bcachefs: Erasure coding fixes & refactoring
[linux-block.git] / fs / bcachefs / bset.h
CommitLineData
1c6fdbd8
KO
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _BCACHEFS_BSET_H
3#define _BCACHEFS_BSET_H
4
5#include <linux/kernel.h>
6#include <linux/types.h>
7
29364f34 8#include "bcachefs.h"
1c6fdbd8
KO
9#include "bkey.h"
10#include "bkey_methods.h"
11#include "btree_types.h"
12#include "util.h" /* for time_stats */
13#include "vstructs.h"
14
15/*
16 * BKEYS:
17 *
18 * A bkey contains a key, a size field, a variable number of pointers, and some
19 * ancillary flag bits.
20 *
21 * We use two different functions for validating bkeys, bkey_invalid and
22 * bkey_deleted().
23 *
24 * The one exception to the rule that ptr_invalid() filters out invalid keys is
25 * that it also filters out keys of size 0 - these are keys that have been
26 * completely overwritten. It'd be safe to delete these in memory while leaving
27 * them on disk, just unnecessary work - so we filter them out when resorting
28 * instead.
29 *
30 * We can't filter out stale keys when we're resorting, because garbage
31 * collection needs to find them to ensure bucket gens don't wrap around -
32 * unless we're rewriting the btree node those stale keys still exist on disk.
33 *
34 * We also implement functions here for removing some number of sectors from the
35 * front or the back of a bkey - this is mainly used for fixing overlapping
36 * extents, by removing the overlapping sectors from the older key.
37 *
38 * BSETS:
39 *
40 * A bset is an array of bkeys laid out contiguously in memory in sorted order,
41 * along with a header. A btree node is made up of a number of these, written at
42 * different times.
43 *
44 * There could be many of them on disk, but we never allow there to be more than
45 * 4 in memory - we lazily resort as needed.
46 *
47 * We implement code here for creating and maintaining auxiliary search trees
48 * (described below) for searching an individial bset, and on top of that we
49 * implement a btree iterator.
50 *
51 * BTREE ITERATOR:
52 *
53 * Most of the code in bcache doesn't care about an individual bset - it needs
54 * to search entire btree nodes and iterate over them in sorted order.
55 *
56 * The btree iterator code serves both functions; it iterates through the keys
57 * in a btree node in sorted order, starting from either keys after a specific
58 * point (if you pass it a search key) or the start of the btree node.
59 *
60 * AUXILIARY SEARCH TREES:
61 *
62 * Since keys are variable length, we can't use a binary search on a bset - we
63 * wouldn't be able to find the start of the next key. But binary searches are
64 * slow anyways, due to terrible cache behaviour; bcache originally used binary
65 * searches and that code topped out at under 50k lookups/second.
66 *
67 * So we need to construct some sort of lookup table. Since we only insert keys
68 * into the last (unwritten) set, most of the keys within a given btree node are
69 * usually in sets that are mostly constant. We use two different types of
70 * lookup tables to take advantage of this.
71 *
72 * Both lookup tables share in common that they don't index every key in the
73 * set; they index one key every BSET_CACHELINE bytes, and then a linear search
74 * is used for the rest.
75 *
76 * For sets that have been written to disk and are no longer being inserted
77 * into, we construct a binary search tree in an array - traversing a binary
78 * search tree in an array gives excellent locality of reference and is very
79 * fast, since both children of any node are adjacent to each other in memory
80 * (and their grandchildren, and great grandchildren...) - this means
81 * prefetching can be used to great effect.
82 *
83 * It's quite useful performance wise to keep these nodes small - not just
84 * because they're more likely to be in L2, but also because we can prefetch
85 * more nodes on a single cacheline and thus prefetch more iterations in advance
86 * when traversing this tree.
87 *
88 * Nodes in the auxiliary search tree must contain both a key to compare against
89 * (we don't want to fetch the key from the set, that would defeat the purpose),
90 * and a pointer to the key. We use a few tricks to compress both of these.
91 *
92 * To compress the pointer, we take advantage of the fact that one node in the
93 * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
94 * a function (to_inorder()) that takes the index of a node in a binary tree and
95 * returns what its index would be in an inorder traversal, so we only have to
96 * store the low bits of the offset.
97 *
98 * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
99 * compress that, we take advantage of the fact that when we're traversing the
100 * search tree at every iteration we know that both our search key and the key
101 * we're looking for lie within some range - bounded by our previous
102 * comparisons. (We special case the start of a search so that this is true even
103 * at the root of the tree).
104 *
105 * So we know the key we're looking for is between a and b, and a and b don't
106 * differ higher than bit 50, we don't need to check anything higher than bit
107 * 50.
108 *
109 * We don't usually need the rest of the bits, either; we only need enough bits
110 * to partition the key range we're currently checking. Consider key n - the
111 * key our auxiliary search tree node corresponds to, and key p, the key
112 * immediately preceding n. The lowest bit we need to store in the auxiliary
113 * search tree is the highest bit that differs between n and p.
114 *
115 * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
116 * comparison. But we'd really like our nodes in the auxiliary search tree to be
117 * of fixed size.
118 *
119 * The solution is to make them fixed size, and when we're constructing a node
120 * check if p and n differed in the bits we needed them to. If they don't we
121 * flag that node, and when doing lookups we fallback to comparing against the
122 * real key. As long as this doesn't happen to often (and it seems to reliably
123 * happen a bit less than 1% of the time), we win - even on failures, that key
124 * is then more likely to be in cache than if we were doing binary searches all
125 * the way, since we're touching so much less memory.
126 *
127 * The keys in the auxiliary search tree are stored in (software) floating
128 * point, with an exponent and a mantissa. The exponent needs to be big enough
129 * to address all the bits in the original key, but the number of bits in the
130 * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
131 *
132 * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
133 * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
134 * We need one node per 128 bytes in the btree node, which means the auxiliary
135 * search trees take up 3% as much memory as the btree itself.
136 *
137 * Constructing these auxiliary search trees is moderately expensive, and we
138 * don't want to be constantly rebuilding the search tree for the last set
139 * whenever we insert another key into it. For the unwritten set, we use a much
140 * simpler lookup table - it's just a flat array, so index i in the lookup table
141 * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
142 * within each byte range works the same as with the auxiliary search trees.
143 *
144 * These are much easier to keep up to date when we insert a key - we do it
145 * somewhat lazily; when we shift a key up we usually just increment the pointer
146 * to it, only when it would overflow do we go to the trouble of finding the
147 * first key in that range of bytes again.
148 */
149
1c6fdbd8
KO
150enum bset_aux_tree_type {
151 BSET_NO_AUX_TREE,
152 BSET_RO_AUX_TREE,
153 BSET_RW_AUX_TREE,
154};
155
156#define BSET_TREE_NR_TYPES 3
157
158#define BSET_NO_AUX_TREE_VAL (U16_MAX)
159#define BSET_RW_AUX_TREE_VAL (U16_MAX - 1)
160
161static inline enum bset_aux_tree_type bset_aux_tree_type(const struct bset_tree *t)
162{
163 switch (t->extra) {
164 case BSET_NO_AUX_TREE_VAL:
165 EBUG_ON(t->size);
166 return BSET_NO_AUX_TREE;
167 case BSET_RW_AUX_TREE_VAL:
168 EBUG_ON(!t->size);
169 return BSET_RW_AUX_TREE;
170 default:
171 EBUG_ON(!t->size);
172 return BSET_RO_AUX_TREE;
173 }
174}
175
4580baec
KO
176/*
177 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
178 * it used to be 64, but I realized the lookup code would touch slightly less
179 * memory if it was 128.
180 *
181 * It definites the number of bytes (in struct bset) per struct bkey_float in
182 * the auxiliar search tree - when we're done searching the bset_float tree we
183 * have this many bytes left that we do a linear search over.
184 *
185 * Since (after level 5) every level of the bset_tree is on a new cacheline,
186 * we're touching one fewer cacheline in the bset tree in exchange for one more
187 * cacheline in the linear search - but the linear search might stop before it
188 * gets to the second cacheline.
189 */
190
191#define BSET_CACHELINE 128
192
d108efc2 193static inline size_t btree_keys_cachelines(const struct btree *b)
4580baec
KO
194{
195 return (1U << b->byte_order) / BSET_CACHELINE;
196}
197
d108efc2 198static inline size_t btree_aux_data_bytes(const struct btree *b)
4580baec
KO
199{
200 return btree_keys_cachelines(b) * 8;
201}
202
d108efc2 203static inline size_t btree_aux_data_u64s(const struct btree *b)
4580baec
KO
204{
205 return btree_aux_data_bytes(b) / sizeof(u64);
206}
207
1c6fdbd8
KO
208typedef void (*compiled_unpack_fn)(struct bkey *, const struct bkey_packed *);
209
210static inline void
211__bkey_unpack_key_format_checked(const struct btree *b,
212 struct bkey *dst,
213 const struct bkey_packed *src)
214{
215#ifdef HAVE_BCACHEFS_COMPILED_UNPACK
216 {
217 compiled_unpack_fn unpack_fn = b->aux_data;
218 unpack_fn(dst, src);
219
29364f34 220 if (bch2_expensive_debug_checks) {
1c6fdbd8
KO
221 struct bkey dst2 = __bch2_bkey_unpack_key(&b->format, src);
222
1c6fdbd8
KO
223 BUG_ON(memcmp(dst, &dst2, sizeof(*dst)));
224 }
225 }
226#else
227 *dst = __bch2_bkey_unpack_key(&b->format, src);
228#endif
229}
230
231static inline struct bkey
232bkey_unpack_key_format_checked(const struct btree *b,
233 const struct bkey_packed *src)
234{
235 struct bkey dst;
236
237 __bkey_unpack_key_format_checked(b, &dst, src);
238 return dst;
239}
240
241static inline void __bkey_unpack_key(const struct btree *b,
242 struct bkey *dst,
243 const struct bkey_packed *src)
244{
245 if (likely(bkey_packed(src)))
246 __bkey_unpack_key_format_checked(b, dst, src);
247 else
248 *dst = *packed_to_bkey_c(src);
249}
250
251/**
252 * bkey_unpack_key -- unpack just the key, not the value
253 */
254static inline struct bkey bkey_unpack_key(const struct btree *b,
255 const struct bkey_packed *src)
256{
257 return likely(bkey_packed(src))
258 ? bkey_unpack_key_format_checked(b, src)
259 : *packed_to_bkey_c(src);
260}
261
262static inline struct bpos
263bkey_unpack_pos_format_checked(const struct btree *b,
264 const struct bkey_packed *src)
265{
266#ifdef HAVE_BCACHEFS_COMPILED_UNPACK
267 return bkey_unpack_key_format_checked(b, src).p;
268#else
269 return __bkey_unpack_pos(&b->format, src);
270#endif
271}
272
273static inline struct bpos bkey_unpack_pos(const struct btree *b,
274 const struct bkey_packed *src)
275{
276 return likely(bkey_packed(src))
277 ? bkey_unpack_pos_format_checked(b, src)
278 : packed_to_bkey_c(src)->p;
279}
280
281/* Disassembled bkeys */
282
283static inline struct bkey_s_c bkey_disassemble(struct btree *b,
284 const struct bkey_packed *k,
285 struct bkey *u)
286{
287 __bkey_unpack_key(b, u, k);
288
289 return (struct bkey_s_c) { u, bkeyp_val(&b->format, k), };
290}
291
292/* non const version: */
293static inline struct bkey_s __bkey_disassemble(struct btree *b,
294 struct bkey_packed *k,
295 struct bkey *u)
296{
297 __bkey_unpack_key(b, u, k);
298
299 return (struct bkey_s) { .k = u, .v = bkeyp_val(&b->format, k), };
300}
301
ad44bdc3 302#define for_each_bset(_b, _t) \
1c6fdbd8
KO
303 for (_t = (_b)->set; _t < (_b)->set + (_b)->nsets; _t++)
304
ad44bdc3
KO
305#define bset_tree_for_each_key(_b, _t, _k) \
306 for (_k = btree_bkey_first(_b, _t); \
307 _k != btree_bkey_last(_b, _t); \
308 _k = bkey_next_skip_noops(_k, btree_bkey_last(_b, _t)))
309
1c6fdbd8
KO
310static inline bool bset_has_ro_aux_tree(struct bset_tree *t)
311{
312 return bset_aux_tree_type(t) == BSET_RO_AUX_TREE;
313}
314
315static inline bool bset_has_rw_aux_tree(struct bset_tree *t)
316{
317 return bset_aux_tree_type(t) == BSET_RW_AUX_TREE;
318}
319
320static inline void bch2_bset_set_no_aux_tree(struct btree *b,
321 struct bset_tree *t)
322{
323 BUG_ON(t < b->set);
324
325 for (; t < b->set + ARRAY_SIZE(b->set); t++) {
326 t->size = 0;
327 t->extra = BSET_NO_AUX_TREE_VAL;
328 t->aux_data_offset = U16_MAX;
329 }
330}
331
332static inline void btree_node_set_format(struct btree *b,
333 struct bkey_format f)
334{
335 int len;
336
337 b->format = f;
338 b->nr_key_bits = bkey_format_key_bits(&f);
339
340 len = bch2_compile_bkey_format(&b->format, b->aux_data);
341 BUG_ON(len < 0 || len > U8_MAX);
342
343 b->unpack_fn_len = len;
344
345 bch2_bset_set_no_aux_tree(b, b->set);
346}
347
348static inline struct bset *bset_next_set(struct btree *b,
349 unsigned block_bytes)
350{
351 struct bset *i = btree_bset_last(b);
352
353 EBUG_ON(!is_power_of_2(block_bytes));
354
355 return ((void *) i) + round_up(vstruct_bytes(i), block_bytes);
356}
357
29364f34 358void bch2_btree_keys_init(struct btree *);
1c6fdbd8
KO
359
360void bch2_bset_init_first(struct btree *, struct bset *);
361void bch2_bset_init_next(struct bch_fs *, struct btree *,
362 struct btree_node_entry *);
363void bch2_bset_build_aux_tree(struct btree *, struct bset_tree *, bool);
216c9fac 364void bch2_bset_fix_invalidated_key(struct btree *, struct bkey_packed *);
1c6fdbd8
KO
365
366void bch2_bset_insert(struct btree *, struct btree_node_iter *,
367 struct bkey_packed *, struct bkey_i *, unsigned);
368void bch2_bset_delete(struct btree *, struct bkey_packed *, unsigned);
369
370/* Bkey utility code */
371
372/* packed or unpacked */
373static inline int bkey_cmp_p_or_unp(const struct btree *b,
374 const struct bkey_packed *l,
375 const struct bkey_packed *r_packed,
9626aeb1 376 const struct bpos *r)
1c6fdbd8
KO
377{
378 EBUG_ON(r_packed && !bkey_packed(r_packed));
379
380 if (unlikely(!bkey_packed(l)))
381 return bkey_cmp(packed_to_bkey_c(l)->p, *r);
382
383 if (likely(r_packed))
384 return __bch2_bkey_cmp_packed_format_checked(l, r_packed, b);
385
386 return __bch2_bkey_cmp_left_packed_format_checked(b, l, r);
387}
388
216c9fac
KO
389static inline struct bset_tree *
390bch2_bkey_to_bset_inlined(struct btree *b, struct bkey_packed *k)
391{
392 unsigned offset = __btree_node_key_to_offset(b, k);
393 struct bset_tree *t;
394
395 for_each_bset(b, t)
396 if (offset <= t->end_offset) {
397 EBUG_ON(offset < btree_bkey_first_offset(t));
398 return t;
399 }
400
401 BUG();
402}
403
1c6fdbd8
KO
404struct bset_tree *bch2_bkey_to_bset(struct btree *, struct bkey_packed *);
405
406struct bkey_packed *bch2_bkey_prev_filter(struct btree *, struct bset_tree *,
407 struct bkey_packed *, unsigned);
408
409static inline struct bkey_packed *
410bch2_bkey_prev_all(struct btree *b, struct bset_tree *t, struct bkey_packed *k)
411{
412 return bch2_bkey_prev_filter(b, t, k, 0);
413}
414
415static inline struct bkey_packed *
416bch2_bkey_prev(struct btree *b, struct bset_tree *t, struct bkey_packed *k)
417{
26609b61 418 return bch2_bkey_prev_filter(b, t, k, KEY_TYPE_discard + 1);
1c6fdbd8
KO
419}
420
421enum bch_extent_overlap {
422 BCH_EXTENT_OVERLAP_ALL = 0,
423 BCH_EXTENT_OVERLAP_BACK = 1,
424 BCH_EXTENT_OVERLAP_FRONT = 2,
425 BCH_EXTENT_OVERLAP_MIDDLE = 3,
426};
427
428/* Returns how k overlaps with m */
429static inline enum bch_extent_overlap bch2_extent_overlap(const struct bkey *k,
271a3d3a 430 const struct bkey *m)
1c6fdbd8
KO
431{
432 int cmp1 = bkey_cmp(k->p, m->p) < 0;
433 int cmp2 = bkey_cmp(bkey_start_pos(k),
434 bkey_start_pos(m)) > 0;
435
436 return (cmp1 << 1) + cmp2;
437}
438
439/* Btree key iteration */
440
1c6fdbd8
KO
441void bch2_btree_node_iter_push(struct btree_node_iter *, struct btree *,
442 const struct bkey_packed *,
443 const struct bkey_packed *);
444void bch2_btree_node_iter_init(struct btree_node_iter *, struct btree *,
a00fd8c5 445 struct bpos *);
1c6fdbd8 446void bch2_btree_node_iter_init_from_start(struct btree_node_iter *,
271a3d3a 447 struct btree *);
1c6fdbd8
KO
448struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *,
449 struct btree *,
450 struct bset_tree *);
451
452void bch2_btree_node_iter_sort(struct btree_node_iter *, struct btree *);
453void bch2_btree_node_iter_set_drop(struct btree_node_iter *,
454 struct btree_node_iter_set *);
455void bch2_btree_node_iter_advance(struct btree_node_iter *, struct btree *);
456
457#define btree_node_iter_for_each(_iter, _set) \
458 for (_set = (_iter)->data; \
459 _set < (_iter)->data + ARRAY_SIZE((_iter)->data) && \
460 (_set)->k != (_set)->end; \
461 _set++)
462
463static inline bool __btree_node_iter_set_end(struct btree_node_iter *iter,
464 unsigned i)
465{
466 return iter->data[i].k == iter->data[i].end;
467}
468
469static inline bool bch2_btree_node_iter_end(struct btree_node_iter *iter)
470{
471 return __btree_node_iter_set_end(iter, 0);
472}
473
a00fd8c5
KO
474/*
475 * When keys compare equal, deleted keys compare first:
476 *
477 * XXX: only need to compare pointers for keys that are both within a
478 * btree_node_iterator - we need to break ties for prev() to work correctly
479 */
9626aeb1 480static inline int bkey_iter_cmp(const struct btree *b,
a00fd8c5
KO
481 const struct bkey_packed *l,
482 const struct bkey_packed *r)
1c6fdbd8 483{
811d2bcd 484 return bch2_bkey_cmp_packed(b, l, r)
271a3d3a 485 ?: (int) bkey_deleted(r) - (int) bkey_deleted(l)
3ea2b1e1 486 ?: cmp_int(l, r);
1c6fdbd8
KO
487}
488
9626aeb1 489static inline int btree_node_iter_cmp(const struct btree *b,
1c6fdbd8
KO
490 struct btree_node_iter_set l,
491 struct btree_node_iter_set r)
492{
a00fd8c5 493 return bkey_iter_cmp(b,
1c6fdbd8
KO
494 __btree_node_offset_to_key(b, l.k),
495 __btree_node_offset_to_key(b, r.k));
496}
497
9626aeb1
KO
498/* These assume r (the search key) is not a deleted key: */
499static inline int bkey_iter_pos_cmp(const struct btree *b,
500 const struct bkey_packed *l,
501 const struct bpos *r)
1c6fdbd8 502{
9626aeb1
KO
503 return bkey_cmp_left_packed(b, l, r)
504 ?: -((int) bkey_deleted(l));
a00fd8c5 505}
1c6fdbd8 506
9626aeb1
KO
507static inline int bkey_iter_cmp_p_or_unp(const struct btree *b,
508 const struct bkey_packed *l,
509 const struct bkey_packed *r_packed,
510 const struct bpos *r)
a00fd8c5 511{
9626aeb1
KO
512 return bkey_cmp_p_or_unp(b, l, r_packed, r)
513 ?: -((int) bkey_deleted(l));
1c6fdbd8
KO
514}
515
516static inline struct bkey_packed *
517__bch2_btree_node_iter_peek_all(struct btree_node_iter *iter,
518 struct btree *b)
519{
520 return __btree_node_offset_to_key(b, iter->data->k);
521}
522
523static inline struct bkey_packed *
524bch2_btree_node_iter_peek_filter(struct btree_node_iter *iter,
525 struct btree *b,
526 unsigned min_key_type)
527{
528 while (!bch2_btree_node_iter_end(iter)) {
529 struct bkey_packed *k = __bch2_btree_node_iter_peek_all(iter, b);
530
531 if (k->type >= min_key_type)
532 return k;
533
534 bch2_btree_node_iter_advance(iter, b);
535 }
536
537 return NULL;
538}
539
540static inline struct bkey_packed *
541bch2_btree_node_iter_peek_all(struct btree_node_iter *iter,
542 struct btree *b)
543{
544 return bch2_btree_node_iter_peek_filter(iter, b, 0);
545}
546
547static inline struct bkey_packed *
548bch2_btree_node_iter_peek(struct btree_node_iter *iter, struct btree *b)
549{
26609b61 550 return bch2_btree_node_iter_peek_filter(iter, b, KEY_TYPE_discard + 1);
1c6fdbd8
KO
551}
552
553static inline struct bkey_packed *
554bch2_btree_node_iter_next_all(struct btree_node_iter *iter, struct btree *b)
555{
556 struct bkey_packed *ret = bch2_btree_node_iter_peek_all(iter, b);
557
558 if (ret)
559 bch2_btree_node_iter_advance(iter, b);
560
561 return ret;
562}
563
e67ab045
KO
564struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *,
565 struct btree *);
1c6fdbd8
KO
566struct bkey_packed *bch2_btree_node_iter_prev_filter(struct btree_node_iter *,
567 struct btree *, unsigned);
568
1c6fdbd8
KO
569static inline struct bkey_packed *
570bch2_btree_node_iter_prev(struct btree_node_iter *iter, struct btree *b)
571{
26609b61 572 return bch2_btree_node_iter_prev_filter(iter, b, KEY_TYPE_discard + 1);
1c6fdbd8
KO
573}
574
1c6fdbd8
KO
575struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *,
576 struct btree *,
577 struct bkey *);
578
271a3d3a
KO
579#define for_each_btree_node_key_unpack(b, k, iter, unpacked) \
580 for (bch2_btree_node_iter_init_from_start((iter), (b)); \
1c6fdbd8
KO
581 (k = bch2_btree_node_iter_peek_unpack((iter), (b), (unpacked))).k;\
582 bch2_btree_node_iter_advance(iter, b))
583
584/* Accounting: */
585
586static inline void btree_keys_account_key(struct btree_nr_keys *n,
587 unsigned bset,
588 struct bkey_packed *k,
589 int sign)
590{
591 n->live_u64s += k->u64s * sign;
592 n->bset_u64s[bset] += k->u64s * sign;
593
594 if (bkey_packed(k))
595 n->packed_keys += sign;
596 else
597 n->unpacked_keys += sign;
598}
599
085ab693
KO
600static inline void btree_keys_account_val_delta(struct btree *b,
601 struct bkey_packed *k,
602 int delta)
603{
604 struct bset_tree *t = bch2_bkey_to_bset(b, k);
605
606 b->nr.live_u64s += delta;
607 b->nr.bset_u64s[t - b->set] += delta;
608}
609
1c6fdbd8
KO
610#define btree_keys_account_key_add(_nr, _bset_idx, _k) \
611 btree_keys_account_key(_nr, _bset_idx, _k, 1)
612#define btree_keys_account_key_drop(_nr, _bset_idx, _k) \
613 btree_keys_account_key(_nr, _bset_idx, _k, -1)
614
216c9fac
KO
615#define btree_account_key_add(_b, _k) \
616 btree_keys_account_key(&(_b)->nr, \
617 bch2_bkey_to_bset(_b, _k) - (_b)->set, _k, 1)
618#define btree_account_key_drop(_b, _k) \
619 btree_keys_account_key(&(_b)->nr, \
620 bch2_bkey_to_bset(_b, _k) - (_b)->set, _k, -1)
621
1c6fdbd8
KO
622struct bset_stats {
623 struct {
624 size_t nr, bytes;
625 } sets[BSET_TREE_NR_TYPES];
626
627 size_t floats;
58404bb2 628 size_t failed;
1c6fdbd8
KO
629};
630
631void bch2_btree_keys_stats(struct btree *, struct bset_stats *);
319f9ac3
KO
632void bch2_bfloat_to_text(struct printbuf *, struct btree *,
633 struct bkey_packed *);
1c6fdbd8
KO
634
635/* Debug stuff */
636
a34782a0
KO
637void bch2_dump_bset(struct bch_fs *, struct btree *, struct bset *, unsigned);
638void bch2_dump_btree_node(struct bch_fs *, struct btree *);
1c6fdbd8
KO
639void bch2_dump_btree_node_iter(struct btree *, struct btree_node_iter *);
640
641#ifdef CONFIG_BCACHEFS_DEBUG
642
643void __bch2_verify_btree_nr_keys(struct btree *);
644void bch2_btree_node_iter_verify(struct btree_node_iter *, struct btree *);
271a3d3a
KO
645void bch2_verify_insert_pos(struct btree *, struct bkey_packed *,
646 struct bkey_packed *, unsigned);
1c6fdbd8
KO
647
648#else
649
650static inline void __bch2_verify_btree_nr_keys(struct btree *b) {}
651static inline void bch2_btree_node_iter_verify(struct btree_node_iter *iter,
652 struct btree *b) {}
271a3d3a
KO
653static inline void bch2_verify_insert_pos(struct btree *b,
654 struct bkey_packed *where,
655 struct bkey_packed *insert,
656 unsigned clobber_u64s) {}
1c6fdbd8
KO
657#endif
658
659static inline void bch2_verify_btree_nr_keys(struct btree *b)
660{
692d4031 661 if (bch2_debug_check_btree_accounting)
1c6fdbd8
KO
662 __bch2_verify_btree_nr_keys(b);
663}
664
665#endif /* _BCACHEFS_BSET_H */