btrfs_inode_extref *extref;
73980bec 2057 const struct extent_buffer *leaf;
f186373f
MF
2058 unsigned long ptr;
2059
2060 key.objectid = inode_objectid;
962a298f 2061 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
2062 key.offset = start_off;
2063
2064 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2065 if (ret < 0)
2066 return ret;
2067
2068 while (1) {
2069 leaf = path->nodes[0];
2070 slot = path->slots[0];
2071 if (slot >= btrfs_header_nritems(leaf)) {
2072 /*
2073 * If the item at offset is not found,
2074 * btrfs_search_slot will point us to the slot
2075 * where it should be inserted. In our case
2076 * that will be the slot directly before the
2077 * next INODE_REF_KEY_V2 item. In the case
2078 * that we're pointing to the last slot in a
2079 * leaf, we must move one leaf over.
2080 */
2081 ret = btrfs_next_leaf(root, path);
2082 if (ret) {
2083 if (ret >= 1)
2084 ret = -ENOENT;
2085 break;
2086 }
2087 continue;
2088 }
2089
2090 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2091
2092 /*
2093 * Check that we're still looking at an extended ref key for
2094 * this particular objectid. If we have different
2095 * objectid or type then there are no more to be found
2096 * in the tree and we can exit.
2097 */
2098 ret = -ENOENT;
2099 if (found_key.objectid != inode_objectid)
2100 break;
962a298f 2101 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
2102 break;
2103
2104 ret = 0;
2105 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2106 extref = (struct btrfs_inode_extref *)ptr;
2107 *ret_extref = extref;
2108 if (found_off)
2109 *found_off = found_key.offset;
2110 break;
2111 }
2112
2113 return ret;
2114}
2115
48a3b636
ES
2116/*
2117 * this iterates to turn a name (from iref/extref) into a full filesystem path.
2118 * Elements of the path are separated by '/' and the path is guaranteed to be
2119 * 0-terminated. the path is only given within the current file system.
2120 * Therefore, it never starts with a '/'. the caller is responsible to provide
2121 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2122 * the start point of the resulting string is returned. this pointer is within
2123 * dest, normally.
2124 * in case the path buffer would overflow, the pointer is decremented further
2125 * as if output was written to the buffer, though no more output is actually
2126 * generated. that way, the caller can determine how much space would be
2127 * required for the path to fit into the buffer. in that case, the returned
2128 * value will be smaller than dest. callers must check this!
2129 */
96b5bd77
JS
2130char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2131 u32 name_len, unsigned long name_off,
2132 struct extent_buffer *eb_in, u64 parent,
2133 char *dest, u32 size)
a542ad1b 2134{
a542ad1b
JS
2135 int slot;
2136 u64 next_inum;
2137 int ret;
661bec6b 2138 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
2139 struct extent_buffer *eb = eb_in;
2140 struct btrfs_key found_key;
d24bec3a 2141 struct btrfs_inode_ref *iref;
a542ad1b
JS
2142
2143 if (bytes_left >= 0)
2144 dest[bytes_left] = '\0';
2145
2146 while (1) {
d24bec3a 2147 bytes_left -= name_len;
a542ad1b
JS
2148 if (bytes_left >= 0)
2149 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 2150 name_off, name_len);
b916a59a 2151 if (eb != eb_in) {
0c0fe3b0 2152 if (!path->skip_locking)
ac5887c8 2153 btrfs_tree_read_unlock(eb);
a542ad1b 2154 free_extent_buffer(eb);
b916a59a 2155 }
c234a24d
DS
2156 ret = btrfs_find_item(fs_root, path, parent, 0,
2157 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
2158 if (ret > 0)
2159 ret = -ENOENT;
a542ad1b
JS
2160 if (ret)
2161 break;
d24bec3a 2162
a542ad1b
JS
2163 next_inum = found_key.offset;
2164
2165 /* regular exit ahead */
2166 if (parent == next_inum)
2167 break;
2168
2169 slot = path->slots[0];
2170 eb = path->nodes[0];
2171 /* make sure we can use eb after releasing the path */
b916a59a 2172 if (eb != eb_in) {
0c0fe3b0
FM
2173 path->nodes[0] = NULL;
2174 path->locks[0] = 0;
b916a59a 2175 }
a542ad1b 2176 btrfs_release_path(path);
a542ad1b 2177 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
2178
2179 name_len = btrfs_inode_ref_name_len(eb, iref);
2180 name_off = (unsigned long)(iref + 1);
2181
a542ad1b
JS
2182 parent = next_inum;
2183 --bytes_left;
2184 if (bytes_left >= 0)
2185 dest[bytes_left] = '/';
2186 }
2187
2188 btrfs_release_path(path);
2189
2190 if (ret)
2191 return ERR_PTR(ret);
2192
2193 return dest + bytes_left;
2194}
2195
2196/*
2197 * this makes the path point to (logical EXTENT_ITEM *)
2198 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2199 * tree blocks and <0 on error.
2200 */
2201int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
2202 struct btrfs_path *path, struct btrfs_key *found_key,
2203 u64 *flags_ret)
a542ad1b 2204{
29cbcf40 2205 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
a542ad1b
JS
2206 int ret;
2207 u64 flags;
261c84b6 2208 u64 size = 0;
a542ad1b 2209 u32 item_size;
73980bec 2210 const struct extent_buffer *eb;
a542ad1b
JS
2211 struct btrfs_extent_item *ei;
2212 struct btrfs_key key;
2213
261c84b6
JB
2214 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2215 key.type = BTRFS_METADATA_ITEM_KEY;
2216 else
2217 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
2218 key.objectid = logical;
2219 key.offset = (u64)-1;
2220
29cbcf40 2221 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
a542ad1b
JS
2222 if (ret < 0)
2223 return ret;
a542ad1b 2224
29cbcf40 2225 ret = btrfs_previous_extent_item(extent_root, path, 0);
850a8cdf
WS
2226 if (ret) {
2227 if (ret > 0)
2228 ret = -ENOENT;
2229 return ret;
580f0a67 2230 }
850a8cdf 2231 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 2232 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
da17066c 2233 size = fs_info->nodesize;
261c84b6
JB
2234 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2235 size = found_key->offset;
2236
580f0a67 2237 if (found_key->objectid > logical ||
261c84b6 2238 found_key->objectid + size <= logical) {
ab8d0fc4
JM
2239 btrfs_debug(fs_info,
2240 "logical %llu is not within any extent", logical);
a542ad1b 2241 return -ENOENT;
4692cf58 2242 }
a542ad1b
JS
2243
2244 eb = path->nodes[0];
3212fa14 2245 item_size = btrfs_item_size(eb, path->slots[0]);
a542ad1b
JS
2246 BUG_ON(item_size < sizeof(*ei));
2247
2248 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2249 flags = btrfs_extent_flags(eb, ei);
2250
ab8d0fc4
JM
2251 btrfs_debug(fs_info,
2252 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
c1c9ff7c
GU
2253 logical, logical - found_key->objectid, found_key->objectid,
2254 found_key->offset, flags, item_size);
69917e43
LB
2255
2256 WARN_ON(!flags_ret);
2257 if (flags_ret) {
2258 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2259 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2260 else if (flags & BTRFS_EXTENT_FLAG_DATA)
2261 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
2262 else
290342f6 2263 BUG();
69917e43
LB
2264 return 0;
2265 }
a542ad1b
JS
2266
2267 return -EIO;
2268}
2269
2270/*
2271 * helper function to iterate extent inline refs. ptr must point to a 0 value
2272 * for the first call and may be modified. it is used to track state.
2273 * if more refs exist, 0 is returned and the next call to
e0c476b1 2274 * get_extent_inline_ref must pass the modified ptr parameter to get the
a542ad1b
JS
2275 * next ref. after the last ref was processed, 1 is returned.
2276 * returns <0 on error
2277 */
e0c476b1
JM
2278static int get_extent_inline_ref(unsigned long *ptr,
2279 const struct extent_buffer *eb,
2280 const struct btrfs_key *key,
2281 const struct btrfs_extent_item *ei,
2282 u32 item_size,
2283 struct btrfs_extent_inline_ref **out_eiref,
2284 int *out_type)
a542ad1b
JS
2285{
2286 unsigned long end;
2287 u64 flags;
2288 struct btrfs_tree_block_info *info;
2289
2290 if (!*ptr) {
2291 /* first call */
2292 flags = btrfs_extent_flags(eb, ei);
2293 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
2294 if (key->type == BTRFS_METADATA_ITEM_KEY) {
2295 /* a skinny metadata extent */
2296 *out_eiref =
2297 (struct btrfs_extent_inline_ref *)(ei + 1);
2298 } else {
2299 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2300 info = (struct btrfs_tree_block_info *)(ei + 1);
2301 *out_eiref =
2302 (struct btrfs_extent_inline_ref *)(info + 1);
2303 }
a542ad1b
JS
2304 } else {
2305 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2306 }
2307 *ptr = (unsigned long)*out_eiref;
cd857dd6 2308 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
2309 return -ENOENT;
2310 }
2311
2312 end = (unsigned long)ei + item_size;
6eda71d0 2313 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
3de28d57
LB
2314 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2315 BTRFS_REF_TYPE_ANY);
2316 if (*out_type == BTRFS_REF_TYPE_INVALID)
af431dcb 2317 return -EUCLEAN;
a542ad1b
JS
2318
2319 *ptr += btrfs_extent_inline_ref_size(*out_type);
2320 WARN_ON(*ptr > end);
2321 if (*ptr == end)
2322 return 1; /* last */
2323
2324 return 0;
2325}
2326
2327/*
2328 * reads the tree block backref for an extent. tree level and root are returned
2329 * through out_level and out_root. ptr must point to a 0 value for the first
e0c476b1 2330 * call and may be modified (see get_extent_inline_ref comment).
a542ad1b
JS
2331 * returns 0 if data was provided, 1 if there was no more data to provide or
2332 * <0 on error.
2333 */
2334int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
2335 struct btrfs_key *key, struct btrfs_extent_item *ei,
2336 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
2337{
2338 int ret;
2339 int type;
a542ad1b
JS
2340 struct btrfs_extent_inline_ref *eiref;
2341
2342 if (*ptr == (unsigned long)-1)
2343 return 1;
2344
2345 while (1) {
e0c476b1 2346 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
6eda71d0 2347 &eiref, &type);
a542ad1b
JS
2348 if (ret < 0)
2349 return ret;
2350
2351 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2352 type == BTRFS_SHARED_BLOCK_REF_KEY)
2353 break;
2354
2355 if (ret == 1)
2356 return 1;
2357 }
2358
2359 /* we can treat both ref types equally here */
a542ad1b 2360 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
2361
2362 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2363 struct btrfs_tree_block_info *info;
2364
2365 info = (struct btrfs_tree_block_info *)(ei + 1);
2366 *out_level = btrfs_tree_block_level(eb, info);
2367 } else {
2368 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2369 *out_level = (u8)key->offset;
2370 }
a542ad1b
JS
2371
2372 if (ret == 1)
2373 *ptr = (unsigned long)-1;
2374
2375 return 0;
2376}
2377
ab8d0fc4
JM
2378static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2379 struct extent_inode_elem *inode_list,
2380 u64 root, u64 extent_item_objectid,
2381 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 2382{
976b1908 2383 struct extent_inode_elem *eie;
4692cf58 2384 int ret = 0;
4692cf58 2385
976b1908 2386 for (eie = inode_list; eie; eie = eie->next) {
ab8d0fc4
JM
2387 btrfs_debug(fs_info,
2388 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2389 extent_item_objectid, eie->inum,
2390 eie->offset, root);
c7499a64 2391 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
4692cf58 2392 if (ret) {
ab8d0fc4
JM
2393 btrfs_debug(fs_info,
2394 "stopping iteration for %llu due to ret=%d",
2395 extent_item_objectid, ret);
4692cf58
JS
2396 break;
2397 }
a542ad1b
JS
2398 }
2399
a542ad1b
JS
2400 return ret;
2401}
2402
2403/*
2404 * calls iterate() for every inode that references the extent identified by
4692cf58 2405 * the given parameters.
a542ad1b
JS
2406 * when the iterator function returns a non-zero value, iteration stops.
2407 */
a2c8d27e
FM
2408int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2409 bool search_commit_root,
2410 iterate_extent_inodes_t *iterate, void *user_ctx)
a542ad1b 2411{
a542ad1b 2412 int ret;
a2c8d27e
FM
2413 struct ulist *refs;
2414 struct ulist_node *ref_node;
f3a84ccd 2415 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
cd1b413c 2416 struct ulist_iterator ref_uiter;
a542ad1b 2417
a2c8d27e
FM
2418 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2419 ctx->bytenr);
2420
2421 ASSERT(ctx->trans == NULL);
1baea6f1
FM
2422 ASSERT(ctx->roots == NULL);
2423
da61d31a 2424 if (!search_commit_root) {
a2c8d27e
FM
2425 struct btrfs_trans_handle *trans;
2426
2427 trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
bfc61c36
FM
2428 if (IS_ERR(trans)) {
2429 if (PTR_ERR(trans) != -ENOENT &&
66d04209 2430 PTR_ERR(trans) != -EROFS)
bfc61c36
FM
2431 return PTR_ERR(trans);
2432 trans = NULL;
2433 }
a2c8d27e 2434 ctx->trans = trans;
bfc61c36
FM
2435 }
2436
a2c8d27e
FM
2437 if (ctx->trans) {
2438 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2439 ctx->time_seq = seq_elem.seq;
2440 } else {
2441 down_read(&ctx->fs_info->commit_root_sem);
2442 }
a542ad1b 2443
a2c8d27e 2444 ret = btrfs_find_all_leafs(ctx);
4692cf58
JS
2445 if (ret)
2446 goto out;
a2c8d27e
FM
2447 refs = ctx->refs;
2448 ctx->refs = NULL;
a542ad1b 2449
cd1b413c
JS
2450 ULIST_ITER_INIT(&ref_uiter);
2451 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
66d04209 2452 const u64 leaf_bytenr = ref_node->val;
a2c8d27e
FM
2453 struct ulist_node *root_node;
2454 struct ulist_iterator root_uiter;
66d04209
FM
2455 struct extent_inode_elem *inode_list;
2456
2457 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2458
2459 if (ctx->cache_lookup) {
2460 const u64 *root_ids;
2461 int root_count;
2462 bool cached;
2463
2464 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2465 &root_ids, &root_count);
2466 if (cached) {
2467 for (int i = 0; i < root_count; i++) {
2468 ret = iterate_leaf_refs(ctx->fs_info,
2469 inode_list,
2470 root_ids[i],
2471 leaf_bytenr,
2472 iterate,
2473 user_ctx);
2474 if (ret)
2475 break;
2476 }
2477 continue;
2478 }
2479 }
2480
2481 if (!ctx->roots) {
2482 ctx->roots = ulist_alloc(GFP_NOFS);
2483 if (!ctx->roots) {
2484 ret = -ENOMEM;
2485 break;
2486 }
2487 }
a2c8d27e 2488
66d04209 2489 ctx->bytenr = leaf_bytenr;
a2c8d27e 2490 ret = btrfs_find_all_roots_safe(ctx);
4692cf58
JS
2491 if (ret)
2492 break;
a2c8d27e 2493
66d04209
FM
2494 if (ctx->cache_store)
2495 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2496
cd1b413c 2497 ULIST_ITER_INIT(&root_uiter);
a2c8d27e
FM
2498 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2499 btrfs_debug(ctx->fs_info,
ab8d0fc4
JM
2500 "root %llu references leaf %llu, data list %#llx",
2501 root_node->val, ref_node->val,
2502 ref_node->aux);
66d04209 2503 ret = iterate_leaf_refs(ctx->fs_info, inode_list,
a2c8d27e
FM
2504 root_node->val, ctx->bytenr,
2505 iterate, user_ctx);
4692cf58 2506 }
1baea6f1 2507 ulist_reinit(ctx->roots);
a542ad1b
JS
2508 }
2509
976b1908 2510 free_leaf_list(refs);
4692cf58 2511out:
a2c8d27e
FM
2512 if (ctx->trans) {
2513 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2514 btrfs_end_transaction(ctx->trans);
2515 ctx->trans = NULL;
9e351cc8 2516 } else {
a2c8d27e 2517 up_read(&ctx->fs_info->commit_root_sem);
7a3ae2f8
JS
2518 }
2519
1baea6f1
FM
2520 ulist_free(ctx->roots);
2521 ctx->roots = NULL;
2522
88ffb665
FM
2523 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2524 ret = 0;
2525
a542ad1b
JS
2526 return ret;
2527}
2528
c7499a64 2529static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
e3059ec0
DS
2530{
2531 struct btrfs_data_container *inodes = ctx;
2532 const size_t c = 3 * sizeof(u64);
2533
2534 if (inodes->bytes_left >= c) {
2535 inodes->bytes_left -= c;
2536 inodes->val[inodes->elem_cnt] = inum;
2537 inodes->val[inodes->elem_cnt + 1] = offset;
2538 inodes->val[inodes->elem_cnt + 2] = root;
2539 inodes->elem_cnt += 3;
2540 } else {
2541 inodes->bytes_missing += c - inodes->bytes_left;
2542 inodes->bytes_left = 0;
2543 inodes->elem_missed += 3;
2544 }
2545
2546 return 0;
2547}
2548
a542ad1b
JS
2549int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2550 struct btrfs_path *path,
e3059ec0 2551 void *ctx, bool ignore_offset)
a542ad1b 2552{
a2c8d27e 2553 struct btrfs_backref_walk_ctx walk_ctx = { 0 };
a542ad1b 2554 int ret;
69917e43 2555 u64 flags = 0;
a542ad1b 2556 struct btrfs_key found_key;
7a3ae2f8 2557 int search_commit_root = path->search_commit_root;
a542ad1b 2558
69917e43 2559 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 2560 btrfs_release_path(path);
a542ad1b
JS
2561 if (ret < 0)
2562 return ret;
69917e43 2563 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 2564 return -EINVAL;
a542ad1b 2565
a2c8d27e 2566 walk_ctx.bytenr = found_key.objectid;
6ce6ba53 2567 if (ignore_offset)
a2c8d27e 2568 walk_ctx.ignore_extent_item_pos = true;
6ce6ba53 2569 else
a2c8d27e
FM
2570 walk_ctx.extent_item_pos = logical - found_key.objectid;
2571 walk_ctx.fs_info = fs_info;
6ce6ba53 2572
a2c8d27e
FM
2573 return iterate_extent_inodes(&walk_ctx, search_commit_root,
2574 build_ino_list, ctx);
a542ad1b
JS
2575}
2576
ad6240f6 2577static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
875d1daa 2578 struct extent_buffer *eb, struct inode_fs_paths *ipath);
d24bec3a 2579
875d1daa 2580static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
a542ad1b 2581{
aefc1eb1 2582 int ret = 0;
a542ad1b
JS
2583 int slot;
2584 u32 cur;
2585 u32 len;
2586 u32 name_len;
2587 u64 parent = 0;
2588 int found = 0;
875d1daa
DS
2589 struct btrfs_root *fs_root = ipath->fs_root;
2590 struct btrfs_path *path = ipath->btrfs_path;
a542ad1b 2591 struct extent_buffer *eb;
a542ad1b
JS
2592 struct btrfs_inode_ref *iref;
2593 struct btrfs_key found_key;
2594
aefc1eb1 2595 while (!ret) {
c234a24d
DS
2596 ret = btrfs_find_item(fs_root, path, inum,
2597 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2598 &found_key);
2599
a542ad1b
JS
2600 if (ret < 0)
2601 break;
2602 if (ret) {
2603 ret = found ? 0 : -ENOENT;
2604 break;
2605 }
2606 ++found;
2607
2608 parent = found_key.offset;
2609 slot = path->slots[0];
3fe81ce2
FDBM
2610 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2611 if (!eb) {
2612 ret = -ENOMEM;
2613 break;
2614 }
a542ad1b
JS
2615 btrfs_release_path(path);
2616
a542ad1b
JS
2617 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2618
3212fa14 2619 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
a542ad1b
JS
2620 name_len = btrfs_inode_ref_name_len(eb, iref);
2621 /* path must be released before calling iterate()! */
ab8d0fc4
JM
2622 btrfs_debug(fs_root->fs_info,
2623 "following ref at offset %u for inode %llu in tree %llu",
4fd786e6
MT
2624 cur, found_key.objectid,
2625 fs_root->root_key.objectid);
ad6240f6 2626 ret = inode_to_path(parent, name_len,
875d1daa 2627 (unsigned long)(iref + 1), eb, ipath);
aefc1eb1 2628 if (ret)
a542ad1b 2629 break;
a542ad1b
JS
2630 len = sizeof(*iref) + name_len;
2631 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2632 }
2633 free_extent_buffer(eb);
2634 }
2635
2636 btrfs_release_path(path);
2637
2638 return ret;
2639}
2640
875d1daa 2641static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
d24bec3a
MF
2642{
2643 int ret;
2644 int slot;
2645 u64 offset = 0;
2646 u64 parent;
2647 int found = 0;
875d1daa
DS
2648 struct btrfs_root *fs_root = ipath->fs_root;
2649 struct btrfs_path *path = ipath->btrfs_path;
d24bec3a
MF
2650 struct extent_buffer *eb;
2651 struct btrfs_inode_extref *extref;
d24bec3a
MF
2652 u32 item_size;
2653 u32 cur_offset;
2654 unsigned long ptr;
2655
2656 while (1) {
2657 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2658 &offset);
2659 if (ret < 0)
2660 break;
2661 if (ret) {
2662 ret = found ? 0 : -ENOENT;
2663 break;
2664 }
2665 ++found;
2666
2667 slot = path->slots[0];
3fe81ce2
FDBM
2668 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2669 if (!eb) {
2670 ret = -ENOMEM;
2671 break;
2672 }
d24bec3a
MF
2673 btrfs_release_path(path);
2674
3212fa14 2675 item_size = btrfs_item_size(eb, slot);
2849a854 2676 ptr = btrfs_item_ptr_offset(eb, slot);
d24bec3a
MF
2677 cur_offset = 0;
2678
2679 while (cur_offset < item_size) {
2680 u32 name_len;
2681
2682 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2683 parent = btrfs_inode_extref_parent(eb, extref);
2684 name_len = btrfs_inode_extref_name_len(eb, extref);
ad6240f6 2685 ret = inode_to_path(parent, name_len,
875d1daa 2686 (unsigned long)&extref->name, eb, ipath);
d24bec3a
MF
2687 if (ret)
2688 break;
2689
2849a854 2690 cur_offset += btrfs_inode_extref_name_len(eb, extref);
d24bec3a
MF
2691 cur_offset += sizeof(*extref);
2692 }
d24bec3a
MF
2693 free_extent_buffer(eb);
2694
2695 offset++;
2696 }
2697
2698 btrfs_release_path(path);
2699
2700 return ret;
2701}
2702
a542ad1b
JS
2703/*
2704 * returns 0 if the path could be dumped (probably truncated)
2705 * returns <0 in case of an error
2706 */
d24bec3a 2707static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
875d1daa 2708 struct extent_buffer *eb, struct inode_fs_paths *ipath)
a542ad1b 2709{
a542ad1b
JS
2710 char *fspath;
2711 char *fspath_min;
2712 int i = ipath->fspath->elem_cnt;
2713 const int s_ptr = sizeof(char *);
2714 u32 bytes_left;
2715
2716 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2717 ipath->fspath->bytes_left - s_ptr : 0;
2718
740c3d22 2719 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
2720 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2721 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
2722 if (IS_ERR(fspath))
2723 return PTR_ERR(fspath);
2724
2725 if (fspath > fspath_min) {
745c4d8e 2726 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
2727 ++ipath->fspath->elem_cnt;
2728 ipath->fspath->bytes_left = fspath - fspath_min;
2729 } else {
2730 ++ipath->fspath->elem_missed;
2731 ipath->fspath->bytes_missing += fspath_min - fspath;
2732 ipath->fspath->bytes_left = 0;
2733 }
2734
2735 return 0;
2736}
2737
2738/*
2739 * this dumps all file system paths to the inode into the ipath struct, provided
2740 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 2741 * from ipath->fspath->val[i].
a542ad1b 2742 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 2743 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
01327610 2744 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
a542ad1b
JS
2745 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2746 * have been needed to return all paths.
2747 */
2748int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2749{
ad6240f6
DS
2750 int ret;
2751 int found_refs = 0;
2752
875d1daa 2753 ret = iterate_inode_refs(inum, ipath);
ad6240f6
DS
2754 if (!ret)
2755 ++found_refs;
2756 else if (ret != -ENOENT)
2757 return ret;
2758
875d1daa 2759 ret = iterate_inode_extrefs(inum, ipath);
ad6240f6
DS
2760 if (ret == -ENOENT && found_refs)
2761 return 0;
2762
2763 return ret;
a542ad1b
JS
2764}
2765
a542ad1b
JS
2766struct btrfs_data_container *init_data_container(u32 total_bytes)
2767{
2768 struct btrfs_data_container *data;
2769 size_t alloc_bytes;
2770
2771 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
f54de068 2772 data = kvmalloc(alloc_bytes, GFP_KERNEL);
a542ad1b
JS
2773 if (!data)
2774 return ERR_PTR(-ENOMEM);
2775
2776 if (total_bytes >= sizeof(*data)) {
2777 data->bytes_left = total_bytes - sizeof(*data);
2778 data->bytes_missing = 0;
2779 } else {
2780 data->bytes_missing = sizeof(*data) - total_bytes;
2781 data->bytes_left = 0;
2782 }
2783
2784 data->elem_cnt = 0;
2785 data->elem_missed = 0;
2786
2787 return data;
2788}
2789
2790/*
2791 * allocates space to return multiple file system paths for an inode.
2792 * total_bytes to allocate are passed, note that space usable for actual path
2793 * information will be total_bytes - sizeof(struct inode_fs_paths).
2794 * the returned pointer must be freed with free_ipath() in the end.
2795 */
2796struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2797 struct btrfs_path *path)
2798{
2799 struct inode_fs_paths *ifp;
2800 struct btrfs_data_container *fspath;
2801
2802 fspath = init_data_container(total_bytes);
2803 if (IS_ERR(fspath))
afc6961f 2804 return ERR_CAST(fspath);
a542ad1b 2805
f54de068 2806 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
a542ad1b 2807 if (!ifp) {
f54de068 2808 kvfree(fspath);
a542ad1b
JS
2809 return ERR_PTR(-ENOMEM);
2810 }
2811
2812 ifp->btrfs_path = path;
2813 ifp->fspath = fspath;
2814 ifp->fs_root = fs_root;
2815
2816 return ifp;
2817}
2818
2819void free_ipath(struct inode_fs_paths *ipath)
2820{
4735fb28
JJ
2821 if (!ipath)
2822 return;
f54de068 2823 kvfree(ipath->fspath);
a542ad1b
JS
2824 kfree(ipath);
2825}
a37f232b 2826
d68194b2 2827struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
a37f232b
QW
2828{
2829 struct btrfs_backref_iter *ret;
2830
d68194b2 2831 ret = kzalloc(sizeof(*ret), GFP_NOFS);
a37f232b
QW
2832 if (!ret)
2833 return NULL;
2834
2835 ret->path = btrfs_alloc_path();
c15c2ec0 2836 if (!ret->path) {
a37f232b
QW
2837 kfree(ret);
2838 return NULL;
2839 }
2840
2841 /* Current backref iterator only supports iteration in commit root */
2842 ret->path->search_commit_root = 1;
2843 ret->path->skip_locking = 1;
2844 ret->fs_info = fs_info;
2845
2846 return ret;
2847}
2848
2849int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2850{
2851 struct btrfs_fs_info *fs_info = iter->fs_info;
29cbcf40 2852 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
a37f232b
QW
2853 struct btrfs_path *path = iter->path;
2854 struct btrfs_extent_item *ei;
2855 struct btrfs_key key;
2856 int ret;
2857
2858 key.objectid = bytenr;
2859 key.type = BTRFS_METADATA_ITEM_KEY;
2860 key.offset = (u64)-1;
2861 iter->bytenr = bytenr;
2862
29cbcf40 2863 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
a37f232b
QW
2864 if (ret < 0)
2865 return ret;
2866 if (ret == 0) {
2867 ret = -EUCLEAN;
2868 goto release;
2869 }
2870 if (path->slots[0] == 0) {
2871 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2872 ret = -EUCLEAN;
2873 goto release;
2874 }
2875 path->slots[0]--;
2876
2877 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2878 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2879 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2880 ret = -ENOENT;
2881 goto release;
2882 }
2883 memcpy(&iter->cur_key, &key, sizeof(key));
2884 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2885 path->slots[0]);
2886 iter->end_ptr = (u32)(iter->item_ptr +
3212fa14 2887 btrfs_item_size(path->nodes[0], path->slots[0]));
a37f232b
QW
2888 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2889 struct btrfs_extent_item);
2890
2891 /*
2892 * Only support iteration on tree backref yet.
2893 *
2894 * This is an extra precaution for non skinny-metadata, where
2895 * EXTENT_ITEM is also used for tree blocks, that we can only use
2896 * extent flags to determine if it's a tree block.
2897 */
2898 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2899 ret = -ENOTSUPP;
2900 goto release;
2901 }
2902 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2903
2904 /* If there is no inline backref, go search for keyed backref */
2905 if (iter->cur_ptr >= iter->end_ptr) {
29cbcf40 2906 ret = btrfs_next_item(extent_root, path);
a37f232b
QW
2907
2908 /* No inline nor keyed ref */
2909 if (ret > 0) {
2910 ret = -ENOENT;
2911 goto release;
2912 }
2913 if (ret < 0)
2914 goto release;
2915
2916 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2917 path->slots[0]);
2918 if (iter->cur_key.objectid != bytenr ||
2919 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2920 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2921 ret = -ENOENT;
2922 goto release;
2923 }
2924 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2925 path->slots[0]);
2926 iter->item_ptr = iter->cur_ptr;
3212fa14 2927 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
a37f232b
QW
2928 path->nodes[0], path->slots[0]));
2929 }
2930
2931 return 0;
2932release:
2933 btrfs_backref_iter_release(iter);
2934 return ret;
2935}
c39c2ddc
QW
2936
2937/*
2938 * Go to the next backref item of current bytenr, can be either inlined or
2939 * keyed.
2940 *
2941 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2942 *
2943 * Return 0 if we get next backref without problem.
2944 * Return >0 if there is no extra backref for this bytenr.
2945 * Return <0 if there is something wrong happened.
2946 */
2947int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2948{
2949 struct extent_buffer *eb = btrfs_backref_get_eb(iter);
29cbcf40 2950 struct btrfs_root *extent_root;
c39c2ddc
QW
2951 struct btrfs_path *path = iter->path;
2952 struct btrfs_extent_inline_ref *iref;
2953 int ret;
2954 u32 size;
2955
2956 if (btrfs_backref_iter_is_inline_ref(iter)) {
2957 /* We're still inside the inline refs */
2958 ASSERT(iter->cur_ptr < iter->end_ptr);
2959
2960 if (btrfs_backref_has_tree_block_info(iter)) {
2961 /* First tree block info */
2962 size = sizeof(struct btrfs_tree_block_info);
2963 } else {
2964 /* Use inline ref type to determine the size */
2965 int type;
2966
2967 iref = (struct btrfs_extent_inline_ref *)
2968 ((unsigned long)iter->cur_ptr);
2969 type = btrfs_extent_inline_ref_type(eb, iref);
2970
2971 size = btrfs_extent_inline_ref_size(type);
2972 }
2973 iter->cur_ptr += size;
2974 if (iter->cur_ptr < iter->end_ptr)
2975 return 0;
2976
2977 /* All inline items iterated, fall through */
2978 }
2979
2980 /* We're at keyed items, there is no inline item, go to the next one */
29cbcf40
JB
2981 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2982 ret = btrfs_next_item(extent_root, iter->path);
c39c2ddc
QW
2983 if (ret)
2984 return ret;
2985
2986 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2987 if (iter->cur_key.objectid != iter->bytenr ||
2988 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2989 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2990 return 1;
2991 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2992 path->slots[0]);
2993 iter->cur_ptr = iter->item_ptr;
3212fa14 2994 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
c39c2ddc
QW
2995 path->slots[0]);
2996 return 0;
2997}
584fb121
QW
2998
2999void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
3000 struct btrfs_backref_cache *cache, int is_reloc)
3001{
3002 int i;
3003
3004 cache->rb_root = RB_ROOT;
3005 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3006 INIT_LIST_HEAD(&cache->pending[i]);
3007 INIT_LIST_HEAD(&cache->changed);
3008 INIT_LIST_HEAD(&cache->detached);
3009 INIT_LIST_HEAD(&cache->leaves);
3010 INIT_LIST_HEAD(&cache->pending_edge);
3011 INIT_LIST_HEAD(&cache->useless_node);
3012 cache->fs_info = fs_info;
3013 cache->is_reloc = is_reloc;
3014}
b1818dab
QW
3015
3016struct btrfs_backref_node *btrfs_backref_alloc_node(
3017 struct btrfs_backref_cache *cache, u64 bytenr, int level)
3018{
3019 struct btrfs_backref_node *node;
3020
3021 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3022 node = kzalloc(sizeof(*node), GFP_NOFS);
3023 if (!node)
3024 return node;
3025
3026 INIT_LIST_HEAD(&node->list);
3027 INIT_LIST_HEAD(&node->upper);
3028 INIT_LIST_HEAD(&node->lower);
3029 RB_CLEAR_NODE(&node->rb_node);
3030 cache->nr_nodes++;
3031 node->level = level;
3032 node->bytenr = bytenr;
3033
3034 return node;
3035}
47254d07
QW
3036
3037struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3038 struct btrfs_backref_cache *cache)
3039{
3040 struct btrfs_backref_edge *edge;
3041
3042 edge = kzalloc(sizeof(*edge), GFP_NOFS);
3043 if (edge)
3044 cache->nr_edges++;
3045 return edge;
3046}
023acb07
QW
3047
3048/*
3049 * Drop the backref node from cache, also cleaning up all its
3050 * upper edges and any uncached nodes in the path.
3051 *
3052 * This cleanup happens bottom up, thus the node should either
3053 * be the lowest node in the cache or a detached node.
3054 */
3055void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3056 struct btrfs_backref_node *node)
3057{
3058 struct btrfs_backref_node *upper;
3059 struct btrfs_backref_edge *edge;
3060
3061 if (!node)
3062 return;
3063
3064 BUG_ON(!node->lowest && !node->detached);
3065 while (!list_empty(&node->upper)) {
3066 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
3067 list[LOWER]);
3068 upper = edge->node[UPPER];
3069 list_del(&edge->list[LOWER]);
3070 list_del(&edge->list[UPPER]);
3071 btrfs_backref_free_edge(cache, edge);
3072
023acb07
QW
3073 /*
3074 * Add the node to leaf node list if no other child block
3075 * cached.
3076 */
3077 if (list_empty(&upper->lower)) {
3078 list_add_tail(&upper->lower, &cache->leaves);
3079 upper->lowest = 1;
3080 }
3081 }
3082
3083 btrfs_backref_drop_node(cache, node);
3084}
13fe1bdb
QW
3085
3086/*
3087 * Release all nodes/edges from current cache
3088 */
3089void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3090{
3091 struct btrfs_backref_node *node;
3092 int i;
3093
3094 while (!list_empty(&cache->detached)) {
3095 node = list_entry(cache->detached.next,
3096 struct btrfs_backref_node, list);
3097 btrfs_backref_cleanup_node(cache, node);
3098 }
3099
3100 while (!list_empty(&cache->leaves)) {
3101 node = list_entry(cache->leaves.next,
3102 struct btrfs_backref_node, lower);
3103 btrfs_backref_cleanup_node(cache, node);
3104 }
3105
3106 cache->last_trans = 0;
3107
3108 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3109 ASSERT(list_empty(&cache->pending[i]));
3110 ASSERT(list_empty(&cache->pending_edge));
3111 ASSERT(list_empty(&cache->useless_node));
3112 ASSERT(list_empty(&cache->changed));
3113 ASSERT(list_empty(&cache->detached));
3114 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
3115 ASSERT(!cache->nr_nodes);
3116 ASSERT(!cache->nr_edges);
3117}
1b60d2ec
QW
3118
3119/*
3120 * Handle direct tree backref
3121 *
3122 * Direct tree backref means, the backref item shows its parent bytenr
3123 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3124 *
3125 * @ref_key: The converted backref key.
3126 * For keyed backref, it's the item key.
3127 * For inlined backref, objectid is the bytenr,
3128 * type is btrfs_inline_ref_type, offset is
3129 * btrfs_inline_ref_offset.
3130 */
3131static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3132 struct btrfs_key *ref_key,
3133 struct btrfs_backref_node *cur)
3134{
3135 struct btrfs_backref_edge *edge;
3136 struct btrfs_backref_node *upper;
3137 struct rb_node *rb_node;
3138
3139 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3140
3141 /* Only reloc root uses backref pointing to itself */
3142 if (ref_key->objectid == ref_key->offset) {
3143 struct btrfs_root *root;
3144
3145 cur->is_reloc_root = 1;
3146 /* Only reloc backref cache cares about a specific root */
3147 if (cache->is_reloc) {
3148 root = find_reloc_root(cache->fs_info, cur->bytenr);
f78743fb 3149 if (!root)
1b60d2ec
QW
3150 return -ENOENT;
3151 cur->root = root;
3152 } else {
3153 /*
3154 * For generic purpose backref cache, reloc root node
3155 * is useless.
3156 */
3157 list_add(&cur->list, &cache->useless_node);
3158 }
3159 return 0;
3160 }
3161
3162 edge = btrfs_backref_alloc_edge(cache);
3163 if (!edge)
3164 return -ENOMEM;
3165
3166 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3167 if (!rb_node) {
3168 /* Parent node not yet cached */
3169 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3170 cur->level + 1);
3171 if (!upper) {
3172 btrfs_backref_free_edge(cache, edge);
3173 return -ENOMEM;
3174 }
3175
3176 /*
3177 * Backrefs for the upper level block isn't cached, add the
3178 * block to pending list
3179 */
3180 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3181 } else {
3182 /* Parent node already cached */
3183 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3184 ASSERT(upper->checked);
3185 INIT_LIST_HEAD(&edge->list[UPPER]);
3186 }
3187 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
3188 return 0;
3189}
3190
3191/*
3192 * Handle indirect tree backref
3193 *
3194 * Indirect tree backref means, we only know which tree the node belongs to.
3195 * We still need to do a tree search to find out the parents. This is for
3196 * TREE_BLOCK_REF backref (keyed or inlined).
3197 *
3198 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
3199 * @tree_key: The first key of this tree block.
1a9fd417 3200 * @path: A clean (released) path, to avoid allocating path every time
1b60d2ec
QW
3201 * the function get called.
3202 */
3203static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
3204 struct btrfs_path *path,
3205 struct btrfs_key *ref_key,
3206 struct btrfs_key *tree_key,
3207 struct btrfs_backref_node *cur)
3208{
3209 struct btrfs_fs_info *fs_info = cache->fs_info;
3210 struct btrfs_backref_node *upper;
3211 struct btrfs_backref_node *lower;
3212 struct btrfs_backref_edge *edge;
3213 struct extent_buffer *eb;
3214 struct btrfs_root *root;
1b60d2ec
QW
3215 struct rb_node *rb_node;
3216 int level;
3217 bool need_check = true;
3218 int ret;
3219
56e9357a 3220 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
1b60d2ec
QW
3221 if (IS_ERR(root))
3222 return PTR_ERR(root);
92a7cc42 3223 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
1b60d2ec
QW
3224 cur->cowonly = 1;
3225
3226 if (btrfs_root_level(&root->root_item) == cur->level) {
3227 /* Tree root */
3228 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
876de781
QW
3229 /*
3230 * For reloc backref cache, we may ignore reloc root. But for
3231 * general purpose backref cache, we can't rely on
3232 * btrfs_should_ignore_reloc_root() as it may conflict with
3233 * current running relocation and lead to missing root.
3234 *
3235 * For general purpose backref cache, reloc root detection is
3236 * completely relying on direct backref (key->offset is parent
3237 * bytenr), thus only do such check for reloc cache.
3238 */
3239 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
1b60d2ec
QW
3240 btrfs_put_root(root);
3241 list_add(&cur->list, &cache->useless_node);
3242 } else {
3243 cur->root = root;
3244 }
3245 return 0;
3246 }
3247
3248 level = cur->level + 1;
3249
3250 /* Search the tree to find parent blocks referring to the block */
3251 path->search_commit_root = 1;
3252 path->skip_locking = 1;
3253 path->lowest_level = level;
3254 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3255 path->lowest_level = 0;
3256 if (ret < 0) {
3257 btrfs_put_root(root);
3258 return ret;
3259 }
3260 if (ret > 0 && path->slots[level] > 0)
3261 path->slots[level]--;
3262
3263 eb = path->nodes[level];
3264 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3265 btrfs_err(fs_info,
3266"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3267 cur->bytenr, level - 1, root->root_key.objectid,
3268 tree_key->objectid, tree_key->type, tree_key->offset);
3269 btrfs_put_root(root);
3270 ret = -ENOENT;
3271 goto out;
3272 }
3273 lower = cur;
3274
3275 /* Add all nodes and edges in the path */
3276 for (; level < BTRFS_MAX_LEVEL; level++) {
3277 if (!path->nodes[level]) {
3278 ASSERT(btrfs_root_bytenr(&root->root_item) ==
3279 lower->bytenr);
876de781
QW
3280 /* Same as previous should_ignore_reloc_root() call */
3281 if (btrfs_should_ignore_reloc_root(root) &&
3282 cache->is_reloc) {
1b60d2ec
QW
3283 btrfs_put_root(root);
3284 list_add(&lower->list, &cache->useless_node);
3285 } else {
3286 lower->root = root;
3287 }
3288 break;
3289 }
3290
3291 edge = btrfs_backref_alloc_edge(cache);
3292 if (!edge) {
3293 btrfs_put_root(root);
3294 ret = -ENOMEM;
3295 goto out;
3296 }
3297
3298 eb = path->nodes[level];
3299 rb_node = rb_simple_search(&cache->rb_root, eb->start);
3300 if (!rb_node) {
3301 upper = btrfs_backref_alloc_node(cache, eb->start,
3302 lower->level + 1);
3303 if (!upper) {
3304 btrfs_put_root(root);
3305 btrfs_backref_free_edge(cache, edge);
3306 ret = -ENOMEM;
3307 goto out;
3308 }
3309 upper->owner = btrfs_header_owner(eb);
92a7cc42 3310 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
1b60d2ec
QW
3311 upper->cowonly = 1;
3312
3313 /*
3314 * If we know the block isn't shared we can avoid
3315 * checking its backrefs.
3316 */
3317 if (btrfs_block_can_be_shared(root, eb))
3318 upper->checked = 0;
3319 else
3320 upper->checked = 1;
3321
3322 /*
3323 * Add the block to pending list if we need to check its
3324 * backrefs, we only do this once while walking up a
3325 * tree as we will catch anything else later on.
3326 */
3327 if (!upper->checked && need_check) {
3328 need_check = false;
3329 list_add_tail(&edge->list[UPPER],
3330 &cache->pending_edge);
3331 } else {
3332 if (upper->checked)
3333 need_check = true;
3334 INIT_LIST_HEAD(&edge->list[UPPER]);
3335 }
3336 } else {
3337 upper = rb_entry(rb_node, struct btrfs_backref_node,
3338 rb_node);
3339 ASSERT(upper->checked);
3340 INIT_LIST_HEAD(&edge->list[UPPER]);
3341 if (!upper->owner)
3342 upper->owner = btrfs_header_owner(eb);
3343 }
3344 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3345
3346 if (rb_node) {
3347 btrfs_put_root(root);
3348 break;
3349 }
3350 lower = upper;
3351 upper = NULL;
3352 }
3353out:
3354 btrfs_release_path(path);
3355 return ret;
3356}
3357
3358/*
3359 * Add backref node @cur into @cache.
3360 *
3361 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3362 * links aren't yet bi-directional. Needs to finish such links.
fc997ed0 3363 * Use btrfs_backref_finish_upper_links() to finish such linkage.
1b60d2ec
QW
3364 *
3365 * @path: Released path for indirect tree backref lookup
3366 * @iter: Released backref iter for extent tree search
3367 * @node_key: The first key of the tree block
3368 */
3369int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
3370 struct btrfs_path *path,
3371 struct btrfs_backref_iter *iter,
3372 struct btrfs_key *node_key,
3373 struct btrfs_backref_node *cur)
3374{
3375 struct btrfs_fs_info *fs_info = cache->fs_info;
3376 struct btrfs_backref_edge *edge;
3377 struct btrfs_backref_node *exist;
3378 int ret;
3379
3380 ret = btrfs_backref_iter_start(iter, cur->bytenr);
3381 if (ret < 0)
3382 return ret;
3383 /*
3384 * We skip the first btrfs_tree_block_info, as we don't use the key
3385 * stored in it, but fetch it from the tree block
3386 */
3387 if (btrfs_backref_has_tree_block_info(iter)) {
3388 ret = btrfs_backref_iter_next(iter);
3389 if (ret < 0)
3390 goto out;
3391 /* No extra backref? This means the tree block is corrupted */
3392 if (ret > 0) {
3393 ret = -EUCLEAN;
3394 goto out;
3395 }
3396 }
3397 WARN_ON(cur->checked);
3398 if (!list_empty(&cur->upper)) {
3399 /*
3400 * The backref was added previously when processing backref of
3401 * type BTRFS_TREE_BLOCK_REF_KEY
3402 */
3403 ASSERT(list_is_singular(&cur->upper));
3404 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3405 list[LOWER]);
3406 ASSERT(list_empty(&edge->list[UPPER]));
3407 exist = edge->node[UPPER];
3408 /*
3409 * Add the upper level block to pending list if we need check
3410 * its backrefs
3411 */
3412 if (!exist->checked)
3413 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3414 } else {
3415 exist = NULL;
3416 }
3417
3418 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3419 struct extent_buffer *eb;
3420 struct btrfs_key key;
3421 int type;
3422
3423 cond_resched();
3424 eb = btrfs_backref_get_eb(iter);
3425
3426 key.objectid = iter->bytenr;
3427 if (btrfs_backref_iter_is_inline_ref(iter)) {
3428 struct btrfs_extent_inline_ref *iref;
3429
3430 /* Update key for inline backref */
3431 iref = (struct btrfs_extent_inline_ref *)
3432 ((unsigned long)iter->cur_ptr);
3433 type = btrfs_get_extent_inline_ref_type(eb, iref,
3434 BTRFS_REF_TYPE_BLOCK);
3435 if (type == BTRFS_REF_TYPE_INVALID) {
3436 ret = -EUCLEAN;
3437 goto out;
3438 }
3439 key.type = type;
3440 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3441 } else {
3442 key.type = iter->cur_key.type;
3443 key.offset = iter->cur_key.offset;
3444 }
3445
3446 /*
3447 * Parent node found and matches current inline ref, no need to
3448 * rebuild this node for this inline ref
3449 */
3450 if (exist &&
3451 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3452 exist->owner == key.offset) ||
3453 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3454 exist->bytenr == key.offset))) {
3455 exist = NULL;
3456 continue;
3457 }
3458
3459 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3460 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3461 ret = handle_direct_tree_backref(cache, &key, cur);
3462 if (ret < 0)
3463 goto out;
3464 continue;
3465 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3466 ret = -EINVAL;
3467 btrfs_print_v0_err(fs_info);
3468 btrfs_handle_fs_error(fs_info, ret, NULL);
3469 goto out;
3470 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
3471 continue;
3472 }
3473
3474 /*
3475 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
3476 * means the root objectid. We need to search the tree to get
3477 * its parent bytenr.
3478 */
3479 ret = handle_indirect_tree_backref(cache, path, &key, node_key,
3480 cur);
3481 if (ret < 0)
3482 goto out;
3483 }
3484 ret = 0;
3485 cur->checked = 1;
3486 WARN_ON(exist);
3487out:
3488 btrfs_backref_iter_release(iter);
3489 return ret;
3490}
fc997ed0
QW
3491
3492/*
3493 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3494 */
3495int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3496 struct btrfs_backref_node *start)
3497{
3498 struct list_head *useless_node = &cache->useless_node;
3499 struct btrfs_backref_edge *edge;
3500 struct rb_node *rb_node;
3501 LIST_HEAD(pending_edge);
3502
3503 ASSERT(start->checked);
3504
3505 /* Insert this node to cache if it's not COW-only */
3506 if (!start->cowonly) {
3507 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3508 &start->rb_node);
3509 if (rb_node)
3510 btrfs_backref_panic(cache->fs_info, start->bytenr,
3511 -EEXIST);
3512 list_add_tail(&start->lower, &cache->leaves);
3513 }
3514
3515 /*
3516 * Use breadth first search to iterate all related edges.
3517 *
3518 * The starting points are all the edges of this node
3519 */
3520 list_for_each_entry(edge, &start->upper, list[LOWER])
3521 list_add_tail(&edge->list[UPPER], &pending_edge);
3522
3523 while (!list_empty(&pending_edge)) {
3524 struct btrfs_backref_node *upper;
3525 struct btrfs_backref_node *lower;
fc997ed0
QW
3526
3527 edge = list_first_entry(&pending_edge,
3528 struct btrfs_backref_edge, list[UPPER]);
3529 list_del_init(&edge->list[UPPER]);
3530 upper = edge->node[UPPER];
3531 lower = edge->node[LOWER];
3532
3533 /* Parent is detached, no need to keep any edges */
3534 if (upper->detached) {
3535 list_del(&edge->list[LOWER]);
3536 btrfs_backref_free_edge(cache, edge);
3537
3538 /* Lower node is orphan, queue for cleanup */
3539 if (list_empty(&lower->upper))
3540 list_add(&lower->list, useless_node);
3541 continue;
3542 }
3543
3544 /*
3545 * All new nodes added in current build_backref_tree() haven't
3546 * been linked to the cache rb tree.
3547 * So if we have upper->rb_node populated, this means a cache
3548 * hit. We only need to link the edge, as @upper and all its
3549 * parents have already been linked.
3550 */
3551 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3552 if (upper->lowest) {
3553 list_del_init(&upper->lower);
3554 upper->lowest = 0;
3555 }
3556
3557 list_add_tail(&edge->list[UPPER], &upper->lower);
3558 continue;
3559 }
3560
3561 /* Sanity check, we shouldn't have any unchecked nodes */
3562 if (!upper->checked) {
3563 ASSERT(0);
3564 return -EUCLEAN;
3565 }
3566
3567 /* Sanity check, COW-only node has non-COW-only parent */
3568 if (start->cowonly != upper->cowonly) {
3569 ASSERT(0);
3570 return -EUCLEAN;
3571 }
3572
3573 /* Only cache non-COW-only (subvolume trees) tree blocks */
3574 if (!upper->cowonly) {
3575 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3576 &upper->rb_node);
3577 if (rb_node) {
3578 btrfs_backref_panic(cache->fs_info,
3579 upper->bytenr, -EEXIST);
3580 return -EUCLEAN;
3581 }
3582 }
3583
3584 list_add_tail(&edge->list[UPPER], &upper->lower);
3585
3586 /*
3587 * Also queue all the parent edges of this uncached node
3588 * to finish the upper linkage
3589 */
3590 list_for_each_entry(edge, &upper->upper, list[LOWER])
3591 list_add_tail(&edge->list[UPPER], &pending_edge);
3592 }
3593 return 0;
3594}
1b23ea18
QW
3595
3596void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3597 struct btrfs_backref_node *node)
3598{
3599 struct btrfs_backref_node *lower;
3600 struct btrfs_backref_node *upper;
3601 struct btrfs_backref_edge *edge;
3602
3603 while (!list_empty(&cache->useless_node)) {
3604 lower = list_first_entry(&cache->useless_node,
3605 struct btrfs_backref_node, list);
3606 list_del_init(&lower->list);
3607 }
3608 while (!list_empty(&cache->pending_edge)) {
3609 edge = list_first_entry(&cache->pending_edge,
3610 struct btrfs_backref_edge, list[UPPER]);
3611 list_del(&edge->list[UPPER]);
3612 list_del(&edge->list[LOWER]);
3613 lower = edge->node[LOWER];
3614 upper = edge->node[UPPER];
3615 btrfs_backref_free_edge(cache, edge);
3616
3617 /*
3618 * Lower is no longer linked to any upper backref nodes and
3619 * isn't in the cache, we can free it ourselves.
3620 */
3621 if (list_empty(&lower->upper) &&
3622 RB_EMPTY_NODE(&lower->rb_node))
3623 list_add(&lower->list, &cache->useless_node);
3624
3625 if (!RB_EMPTY_NODE(&upper->rb_node))
3626 continue;
3627
3628 /* Add this guy's upper edges to the list to process */
3629 list_for_each_entry(edge, &upper->upper, list[LOWER])
3630 list_add_tail(&edge->list[UPPER],
3631 &cache->pending_edge);
3632 if (list_empty(&upper->upper))
3633 list_add(&upper->list, &cache->useless_node);
3634 }
3635
3636 while (!list_empty(&cache->useless_node)) {
3637 lower = list_first_entry(&cache->useless_node,
3638 struct btrfs_backref_node, list);
3639 list_del_init(&lower->list);
3640 if (lower == node)
3641 node = NULL;
49ecc679 3642 btrfs_backref_drop_node(cache, lower);
1b23ea18
QW
3643 }
3644
3645 btrfs_backref_cleanup_node(cache, node);
3646 ASSERT(list_empty(&cache->useless_node) &&
3647 list_empty(&cache->pending_edge));
3648}