Btrfs: bail out on error during replay_dir_deletes
[linux-2.6-block.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
f54de068 19#include <linux/mm.h>
afce772e 20#include <linux/rbtree.h>
00142756 21#include <trace/events/btrfs.h>
a542ad1b
JS
22#include "ctree.h"
23#include "disk-io.h"
24#include "backref.h"
8da6d581
JS
25#include "ulist.h"
26#include "transaction.h"
27#include "delayed-ref.h"
b916a59a 28#include "locking.h"
a542ad1b 29
dc046b10
JB
30/* Just an arbitrary number so we can be sure this happened */
31#define BACKREF_FOUND_SHARED 6
32
976b1908
JS
33struct extent_inode_elem {
34 u64 inum;
35 u64 offset;
36 struct extent_inode_elem *next;
37};
38
73980bec
JM
39static int check_extent_in_eb(const struct btrfs_key *key,
40 const struct extent_buffer *eb,
41 const struct btrfs_file_extent_item *fi,
42 u64 extent_item_pos,
c995ab3c
ZB
43 struct extent_inode_elem **eie,
44 bool ignore_offset)
976b1908 45{
8ca15e05 46 u64 offset = 0;
976b1908
JS
47 struct extent_inode_elem *e;
48
c995ab3c
ZB
49 if (!ignore_offset &&
50 !btrfs_file_extent_compression(eb, fi) &&
8ca15e05
JB
51 !btrfs_file_extent_encryption(eb, fi) &&
52 !btrfs_file_extent_other_encoding(eb, fi)) {
53 u64 data_offset;
54 u64 data_len;
976b1908 55
8ca15e05
JB
56 data_offset = btrfs_file_extent_offset(eb, fi);
57 data_len = btrfs_file_extent_num_bytes(eb, fi);
58
59 if (extent_item_pos < data_offset ||
60 extent_item_pos >= data_offset + data_len)
61 return 1;
62 offset = extent_item_pos - data_offset;
63 }
976b1908
JS
64
65 e = kmalloc(sizeof(*e), GFP_NOFS);
66 if (!e)
67 return -ENOMEM;
68
69 e->next = *eie;
70 e->inum = key->objectid;
8ca15e05 71 e->offset = key->offset + offset;
976b1908
JS
72 *eie = e;
73
74 return 0;
75}
76
f05c4746
WS
77static void free_inode_elem_list(struct extent_inode_elem *eie)
78{
79 struct extent_inode_elem *eie_next;
80
81 for (; eie; eie = eie_next) {
82 eie_next = eie->next;
83 kfree(eie);
84 }
85}
86
73980bec
JM
87static int find_extent_in_eb(const struct extent_buffer *eb,
88 u64 wanted_disk_byte, u64 extent_item_pos,
c995ab3c
ZB
89 struct extent_inode_elem **eie,
90 bool ignore_offset)
976b1908
JS
91{
92 u64 disk_byte;
93 struct btrfs_key key;
94 struct btrfs_file_extent_item *fi;
95 int slot;
96 int nritems;
97 int extent_type;
98 int ret;
99
100 /*
101 * from the shared data ref, we only have the leaf but we need
102 * the key. thus, we must look into all items and see that we
103 * find one (some) with a reference to our extent item.
104 */
105 nritems = btrfs_header_nritems(eb);
106 for (slot = 0; slot < nritems; ++slot) {
107 btrfs_item_key_to_cpu(eb, &key, slot);
108 if (key.type != BTRFS_EXTENT_DATA_KEY)
109 continue;
110 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
111 extent_type = btrfs_file_extent_type(eb, fi);
112 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
113 continue;
114 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
115 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
116 if (disk_byte != wanted_disk_byte)
117 continue;
118
c995ab3c 119 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
976b1908
JS
120 if (ret < 0)
121 return ret;
122 }
123
124 return 0;
125}
126
86d5f994
EN
127struct preftree {
128 struct rb_root root;
6c336b21 129 unsigned int count;
86d5f994
EN
130};
131
6c336b21 132#define PREFTREE_INIT { .root = RB_ROOT, .count = 0 }
86d5f994
EN
133
134struct preftrees {
135 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
136 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
137 struct preftree indirect_missing_keys;
138};
139
3ec4d323
EN
140/*
141 * Checks for a shared extent during backref search.
142 *
143 * The share_count tracks prelim_refs (direct and indirect) having a
144 * ref->count >0:
145 * - incremented when a ref->count transitions to >0
146 * - decremented when a ref->count transitions to <1
147 */
148struct share_check {
149 u64 root_objectid;
150 u64 inum;
151 int share_count;
152};
153
154static inline int extent_is_shared(struct share_check *sc)
155{
156 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
157}
158
b9e9a6cb
WS
159static struct kmem_cache *btrfs_prelim_ref_cache;
160
161int __init btrfs_prelim_ref_init(void)
162{
163 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
e0c476b1 164 sizeof(struct prelim_ref),
b9e9a6cb 165 0,
fba4b697 166 SLAB_MEM_SPREAD,
b9e9a6cb
WS
167 NULL);
168 if (!btrfs_prelim_ref_cache)
169 return -ENOMEM;
170 return 0;
171}
172
e67c718b 173void __cold btrfs_prelim_ref_exit(void)
b9e9a6cb 174{
5598e900 175 kmem_cache_destroy(btrfs_prelim_ref_cache);
b9e9a6cb
WS
176}
177
86d5f994
EN
178static void free_pref(struct prelim_ref *ref)
179{
180 kmem_cache_free(btrfs_prelim_ref_cache, ref);
181}
182
183/*
184 * Return 0 when both refs are for the same block (and can be merged).
185 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
186 * indicates a 'higher' block.
187 */
188static int prelim_ref_compare(struct prelim_ref *ref1,
189 struct prelim_ref *ref2)
190{
191 if (ref1->level < ref2->level)
192 return -1;
193 if (ref1->level > ref2->level)
194 return 1;
195 if (ref1->root_id < ref2->root_id)
196 return -1;
197 if (ref1->root_id > ref2->root_id)
198 return 1;
199 if (ref1->key_for_search.type < ref2->key_for_search.type)
200 return -1;
201 if (ref1->key_for_search.type > ref2->key_for_search.type)
202 return 1;
203 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
204 return -1;
205 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
206 return 1;
207 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
208 return -1;
209 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
210 return 1;
211 if (ref1->parent < ref2->parent)
212 return -1;
213 if (ref1->parent > ref2->parent)
214 return 1;
215
216 return 0;
217}
218
ccc8dc75
CIK
219static void update_share_count(struct share_check *sc, int oldcount,
220 int newcount)
3ec4d323
EN
221{
222 if ((!sc) || (oldcount == 0 && newcount < 1))
223 return;
224
225 if (oldcount > 0 && newcount < 1)
226 sc->share_count--;
227 else if (oldcount < 1 && newcount > 0)
228 sc->share_count++;
229}
230
86d5f994
EN
231/*
232 * Add @newref to the @root rbtree, merging identical refs.
233 *
3ec4d323 234 * Callers should assume that newref has been freed after calling.
86d5f994 235 */
00142756
JM
236static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
237 struct preftree *preftree,
3ec4d323
EN
238 struct prelim_ref *newref,
239 struct share_check *sc)
86d5f994
EN
240{
241 struct rb_root *root;
242 struct rb_node **p;
243 struct rb_node *parent = NULL;
244 struct prelim_ref *ref;
245 int result;
246
247 root = &preftree->root;
248 p = &root->rb_node;
249
250 while (*p) {
251 parent = *p;
252 ref = rb_entry(parent, struct prelim_ref, rbnode);
253 result = prelim_ref_compare(ref, newref);
254 if (result < 0) {
255 p = &(*p)->rb_left;
256 } else if (result > 0) {
257 p = &(*p)->rb_right;
258 } else {
259 /* Identical refs, merge them and free @newref */
260 struct extent_inode_elem *eie = ref->inode_list;
261
262 while (eie && eie->next)
263 eie = eie->next;
264
265 if (!eie)
266 ref->inode_list = newref->inode_list;
267 else
268 eie->next = newref->inode_list;
00142756
JM
269 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
270 preftree->count);
3ec4d323
EN
271 /*
272 * A delayed ref can have newref->count < 0.
273 * The ref->count is updated to follow any
274 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
275 */
276 update_share_count(sc, ref->count,
277 ref->count + newref->count);
86d5f994
EN
278 ref->count += newref->count;
279 free_pref(newref);
280 return;
281 }
282 }
283
3ec4d323 284 update_share_count(sc, 0, newref->count);
6c336b21 285 preftree->count++;
00142756 286 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
86d5f994
EN
287 rb_link_node(&newref->rbnode, parent, p);
288 rb_insert_color(&newref->rbnode, root);
289}
290
291/*
292 * Release the entire tree. We don't care about internal consistency so
293 * just free everything and then reset the tree root.
294 */
295static void prelim_release(struct preftree *preftree)
296{
297 struct prelim_ref *ref, *next_ref;
298
299 rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
300 rbnode)
301 free_pref(ref);
302
303 preftree->root = RB_ROOT;
6c336b21 304 preftree->count = 0;
86d5f994
EN
305}
306
d5c88b73
JS
307/*
308 * the rules for all callers of this function are:
309 * - obtaining the parent is the goal
310 * - if you add a key, you must know that it is a correct key
311 * - if you cannot add the parent or a correct key, then we will look into the
312 * block later to set a correct key
313 *
314 * delayed refs
315 * ============
316 * backref type | shared | indirect | shared | indirect
317 * information | tree | tree | data | data
318 * --------------------+--------+----------+--------+----------
319 * parent logical | y | - | - | -
320 * key to resolve | - | y | y | y
321 * tree block logical | - | - | - | -
322 * root for resolving | y | y | y | y
323 *
324 * - column 1: we've the parent -> done
325 * - column 2, 3, 4: we use the key to find the parent
326 *
327 * on disk refs (inline or keyed)
328 * ==============================
329 * backref type | shared | indirect | shared | indirect
330 * information | tree | tree | data | data
331 * --------------------+--------+----------+--------+----------
332 * parent logical | y | - | y | -
333 * key to resolve | - | - | - | y
334 * tree block logical | y | y | y | y
335 * root for resolving | - | y | y | y
336 *
337 * - column 1, 3: we've the parent -> done
338 * - column 2: we take the first key from the block to find the parent
e0c476b1 339 * (see add_missing_keys)
d5c88b73
JS
340 * - column 4: we use the key to find the parent
341 *
342 * additional information that's available but not required to find the parent
343 * block might help in merging entries to gain some speed.
344 */
00142756
JM
345static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
346 struct preftree *preftree, u64 root_id,
e0c476b1 347 const struct btrfs_key *key, int level, u64 parent,
3ec4d323
EN
348 u64 wanted_disk_byte, int count,
349 struct share_check *sc, gfp_t gfp_mask)
8da6d581 350{
e0c476b1 351 struct prelim_ref *ref;
8da6d581 352
48ec4736
LB
353 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
354 return 0;
355
b9e9a6cb 356 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
357 if (!ref)
358 return -ENOMEM;
359
360 ref->root_id = root_id;
d6589101 361 if (key) {
d5c88b73 362 ref->key_for_search = *key;
d6589101
FM
363 /*
364 * We can often find data backrefs with an offset that is too
365 * large (>= LLONG_MAX, maximum allowed file offset) due to
366 * underflows when subtracting a file's offset with the data
367 * offset of its corresponding extent data item. This can
368 * happen for example in the clone ioctl.
369 * So if we detect such case we set the search key's offset to
370 * zero to make sure we will find the matching file extent item
371 * at add_all_parents(), otherwise we will miss it because the
372 * offset taken form the backref is much larger then the offset
373 * of the file extent item. This can make us scan a very large
374 * number of file extent items, but at least it will not make
375 * us miss any.
376 * This is an ugly workaround for a behaviour that should have
377 * never existed, but it does and a fix for the clone ioctl
378 * would touch a lot of places, cause backwards incompatibility
379 * and would not fix the problem for extents cloned with older
380 * kernels.
381 */
382 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
383 ref->key_for_search.offset >= LLONG_MAX)
384 ref->key_for_search.offset = 0;
385 } else {
d5c88b73 386 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
d6589101 387 }
8da6d581 388
3301958b 389 ref->inode_list = NULL;
8da6d581
JS
390 ref->level = level;
391 ref->count = count;
392 ref->parent = parent;
393 ref->wanted_disk_byte = wanted_disk_byte;
3ec4d323
EN
394 prelim_ref_insert(fs_info, preftree, ref, sc);
395 return extent_is_shared(sc);
8da6d581
JS
396}
397
86d5f994 398/* direct refs use root == 0, key == NULL */
00142756
JM
399static int add_direct_ref(const struct btrfs_fs_info *fs_info,
400 struct preftrees *preftrees, int level, u64 parent,
3ec4d323
EN
401 u64 wanted_disk_byte, int count,
402 struct share_check *sc, gfp_t gfp_mask)
86d5f994 403{
00142756 404 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
3ec4d323 405 parent, wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
406}
407
408/* indirect refs use parent == 0 */
00142756
JM
409static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
410 struct preftrees *preftrees, u64 root_id,
86d5f994 411 const struct btrfs_key *key, int level,
3ec4d323
EN
412 u64 wanted_disk_byte, int count,
413 struct share_check *sc, gfp_t gfp_mask)
86d5f994
EN
414{
415 struct preftree *tree = &preftrees->indirect;
416
417 if (!key)
418 tree = &preftrees->indirect_missing_keys;
00142756 419 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
3ec4d323 420 wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
421}
422
8da6d581 423static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
e0c476b1 424 struct ulist *parents, struct prelim_ref *ref,
44853868 425 int level, u64 time_seq, const u64 *extent_item_pos,
c995ab3c 426 u64 total_refs, bool ignore_offset)
8da6d581 427{
69bca40d
AB
428 int ret = 0;
429 int slot;
430 struct extent_buffer *eb;
431 struct btrfs_key key;
7ef81ac8 432 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 433 struct btrfs_file_extent_item *fi;
ed8c4913 434 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 435 u64 disk_byte;
7ef81ac8
JB
436 u64 wanted_disk_byte = ref->wanted_disk_byte;
437 u64 count = 0;
8da6d581 438
69bca40d
AB
439 if (level != 0) {
440 eb = path->nodes[level];
441 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
442 if (ret < 0)
443 return ret;
8da6d581 444 return 0;
69bca40d 445 }
8da6d581
JS
446
447 /*
69bca40d
AB
448 * We normally enter this function with the path already pointing to
449 * the first item to check. But sometimes, we may enter it with
450 * slot==nritems. In that case, go to the next leaf before we continue.
8da6d581 451 */
21633fc6 452 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
de47c9d3 453 if (time_seq == SEQ_LAST)
21633fc6
QW
454 ret = btrfs_next_leaf(root, path);
455 else
456 ret = btrfs_next_old_leaf(root, path, time_seq);
457 }
8da6d581 458
44853868 459 while (!ret && count < total_refs) {
8da6d581 460 eb = path->nodes[0];
69bca40d
AB
461 slot = path->slots[0];
462
463 btrfs_item_key_to_cpu(eb, &key, slot);
464
465 if (key.objectid != key_for_search->objectid ||
466 key.type != BTRFS_EXTENT_DATA_KEY)
467 break;
468
469 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
470 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
471
472 if (disk_byte == wanted_disk_byte) {
473 eie = NULL;
ed8c4913 474 old = NULL;
7ef81ac8 475 count++;
69bca40d
AB
476 if (extent_item_pos) {
477 ret = check_extent_in_eb(&key, eb, fi,
478 *extent_item_pos,
c995ab3c 479 &eie, ignore_offset);
69bca40d
AB
480 if (ret < 0)
481 break;
482 }
ed8c4913
JB
483 if (ret > 0)
484 goto next;
4eb1f66d
TI
485 ret = ulist_add_merge_ptr(parents, eb->start,
486 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
487 if (ret < 0)
488 break;
489 if (!ret && extent_item_pos) {
490 while (old->next)
491 old = old->next;
492 old->next = eie;
69bca40d 493 }
f05c4746 494 eie = NULL;
8da6d581 495 }
ed8c4913 496next:
de47c9d3 497 if (time_seq == SEQ_LAST)
21633fc6
QW
498 ret = btrfs_next_item(root, path);
499 else
500 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
501 }
502
69bca40d
AB
503 if (ret > 0)
504 ret = 0;
f05c4746
WS
505 else if (ret < 0)
506 free_inode_elem_list(eie);
69bca40d 507 return ret;
8da6d581
JS
508}
509
510/*
511 * resolve an indirect backref in the form (root_id, key, level)
512 * to a logical address
513 */
e0c476b1
JM
514static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
515 struct btrfs_path *path, u64 time_seq,
516 struct prelim_ref *ref, struct ulist *parents,
c995ab3c
ZB
517 const u64 *extent_item_pos, u64 total_refs,
518 bool ignore_offset)
8da6d581 519{
8da6d581
JS
520 struct btrfs_root *root;
521 struct btrfs_key root_key;
8da6d581
JS
522 struct extent_buffer *eb;
523 int ret = 0;
524 int root_level;
525 int level = ref->level;
538f72cd 526 int index;
8da6d581 527
8da6d581
JS
528 root_key.objectid = ref->root_id;
529 root_key.type = BTRFS_ROOT_ITEM_KEY;
530 root_key.offset = (u64)-1;
538f72cd
WS
531
532 index = srcu_read_lock(&fs_info->subvol_srcu);
533
2d9e9776 534 root = btrfs_get_fs_root(fs_info, &root_key, false);
8da6d581 535 if (IS_ERR(root)) {
538f72cd 536 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581
JS
537 ret = PTR_ERR(root);
538 goto out;
539 }
540
f5ee5c9a 541 if (btrfs_is_testing(fs_info)) {
d9ee522b
JB
542 srcu_read_unlock(&fs_info->subvol_srcu, index);
543 ret = -ENOENT;
544 goto out;
545 }
546
9e351cc8
JB
547 if (path->search_commit_root)
548 root_level = btrfs_header_level(root->commit_root);
de47c9d3 549 else if (time_seq == SEQ_LAST)
21633fc6 550 root_level = btrfs_header_level(root->node);
9e351cc8
JB
551 else
552 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 553
538f72cd
WS
554 if (root_level + 1 == level) {
555 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581 556 goto out;
538f72cd 557 }
8da6d581
JS
558
559 path->lowest_level = level;
de47c9d3 560 if (time_seq == SEQ_LAST)
21633fc6
QW
561 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
562 0, 0);
563 else
564 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
565 time_seq);
538f72cd
WS
566
567 /* root node has been locked, we can release @subvol_srcu safely here */
568 srcu_read_unlock(&fs_info->subvol_srcu, index);
569
ab8d0fc4
JM
570 btrfs_debug(fs_info,
571 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
c1c9ff7c
GU
572 ref->root_id, level, ref->count, ret,
573 ref->key_for_search.objectid, ref->key_for_search.type,
574 ref->key_for_search.offset);
8da6d581
JS
575 if (ret < 0)
576 goto out;
577
578 eb = path->nodes[level];
9345457f 579 while (!eb) {
fae7f21c 580 if (WARN_ON(!level)) {
9345457f
JS
581 ret = 1;
582 goto out;
583 }
584 level--;
585 eb = path->nodes[level];
8da6d581
JS
586 }
587
7ef81ac8 588 ret = add_all_parents(root, path, parents, ref, level, time_seq,
c995ab3c 589 extent_item_pos, total_refs, ignore_offset);
8da6d581 590out:
da61d31a
JB
591 path->lowest_level = 0;
592 btrfs_release_path(path);
8da6d581
JS
593 return ret;
594}
595
4dae077a
JM
596static struct extent_inode_elem *
597unode_aux_to_inode_list(struct ulist_node *node)
598{
599 if (!node)
600 return NULL;
601 return (struct extent_inode_elem *)(uintptr_t)node->aux;
602}
603
8da6d581 604/*
86d5f994
EN
605 * We maintain three seperate rbtrees: one for direct refs, one for
606 * indirect refs which have a key, and one for indirect refs which do not
607 * have a key. Each tree does merge on insertion.
608 *
609 * Once all of the references are located, we iterate over the tree of
610 * indirect refs with missing keys. An appropriate key is located and
611 * the ref is moved onto the tree for indirect refs. After all missing
612 * keys are thus located, we iterate over the indirect ref tree, resolve
613 * each reference, and then insert the resolved reference onto the
614 * direct tree (merging there too).
615 *
616 * New backrefs (i.e., for parent nodes) are added to the appropriate
617 * rbtree as they are encountered. The new backrefs are subsequently
618 * resolved as above.
8da6d581 619 */
e0c476b1
JM
620static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
621 struct btrfs_path *path, u64 time_seq,
86d5f994 622 struct preftrees *preftrees,
e0c476b1 623 const u64 *extent_item_pos, u64 total_refs,
c995ab3c 624 struct share_check *sc, bool ignore_offset)
8da6d581
JS
625{
626 int err;
627 int ret = 0;
8da6d581
JS
628 struct ulist *parents;
629 struct ulist_node *node;
cd1b413c 630 struct ulist_iterator uiter;
86d5f994 631 struct rb_node *rnode;
8da6d581
JS
632
633 parents = ulist_alloc(GFP_NOFS);
634 if (!parents)
635 return -ENOMEM;
636
637 /*
86d5f994
EN
638 * We could trade memory usage for performance here by iterating
639 * the tree, allocating new refs for each insertion, and then
640 * freeing the entire indirect tree when we're done. In some test
641 * cases, the tree can grow quite large (~200k objects).
8da6d581 642 */
86d5f994
EN
643 while ((rnode = rb_first(&preftrees->indirect.root))) {
644 struct prelim_ref *ref;
645
646 ref = rb_entry(rnode, struct prelim_ref, rbnode);
647 if (WARN(ref->parent,
648 "BUG: direct ref found in indirect tree")) {
649 ret = -EINVAL;
650 goto out;
651 }
652
653 rb_erase(&ref->rbnode, &preftrees->indirect.root);
6c336b21 654 preftrees->indirect.count--;
86d5f994
EN
655
656 if (ref->count == 0) {
657 free_pref(ref);
8da6d581 658 continue;
86d5f994
EN
659 }
660
3ec4d323
EN
661 if (sc && sc->root_objectid &&
662 ref->root_id != sc->root_objectid) {
86d5f994 663 free_pref(ref);
dc046b10
JB
664 ret = BACKREF_FOUND_SHARED;
665 goto out;
666 }
e0c476b1
JM
667 err = resolve_indirect_ref(fs_info, path, time_seq, ref,
668 parents, extent_item_pos,
c995ab3c 669 total_refs, ignore_offset);
95def2ed
WS
670 /*
671 * we can only tolerate ENOENT,otherwise,we should catch error
672 * and return directly.
673 */
674 if (err == -ENOENT) {
3ec4d323
EN
675 prelim_ref_insert(fs_info, &preftrees->direct, ref,
676 NULL);
8da6d581 677 continue;
95def2ed 678 } else if (err) {
86d5f994 679 free_pref(ref);
95def2ed
WS
680 ret = err;
681 goto out;
682 }
8da6d581
JS
683
684 /* we put the first parent into the ref at hand */
cd1b413c
JS
685 ULIST_ITER_INIT(&uiter);
686 node = ulist_next(parents, &uiter);
8da6d581 687 ref->parent = node ? node->val : 0;
4dae077a 688 ref->inode_list = unode_aux_to_inode_list(node);
8da6d581 689
86d5f994 690 /* Add a prelim_ref(s) for any other parent(s). */
cd1b413c 691 while ((node = ulist_next(parents, &uiter))) {
86d5f994
EN
692 struct prelim_ref *new_ref;
693
b9e9a6cb
WS
694 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
695 GFP_NOFS);
8da6d581 696 if (!new_ref) {
86d5f994 697 free_pref(ref);
8da6d581 698 ret = -ENOMEM;
e36902d4 699 goto out;
8da6d581
JS
700 }
701 memcpy(new_ref, ref, sizeof(*ref));
702 new_ref->parent = node->val;
4dae077a 703 new_ref->inode_list = unode_aux_to_inode_list(node);
3ec4d323
EN
704 prelim_ref_insert(fs_info, &preftrees->direct,
705 new_ref, NULL);
8da6d581 706 }
86d5f994 707
3ec4d323
EN
708 /*
709 * Now it's a direct ref, put it in the the direct tree. We must
710 * do this last because the ref could be merged/freed here.
711 */
712 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
86d5f994 713
8da6d581 714 ulist_reinit(parents);
9dd14fd6 715 cond_resched();
8da6d581 716 }
e36902d4 717out:
8da6d581
JS
718 ulist_free(parents);
719 return ret;
720}
721
d5c88b73
JS
722/*
723 * read tree blocks and add keys where required.
724 */
e0c476b1 725static int add_missing_keys(struct btrfs_fs_info *fs_info,
86d5f994 726 struct preftrees *preftrees)
d5c88b73 727{
e0c476b1 728 struct prelim_ref *ref;
d5c88b73 729 struct extent_buffer *eb;
86d5f994
EN
730 struct preftree *tree = &preftrees->indirect_missing_keys;
731 struct rb_node *node;
d5c88b73 732
86d5f994
EN
733 while ((node = rb_first(&tree->root))) {
734 ref = rb_entry(node, struct prelim_ref, rbnode);
735 rb_erase(node, &tree->root);
736
737 BUG_ON(ref->parent); /* should not be a direct ref */
738 BUG_ON(ref->key_for_search.type);
d5c88b73 739 BUG_ON(!ref->wanted_disk_byte);
86d5f994 740
581c1760
QW
741 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
742 ref->level - 1, NULL);
64c043de 743 if (IS_ERR(eb)) {
86d5f994 744 free_pref(ref);
64c043de
LB
745 return PTR_ERR(eb);
746 } else if (!extent_buffer_uptodate(eb)) {
86d5f994 747 free_pref(ref);
416bc658
JB
748 free_extent_buffer(eb);
749 return -EIO;
750 }
d5c88b73
JS
751 btrfs_tree_read_lock(eb);
752 if (btrfs_header_level(eb) == 0)
753 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
754 else
755 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
756 btrfs_tree_read_unlock(eb);
757 free_extent_buffer(eb);
3ec4d323 758 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
9dd14fd6 759 cond_resched();
d5c88b73
JS
760 }
761 return 0;
762}
763
8da6d581
JS
764/*
765 * add all currently queued delayed refs from this head whose seq nr is
766 * smaller or equal that seq to the list
767 */
00142756
JM
768static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
769 struct btrfs_delayed_ref_head *head, u64 seq,
86d5f994 770 struct preftrees *preftrees, u64 *total_refs,
3ec4d323 771 struct share_check *sc)
8da6d581 772{
c6fc2454 773 struct btrfs_delayed_ref_node *node;
8da6d581 774 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
d5c88b73 775 struct btrfs_key key;
86d5f994 776 struct btrfs_key tmp_op_key;
0e0adbcf 777 struct rb_node *n;
01747e92 778 int count;
b1375d64 779 int ret = 0;
8da6d581 780
a6dbceaf 781 if (extent_op && extent_op->update_key)
86d5f994 782 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
8da6d581 783
d7df2c79 784 spin_lock(&head->lock);
0e0adbcf
JB
785 for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) {
786 node = rb_entry(n, struct btrfs_delayed_ref_node,
787 ref_node);
8da6d581
JS
788 if (node->seq > seq)
789 continue;
790
791 switch (node->action) {
792 case BTRFS_ADD_DELAYED_EXTENT:
793 case BTRFS_UPDATE_DELAYED_HEAD:
794 WARN_ON(1);
795 continue;
796 case BTRFS_ADD_DELAYED_REF:
01747e92 797 count = node->ref_mod;
8da6d581
JS
798 break;
799 case BTRFS_DROP_DELAYED_REF:
01747e92 800 count = node->ref_mod * -1;
8da6d581
JS
801 break;
802 default:
803 BUG_ON(1);
804 }
01747e92 805 *total_refs += count;
8da6d581
JS
806 switch (node->type) {
807 case BTRFS_TREE_BLOCK_REF_KEY: {
86d5f994 808 /* NORMAL INDIRECT METADATA backref */
8da6d581
JS
809 struct btrfs_delayed_tree_ref *ref;
810
811 ref = btrfs_delayed_node_to_tree_ref(node);
00142756
JM
812 ret = add_indirect_ref(fs_info, preftrees, ref->root,
813 &tmp_op_key, ref->level + 1,
01747e92
EN
814 node->bytenr, count, sc,
815 GFP_ATOMIC);
8da6d581
JS
816 break;
817 }
818 case BTRFS_SHARED_BLOCK_REF_KEY: {
86d5f994 819 /* SHARED DIRECT METADATA backref */
8da6d581
JS
820 struct btrfs_delayed_tree_ref *ref;
821
822 ref = btrfs_delayed_node_to_tree_ref(node);
86d5f994 823
01747e92
EN
824 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
825 ref->parent, node->bytenr, count,
3ec4d323 826 sc, GFP_ATOMIC);
8da6d581
JS
827 break;
828 }
829 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 830 /* NORMAL INDIRECT DATA backref */
8da6d581 831 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
832 ref = btrfs_delayed_node_to_data_ref(node);
833
834 key.objectid = ref->objectid;
835 key.type = BTRFS_EXTENT_DATA_KEY;
836 key.offset = ref->offset;
dc046b10
JB
837
838 /*
839 * Found a inum that doesn't match our known inum, we
840 * know it's shared.
841 */
3ec4d323 842 if (sc && sc->inum && ref->objectid != sc->inum) {
dc046b10 843 ret = BACKREF_FOUND_SHARED;
3ec4d323 844 goto out;
dc046b10
JB
845 }
846
00142756 847 ret = add_indirect_ref(fs_info, preftrees, ref->root,
01747e92
EN
848 &key, 0, node->bytenr, count, sc,
849 GFP_ATOMIC);
8da6d581
JS
850 break;
851 }
852 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 853 /* SHARED DIRECT FULL backref */
8da6d581 854 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
855
856 ref = btrfs_delayed_node_to_data_ref(node);
86d5f994 857
01747e92
EN
858 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
859 node->bytenr, count, sc,
860 GFP_ATOMIC);
8da6d581
JS
861 break;
862 }
863 default:
864 WARN_ON(1);
865 }
3ec4d323
EN
866 /*
867 * We must ignore BACKREF_FOUND_SHARED until all delayed
868 * refs have been checked.
869 */
870 if (ret && (ret != BACKREF_FOUND_SHARED))
d7df2c79 871 break;
8da6d581 872 }
3ec4d323
EN
873 if (!ret)
874 ret = extent_is_shared(sc);
875out:
d7df2c79
JB
876 spin_unlock(&head->lock);
877 return ret;
8da6d581
JS
878}
879
880/*
881 * add all inline backrefs for bytenr to the list
3ec4d323
EN
882 *
883 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 884 */
00142756
JM
885static int add_inline_refs(const struct btrfs_fs_info *fs_info,
886 struct btrfs_path *path, u64 bytenr,
86d5f994 887 int *info_level, struct preftrees *preftrees,
3ec4d323 888 u64 *total_refs, struct share_check *sc)
8da6d581 889{
b1375d64 890 int ret = 0;
8da6d581
JS
891 int slot;
892 struct extent_buffer *leaf;
893 struct btrfs_key key;
261c84b6 894 struct btrfs_key found_key;
8da6d581
JS
895 unsigned long ptr;
896 unsigned long end;
897 struct btrfs_extent_item *ei;
898 u64 flags;
899 u64 item_size;
900
901 /*
902 * enumerate all inline refs
903 */
904 leaf = path->nodes[0];
dadcaf78 905 slot = path->slots[0];
8da6d581
JS
906
907 item_size = btrfs_item_size_nr(leaf, slot);
908 BUG_ON(item_size < sizeof(*ei));
909
910 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
911 flags = btrfs_extent_flags(leaf, ei);
44853868 912 *total_refs += btrfs_extent_refs(leaf, ei);
261c84b6 913 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
914
915 ptr = (unsigned long)(ei + 1);
916 end = (unsigned long)ei + item_size;
917
261c84b6
JB
918 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
919 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 920 struct btrfs_tree_block_info *info;
8da6d581
JS
921
922 info = (struct btrfs_tree_block_info *)ptr;
923 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
924 ptr += sizeof(struct btrfs_tree_block_info);
925 BUG_ON(ptr > end);
261c84b6
JB
926 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
927 *info_level = found_key.offset;
8da6d581
JS
928 } else {
929 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
930 }
931
932 while (ptr < end) {
933 struct btrfs_extent_inline_ref *iref;
934 u64 offset;
935 int type;
936
937 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
938 type = btrfs_get_extent_inline_ref_type(leaf, iref,
939 BTRFS_REF_TYPE_ANY);
940 if (type == BTRFS_REF_TYPE_INVALID)
941 return -EINVAL;
942
8da6d581
JS
943 offset = btrfs_extent_inline_ref_offset(leaf, iref);
944
945 switch (type) {
946 case BTRFS_SHARED_BLOCK_REF_KEY:
00142756
JM
947 ret = add_direct_ref(fs_info, preftrees,
948 *info_level + 1, offset,
3ec4d323 949 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
950 break;
951 case BTRFS_SHARED_DATA_REF_KEY: {
952 struct btrfs_shared_data_ref *sdref;
953 int count;
954
955 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
956 count = btrfs_shared_data_ref_count(leaf, sdref);
86d5f994 957
00142756 958 ret = add_direct_ref(fs_info, preftrees, 0, offset,
3ec4d323 959 bytenr, count, sc, GFP_NOFS);
8da6d581
JS
960 break;
961 }
962 case BTRFS_TREE_BLOCK_REF_KEY:
00142756
JM
963 ret = add_indirect_ref(fs_info, preftrees, offset,
964 NULL, *info_level + 1,
3ec4d323 965 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
966 break;
967 case BTRFS_EXTENT_DATA_REF_KEY: {
968 struct btrfs_extent_data_ref *dref;
969 int count;
970 u64 root;
971
972 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
973 count = btrfs_extent_data_ref_count(leaf, dref);
974 key.objectid = btrfs_extent_data_ref_objectid(leaf,
975 dref);
976 key.type = BTRFS_EXTENT_DATA_KEY;
977 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 978
3ec4d323 979 if (sc && sc->inum && key.objectid != sc->inum) {
dc046b10
JB
980 ret = BACKREF_FOUND_SHARED;
981 break;
982 }
983
8da6d581 984 root = btrfs_extent_data_ref_root(leaf, dref);
86d5f994 985
00142756
JM
986 ret = add_indirect_ref(fs_info, preftrees, root,
987 &key, 0, bytenr, count,
3ec4d323 988 sc, GFP_NOFS);
8da6d581
JS
989 break;
990 }
991 default:
992 WARN_ON(1);
993 }
1149ab6b
WS
994 if (ret)
995 return ret;
8da6d581
JS
996 ptr += btrfs_extent_inline_ref_size(type);
997 }
998
999 return 0;
1000}
1001
1002/*
1003 * add all non-inline backrefs for bytenr to the list
3ec4d323
EN
1004 *
1005 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 1006 */
e0c476b1
JM
1007static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1008 struct btrfs_path *path, u64 bytenr,
86d5f994 1009 int info_level, struct preftrees *preftrees,
3ec4d323 1010 struct share_check *sc)
8da6d581
JS
1011{
1012 struct btrfs_root *extent_root = fs_info->extent_root;
1013 int ret;
1014 int slot;
1015 struct extent_buffer *leaf;
1016 struct btrfs_key key;
1017
1018 while (1) {
1019 ret = btrfs_next_item(extent_root, path);
1020 if (ret < 0)
1021 break;
1022 if (ret) {
1023 ret = 0;
1024 break;
1025 }
1026
1027 slot = path->slots[0];
1028 leaf = path->nodes[0];
1029 btrfs_item_key_to_cpu(leaf, &key, slot);
1030
1031 if (key.objectid != bytenr)
1032 break;
1033 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1034 continue;
1035 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1036 break;
1037
1038 switch (key.type) {
1039 case BTRFS_SHARED_BLOCK_REF_KEY:
86d5f994 1040 /* SHARED DIRECT METADATA backref */
00142756
JM
1041 ret = add_direct_ref(fs_info, preftrees,
1042 info_level + 1, key.offset,
3ec4d323 1043 bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1044 break;
1045 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 1046 /* SHARED DIRECT FULL backref */
8da6d581
JS
1047 struct btrfs_shared_data_ref *sdref;
1048 int count;
1049
1050 sdref = btrfs_item_ptr(leaf, slot,
1051 struct btrfs_shared_data_ref);
1052 count = btrfs_shared_data_ref_count(leaf, sdref);
00142756
JM
1053 ret = add_direct_ref(fs_info, preftrees, 0,
1054 key.offset, bytenr, count,
3ec4d323 1055 sc, GFP_NOFS);
8da6d581
JS
1056 break;
1057 }
1058 case BTRFS_TREE_BLOCK_REF_KEY:
86d5f994 1059 /* NORMAL INDIRECT METADATA backref */
00142756
JM
1060 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1061 NULL, info_level + 1, bytenr,
3ec4d323 1062 1, NULL, GFP_NOFS);
8da6d581
JS
1063 break;
1064 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 1065 /* NORMAL INDIRECT DATA backref */
8da6d581
JS
1066 struct btrfs_extent_data_ref *dref;
1067 int count;
1068 u64 root;
1069
1070 dref = btrfs_item_ptr(leaf, slot,
1071 struct btrfs_extent_data_ref);
1072 count = btrfs_extent_data_ref_count(leaf, dref);
1073 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1074 dref);
1075 key.type = BTRFS_EXTENT_DATA_KEY;
1076 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1077
3ec4d323 1078 if (sc && sc->inum && key.objectid != sc->inum) {
dc046b10
JB
1079 ret = BACKREF_FOUND_SHARED;
1080 break;
1081 }
1082
8da6d581 1083 root = btrfs_extent_data_ref_root(leaf, dref);
00142756
JM
1084 ret = add_indirect_ref(fs_info, preftrees, root,
1085 &key, 0, bytenr, count,
3ec4d323 1086 sc, GFP_NOFS);
8da6d581
JS
1087 break;
1088 }
1089 default:
1090 WARN_ON(1);
1091 }
1149ab6b
WS
1092 if (ret)
1093 return ret;
1094
8da6d581
JS
1095 }
1096
1097 return ret;
1098}
1099
1100/*
1101 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1102 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1103 * indirect refs to their parent bytenr.
1104 * When roots are found, they're added to the roots list
1105 *
de47c9d3 1106 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
21633fc6
QW
1107 * much like trans == NULL case, the difference only lies in it will not
1108 * commit root.
1109 * The special case is for qgroup to search roots in commit_transaction().
1110 *
3ec4d323
EN
1111 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1112 * shared extent is detected.
1113 *
1114 * Otherwise this returns 0 for success and <0 for an error.
1115 *
c995ab3c
ZB
1116 * If ignore_offset is set to false, only extent refs whose offsets match
1117 * extent_item_pos are returned. If true, every extent ref is returned
1118 * and extent_item_pos is ignored.
1119 *
8da6d581
JS
1120 * FIXME some caching might speed things up
1121 */
1122static int find_parent_nodes(struct btrfs_trans_handle *trans,
1123 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1124 u64 time_seq, struct ulist *refs,
dc046b10 1125 struct ulist *roots, const u64 *extent_item_pos,
c995ab3c 1126 struct share_check *sc, bool ignore_offset)
8da6d581
JS
1127{
1128 struct btrfs_key key;
1129 struct btrfs_path *path;
8da6d581 1130 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 1131 struct btrfs_delayed_ref_head *head;
8da6d581
JS
1132 int info_level = 0;
1133 int ret;
e0c476b1 1134 struct prelim_ref *ref;
86d5f994 1135 struct rb_node *node;
f05c4746 1136 struct extent_inode_elem *eie = NULL;
86d5f994 1137 /* total of both direct AND indirect refs! */
44853868 1138 u64 total_refs = 0;
86d5f994
EN
1139 struct preftrees preftrees = {
1140 .direct = PREFTREE_INIT,
1141 .indirect = PREFTREE_INIT,
1142 .indirect_missing_keys = PREFTREE_INIT
1143 };
8da6d581
JS
1144
1145 key.objectid = bytenr;
8da6d581 1146 key.offset = (u64)-1;
261c84b6
JB
1147 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1148 key.type = BTRFS_METADATA_ITEM_KEY;
1149 else
1150 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
1151
1152 path = btrfs_alloc_path();
1153 if (!path)
1154 return -ENOMEM;
e84752d4 1155 if (!trans) {
da61d31a 1156 path->search_commit_root = 1;
e84752d4
WS
1157 path->skip_locking = 1;
1158 }
8da6d581 1159
de47c9d3 1160 if (time_seq == SEQ_LAST)
21633fc6
QW
1161 path->skip_locking = 1;
1162
8da6d581
JS
1163 /*
1164 * grab both a lock on the path and a lock on the delayed ref head.
1165 * We need both to get a consistent picture of how the refs look
1166 * at a specified point in time
1167 */
1168again:
d3b01064
LZ
1169 head = NULL;
1170
8da6d581
JS
1171 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1172 if (ret < 0)
1173 goto out;
1174 BUG_ON(ret == 0);
1175
faa2dbf0 1176#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
21633fc6 1177 if (trans && likely(trans->type != __TRANS_DUMMY) &&
de47c9d3 1178 time_seq != SEQ_LAST) {
faa2dbf0 1179#else
de47c9d3 1180 if (trans && time_seq != SEQ_LAST) {
faa2dbf0 1181#endif
7a3ae2f8
JS
1182 /*
1183 * look if there are updates for this ref queued and lock the
1184 * head
1185 */
1186 delayed_refs = &trans->transaction->delayed_refs;
1187 spin_lock(&delayed_refs->lock);
f72ad18e 1188 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7a3ae2f8
JS
1189 if (head) {
1190 if (!mutex_trylock(&head->mutex)) {
d278850e 1191 refcount_inc(&head->refs);
7a3ae2f8
JS
1192 spin_unlock(&delayed_refs->lock);
1193
1194 btrfs_release_path(path);
1195
1196 /*
1197 * Mutex was contended, block until it's
1198 * released and try again
1199 */
1200 mutex_lock(&head->mutex);
1201 mutex_unlock(&head->mutex);
d278850e 1202 btrfs_put_delayed_ref_head(head);
7a3ae2f8
JS
1203 goto again;
1204 }
d7df2c79 1205 spin_unlock(&delayed_refs->lock);
00142756 1206 ret = add_delayed_refs(fs_info, head, time_seq,
3ec4d323 1207 &preftrees, &total_refs, sc);
155725c9 1208 mutex_unlock(&head->mutex);
d7df2c79 1209 if (ret)
7a3ae2f8 1210 goto out;
d7df2c79
JB
1211 } else {
1212 spin_unlock(&delayed_refs->lock);
d3b01064 1213 }
8da6d581 1214 }
8da6d581
JS
1215
1216 if (path->slots[0]) {
1217 struct extent_buffer *leaf;
1218 int slot;
1219
dadcaf78 1220 path->slots[0]--;
8da6d581 1221 leaf = path->nodes[0];
dadcaf78 1222 slot = path->slots[0];
8da6d581
JS
1223 btrfs_item_key_to_cpu(leaf, &key, slot);
1224 if (key.objectid == bytenr &&
261c84b6
JB
1225 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1226 key.type == BTRFS_METADATA_ITEM_KEY)) {
00142756
JM
1227 ret = add_inline_refs(fs_info, path, bytenr,
1228 &info_level, &preftrees,
3ec4d323 1229 &total_refs, sc);
8da6d581
JS
1230 if (ret)
1231 goto out;
e0c476b1 1232 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
3ec4d323 1233 &preftrees, sc);
8da6d581
JS
1234 if (ret)
1235 goto out;
1236 }
1237 }
8da6d581 1238
86d5f994 1239 btrfs_release_path(path);
8da6d581 1240
86d5f994 1241 ret = add_missing_keys(fs_info, &preftrees);
d5c88b73
JS
1242 if (ret)
1243 goto out;
1244
86d5f994 1245 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
8da6d581 1246
86d5f994 1247 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
c995ab3c 1248 extent_item_pos, total_refs, sc, ignore_offset);
8da6d581
JS
1249 if (ret)
1250 goto out;
1251
86d5f994 1252 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
8da6d581 1253
86d5f994
EN
1254 /*
1255 * This walks the tree of merged and resolved refs. Tree blocks are
1256 * read in as needed. Unique entries are added to the ulist, and
1257 * the list of found roots is updated.
1258 *
1259 * We release the entire tree in one go before returning.
1260 */
1261 node = rb_first(&preftrees.direct.root);
1262 while (node) {
1263 ref = rb_entry(node, struct prelim_ref, rbnode);
1264 node = rb_next(&ref->rbnode);
c8195a7b
ZB
1265 /*
1266 * ref->count < 0 can happen here if there are delayed
1267 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1268 * prelim_ref_insert() relies on this when merging
1269 * identical refs to keep the overall count correct.
1270 * prelim_ref_insert() will merge only those refs
1271 * which compare identically. Any refs having
1272 * e.g. different offsets would not be merged,
1273 * and would retain their original ref->count < 0.
1274 */
98cfee21 1275 if (roots && ref->count && ref->root_id && ref->parent == 0) {
3ec4d323
EN
1276 if (sc && sc->root_objectid &&
1277 ref->root_id != sc->root_objectid) {
dc046b10
JB
1278 ret = BACKREF_FOUND_SHARED;
1279 goto out;
1280 }
1281
8da6d581
JS
1282 /* no parent == root of tree */
1283 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1284 if (ret < 0)
1285 goto out;
8da6d581
JS
1286 }
1287 if (ref->count && ref->parent) {
8a56457f
JB
1288 if (extent_item_pos && !ref->inode_list &&
1289 ref->level == 0) {
976b1908 1290 struct extent_buffer *eb;
707e8a07 1291
581c1760
QW
1292 eb = read_tree_block(fs_info, ref->parent, 0,
1293 ref->level, NULL);
64c043de
LB
1294 if (IS_ERR(eb)) {
1295 ret = PTR_ERR(eb);
1296 goto out;
1297 } else if (!extent_buffer_uptodate(eb)) {
416bc658 1298 free_extent_buffer(eb);
c16c2e2e
WS
1299 ret = -EIO;
1300 goto out;
416bc658 1301 }
6f7ff6d7
FM
1302 btrfs_tree_read_lock(eb);
1303 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
976b1908 1304 ret = find_extent_in_eb(eb, bytenr,
c995ab3c 1305 *extent_item_pos, &eie, ignore_offset);
6f7ff6d7 1306 btrfs_tree_read_unlock_blocking(eb);
976b1908 1307 free_extent_buffer(eb);
f5929cd8
FDBM
1308 if (ret < 0)
1309 goto out;
1310 ref->inode_list = eie;
976b1908 1311 }
4eb1f66d
TI
1312 ret = ulist_add_merge_ptr(refs, ref->parent,
1313 ref->inode_list,
1314 (void **)&eie, GFP_NOFS);
f1723939
WS
1315 if (ret < 0)
1316 goto out;
3301958b
JS
1317 if (!ret && extent_item_pos) {
1318 /*
1319 * we've recorded that parent, so we must extend
1320 * its inode list here
1321 */
1322 BUG_ON(!eie);
1323 while (eie->next)
1324 eie = eie->next;
1325 eie->next = ref->inode_list;
1326 }
f05c4746 1327 eie = NULL;
8da6d581 1328 }
9dd14fd6 1329 cond_resched();
8da6d581
JS
1330 }
1331
1332out:
8da6d581 1333 btrfs_free_path(path);
86d5f994
EN
1334
1335 prelim_release(&preftrees.direct);
1336 prelim_release(&preftrees.indirect);
1337 prelim_release(&preftrees.indirect_missing_keys);
1338
f05c4746
WS
1339 if (ret < 0)
1340 free_inode_elem_list(eie);
8da6d581
JS
1341 return ret;
1342}
1343
976b1908
JS
1344static void free_leaf_list(struct ulist *blocks)
1345{
1346 struct ulist_node *node = NULL;
1347 struct extent_inode_elem *eie;
976b1908
JS
1348 struct ulist_iterator uiter;
1349
1350 ULIST_ITER_INIT(&uiter);
1351 while ((node = ulist_next(blocks, &uiter))) {
1352 if (!node->aux)
1353 continue;
4dae077a 1354 eie = unode_aux_to_inode_list(node);
f05c4746 1355 free_inode_elem_list(eie);
976b1908
JS
1356 node->aux = 0;
1357 }
1358
1359 ulist_free(blocks);
1360}
1361
8da6d581
JS
1362/*
1363 * Finds all leafs with a reference to the specified combination of bytenr and
1364 * offset. key_list_head will point to a list of corresponding keys (caller must
1365 * free each list element). The leafs will be stored in the leafs ulist, which
1366 * must be freed with ulist_free.
1367 *
1368 * returns 0 on success, <0 on error
1369 */
1370static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1371 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1372 u64 time_seq, struct ulist **leafs,
c995ab3c 1373 const u64 *extent_item_pos, bool ignore_offset)
8da6d581 1374{
8da6d581
JS
1375 int ret;
1376
8da6d581 1377 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1378 if (!*leafs)
8da6d581 1379 return -ENOMEM;
8da6d581 1380
afce772e 1381 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1382 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
8da6d581 1383 if (ret < 0 && ret != -ENOENT) {
976b1908 1384 free_leaf_list(*leafs);
8da6d581
JS
1385 return ret;
1386 }
1387
1388 return 0;
1389}
1390
1391/*
1392 * walk all backrefs for a given extent to find all roots that reference this
1393 * extent. Walking a backref means finding all extents that reference this
1394 * extent and in turn walk the backrefs of those, too. Naturally this is a
1395 * recursive process, but here it is implemented in an iterative fashion: We
1396 * find all referencing extents for the extent in question and put them on a
1397 * list. In turn, we find all referencing extents for those, further appending
1398 * to the list. The way we iterate the list allows adding more elements after
1399 * the current while iterating. The process stops when we reach the end of the
1400 * list. Found roots are added to the roots list.
1401 *
1402 * returns 0 on success, < 0 on error.
1403 */
e0c476b1
JM
1404static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1405 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1406 u64 time_seq, struct ulist **roots,
1407 bool ignore_offset)
8da6d581
JS
1408{
1409 struct ulist *tmp;
1410 struct ulist_node *node = NULL;
cd1b413c 1411 struct ulist_iterator uiter;
8da6d581
JS
1412 int ret;
1413
1414 tmp = ulist_alloc(GFP_NOFS);
1415 if (!tmp)
1416 return -ENOMEM;
1417 *roots = ulist_alloc(GFP_NOFS);
1418 if (!*roots) {
1419 ulist_free(tmp);
1420 return -ENOMEM;
1421 }
1422
cd1b413c 1423 ULIST_ITER_INIT(&uiter);
8da6d581 1424 while (1) {
afce772e 1425 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
c995ab3c 1426 tmp, *roots, NULL, NULL, ignore_offset);
8da6d581
JS
1427 if (ret < 0 && ret != -ENOENT) {
1428 ulist_free(tmp);
1429 ulist_free(*roots);
1430 return ret;
1431 }
cd1b413c 1432 node = ulist_next(tmp, &uiter);
8da6d581
JS
1433 if (!node)
1434 break;
1435 bytenr = node->val;
bca1a290 1436 cond_resched();
8da6d581
JS
1437 }
1438
1439 ulist_free(tmp);
1440 return 0;
1441}
1442
9e351cc8
JB
1443int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1444 struct btrfs_fs_info *fs_info, u64 bytenr,
c995ab3c
ZB
1445 u64 time_seq, struct ulist **roots,
1446 bool ignore_offset)
9e351cc8
JB
1447{
1448 int ret;
1449
1450 if (!trans)
1451 down_read(&fs_info->commit_root_sem);
e0c476b1 1452 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
c995ab3c 1453 time_seq, roots, ignore_offset);
9e351cc8
JB
1454 if (!trans)
1455 up_read(&fs_info->commit_root_sem);
1456 return ret;
1457}
1458
2c2ed5aa
MF
1459/**
1460 * btrfs_check_shared - tell us whether an extent is shared
1461 *
2c2ed5aa
MF
1462 * btrfs_check_shared uses the backref walking code but will short
1463 * circuit as soon as it finds a root or inode that doesn't match the
1464 * one passed in. This provides a significant performance benefit for
1465 * callers (such as fiemap) which want to know whether the extent is
1466 * shared but do not need a ref count.
1467 *
bb739cf0
EN
1468 * This attempts to allocate a transaction in order to account for
1469 * delayed refs, but continues on even when the alloc fails.
1470 *
2c2ed5aa
MF
1471 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1472 */
bb739cf0 1473int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
dc046b10 1474{
bb739cf0
EN
1475 struct btrfs_fs_info *fs_info = root->fs_info;
1476 struct btrfs_trans_handle *trans;
dc046b10
JB
1477 struct ulist *tmp = NULL;
1478 struct ulist *roots = NULL;
1479 struct ulist_iterator uiter;
1480 struct ulist_node *node;
3284da7b 1481 struct seq_list elem = SEQ_LIST_INIT(elem);
dc046b10 1482 int ret = 0;
3ec4d323
EN
1483 struct share_check shared = {
1484 .root_objectid = root->objectid,
1485 .inum = inum,
1486 .share_count = 0,
1487 };
dc046b10
JB
1488
1489 tmp = ulist_alloc(GFP_NOFS);
1490 roots = ulist_alloc(GFP_NOFS);
1491 if (!tmp || !roots) {
1492 ulist_free(tmp);
1493 ulist_free(roots);
1494 return -ENOMEM;
1495 }
1496
bb739cf0
EN
1497 trans = btrfs_join_transaction(root);
1498 if (IS_ERR(trans)) {
1499 trans = NULL;
dc046b10 1500 down_read(&fs_info->commit_root_sem);
bb739cf0
EN
1501 } else {
1502 btrfs_get_tree_mod_seq(fs_info, &elem);
1503 }
1504
dc046b10
JB
1505 ULIST_ITER_INIT(&uiter);
1506 while (1) {
1507 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
c995ab3c 1508 roots, NULL, &shared, false);
dc046b10 1509 if (ret == BACKREF_FOUND_SHARED) {
2c2ed5aa 1510 /* this is the only condition under which we return 1 */
dc046b10
JB
1511 ret = 1;
1512 break;
1513 }
1514 if (ret < 0 && ret != -ENOENT)
1515 break;
2c2ed5aa 1516 ret = 0;
dc046b10
JB
1517 node = ulist_next(tmp, &uiter);
1518 if (!node)
1519 break;
1520 bytenr = node->val;
18bf591b 1521 shared.share_count = 0;
dc046b10
JB
1522 cond_resched();
1523 }
bb739cf0
EN
1524
1525 if (trans) {
dc046b10 1526 btrfs_put_tree_mod_seq(fs_info, &elem);
bb739cf0
EN
1527 btrfs_end_transaction(trans);
1528 } else {
dc046b10 1529 up_read(&fs_info->commit_root_sem);
bb739cf0 1530 }
dc046b10
JB
1531 ulist_free(tmp);
1532 ulist_free(roots);
1533 return ret;
1534}
1535
f186373f
MF
1536int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1537 u64 start_off, struct btrfs_path *path,
1538 struct btrfs_inode_extref **ret_extref,
1539 u64 *found_off)
1540{
1541 int ret, slot;
1542 struct btrfs_key key;
1543 struct btrfs_key found_key;
1544 struct btrfs_inode_extref *extref;
73980bec 1545 const struct extent_buffer *leaf;
f186373f
MF
1546 unsigned long ptr;
1547
1548 key.objectid = inode_objectid;
962a298f 1549 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
1550 key.offset = start_off;
1551
1552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1553 if (ret < 0)
1554 return ret;
1555
1556 while (1) {
1557 leaf = path->nodes[0];
1558 slot = path->slots[0];
1559 if (slot >= btrfs_header_nritems(leaf)) {
1560 /*
1561 * If the item at offset is not found,
1562 * btrfs_search_slot will point us to the slot
1563 * where it should be inserted. In our case
1564 * that will be the slot directly before the
1565 * next INODE_REF_KEY_V2 item. In the case
1566 * that we're pointing to the last slot in a
1567 * leaf, we must move one leaf over.
1568 */
1569 ret = btrfs_next_leaf(root, path);
1570 if (ret) {
1571 if (ret >= 1)
1572 ret = -ENOENT;
1573 break;
1574 }
1575 continue;
1576 }
1577
1578 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1579
1580 /*
1581 * Check that we're still looking at an extended ref key for
1582 * this particular objectid. If we have different
1583 * objectid or type then there are no more to be found
1584 * in the tree and we can exit.
1585 */
1586 ret = -ENOENT;
1587 if (found_key.objectid != inode_objectid)
1588 break;
962a298f 1589 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
1590 break;
1591
1592 ret = 0;
1593 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1594 extref = (struct btrfs_inode_extref *)ptr;
1595 *ret_extref = extref;
1596 if (found_off)
1597 *found_off = found_key.offset;
1598 break;
1599 }
1600
1601 return ret;
1602}
1603
48a3b636
ES
1604/*
1605 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1606 * Elements of the path are separated by '/' and the path is guaranteed to be
1607 * 0-terminated. the path is only given within the current file system.
1608 * Therefore, it never starts with a '/'. the caller is responsible to provide
1609 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1610 * the start point of the resulting string is returned. this pointer is within
1611 * dest, normally.
1612 * in case the path buffer would overflow, the pointer is decremented further
1613 * as if output was written to the buffer, though no more output is actually
1614 * generated. that way, the caller can determine how much space would be
1615 * required for the path to fit into the buffer. in that case, the returned
1616 * value will be smaller than dest. callers must check this!
1617 */
96b5bd77
JS
1618char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1619 u32 name_len, unsigned long name_off,
1620 struct extent_buffer *eb_in, u64 parent,
1621 char *dest, u32 size)
a542ad1b 1622{
a542ad1b
JS
1623 int slot;
1624 u64 next_inum;
1625 int ret;
661bec6b 1626 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1627 struct extent_buffer *eb = eb_in;
1628 struct btrfs_key found_key;
b916a59a 1629 int leave_spinning = path->leave_spinning;
d24bec3a 1630 struct btrfs_inode_ref *iref;
a542ad1b
JS
1631
1632 if (bytes_left >= 0)
1633 dest[bytes_left] = '\0';
1634
b916a59a 1635 path->leave_spinning = 1;
a542ad1b 1636 while (1) {
d24bec3a 1637 bytes_left -= name_len;
a542ad1b
JS
1638 if (bytes_left >= 0)
1639 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1640 name_off, name_len);
b916a59a 1641 if (eb != eb_in) {
0c0fe3b0
FM
1642 if (!path->skip_locking)
1643 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1644 free_extent_buffer(eb);
b916a59a 1645 }
c234a24d
DS
1646 ret = btrfs_find_item(fs_root, path, parent, 0,
1647 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
1648 if (ret > 0)
1649 ret = -ENOENT;
a542ad1b
JS
1650 if (ret)
1651 break;
d24bec3a 1652
a542ad1b
JS
1653 next_inum = found_key.offset;
1654
1655 /* regular exit ahead */
1656 if (parent == next_inum)
1657 break;
1658
1659 slot = path->slots[0];
1660 eb = path->nodes[0];
1661 /* make sure we can use eb after releasing the path */
b916a59a 1662 if (eb != eb_in) {
0c0fe3b0
FM
1663 if (!path->skip_locking)
1664 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1665 path->nodes[0] = NULL;
1666 path->locks[0] = 0;
b916a59a 1667 }
a542ad1b 1668 btrfs_release_path(path);
a542ad1b 1669 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1670
1671 name_len = btrfs_inode_ref_name_len(eb, iref);
1672 name_off = (unsigned long)(iref + 1);
1673
a542ad1b
JS
1674 parent = next_inum;
1675 --bytes_left;
1676 if (bytes_left >= 0)
1677 dest[bytes_left] = '/';
1678 }
1679
1680 btrfs_release_path(path);
b916a59a 1681 path->leave_spinning = leave_spinning;
a542ad1b
JS
1682
1683 if (ret)
1684 return ERR_PTR(ret);
1685
1686 return dest + bytes_left;
1687}
1688
1689/*
1690 * this makes the path point to (logical EXTENT_ITEM *)
1691 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1692 * tree blocks and <0 on error.
1693 */
1694int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1695 struct btrfs_path *path, struct btrfs_key *found_key,
1696 u64 *flags_ret)
a542ad1b
JS
1697{
1698 int ret;
1699 u64 flags;
261c84b6 1700 u64 size = 0;
a542ad1b 1701 u32 item_size;
73980bec 1702 const struct extent_buffer *eb;
a542ad1b
JS
1703 struct btrfs_extent_item *ei;
1704 struct btrfs_key key;
1705
261c84b6
JB
1706 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1707 key.type = BTRFS_METADATA_ITEM_KEY;
1708 else
1709 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1710 key.objectid = logical;
1711 key.offset = (u64)-1;
1712
1713 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1714 if (ret < 0)
1715 return ret;
a542ad1b 1716
850a8cdf
WS
1717 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1718 if (ret) {
1719 if (ret > 0)
1720 ret = -ENOENT;
1721 return ret;
580f0a67 1722 }
850a8cdf 1723 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 1724 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
da17066c 1725 size = fs_info->nodesize;
261c84b6
JB
1726 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1727 size = found_key->offset;
1728
580f0a67 1729 if (found_key->objectid > logical ||
261c84b6 1730 found_key->objectid + size <= logical) {
ab8d0fc4
JM
1731 btrfs_debug(fs_info,
1732 "logical %llu is not within any extent", logical);
a542ad1b 1733 return -ENOENT;
4692cf58 1734 }
a542ad1b
JS
1735
1736 eb = path->nodes[0];
1737 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1738 BUG_ON(item_size < sizeof(*ei));
1739
1740 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1741 flags = btrfs_extent_flags(eb, ei);
1742
ab8d0fc4
JM
1743 btrfs_debug(fs_info,
1744 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
c1c9ff7c
GU
1745 logical, logical - found_key->objectid, found_key->objectid,
1746 found_key->offset, flags, item_size);
69917e43
LB
1747
1748 WARN_ON(!flags_ret);
1749 if (flags_ret) {
1750 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1751 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1752 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1753 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1754 else
1755 BUG_ON(1);
1756 return 0;
1757 }
a542ad1b
JS
1758
1759 return -EIO;
1760}
1761
1762/*
1763 * helper function to iterate extent inline refs. ptr must point to a 0 value
1764 * for the first call and may be modified. it is used to track state.
1765 * if more refs exist, 0 is returned and the next call to
e0c476b1 1766 * get_extent_inline_ref must pass the modified ptr parameter to get the
a542ad1b
JS
1767 * next ref. after the last ref was processed, 1 is returned.
1768 * returns <0 on error
1769 */
e0c476b1
JM
1770static int get_extent_inline_ref(unsigned long *ptr,
1771 const struct extent_buffer *eb,
1772 const struct btrfs_key *key,
1773 const struct btrfs_extent_item *ei,
1774 u32 item_size,
1775 struct btrfs_extent_inline_ref **out_eiref,
1776 int *out_type)
a542ad1b
JS
1777{
1778 unsigned long end;
1779 u64 flags;
1780 struct btrfs_tree_block_info *info;
1781
1782 if (!*ptr) {
1783 /* first call */
1784 flags = btrfs_extent_flags(eb, ei);
1785 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
1786 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1787 /* a skinny metadata extent */
1788 *out_eiref =
1789 (struct btrfs_extent_inline_ref *)(ei + 1);
1790 } else {
1791 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1792 info = (struct btrfs_tree_block_info *)(ei + 1);
1793 *out_eiref =
1794 (struct btrfs_extent_inline_ref *)(info + 1);
1795 }
a542ad1b
JS
1796 } else {
1797 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1798 }
1799 *ptr = (unsigned long)*out_eiref;
cd857dd6 1800 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
1801 return -ENOENT;
1802 }
1803
1804 end = (unsigned long)ei + item_size;
6eda71d0 1805 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
3de28d57
LB
1806 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1807 BTRFS_REF_TYPE_ANY);
1808 if (*out_type == BTRFS_REF_TYPE_INVALID)
1809 return -EINVAL;
a542ad1b
JS
1810
1811 *ptr += btrfs_extent_inline_ref_size(*out_type);
1812 WARN_ON(*ptr > end);
1813 if (*ptr == end)
1814 return 1; /* last */
1815
1816 return 0;
1817}
1818
1819/*
1820 * reads the tree block backref for an extent. tree level and root are returned
1821 * through out_level and out_root. ptr must point to a 0 value for the first
e0c476b1 1822 * call and may be modified (see get_extent_inline_ref comment).
a542ad1b
JS
1823 * returns 0 if data was provided, 1 if there was no more data to provide or
1824 * <0 on error.
1825 */
1826int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
1827 struct btrfs_key *key, struct btrfs_extent_item *ei,
1828 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
1829{
1830 int ret;
1831 int type;
a542ad1b
JS
1832 struct btrfs_extent_inline_ref *eiref;
1833
1834 if (*ptr == (unsigned long)-1)
1835 return 1;
1836
1837 while (1) {
e0c476b1 1838 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
6eda71d0 1839 &eiref, &type);
a542ad1b
JS
1840 if (ret < 0)
1841 return ret;
1842
1843 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1844 type == BTRFS_SHARED_BLOCK_REF_KEY)
1845 break;
1846
1847 if (ret == 1)
1848 return 1;
1849 }
1850
1851 /* we can treat both ref types equally here */
a542ad1b 1852 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
1853
1854 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1855 struct btrfs_tree_block_info *info;
1856
1857 info = (struct btrfs_tree_block_info *)(ei + 1);
1858 *out_level = btrfs_tree_block_level(eb, info);
1859 } else {
1860 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1861 *out_level = (u8)key->offset;
1862 }
a542ad1b
JS
1863
1864 if (ret == 1)
1865 *ptr = (unsigned long)-1;
1866
1867 return 0;
1868}
1869
ab8d0fc4
JM
1870static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1871 struct extent_inode_elem *inode_list,
1872 u64 root, u64 extent_item_objectid,
1873 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1874{
976b1908 1875 struct extent_inode_elem *eie;
4692cf58 1876 int ret = 0;
4692cf58 1877
976b1908 1878 for (eie = inode_list; eie; eie = eie->next) {
ab8d0fc4
JM
1879 btrfs_debug(fs_info,
1880 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1881 extent_item_objectid, eie->inum,
1882 eie->offset, root);
976b1908 1883 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1884 if (ret) {
ab8d0fc4
JM
1885 btrfs_debug(fs_info,
1886 "stopping iteration for %llu due to ret=%d",
1887 extent_item_objectid, ret);
4692cf58
JS
1888 break;
1889 }
a542ad1b
JS
1890 }
1891
a542ad1b
JS
1892 return ret;
1893}
1894
1895/*
1896 * calls iterate() for every inode that references the extent identified by
4692cf58 1897 * the given parameters.
a542ad1b
JS
1898 * when the iterator function returns a non-zero value, iteration stops.
1899 */
1900int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1901 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1902 int search_commit_root,
c995ab3c
ZB
1903 iterate_extent_inodes_t *iterate, void *ctx,
1904 bool ignore_offset)
a542ad1b 1905{
a542ad1b 1906 int ret;
da61d31a 1907 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1908 struct ulist *refs = NULL;
1909 struct ulist *roots = NULL;
4692cf58
JS
1910 struct ulist_node *ref_node = NULL;
1911 struct ulist_node *root_node = NULL;
3284da7b 1912 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
cd1b413c
JS
1913 struct ulist_iterator ref_uiter;
1914 struct ulist_iterator root_uiter;
a542ad1b 1915
ab8d0fc4 1916 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
4692cf58 1917 extent_item_objectid);
a542ad1b 1918
da61d31a 1919 if (!search_commit_root) {
7a3ae2f8
JS
1920 trans = btrfs_join_transaction(fs_info->extent_root);
1921 if (IS_ERR(trans))
1922 return PTR_ERR(trans);
8445f61c 1923 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
9e351cc8
JB
1924 } else {
1925 down_read(&fs_info->commit_root_sem);
7a3ae2f8 1926 }
a542ad1b 1927
4692cf58 1928 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1929 tree_mod_seq_elem.seq, &refs,
c995ab3c 1930 &extent_item_pos, ignore_offset);
4692cf58
JS
1931 if (ret)
1932 goto out;
a542ad1b 1933
cd1b413c
JS
1934 ULIST_ITER_INIT(&ref_uiter);
1935 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
e0c476b1 1936 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
c995ab3c
ZB
1937 tree_mod_seq_elem.seq, &roots,
1938 ignore_offset);
4692cf58
JS
1939 if (ret)
1940 break;
cd1b413c
JS
1941 ULIST_ITER_INIT(&root_uiter);
1942 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
ab8d0fc4
JM
1943 btrfs_debug(fs_info,
1944 "root %llu references leaf %llu, data list %#llx",
1945 root_node->val, ref_node->val,
1946 ref_node->aux);
1947 ret = iterate_leaf_refs(fs_info,
1948 (struct extent_inode_elem *)
995e01b7
JS
1949 (uintptr_t)ref_node->aux,
1950 root_node->val,
1951 extent_item_objectid,
1952 iterate, ctx);
4692cf58 1953 }
976b1908 1954 ulist_free(roots);
a542ad1b
JS
1955 }
1956
976b1908 1957 free_leaf_list(refs);
4692cf58 1958out:
7a3ae2f8 1959 if (!search_commit_root) {
8445f61c 1960 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
3a45bb20 1961 btrfs_end_transaction(trans);
9e351cc8
JB
1962 } else {
1963 up_read(&fs_info->commit_root_sem);
7a3ae2f8
JS
1964 }
1965
a542ad1b
JS
1966 return ret;
1967}
1968
1969int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1970 struct btrfs_path *path,
c995ab3c
ZB
1971 iterate_extent_inodes_t *iterate, void *ctx,
1972 bool ignore_offset)
a542ad1b
JS
1973{
1974 int ret;
4692cf58 1975 u64 extent_item_pos;
69917e43 1976 u64 flags = 0;
a542ad1b 1977 struct btrfs_key found_key;
7a3ae2f8 1978 int search_commit_root = path->search_commit_root;
a542ad1b 1979
69917e43 1980 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 1981 btrfs_release_path(path);
a542ad1b
JS
1982 if (ret < 0)
1983 return ret;
69917e43 1984 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 1985 return -EINVAL;
a542ad1b 1986
4692cf58 1987 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1988 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1989 extent_item_pos, search_commit_root,
c995ab3c 1990 iterate, ctx, ignore_offset);
a542ad1b
JS
1991
1992 return ret;
1993}
1994
d24bec3a
MF
1995typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1996 struct extent_buffer *eb, void *ctx);
1997
1998static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1999 struct btrfs_path *path,
2000 iterate_irefs_t *iterate, void *ctx)
a542ad1b 2001{
aefc1eb1 2002 int ret = 0;
a542ad1b
JS
2003 int slot;
2004 u32 cur;
2005 u32 len;
2006 u32 name_len;
2007 u64 parent = 0;
2008 int found = 0;
2009 struct extent_buffer *eb;
2010 struct btrfs_item *item;
2011 struct btrfs_inode_ref *iref;
2012 struct btrfs_key found_key;
2013
aefc1eb1 2014 while (!ret) {
c234a24d
DS
2015 ret = btrfs_find_item(fs_root, path, inum,
2016 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2017 &found_key);
2018
a542ad1b
JS
2019 if (ret < 0)
2020 break;
2021 if (ret) {
2022 ret = found ? 0 : -ENOENT;
2023 break;
2024 }
2025 ++found;
2026
2027 parent = found_key.offset;
2028 slot = path->slots[0];
3fe81ce2
FDBM
2029 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2030 if (!eb) {
2031 ret = -ENOMEM;
2032 break;
2033 }
2034 extent_buffer_get(eb);
b916a59a
JS
2035 btrfs_tree_read_lock(eb);
2036 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
2037 btrfs_release_path(path);
2038
dd3cc16b 2039 item = btrfs_item_nr(slot);
a542ad1b
JS
2040 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2041
2042 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2043 name_len = btrfs_inode_ref_name_len(eb, iref);
2044 /* path must be released before calling iterate()! */
ab8d0fc4
JM
2045 btrfs_debug(fs_root->fs_info,
2046 "following ref at offset %u for inode %llu in tree %llu",
2047 cur, found_key.objectid, fs_root->objectid);
d24bec3a
MF
2048 ret = iterate(parent, name_len,
2049 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 2050 if (ret)
a542ad1b 2051 break;
a542ad1b
JS
2052 len = sizeof(*iref) + name_len;
2053 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2054 }
b916a59a 2055 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
2056 free_extent_buffer(eb);
2057 }
2058
2059 btrfs_release_path(path);
2060
2061 return ret;
2062}
2063
d24bec3a
MF
2064static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2065 struct btrfs_path *path,
2066 iterate_irefs_t *iterate, void *ctx)
2067{
2068 int ret;
2069 int slot;
2070 u64 offset = 0;
2071 u64 parent;
2072 int found = 0;
2073 struct extent_buffer *eb;
2074 struct btrfs_inode_extref *extref;
d24bec3a
MF
2075 u32 item_size;
2076 u32 cur_offset;
2077 unsigned long ptr;
2078
2079 while (1) {
2080 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2081 &offset);
2082 if (ret < 0)
2083 break;
2084 if (ret) {
2085 ret = found ? 0 : -ENOENT;
2086 break;
2087 }
2088 ++found;
2089
2090 slot = path->slots[0];
3fe81ce2
FDBM
2091 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2092 if (!eb) {
2093 ret = -ENOMEM;
2094 break;
2095 }
2096 extent_buffer_get(eb);
d24bec3a
MF
2097
2098 btrfs_tree_read_lock(eb);
2099 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2100 btrfs_release_path(path);
2101
2849a854
CM
2102 item_size = btrfs_item_size_nr(eb, slot);
2103 ptr = btrfs_item_ptr_offset(eb, slot);
d24bec3a
MF
2104 cur_offset = 0;
2105
2106 while (cur_offset < item_size) {
2107 u32 name_len;
2108
2109 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2110 parent = btrfs_inode_extref_parent(eb, extref);
2111 name_len = btrfs_inode_extref_name_len(eb, extref);
2112 ret = iterate(parent, name_len,
2113 (unsigned long)&extref->name, eb, ctx);
2114 if (ret)
2115 break;
2116
2849a854 2117 cur_offset += btrfs_inode_extref_name_len(eb, extref);
d24bec3a
MF
2118 cur_offset += sizeof(*extref);
2119 }
2120 btrfs_tree_read_unlock_blocking(eb);
2121 free_extent_buffer(eb);
2122
2123 offset++;
2124 }
2125
2126 btrfs_release_path(path);
2127
2128 return ret;
2129}
2130
2131static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2132 struct btrfs_path *path, iterate_irefs_t *iterate,
2133 void *ctx)
2134{
2135 int ret;
2136 int found_refs = 0;
2137
2138 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2139 if (!ret)
2140 ++found_refs;
2141 else if (ret != -ENOENT)
2142 return ret;
2143
2144 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2145 if (ret == -ENOENT && found_refs)
2146 return 0;
2147
2148 return ret;
2149}
2150
a542ad1b
JS
2151/*
2152 * returns 0 if the path could be dumped (probably truncated)
2153 * returns <0 in case of an error
2154 */
d24bec3a
MF
2155static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2156 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
2157{
2158 struct inode_fs_paths *ipath = ctx;
2159 char *fspath;
2160 char *fspath_min;
2161 int i = ipath->fspath->elem_cnt;
2162 const int s_ptr = sizeof(char *);
2163 u32 bytes_left;
2164
2165 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2166 ipath->fspath->bytes_left - s_ptr : 0;
2167
740c3d22 2168 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
2169 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2170 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
2171 if (IS_ERR(fspath))
2172 return PTR_ERR(fspath);
2173
2174 if (fspath > fspath_min) {
745c4d8e 2175 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
2176 ++ipath->fspath->elem_cnt;
2177 ipath->fspath->bytes_left = fspath - fspath_min;
2178 } else {
2179 ++ipath->fspath->elem_missed;
2180 ipath->fspath->bytes_missing += fspath_min - fspath;
2181 ipath->fspath->bytes_left = 0;
2182 }
2183
2184 return 0;
2185}
2186
2187/*
2188 * this dumps all file system paths to the inode into the ipath struct, provided
2189 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 2190 * from ipath->fspath->val[i].
a542ad1b 2191 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 2192 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
01327610 2193 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
a542ad1b
JS
2194 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2195 * have been needed to return all paths.
2196 */
2197int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2198{
2199 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 2200 inode_to_path, ipath);
a542ad1b
JS
2201}
2202
a542ad1b
JS
2203struct btrfs_data_container *init_data_container(u32 total_bytes)
2204{
2205 struct btrfs_data_container *data;
2206 size_t alloc_bytes;
2207
2208 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
f54de068 2209 data = kvmalloc(alloc_bytes, GFP_KERNEL);
a542ad1b
JS
2210 if (!data)
2211 return ERR_PTR(-ENOMEM);
2212
2213 if (total_bytes >= sizeof(*data)) {
2214 data->bytes_left = total_bytes - sizeof(*data);
2215 data->bytes_missing = 0;
2216 } else {
2217 data->bytes_missing = sizeof(*data) - total_bytes;
2218 data->bytes_left = 0;
2219 }
2220
2221 data->elem_cnt = 0;
2222 data->elem_missed = 0;
2223
2224 return data;
2225}
2226
2227/*
2228 * allocates space to return multiple file system paths for an inode.
2229 * total_bytes to allocate are passed, note that space usable for actual path
2230 * information will be total_bytes - sizeof(struct inode_fs_paths).
2231 * the returned pointer must be freed with free_ipath() in the end.
2232 */
2233struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2234 struct btrfs_path *path)
2235{
2236 struct inode_fs_paths *ifp;
2237 struct btrfs_data_container *fspath;
2238
2239 fspath = init_data_container(total_bytes);
2240 if (IS_ERR(fspath))
2241 return (void *)fspath;
2242
f54de068 2243 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
a542ad1b 2244 if (!ifp) {
f54de068 2245 kvfree(fspath);
a542ad1b
JS
2246 return ERR_PTR(-ENOMEM);
2247 }
2248
2249 ifp->btrfs_path = path;
2250 ifp->fspath = fspath;
2251 ifp->fs_root = fs_root;
2252
2253 return ifp;
2254}
2255
2256void free_ipath(struct inode_fs_paths *ipath)
2257{
4735fb28
JJ
2258 if (!ipath)
2259 return;
f54de068 2260 kvfree(ipath->fspath);
a542ad1b
JS
2261 kfree(ipath);
2262}